WorldWideScience

Sample records for vitro macrophage cytotoxicity

  1. Cytotoxicity of polyaniline nanomaterial on rat celiac macrophages in vitro.

    Science.gov (United States)

    Li, Yu-Sang; Chen, Bei-Fan; Li, Xiao-Jun; Zhang, Wei Kevin; Tang, He-Bin

    2014-01-01

    Polyaniline nanomaterial (nPANI) is getting popular in many industrial fields due to its conductivity and stability. The fate and effect of nPANI in the environment is of paramount importance towards its technological applications. In this work, the cytotoxicity of nPANI, which was prepared by rapid surface polymerization, was studied on rat celiac macrophages. Cell viability of macrophages treated with various concentrations of nPANI and different periods ranging from 24 to 72 hours was tested by a MTT assay. Damages of nPANI to structures of macrophages were evaluated according to the exposure level of cellular reactive oxygen species (ROS) and change of mitochondrial membrane potential (MMP). We observed no significant effects of nPANI on the survival, ROS level and MMP loss of macrophages at concentrations up to 1 µg/ml. However, higher dose of nPANI (10 µg/ml or above) induced cell death, changes of ROS level and MMP. In addition, an increase in the expression level of caspase-3 protein and its activated form was detected in a Western blot assay under the high dose exposure of nPANI. All together, our experimental results suggest that the hazardous potential of nPANI on macrophages is time- and dose-dependent and high dose of nPANI can induce cell apoptosis through caspase-3 mediated pathway.

  2. Cytotoxicity of polyaniline nanomaterial on rat celiac macrophages in vitro.

    Directory of Open Access Journals (Sweden)

    Yu-Sang Li

    Full Text Available Polyaniline nanomaterial (nPANI is getting popular in many industrial fields due to its conductivity and stability. The fate and effect of nPANI in the environment is of paramount importance towards its technological applications. In this work, the cytotoxicity of nPANI, which was prepared by rapid surface polymerization, was studied on rat celiac macrophages. Cell viability of macrophages treated with various concentrations of nPANI and different periods ranging from 24 to 72 hours was tested by a MTT assay. Damages of nPANI to structures of macrophages were evaluated according to the exposure level of cellular reactive oxygen species (ROS and change of mitochondrial membrane potential (MMP. We observed no significant effects of nPANI on the survival, ROS level and MMP loss of macrophages at concentrations up to 1 µg/ml. However, higher dose of nPANI (10 µg/ml or above induced cell death, changes of ROS level and MMP. In addition, an increase in the expression level of caspase-3 protein and its activated form was detected in a Western blot assay under the high dose exposure of nPANI. All together, our experimental results suggest that the hazardous potential of nPANI on macrophages is time- and dose-dependent and high dose of nPANI can induce cell apoptosis through caspase-3 mediated pathway.

  3. In Vitro Cytotoxicity of Silver Nanomaterials in Murine Macrophages

    Science.gov (United States)

    Silver nanomaterials are increasingly used as antimicrobial agents in a variety of products. Although there is considerable potential for human exposure to these nanomaterials, little is known about the health risks associated with their use. Macrophages are prominent immune cell...

  4. Macrophage solubilization and cytotoxicity of indium-containing particles in vitro.

    Science.gov (United States)

    Gwinn, William M; Qu, Wei; Shines, Cassandra J; Bousquet, Ronald W; Taylor, Genie J; Waalkes, Michael P; Morgan, Daniel L

    2013-10-01

    Indium-containing particles (ICPs) are used extensively in the microelectronics industry. Pulmonary toxicity is observed after inhalation exposure to ICPs; however, the mechanism(s) of pathogenesis is unclear. ICPs are insoluble at physiological pH and are initially engulfed by alveolar macrophages (and likely airway epithelial cells). We hypothesized that uptake of ICPs by macrophages followed by phagolysosomal acidification results in the solubilization of ICPs into cytotoxic indium ions. To address this, we characterized the in vitro cytotoxicity of indium phosphide (InP) or indium tin oxide (ITO) particles with macrophages (RAW cells) and lung-derived epithelial (LA-4) cells at 24h using metabolic (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and membrane integrity (lactate dehydrogenase) assays. InP and ITO were readily phagocytosed by RAW and LA-4 cells; however, the particles were much more cytotoxic to RAW cells and cytotoxicity was dose dependent. Treatment of RAW cells with cytochalasin D (CytoD) blocked particle phagocytosis and reduced cytotoxicity. Treatment of RAW cells with bafilomycin A1, a specific inhibitor of phagolysosomal acidification, also reduced cytotoxicity but did not block particle uptake. Based on direct indium measurements, the concentration of ionic indium was increased in culture medium from RAW but not LA-4 cells following 24-h treatment with particles. Ionic indium derived from RAW cells was significantly reduced by treatment with CytoD. These data implicate macrophage uptake and solubilization of InP and ITO via phagolysosomal acidification as requisite for particle-induced cytotoxicity and the release of indium ions. This may apply to other ICPs and strongly supports the notion that ICPs require solubilization in order to be toxic.

  5. Macrophage solubilization and cytotoxicity of indium-containing particles as in vitro correlates to pulmonary toxicity in vivo.

    Science.gov (United States)

    Gwinn, William M; Qu, Wei; Bousquet, Ronald W; Price, Herman; Shines, Cassandra J; Taylor, Genie J; Waalkes, Michael P; Morgan, Daniel L

    2015-03-01

    Macrophage-solubilized indium-containing particles (ICPs) were previously shown in vitro to be cytotoxic. In this study, we compared macrophage solubilization and cytotoxicity of indium phosphide (InP) and indium-tin oxide (ITO) with similar particle diameters (∼ 1.5 µm) and then determined if relative differences in these in vitro parameters correlated with pulmonary toxicity in vivo. RAW 264.7 macrophages were treated with InP or ITO particles and cytotoxicity was assayed at 24 h. Ionic indium was measured in 24 h culture supernatants. Macrophage cytotoxicity and particle solubilization in vitro were much greater for InP compared with ITO. To correlate changes in vivo, B6C3F1 mice were treated with InP or ITO by oropharyngeal aspiration. On Days 14 and 28, bronchoalveolar lavage (BAL) and pleural lavage (PL) fluids were collected and assayed for total leukocytes. Cell differentials, lactate dehydrogenase activity, and protein levels were also measured in BAL. All lavage parameters were greatly increased in mice treated with InP compared with ITO. These data suggest that macrophage solubilization and cytotoxicity of some ICPs in vitro are capable of predicting pulmonary toxicity in vivo. In addition, these differences in toxicity were observed despite the two particulate compounds containing similar amounts of indium suggesting that solubilization, not total indium content, better reflects the toxic potential of some ICPs. Soluble InCl3 was shown to be more cytotoxic than InP to macrophages and lung epithelial cells in vitro further suggesting that ionic indium is the primary cytotoxic component of InP. Published by Oxford University Press on behalf of the Society of Toxicology 2014. This work is written by US Government employees and is in the public domain in the US.

  6. Cytotoxicity of current adhesive systems: in vitro testing on cell cultures of primary murine macrophages.

    Science.gov (United States)

    Porto, Isabel C C M; Oliveira, Danielle C; Raele, Renata A; Ribas, Ketlin H S; Montes, Marcos A J R; De Castro, Célia M M B

    2011-03-01

    The aim of this study was to evaluate, in vitro, the potential cytotoxicity of dentinal adhesives on alveolar macrophages of Wistar rats, after diffusion through dentin. The cytotoxicity of adhesives [single bond plus (SB), clearfil SE bond (CF) and Xeno V (XE)] applied to the occlusal surface of human dentin disks adapted to a dentin barrier test device were analyzed. The sets placed on a monolayer of cells were incubated for 24, 48 and 72h. Culture medium and Escherichia coli lipopolysaccharides (LPS) were used as negative and positive controls, respectively. Cellular cytotoxicity was evaluated by observing the cell survival rate (MTT assay) and nitric oxide production (NO). The data were analyzed by one-way factorial ANOVA and Tukey's and Tamhane's paired comparisons T2 (α=0.05). All the adhesive systems reduced the percentage of live cells by over 50%, compared with the control group. Within the same period of time, there was a statistically significant difference between the adhesives and LPS compared with the negative control group. SB presented a statistically significant difference between 24h and 72h, and XE between 48h and 72h. The quantity of NO produced in 24h did not differ statistically between the NC and adhesive groups. After 48h there was a significant difference between SB/CF and XE/NC. At 72h only CF showed a significant difference from each of the other groups. LPS differed statistically from all the other groups at all the evaluation times. Components of the adhesives tested may permeate the dentin in sufficient concentrations to cause death and damage to cell metabolism in the alveolar macrophages of rats, which indicates potential cytotoxicity to pulpal cells. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Jones William

    2006-03-01

    Full Text Available Abstract Background Synthetic vitreous fibers (SVFs are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm. It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was

  8. In vitro potential cytotoxicity of an adhesive system to alveolar macrophages

    National Research Council Canada - National Science Library

    Isabel Cristina Celerino de Moraes Porto; Ana Karina Maciel de Andrade; Gymenna Maria Tenório Guênes; Ana Isabella Arruda Meira Ribeiro; Rodivan Braz; Célia Maria Machado Barbosa de Castro

    2009-01-01

    ...) simplified etch-and-rinse adhesive system in alveolar macrophage cultures, as a function of the post-polymerization time and duration of immersion in the culture medium for preparation of extracts...

  9. Macrophages detoxify the genotoxic and cytotoxic effects of surgical cobalt chrome alloy particles but not quartz particles on human cells in vitro.

    Science.gov (United States)

    Papageorgiou, I; Shadrick, V; Davis, S; Hails, L; Schins, R; Newson, R; Fisher, J; Ingham, E; Case, C P

    2008-08-25

    Particles of surgical cobalt chrome alloy are cytotoxic and genotoxic to human fibroblasts in vitro. In vivo orthopaedic patients are exposed to cobalt chrome particles as a result of wear of a joint replacement. Many of the wear debris particles that are produced are phagocytosed by macrophages that accumulate at the site of the worn implant and are disseminated to local and distant lymph nodes the liver and the spleen. In this study we have tested whether this process of phagocytosis could have altered the cytotoxic and genotoxic properties of the cobalt chrome particles. Quartz particles have been investigated as a control. Micron-sized particles of cobalt chrome alloy were internalised by either white cells of peripheral blood or by THP-1 monocytes for 1 week and 1 day, respectively. The particles were then extracted and presented at different doses to fibroblasts for 1 day. There was a reduction of the cytotoxicity and genotoxicity of the cobalt chrome particles after phagocytosis by white cells or THP-1 cells. Cobalt chrome particles that were internalised by fibroblasts also showed a reduction of their cytotoxicity but not their genotoxicity. In contrast the cytotoxicity and genotoxicity of quartz particles was increased after internalisation by THP-1 cells. The surface morphology of the cobalt chrome particles but not the quartz particles was changed after phagocytosis by THP-1 cells. This study suggests that the genotoxic and cytotoxic properties of particles that fall within the size range for phagocytosis may be highly complex in vivo and depend on the combination of material type and previous phagocytosis. These results may have relevance for particle exposure from orthopaedic implants and from environmental or industrial pollution.

  10. CYTOTOXIC EFFECTS OF ALKYLPHOSPHOCHOLINES OR ALKYLPHOSPHOCHOLINE-LIPOSOMES AND MACROPHAGES ON TUMOR-CELLS

    NARCIS (Netherlands)

    ZEISIG, R; JUNGMANN, S; FICHTNER, [No Value; DAEMEN, T; ARNDT, D

    1994-01-01

    The influence of the alkylphosphocholines (APC) on macrophage activation to tumor cytotoxicity was investigated in vitro with both mouse peritoneal and rat liver macrophages. For this purpose the compouds were used either in micellar or in liposomal form. The cytotoxic effect of micellar or

  11. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    Science.gov (United States)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  12. Pegylated silica nanoparticles: cytotoxicity and macrophage uptake

    Science.gov (United States)

    Glorani, Giulia; Marin, Riccardo; Canton, Patrizia; Pinto, Marcella; Conti, Giamaica; Fracasso, Giulio; Riello, Pietro

    2017-08-01

    Here, we present a thorough study of pegylated silica nanoparticle (SNP) interaction with different biological environments. The SNPs have a mean diameter of about 40 nm and are coated with polyethylene glycol (PEG) of different molecular weights. The physicochemical characterization of SNPs allowed the confirmation of the binding of PEG chains to the silica surface, the reproducibility of the synthesis and the narrow size-dispersion. In view of clarifying the SNP interaction with biological environments, we first assessed the SNP reactivity after the incubation with two cell lines (macrophages RAW 264.7 and primary human fibroblasts), observing a reduced toxicity of pegylated SNPs compared to the bare ones. Then, we investigated the effect of the protein adsorption on the SNP surface using the model serum protein, bovine serum albumin (BSA). We found that the protein adsorption takes place more heavily on poorly pegylated SNPs, promoting the uptake of the latter by macrophages and leading to an increased mortality of these cells. To better understand this mechanism by means of flow cytometry, the dye Ru(bpy)3Cl2 was incorporated in the SNPs. The overall results highlight the SNP potentialities as a drug delivery system, thanks to the low interactions with the macrophages.

  13. In vitro cytotoxic elemanolides from Vernonia lasiopus.

    Science.gov (United States)

    Koul, J L; Koul, S; Singh, C; Taneja, S C; Shanmugavel, M; Kampasi, H; Saxena, A K; Qazi, G N

    2003-02-01

    Two new elemanolides, epivernodalol and lasiopulide, were isolated after chromatographic separation of the alcoholic extract of the dried aerial parts of the Vernonia lasiopus. These elemanolides are new C-10 epimers of the sesquiterpene lactones vernodalol and demethylacroylated vernodalol isolated from other species of Vernonia. Both elemanolides showed in vitro cytotoxicity against human cancer cell lines in culture. This is the first report of isolation and cytotoxic activity of the two elemanolides from V. lasiopus.

  14. Cytotoxicity of Dental Adhesives In Vitro

    Science.gov (United States)

    Koulaouzidou, Elisabeth A.; Helvatjoglu-Antoniades, Maria; Palaghias, George; Karanika-Kouma, Artemis; Antoniades, Dimitrios

    2009-01-01

    Objectives The purpose of this study was to evaluate the cytotoxic effect of six dental adhesives (Admira Bond, Clearfil Liner Bond 2V, ED Primer II, Fuji Bond LC, Gluma Comfort Bond, and NanoBond) applied to cell cultures. Methods The experiments were performed on two cell lines, rat pulp cells (RPC-C2A) and human lung fibroblasts (MRC5). Samples of the adhesives were light-cured and placed in culture medium for 24 hours. The extraction media was applied on the RPC-C2A and the MRC5 cells. Complete medium was used as a control. Cytotoxicity was evaluated with a modified sulforhodamine B (SRB) assay after 24 hours of exposure. Results The cell survival of RPC-C2A cells exposed to Fuji Bond LC, NanoBond, Clearfil Liner Bond 2V, ED Primer II, Admira Bond and Gluma Comfort Bond was 73%, 67%, 50%, 20%, 18% and 5% respectively, relative to the cell survival with the control medium. In the MRC5 cell line, the relative survival was 98%, 80%, 72%, 41%, 19% and 7% after exposure to NanoBond, Fuji Bond LC, Clearfil Liner Bond 2V, ED Primer II, Admira Bond and Gluma Comfort Bond, respectively. Conclusions Different types of dental adhesives showed different cytotoxic effects on cells in vitro. The self-etch adhesives were superior in terms of cytotoxicity. The different cytotoxic effects of dental adhesives should be considered when selecting an appropriate adhesive for operative restorations. PMID:19262725

  15. Cytotoxicity of dental adhesives in vitro.

    Science.gov (United States)

    Koulaouzidou, Elisabeth A; Helvatjoglu-Antoniades, Maria; Palaghias, George; Karanika-Kouma, Artemis; Antoniades, Dimitrios

    2009-01-01

    The purpose of this study was to evaluate the cytotoxic effect of six dental adhesives (Admira Bond, Clearfil Liner Bond 2V, ED Primer II, Fuji Bond LC, Gluma Comfort Bond, and NanoBond) applied to cell cultures. The experiments were performed on two cell lines, rat pulp cells (RPC-C2A) and human lung fibroblasts (MRC5). Samples of the adhesives were light-cured and placed in culture medium for 24 hours. The extraction media was applied on the RPC-C2A and the MRC5 cells. Complete medium was used as a control. Cytotoxicity was evaluated with a modified sulforhodamine B (SRB) assay after 24 hours of exposure. The cell survival of RPC-C2A cells exposed to Fuji Bond LC, NanoBond, Clearfil Liner Bond 2V, ED Primer II, Admira Bond and Gluma Comfort Bond was 73%, 67%, 50%, 20%, 18% and 5% respectively, relative to the cell survival with the control medium. In the MRC5 cell line, the relative survival was 98%, 80%, 72%, 41%, 19% and 7% after exposure to NanoBond, Fuji Bond LC, Clearfil Liner Bond 2V, ED Primer II, Admira Bond and Gluma Comfort Bond, respectively. Different types of dental adhesives showed different cytotoxic effects on cells in vitro. The self-etch adhesives were superior in terms of cytotoxicity. The different cytotoxic effects of dental adhesives should be considered when selecting an appropriate adhesive for operative restorations.

  16. Mycobacterium bovis Bacillus Calmette-Guérin-Induced Macrophage Cytotoxicity against Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2010-01-01

    Full Text Available Many details of the molecular and cellular mechanisms involved in Mycobacterium bovis bacillus Calmette-Guérin (BCG immunotherapy of bladder cancer have been discovered in the past decades. However, information on a potential role for macrophage cytotoxicity as an effector mechanism is limited. Macrophages play pivotal roles in the host innate immunity and serve as a first line of defense in mycobacterial infection. In addition to their function as professional antigen-presenting cells, the tumoricidal activity of macrophages has also been studied with considerable interest. Studies have shown that activated macrophages are potent in killing malignant cells of various tissue origins. This review summarizes the current understanding of the BCG-induced macrophage cytotoxicity toward bladder cancer cells with an intention to inspire investigation on this important but underdeveloped research field.

  17. Modulation of macrophage-mediated cytotoxicity by kerosene soot: Possible role of reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Arif, J.M.; Khan, S.G.; Ashquin, M.; Rahman, Q. (Industrial Toxicology Research Centre, Lucknow (India))

    1993-05-01

    The involvement of reactive oxygen species (ROS) in the cytotoxicity of soot on rat alveolar macrophages has been postulated. A single intratracheal injection of soot (5 mg) in corn oil significantly induced the macrophage population, hydrogen peroxide (H[sub 2]O[sub 2]) generation, thiobarbituric acid (TBA)-reactive substanced of lipid peroxidation, and the activities of extracellular acid phosphatase (AP) and lactate dehydrogenase (LDH) at 1, 4, 8, and 16 days of postinoculation. The activities of glutathione peroxidase (GPX) and catalase (CAT) were significantly inhibited at all the stages, while glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) showed a different pattern. These results show that soot is cytotoxic to alveolar macrophages and suggest that ROS may play a primary role in the cytotoxic process. 28 refs., 4 figs., 1 tab.

  18. The Macrophage Polarization Regulates MSC Osteoblast Differentiation in vitro.

    Science.gov (United States)

    Gong, Lei; Zhao, Yan; Zhang, Yi; Ruan, Zhi

    2016-01-01

    Bone repair is a complex yet highly organized process involving interactions between various cell types and the extracellular environment. Macrophages are not only activated in inflammation during early phases of repair processes, but they are also present in bone throughout the whole bone repair process. Bone marrow derived mesenchymal stem cells (MSCs) represent an attractive therapeutic for bone fracture with their expansion potential, osteogenic capability, and potential for injury. However, less is known about the interaction between macrophage and MSC during bone repair and regeneration. This study was aimed to investigate whether macrophages in different statuses can regulate MSC osteoblast differentiation in vitro. Using in vitro cell coculture of macrophage and MSC, it was shown that macrophage polarization can regulate MSC osteoblast differentiation. This was evidenced by increased alkaline phosphatase (ALP), osteogenic markers, and bone mineralization in M2 macrophage cocultured MSC but decreased in M1 counterpart. These results might be mediated by pro-regenerative cytokines, such as TGF-β, VEGF, and IFG-1, produced by M2 macrophages and detrimental inflammation cytokines, such as IL-6, IL-12, and TNF-α, produced by M1 macrophages. Taken together, this shows that macrophage polarization could be crucial for maintaining bone homeostasis and promoting bone repair by regulating the MSC osteoblast differentiation. © 2016 by the Association of Clinical Scientists, Inc.

  19. Macrophage phagocytosis of Candida albicans. An in vitro study

    Directory of Open Access Journals (Sweden)

    WEINFELD Ilan

    1999-01-01

    Full Text Available Considering the role of macrophages in relation to fungi and the various utilized methodologies, the authors established an in vitro model to evaluate macrophage phagocytosis of Candida albicans. Activated macrophages were obtained from the peritoneal cavity of isogenic mice (A/Sn. Two different strains of Candida albicans serotype A and serotype B with different levels of pathogenicity in vivo and other similar characteristics were utilized in the study. Several microscopic fields containing about 200 macrophages were counted. The percentage of macrophages phagocytizing at least one viable or nonviable yeast cell determined an average number of phagocytized yeasts. Neutral red and fluorescein diacetate plus ethidium bromide were used for staining. It is possible to conclude that this is an efficient model related to the used methodology. The average number of yeasts in both strains were similar when inside macrophages, and there was a higher percentage of C. albicans serotype A phagocytosis, which was not experimentally pathogenic in vivo.

  20. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages.

    OpenAIRE

    Lancaster, J R; Hibbs, J B

    1990-01-01

    Activated macrophage cytotoxicity is characterized by loss of intracellular iron and inhibition of certain enzymes that have catalytically active nonheme-iron coordinated to sulfur. This phenomenon involves the oxidation of one of the terminal guanidino nitrogen atoms of L-arginine, which results in the production of citrulline and inorganic nitrogen oxides (NO2-, NO3-, and NO). We report here the results of an electron paramagnetic resonance spectroscopic study performed on cytotoxic activat...

  1. In vitro cytotoxic and antioxidant properties of the aqueous ...

    African Journals Online (AJOL)

    The in vitro cytotoxic and antioxidant properties of the aqueous, chloroform and methanol extracts of the Dicranopteris linearis leaves were investigated in the present study. The cytotoxic effect was determined against the normal (3T3) and cancer cells' lines (MCF-7, HeLa, HT-29, HL-60, K-562 and MDA-MB-231) using the ...

  2. Pharmacognostic profile and in vitro cytotoxic activity of Adenema ...

    African Journals Online (AJOL)

    Chloroform, ethyl acetate and ethanolic extracts were investigated for in vitro cytotoxic activity against nine different types of human cancer panel of 60 different strains of tumor cell lines using the sulforhodamine-B (SRB) binding assay. The chloroform extract showed potent cytotoxicity against non small cell lung cancer cell, ...

  3. Monocyte chemoattractant protein-1 (MCP-1 regulates macrophage cytotoxicity in abdominal aortic aneurysm.

    Directory of Open Access Journals (Sweden)

    Qiwei Wang

    Full Text Available AIMS: In abdominal aortic aneurysm (AAA, macrophages are detected in the proximity of aortic smooth muscle cells (SMCs. We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. METHODS AND RESULTS: Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68(+/FasL(+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. CONCLUSION: Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism.

  4. Toxicity of mycotoxins for the rat pulmonary macrophage in vitro.

    OpenAIRE

    Sorenson, W. G.; Gerberick, G F; Lewis, D M; Castranova, V.

    1986-01-01

    The presence of mycotoxins in grains is well documented. Workers in grain handling occupations are commonly exposed to grain dust aerosols. Work in our laboratory has shown that T-2 toxin is highly toxic to rat alveolar macrophages in vitro, causing loss of viability, release of radiolabeled chromium, inhibition of macromolecular synthesis, inhibition of phagocytosis, and inhibition of macrophage activation. Similarly, patulin caused a significant release of radiolabeled chromium, decrease in...

  5. Toxicity of mycotoxins for the rat pulmonary macrophage in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, W.G.; Gerberick, G.F.; Lewis, D.M.; Castranova, V.

    1986-04-01

    The presence of mycotoxins in grains is well documented. Workers in grain handling occupations are commonly exposed to grain dust aerosols. Work in our laboratory has shown that T-2 toxin is highly toxic to rat alveolar macrophages in vitro, causing loss of viability, release of radiolabeled chromium, inhibition of macromolecular synthesis, inhibition of phagocytosis, and inhibition of macrophage activation. Similarly, patulin caused a significant release of radiolabeled chromium, decrease in ATP levels, significant inhibition of protein and RNA synthesis, and inhibition of phagocytosis. The data show that both T-2 toxin and patulin are highly toxic to rat alveolar macrophages in vitro. The data further suggest that the presence of these mycotoxins in airborne respirable dust might present a hazard to exposed workers.

  6. Cytotoxicity assessment, inflammatory properties, and cellular uptake of Neutraplex lipid-based nanoparticles in THP-1 monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    Eric Berger

    2017-12-01

    Full Text Available Current antiretroviral drugs used to prevent or treat human immunodeficiency virus type 1 (HIV-1 infection are not able to eliminate the virus within tissues or cells where HIV establishes reservoirs. Hence, there is an urgent need to develop targeted delivery systems to enhance drug concentrations in these viral sanctuary sites. Macrophages are key players in HIV infection and contribute significantly to the cellular reservoirs of HIV because the virus can survive for prolonged periods in these cells. In the present work, we investigated the potential of the lipid-based Neutraplex nanosystem to deliver anti-HIV therapeutics in human macrophages using the human monocyte/macrophage cell line THP-1. Neutraplex nanoparticles as well as cationic and anionic Neutraplex nanolipoplexes (Neutraplex/small interfering RNA were prepared and characterized by dynamic light scattering. Neutraplex nanoparticles showed low cytotoxicity in CellTiter-Blue reduction and lactate dehydrogenase release assays and were not found to have pro-inflammatory effects. In addition, confocal studies showed that the Neutraplex nanoparticles and nanolipoplexes are rapidly internalized into THP-1 macrophages and that they can escape the late endosome/lysosome compartment allowing the delivery of small interfering RNAs in the cytoplasm. Furthermore, HIV replication was inhibited in the in vitro TZM-bl infectivity assay when small interfering RNAs targeting CXCR4 co-receptor was delivered by Neutraplex nanoparticles compared to a random small interfering RNA sequence. This study demonstrates that the Neutraplex nanosystem has potential for further development as a delivery strategy to efficiently and safely enhance the transport of therapeutic molecules into human monocyte-derived macrophages in the aim of targeting HIV-1 in this cellular reservoir.

  7. In vitro Cytotoxic, Antibacterial and Antiviral Activities of Triterpenes ...

    African Journals Online (AJOL)

    Purpose: To study the phytochemical composition of Siphonochalina siphonella sponge from the western coast of the Red Sea and to evaluate the isolates for possible in vitro cytotoxic, antibacterial and antiviral activities. Methods: The compounds obtained were isolated and purified by different chromatographic means.

  8. Preliminary in vitro cytotoxic assay of human liver carcinoma cells ...

    African Journals Online (AJOL)

    From the preliminary in vitro cytotoxic assay study, triorganotin(IV) complexes (2 and 5) were found to exhibit better activity as compared to diorganotin(IV) complexes (1, 3 and 4) but lower activity as compared to the reference drug. In addition, within the diorganotin(IV) complexes, monomeric type (3) exhibited a slightly ...

  9. In vitro Antimalarial and Cytotoxic Activities of Leaf Extracts of ...

    African Journals Online (AJOL)

    The antiplasmodial and cytotoxic activity of leaf extracts of Vernonia amygdalina was studied. The plant leaves were prepared into three extract forms: ethanolic, aqueous, and hydroethanolic (50:50) using standard procedures. The extracts were evaluated in vitro for antiplasmodial activity using a. 3D7 chloroquine sensitive ...

  10. In vitro Antifungal, Antioxidant and Cytotoxic Activities of a Partially ...

    African Journals Online (AJOL)

    The cytotoxicity of these extracts was tested on Vero cell lines. Results: Both the aqueous extract and protein fraction (AMP III) of Atlantia monophylla leaf exhibited higher antifungal activity on Candida albicans than on Aspergillus fumigatus. AMP III fraction showed greater in vitro antioxidant activity than the aqueous extract ...

  11. Preparation and in-vitro cytotoxicity of zinc oxide nanoparticles ...

    African Journals Online (AJOL)

    FTIR results revealed coating of plant polyphenols on ZnO NPs surface while. XRD and EDS demonstrated the hexagonal structure of crystalline ZnO NPs. Dynamic light scattering. (DLS) and TEM analyses indicate hexagonal NPs with a mean particle size of 32 nm. In-vitro cytotoxicity data showed that the NPs exhibited ...

  12. Preparation and in-vitro cytotoxicity of zinc oxide nanoparticles ...

    African Journals Online (AJOL)

    Preparation and in-vitro cytotoxicity of zinc oxide nanoparticles against osteoarthritic chondrocytes. ... FTIR results revealed coating of plant polyphenols on ZnO NPs surface while XRD and EDS demonstrated the hexagonal structure of crystalline ZnO NPs. Dynamic light scattering (DLS) and TEM analyses indicate ...

  13. In vitro cytotoxicity of crude alkaloidal extracts of South African ...

    African Journals Online (AJOL)

    In vitro cytotoxicity of crude alkaloidal extracts of South African Menispermaceae against three cancer cell linese. ... African Journal of Biotechnology ... Extracts of ten of the thirteen species showed positive activity against all three cancer cell lines with significant inhibition of cellular growth at TGI (total growth inhibition) ...

  14. In Vitro Screening of Cytotoxic, Antimicrobial and Antioxidant ...

    African Journals Online (AJOL)

    Purpose: To evaluate the in vitro cytotoxic, antioxidant and antimicrobial activities of Clinacanthus nutans extracts and semi-fractions. Method: The plant was subjected to cold solvent extraction to produce petroleum ether, ethyl acetate and methanol crude extracts, followed by isolation using bioassay-guided fractionation.

  15. Neutralization of Yersinia pestis-mediated macrophage cytotoxicity by anti-LcrV antibodies and its correlation with protective immunity in a mouse model of bubonic plague.

    Science.gov (United States)

    Zauberman, Ayelet; Cohen, Sara; Levy, Yinon; Halperin, Gideon; Lazar, Shirley; Velan, Baruch; Shafferman, Avigdor; Flashner, Yehuda; Mamroud, Emanuelle

    2008-03-20

    Plague is a life-threatening disease caused by Yersinia pestis, for which effective-licensed vaccines and reliable predictors of in vivo immunity are lacking. V antigen (LcrV) is a major Y. pestis virulence factor that mediates translocation of the cytotoxic Yersinia protein effectors (Yops). It is a well-established protective antigen and a part of currently tested plague subunit vaccines. We have developed a highly sensitive in vitro macrophage cytotoxicity neutralization assay which is mediated by anti-LcrV antibodies; and studied the potential use of these neutralizing antibodies as an in vitro correlate of plague immunity in mice. The assay is based on a Y. pestis strain with enhanced cytotoxicity to macrophages in which endogenous yopJ was replaced by the more effectively translocated yopP of Y. enterocolitica O:8. Mice passively immunized with rabbit anti-LcrV IgG or actively immunized with recombinant LcrV were protected against lethal doses of a virulent Y. pestis strain, in a mouse model of bubonic plague. This protection significantly correlated with the in vitro neutralizing activity of the antisera but not with their corresponding ELISA titers. In actively immunized mice, a cutoff value for serum neutralizing activity, above which survival was assured with high degree of confidence, could be established for different vaccination regimes. The impact of overall findings on the potential use of serum neutralizing activity as a correlate of protective immunity is discussed.

  16. Cytotoxic mechanism of cytolethal distending toxin in nontyphoidal Salmonella serovar (Salmonella Javiana) during macrophage infection.

    Science.gov (United States)

    Williams, Katherine; Gokulan, Kuppan; Shelman, Diamond; Akiyama, Tatsuya; Khan, Ashraf; Khare, Sangeeta

    2015-02-01

    Cytolethal distending toxin B (cdtB) is a conserved virulence factor in Salmonella enterica serovar Typhi. Here we report the presence and functionality of cdtB in some nontyphoidal Salmonella (NTS) serovars, including Salmonella Javiana (cdtB+wt S. Javiana), isolated from imported food. To understand the role of cdtB in NTS serovars, a deletion mutant (cdtB(-)ΔS. Javiana) was constructed. Macrophages were infected with cdtB+wt S. Javiana (wild type), cdtB(-)Δ S. Javiana (mutant), and cdtB-negative NTS serovar (S. Typhimurium). Cytotoxic activity and transcription level of genes involved in cell death (apoptosis, autophagy, and necrosis) were assessed in infected macrophages. The cdtB+wt S. Javiana caused cellular distension as well as high degree of vacuolization and presence of the autophagosome marker LC3 in infected macrophages as compared with cdtB(-)ΔS. Javiana. The mRNA expression of genes involved in the induction of autophagy in response to toxin (Esr1 and Pik3C3) and coregulators of autophagy and apoptosis (Bax and Cyld) were significantly upregulated in cdtB(+)wt S. Javiana-infected macrophages. As autophagy destroys internalized pathogens in addition to the infected cell, it may reduce the spread of infection.

  17. Carbon nanotubes enhance cytotoxicity mediated by human lymphocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Zhao Sun

    Full Text Available With the expansion of the potential applications of carbon nanotubes (CNT in biomedical fields, the toxicity and biocompatibility of CNT have become issues of growing concern. Since the immune system often mediates tissue damage during pathogenesis, it is important to explore whether CNT can trigger cytotoxicity through affecting the immune functions. In the current study, we evaluated the influence of CNT on the cytotoxicity mediated by human lymphocytes in vitro. The results showed that while CNT at low concentrations (0.001 to 0.1 µg/ml did not cause obvious cell death or apoptosis directly, it enhanced lymphocyte-mediated cytotoxicity against multiple human cell lines. In addition, CNT increased the secretion of IFN-γ and TNF-α by the lymphocytes. CNT also upregulated the NF-κB expression in lymphocytes, and the blockage of the NF-κB pathway reduced the lymphocyte-mediated cytotoxicity triggered by CNT. These results suggest that CNT at lower concentrations may prospectively initiate an indirect cytotoxicity through affecting the function of lymphocytes.

  18. In-vitro cytotoxicity of biosynthesized gold nanoparticles against ...

    African Journals Online (AJOL)

    Purpose: To undertake the biosynthesis of gold nanoparticles (AuNPs) using Shorea tumbuggaia bark extract and to study their in-vitro cytotoxicity in thyroid cancer (SW579) cell lines. Methods: AuNPs were prepared by adding 10 mL of Shorea tumbuggaia extract to 5 mL of 2 × 10-3 M of chloroauric acid (HAuCl4) and ...

  19. Assessment of the cytotoxicity of a mineral trioxide aggregate-based sealer with respect to macrophage activity.

    Science.gov (United States)

    Braga, Julia Mourão; Oliveira, Ricardo Reis; de Castro Martins, Renata; Vieira, Leda Quercia; Sobrinho, Antonio Paulino Ribeiro

    2015-10-01

    To assess the influence of co-culture with mineral trioxide aggregate (MTA) and MTA Fillapex (FLPX) on the viability, adherence, and phagocytosis activity of peritoneal macrophages from two mouse strains. Cellular viability, adherence, and phagocytosis of Saccharomyces boulardii were assayed in the presence of capillaries containing MTA and MTA Fillapex. The data were analyzed using parametric (Student's t) and non-parametric (Mann-Whitney) tests. FLPX was severely cytotoxic and decreased cell viability, adherence, and phagocytic activity of both macrophage subtypes. Cells that were treated with MTA Fillapex remained viable (>80%) for only 4 h after stimulation. Macrophages from C57BL/6 mice presented higher adherence and higher phagocytic activity compared with macrophages from BALB/c mice. Comparison of MTA and FLPX effects upon macrophages indicates that FLPX may impair macrophage activity and viability, while MTA seems to increase phagocytic activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Adipose Type One Innate Lymphoid Cells Regulate Macrophage Homeostasis through Targeted Cytotoxicity.

    Science.gov (United States)

    Boulenouar, Selma; Michelet, Xavier; Duquette, Danielle; Alvarez, David; Hogan, Andrew E; Dold, Christina; O'Connor, Donal; Stutte, Suzanne; Tavakkoli, Ali; Winters, Desmond; Exley, Mark A; O'Shea, Donal; Brenner, Michael B; von Andrian, Ulrich; Lynch, Lydia

    2017-02-21

    Adipose tissue has a dynamic immune system that adapts to changes in diet and maintains homeostatic tissue remodeling. Adipose type 1 innate lymphoid cells (AT1-ILCs) promote pro-inflammatory macrophages in obesity, but little is known about their functions at steady state. Here we found that human and murine adipose tissue harbor heterogeneous populations of AT1-ILCs. Experiments using parabiotic mice fed a high-fat diet (HFD) showed differential trafficking of AT1-ILCs, particularly in response to short- and long-term HFD and diet restriction. At steady state, AT1-ILCs displayed cytotoxic activity toward adipose tissue macrophages (ATMs). Depletion of AT1-ILCs and perforin deficiency resulted in alterations in the ratio of inflammatory to anti-inflammatory ATMs, and adoptive transfer of AT1-ILCs exacerbated metabolic disorder. Diet-induced obesity impaired AT1-ILC killing ability. Our findings reveal a role for AT1-ILCs in regulating ATM homeostasis through cytotoxicity and suggest that this function is relevant in both homeostasis and metabolic disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. In vitro studies on the cytotoxic potential of surface sealants.

    Science.gov (United States)

    Zingler, S; Matthei, B; Kohl, A; Saure, D; Ludwig, B; Diercke, K; Lux, C J; Erber, R

    2015-01-01

    The objective of this in vitro study was an initial screening of the cytotoxic potential of widely used smooth enamel surface sealants. A total of 20 products were allocated to four groups based on their chemical composition: (1) filled resin-based sealants, (2) unfilled resin-based sealants, (3) a resin-modified, glass ionomer-based sealant, and (4) silicone-based sealants. All materials were applied to human enamel slices both in accordance with manufacturers' instructions and in additional experiments applying 50% undercuring and 50% overcuring. An agar overlay assay was then used to test the specimens following ISO 10933. The cytotoxic potential of each material was interpreted based on a reaction index that summarized the decolorization and lysis scores obtained. The cytotoxic potential decreased as follows: unfilled resin-based sealants > filled resin-based sealants > resin-modified, glass ionomer-based sealant > silicone-based sealants. In 75% of the resin-based products, deliberate undercuring was associated with more extensive decolorization zones, leading to higher rates of cytotoxic potential in two of those products. Overcuring, by contrast, was associated with a tendency for smaller decolorization zones in 50% of the resin-based products. Surface sealants derived from resin monomers exhibited cytotoxic potential in the agar overlay assay. There is also evidence of a possible association with curing, as undercuring can increase the cytotoxic potential, whereas normal curing (as per manufacturers' instructions) or overcuring may help minimize such effects. More research into the biological implications of these materials is needed, especially with regard to their potential impact on the adjacent gingiva.

  2. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages.

    Science.gov (United States)

    Lancaster, J R; Hibbs, J B

    1990-02-01

    Activated macrophage cytotoxicity is characterized by loss of intracellular iron and inhibition of certain enzymes that have catalytically active nonheme-iron coordinated to sulfur. This phenomenon involves the oxidation of one of the terminal guanidino nitrogen atoms of L-arginine, which results in the production of citrulline and inorganic nitrogen oxides (NO2-, NO3-, and NO). We report here the results of an electron paramagnetic resonance spectroscopic study performed on cytotoxic activated macrophage (CAM) effector cells, which develop the same pattern of metabolic inhibition as their targets. Examination of activated macrophages from mice infected with Mycobacterium bovis (strain bacillus Calmette-Guérin) that were cultured in medium with lipopolysaccharide and L-arginine showed the presence of an axial signal at g = 2.039, which is similar to previously described iron-nitrosyl complexes formed from the destruction of iron-sulfur centers by nitric oxide (NO). Inhibition of the L-arginine-dependent pathway by addition of NG-monomethyl-L-arginine (methyl group on a terminal guanidino nitrogen) inhibits the production of nitrite, nitrate, citrulline, and the g = 2.039 signal. Comparison of the hyperfine structure of the signal from cells treated with L-arginine with terminal guanidino nitrogen atoms of natural abundance N14 atoms or labeled with N15 atoms showed that the nitrosyl group in this paramagnetic species arises from one of these two atoms. These results show that loss of iron-containing enzyme function in CAM is a result of the formation of iron-nitrosyl complexes induced by the synthesis of nitric oxide from the oxidation of a terminal guanidino nitrogen atom of L-arginine.

  3. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, J.R. Jr.; Hibbs, J.B. Jr. (Utah State Univ., Logan (USA))

    1990-02-01

    Activated macrophage cytotoxicity is characterized by loss of intracellular iron and inhibition of certain enzymes that have catalytically active nonheme-iron coordinated to sulfur. This phenomenon involves the oxidation of one of the terminal guanidino nitrogen atoms of L-arginine, which results in the production of citrulline and inorganic nitrogen oxides (NO2-, NO3-, and NO). We report here the results of an electron paramagnetic resonance spectroscopic study performed on cytotoxic activated macrophage (CAM) effector cells, which develop the same pattern of metabolic inhibition as their targets. Examination of activated macrophages from mice infected with Mycobacterium bovis (strain bacillus Calmette-Guerin) that were cultured in medium with lipopolysaccharide and L-arginine showed the presence of an axial signal at g = 2.039, which is similar to previously described iron-nitrosyl complexes formed from the destruction of iron-sulfur centers by nitric oxide (NO). Inhibition of the L-arginine-dependent pathway by addition of NG-monomethyl-L-arginine (methyl group on a terminal guanidino nitrogen) inhibits the production of nitrite, nitrate, citrulline, and the g = 2.039 signal. Comparison of the hyperfine structure of the signal from cells treated with L-arginine with terminal guanidino nitrogen atoms of natural abundance N14 atoms or labeled with N15 atoms showed that the nitrosyl group in this paramagnetic species arises from one of these two atoms. These results show that loss of iron-containing enzyme function in CAM is a result of the formation of iron-nitrosyl complexes induced by the synthesis of nitric oxide from the oxidation of a terminal guanidino nitrogen atom of L-arginine.

  4. In vitro cytotoxicity evaluation of nano-carbon particles with different sp2/sp3ratios.

    Science.gov (United States)

    Li, S S; Wu, B J; Deng, Q Y; Guo, Y B; Leng, Y X; Huang, N

    2017-06-01

    Graphitization occurs during the long-term service of a diamond-like carbon (DLC) modified artificial joint. Then, DLC wear debris, which are carbon particles with different sp 2 /sp 3 ratios and sizes ranging from the nano- to micro-meter scale produced. In this paper, to promote the application of DLC coating for artificial joint modification, the cytotoxicity of DLC debris (nano-carbon particles, NCs) with different sp 2 /sp 3 ratios was studied. The microstructure and physical characteristics of NCs with different sp 2 /sp 3 ratios were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS). Meanwhile, osteoblasts and macrophages were applied to characterize the cytotoxicity of the NCs. In vitro cytotoxicity assay results indicated that cells incubated with NCs of different sp 2 /sp 3 ratios had greater osteogenic capacity, and these particles caused a weaker immune response in comparison with CoCrMo particles. Taken together, the results indicated that NCs with different sp 2 /sp 3 ratios presented a good cytocompatibility than CoCrMo particles. But no significant differences were observed among NCs with different sp 2 /sp 3 ratios. The better cytocompatibility of NCs is mainly attributable to their surface charge. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Digital holographic microscopy overcomes the limitations of in vitro nanomaterial cytotoxicity testing

    Science.gov (United States)

    Mues, Sarah; Ketelhut, Steffi; Kemper, Björn; Schnekenburger, Jürgen

    2017-02-01

    The cytotoxic potential of nanomaterials is commonly evaluated by different cellular endpoints as reactive oxygen species formation, cell viability or cell death. Usually these parameters are determined by intensity based optical readouts that are often influenced by nanomaterial-based interferences. Here we present Digital Holographic Microscopy (DHM) as a multimodal optical method, which overcomes the limitations of conventional in vitro assays based on color or fluorescence read outs. Using cell viability WST8- and cell death LDH-assay we investigated the toxic effects of two representative silver nanomaterials. Therefore, we used a matrix of four cell lines representing different organ functions. Compared to conventional toxicity assays DHM allows time resolved proliferation monitoring which is free of assay system interactions. Also, information about time-dependent mechanisms can be obtained. Additionally, we have analyzed single macrophages for refractive index, cell volume and dry mass after the incubation to cytotoxic silver spheres. The refractive index decreased dose dependent, while cell volume and dry mass stayed constant. We therefore suggest the evaluation of these parameters in cytotoxicity assessment for further evaluation of their relevance under the applied conditions. This demonstrates DHM as valuable label-free tool for nanomaterial toxicity analysis.

  6. PROLIFERATION OF RAT-LIVER MACROPHAGES IN-VITRO - INFLUENCE OF HEMATOPOIETIC GROWTH-FACTORS

    NARCIS (Netherlands)

    HOEDEMAKERS, RMJ; SCHERPHOF, GL; DAEMEN, T

    We examined the effects of several hemopoietic growth factors on proliferation of rat liver macrophages in vitro. The proliferative response of liver macrophages to hemopoietic growth factors was assayed on the basis of [methyl-H-3]thymidine uptake. Macrophage colony-stimulating factor and

  7. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro

    DEFF Research Database (Denmark)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao

    2015-01-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A...... that exposure to A-DEP may induce formation of lipid droplets in macrophages in vitro possibly via lysosomal dysfunction....

  8. In vitro bioactivity and cytotoxicity of chemically treated glass fibers

    Directory of Open Access Journals (Sweden)

    Ângela Leão Andrade

    2004-12-01

    Full Text Available Samples of a commercial glass fiber FM® (Fiber Max were used to test the efficacy of a chemical sol-gel surface treatment to enhance their bioactivity. After treatment with tetraethoxysilane (TEOS, individual fiber samples were soaked into a simulated body fluid (SBF solution, from which they were removed at intervals of 5 and 10 days. Micrographs obtained by scanning electron microscopy (SEM analysis of samples chemically treated with TEOS revealed the formation of a hydroxyapatite (HA coating layer after 5 days into SBF solution. Fourier transform infrared spectroscopic (FTIR analyses confirmed that the coating layer has P-O vibration bands characteristic of HA. The in vitro cytotoxicity was evaluated using a direct contact test, minimum essential medium elution test (ISO 10993-5 and MTT assay. Fibers immersed in SBF and their extracts exhibited lower cytotoxicity than the controls not subjected to immersion, suggesting that SBF treatment improves the biocompatibility of the fiber.

  9. Macrophage Tropism of Human Immunodeficiency Virus Type 1 Facilitates In Vivo Escape from Cytotoxic T-Lymphocyte Pressure

    Science.gov (United States)

    Schutten, M.; van Baalen, C. A.; Guillon, C.; Huisman, R. C.; Boers, P. H. M.; Sintnicolaas, K.; Gruters, R. A.; Osterhaus, A. D. M. E.

    2001-01-01

    Early after seroconversion, macrophage-tropic human immunodeficiency virus type 1 (HIV-1) variants are predominantly found, even when a mixture of macrophage-tropic and non-macrophage-tropic variants was transmitted. For virus contracted by sexual transmission, this is presently explained by selection at the port of entry, where macrophages are infected and T cells are relatively rare. Here we explore an additional mechanism to explain the selection of macrophage-tropic variants in cases where the mucosa is bypassed during transmission, such as blood transfusion, needle-stick accidents, or intravenous drug abuse. With molecularly cloned primary isolates of HIV-1 in irradiated mice that had been reconstituted with a high dose of human peripheral blood mononuclear cells, we found that a macrophage-tropic HIV-1 clone escaped more efficiently from specific cytotoxic T-lymphocyte (CTL) pressure than its non-macrophage-tropic counterpart. We propose that CTLs favor the selective outgrowth of macrophage-tropic HIV-1 variants because infected macrophages are less susceptible to CTL activity than infected T cells. PMID:11222694

  10. Cytotoxicity Evaluation of Tear Substitutes Using in vitro System

    Directory of Open Access Journals (Sweden)

    O. I. Aleksandrova

    2017-01-01

    Full Text Available Objective. The objective of the study is to evaluate in vitro the cytotoxic effect of different moisture eye drops (containing or without preservatives on the epithelial cells of the conjunctiva and the cornea.Materials and methods. The objects of the study are moisture eye drops: Hylabak®, Thealoz®, Sistane Ultra®, Kationorm®, Oftolik®, Artelak® Balance, Optiv®. As test systems there were used the transformed cells of normal eye tissues: constant conjunctiva transformed cell lines (Chang Conjunctiva, Clone 1-5c-4 and the human cornea (HCEC. The cytotoxicity of the “artificial tears” was assessed by the viability of cells, cultured in substratum containing the solutions of the objects at concentrations 1, 5 and 10%. Cell viability was assessed by their morphology and metabolic activity.Results. The most sensitive to the investigated eye drops is considered to be the test system based on human corneal cells. Four of the seven investigated eye drops (Artelak® Balance, Optiv®, Kationorm®, Oftolik® at a concentration of 10% (by volume of the substratum showed a high degree of toxicity for cornea cells. Eyedrops Sistane Ultra® had moderate toxic effect on the cells of the cornea and conjunctiva at concentration 5 and 10% (by volume. Hylabak® and Thealoz® in this concentrations did not have any cytotoxic effect on the cells of all test system and showed the best results in the research. The most toxic of all cell types were eye drops Oftolik® and Artelak® balance.Conclusion. A direct relationship between the concentration of drug in culture medium and cell cytotoxicity was investigated. Eye drops Hylabak® and Thealoz®, that do not contain in its composition a preservative, had no cytotoxic effect on the cells of both test systems at all concentrations used. The lowest toxic effect of the test had eye drop Sistane Ultra® containing “soft” preservative Poliquad®. Among the “artificial tears”, the greatest toxic effect on

  11. Genotoxic and cytotoxic effects of storax in vitro.

    Science.gov (United States)

    Karadeniz, Bulent; Ulker, Zeynep; Alpsoy, Lokman

    2013-03-01

    The aim of this study is to investigate the effects of the storax balsam, which is a kind of sweet gum obtained from the Liquidambar orientalis Mill trees, on cell viability, cytotoxicity and genotoxicity in human lymphocyte in vitro. We studied the genotoxic effects of the extract of storax balsam (SE) using sister chromatid exchange (SCE) test system. Also the cytotoxic and inhibitory effects on cell proliferation of SE were evaluated using lactate dehydrogenase (LDH) assay and cell proliferation (WST-1) assay. The SCE frequency was increased when the cells were treated with 1.6 and 4.0 µg/mL SE concentrations (p < 0.05). Moreover, treatment of the cells with the same concentrations significantly depleted the cell number at 24th and 48th hours and elevated the LDH levels (p < 0.05) at 48th hour. These results suggest that SE can be used as an alternative antibacterial and antipathogenic agent due to its cytotoxic and genotoxic effects.

  12. In vitro cytotoxicity of cyanobacteria from water ecosystems of Serbia.

    Science.gov (United States)

    Cetojevic-Simin, D; Svircev, Z; Baltic, V V

    2009-01-01

    The purpose of this study was to investigate whether water samples from water ecosystems of Serbia, unknown so far with regard to cyanotoxin levels, are the source of toxic compounds originating from the biological activity of cyanobacteria. The growth inhibition activity was evaluated using in vitro toxicity assay in Neuro-2a (mouse neuroblastoma) and MRC-5 (human fetal lung) cell lines, after 48 h of exposure time. Cell growth was evaluated by the colorimetric sulforhodamine B (SRB) assay. Our experiments revealed that some of the investigated water samples are toxigenic and alter cell growth of Neuro-2 and MRC-5 cell lines in vitro. Neuro-2a and MRC-5 cell lines responded to the presence of secondary metabolites of cyanobacteria. Significant cytotoxic effects were detected in the samples from lakes (Ludos and Palic), reservoirs (Zobnatica) and rivers (Krivaja).

  13. Metabolite profiles of Stachybotrys isolates from water-damaged buildings and their induction of inflammatory mediators and cytotoxicity in macrophages

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Huttunen, K.; Hyvarinen, A.

    2002-01-01

    cells were studied. The 11 isolates belonging to the satratoxin-producing chemotype were highly cytotoxic to the macrophages. The isolates inducing inflammatory mediators all belonged to the atranone-producing chemotype, but pure atranones B, and D did not elicit a response in the bioassay. Altogether......The metabolite profiles of 20 Stachybotrys spp. isolates from Finnish water-damaged buildings were compared with their biological activities. Effects of purified compounds on cytotoxicity and production of inflammatory mediators such as nitric oxide, IL-6 and TNFalpha in murine RAW264.7 macrophage......, cytotoxicity of Stachybotrys sp. isolates appear to be related to satratoxin production whereas the specific component inducing inflammatory responses in atranone-producing isolates remains obscure....

  14. Investigation of the cytotoxicity mechanism of silver nanoparticles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wei Lina; Zhang Zhixiong; Xi Tingfei [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Tang Jinglong [Center of Medical Devices, National Institute for the Control of Pharmaceutical and Biological Products, State Food and Drug Administration, Beijing 100050 (China); Chen Yanmei [Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Zhou Gui, E-mail: xitingfei@tom.co [Precision Medical Devices Department, Shanghai Medical Instrumentation College, Shanghai 200093 (China)

    2010-08-01

    Nowadays, more and more nanotechnology products and nanomaterials are being applied in our lives. Silver nanoparticles (SNPs) are used in infection prevention and treatment due to their antimicrobial activity. However, as a kind of nanomaterial, the toxicology of SNPs has not been completely studied. The mechanism of cytotoxicity of SNPs in vitro to mouse's fibroblast cells (L929) was investigated in this study. As a contrast, silver microparticles (SMPs) were also studied. Propidium iodide (PI) single staining and Annexin-V/PI staining were carried out to unveil the influence of SNPs and SMPs on the cells. A transmission electron microscope (TEM) was used to observe SNPs' distribution in the cells. The results of cell cycle analysis indicated that the cells treated with SNPs were arrested in the G2M phase. Meanwhile, SNPs lead to apoptosis of more cells compared to SMPs at the same dose as a result of apoptosis analysis. Analysis of the cells' ultrastructure showed that SNPs could be phagocytized into the cells while SMPs could not. The mechanism of cytotoxicity of SNPs in vitro to L929 cells may be that SNPs are phagocytized into the cells and they interact with mitochondria or other organelles, even nuclei, which results in cells' apoptosis or necrosis.

  15. Interlaboratory Evaluation of in Vitro Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Tian; Hamilton, Raymond F.; Bonner, James C.; Crandall, Edward D.; Elder, Alison C.; Fazlollahi, Farnoosh; Girtsman, Teri A.; Mitra, Somenath; Ntim, Susana A.; Orr, Galya; Tagmount, Mani; Taylor, Alexia J.; Telesca, Donatello; Tolic, Ana; Vulpe, Chris D.; Walker, Andrea J.; Wang, Xiang; Witzmann, Frank A.; Wu, Nianqiang; Xie, Yumei; Zink, Jeffery I.; Nel, Andre; Holian, Andrij

    2013-06-01

    Background: Differences in interlaboratory research protocols contribute to the conflicting data in the literature regarding engineered nanomaterial (ENM) bioactivity. Objectives: Grantees of a National Institute of Health Sciences (NIEHS)-funded consortium program performed two phases of in vitro testing with selected ENMs in an effort to identify and minimize sources of variability. Methods: Consortium program participants (CPPs) conducted ENM bioactivity evaluations on zinc oxide (ZnO), three forms of titanium dioxide (TiO2), and three forms of multiwalled carbon nanotubes (MWCNTs). In addition, CPPs performed bioassays using three mammalian cell lines (BEAS-2B, RLE-6TN, and THP-1) selected in order to cover two different species (rat and human), two different lung epithelial cells (alveolar type II and bronchial epithelial cells), and two different cell types (epithelial cells and macrophages). CPPs also measured cytotoxicity in all cell types while measuring inflammasome activation [interleukin-1β (IL-1β) release] using only THP-1 cells. Results: The overall in vitro toxicity profiles of ENM were as follows: ZnO was cytotoxic to all cell types at ≥ 50 μ g/mL, but did not induce IL-1β. TiO2 was not cytotoxic except for the nanobelt form, which was cytotoxic and induced significant IL-1β production in THP-1 cells. MWCNTs did not produce cytotoxicity, but stimulated lower levels of IL-1β production in THP-1 cells, with the original MWCNT producing the most IL-1β. Conclusions: The results provide justification for the inclusion of mechanism-linked bioactivity assays along with traditional cytotoxicity assays for in vitro screening. In addition, the results suggest that conducting studies with multiple relevant cell types to avoid false-negative outcomes is critical for accurate evaluation of ENM bioactivity.

  16. Defective spontaneous but normal antibody-dependent cytotoxicity for an extracellular protozoan parasite, Giardia lamblia, by C3H/HeJ mouse macrophages.

    Science.gov (United States)

    Smith, P D; Keister, D B; Wahl, S M; Meltzer, M S

    1984-04-15

    To understand murine host responses to extracellular protozoa, the capacity of peritoneal macrophages to exhibit cytotoxicity for [3H]thymidine-labeled Giardia lamblia trophozoites was investigated. Resident peritoneal macrophages from C3H/HeN mice expressed spontaneous cytotoxicity for G. lamblia in a manner that was dependent on both time and effector cell number; this cytotoxic activity was increased with cells elicited by an intraperitoneal injection of thio-glycollate. In contrast, spontaneous cytotoxicity for G. lamblia by resident and thioglycollate-elicited peritoneal macrophages from C3H/HeJ mice was markedly reduced. In the presence of anti-G. lamblia serum (ADCC), however, peritoneal macrophages from both C3H/HeN and C3H/HeJ mice exhibited striking augmentation of their cytotoxic activity for G. lamblia to equivalent levels. We conclude that macrophages from C3H/HeJ mice express defective spontaneous cytotoxicity but normal ADCC for the extracellular protozoan parasite, G. lamblia. The dissociation between the expression of these two effector cell functions suggests that macrophage spontaneous cytotoxicity and ADCC for extracellular protozoa are mediated by separate macrophage functions.

  17. Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae.

    Science.gov (United States)

    Osorio, Edison; Arango, Gabriel Jaime; Jiménez, Nora; Alzate, Fernando; Ruiz, Grace; Gutiérrez, David; Paco, Marco Antonio; Giménez, Alberto; Robledo, Sara

    2007-05-22

    Ethnobotanical and chemotaxonomical studies for antiparasitic activity of Colombian Annonaceae were carried out. In vitro antiprotozoal activity of 36 extracts obtained from six different species was determined against promastigotes of three Leishmania species, epimastigotes of Trypanosoma cruzi and both chloroquine sensitive (F32) and resistant (W2) Plasmodium falciparum. Cytotoxic activity was evaluated in U-937 cells. Active extracts were selected according their selectivity index (SI). Extracts from Annona muricata, Rollinia exsucca, Rollinia pittieri and Xylopia aromatica were active against Leishmania spp. and Trypanosoma cruzi showing IC50 values lower than 25 microg/ml. Hexane extract from Rollinia pittieri leaves was the most selective against Trypanosoma cruzi and Leishmania spp. (IS=10 and 16, respectively). The extracts from Desmopsis panamensis, Pseudomalmea boyacana, Rollinia exsucca and Rollinia pittieri showed good antiplasmodial activity (IC50 Annonaceae extracts. Results presented here also demonstrate which plants and/or plant parts could be useful in the treatment of leishmaniasis, Chagas' disease and malaria.

  18. In Vitro Cytotoxic Activity of the Essential Oil Extracted from Artemisia Absinthium

    OpenAIRE

    Mahboubeh Taherkhani

    2014-01-01

    Background: Essential oils are found to have multiple active components which can show in vitro cytotoxic action against various cancerous cell lines. This study reports the in vitro cytotoxic effects of the essential oil from Artemisia absinthium L. (Asteraceae) growing wild in Iran. Methods: Water-distilled essential oil of A. absinthium collected from Ardabil, north-western Iran, was examined for its cytotoxic effects using a modified MTT assay. Air-dried aerial parts of A. absinthium w...

  19. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, J.M.B.D., E-mail: jmanya@terra.com.br [Laboratorio de Tecnologia em Cultura de Celulas, UEZO, Rio de Janeiro (Brazil); Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro (Brazil); Seabra, S.H. [Laboratorio de Tecnologia em Cultura de Celulas, UEZO, Rio de Janeiro (Brazil); Vallim, D.C. [Instituto Oswaldo Cruz, Rio de Janeiro (Brazil); Americo, M.A.; Fracallanza, S.E.L. [Laboratorio de Bacteriologia Medica, IMPPG, UFRJ, Rio de Janeiro (Brazil); Vommaro, R.C. [Laboratorio de Ultra-estrutura Celular Hertha Meyer, IBCCF, UFRJ (Brazil); Domingues, R.M.C.P. [Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro (Brazil)

    2009-10-02

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  20. Aloe arborescens Polysaccharides: In Vitro Immunomodulation and Potential Cytotoxic Activity.

    Science.gov (United States)

    Nazeam, Jilan A; Gad, Haidy A; Esmat, Ahmed; El-Hefnawy, Hala M; Singab, Abdel-Naser B

    2017-05-01

    Different polysaccharides were isolated from the leaves of Aloe arborescens using the gradient power of hydrogen followed by antitumor and immunomodulatory assay. The total polysaccharide content of different fractions, water-soluble polysaccharide (WAP), acid-soluble polysaccharide (ACP), and alkaline-soluble polysaccharide (ALP), was estimated using a phenol-sulfuric acid spectrophotometric method. WAP possessed a higher content of mannose and glucose than either ACP or ALP. In vitro antitumor activity was investigated in three different cancer cell lines, and in vitro immunomodulatory potential was assessed through phagocytosis and lymphocyte transformation assay. The results showed that WAP and ALP exhibited the most significant cytotoxicity against HepG2 human liver cancer cells, with IC 50 values of 26.14 and 21.46 μg/mL, respectively. In contrast, ALP was able to enhance lymphocyte transformation, whereas WAP had the most potent phagocytic activity. Molecular weight, total sugar and uronic acid content, Fourier transform-infrared analysis, and linkage type of bioactive polysaccharides were investigated. These findings revealed that the potential antitumor activity of the natural agents WAP and ALP was through an immunomodulation mechanism, which verifies the use of the plant as adjuvant supplement for cancer patients suffering immunosuppression during chemotherapy.

  1. Role of surface charge in cytotoxicity of charged manganese ferrite nanoparticles towards macrophages

    Science.gov (United States)

    Yang, Seung-Hyun; Heo, Dan; Park, Jinsung; Na, Sungsoo; Suh, Jin-Suck; Haam, Seungjoo; Park, Sahng Wook; Huh, Yong-Min; Yang, Jaemoon

    2012-12-01

    Amphiphilic surfactants have been used to disperse magnetic nanoparticles in biological media, because they exhibit a dual hydrophobic/hydrophilic affinity that facilitates the formation of a nanoemulsion, within which nanoparticle surfaces can be modified to achieve different physicochemical properties. For the investigation of the interactions of cells with charged magnetic nanoparticles in a biological medium, we selected the nanoemulsion method to prepare water-soluble magnetic nanoparticles using amphiphilic surfactant (polysorbate 80). The hydroxyl groups of polysorbate 80 were modified to carboxyl or amine groups. The chemical structures of carboxylated and aminated polysorbate 80 were confirmed, and water-soluble manganese ferrite nanoparticles (MFNPs) were synthesized with three types of polysorbate 80. Colloidal size, morphology, monodispersity, solubility and T2 relaxivity were found to be similar between the three types of MFNP. However, cationic MFNPs exhibited greater cytotoxicity in macrophages (RAW264.7 cells) and lower cellular membrane effective stiffness than anionic and non-ionic MFNPs. Moreover, cationic MFNPs exhibited large uptake efficiency for RAW264.7 cells compared with anionic or non-ionic MFNPs under the same conditions. Therefore, we propose that surface charge should be a key consideration factor in the design of magnetic nanoparticles for theragnostic applications.

  2. Cytotoxicity of Carbon Nanotubes on J774 Macrophages Is a Purification-Dependent Effect

    Directory of Open Access Journals (Sweden)

    Silvia Lorena Montes-Fonseca

    2012-01-01

    Full Text Available The cytotoxicity of the carbon nanotubes (CNTs is an important factor for the manufacture of nanovaccines. The aim of this work was to evaluate the relationship of the purification method of CNTs in cellular toxicity using macrophages (MOs from the J774 cell line. Viability test was performed with MTT assays at 24 h of exposure at concentrations of 0.06, 0.6, and 6 mg/L of unpurified (UP-CNTs or purified (P-CNTs CNTs by two different methods: (1 reflux with 3M HNO3 and (2 sonication in H2SO4/HNO3. Characterization and COOH content of CNTs was performed using scanning electron microscopy, raman spectroscopy, and titration with NaHCO3. P-CNTs1 had lengths >100 μm and 2.76% COOH content, while P-CNTs2 had lengths >1 μm and 7% COOH content. This last particle showed a lower toxic effect. The results suggest that the lenght and COOH content are important factors in the toxicity of the CNTs.

  3. In vitro modulation of the behavior of adhering macrophages by medications is biomaterial-dependent.

    Science.gov (United States)

    Utomo, Lizette; Boersema, Geesien S A; Bayon, Yves; Lange, Johan F; van Osch, Gerjo J V M; Bastiaansen-Jenniskens, Yvonne M

    2017-03-07

    After implantation of a biomaterial, an inflammatory response involving macrophages is induced. The behavior of macrophages depends on their phenotype, and by directing macrophage polarization unwanted effects may be avoided. In this study, the possibility to modulate the behavior of macrophages activated by biomaterials was assessed in an in vitro model. Primary human monocytes were seeded on polyethylene terephthalate, polypropylene and polylactic acid yarns, and treated with medications frequently used by patients: rapamycin, dexamethasone, celecoxib or pravastatin. Modulation of the adhering macrophages with rapamycin resulted in a generally pro-inflammatory effect. Dexamethasone caused an overall anti-inflammatory effect on the macrophages cultured on either material, while celecoxib only affected macrophages adhering to polyethylene terephthalate and polylactic acid. Pravastatin increased the pro-inflammatory genes of macrophages cultured on polypropylene and polylactic acid. Pairwise comparison revealed that macrophages adhering to polylactic acid seemed to be more susceptible to phenotype modulation than when adhering to polypropylene or polyethylene terephthalate. The data show that macrophages activated by the biomaterials can be modulated, yet the degree of the modulatory capacity depends on the type of material. Combined, this model provides insights into the possibility of using a medication in combination with a biomaterial to direct macrophage behavior and thereby possibly avoid unwanted effects after implantation.

  4. In vitro Analysis of Cytotoxicity of Temporary Resilient Relining Materials.

    Science.gov (United States)

    Caldas, Isleine P; Scelza, Miriam Z; Gallito, Marco A; Alves, Gutemberg; Silva, Licínio

    2016-06-01

    The aim of this study is to evaluate the in vitro response of human gingival fibroblasts in primary cultures to two materials for temporary relining of dentures: Temporary Soft (TDV, Brazil) and Trusoft (Bosworth, USA) for 24 hours, 7 and 30 days by using a multi-parametric analysis. Each material sample (TDV, TS, Polystyrene, Latex) was prepared and incubated in a culture medium for 1, 7, and 30 days at 37°C. Human gingival fibroblasts were exposed to the extracts and cell viability was evaluated by a multi-parametric assay, which allowed sequential analysis of mitochondrial activity (XTT), membrane integrity [neutral red (NR)], and cell density [crystal violet dye exclusion (CVDE)] in the same cells. Analysis of variance (ANOVA) was used to test the interactions of the three sources of variation (material, test method, and time) with the proportions of viable cells for each relining material. Both evaluated materials (TDV and TS) had low cytotoxic effects during 1, 7, and 30 days after manipulation of the material, as assessed by all three methods used. A statistical difference was found when comparing the negative control group (latex fragments) with the other groups, which showed high toxicity and low percentage of cell viability in all tests used. There was no significant difference among other materials (p > 0.05). Low cytotoxicity levels were detected by representatives of the major groups of temporary prosthetic relining materials, as evaluated by multiple cellular viability parameters in human fibroblasts. There are various soft materials on the market for relining prostheses; however, the effects of these materials on tissues need to be clarified to avoid problems for patients.

  5. Ameloginins promote an alternatively activated macrophage phenotype in vitro

    DEFF Research Database (Denmark)

    Almqvist, S; Werthen, M; Lyngstadas, SP

    2011-01-01

    Amelogenins are extracellular matrix proteins used for the topical treatment of chronically inflamed tissues. The influence of amelogenins on human monocyte-derived macrophages was studied by measuring the concentrations of cytokines in culture supernatants. The interactions of cells and protein ...... increased the macrophage release of key cell mediators involved in tissue repair. The effect was independent of phagocytosis, implying a receptor-mediated signal. The markedly increased levels of AMAC-1 suggest that amelogenins promote a reparative macrophage phenotype....

  6. [In vitro cytotoxicity test of medical ultrasonic couplant].

    Science.gov (United States)

    Gao, Jingxian; Wang, Shasha; Jin, Meng; Yan, Xiaoli

    2013-05-01

    The cytotoxicity of medical ultrasonic couplant was tested by MTT assay and agar overlay test. By MTT assay, when the inoculum density was high, the cytotoxicity level was low, or vice versa. The cytotoxicity grade tested by agar overlay was not accord to MTT assay's too. MTT assay is suitable to test the cytotoxicity of medical ultrasonic couplant because it is quantitative and more sensitive, however, the experimental condition and the preparative method of extraction should be determined.

  7. Immunomodulatory effects of clove (Syzygium aromaticum) constituents on macrophages: in vitro evaluations of aqueous and ethanolic components.

    Science.gov (United States)

    Dibazar, Shaghayegh Pishkhan; Fateh, Shirin; Daneshmandi, Saeed

    2015-01-01

    The present work sought to investigate potential suppressive effects on mouse macrophages by in vitro treatment with clove (Syzygium aromaticum) ethanolic extracted essential oil (containing eugenol) or its water-soluble extract. Using doses (ranging from 0.001-1000 µg/ml) of each material freshly prepared in the laboratory, cell survival and production of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-12 by the treated cells (that in all cases also had received LPS stimulation) were measured. Results indicated that, except at doses ≥100 µg/ml, viability was unaffected in all groups. NO release by LPS-stimulated macrophages was generally significantly suppressed by either material; in contrast, low (i.e. 0.001-1 µg/ml) doses of either extract class appeared to enhance NO release by non-LPS (unstimulated)-treated macrophages. Among LPS-stimulated cells, TNFα release was also significantly affected by each extract; the ethanolic extract was suppressive at all doses tested, while the aqueous material was so up to 1 µg/ml and then became stimulatory. In contrast, nearly every dose of either extract appeared to stimulate IL-6 release from the LPS-treated cells. Effects on IL-12 production were overall inconsistent; in general, the ethanolic extract tended to be stimulatory of production by the LPS-treated cells. The data for the aqueous material showed no discernable pattern of effect. The results suggest that clove extracts do not have a distinct cytotoxic activity, but do impart potential anti- and pro-oxidant effects in cells, depending on their concentrations and on the activation state of the macrophages themselves at the time of exposure to the extracts. The impact of the extracts on macrophage cytokine release also displays a pattern of dose-relatedness.

  8. Mitochondrial dysfunction and inflammatory response in the cytotoxicity of NR8383 macrophages induced by fine particulate matter.

    Science.gov (United States)

    Xiong, Qi; Ru, Qin; Chen, Lin; Tian, Xiang; Li, Chaoying

    2017-10-01

    Exposure to fine particulate matter (fine PM) is known to cause severe public health problems. However, the potential mechanisms of alveolar macrophages cytotoxicity induced by fine PM exposure are still unclear. The aim of this study was to determine if both the mitochondrial dysfunction and the inflammatory response of NR8383 macrophages were triggered by Standard Reference Material 2786 (SRM 2786) for fine PM. NR8383 cells were exposed to different concentrations of SRM 2786, mitochondrial membrane potential, ultrastructure of mitochondria, activities of caspase 3/9, release of IL-6/TNF-α, expression of NF-κB and IκBα were evaluated. The results indicated that SRM 2786 induced mitochondrial dysfunction by increasing activities of caspase-3 and caspase-9, and structural damages of mitochondria with dissipation of mitochondrial membrane potential. The inflammatory response was triggered as evidenced by increased release of IL-6/TNF-α, and increased protein expression of NF-κB with decreased protein expression of IκBα. Consequently, these data indicate that both mitochondrial dysfunction and inflammatory responses might be responsible for SRM 2786 induced macrophage cytotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Bioassay-guided studies on the cytotoxic and in vitro trypanocidal ...

    African Journals Online (AJOL)

    All the above pure isolates, and the crude extracts of Z. chalybeum had neither biological activity nor cytotoxicity in the brine shrimp assay. A cytotoxic sesquiterpine, characterized as muzigadial, was isolated from W. ugandensis. It was highly toxic in the brine shrimp assay and also had in vitro trypanocidal activity against IL ...

  10. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Paula M. Kustiawan

    2014-07-01

    Conclusions: Propolis from T. incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines. Further study is required, including the isolation and characterization of the active antiproliferative agent(s.

  11. In vitro cytotoxicity of metallic ions released from dental alloys

    NARCIS (Netherlands)

    Milheiro, A.; Nozaki, K.; Kleverlaan, C.J.; Muris, J.; Miura, H.; Feilzer, A.J.

    2016-01-01

    The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in

  12. Pharmacognostic profile and in vitro cytotoxic activity of Adenema ...

    African Journals Online (AJOL)

    The chloroform extract showed potent cytotoxicity against non small cell lung cancer cell, leukemia cell, ovarian cancer cell, prostate cancer cell and breast cancer ... Ethyl acetate extract exhibited potent cytotoxicity against non small cell lung cancer cell, colon, melanoma, renal and breast cancer cell lines with the GI50 of ...

  13. Evaluation of antibacterial and cytotoxic activity of Artemisia nilagirica and Murraya koenigii leaf extracts against mycobacteria and macrophages.

    Science.gov (United States)

    Naik, Sumanta Kumar; Mohanty, Soumitra; Padhi, Avinash; Pati, Rashmirekha; Sonawane, Avinash

    2014-03-05

    Artemisia nilagirica (Asteraceae) and Murraya koenigii (Rutaceae) are widely distributed in eastern region of India. Leaves of Artemisia nilagirica plant are used to treat cold and cough by the local tribal population in east India. Murraya koenigii is an edible plant previously reported to have an antibacterial activity. Pathogenic strains of mycobacteria are resistant to most of the conventional antibiotics. Therefore, it is imperative to identify novel antimycobacterial molecules to treat mycobacterial infection. In this study, ethanol, petroleum ether and water extracts of Artemisia nilagirica and Murraya koenigii were tested for antibacterial activity against Mycobacterium smegmatis and Mycobacterium bovis BCG in synergy with first line anti-tuberculosis (TB) drugs, and for cytotoxic activities on mouse macrophage RAW264.7 cells. Antibacterial activity was determined by colony forming unit (CFU) assay. Intracellular survival assay was performed by infecting RAW264.7 cells with M. smegmatis before and after treatment with plant extracts. Cytotoxity was checked by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay. Genotoxicity was studied by DAPI staining and COMET assay using mouse macrophage RAW264.7 cell line. Cell apoptosis was checked by Annexin-V/FITC dual staining method. Reactive oxygen species and nitric oxide production was checked by DCFH staining and Griess reagent, respectively. Ethanol extracts of A. nilagirica (IC50 300 μg/ml) and M. koenigii (IC50 400 μg/ml) were found to be more effective against Mycobacterium smegmatis as compared to petroleum ether and water extracts. M. koenigii extract showed maximum activity against M. bovis BCG in combination with a first line anti-TB drug rifampicin. M. koenigii leaf extract also exerted more cytototoxic (IC50 20 μg/ml), genotoxic and apoptosis in mouse macrophage RAW 264.7 cell line. Treatment of mouse macrophages with A. nilagirica extract increased intracellular killing of M

  14. Uptake of gold nanoparticles in murine macrophage cells without cytotoxicity or production of pro-inflammatory mediators.

    Science.gov (United States)

    Zhang, Qin; Hitchins, Victoria M; Schrand, Amanda M; Hussain, Saber M; Goering, Peter L

    2011-09-01

    More information characterizing the biological responses to nanoparticles is needed to allow the U.S. Food and Drug Administration to evaluate the safety and effectiveness of products with nano-scale components. The potential cytotoxicity and inflammatory responses of Au NPs (60 nm, NIST standard reference materials) were investigated in murine macrophages. Cytotoxicity was evaluated by MTT and LDH assays. Cytokines (IL-6, TNF-α), nitric oxide, and ROS were assayed to assess inflammatory responses. Morphological appearance and localization of particles were examined by high resolution illumination microscopy, transmission electron microscopy (TEM), and scanning TEM coupled with EDX spectroscopy. Results showed no cytotoxicity and no elevated production of proinflammatory mediators; however, imaging analyses demonstrated cellular uptake of Au NPs and localization within intracellular vacuoles. These results suggest that 60 nm Au NPs, under the exposure conditions tested, are not cytotoxic, nor elicit pro-inflammatory responses. The localization of Au NPs in intracellular vacuoles suggests endosomal containment and an uptake mechanism involving endocytosis.

  15. In vitro antifungal and cytotoxicity activities of selected Tanzanian ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antifungal and cytotoxic activities of four medicinal plants from Tanzania, namely, Mystroxylon aethiopicum, Lonchocarpus capassa, Albizia anthelmentica and Myrica salicifolia. Methods: The plant materials were subjected to extraction using dichloromethane, ethyl acetate and distilled water.

  16. In vitro cytotoxicity of calcium silicate-containing endodontic sealers.

    Science.gov (United States)

    Zhou, Hui-min; Du, Tian-feng; Shen, Ya; Wang, Zhe-jun; Zheng, Yu-feng; Haapasalo, Markus

    2015-01-01

    The cytotoxicity of 2 novel calcium silicate-containing endodontic sealers to human gingival fibroblasts was studied. EndoSequence BC (Brasseler, Savannah, GA), MTA Fillapex (Angelus Indústria de Produtos Odontológicos S/A, Londrina, PR, Brazil) and a control sealer (AH Plus; Dentsply DeTrey GmbH, Konstanz, Germany) were evaluated. Human gingival fibroblasts were incubated for 3 days both with the extracts from fresh and set materials in culture medium and cultured on the surface of the set materials in Dulbecco-modified Eagle medium. Fibroblasts cultured in Dulbecco-modified Eagle medium were used as a control group. Cytotoxicity was evaluated by flow cytometry, and the adhesion of the fibroblasts to the surface of the set materials was assessed using scanning electron microscopy. The data of cell cytotoxicity were analyzed statistically using a 1-way analysis of variance test at a significance level of P extracts from BC Sealer showed higher viabilities at all extract concentrations than cells incubated with extracts from freshly mixed AH Plus and fresh and set MTA Fillapex, esspecially for the high extract concentrations (1:2 and 1:8 dilutions). Extracts from set MTA Fillapex of 2 weeks and older were more cytotoxic than extracts from freshly mixed and 1-week-old cement. With extract concentrations of 1:32 and lower, MTA Fillapex was no longer cytotoxic. After setting, AH Plus was no longer cytotoxic, and the fibroblast cells grew on set AH Plus equally as well as on BC Sealer. BC Sealer and MTA Fillapex, the 2 calcium silicate-containing endodontic sealers, exhibited different cytotoxicity to human gingival fibroblasts. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Synthesis, characterization and in vitro cytotoxicity assessment of ...

    Indian Academy of Sciences (India)

    ... carried out in RAW macrophage like cell line media for an incubation period of 72 h. The cell attachment studies on HAp compacts show an excellent affinity between cells and compact surface. These results proved high biocompatibility of HAp powders obtained fromdifferent biosources for tissue engineering applications ...

  18. Saliva initiates the formation of pro-inflammatory macrophages in vitro.

    Science.gov (United States)

    Pourgonabadi, Solmaz; Müller, Heinz-Dieter; Mendes, João Rui; Gruber, Reinhard

    2017-01-01

    Saliva can support oral wound healing, a process that requires a temporary inflammatory reaction. We have reported previously that saliva provokes a strong inflammatory response in oral fibroblasts. Bone marrow cells also give rise to macrophages, a heterogeneous subset of cell population involved in wound healing. Lipopolysaccharide (LPS) and interleukin 4 (IL-4) induce activation of pro-(M1), and anti-(M2) inflammatory macrophages, respectively. Yet, the impact of saliva on programming bone marrow cells into either M1 or M2 macrophages remains unclear . Herein, we examined whether sterile saliva affects the in vitro process of macrophage polarization based on murine bone marrow cultures and RAW264.7 mouse macrophages. We report that sterile saliva, similar to lipopolysaccharides, provoked a robust activation of the M1 phenotype which is characterized by a strong increase of the respective genes IL-12 and IL-6, based on a real-time gene expression analysis, and for IL-6 with immunoassay. Arginase-1 and Ym1, both genes characteristic for the M2 phenotype, were not considerably modulated by saliva. Inhibition of TLR4 signaling with TAK-242, blocking NFκB signaling with Bay 11-7085, but also autoclaving saliva greatly reduced the development of the M1 phenotype. These data suggest that saliva activates the TLR4 dependent polarization into pro-inflammatory M1 macrophages in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro.

    Science.gov (United States)

    Sun, Kang; He, Song-Bing; Qu, Jian-Guo; Dang, Sheng-Chun; Chen, Ji-Xiang; Gong, Ai-Hua; Xie, Rong; Zhang, Jian-Xin

    2016-11-14

    To investigate the role of interferon regulatory factor 5 (IRF5) in reversing polarization of lung macrophages during severe acute pancreatitis (SAP) in vitro. A mouse SAP model was established by intraperitoneal (ip) injections of 20 μg/kg body weight caerulein. Pathological changes in the lung were observed by hematoxylin and eosin staining. Lung macrophages were isolated from bronchoalveolar lavage fluid. The quantity and purity of lung macrophages were detected by fluorescence-activated cell sorting and evaluated by real-time polymerase chain reaction (RT-PCR). They were treated with IL-4/IRF5 specific siRNA (IRF5 siRNA) to reverse their polarization and were evaluated by detecting markers expression of M1/M2 using RT-PCR. SAP associated acute lung injury (ALI) was induced successfully by ip injections of caerulein, which was confirmed by histopathology. Lung macrophages expressed high levels of IRF5 as M1 phenotype during the early acute pancreatitis stages. Reduction of IRF5 expression by IRF5 siRNA reversed the action of macrophages from M1 to M2 phenotype in vitro. The expressions of M1 markers, including IRF5 (S + IRF5 siRNA vs S + PBS, 0.013 ± 0.01 vs 0.054 ± 0.047, P pancreatitis-induced activation of lung macrophages from M1 phenotype to M2 phenotype in SAP associated with ALI.

  20. In Vitro Investigation of Influences of Chitosan Nanoparticles on Fluorescein Permeation into Alveolar Macrophages.

    Science.gov (United States)

    Chachuli, Siti Haziyah Mohd; Nawaz, Asif; Shah, Kifayatullah; Naharudin, Idanawati; Wong, Tin Wui

    2016-06-01

    Pulmonary infection namely tuberculosis is characterized by alveolar macrophages harboring a large microbe population. The chitosan nanoparticles exhibit fast extracellular drug release in aqueous biological milieu. This study investigated the matrix effects of chitosan nanoparticles on extracellular drug diffusion into macrophages. Oligo, low, medium and high molecular weight chitosan nanoparticles were prepared by nanospray drying technique. These nanoparticles were incubated with alveolar macrophages in vitro and had model drug sodium fluorescein added into the same cell culture. The diffusion characteristics of sodium fluorescein and nanoparticle behavior were investigated using fluorescence microscopy, scanning electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy techniques. The oligochitosan nanoparticles enabled macrophage membrane fluidization with the extent of sodium fluorescein entry into macrophages being directly governed by the nanoparticle loading. Using nanoparticles made of higher molecular weight chitosan, sodium fluorescein permeation into macrophages was delayed due to viscous chitosan diffusion barrier at membrane boundary. Macrophage-chitosan nanoparticle interaction at membrane interface dictates drug migration into cellular domains.

  1. GM-CSF Enhances Macrophage Glycolytic Activity In Vitro and Improves Detection of Inflammation In Vivo.

    Science.gov (United States)

    Singh, Parmanand; González-Ramos, Silvia; Mojena, Marina; Rosales-Mendoza, César Eduardo; Emami, Hamed; Swanson, Jeffrey; Morss, Alex; Fayad, Zahi A; Rudd, James H F; Gelfand, Jeffrey; Paz-García, Marta; Martín-Sanz, Paloma; Boscá, Lisardo; Tawakol, Ahmed

    2016-09-01

    (18)F-FDG accumulates in glycolytically active tissues and is known to concentrate in tissues that are rich in activated macrophages. In this study, we tested the hypotheses that human granulocyte-macrophage colony-stimulating factor (GM-CSF), a clinically used cytokine, increases macrophage glycolysis and deoxyglucose uptake in vitro and acutely enhances (18)F-FDG uptake within inflamed tissues such as atherosclerotic plaques in vivo. In vitro experiments were conducted on human macrophages whereby inflammatory activation and uptake of radiolabeled 2-deoxyglucose was assessed before and after GM-CSF exposure. In vivo studies were performed on mice and New Zealand White rabbits to assess the effect of GM-CSF on (18)F-FDG uptake in normal versus inflamed arteries, using PET. Incubation of human macrophages with GM-CSF resulted in increased glycolysis and increased 2-deoxyglucose uptake (P GM-CSF administration resulted in a 70% and 73% increase (P GM-CSF substantially augments glycolytic flux in vitro (via a mechanism dependent on ubiquitous type 6-phosphofructo-2-kinase and tumor necrosis factor-α) and increases (18)F-FDG uptake within inflamed atheroma in vivo. These findings demonstrate that GM-CSF can be used to enhance detection of inflammation. Further studies should explore the role of GM-CSF stimulation to enhance the detection of inflammatory foci in other disease states. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. The in vitro cytotoxicity of urine from patients with interstitial cystitis

    DEFF Research Database (Denmark)

    Beier-Holgersen, R; Hermann, G G; Mortensen, S O

    1994-01-01

    Urine from patients with interstitial cystitis has been reported to be more cytotoxic than urine from healthy subjects when tested in vitro against cells from a normal urothelial cell line. The purpose of the present study was to develop a method to measure urinary cytotoxicity and so make...... it possible to estimate the toxicity of urine from interstitial cystitis patients. The study included 10 women with interstitial cystitis and 10 healthy controls. Urine specimens were obtained from both groups and urine cytotoxicity was measured by a modified 51Cr-release assay: A range of urine dilutions...... in urine cytotoxicity between interstitial cystitis patients and healthy controls. Urine cytotoxicity was increased by dilution in both groups....

  3. In vitro anticancer activity and cytotoxicity of some papaver alkaloids ...

    African Journals Online (AJOL)

    Materials and Methods: The Vero and HeLa cell lines were treated with various concentrations (1-300 μg/mL) of alkaloids for 48 h. Values for cytotoxicity measured by MTT assay were expressed as the concentration that causes a 50% decrease in cell viability (IC50) (μg/mL). Results: Berberine and macranthine were the ...

  4. In vitro antifungal and cytotoxicity activities of selected Tanzanian ...

    African Journals Online (AJOL)

    Abstract. Purpose: To evaluate the antifungal and cytotoxic activities of four medicinal plants from Tanzania, namely, Mystroxylon ... Methods: The plant materials were subjected to extraction using dichloromethane, ethyl acetate and distilled water. ...... leaves is highly recommended for sustainability of plants as the use of ...

  5. In vitro cytotoxic study for partially purified Lasparaginase from fresh ...

    African Journals Online (AJOL)

    ... there is enough evidence to support the claim that Lasparaginase from W. somnifera may be considered chemotherapeutic agent against cancer, such as acute lymphoblastic leukemia and lymphosarcoma. Keywords: Acute lymphocyte leukemia (ALL), chronic lymphocyte leukemia (CLL), L-asparaginase, cytotoxic assay.

  6. In vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles ...

    African Journals Online (AJOL)

    The FT-IR spectrum of C. tamala leaf extract showed that the biomolecules were potentially involved in reduction processes. The negative zeta potential of -14 mV indicated that the NPs were stable and discrete while their crystalline nature was confirmed by XRD. Cytotoxicity analysis showed that the TiO2 NPs exhibit a ...

  7. In vitro Cytotoxic and Antioxidant Activity of Leaf Extracts of ...

    African Journals Online (AJOL)

    Methods: Four different solvent (hexane, chloroform, ethyl acetate and methanol) leaf extracts of the plant were tested for cytotoxicity against four cancer cells, viz, MCF-7 (oestrogen positive breast cancer cell line), MDA-MB-231 (triple negative breast cancer cell line), SK-BR-3 (breast adenocarcinoma) and ACHN (renal ...

  8. Calcitonin gene-related peptide exerts anti-inflammatory property through regulating murine macrophages polarization in vitro.

    Science.gov (United States)

    Duan, Jia-Xi; Zhou, Yong; Zhou, Ai-Yuan; Guan, Xin-Xin; Liu, Tian; Yang, Hui-Hui; Xie, Hui; Chen, Ping

    2017-11-01

    Acute lung injury (ALI) is a condition resulting from direct or indirect lung injury associated with high mortality and morbidity. The phenotype of macrophages in lung contributes to the pathological progress of ALI. Calcitonin gene-related peptide (CGRP) is one of the most abundant neuropeptides in lung, and attenuates lipopolysaccharide (LPS)-induced ALI in rats. However, the exact effect of CGRP on the activation of macrophages remains unknown. Here we investigate the effect of CGRP on the macrophages activation and inflammation in murine macrophages in vitro. We found that LPS increased the expression of CGRP in a LPS-induced ALI murine model and LPS-stimulated murine macrophages. Although CGRP didn't alter the expression of tumor necrosis factor-α (a marker of pro-inflammatory phenotype of macrophages, M1 macrophages) or Arginase 1 (Arg1, a marker of M2 macrophages) in non-differentiated macrophages, CGRP significantly reduced the NLRP3 and pro-IL-1β mRNA expression induced by LPS, as well as NLRP3 protein and IL-1β secretion induced by LPS+ATP in macrophages in vitro. On the other hand, CGRP dramatically enhanced the Arg1 expression and activity induced by IL-4 in the time- and dose-dependent manners. CGRP also promoted the expression of markers of M2 macrophages (IL-10, Fizz1 and Mrc1) induced by IL-4 in murine macrophages. These effects of CGRP were also observed in primary murine peritoneal macrophages. In addition, we found that CGRP regulated macrophages polarization partially through calmodulin, PKC and PKA pathways. Specifically, CGRP could inhibit the degradation of I-κB induced by LPS, and enhance the phosphorylation of STAT6 induced by IL-4 in macrophages. In conclusion, our results indicate that CGRP regulates macrophage polarization and inhibits inflammation in murine macrophages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. In Vitro Cytotoxic Activity of the Essential Oil Extracted from Artemisia Absinthium

    Directory of Open Access Journals (Sweden)

    Mahboubeh Taherkhani

    2014-09-01

    Full Text Available Background: Essential oils are found to have multiple active components which can show in vitro cytotoxic action against various cancerous cell lines. This study reports the in vitro cytotoxic effects of the essential oil from Artemisia absinthium L. (Asteraceae growing wild in Iran. Methods: Water-distilled essential oil of A. absinthium collected from Ardabil, north-western Iran, was examined for its cytotoxic effects using a modified MTT assay. Air-dried aerial parts of A. absinthium was subjected to hydrodistillation using a clevenger-type apparatus. Cytotoxicity of the essential oil was measured against Hela and human healthy peripheral blood cells. Results: The 50% cytotoxic concentrations were found to be 48.59 µg/ml and 5456.07 µg/ml for Hela cells and human lymphocytes, respectively. The volatile oil displayed good cytotoxic action against the human tumor cell line. Conclusion: The IC50 shows that cytotoxicity of the oil against human tumor cell line is much higher than that required for healthy human cells. These results indicate low adverse effects for this oil. The findings of this study necessitate the need for further consideration of this essential oil in anti-neoplastic chemotherapy.

  10. A low-pH medium in vitro or the environment within a macrophage ...

    Indian Academy of Sciences (India)

    2013-07-14

    Jul 14, 2013 ... 5Division of Animal Medicine, Animal Technology Institute Taiwan, Chunan, Miaoli, Taiwan. *Corresponding author (Fax ... Yeh K-S 2013 A low-pH medium in vitro or the environment within a macrophage decreases the transcriptional levels of fimA, fimZ and lrp in Salmonella enterica serovar Typhimurium.

  11. The effect of hyperglycaemia on in vitro cytokine production and macrophage infection with Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Lachmandas, E.; Vrieling, F.; Wilson, L.G.; Joosten, S.A.; Netea, M.G.; Ottenhoff, T.H.; Crevel, R. van

    2015-01-01

    Type 2 diabetes mellitus is an established risk factor for tuberculosis but the underlying mechanisms are largely unknown. We examined the effects of hyperglycaemia, a hallmark of diabetes, on the cytokine response to and macrophage infection with Mycobacterium tuberculosis. Increasing in vitro

  12. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Science.gov (United States)

    Meester, Irene; Rosas-Taraco, Adrian Geovanni; Salinas-Carmona, Mario Cesar

    2014-01-01

    Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC)-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM) or DC (BMDC) were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  13. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Irene Meester

    Full Text Available Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM or DC (BMDC were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE. Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  14. In vitro cytotoxic activity of Brazilian Middle West plant extracts

    Directory of Open Access Journals (Sweden)

    Talal Suleiman Mahmoud

    2011-06-01

    Full Text Available Cytotoxic activity of eight plant extracts, native from the Mid-West of Brazil comprising Cerrado, Pantanal and semideciduous forest, was evaluated for MDA-MB-435, SF-295, and HCT-8 cancer cell strains. A single 100 µg.mL-1 dose of each extract was employed with 72 h of incubation for all tests. Doxorubicin (1 µg.mL-1 was used as the positive control and the MTT method was used to detect the activity. Cytotoxicity of distinct polarities was observed in thirty extracts (46%, from different parts of the following species: Tabebuia heptaphylla (Vell. Toledo, Bignoniaceae, Tapirira guianensis Aubl., Anacardiaceae, Myracrodruon urundeuva Allemão, Anacardiaceae, Schinus terebinthifolius Raddi, Anacardiaceae, Gomphrena elegans Mart., Amaranthaceae, Attalea phalerata Mart. ex Spreng., Arecaceae, Eugenia uniflora L., Myrtaceae, and Annona dioica A. St.-Hil., Annonaceae. Extracts of at least two tested cell strains were considered to be highly active since their inhibition rate was over 75%.

  15. Chemical composition and in vitro cytotoxic and antileishmanial activities of extract and essential oil from leaves of Piper cernuum.

    Science.gov (United States)

    Capello, Tabata M; Martins, Euder G A; de Farias, Camyla F; Figueiredo, Carlos R; Matsuo, Alisson L; Passero, Luiz Felipe D; Oliveira-Silva, Diogo; Sartorelli, Patricia; Lago, João Henrique G

    2015-02-01

    Fractionation of the MeOH extract from leaves of Piper cernuum Vell. (Piperaceae) afforded six phenylpropanoid derivatives: 3',4'-dimethoxydihydrocinnamic acid (1), piplaroxide (2), methyl 4'-hydroxy-3',5'-dimethoxy cinnamate (3), 3',4',5'-trimethoxydihydrocinnamic acid (3), dihydropiplartine (5), and piplartine (6). The structures of isolated metabolites were characterized by NMR and MS spectral data analysis. The chemical composition of essential oil from the leaves was determined using GC/LREIMS followed by the determination of Kovats indexes. This procedure allowed the identification of nineteen terpenoids, with β-elemene (7), bicyclogermacrene (8), germacrene D (9), and (E)-caryophyllene (10) as the main compounds. Compounds 1 and 3-6 displayed no in vitro cytotoxicity against cancer cell lineages B16F10-Nex2, U87, HeLa, HL-60, HCT, and A2058 while 2 showed moderate activity against B16F10-Nex2 and HL-60 lines. Otherwise, compounds 7-10 displayed high cytotoxic activity. Evaluation against non-tumorigenic HFF cells indicated a reduced selectivity of compounds 7-10 to tumoral cells. No antileishmanial activity on macrophages infected with L. (L.) amnazonensis was found for the crude MeOH extract and compounds 1-6. The crude essential oil and compounds 7-10 reduced parasitism and eliminated the majority of infected and non-infected cells at 50 μg/mL.

  16. In vitro Antifungal, Antioxidant and Cytotoxic Activities of a Partially ...

    African Journals Online (AJOL)

    Purpose: To determine the in vitro antifungal and antioxidant activities of the aqueous extract and protein fraction of Atlantia monophylla Linn (Rutaceae) leaf. Methods: Ammonium sulphate (0 – 80 %) precipitation method was used to extract protein from the leaves of A. monophylla Linn (Rutaceae). In vitro antifungal ...

  17. In vitro and in vivo responses of macrophages to magnesium-doped titanium

    Science.gov (United States)

    Li, Bin; Cao, Huiliang; Zhao, Yaochao; Cheng, Mengqi; Qin, Hui; Cheng, Tao; Hu, Yan; Zhang, Xianlong; Liu, Xuanyong

    2017-02-01

    Modulating immune response to biomaterials through changing macrophage polarization has been proven to be a promising strategy to elicit beneficial outcomes in tissue repair. The objective of this study was to evaluate the response of macrophage polarization to titanium doped with magnesium (0.1~0.35%), which was prepared through the magnesium plasma immersion ion implantation (Mg PIII) technique. The M1/M2 polarization profile of macrophages was investigated using a murine cell line RAW 264.7 in vitro and a murine air pouch model in vivo. Our results demonstrated that the Mg PIII-treated titanium induced a higher percentage of M2 macrophages and higher concentrations of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10. Genes encoding two growth factors, bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF) were up-regulated, thus indicating the ability of the M2 phenotype to promote wound healing. The nuclear factor κB (NF-κB) signalling pathway was down-regulated. In vivo the Mg PIII -treated titanium elicited a similar effect on macrophage polarization and induced thinner fibrous capsule formation and a decrease in infiltrated cells. These results indicate that Mg PIII treatment has the immunomodulatory potential to elicit the pro-healing M2-polarized macrophage phenotype, thus providing new insight into the development of immunomodulatory biomaterials.

  18. Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro.

    Directory of Open Access Journals (Sweden)

    Zikun Huang

    Full Text Available The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization.

  19. Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro

    Science.gov (United States)

    Guo, Yang; Chen, Jie; Xiong, Guoliang; Peng, Yiping; Ye, Jianqing; Li, Junming

    2015-01-01

    The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis) infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization. PMID:26091535

  20. Chlorpromazine inhibits tumour necrosis factor synthesis and cytotoxicity in vitro.

    Science.gov (United States)

    Zinetti, M; Galli, G; Demitri, M T; Fantuzzi, G; Minto, M; Ghezzi, P; Alzani, R; Cozzi, E; Fratelli, M

    1995-01-01

    Chlorpromazine (CPZ) has been previously shown to protect against endotoxin [lipopolysaccharide (LPS)] lethality and inhibit the release of tumour necrosis factor in vivo. We investigated at the cellular level whether this was due to direct inhibition of tumour necrosis factor-alpha (TNF-alpha) synthesis, using LPS-stimulated THP-1 human monocytic leukemia cells. We also studied the effect of CPZ on human TNF-alpha action by assessing TNF-alpha cytotoxicity on mouse fibrosarcoma L929 cells. CPZ (1-100 microM) inhibited TNF-alpha production in THP-1 cells in a dose dependent manner by a maximum of 80%. This effect was comparable to that of two well-known inhibitory drugs, dexamethasone and cyclicAMP. Inhibition was also evident at the mRNA level. On the other hand CPZ (10-25 microM) also inhibited TNF-alpha activity: in fact it reduced the cytotoxicity of TNF-alpha on L929 cells (EC50 was increased four times) and could provide protection even as a post-treatment. CPZ inhibited TNF-induced apoptosis in L929 cells, as detected by analysis of nuclear morphology. However, since we showed that apoptosis was very limited, and was not the main mode of cell death in our conditions, this could not explain the overall protection. Since CPZ did not interfere with either the oligomerization state of TNF-alpha or its receptor binding, our data suggest that it reduced cytotoxicity by inhibiting some steps in the TNF-alpha signalling pathways. Images Figure 1 Figure 4 PMID:8550079

  1. Exposure of the murine RAW 264.7 macrophage cell line to dicalcium silicate coating: assessment of cytotoxicity and pro-inflammatory effects.

    Science.gov (United States)

    Chen, Liangjiao; Zhang, Yanli; Liu, Jia; Wei, Limin; Song, Bin; Shao, Longquan

    2016-03-01

    Inflammatory effects are significant elements of the immune response to biomaterials. Previously, we reported inflammatory effects in response to dicalcium silicate (Ca2SiO4, C2S) particles. However, the immunological effects of C2S coatings have not been studied. C2S often used as coatings materials in orthopedic and dentistry applications. It may have different effect from C2S particles. Further, it remains unclear whether C2S coating is equally biocompatible as 45S5 coating. The aim of this study was to test the cytotoxicity and pro-inflammatory effects of C2S coating on RAW 264.7 macrophages. C2S and 45S5 coatings were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive analysis (EDS) and X-ray diffraction (XRD). inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to detect ionic concentrations after soaking coated discs in medium. The cytotoxicity of C2S and 45S5 coatings against RAW 264.7 macrophages was measured using the LDH Cytotoxicity Assay Kit, Cell Counting Kit-8 (CCK-8) assays and flow cytometry for apoptosis assays. The gene and protein expression of TNF-α, IL-6 and IL-1β were detected using RT-q PCR and ELISA, respectively. The tested coating materials are not cytotoxic to macrophages. The C2S-coated surface stimulated macrophages to express pro-inflammatory mediators, such as TNF-α, IL-6 and IL-1β, and C2S coating caused less IL-6 but greater IL-1β production than the 45S5 coating. C2S coating have no cytotoxicity when directly cultured with macrophages. C2S and 45S5 coatings both have the potential to induce pro-inflammatory effects, and the biocompatibility of C2S is similar to that of 45S5.

  2. In vitro cytotoxicity of dental adhesive systems under simulated pulpal pressure.

    Science.gov (United States)

    Camps, J; Tardieu, C; Déjou, J; Franquin, J C; Ladaique, P; Rieu, R

    1997-01-01

    Most of the devices used to evaluate the cytotoxicity of resin-based composites in vitro use a dentin barrier test. However, it is difficult to obtain the number of freshly extracted teeth, all on the same day, that is necessary for powerful statistical analysis. Tooth cryopreservation provides a way to build up a supply of teeth. This in vitro study compared cryopreserved teeth and freshly extracted teeth in an evaluation of the cytotoxicity of resin-based composites. In addition, this study also evaluated the effects of pulsatile pressure and the importance of dentin permeability on the cytotoxic response to bonding resins. Forty freshly extracted and forty cryopreserved third molars were used. A standardized Class I cavity was prepared within the dentin. The hydraulic conductance of each tooth was recorded. The cavities were filled either with Scotchbond Multi-Purpose Plus and Z 100 (3M Dental Products) or with Optibond and Herculite (Kerr). A plexiglas device was designed to permit 24 h long contact between culture medium and the roof of the pulp chamber while a pulsatile pulpal pressure was simulated. The viability of L 929 cells cultured with a control medium and evaluated by an MTT assay was compared to that of L 929 cells cultured with medium which remained for 24 h in contact with the pulp chamber of restored teeth. A three-way ANOVA was used to compare the cytotoxicity among the different groups. A simple least-squares linear regression was used to seek a relationship between the hydraulic conductance of dentin and the cytotoxicity of composite restorative materials. No significant differences in cytotoxicity were found between the freshly extracted teeth and the cryopreserved teeth (p = 0.53). The cytotoxicity of the resin adhesives was statistically higher when a pulsatile pulpal pressure was simulated (p = 0.04). A significant relationship was found between the hydraulic conductance of dentin and the cytotoxicity of resin-based composites (p = 0

  3. In vitro Antiplasmodial Activity and Cytotoxicity of Vincadifformine and Its Semisynthetic Derivatives

    OpenAIRE

    Mustofa M; Michèle Mallié; Alexis Valentin; Guy Lewin

    2015-01-01

    An indole alkaloid with aspidospemane structure possessing a potential antiplasmodial activity,vincadifformine, has been isolated from Aspidosperma pyrifolium Mart. Moreover, 10 derivatives were preparedfrom the vincadifformine. The study was conducted to evaluate the in vitro antiplasmodial and cytotoxic activity ofthe vincadifformine and their semisynthetic derivatives. The in vitro antiplasmodial activity was evaluated onPlasmodium falciparum chloroquine-resistant (FcM ) and –sensiti...

  4. Cytotoxic and antibacterial activity of the mixture of olive oil and lime cream in vitro conditions.

    Science.gov (United States)

    Sumer, Zeynep; Yildirim, Gulay; Sumer, Haldun; Yildirim, Sahin

    2013-01-01

    The mixture of olive oil and lime cream has been traditionally used to treat external burns in the region of Hatay/Antakya and middle Anatolia. Olive oil and lime cream have been employed by many physicians to treat many ailments in the past. A limited number of studies have shown the antibacterial effect of olive oil and that it does not have any toxic effect on the skin. But we did not find any reported studies on the mixture of olive oil and lime cream. The aim of this paper is to investigate the cytotoxic and antibacterial activity of olive oil and lime cream individually or/and in combination in vitro conditions, by using disk-diffusion method and in cell culture. The main purpose in using this mixture is usually to clear burns without a trace. Agar overlay, MTT (Cytotoxicity assay) and antibacterial susceptibility tests were used to investigate the cytotoxic and antibacterial activity of olive oil and lime cream. We found that lime cream has an antibacterial activity but also cytotoxic on the fibroblasts. On the other hand olive oil has limited or no antibacterial effect and it has little or no cytotoxic on the fibroblasts. When we combined lime cream and olive oil, olive oil reduced its cytotoxic impact. These results suggest that mixture of olive oil and lime cream is not cytotoxic and has antimicrobial activity.

  5. In vitro study of cytotoxicity of orthodontic elastomeric ligatures

    Directory of Open Access Journals (Sweden)

    Rogério Lacerda dos Santos

    2012-08-01

    Full Text Available This study investigated the cytotoxicity of crystal-coloured orthodontic elastomeric ligatures of polyurethane. Six ligatures from distinct manufactures were divided into 6 groups of 10 elastics each: Groups P1, P2, P3, P4, P5 and P6 (Polyurethane. The cytotoxicity essay was performed using L-929 line cells, which were submitted to the cell viability test with neutral red ("dye-uptake" at time intervals of 1, 2, 3, 7 and 28 days. Analysis of variance (ANOVA with multiple comparisons and Tukey's test were used (p < .05. There were statistical differences (p < .05 in cell viability between Groups P1, P4, P2 and P3, and Groups P5 and P6 at 1 and 2 days. All elastomeric ligatures were considered suitable for clinical use. The hypothesis was accepted, the P5 and P6 elastomers and the processing route of injection molding for these ligatures showed the lowest cell viability, due the temperature and pressure distinct in the processing of these elastomers.

  6. In vitro cytotoxicity of some Narcissus plants extracts.

    Science.gov (United States)

    Shawky, Eman; Abou-Donia, Amina H; Darwish, Fikria A; Toaima, Soad M; Takla, Sarah S; Al Asaar, Mahmoud Mohamed

    2015-01-01

    This study compares the chloroform extracts of bulbs and roots of Narcissus papyraceus Ker Gawl. and Narcissus tazetta L. The cytotoxicity of the plant extracts was evaluated against human hepatocellular carcinoma cell line (HEPG2) and colon carcinoma cell line (HCT116) in comparison to doxorubicin. The extracts from the after-flowering (AF) bulbs of N. tazetta L. and N. papyraceus exhibited strong cytotoxic activity against HEPG2 (IC50: 2.2, 3.5 μg mL(-1)) and HCT116 (IC50: 4.2, 3.9 μg mL(-1)) cell lines, respectively. N. tazetta L. bulbs exhibited the least cell viability percentage in HepG-2 cell line (5.32%), while the AF root extracts of N. papyraceus exhibited the least cell viability percentage in HCT116 cell line (4.93%), when applied at a concentration of 50 μg mL(-1), thereby being more active than doxorubicin at the same concentration.

  7. In vitro anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A, a chalcone isolated from Boesenbergia rotunda (L.) (fingerroot)

    Energy Technology Data Exchange (ETDEWEB)

    Isa, N.M. [UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor (Malaysia); Abdelwahab, S.I. [Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, (Malaysia); Mohan, S. [Centre of Natural Products and Drug Discovery, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, (Malaysia); Abdul, A.B. [UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor (Malaysia); Sukari, M.A. [Department of Chemistry, Faculty of Science, University Putra Malaysia, Serdang, Selangor (Malaysia); Taha, M.M.E.; Syam, S. [UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor (Malaysia); Narrima, P.; Cheah, S.Ch. [Centre of Natural Products and Drug Discovery, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, (Malaysia); Ahmad, S. [Faculty of Biotechnology, University Putra Malaysia, Serdang, Selangor (Malaysia); Mustafa, M.R. [Centre of Natural Products and Drug Discovery, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, (Malaysia)

    2012-02-27

    The current in vitro study was designed to investigate the anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A (BA), a chalcone derivative of known structure isolated from Boesenbergia rotunda. Human hepatocellular carcinoma (HepG2), colon adenocarcinoma (HT-29), non-small cell lung cancer (A549), prostate adenocarcinoma (PC3), and normal hepatic cells (WRL-68) were used to evaluate the cytotoxicity of BA using the MTT assay. The antioxidant activity of BA was assessed by the ORAC assay and compared to quercetin as a standard reference antioxidant. ORAC results are reported as the equivalent concentration of Trolox that produces the same level of antioxidant activity as the sample tested at 20 µg/mL. The toxic effect of BA on different cell types, reported as IC{sub 50}, yielded 20.22 ± 3.15, 10.69 ± 2.64, 20.31 ± 1.34, 94.10 ± 1.19, and 9.324 ± 0.24 µg/mL for A549, PC3, HepG2, HT-29, and WRL-68, respectively. BA displayed considerable antioxidant activity, when the results of ORAC assay were reported as Trolox equivalents. BA (20 µg/mL) and quercetin (5 µg/mL) were equivalent to a Trolox concentration of 11.91 ± 0.23 and 160.32 ± 2.75 µM, respectively. Moreover, the anti-inflammatory activity of BA was significant at 12.5 to 50 µg/mL and without any significant cytotoxicity for the murine macrophage cell line RAW 264.7 at 50 µg/mL. The significant biological activities observed in this study indicated that BA may be one of the agents responsible for the reported biological activities of B. rotunda crude extract.

  8. NK cells are strongly activated by Lassa and Mopeia virus-infected human macrophages in vitro but do not mediate virus suppression.

    Science.gov (United States)

    Russier, Marion; Reynard, Stéphanie; Tordo, Noël; Baize, Sylvain

    2012-07-01

    Lassa virus (LASV) and Mopeia virus (MOPV) are closely related Arenaviruses. LASV causes hemorrhagic fever, whereas MOPV is not pathogenic. Both viruses display tropism for APCs such as DCs and macrophages. During viral infections, NK cells are involved in the clearance of infected cells and promote optimal immune responses by interacting with APCs. We used an in vitro model of human NK and APC coculture to study the role of NK cells and to characterize their interactions with APCs during LASV and MOPV infections. As expected, NK cells alone were neither infected nor activated by LASV and MOPV, and infected DCs did not activate NK cells. By contrast, LASV- and MOPV-infected macrophages activated NK cells, as shown by the upregulation of CD69, NKp30, and NKp44, the downregulation of CXCR3, and an increase in NK-cell proliferation. NK cells acquired enhanced cytotoxicity, as illustrated by the increase in granzyme B (GrzB) expression and killing of K562 targets, but did not produce IFN-γ. Contact between NK cells and infected macrophages and type I IFNs were essential for activation; however, NK cells could not kill infected cells and control infection. Overall, these findings show that MOPV- as well as pathogenic LASV-infected macrophages mediate NK-cell activation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dehydroepiandrosterone inhibits the spontaneous release of superoxide radical by alveolar macrophages in vitro in asbestosis

    Energy Technology Data Exchange (ETDEWEB)

    Rom, W.N.; Harkin, T. (New York Univ. Medical Center, New York (United States))

    1991-08-01

    Asbestosis is characterized by an alveolar macrophage alveolitis with injury and fibrosis of the lower respiratory tract. Alveolar macrophages recovered by bronchoalveolar lavage spontaneously release exaggerated amounts of oxidants including superoxide anion and hydrogen peroxide that may mediate alveolar epithelial cell injury. Dehydroepiandrosterone (DHEA) is a normally occurring adrenal androgen that inhibits glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate shunt necessary for NADPH generation and superoxide anion formation. In this regard, the authors hypothesized that DHEA may reduce asbestos-induced oxidant release. DHEA added in vitro to alveolar macrophages lavaged from 11 nonsmoking asbestos workers significantly reduced superoxide anion release. DHEA is an antioxidant and potential anticarcinogenic agent that may have a therapeutic role in reducing the increased oxidant burden in asbestos-induced alveolitis of the lower respiratory tract.

  10. In vitro cytotoxicity of “mswaki” fibre on human gingival fibroblasts ...

    African Journals Online (AJOL)

    Aim: This study determined the in vitro cytotoxicity of mswaki fibres on human gingival fibroblasts (HGF). Methods: Two types of “mswaki” twigs (Salvadora persica and Euclea natalensis) were used. Each twig was swabbed with 70% ethanol, the bark was then removed and approximately 1cm pieces of fibre were cut and ...

  11. In vitro cytotoxic and in silico activity of piperine isolated from Piper nigrum fruits Linn.

    Science.gov (United States)

    Paarakh, Padmaa M; Sreeram, Dileep Chandra; D, Shruthi S; Ganapathy, Sujan P S

    2015-12-01

    Piper nigrum [Piperaceae], commonly known as black pepper is used as medicine fairly throughout the greater part of India and as a spice globally. To isolate piperine and evaluate in vitro cytotoxic [antiproliferative] activity and in silico method. Piperine was isolated from the fruits of P.nigrum. Piperine was characterized by UV,IR, (1)H-NMR, (13)C-NMR and Mass spectrum. Standardization of piperine was done also by HPTLC fingerprinting. In vitro cytotoxic activity was done using HeLa cell lines by MTT assay at different concentrations ranging from 20 to 100 μg/ml in triplicate and in silico docking studies using enzyme EGFR tyrosine kinase. Fingerprinting of isolated piperine were done by HPTLC method. The IC50 value was found to be 61.94 ± 0.054 μg/ml in in vitro cytotoxic activity in HeLa Cell lines. Piperine was subjected to molecular docking studies for the inhibition of the enzyme EGFR tyrosine kinase, which is one of the targets for inhibition of cancer cells. It has shown -7.6 kJ mol(-1) binding and 7.06 kJ mol(-1) docking energy with two hydrogen bonds. piperine has shown to possess in vitro cytotoxic activity and in silico studies.

  12. In Vitro and In Vivo Cytotoxicities and Antileishmanial Activities of Thymol and Hemisynthetic Derivatives

    Science.gov (United States)

    Robledo, Sara; Osorio, Edison; Muñoz, Diana; Jaramillo, Luz Marina; Restrepo, Adriana; Arango, Gabriel; Vélez, Iván

    2005-01-01

    The in vitro and in vivo antileishmanial and cytotoxic activities of thymol and structural derivatives in comparison to those of Glucantime were studied. The results showed here suggest that thymol and hemisynthetic derivatives have promising antileishmanial potential and could be considered as new lead structures in the search for novel antileishmanial drugs. PMID:15793164

  13. Cytotoxicity and genotoxicity of gliotoxin on human lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    Mohammed Adel Nouri

    2015-07-01

    Full Text Available The cytotoxic effects on human lymphocytes of two gliotoxin samples (one pure sample produced in the laboratory for this study, and one sample purchased from a standard source were assessed at four different concentrations (25, 50, 100 and 200 ng/ml using the methylthiazol tetrazolium (MTT bioassay. The results showed that growth was inhibited by 21, 39.10, 61.99 and 87.45% for each of the four concentrations of the pure sample, respectively, and by 17.89, 34.92, 58.34 and 85.22% respectively, in the case of the standard purchased sample. Deoxyribonucleic acid (DNA was extracted from the lymphocytes and analysed by electrophoresis on a 1% agarose gel. Gliotoxin appeared to have the ability to degrade or damage the DNA. The present study showed that both the growth inhibition and DNA damage experienced by the human lymphocytes increased linearly with increasing concentrations of toxin.

  14. In vitro cytotoxicity and induction of apoptosis by multiwalled carbon ...

    African Journals Online (AJOL)

    Multiwalled carbon nanotubes (MWCNTs) consist of more than 80% of the current nanomaterials' applications worldwide. Despite their wide application, little information is known concerning their impact on human health. The current study aims to identify the in vitro effects of exposure of the human peripheral blood ...

  15. Interleukin-1 hyperproduction by in vitro activated peripheral macrophages from cerebellar mutant mice.

    Science.gov (United States)

    Kopmels, B; Wollman, E E; Guastavino, J M; Delhaye-Bouchaud, N; Fradelizi, D; Mariani, J

    1990-12-01

    Several mutations in mice produce complex patterns of neuronal degeneration of the cerebellum and of its afferent pathways. In the staggerer (sg/sg) mutant, atrophy of the lymphoid organs and immunological abnormalities have been described. To search for a possible link between the neurological and the immune disorders in this mutant, we studied the production by its peripheral macrophages of interleukin-1 (IL-1), which roles in both immune and nervous systems are well established. Suspensions of peritoneal and/or spleen macrophages from mutants and their appropriate controls were stimulated in vitro by lipopolysaccharide. Northern and dot blots, performed with murine IL-1 cDNA probes, revealed a clear-cut hyperexpression of IL-1 mRNA in staggerer macrophages. An IL-1 bioassay using the IL-1-responsive D10.G4 cell line also revealed a sixfold increase of IL-1 activity in the macrophage supernatants of staggerer mutant mice. The hyperproduction was found in 3-week to 1-year-old staggerer and also in heterozygous (+/sg) mice. A similar phenomenon existed in cerebellar mutants lurcher, Purkinje cell degeneration (pcd), and to a lesser extent reeler and wobbler, but was absent in the neurological mutants weaver, jimpy, and motor end plate disease (medH). These observations establish that in several point mutations in mice, central nervous degeneration is associated with dysregulation of IL-1 production by peripheral macrophages.

  16. Niacin reverses migratory macrophage foam cell arrest mediated by oxLDL in vitro.

    Science.gov (United States)

    Huang, Hua; Koelle, Pirkko; Fendler, Markus; Schroettle, Angelika; Czihal, Michael; Hoffmann, Ulrich; Kuhlencordt, Peter Jan

    2014-01-01

    Niacin reduces vascular oxidative stress and down regulates inducible nitric oxide synthase, an enzyme mediating proatherosclerotic effects in part by increasing oxidative stress. Here, we evaluate whether Niacin reverses the redox sensitive migratory arrest of macrophages in response to oxidised(ox) LDL uptake. Migration of RAW264.7 cells, a murine macrophage cell line and bone marrow derived macrophages from wildtype and iNOS knockout mice was quantified using a modified Boyden chamber. Unstimulated cells or cells preincubated with oxLDL or non-oxidised (n)LDL were treated with Nicotinic acid or Nicotinamide. Nitric oxide, peroxynitrite and ROS production were assessed using electron paramagnetic resonance (ESR). Additionally, flow cytometry analysis of apoptosis, fokal adhesion kinase (FAK), phalloidin, CD36, F4/80 macrophage marker and iNOS gene expression (PCR) were assessed. Migration of Nicotinic acid, Nicotinamide treated cells or unstimulated cells did not differ (P>0.05). oxLDL treatment significantly reduced migration vs. unstimulated cells (pNiacin and glutathion (GSH) oxidation was significantly reduced. However, nitric oxide (NO)- and reactive oxygen species (ROS) production induced by oxLDL were not affected by Niacin treatment of RAW264.7 cells. In addition, Nicotinic acid and Nicotinamide reduced actin polymerization, a marker for migratory arrest. Our data shows that oxLDL induced inhibition of macrophage migration in vitro can be reversed by Niacin. Furthermore, Niacin reduces peroxynitite formation and improves antioxidant GSH.

  17. In vitro photodynamic effects of scavenger receptor targeted-photoactivatable nanoagents on activated macrophages.

    Science.gov (United States)

    Yi, Bong Gu; Park, Ok Kyu; Jeong, Myeong Seon; Kwon, Seung Hae; Jung, Jae In; Lee, Seongsoo; Ryoo, Sungwoo; Kim, Sung Eun; Kim, Jin Won; Moon, Won-Jin; Park, Kyeongsoon

    2017-04-01

    Scavenger receptors (SRs) expressed on the activated macrophages in inflammation sites have been considered as the most interesting and important target biomarker for targeted drug delivery, imaging and therapy. In the present study, we fabricated the scavenger receptor-A (SR-A) targeted-photoactivatable nanoagents (termed as Ce6/DS-DOCA) by entrapping chlorin e6 (Ce6) into the amphiphilic dextran sulfate-deoxycholic acid (DS-DOCA) conjugates via physically hydrophobic interactions. Insoluble Ce6 was easily encapsulated into DS-DOCA nanoparticles by a dialysis method and the loading efficiency was approximately 51.7%. The Ce6/DS-DOCA formed nano-sized self-assembled aggregates (28.8±5.6nm in diameter), confirmed by transmission electron microscope, UV/Vis and fluorescence spectrophotometer. The Ce6/DS-DOCA nanoagents could generate highly reactive singlet oxygen under laser irradiation. Also, in vitro studies showed that they were more specifically taken up by lipopolysaccharide (LPS)-induced activated macrophages (RAW 264.7) via a SR-A-mediated endocytosis, relative to by non-activated macrophages, and notably induced cell death of activated macrophages under laser irradiation. Therefore, SR-A targetable and photoactivatable Ce6/DS-DOCA nanoagents with more selective targeting to the activated macrophages will have great potential for treatment of inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Modulation of macrophage functionality induced in vitro by chlorpyrifos and carbendazim pesticides.

    Science.gov (United States)

    Helali, Imen; Ferchichi, Saiida; Maaouia, Amal; Aouni, Mahjoub; Harizi, Hedi

    2016-09-01

    The immune response is the first defense against pathogens; however, it is very sensitive and can be impacted on by agrochemicals such as carbamate and organophosphate pesticides widely present in the environment. To understand how pesticides can affect immune cell function in vitro, this study investigated the effects of chlorpyrifos (CPF) and carbendazim (CBZ), the most commonly used pesticides worldwide, on murine immune cell (i.e. macrophage) functions, including lysosomal enzyme activity and pro-inflammatory cytokines (IL-1β and TNFα) and nitric oxide (NO) production by isolated mouse peritoneal macrophages. This study showed for the first time that CPF and CBZ dose-relatedly reduced macrophage lysosomal enzyme activity and LPS-induced production of IL-1β, TNFα and NO. In general, the effects caused by CPF appeared more pronounced than those by CBZ. Collectively, these results demonstrated that CPF and CBZ exhibited marked immunomodulatory effects and could act as potent immunosuppressive factors in vitro. This inhibition of macrophage pro-inflammatory function may be an integral part of the underlying mode of action related to pesticide-induced immunosuppression.

  19. In Vitro Screening for Cytotoxic Activity of Herbal Extracts

    Directory of Open Access Journals (Sweden)

    Valter R. M. Lombardi

    2017-01-01

    Full Text Available Experimental studies have shown that a variety of chemopreventive plant components affect tumor initiation, promotion, and progression and the main difference, between botanical medicines and synthetic drugs, resides in the presence of complex metabolite mixtures shown by botanical medicine which in turn exert their action on different levels and via different mechanisms. In the present study, we performed an in vitro screening of ethanol extracts from commercial plants in order to investigate potential antitumor activity against human tumor cell lines. Experimental results obtained through a variety of methods and techniques indicated that extracts of I. verum, G. glabra, R. Frangula, and L. usitatissimum present significant reduction in in vitro tumor cell proliferation, suggesting these extracts as possible chemotherapeutical adjuvants for different cancer treatments.

  20. In vitro Staphylococcus aureus–induced oxidative stress in mice murine peritoneal macrophages: a duration–dependent approach

    Directory of Open Access Journals (Sweden)

    Subhankari Prasad Chakraborty

    2014-05-01

    Conclusions: From this study, it may be summarized that in vitro VSSA infection not only generates excess free radical but also affects the antioxidant status and glutathione cycle in murine peritoneal macrophages.

  1. Sesquiterpene lactones from Vernonia scorpioides and their in vitro cytotoxicity.

    Science.gov (United States)

    Buskuhl, Humberto; de Oliveira, Fabio L; Blind, Luise Z; de Freitas, Rilton A; Barison, Andersson; Campos, Francinete R; Corilo, Yuri E; Eberlin, Marcos N; Caramori, Giovanni F; Biavatti, Maique W

    2010-09-01

    Fresh leaves of Vernonia scorpioides are widely used in Brazil to treat a variety of skin disorders. Previous in vivo studies with extracts of this species had also demonstrated a high antitumor potential. This paper reports isolation of four sesquiterpene lactones (hirsutinolides and glaucolides), together with diacetylpiptocarphol, 8-acetyl-13-etoxypiptocarphol, luteolin, apigenin, and ethyl caffeate from fresh leaves and flowers of Vernonia scorpioides. The hypothesis that hirsutinolide 3 is formed during extraction was verified theoretically using Density Functional Theory. The effects of isolated compounds on in vitro tumor cells were investigated, as well as their genotoxicity by means of an in vitro comet assay. The results indicate that glaucolide 2 and hirsutinolide 4 are toxic to HeLa cells. These compounds were genotoxic in vitro, a property that appears to be related to the presence of their epoxy groups, which has been a more reliable indication of toxicity than substitution on C-13 or the presence of alpha,beta-unsaturated keto-groups. These results need to be replicated in vivo in order to ascertain their toxicity. (c) 2010 Elsevier Ltd. All rights reserved.

  2. In vitro cytotoxicity of dental composites based on new and traditional polymerization chemistries.

    Science.gov (United States)

    Brackett, M Goël; Bouillaguet, S; Lockwood, P E; Rotenberg, S; Lewis, J B; Messer, R L W; Wataha, J C

    2007-05-01

    The biological response to dental restorative polymer composites is mediated by the release of unpolymerized residual monomers. Several new composite formulations claim to reduce unpolymerized residual mass. The current study assessed the cytotoxic responses to several of these new formations and compared them with more traditional formulations. Our hypothesis predicted that if these new polymerization chemistries reduce unpolymerized residual mass, the cytotoxicity of these materials also should be reduced relative to traditional formulations. Materials (HerculiteXRV, Premise, Filtek Supreme, CeramxDuo, Hermes, and Quixfil) were tested in vitro in direct contact with Balb mouse fibroblasts, initially, then after aging in artificial saliva for 0, 1, 3, 5, or 8 weeks. The toxicity was determined by using the MTT assay to the estimate SDH activity. Knoop hardness of the materials also was measured at 0 and 8 weeks to determine whether surface breakdown of the materials in artificial saliva contributed to cytotoxic responses. Materials with traditional methacrylate chemistries (Herculite, Premise, Filtek Supreme) were severely (>50%) cytotoxic throughout the 8-week interval, but materials with newer chemistries or filling strategies (Hermes, CeramXDuo, and Quixfil) improved over time of aging in artificial saliva. Hermes showed the least cytotoxicity at 8 weeks, and was statistically equivalent to Teflon negative controls. Hardness of the materials was unaffected by exposure to artificial saliva. Newer polymerization and filling strategies for dental composites show promise for reducing the release of unpolymerized components and cytotoxicity.

  3. Magnesium and calcium organophyllosilicates: synthesis and in vitro cytotoxicity study.

    Science.gov (United States)

    Han, Hyo-Kyung; Lee, Young-Chul; Lee, Moo-Yeol; Patil, Avinash J; Shin, Hyun-Jae

    2011-07-01

    Synthesis of multifunctional hybrid nanomaterials for biomedical applications has received great attention. Herein, we examine the potential toxicity of organophyllosilicates on cells from different organs such as A549 (lung epithelial cancer), HT-29 (colon epithelial cancer), MRC-5 (lung fibroblast) and CCD-986sk (skin fibroblast) cells. For this, aminopropyl functionalized magnesium phyllosilicate (AMP clay) and aminopropyl functionalized calcium phyllosilicate (ACP clay) were prepared using one-pot direct sol-gel method. Toxic effects of these organoclays on normal fibroblast and tumor cells were examined under varying concentrations and exposure times. MTT and LDH assays indicated that both organoclays had little cytotoxicity in all of the cells tested at concentrations as high as 500 μg/mL. Even at high concentration (1000 μg/mL), the toxicity of both organoclays on cell viability and membrane damage was not severe and appeared to be cell type specific. In addition, organoclays did not induce apoptosis at concentrations as high as 1000 μg/mL.

  4. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine.

    Science.gov (United States)

    Ajaiyeoba, E O; Abiodun, O O; Falade, M O; Ogbole, N O; Ashidi, J S; Happi, C T; Akinboye, D O

    2006-03-01

    Twenty plants identified and selected from Southwest and Middle belt Nigerian antimalarial ethnopharmacology were evaluated for in vitro cytotoxicity using the brine shrimp lethality assay. The methanol extracts of 20 plant samples from 11 plant families were subjected to the assay. Of the studied plants, Lippia multiflora and Morinda lucida bark were found to be cytotoxic, with LC(50) values of 1.1 and 2.6 microg/ml, respectively. The least toxic plant extract was Bridelia micrantha (LC(50) value >9.0 x 10(6) microg/ml). Most of the plants were found to be relatively non-toxic.

  5. The in vitro cytotoxicity of urine from patients with interstitial cystitis

    DEFF Research Database (Denmark)

    Beier-Holgersen, R; Hermann, G G; Mortensen, S O

    1994-01-01

    was added to suspensions of target cells with intracellular bound 51Cr, and cellular death was recorded by measuring the 51Cr-release from the target cells. The transitional cell bladder cell lines T24 and Hu609 and the erythroleukemia K562 cell line were used as target cells. There was no difference......Urine from patients with interstitial cystitis has been reported to be more cytotoxic than urine from healthy subjects when tested in vitro against cells from a normal urothelial cell line. The purpose of the present study was to develop a method to measure urinary cytotoxicity and so make...

  6. Morphologic, phenotypic, and transcriptomic characterization of classically and alternatively activated canine blood-derived macrophages in vitro.

    Science.gov (United States)

    Heinrich, Franziska; Lehmbecker, Annika; Raddatz, Barbara B; Kegler, Kristel; Tipold, Andrea; Stein, Veronika M; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner; Spitzbarth, Ingo

    2017-01-01

    Macrophages are a heterogeneous cell population playing a pivotal role in tissue homeostasis and inflammation, and their phenotype strongly depends on the micromilieu. Despite its increasing importance as a translational animal model for human diseases, there is a considerable gap of knowledge with respect to macrophage polarization in dogs. The present study comprehensively investigated the morphologic, phenotypic, and transcriptomic characteristics of unstimulated (M0), M1- (GM-CSF, LPS, IFNγ-stimulated) and M2- (M-CSF, IL-4-stimulated)-polarized canine blood-derived macrophages in vitro. Scanning electron microscopy revealed distinct morphologies of polarized macrophages with formation of multinucleated cells in M2-macrophages, while immunofluorescence employing literature-based prototype-antibodies against CD16, CD32, iNOS, MHC class II (M1-markers), CD163, CD206, and arginase-1 (M2-markers) demonstrated that only CD206 was able to discriminate M2-macrophages from both other phenotypes, highlighting this molecule as a promising marker for canine M2-macrophages. Global microarray analysis revealed profound changes in the transcriptome of polarized canine macrophages. Functional analysis pointed out that M1-polarization was associated with biological processes such as "respiratory burst", whereas M2-polarization was associated with processes such as "mitosis". Literature-based marker gene selection revealed only minor overlaps in the gene sets of the dog compared to prototype markers of murine and human macrophages. Biomarker selection using supervised clustering suggested latexin (LXN) and membrane-spanning 4-domains, subfamily A, member 2 (MS4A2) to be the most powerful predicting biomarkers for canine M1- and M2-macrophages, respectively. Immunofluorescence for both markers demonstrated expression of both proteins by macrophages in vitro but failed to reveal differences between canine M1 and M2-macrophages. The present study provides a solid basis for future

  7. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells

    Directory of Open Access Journals (Sweden)

    Pai-An Hwang

    2017-03-01

    Full Text Available Fucoidan, an anionic, sulfated polysaccharide from brown seaweed, is known to exhibit antitumor and immunomodulatory functions. To develop an immune protection and chemotherapeutic agent, fucoidan-cisplatin nanoparticles (FCNPs were designed. FCNPs were prepared by mixing cisplatin with fucoidan solution or fucoidan with cisplatin solution, followed by dialysis to remove trace elements. The nanoparticles, comprising 10 mg of fucoidan and 2 mg of cisplatin, which exhibited the highest cisplatin content and loading efficiency during the production process, were named as Fu100Cis20. The cisplatin content, cisplatin loading efficiency, nanoparticle size, and zeta potential of Fu100Cis20 were 18.9% ± 2.7%, 93.3% ± 7.8%, 181.2 ± 21.0 nm, and −67.4 ± 2.3 mV, respectively. Immune protection assay revealed that Fu100Cis20-treated RAW264.7 cells were protected from the cytotoxicity of cisplatin. Furthermore, antitumor assay indicated that Fu100Cis20-treated HCT-8 cells showed stronger cytotoxicity than those treated with cisplatin alone. These results suggested that fucoidan-based nanoparticles exhibited suitable particle size and high drug encapsulation, and that Fu100Cis20 has potential application in both immunotherapy and chemotherapy.

  8. Virus-induced enhancement of arachidonate metabolism by bovine alveolar macrophages in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Laegreid, W.W.; Taylor, S.M.; Leid, R.W.; Silflow, R.M.; Evermann, J.R.; Breeze, R.G.; Liggitt, H.D.

    1989-04-01

    Virus infection of alveolar macrophages both in vivo and in vitro has been associated with a variety of changes in cellular function. Some of these changes are identical to the effects that arachidonate-derived mediators, prostaglandins, leukotrienes, and hydroxyeicosatetraenoic acids, have on macrophage function. Virus infection of macrophages has been previously shown to increase the output of some arachidonate metabolites, most notably PGE2. However, the effect of virus infection on arachidonate metabolism in general has not been well described. In our experiments, primary cultures of alveolar macrophages obtained from normal cattle by bronchoalveolar lavage, were infected in vitro with parainfluenza type 3 virus. At days 0 to 4 post-infection (p.i.) these cells were labelled with 3H-arachidonic acid and stimulated with either serum-coated zymosan, the calcium ionophore A23187, or phorbol myristate acetate. The complete spectrum of arachidonate-derived metabolites was determined by reverse-phase high performance liquid chromatography with UV and on-line radiometric monitoring of column eluant. The total output of metabolites of arachidonic acid by virus-infected alveolar macrophages was increased over that of noninfected controls (with all stimuli tested) by day 4 p.i. (P less than or equal to 0.05). The production of metabolites by the cyclooxygenase, 12- and 5-lipoxygenase enzyme systems was significantly increased, as was the release of 3H-arachidonate. The lack of stimulus specificity and the increases in arachidonate release suggest that greater substrate availability, due either to increased phospholipase activity or direct virus-membrane interaction, may be responsible for the virus-induced enhancement of metabolite output.

  9. In vitro cell-mediated cytotoxicity and antibody-dependent cellular cytotoxicity to the transmissible venereal tumor of the dog.

    Science.gov (United States)

    Cohen, D

    1980-02-01

    Cell-mediated immunity to the transmissible venereal tumor (TVT) of the dog was studied by use of a 51Cr release cytotoxicity assay. Peripheral blood lymphocytes (PBL) of dogs in which the TVT had regressed were shown to be cytotoxic to the tumor cells in contrast to PBL of normal dogs and animals during progressive tumor growth, which were not cytotoxic. In addition, sera of dogs in which the TVT had regressed could be demonstrated to mediate antibody-dependent cellular cytotoxicity (ADCC) with normal dog lymphocytes or cytotoxic PBL as effector cells. With cytotoxic lymphocytes, the ADCC effect could be observed in addition to the direct cytotoxic effect.

  10. The effect of the bleaching agent sodium perborate on macrophage adhesion in vitro: implications in external cervical root resorption.

    Science.gov (United States)

    Jiménez-Rubio, A; Segura, J J

    1998-04-01

    The purpose of this study was to investigate the in vitro effect of sodium perborate, which is used as a bleaching agent in the treatment of discolored pulpless teeth, on substrate adherence capacity of macrophages. Inflammatory macrophages were obtained from Wistar rats and resuspended in RPMI-1640 medium. As a test of macrophage adhesion, the adherence capacity of macrophages to a plastic surface was determined. Assays were conducted in Eppendorf tubes for 15 min of incubation at 37 degrees C in a humidified atmosphere of 5% CO2. The adherence index was calculated. Results showed that sodium perborate decreased in a dose-dependent manner and decreased significantly (p Sodium perborate was less potent than sodium hypochlorite and eugenol in inhibiting macrophage adhesion. The inhibitory effect of sodium perborate on macrophage adhesion further supports the concept that this agent is not implicated in external cervical root resorption associated with intracoronal bleaching.

  11. Murine Alveolar Macrophages Are Highly Susceptible to Replication of Coxiella burnetii Phase II In Vitro

    Science.gov (United States)

    Fernandes, Talita D.; Cunha, Larissa D.; Ribeiro, Juliana M.; Massis, Liliana M.; Lima-Junior, Djalma S.

    2016-01-01

    Coxiella burnetii is a Gram-negative bacterium that causes Q fever in humans. Q fever is an atypical pneumonia transmitted through inhalation of contaminated aerosols. In mammalian lungs, C. burnetii infects and replicates in several cell types, including alveolar macrophages (AMs). The innate immunity and signaling pathways operating during infection are still poorly understood, in part because of the lack of relevant host cell models for infection in vitro. In the study described here, we investigated and characterized the infection of primary murine AMs by C. burnetii phase II in vitro. Our data reveal that AMs show a pronounced M2 polarization and are highly permissive to C. burnetii multiplication in vitro. Murine AMs present an increased susceptibility to infection in comparison to primary bone marrow-derived macrophages. AMs support more than 2 logs of bacterial replication during 12 days of infection in culture, similar to highly susceptible host cells, such as Vero and THP-1 cells. As a proof of principle that AMs are useful for investigation of C. burnetii replication, we performed experiments with AMs from Nos2−/− or Ifng−/− mice. In the absence of gamma interferon and nitric oxide synthase 2 (NOS2), AMs were significantly more permissive than wild-type cells. In contrast, AMs from Il4−/− mice were more restrictive to C. burnetii replication, supporting the importance of M2 polarization for the permissiveness of AMs to C. burnetii replication. Collectively, our data account for understanding the high susceptibility of alveolar macrophages to bacterial replication and support the use of AMs as a relevant model of C. burnetii growth in primary macrophages. PMID:27297388

  12. In vitro cytotoxicity screening of wild plant extracts from Saudi Arabia on human breast adenocarcinoma cells.

    Science.gov (United States)

    Ali, M A; Abul Farah, M; Al-Hemaid, F M; Abou-Tarboush, F M

    2014-05-23

    This study investigated the in vitro anticancer activities of a total of 14 wild angiosperms collected in Saudi Arabia. The cytotoxic activity of each extract was assessed against human breast adenocarcinoma (MCF-7) cell lines by using the MTT assay. Among the plants screened, the potential cytotoxic activity exhibited by the extract of Lavandula dentata (Lamiaceae) was identified, and we analyzed its anticancer potential by testing antiproliferative and apoptotic activity. Our results clearly show that ethanolic extract of L. dentata exhibits promising cytotoxic activity with an IC50 value of 39 μg/mL. Analysis of cell morphological changes, DNA fragmentation and apoptosis (using an Annexin V assay) also confirmed the apoptotic effect of L. dentata extract, and thus, our data call for further investigations to determine the active chemical constituent(s) and their mechanisms of inducing apoptosis.

  13. Establishment of Self-Renewable GM-CSF-Dependent Immature Macrophages In Vitro from Murine Bone Marrow

    Science.gov (United States)

    Ito, Sachiko; Tanaka, Yuriko; Nishio, Naomi; Thanasegaran, Suganya; Isobe, Ken-Ichi

    2013-01-01

    Macrophages play a key role in the innate immune system. Macrophages are thought to originate from hematopoietic precursors or the yolk sac. Here, we describe the in vitro establishment of self-renewable GM-CSF-dependent immature macrophages (GM-IMs) from murine bone marrow (BM). GM-IMs grow continuously in vitro in conditioned medium containing GM-CSF. The immunophenotype of GM-IMs is F4/80high CD11bhigh CD11clow Ly6Clow. By comparing gene expression in GM-IMs and BM dendritic cells, we found that GM-IMs expressed lower levels of chemokines, cytokines and their receptors. GM-IMs are round in shape, attach loosely to non-coated culture dishes and have a marked phagocytic capacity. These results indicate that GM-IMs are macrophage precursor cells. Following stimulation with LPS, monocyte-like GM-IMs converted to flat macrophage-like cells that tightly adhered to non-coated culture dishes and produced pro-inflammatory cytokines TNFα, IL-6 and IL-1β. These results indicated that GM-IMs differentiated to M1 pro-inflammatory macrophages. This was confirmed by stimulation of GM-IMs with IFNγ, an inducer of M1 markers. GM-IMs showed enhanced expression of M2 macrophage markers such as Arg1 and Retnla following stimulation by Th2 cytokines IL-4 and IL-13. When GM-IMs were injected into mice at sites of wounding, wound repair was enhanced. These results indicate that GM-IMs can differentiate to M2 macrophages. When GM-IMs were injected into clodronate-treated mice, they induced resident macrophage proliferation by producing M-CSF. In conclusion we have established self-renewable GM-CSF-dependent immature macrophages in vitro from murine BM, which differentiate to M1 or M2 macrophages. PMID:24124601

  14. Alveolar macrophage-stimulated neutrophil and monocyte migration: effects of in vitro ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, K.E.; Schlesinger, R.B.

    1988-04-01

    The ability of rabbit alveolar macrophages (AM) to release factors which stimulate the migration of peripheral blood neutrophils and monocytes was examined, and the influence of in vitro ozone exposure on this secretory activity was investigated. To evaluate the ability of AM to release leukocyte chemotactic activity, AM obtained by bronchoalveolar lavage were established in monolayer or suspension culture, with and without added zymosan, for 2 and 6 hr. The resulting macrophage-conditioned medium was tested for chemotactic activity using modified Boyden-type chambers and rabbit peripheral blood neutrophils or monocytes as the responding cells. The results demonstrate that substrate attachment (monolayer culture) and/or zymosan phagocytosis can stimulate AM to release chemoattractants for monocytes and neutrophils. Additionally, the results suggest that AM are constitutively producing low levels of monocyte chemotactic factors. The effects of in vitro ozone exposure on the secretion of chemotactic activity was investigated by exposing monolayer cultures of AM to air, 0.1, 0.3, or 1.2 ppm ozone for 2 hr. Macrophage-conditioned medium was harvested immediately, 2 and 6 hr postexposure, and tested for chemotactic activity. Exposure to 0.3 and 1.2 ppm ozone significantly increased the AM secretion of factors which stimulated neutrophil migration; additionally, the results strongly suggest that ozone can augment the ability of AM to stimulate monocyte migration. These results imply a role for the AM in the recruitment of inflammatory cells after ozone inhalation.

  15. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Christian Michel

    Full Text Available Worldwide increases in fluvial fine sediment are a threat to aquatic animal health. Fluvial fine sediment is always a mixture of particles whose mineralogical composition differs depending on the sediment source and catchment area geology. Nonetheless, whether particle impact in aquatic organisms differs between mineral species remains to be investigated. This study applied an in vitro approach to evaluate cytotoxicity and uptake of four common fluvial mineral particles (quartz, feldspar, mica, and kaolin; concentrations: 10, 50, 250 mg L(-1 in the rainbow trout epithelial gill cell line RTgill-W1. Cells were exposed for 24, 48, 72, and 96 h. Cytotoxicity assays for cell membrane integrity (propidium iodide assay, oxidative stress (H2DCF-DA assay, and metabolic activity (MTT assay were applied. These assays were complemented with cell counts and transmission electron microscopy. Regardless of mineral species, particles ≤ 2 µm in diameter were taken up by the cells, suggesting that particles of all mineral species came into contact and interacted with the cells. Not all particles, however, caused strong cytotoxicity: Among all assays the tectosilicates quartz and feldspar caused sporadic maximum changes of 0.8-1.2-fold compared to controls. In contrast, cytotoxicity of the clay particles was distinctly stronger and even differed between the two particle types: mica induced concentration-dependent increases in free radicals, with consistent 1.6-1.8-fold-changes at the 250 mg L(-1 concentration, and a dilated endoplasmic reticulum. Kaolin caused concentration-dependent increases in cell membrane damage, with consistent 1.3-1.6-fold increases at the 250 mg L(-1 concentration. All effects occurred in the presence or absence of 10% fetal bovine serum. Cell numbers per se were marginally affected. Results indicate that (i. natural mineral particles can be cytotoxic to gill epithelial cells, (ii. their cytotoxic potential differs between mineral

  16. In vitro cytotoxicity of indirect composite resins: Effect of storing in artificial saliva

    Directory of Open Access Journals (Sweden)

    Arzu Zeynep Yildirim-Bicer

    2013-01-01

    Full Text Available Aim: The aim of this study was to compare the cytotoxic effects of two indirect composite resins (Artglass and Solidex on the viability of L-929 fibroblast cells at different incubation periods by storing them in artificial saliva (AS. Materials and Methods: Disk-shaped test samples were prepared according to manufacturers′ instructions. Test materials were cured with light source (Dentacolor XS, Heraus Kulzer, Germany. The samples were divided into two groups. The first group′s samples were transferred into a culture medium for 1 hour, 24 hours, 72 hours, 1 week and 2 weeks. The other group′s samples were transferred into a culture medium for 1 hours, 24 hours, 72 hours, 1 week, and 2 weeks after being stored in AS for 48 hours. The eluates were obtained and pipetted for evaluation onto L-929 mouse fibroblast cultures incubated for 24 hours. Measurements were performed by MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay. The degree of cytotoxicity for each sample was determined according to the reference values represented by the cells with a control group. Results: Statistical significance was determined by ANOVA. Both groups presented lower cell viability in comparison to the control group at all periods. Storing in artificial saliva reduced cytotoxicity significantly (P < 0.05. Stored Artglass and Solidex showed similar effects on cytotoxicity. Nonstored Solidex samples were found more cytotoxic than Artglass samples. The cell survival rate results of 24-hour incubation period were significantly lower than those of the other experimental periods (P < 0.05. Conclusion: Storing indirect composite resins in AS may reduce cytotoxic effects on the fibroblast cells. However, resin-based dental materials continue to release sufficient components to cause cytotoxic effects in vitro after 48 hours of storing in AS.

  17. Comparison of cytotoxicity in vitro and irritation in vivo for aqueous and oily solutions of surfactants.

    Science.gov (United States)

    Czajkowska-Kośnik, Anna; Wolska, Eliza; Chorążewicz, Juliusz; Sznitowska, Małgorzata

    2015-01-01

    The in vivo model on rabbit eyes and the in vitro cytotoxicity on fibroblasts were used to compare irritation effect of aqueous and oily (Miglyol 812) solutions of surfactants. Tween 20, Tween 80 and Cremophor EL were tested in different concentrations (0.1, 1 or 5%) and the in vitro test demonstrated that surfactants in oil are less cytotoxic than in aqueous solutions. In the in vivo study, the aqueous solutions of surfactants were characterized as non-irritant while small changes in conjunctiva were observed after application the oily solutions of surfactants and the preparations were classified as slightly irritant, however this effect was similar when Miglyol was applied alone. In conclusion, it is reported that the MTT assay does not correlate well with the Draize scores.

  18. Evaluation of cytotoxicity and mutagenicity of the benzodiazepine flunitrazepam in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Igor Vivian de Almeida

    2014-04-01

    Full Text Available Flunitrazepam (FNZ is a sedative benzodiazepine prescribed for the short-term treatment of insomnia. However, there are concerns regarding possible carcinogenic or genotoxic effects of this medicine. Thus, the aim of this study was to evaluate the cytotoxic, clastogenic and aneugenic effects of FNZ in hepatoma cells from Rattus norvegicus (HTC in vitro and in bone marrow cells of Wistar rats in vivo. These effects were examined in vitro following treatment with 0.2, 1.0, 5.0 or 10 μg/mL FNZ using a micronucleus test with a cytokinesis block or in vivo using a chromosomal aberration test following treatment with 7, 15 or 30 μg/mL/kg body weight. The results showed that the benzodiazepine concentrations tested were not cytotoxic, aneugenic or clastogenic. However, considering the adverse effects of using this benzodiazepine, more studies are required.

  19. Genotoxicity and cytotoxicity of sevoflurane in two human cell lines in vitro with ionizing radiation.

    Science.gov (United States)

    Alcaraz, Miguel; Quesada, Samuel; Armero, David; Martin-Gíl, Rocio; Olivares, Amparo; Achel, G Daniel

    2014-01-01

    To determine the in vitro toxicity of different concentrations of sevoflurane in cells exposed to X-ray. The genotoxic effects of sevofluorane were studied by means of the micronucleus test in cytokinesis-blocked cells of irradiated human lymphocytes. Subsequently, its cytotoxic effects on PNT2 (normal prostate) cells was determined using the cell viability test (MTT) and compared with those induced by different doses of X-rays. A dose- and time-dependent cytotoxic effect of sevofluorane on PNT2 cells was determined (p >0.001) and a dose-dependent genotoxic effect of sevofluorane was established (p >0.001). However, at volumes lower than 30 μL of sevofluorane at 100%, a non-toxic effect on PNT2 cells was shown. Sevofluorane demonstrates a genotoxic capacity as determined in vitro by micronucleus test in cytokinesis-blocked cells of irradiated human lymphocytes.

  20. In vitro cytotoxicity testing of Ubiquicidin 29-41-{sup 99m}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, Ivette Z.; Okazaki, Kayo; Dias, Luis Alberto Pereira; Higa, Olga Z.; Silva, Fabiana M. da; Vieira, Daniel P., E-mail: dpvieira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Passos, Priscila; Esteves-Pedro, Natalia M., E-mail: fabiana@biosintesis.com.br [Laboratorio Biosintesis Ltda, Sao Paulo, SP (Brazil)

    2015-07-01

    The work carried out cytotoxicity tests using a radiopharmaceutical compound produced at IPEN/CNEN-SP to certify its safety through in vitro cytotoxicity tests. Since 2009, the Brazilian regulatory agency (ANVISA) requires that such tests have to be carried out following good laboratory practices (GLP) and in according to the OECD (Organisation for Economic Co-operation and Development) guidelines in order to certify its safety for medical use. Those guidelines comprises series of technical recommendations performed to assure quality of experiments. The study chose Ubiquicidin 29-41, an antimicrobial peptide used to discriminate bacterial infection foci from inflammatory sites. Amounts of UBI{sub 29-41} were conjugated or not to {sup 99m}Tc and diluted to equivalent concentrations of 10, 100 and 1000% of the maximum dose (or activity) administered in adults. Possible cytotoxic effects were evaluated in comparison to untreated controls as well as positive and negative damage controls. Both full (radioactive) radiopharmaceuticals, as their precursors (only molecules without conjugation to isotopes) showed no significant cytotoxic effect (cytotoxicity ≤ 10%). The study was conducted for the first time in the country comprising preclinical testing of this radiopharmaceutical in accordance with internationally accepted quality parameters, ensuring the safety of its use and enabling inclusion in the pharmaceutical regulatory agenda. (author)

  1. In vitro cytotoxicity assessment of ulvan, a polysaccharide extracted from green algae.

    Science.gov (United States)

    Alves, Anabela; Sousa, Rui A; Reis, Rui L

    2013-08-01

    Sustainable exploitation and valorization of natural marine resources represents a highly interesting platform for the development of novel biomaterials, with both economic and environmental benefits. In this context, toxicity data is regarded as a crucial and fundamental knowledge prior to any advances in the application development of natural derived polymers. In the present work, cytotoxicity of ulvan extracted from green algae Ulva lactuca was assessed by means of standard in vitro cytotoxicity assays. Fibroblast-like cells were incubated in the presence of this green algae's polysaccharide, and cell viability was assayed through 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium test. In addition, double stranded DNA and total protein were quantified in order to assess cell number. In order to establish ulvan's non-cytotoxic behaviour, the effect of this polysaccharide on cellular metabolic activity and cell number was directly compared to hyaluronic acid (HA), used as a non-cytotoxic control material. In this study, ulvan demonstrated promising results in terms of cytotoxicity, comparable to the currently used HA, which suggests that ulvan can be considered as non-toxic in the range of concentrations studied. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Genotoxicity and cytotoxicity of sevoflurane in two human cell lines in vitro with ionizing radiation

    OpenAIRE

    Miguel Alcaraz; Samuel Quesada; David Armero; Rocio Martín-Gil; Amparo Olivares; Daniel Achel

    2014-01-01

    Objective: To determine the in vitro toxicity of different concentrations of sevoflurane in cells exposed to X-ray. Methods: The genotoxic effects of sevofluorane were studied by means of the micronucleus test in cytokinesis-blocked cells of irradiated human lymphocytes. Subsequently, its cytotoxic effects on PNT2 (normal prostate) cells was determined using the cell viability test (MTT) and compared with those induced by different doses of X-rays. Results: A dose- and time-dependent cytoto...

  3. Enhanced cytotoxicity of TATp-bearing paclitaxel-loaded micelles in vitro and in vivo

    OpenAIRE

    Sawant, Rupa R.; Torchilin, Vladimir P.

    2009-01-01

    Cell-penetrating peptide (TATp) was attached to the distal tips of polyethylene glycol (PEG) moieties of polyethyleneglycol-phosphatidylethanolamine (PEG-PE) micelles loaded with paclitaxel (PCT). The TATp-modified micelles demonstrated an increased interaction with cancer cells compared to non-modified micelles resulting in a significant increase of the in vitro cytotoxicity to different cancer cells. TATp-modified PCT-loaded micelles were administered intratumorally in mice and the inductio...

  4. Mycobacterium indicus pranii supernatant induces apoptotic cell death in mouse peritoneal macrophages in vitro.

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Pandey

    2011-02-01

    Full Text Available Mycobacterium indicus pranii (MIP, also known as Mw, is a saprophytic, non-pathogenic strain of Mycobacterium and is commercially available as a heat-killed vaccine for leprosy and recently tuberculosis (TB as part of MDT. In this study we provide evidence that cell-free supernatant collected from original MIP suspension induces rapid and enhanced apoptosis in mouse peritoneal macrophages in vitro. It is demonstrated that the MIP cell-free supernatant induced apoptosis is mitochondria-mediated and caspase independent and involves mitochondrial translocation of Bax and subsequent release of AIF and cytochrome c from the mitochondria. Experiments with pharmacological inhibitors suggest a possible role of PKC in mitochondria-mediated apoptosis of macrophages.

  5. In Vitro Cytotoxic Effect of Brazilian Green Propolis on Human Laryngeal Epidermoid Carcinoma (HEp-2 Cells

    Directory of Open Access Journals (Sweden)

    Michelle C. Búfalo

    2009-01-01

    Full Text Available Propolis is a sticky dark-colored material showing a very complex chemical composition that honeybees collect from plants. It has been used in folk medicine since ancient times, due to several biological properties, such as antimicrobial, anti-inflammatory, antioxidant and immunomodulatory activities, among others. Its antitumor action in vivo and in vitro has also been reported, using propolis extracts or its isolated compounds. The goal of this work was to evaluate propolis's cytotoxic action in vitro on human laryngeal epidermoid carcinoma (Hep-2 cells. These cells were incubated with different concentrations of this bee product for different time periods, and morphology and the number of viable HEp-2 cells analyzed. Data showed that propolis exhibited a cytotoxic effect in vitro against HEp-2 cells, in a dose- and time-dependent way. Propolis solvent had no effects on morphology and number of viable cells, proving that the cytotoxic effects were exclusively due to propolis components. Since humans have been using propolis for a long time, further assays will provide a better comprehension of propolis's antitumor action.

  6. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages

    Science.gov (United States)

    Qin, Jinbao; Peng, Zhiyou; Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Yuan, Fukang; Yang, Xinrui; Huang, Lijia; Hu, Junqing; Lu, Xinwu

    2015-08-01

    Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography (CT) imaging. These Au NRs were then applied to an apolipoprotein E knockout (Apo E) mouse model to evaluate their effects on in vivo CT imaging and their effectiveness as for the subsequent photothermal therapy of macrophages in femoral artery restenosis under 808 nm laser irradiation. In vitro photothermal ablation treatment using Au NRs exhibited a significant cell-killing efficacy of macrophages, even at relatively low concentrations of Au NRs and low NIR powers. In addition, the in vivo results demonstrated that the Au NRs are effective for in vivo imaging and photothermal therapy of inflammatory macrophages in femoral artery restenosis. This study shows that Au nanorods are a promising theranostic platform for the diagnosis and photothermal therapy of inflammation-associated diseases.Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography

  7. Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa

    Science.gov (United States)

    Cory, Theodore J.; Birket, Susan E.; Murphy, Brian S.; Mattingly, Cynthia; Breslow-Deckman, Jessica M.; Feola, David J.

    2013-01-01

    Objectives Chronic azithromycin therapy has been associated with improved clinical outcomes in patients with cystic fibrosis (CF) who are chronically infected with Pseudomonas aeruginosa. We have previously demonstrated that azithromycin polarizes macrophages towards an alternatively activated phenotype, thereby blunting inflammation associated with infection. Because this phenotype is pro-fibrotic, it is important to evaluate azithromycin's consequential effects upon fibroblast function and extracellular matrix (ECM) protein production. Methods We co-cultured macrophages and fibroblasts together and stimulated them by adding P. aeruginosa or lipopolysaccharide to assess the ability of azithromycin to alter the macrophage phenotype, along with the impact exerted upon the production of fibronectin and other effectors that govern tissue remodelling, including transforming growth factor β (TGFβ), matrix metalloproteinase-9 (MMP-9) and arginase. We supported these studies by evaluating the impact of azithromycin treatment on these proteins in a mouse model of P. aeruginosa infection. Results Azithromycin increased arginase expression in vitro, as well as the activation of latent TGFβ, consistent with polarization to the alternative macrophage phenotype. While the drug increased fibronectin concentrations after stimulation in vitro, secretion of the ECM-degrading enzyme MMP-9 was also increased. Neutralization of active TGFβ resulted in the ablation of azithromycin's ability to increase fibronectin concentrations, but did not alter its ability to increase MMP-9 expression. In P. aeruginosa-infected mice, azithromycin significantly decreased MMP-9 and fibronectin concentrations in the alveolar space compared with non-treated, infected controls. Conclusions Our results suggest that azithromycin's effect on MMP-9 is regulated independently of TGFβ activity. Additionally, the beneficial effects of azithromycin may be partially due to effects on homeostasis in which ECM

  8. In vitro model to study the biomaterial-dependent reaction of macrophages in an inflammatory environment.

    Science.gov (United States)

    Grotenhuis, N; Vd Toom, H F E; Kops, N; Bayon, Y; Deerenberg, E B; Mulder, I M; van Osch, G J V M; Lange, J F; Bastiaansen-Jenniskens, Y M

    2014-07-01

    Macrophages play an important role in the reaction to biomaterials, which sometimes have to be used in a surgical field at risk of contamination. The macrophage phenotype in reaction to biomaterials in an inflammatory environment was evaluated in both an in vivo and in vitro setting. In the in vivo setting, polypropylene (PP) biomaterial was implanted for 28 days in the contaminated abdominal wall of rats, and upon removal analysed by routine histology as well as immunohistochemistry for CD68 (marker for macrophages), inducible nitric oxide synthase (iNOS - a marker for proinflammatory M1 macrophages) and CD206 (marker for anti-inflammatory M2 macrophages). For the in vitro model, human peripheral blood monocytes were cultured for 3 days on biomaterials made from PP, collagen (COL), polyethylene terephthalate (PET) and PET coated with collagen (PET+COL). These experiments were performed both with and without lipopolysaccharide and interferon γ stimulation. Secretion of both M1- and M2-related proteins was measured, and a relative M1/M2 index was calculated. In vivo, iNOS- and CD206-positive cells were found around the fibres of the implanted PP biomaterial. In vitro, macrophages on both PP and COL biomaterial had a relatively low M1/M2 index. Macrophages on the PET biomaterial had a high M1/M2 index, with the highest increase of M1 cytokines in an inflammatory environment. Macrophages on the PET+COL biomaterial also had a high M1/M2 index. Macrophages in an inflammatory environment in vitro still react in a biomaterial-dependent manner. This model can help to select biomaterials that are tolerated best in a surgical environment at risk of contamination. © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.

  9. L-Arginine is not the limiting factor for nitric oxide synthesis by human alveolar macrophages in vitro

    NARCIS (Netherlands)

    Muijsers, RBR; ten Hacken, NHT; Van Ark, [No Value; Folkerts, G; Nijkamp, FP; Postma, DS

    2001-01-01

    Unlike murine mononuclear phagocytes, human macrophages do not release high amounts of nitric oxide (NO) in vitro despite the presence of nitric oxide synthase (NOS). To determine whether this limited NO synthesis in vitro is due to limited availability of the NOS substrate L-arginine, and putative

  10. In vitro studies of interaction of rickettsia and macrophages: effect of ultraviolet light on Coxiella burnetti inactivation and macrophage enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1980-03-01

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (uv) light was studied. The effect of uv treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that uv treatment for 15 s at a distance of 10 cm inactivated C. burnetti, either in suspension or within guinea pig peritoneal macrophages. Similar uv treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients.

  11. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso

    Directory of Open Access Journals (Sweden)

    Souleymane Sanon

    2013-03-01

    Full Text Available Background: Resistance of malaria parasites to existing drugs complicates treatment, but an antimalarial vaccine that could protect against this disease is not yet available. It is therefore necessary to find new effective and affordable medicines. Medicinal plants could be a potential source of antimalarial agents. Some medicinal plants from Burkina Faso were evaluated for their antiplasmodial and cytotoxic properties in vitro.Methods: Crude dichloromethane, methanol, water-methanol, aqueous and alkaloids extracts were prepared for 12 parts of 10 plants. Chloroquine-resistant malaria strain K1 was used for the in vitro sensibility assay. The Plasmodium lactacte dehydrogenase technique was used to determine the 50% inhibitory concentration of parasites activity (IC50. The cytotoxic effects were determined with HepG2 cells, using the tetrazolium-based colorimetric technique, and the selectivity index (SI was calculated.Results: Sixty crude extracts were prepared. Seven extracts from Terminalia avicenoides showed IC50 < 5 µg/mL. The IC50 of dichloromethane, methanol, aqueous and alkaloids extracts ranged between 1.6 µg/mL and 4.5 µg/mL. Three crude extracts from Combretum collinum and three from Ficus capraefolia had an IC50 ranging between 0.2 µg/mL and 2.5 µg/mL. Crude extracts from these three plants had no cytotoxic effect, with SI > 1. The other plants have mostly moderate or no antimalarial effects. Some extracts from Cordia myxa, Ficus capraefolia and Opilia celtidifolia showed cytotoxicity, with an SI ranging between 0.4 and 0.9.Conclusion: Our study showed a good antiplasmodial in vitro activity of Terminalia avicenoides, Combretum collinum and Ficus capraefolia. These three plants may contain antiplasmodial molecules that could be isolated by bio-guided phytochemical studies. 

  12. Cytotoxicity and proliferative effects of Iodoform-containing root canal-filling material on RAW 264.7 macrophage and RKO epithelial cell lines.

    Science.gov (United States)

    Petel, Roy; Moskovitz, Moti; Tickotsky, Nili; Halabi, Amal; Goldstein, Judith; Houri-Haddad, Yael

    2013-01-01

    The present study investigated the effect of the Iodoform-containing root canal filling material on the viability of cultured macrophages and epithelial cells, and on cytokine secretion. The effect of Endoflas F.S. on the proliferation of a RAW 264.7 macrophage cell line and on a RKO epithelial cell line, and on the production of tumour necrosis factor alpha (TNFα) from macrophages was examined. Cell vitality was evaluated using a colourimetric XTT (sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt) assay. The presence of cytokines was determined by two-site enzyme-linked immunosorbent assay (ELISA). Direct exposure of Endoflas F.S. and its media, up to a dilution of 1/8, decreased the viability of macrophages and epithelial cells by ∼70% compared to control media (Pmaterial. Direct and indirect exposure to high concentrations of iodoform-containing root canal filling material showed a cytotoxic effect on macrophages and epithelial cells, while low concentrations induced cell proliferation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. In Vitro Cytotoxic Activity of Origanum vulgare L. on HCT-116 and MDA-MB-231 Cell Lines

    Science.gov (United States)

    Grbović, Filip; Stanković, Milan S.; Ćurčić, Milena; Đorđević, Nataša; Šeklić, Dragana; Topuzović, Marina; Marković, Snežana

    2013-01-01

    In the present investigation, we examined the cytotoxic effect of methanolic extract from Origanum vulgare on HCT-116 and MDA-MB-231 cell line in vitro. In order to determine the cytotoxic effects we used an MTT viability assay. The results showed that cell growth is significantly lower in extract treated cells compared to untreated control. The effect of inhibition of cell growth was higher in the treatment of HCT-116 cell line than in MDA-MB-231. Based on the results it is determined that O. vulgare is a significant source of biologically active substances that have cytotoxic and antiproliferative activity in vitro. PMID:27137381

  14. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions.

    Directory of Open Access Journals (Sweden)

    Flora Rey-Giraud

    Full Text Available The tumor promoting role of M2 macrophages has been described in in vivo models and the presence of macrophages in certain tumor types has been linked to a poor clinical outcome. In light of burgeoning activities to clinically develop new therapies targeting tumor-associated macrophages (TAMs, reliable in vitro models faithfully mimicking the tumor promoting functions of TAMs are required. Generation and activation of human monocyte-derived macrophages (MDM in vitro, described as M1 or M2 macrophages attributed with tumoricidal or tumor-promoting functions, respectively, has been widely reported using mainly serum containing culture methods. In this study, we compared the properties of macrophages originating from monocytes cultured either in media containing serum together with M-CSF for M2 and GM-CSF for M1 macrophages or in serum-free media supplemented with M-CSF or GM-CSF and cytokines such as IL-4, IL-10 to induce activated M2 or LPS together with IFN-γ to generate activated M1 phenotype. We observed differences in cell morphology as well as increased surface receptor expression levels in serum-containing culture whereas similar or higher cytokine production levels were detected under serum-free culture conditions. More importantly, MDM differentiated under serum-free conditions displayed enhanced tumoricidal activity for M1 and tumor promoting property for M2 macrophages in contrast to MDM differentiated in the presence of serum. Moreover, evaluation of MDM phagocytic activity in serum free condition resulted in greater phagocytic properties of M2 compared to M1. Our data therefore confirm the tumor promoting properties of M2 macrophages in vitro and encourage the targeting of TAMs for cancer therapy.

  15. Evaluation of cytotoxic effect of photodynamic therapy in combination with electroporation in vitro

    DEFF Research Database (Denmark)

    Labanauskiene, J; Gehl, J; Didziapetriene, J

    2007-01-01

    . Thus, the aim of study was to evaluate the cytotoxic effect of PDT in combination with EP. A Chinese hamster lung fibroblast cell line (DC-3F) was used. The cells were affected by photosensitizers chlorin e(6) (C e(6)) at the dose of 10 mug/ml and aluminium phthalocyanine tetrasulfonate (AlPcS4...... tumor therapy (PDT)--the cancer treatment method based on the use of photosensitizers that localize selectively in malignant tumors and become cytotoxic when exposed to light, and EP, with the aim to enhance the delivery of photosensitizers into the tumor and therefore to increase the efficacy of PDT...... 14, emitted light from 660 nm). The fluence rate at the level of the cells was 3 mW/m(2). Cytotoxic effect on cells viability was evaluated using MTT assay. Our in vitro data showed that the cytotoxicity of PDT in combination with EP increases fourfold on the average. Based on the results we suggest...

  16. In vitro Cytotoxic Activity of Four Plants Used in Persian Traditional Medicine

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2013-08-01

    Full Text Available Purpose: The aim of this study was to investigate in vitro cytotoxic activity of four methanolic crude plant extracts against panel cell lines. Methods: Methanolic extracts were tested for their possible antitumor activity and cytotoxicity using the 3-(4,5-dimetylthiazol-2-yl-2,5- diphenyltetrazolium bromide (MTT assay on six cancer cell lines; non-Hodgkin’s B-cell lymphoma (Raji, human leukemic monocyte lymphoma (U937, human acute myelocytic leukemia (KG-1A, human breast carcinoma (MCF-7 cells, human Prostate Cancer (PC3 and mouse fibrosarcoma (WEHI-164 cell lines and one normal cell line; Human Umbilical Vein Endothelial Cells (HUVEC. Results: All species showed dose dependent inhibition of cell proliferation. IC50 values ranging from 25.66±1.2 to 205.11±1.3 μg/ml. The highest cytotoxic activity Chelidonium majus L> Ferulago Angulata DC> Echinophora platyloba DC> Salvia officinalis L, respectively. Conclusion: all extracts demonstrate promising cytotoxicity activity as a natural resource for future bio-guided fractionation and isolation of potential antitumor agents.

  17. Prednisolone inhibits cytokine-induced adhesive and cytotoxic interactions between endothelial cells and neutrophils in vitro.

    Science.gov (United States)

    Heimbürger, M; Lärfars, G; Bratt, J

    2000-03-01

    We assessed whether prednisolone influenced the ability of human polymorphonuclear neutrophils (PMN) to adhere to and cause lysis of human umbilical vein endothelial cells (HUVEC) in vitro (as measured by the release of 51Cr). Pretreatment of the endothelium with IL-1beta or tumour necrosis factor-alpha (TNF-alpha) caused prominent endothelial E-selectin expression and endothelial hyperadhesiveness for neutrophils, as well as PMN-mediated cytotoxicity. All these processes were dose-dependently reduced when prednisolone was added to the assay system. This protective effect remained when HUVEC alone were pretreated with the drug prior to washing and cytokine activation. Likewise, when HUVEC cytotoxicity was induced by the nitric oxide (NO) donor S-nitroso-acetyl-penicillamine (SNAP), prednisolone reduced cell injury significantly. In contrast, prednisolone did not interfere with signalling systems between TNF-alpha-stimulated HUVEC and quiescent PMN such as IL-8 generation and release of cytosolic Ca2 + in the PMN. Thus, in this in vitro model of vasculitis, prednisolone dose-dependently reduced cytokine-induced E-selectin expression and HUVEC hyperadhesiveness for neutrophils, as well as reducing neutrophil-dependent cytotoxicity against HUVEC via NO-dependent steps.

  18. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

    Science.gov (United States)

    Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar

    2014-01-01

    Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232

  19. Involvement of Nitric Oxide on Bothropoides insularis Venom Biological Effects on Murine Macrophages In Vitro

    Science.gov (United States)

    de Menezes, Ramon R. P. P. B.; Mello, Clarissa P.; Lima, Dânya B.; Tessarolo, Louise D.; Sampaio, Tiago Lima; Paes, Lívia C. F.; Alves, Natacha T. Q.; Assis Junior, Eudmar M.; Lima Junior, Roberto C. P.; Toyama, Marcos H.; Martins, Alice M. C.

    2016-01-01

    Viperidae venom has several local and systemic effects, such as pain, edema, inflammation, kidney failure and coagulopathy. Additionally, bothropic venom and its isolated components directly interfere on cellular metabolism, causing alterations such as cell death and proliferation. Inflammatory cells are particularly involved in pathological envenomation mechanisms due to their capacity of releasing many mediators, such as nitric oxide (NO). NO has many effects on cell viability and it is associated to the development of inflammation and tissue damage caused by Bothrops and Bothropoides venom. Bothropoides insularis is a snake found only in Queimada Grande Island, which has markedly toxic venom. Thus, the aim of this work was to evaluate the biological effects of Bothropoides insularis venom (BiV) on RAW 264.7 cells and assess NO involvement. The venom was submitted to colorimetric assays to identify the presence of some enzymatic components. We observed that BiV induced H2O2 production and showed proteolytic and phospholipasic activities. RAW 264.7 murine macrophages were incubated with different concentrations of BiV and then cell viability was assessed by MTT reduction assay after 2, 6, 12 and 24 hours of incubation. A time- and concentration-dependent effect was observed, with a tendency to cell proliferation at lower BiV concentrations and cell death at higher concentrations. The cytotoxic effect was confirmed after lactate dehydrogenase (LDH) measurement in the supernatant from the experimental groups. Flow cytometry analyses revealed that necrosis is the main cell death pathway caused by BiV. Also, BiV induced NO release. The inhibition of both proliferative and cytotoxic effects with L-NAME were demonstrated, indicating that NO is important for these effects. Finally, BiV induced an increase in iNOS expression. Altogether, these results demonstrate that B. insularis venom have proliferative and cytotoxic effects on macrophages, with necrosis participation

  20. Involvement of Nitric Oxide on Bothropoides insularis Venom Biological Effects on Murine Macrophages In Vitro.

    Directory of Open Access Journals (Sweden)

    Ramon R P P B de Menezes

    Full Text Available Viperidae venom has several local and systemic effects, such as pain, edema, inflammation, kidney failure and coagulopathy. Additionally, bothropic venom and its isolated components directly interfere on cellular metabolism, causing alterations such as cell death and proliferation. Inflammatory cells are particularly involved in pathological envenomation mechanisms due to their capacity of releasing many mediators, such as nitric oxide (NO. NO has many effects on cell viability and it is associated to the development of inflammation and tissue damage caused by Bothrops and Bothropoides venom. Bothropoides insularis is a snake found only in Queimada Grande Island, which has markedly toxic venom. Thus, the aim of this work was to evaluate the biological effects of Bothropoides insularis venom (BiV on RAW 264.7 cells and assess NO involvement. The venom was submitted to colorimetric assays to identify the presence of some enzymatic components. We observed that BiV induced H2O2 production and showed proteolytic and phospholipasic activities. RAW 264.7 murine macrophages were incubated with different concentrations of BiV and then cell viability was assessed by MTT reduction assay after 2, 6, 12 and 24 hours of incubation. A time- and concentration-dependent effect was observed, with a tendency to cell proliferation at lower BiV concentrations and cell death at higher concentrations. The cytotoxic effect was confirmed after lactate dehydrogenase (LDH measurement in the supernatant from the experimental groups. Flow cytometry analyses revealed that necrosis is the main cell death pathway caused by BiV. Also, BiV induced NO release. The inhibition of both proliferative and cytotoxic effects with L-NAME were demonstrated, indicating that NO is important for these effects. Finally, BiV induced an increase in iNOS expression. Altogether, these results demonstrate that B. insularis venom have proliferative and cytotoxic effects on macrophages, with

  1. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine.

    Science.gov (United States)

    Linares, Daniel M; del Rio, Beatriz; Redruello, Begoña; Ladero, Victor; Martin, M Cruz; Fernandez, Maria; Ruas-Madiedo, Patricia; Alvarez, Miguel A

    2016-04-15

    Tyramine and histamine, the most toxic biogenic amines (BA), are often found in high concentrations in certain foods. Prompted by the limited knowledge of BA toxicity, and increasing awareness of the risks associated with high intakes of dietary BA, the in vitro cytotoxicity of tyramine and histamine was investigated. Tyramine and histamine were toxic for HT29 intestinal cell cultures at concentrations commonly found in BA-rich food, as determined by real-time cell analysis. Surprisingly, tyramine had a stronger and more rapid cytotoxic effect than histamine. Their mode of action was also different, while tyramine caused cell necrosis, histamine induced apoptosis. To avoid health risks, the BA content of foods should be reduced and legal limits established for tyramine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. C1-esterase inhibitor blocks T lymphocyte proliferation and cytotoxic T lymphocyte generation in vitro

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Bregenholt, S; Nording, J A

    1998-01-01

    We have previously shown that activated C1s complement and activated T cells cleave beta2-microglobulin (beta2m) in vitro leading to the formation of desLys58 beta2m. This process can specifically be inhibited by C1-esterase inhibitor (C1-inh). Furthermore we showed that exogenously added desLys58...... beta2m in nanomolar amounts to a one-way allogenic mixed lymphocyte culture (MLC) increased the endogenous production of IL-2 and the generation of allo-specific cytotoxic T lymphocytes. C1-inh was purified from fresh human plasma and added to human or murine MLC and mitogen-stimulated lymphocyte...... cultures grown in the presence of complement-inactivated serum. Read-outs were cell proliferation, lymphokine production and development of T cell-mediated cytotoxicity. We found that addition of C1-inh to MLC and mitogen-exposed murine and human lymphocyte cultures inhibited proliferation, the development...

  3. MRT letter: Auto-fluorescence by human alveolar macrophages after in vitro exposure to air pollution particles.

    Science.gov (United States)

    Ghio, Andrew J; Sangani, Rahul G; Brighton, Luisa E; Carson, John L

    2010-06-01

    Macrophages from smokers demonstrate an increased auto-fluorescence. Similarly, auto-fluorescence follows in vitro exposure of macrophages to cigarette smoke condensate (i.e., the particulate fraction of cigarette smoke). The composition of particles in cigarette smoke can be comparable to air pollution particles. We tested the postulate that macrophages exposed to air pollution particles could demonstrate auto-fluorescence. Healthy nonsmoking and healthy smoking volunteers (both 18-40 years of age) underwent fiberoptic bronchoscopy with bronchoalveolar lavage and alveolar macrophages isolated. Macrophages were incubated at 37 degrees C in 5% CO(2) with either PBS or 100 microg/mL particle for both 1 and 24 h. Particles included a residual oil fly ash, Mt. St. Helens volcanic ash, and ambient air particles collected from St. Louis, Missouri and Salt Lake City, Utah. At the end of incubation, 50 microL of the cell suspension was cytocentrifuged and examined at modes for viewing fluorescein isothiocyanate (FITC) and rhodamine fluorescence. Both emission source air pollution particles demonstrated FITC and rhodamine auto-fluorescence at 1 and 24 h, but the signal following incubation of the macrophages with oil fly ash appeared greater. Similarly, the ambient particles were associated with auto-fluorescence by the alveolar macrophages and this appeared to be dose-dependent. We conclude that exposure of macrophages to air pollution particles can be associated with auto-fluorescence in the FITC and rhodamine modes. c) 2009 Wiley-Liss, Inc

  4. Macrophage embedded fibrin gels: An in vitro platform for assessing inflammation effects on implantable glucose sensors

    Science.gov (United States)

    Novak, Matthew T.; Yuan, Fan; Reichert, William M.

    2014-01-01

    The erroneous and unpredictable behavior of percutaneous glucose sensors just days following implantation has limited their clinical utility for diabetes management. Recent research has implicated the presence of adherent inflammatory cells as the key mitigating factor limiting sensor functionality in this period of days post-implantation. Here we present a novel in vitro platform to mimic the cell-embedded provisional matrix that forms adjacent to the sensor immediately after implantation for the focused investigation of the effects of early stage tissue response on sensor function. This biomimetic surrogate is formed by imbibing fibrin-based gels with physiological densities of inflammatory RAW 264.7 macrophages. When surrounding functional sensors, macrophage-embedded fibrin gels contribute to sensor signal declines that are similar in both shape and magnitude to those observed in previous whole blood and small animal studies. Signal decline in the presence of gels is both metabolically-mediated and sensitive to cell type and activation. Computational modeling of the experimental setup is also presented to validate the design by showing that the cellular glucose uptake parameters necessary to achieve such experimental declines align well with literature values. Together, these data suggest this in vitro provisional matrix surrogate may serve as an effective screening tool for testing the biocompatibility of future glucose sensor designs. PMID:25175597

  5. In Vitro Cytotoxicity of a New Nano Root Canal Sealer on Human Gingival Fibroblasts

    Science.gov (United States)

    Javidi, Maryam; Dastmalchi, Parisa; Zarei, Mina; Shayani Rad, Maryam; Ghorbani, Ahmad

    2017-01-01

    Introduction: The aim of this in vitro study was to evaluate the cytotoxicity of a new nano zinc-oxide eugenol (NZOE) sealer on human gingival fibroblasts (HGFs) compared with Pulpdent (micro-sized ZOE sealer) and AH-26 (resin-based sealer). Methods and Materials: The Pulpdent, AH-26, and NZOE sealers were prepared and exposed to cell culture media immediately after setting, and 24 h and one week after setting. Then, the primary cultured HGFs were incubated for 24 h with different dilutions (1:1 to 1:32) of each sealer extract. Cell viability was evaluated by methyl thiazolyl diphenyl tetrazolium bromide (MTT) assay. The results were compared using two-way analysis of variance followed by Tukey’s post hoc test. The level of significance was set at 0.05. Results: All sealer extracts, up to 32 times dilutions, showed cytotoxicity when exposed to HGF immediately after setting. The extracts obtained 24 h or one week after setting showed lower cytotoxicity than extracts obtained immediately after setting. At all setting times, NZOE showed lower cytotoxicity than Pulpdent and AH-26. While one-week extracts of NZOE had no significant effect on the viability of HGF at dilutions 1:4 to 1:32, both Pulpdent and AH-26 decreased the cell viability at dilutions of 1:4 and 1:8. Conclusion: NZOE exhibited lower cytotoxicity compared to Pulpdent and AH-26 on HGF and has the potential to be considered as a new root canal filling material. PMID:28512490

  6. Ultrastructural aspects of melatonin cytotoxicity on Caco-2 cells in vitro.

    Science.gov (United States)

    Batista, Ana Paula C; da Silva, Terezinha G; Teixeira, Alvaro A C; de Medeiros, Paloma L; Teixeira, Valeria W; Alves, Luiz C; Dos Santos, Fábio A B; Silva, Eliete C

    2014-04-01

    Colon adenocarcinoma is a disease expanding worldwide. Cancer of colon and rectum are among the top ten most insidious types in Brazil. In vitro and in vivo studies have demonstrated the efficacy of the hormone melatonin to prevent and reduce tumor growth. However, there are only few studies addressing the action of melatonin on Caco-2 cells. Thus, the cytotoxic effect of melatonin on the ultrastructure of Caco-2 cells was investigated. The MTT colorimetric method was used to assess the cytotoxicity. A total of 2×10(6)cells/mL were seeded in microplates and incubated at 50, 25, 12.5, 6.25, 3.125, 1.56, 0.78 and 0.0 (control) μg/mL of melatonin. For ultrastructural analysis concentrations with low, medium and high cytotoxicity plus the control were used for ultrastructural analysis. The concentrations 50, 1.56 and 0.78 μg/mL of melatonin showed low, medium and high cytotoxicity, respectively. Ultrastructurally, the control tumor cells were shown to be preserved. Caco-2 cells showed morphological changes at 50 μg/mL of melatonin, with numerous vacuoles, mitochondrial degeneration and reduced glycogen. However, Caco-2 cells also showed altered morphology in treatments at 1.56 and 0.78 μg/mL of melatonin with characteristics of cells in degeneration by the presence of numerous vacuoles, absence of microvilli, mitochondrial degeneration and nuclear fragmentation. Thus, one can infer that concentrations of 1.56 and 0.78 μg/mL of melatonin promote cytotoxicity in Caco-2 cells, which can probably be related to the generation of reactive oxygen species (ROS). Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Control of microorganisms of oral health interest with Arctium lappa L. (burdock) extract non-cytotoxic to cell culture of macrophages (RAW 264.7).

    Science.gov (United States)

    de Oliveira, Jonatas Rafael; de Aguiar Almeida, Rosilene Batista; das Graças Figueiredo Vilela, Polyana; de Oliveira, Felipe Eduardo; da Rocha, Rosilene Fernandes; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2014-08-01

    To evaluate the antimicrobial activity of Arctium lappa L. extract on Staphylococcus aureus, S. epidermidis, Streptococcus mutans, Candida albicans, C. tropicalis and C. glabrata. In addition, the cytotoxicity of this extract was analyzed on macrophages (RAW 264.7). By broth microdilution method, different concentrations of the extract (250-0.4 mg/mL) were used in order to determine the minimum microbicidal concentration (MMC) in planktonic cultures and the most effective concentration was used on biofilms on discs made of acrylic resin. The cytotoxicity A. lappa L. extract MMC was evaluated on RAW 264.7 by MTT assay and the quantification of IL-1β and TNF-α by ELISA. The most effective concentration was 250 mg/mL and also promoted significant reduction (log₁₀) in the biofilms of S. aureus (0.438 ± 0.269), S. epidermidis (0.377 ± 0.298), S. mutans (0.244 ± 0.161) and C. albicans (0.746 ± 0.209). Cell viability was similar to 100%. The production of IL-1β was similar to the control group (p>0.05) and there was inhibition of TNF-α (plappa L. extract was microbicidal for all the evaluated strains in planktonic cultures, microbiostatic for biofilms and not cytotoxic to the macrophages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Macrophages Reprogrammed In Vitro Towards the M1 Phenotype and Activated with LPS Extend Lifespan of Mice with Ehrlich Ascites Carcinoma.

    Science.gov (United States)

    Kalish, Sergey V; Lyamina, Svetlana V; Usanova, Elena A; Manukhina, Eugenia B; Larionov, Nikolai P; Malyshev, Igor Y

    2015-10-16

    BACKGROUND The majority of tumors trigger macrophage reprogramming from an anti-tumor M1 phenotype towards a pro-tumor M2 phenotype. The M2 phenotype promotes tumor growth. We hypothesized that increasing the number of M1 macrophages in a tumor would limit carcinogenesis and extend the lifespan of the tumor host. The aim of this study was to verify this hypothesis in Ehrlich ascites carcinoma (EAC). The objectives were to evaluate effects of 1) EAC on a macrophage phenotype and NO-producing macrophage activity in vivo; 2) ascitic fluid from mice with EAC on a macrophage phenotype and NO-producing macrophage activity in vitro; and 3) in vitro reprogrammed M1 macrophages on lifespan of mice with EAC. MATERIAL AND METHODS The study was conducted using C57BL/6J mice. RESULTS Concentration of nitrite, a stable NO metabolite and an index of NO production, was measured spectrophotometrically. Shifts of macrophage phenotype were assessed by changes in NO production as well as by amounts of CD80, a marker of M1 phenotype, and CD206, a marker of M2 phenotype. The CD markers were measured by flow cytometry. Macrophages were reprogrammed towards the M1 phenotype using two reprogramming factors: 0% FBS and 20 ng/ml IFN-γ. The study results showed that 1) EAC inhibited the macrophage NO production in vivo and reprogrammed macrophages towards the M2 phenotype; 2) ascitic fluid of mice with EAC inhibited the macrophage NO production in vitro and reprogrammed macrophages towards the M2 phenotype; and 3) injection of in vitro reprogrammed M1 macrophages into mice with EAC significantly increased the lifespan of mice. CONCLUSIONS These findings suggest that promising biotechnologies for restriction of tumor growth could be developed based on the in vitro macrophage reprogramming.

  9. Follicular lymphoma: in vitro effects of combining lymphokine-activated killer (LAK) cell-induced cytotoxicity and rituximab- and obinutuzumab-dependent cellular cytotoxicity (ADCC) activity.

    Science.gov (United States)

    García-Muñoz, Ricardo; López-Díaz-de-Cerio, Ascensión; Feliu, Jesus; Panizo, Angel; Giraldo, Pilar; Rodríguez-Calvillo, Mercedes; Grande, Carlos; Pena, Esther; Olave, Mayte; Panizo, Carlos; Inogés, Susana

    2016-04-01

    Follicular lymphoma (FL) is a disease of paradoxes-incurable but with a long natural history. We hypothesized that a combination of lymphokine-activated killer (LAK) cells and monoclonal antibodies might provide a robust synergistic treatment and tested this hypothesis in a phase II clinical trial (NCT01329354). In this trial, in addition to R-CHOP, we alternated the administration of only rituximab with rituximab and autologous LAK cells that were expanded ex vivo. Our objective was to determine the in vitro capability of LAK cells generated from FL patients to produce cytotoxicity against tumor cell lines and to determine rituximab- and obinutuzumab-induced cytotoxicity via antibody-dependent cellular cytotoxicity (ADCC) activity. We analyzed the LAK cell-induced cytotoxicity and rituximab (R)- and obinutuzumab (GA101)-induced ADCC activity. We show that LAK cells generated from FL patients induce cytotoxicity against tumor cell lines. R and GA101 enhance cytolysis through ADCC activity of LAK cells. Impaired LAK cell cytotoxicity and ADCC activity were detected in 50 % of patients. Percentage of NK cells in LAK infusions were correlated with the R- and GA101-induced ADCC. Our results indicate that the combination of R or GA101 and LAK cells should be an option as frontline maintenance therapy in patients with FL.

  10. Cytotoxic and Genotoxic effects of Orthodontic Adhesives on Human lymphocyte – An In-vitro Study

    OpenAIRE

    S, Ravi M; R, Vijay; N, Suchetha Kumari; Panchasara, Chirag

    2014-01-01

    Aim of this study was to evaluate the in vitro genotoxicity and cytotoxicity of two orthodontic adhesives and to determine the type of cell death they induce on human lymphocytes. The materials tested were 1.Light cure orthodontic adhesive with conventional primer (Transbond XT3M) and 2. Self cure orthodontic adhesive (Unite, 3M). Cured sterile individual masses were immersed in DMEM and left at 370C for 24 h. Then a volume of 200 μL of the extract medium was mixed with human peripheral bloo...

  11. In vitro cytotoxic activity of Cymbopogon citratus L. and Cymbopogon nardus L. essential oils from Togo

    OpenAIRE

    Koffi Koba; Komla Sanda; Catherine Guyon; Christine Raynaud; Jean-Pierre Chaumont; Laurence Nicod

    2009-01-01

    The leaf essential oils of Cymbopogon citratus L. and Cymbopogon nardus L. (Poaceae) from Togo were steam-distilled, analyzed for percentage composition and investigated in vitro for their potential cytotoxic activity on human epidermic cell line HaCat. The percentage composition showed that the main constituents of essential oils samples were respectively geranial (45.2%), neral (32.4%) and myrc¨ne (10.2%) for C. citratus essential oil and citronellal (35.5%), geraniol (27.9%) and citronello...

  12. Physicochemical Characterization and In Vitro Cytotoxic Effect of 3-Hydroxyflavone in a Silver Nanoparticles Complex.

    Science.gov (United States)

    Voicescu, Mariana; Craciunescu, Oana; Moldovan, Lucia; Anastasescu, Mihai; Angelescu, Daniel G; Teodorescu, Valentin S

    2015-09-01

    The aim of this work was to characterize the physico-chemical properties of 3-hydroxyflavone (3-HF) in a silver nanoparticles complex (SNPs) using UV-vis and Fluorescence spectroscopy, Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) analysis. One also evaluated its effect on the cell viability and morphology of L929 mouse fibroblast cells in vitro. The contribution of the carrier protein, Bovine Serum Albumin (BSA) to 3-HF properties has also been investigated. 3-HF in BSA/SNPs systems presented no cytotoxic effect in L929 mouse fibroblast cells at any of the tested concentrations. The results are discussed with relevance to the oxidative stress process.

  13. CYTOTOXICITY OF INTERMAXILLARY ORTHODONTIC ELASTICS OF DIFFERENT COLORS: AN IN VITRO STUDY

    Science.gov (United States)

    dos Santos, Rogério Lacerda; Pithon, Matheus Melo; Mendes, Gabriella da Silva; Romanos, Maria Teresa Villela; Ruellas, Antônio Carlos de Oliveira

    2009-01-01

    Objectives: Natural latex does not fall into the category of materials known to be entirely inoffensive. The purpose of this in vitro study was to test the hypothesis that there is no difference in the cytotoxicity between elastics of different colors and those from different manufacturers. Material and Methods: Different latex intraoral elastics of different colors (5/16 = 7.9 mm, mean load) were compared. The sample was divided into 7 groups of 24 elastics each: Group T (TP Orthodontics, natural latex elastics, control); Groups U1, U2, U3, U4, U5 and U6 (Uniden, natural latex elastics and colored elastics, namely, green, pink, yellow, red and purple, respectively). Cytotoxicity assays were performed by using cell culture medium containing epithelioid-type cells (Hep-2 line) derived from human laryngeal carcinoma. The cytotoxicity was evaluated by using the "dye-uptake" test, which was employed at two different moments (0 and 24 h). Data were compared by analysis of variance (ANOVA) and Tukey's test (pOrthodontics elastics promoted less cell lysis compared to the Uniden elastics regardless of their color. PMID:19668992

  14. [Sodium valproate enhances doxorubicin cytotoxicity in breast cancer cells in vitro].

    Science.gov (United States)

    Tong, Xu-Hui; Zheng, Chao; Jiang, Guo-Jun; Dong, Shu-Ying

    2015-01-01

    To investigate the effect of sodium valproate, a histone deacetylase inhibitor, on the cytotoxicity of doxorubicin in breast cancer cells. Western blotting was used to assess Cx43 protein expression in breast cancer Hs578T cells exposed to doxorubicin and sodium valproate. MTT assay was used to determine the cytotoxicity of doxorubicin; annexin V/PI double staining and Hochest 33258 fluorescence staining were employed to detect doxorubicin-induced early and late apoptosis, respectively. Western blotting showed that sodium valproate significantly increased Cx43 protein expression in Hs578T cells (P/0.01). The cells exposed to both sodium valproate and doxorubicin showed significantly lowered cell viability compared with the cells exposed to doxorubicin alone (P/0.01). Exposure to both sodium valproate and doxorubicin resulted in significantly increased early and late cell apoptosis rate compared with doxorubicin treatment alone (P/0.01). sodium valproate can significantly enhance the cytotoxicity of doxorubicin and increase doxorubicin-induced apoptosis in breast cancer cells in vitro possibly by enhancing the gap junction function.

  15. Cytotoxicity and Apoptotic Effects of Polyphenols from Sugar Beet Molasses on Colon Carcinoma Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Mingshun Chen

    2016-06-01

    Full Text Available Three polyphenols were isolated and purified from sugar beet molasses by ultrasonic-aid extraction and various chromatographic techniques, and their structures were elucidated by spectral analysis. Cytotoxicity and the molecular mechanism were measured by methyl thiazolyl tetrazolium (MTT assay, flow cytometry, caspase-3 activity assay and Western blot assay. The results showed that gallic acid, cyanidin-3-O-glucoside chloride and epicatechin have cytotoxicity to the human colon, hepatocellular and breast cancer cells. Cyanidin-3-O-glucoside chloride showed its cytotoxicity against various tumor cell lines, particularly against colon cancer Caco-2 cells with half maximal inhibitory concentration (IC50 value of 23.21 ± 0.14 μg/mL in vitro. Cyanidin-3-O-glucoside chloride may be a potential candidate for the treatment of colon cancer. In the mechanism study, cyanidin-3-O-glucoside chloride increased the ratio of cell cycle at G0/G1 phase and reduced cyclin D1 expression on Caco-2 cells. Cyanidin-3-O-glucoside chloride decreased mutant p21 expression, and increased the ratio of Bax/Bcl-2 and the activation of caspase-3 to induce apoptosis.

  16. Further in vitro evaluation of cytotoxicity of the marine natural product derivative 4'-leucine-avarone.

    Science.gov (United States)

    Pejin, Boris; Iodice, Carmine; Tommonaro, Giuseppina; Bogdanovic, Gordana; Kojic, Vesna; De Rosa, Salvatore

    2014-01-01

    The cytotoxicity of 4'-leucine-avarone, amino derivative of the sponge Dysidea avara secondary metabolite avarone, was evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay in vitro against seven human solid tumours for the first time. The compound tested induced dose-dependent cytotoxic response in all cancer cells showing better activity towards the lung A-549 and colon HT-29 cell lines (IC50 7.40 μM and 9.62 μM, respectively) than towards the breast adenocarcinoma ER positive MCF-7 and ER negative MDA-MB-231 cells (IC50 11.64 μM and 17.31 μM, respectively), the prostate adenocarcinoma PC-3 and epiteloid cervix carcinoma HeLa cells (IC50 14.24 μM and 15.54 μM, respectively). No toxicity was found towards the foetal lung fibroblast MRC-5 cell line at the concentrations used. According to experimental data obtained, the sesquiterpenoid quinone structure of avarone may inspire development of new drug-like substances with improved cytotoxicity on lung cancer in humans.

  17. Cytotoxicity comparison of quercetin and its metabolites from in vitro fermentation of several gut bacteria.

    Science.gov (United States)

    Zhang, Zhichao; Peng, Xichun; Zhang, Ning; Liu, Liu; Wang, Yong; Ou, Shiyi

    2014-09-01

    Part of quercetin is coerced into the colon after ingestion and interacts with the gut microbiota. The interaction between quercetin and gut microbiota will influence human health. The cytotoxicity of quercetin and its metabolites from human gut bacteria in vitro fermentation was investigated in this study. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) (MTT) and agar diffusion disc methods were individually applied in vitro to examine their inhibitory effect on three cultured human cancer cells and five pathogenic bacteria species. The results showed that the metabolites from Clostridium perfringens and Bacteroides fragilis exerted a strong inhibitory effect (P bacteria species. Quercetin is a potential chemopreventive agent. However, this study reported that some gut bacteria can improve their function of inhibiting cancer cells after fermenting quercetin.

  18. THP-1 macrophages and SGBS adipocytes - a new human in vitro model system of inflamed adipose tissue

    Directory of Open Access Journals (Sweden)

    Michaela eKeuper

    2011-12-01

    Full Text Available Obesity is associated with an accumulation of macrophages in adipose tissue. This inflammation of adipose tissue is a key event in the pathogenesis of several obesity-related disorders, particularly insulin resistance.Here, we summarized existing model systems that mimic the situation of inflamed adipose tissue in vitro, most of them being murine. Importantly, we introduce our newly established human model system which combines the THP-1 monocytic cell line and the preadipocyte cell strain SGBS. THP-1 cells, which originate from an acute monocytic leukemia, differentiate easily into macrophages in vitro. The human preadipocyte cell strain SGBS (Simpson-Golabi-Behmel syndrome was recently introduced as a unique to tool to study human fat cell functions. SGBS cells are characterized by a high capacity for adipogenic differentiation. SGBS adipocytes are capable of fat cell-specific metabolic functions such as insulin-stimulated glucose uptake, insulin-stimulated de novo lipogenesis and beta-adrenergic-stimulated lipolysis and they secrete typical adipokines including leptin, adiponectin, and RBP4. Applying either macrophage-conditioned medium or a direct co-culture of macrophages and fat cells, our model system can be used to distinguish between paracrine and cell-contact dependent effects.In conclusion, we propose this model as a useful tool to study adipose inflammation in vitro. It represents an inexpensive, highly reproducible human system. The methods described here can be easily extended for usage of primary human macrophages and fat cells.

  19. Chemical composition and in vitro cytotoxic effects of the essential oil from Nectandra leucantha leaves.

    Science.gov (United States)

    Grecco, Simone dos S; Martins, Euder Glendes A; Girola, Natália; de Figueiredo, Carlos R; Matsuo, Alisson L; Soares, Marisi G; Bertoldo, Bruno de C; Sartorelli, Patricia; Lago, João Henrique G

    2015-01-01

    Nectandra (Lauraceae) species have been used in folk medicine as an antidiarrheal, analgesic, antifungal, etc., and have many pharmacological proprieties. Investigation of the chemical composition and cytotoxicity of essential oil from Nectandra leucantha Nees & Mart. leaves. This is the first study involving N. leucantha reported in the literature. The essential oil of N. leucantha leaves was obtained by hydrodistillation. Its chemical composition was determined using a combination of GC/FID, GC/MS, and determination of Kovats index (KI). In vitro cytotoxic activity was evaluated against six cancer cell lines - murine melanoma (B16F10-Nex2), human glioblastome (U-87), human cervical carcinoma (HeLa), human colon carcinoma (HCT), human breast adenocarcinoma (MCF7), and human cervical tumor (Siha) as well as against one non-tumorigenic cell line - human foreskin fibroblast (HFF). Thirty-three compounds were identified primarily sesquiterpenes (81.41%), the main compounds being bicyclogermacrene (28.44%), germacrene A (7.34%), spathulenol (5.82%), and globulol (5.25%). Furthermore, monoterpenes were also found in the analyzed oil (12.84%), predominantly α- and β-pinenes (6.59 and 4.57%, respectively). The crude essential oil displayed significant cytotoxic activity against B16F10-Nex2 (IC50 33 ± 1 μg/mL) and U87 (IC50 75.95 ± 0.03 μg/mL) and HeLa (IC50 60 ± 12 μg/mL) cell lines. The main identified compound, bicyclogermacrene, displayed IC50 ranging from 3.1 ± 0.2 to 21 ± 6 μg/mL. The results indicate that the crude oils from leaves of N. leucantha displayed cytotoxic activity being bicyclogermacrene, the main compound identified in the crude oil responsible, at least in part, for this potential.

  20. Essential oil of the leaves of Ricinus communis L.: in vitro cytotoxicity and antimicrobial properties.

    Science.gov (United States)

    Zarai, Zied; Ben Chobba, Ines; Ben Mansour, Riadh; Békir, Ahmed; Gharsallah, Néji; Kadri, Adel

    2012-08-13

    The aim of the present study was to appraise the antimicrobial activity of Ricinus communis L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. The agar disk diffusion method was used to study the antibacterial activity of Ricinus communis L. essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of Ricinus communis L. essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. The essential oil from the leaves of Ricinus communis L. was analyzed by GC-MS and bioassays were carried out. Five constituents of the oil were identified by GC-MS. The antimicrobial activity of the oil was investigated in order to evaluate its efficacy against twelve bacteria and four fungi species, using disc diffusion and minimum inhibitory concentration methods. The essential oil showed strong antimicrobial activity against all microorganisms tested with higher sensitivity for Bacillus subtilis, Staphylococcus aureus and Enterobacter cloacae. The cytotoxic and apoptotic effects of the essential oil on HeLa cell lines were examined by MTT assay. The cytotoxicity of the oil was quite strong with IC50 values less than 2.63 mg/ml for both cell lines. The present study showed the potential antimicrobial and anticarcinogenic properties of the essential oil of Ricinus communis L., indicating the possibilities of its potential use in the formula of natural remedies for the topical treatment of infections.

  1. In vitro cytotoxicity of self-curing acrylic resins of different colors.

    Science.gov (United States)

    Retamoso, Luciana Borges; da Cunha, Taís de Morais Alves; Pithon, Matheus Melo; dos Santos, Rogério Lacerda; Martins, Fernanda Otaviano; Romanos, Maria Teresa Villela; Tanaka, Orlando Motohiro

    2014-01-01

    The aim of this study was to assess the in vitro cytotoxicity of acrylic resins of different colors over time. Specimens were divided into 4 groups (n = 6) according to the color of the acrylic resin (Orto Class, Clássico, Campinas, São Paulo, Brazil): Group 1, clear acrylic resin; Group 2, pink acrylic resin; Group 3, blue acrylic resin; and Group 4, green acrylic resin. All specimens were fabricated according to the mass manipulation technique and submitted to mechanical polishing protocol. The control was performed with an amalgam specimen (C+), a glass specimen (C-) and cell control (CC). Specimens were immersed in Minimum Eagle's Medium (MEM) and incubated for 24 h at 37ºC. The extracts from the experimental material were filtered and mixed with L929 fibroblast. Cytotoxicity was evaluated at four different times, 24, 48, 72 and 168 h. After contact, cells were incubated for 24 h and added to 100 µ of 0.01% neutral red dye. The cells were incubated for 3 h for pigment incorporation and fixed. Cells viability was determined by a spectroscopic (BioTek, Winooski, Vermont, USA) with a 492-nm wavelength λ=492 nm). There were no statistical differences between the experimental groups and the CC and C- groups. Clear, pink, blue and green self-curing acrylic resins fabricated by means of the mass manipulation technique and mechanically polished are not cytotoxic. Neither the pigment added to the self-curing acrylic resin nor the factor of time influenced the cytotoxicity of the material.

  2. In vitro cytotoxicity of self-curing acrylic resins of different colors

    Directory of Open Access Journals (Sweden)

    Luciana Borges Retamoso

    2014-08-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the in vitro cytotoxicity of acrylic resins of different colors over time. METHODS: Specimens were divided into 4 groups (n = 6 according to the color of the acrylic resin (Orto Class, Clássico, Campinas, São Paulo, Brazil: Group 1: clear acrylic resin; group 2: pink acrylic resin; group 3: blue acrylic resin and group 4: green acrylic resin. All specimens were fabricated according to the mass manipulation technique and submitted to mechanical polishing protocol. The control was performed with an amalgam specimen (C+, a glass specimen (C- and cell control (CC. Specimens were immersed in Minimum Eagle's Medium (MEM and incubated for 24 h at 37o C. The extracts from the experimental material were filtered and mixed with L929 fibroblast. Cytotoxicity was evaluated at 4 different times, 24, 48, 72 and 168 h. After contact, cells were incubated for 24 h and added to 100 µ of 0.01% neutral red dye. The cells were incubated for 3 h for pigment incorporation and fixed. Cells viability was determined by a spectroscopic (BioTek, Winooski, Vermont, USA with a 492-nm wavelength λ=492 nm. RESULTS: There were no statistical differences between the experimental groups and the CC and C- groups. CONCLUSION: Clear, pink, blue and green self-curing acrylic resins fabricated by means of the mass manipulation technique and mechanically polished are not cytotoxic. Neither the pigment added to the self-curing acrylic resin nor the factor of time influenced the cytotoxicity of the material.

  3. Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro

    Directory of Open Access Journals (Sweden)

    Fernanda Angelieri

    2018-01-01

    Full Text Available The aim of this study was to investigate genotoxicity and cytotoxicity of some orthodontic glass ionomer cements commercially available by means of the single cell gel (comet assay. For this purpose, five commercial orthodontic glass ionomer cements (Vidrion C®, Meron®, Optiband®, Multicure® and Ultra Band Lok® were tested in murine fibroblasts in vitro. For this purpose, eluates from each cement were prepared according manufactures instructions at 0, 2, 4, 8, 18, 32 and 64 days of immersion in artificial saliva at 37 °C. All orthodontic glass ionomer cements failed to induce cytotoxicity to murine fibroblasts for all periods evaluated in this study. However, Vidrion C® was able to induce genotoxicity after 64 days of exposure to eluates. Meron® also demonstrated genotoxicity as depicted by increasing DNA damage on 2nd day. Multicure® demonstrated genotoxicity on 32nd day and Ultra band Lok on 18th, 32nd days of exposure. Taken together, our results demonstrated that orthodontic cements derived from resin-modified glass ionomer composite (Multicure® and compomer (Ultra Band Lok® cause genetic damage in mammalian cells in vitro.

  4. In Vitro Cytotoxicity and Phototoxicity Assessment of Acylglutamate Surfactants Using a Human Keratinocyte Cell Line

    Directory of Open Access Journals (Sweden)

    Abhay Kyadarkunte

    2014-07-01

    Full Text Available In the current study, human keratinocyte cell line was used as in vitro cell culture model to elucidate the effects of the fatty acid chain length of acylglutamate (amino acid-based surfactant namely, sodium cocoyl glutamate, sodium lauroyl glutamate, and sodium myristoyl glutamate on their cytotoxicity and the ultraviolet B induced phototoxicity. The endpoint used to assess toxicity was a tetrazolium-based assay whereas, the phototoxic potential of acylglutamate surfactants was predicted using two models namely, the Photo-Irritation Factor and Mean Photo Effect. The results of this study showed that the fatty acid chain length of acylglutamate greatly influences toxic effects on human keratinocyte cells. In addition, all the acylglutamate surfactants tested on human keratinocyte cells demonstrated significantly less cytotoxicity (when irradiated and non-irradiated with ultraviolet B light; p < 0.05 and no phototoxic potential was observed in any of the acylglutamate surfactants, when compared with the positive control chlorpromazine. In conclusion, the in vitro studies confirm the suitability of sodium lauroyl glutamate destined for the synthesis and stabilization of lipid nanoparticles.

  5. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso

    Directory of Open Access Journals (Sweden)

    Souleymane Sanon

    2013-03-01

    Methods: Crude dichloromethane, methanol, water-methanol, aqueous and alkaloids extracts were prepared for 12 parts of 10 plants. Chloroquine-resistant malaria strain K1 was used for the in vitro sensibility assay. The Plasmodium lactacte dehydrogenase technique was used to determine the 50% inhibitory concentration of parasites activity (IC50. The cytotoxic effects were determined with HepG2 cells, using the tetrazolium-based colorimetric technique, and the selectivity index (SI was calculated. Results: Sixty crude extracts were prepared. Seven extracts from Terminalia avicenoides showed IC50  1. The other plants have mostly moderate or no antimalarial effects. Some extracts from Cordia myxa, Ficus capraefolia and Opilia celtidifolia showed cytotoxicity, with an SI ranging between 0.4 and 0.9. Conclusion: Our study showed a good antiplasmodial in vitro activity of Terminalia avicenoides, Combretum collinum and Ficus capraefolia. These three plants may contain antiplasmodial molecules that could be isolated by bio-guided phytochemical studies.

  6. In vitro cytotoxic activity of Cymbopogon citratus L. and Cymbopogon nardus L. essential oils from Togo

    Directory of Open Access Journals (Sweden)

    Koffi Koba

    2009-06-01

    Full Text Available The leaf essential oils of Cymbopogon citratus L. and Cymbopogon nardus L.(Poaceae from Togo were steam-distilled, analyzed for percentage composition and investigated in vitro for their potential cytotoxic activity on human epidermic cell line HaCat. The percentage composition showed that the main constituents of essential oils samples were respectively geranial (45.2%, neral(32.4% and myrcène (10.2% for C. citratus essential oil and citronellal (35.5%, geraniol (27.9% and citronellol (10.7% for that of C. nardus. The in vitro cytotoxicity bioassays on human epidermic cell line HaCaT revealed that the toxicityof the essential oil from C. citratus (IC50: 150 μL.mL-1 was higher than that of the essential oil from C. nardus (IC50: 450 μL.mL-1. Pure commercial neral, geranial, and citronellal standards showed respectively the following IC50 values: 100, 250 and 300 μL.mL-1. Conversely, pure citronellol standard appeared almost non-toxic (IC50>1000 μL.mL-1, proving the major role played in synergyby neral and geranial in the overall toxicity showed by the citratus oil sample tested in this work.

  7. In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers

    Directory of Open Access Journals (Sweden)

    Willershausen Ines

    2011-08-01

    Full Text Available Abstract Introduction The aim of this study was to investigate in vitro the cytotoxicity and antibacterial properties of four different endodontic sealers using human periodontal ligament fibroblast cell proliferation and visual analysis of growth inhibition. Methods A silicone (GuttaFlow, silicate (EndoSequence BC, zinc oxide eugenol (Pulp Canal Sealer EWT and epoxy resin (AH Plus Jet based sealer were incubated with PDL fibroblasts (104 cells/ml, n = 6 up to 96 h. Cell proliferation (RFU was determined by means of the Alamar Blue assay. Cell growth and morphology was visualized by means of fluorescent dyes. Possible antibacterial properties of the different sealers were visualized by means of SEM (Enterococcus faecalis; Parvimonas micra. Results Fibroblast proliferation depended on sealer and cultivation time. After 72 and 96 h GuttaFlow and EndoSequence BC showed relatively non-cytotoxic reactions, while Pulp Canal Sealer EWT and AH Plus Jet caused a significant decrease of cell proliferation (p P. micra was found, whereas GuttaFlow showed a weak, Pulp Canal Sealer EWT and AH Plus Jet extensive growth inhibition. Also, no antibacterial effect of GuttaFlow, EndoSequence BC or AH Plus Jet to E. faecalis could be detected. Conclusions These in vitro findings reveal that GuttaFlow and EndoSequence BC can be considered as biocompatible sealing materials. However, prior to their clinical employment, studies regarding their sealing properties also need to be considered.

  8. In vitro evaluation of the cytotoxic and apoptogenic properties of aloe whole leaf and gel materials.

    Science.gov (United States)

    du Plessis, Lissinda H; Hamman, Josias H

    2014-04-01

    Aloe gel and whole-leaf materials have shown biological effects with potential therapeutic applications, and recently, their drug-absorption enhancement properties have been discovered. It is important to establish a safety profile for these materials before they can be used in pharmaceutical products. The aim of the study was to investigate the in vitro cytotoxicity of Aloe vera, Aloe marlothii, Aloe speciosa and Aloe ferox against human hepatocellular (HepG2), human neuroblastoma cells (SH-SY5Y) and human adenocarcinoma epithelial cells (HeLa). Flow cytometry was used to measure cell viability, apoptosis and reactive oxygen species (ROS). The aloe gel materials investigated only decreased cell viability at concentrations of >10 mg/mL and exhibited half-maximal cytotoxic concentration (CC(50)) values above 1000 mg/mL, except for A. vera gel in HepG2 cells (CC(50) = 269.3 mg/mL). A. speciosa whole-leaf material showed a significant decrease in viability of Hela cells, whereas the other whole-leaf materials did not show a similar effect. The aloe gel materials in general showed low levels of apoptosis, whereas A. vera and A. speciosa whole-leaf materials caused a dose-dependent increase of apoptosis in HeLa cells. None of the aloe materials investigated exhibited a significant increase in ROS. It can be concluded that the selected aloe materials caused only limited reduction in cell viability with limited in vitro cytotoxicity effects. Further, neither significant apoptosis effects were observed nor induction of ROS.

  9. Coxiella burnetii Interaction with Neutrophils and Macrophages In Vitro and in SCID Mice following Aerosol Infection

    Science.gov (United States)

    Elliott, Alexandra; Peng, Ying

    2013-01-01

    Coxiella burnetii is an obligate intracellular bacterium that causes acute and chronic Q fever in humans. Human Q fever is mainly transmitted by aerosol infection. However, there is a fundamental gap in the knowledge regarding the mechanisms of pulmonary immunity against C. burnetii infection. This study focused on understanding the interaction between C. burnetii and innate immune cells in vitro and in vivo. Both virulent C. burnetii Nine Mile phase I (NMI) and avirulent Nine Mile phase II (NMII) were able to infect neutrophils, while the infection rates were lower than 29%, suggesting that C. burnetii can infect neutrophils, but infection is limited. Interestingly, C. burnetii inside neutrophils can infect and replicate within macrophages, suggesting that neutrophils cannot kill C. burnetii and C. burnetii may be using infection of neutrophils as an evasive strategy to infect macrophages. To elucidate the mechanisms of the innate immune response to C. burnetii natural infection, SCID mice were exposed to aerosolized C. burnetii. Surprisingly, neutrophil influx into the lungs was delayed until day 7 postinfection in both NMI- and NMII-infected mice. This result suggests that neutrophils may play a unique role in the early immune response against aerosolized C. burnetii. Studying the interaction between C. burnetii and the innate immune system can provide a model system for understanding how the bacteria evade early immune responses to cause infection. PMID:24082077

  10. In Vitro Studies of Interaction of Rickettsia and Macrophages: Effect of Ultraviolet Light on Coxiella burnetii Inactivation and Macrophage Enzymes

    Science.gov (United States)

    1980-03-01

    Effect of Ultraviolet Light on Coxiella burnetii Inactivation . and Macrophage Enzymes /- ( JAMES S. TTE RICHARD A.IKISH|MOTAMWXPETER.GyANON|CO V...unirtea-s- i4’fn Medical Researc’Tii-’feIflte of lnJto AM .¢fyrflrt Der’Ic iferi,.Maiyiand2,70O ) The inactivation of Coxiella burnetii in suspension or...biochemical assays were pur- intracellular fate of Coxiella burnetii in guinea chased from Koch-Light Laboratories, Ltd. pig peritoneal macrophages, it was

  11. Synthesis, Antimycobacterial Activity and In Vitro Cytotoxicity of 5-Chloro-N-phenylpyrazine-2-carboxamides

    Directory of Open Access Journals (Sweden)

    Jan Zitko

    2013-12-01

    Full Text Available 5-Chloropyrazinamide (5-Cl-PZA is an inhibitor of mycobacterial fatty acid synthase I with a broad spectrum of antimycobacterial activity in vitro. Some N-phenylpyrazine-2-carboxamides with different substituents on both the pyrazine and phenyl core possess significant in vitro activity against Mycobacterium tuberculosis. To test the activity of structures combining both the 5-Cl-PZA and anilide motifs a series of thirty 5-chloro-N-phenylpyrazine-2-carboxamides with various substituents R on the phenyl ring were synthesized and screened against M. tuberculosis H37Rv, M. kansasii and two strains of M. avium. Most of the compounds exerted activity against M. tuberculosis H37Rv in the range of MIC = 1.56–6.25 µg/mL and only three derivatives were inactive. The phenyl part of the molecule tolerated many different substituents while maintaining the activity. In vitro cytotoxicity was decreased in compounds with hydroxyl substituents, preferably combined with other hydrophilic substituents. 5-Chloro-N-(5-chloro-2-hydroxyphenylpyrazine-2-carboxamide (21 inhibited all of the tested strains (MIC = 1.56 µg/mL for M. tuberculosis; 12.5 µg/mL for other strains. 4-(5-Chloropyrazine-2-carboxamido-2-hydroxybenzoic acid (30 preserved good activity (MIC = 3.13 µg/mL M. tuberculosis and was rated as non-toxic in two in vitro models (Chinese hamster ovary and renal cell adenocarcinoma cell lines; SI = 47 and 35, respectively.

  12. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Eun-Min Kim

    2017-05-01

    Full Text Available Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages. Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype, which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.

  13. Synthesis, characterization and cytotoxic evaluation of chitosan nanoparticles: in vitro liver cancer model

    Science.gov (United States)

    Loutfy, Samah A.; Alam El-Din, Hanaa M.; Elberry, Mostafa H.; Allam, Nanis G.; Hasanin, M. T. M.; Abdellah, Ahmed M.

    2016-09-01

    To evaluate the cytotoxic effect of chitosan nanoparticles (CS-NPs) on an in vitro human liver cancer cell model (HepG2) and their possible application as a drug delivery system, we synthesized water-soluble CS-NPs, investigated their properties and extensively evaluated their cytotoxic activity on the cellular and molecular levels. A human liver cancer cell line was used as a model of human liver cancer. The CS-NPs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta analysis. The cytotoxic effects of the CS-NPs on HepG2 cells were monitored by sulforhodamine B colorimetric assays for cytotoxicity screening and flow cytometric analysis. Molecular investigations including DNA fragmentation and the expression of some apoptotic genes on the transcriptional RNA level were conducted. Treatment of HepG2 with different concentrations of 150 nm diameter CS-NPs did not show alteration of cell morphology after 24 h of cell exposure. Also, when cells were treated with 100 μg ml-1 of CS-NPs, 12% of them were killed and IC50 reached 239 μg ml-1 after 48 h of cell exposure. Flow cytometry evaluation of the CS-NPs revealed mild accumulation in the G2/M phase followed by cellular DNA fragmentation after 48 h of cell exposure. Extensive evaluation of the cytotoxic effect of the CS-NPs showed messenger RNA (mRNA) apoptotic gene expression (p53, Bak, Caspase3) after 24 h of cell exposure with no expression of the mRNA of the caspase 3 gene after 48 h of cell exposure, suggesting the involvement of an intrinsic apoptotic caspase-independent pathway by increasing the exposure time of 100 μg ml-1 of the CS-NPs. The engineered CS-NPs were controlled to a 150 nm size and charges of 40 mV and a concentration of 100 μg ml-1 revealed a genotoxic effect on HepG2 after 48 h of cell exposure through intrinsic apoptotic caspase-independent mechanisms. Further quantitative analysis on the molecular and protein levels is still required

  14. Development of an in vitro macrophage system to assess Penicillium marneffei growth and susceptibility to nitric oxide.

    Science.gov (United States)

    Cogliati, M; Roverselli, A; Boelaert, J R; Taramelli, D; Lombardi, L; Viviani, M A

    1997-01-01

    We investigated the effect of nitric oxide (NO) and reactive nitrogen intermediates on the in vitro growth of Penicillium marneffei both in a cell-free system and in a novel macrophage culture system. In the cell-free system, NO that was chemically generated from NaNO2 in acid media (pH 4 and 5) markedly inhibited the growth of P. marneffei. On the contrary, inhibition of growth did not occur in neutral medium (pH 7.4) in which NO was not produced. P. marneffei conidia were phagocytized by nonstimulated murine J774 macrophages after 2 h of incubation. During the following 24 h, P. marneffei grew as yeast-like cells replicating by fission in the J774 macrophages. The intracellular growth of P. marneffei damaged nonstimulated J774 macrophages, as confirmed by electron microscopy. When J774 cells were stimulated by gamma interferon and lipopolysaccharide, which led to enhanced production of reactive nitrogen intermediates, the percentage of yeast-like cells was significantly reduced and P. marneffei conidia were damaged in the J774 macrophages. The inhibition of NO synthesis by N-monomethyl-L-arginine restored the intracellular growth of P. marneffei. The inverse correlation between intramacrophage growth and the amount of nitrite detected in culture supernatants supports the hypothesis that the L-arginine-dependent NO pathway plays an important role in the murine macrophage immune response against P. marneffei.

  15. Cytotoxic effects of betaxolol on healthy corneal endothelial cells both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Ying Miao

    2014-02-01

    Full Text Available AIM: To demonstrate the cytotoxic effect of betaxolol and its underlying mechanism on human corneal endothelial cells(HCE cells in vitro and cat corneal endothelial cells(CCE cells in vivo, providing experimental basis for safety anti-glaucoma drug usage in clinic of ophthalmology.METHODS: In vivo and in vitro experiments were conducted to explore whether and how betaxolol participates in corneal endothelial cell injury. The in vitro morphology, growth status, plasma membrane permeability, DNA fragmentation, and ultrastructure of HCE cells treated with 0.021875-0.28g/L betaxolol were examined by light microscope, 3-(4,5-dimethylthiahiazo (-z-y1-3,5-di-phenytetrazoliumromide (MTT assay, acridine orange (AO/ethidium bromide (EB double-fluorescent staining, DNA agarose gel electrophoresis, and transmission electron microscope (TEM. The in vivo density, morphology, and ultrastructure of CCE cells, corneal thickness, and eye pressure of cat eyes treated with 0.28g/L betaxolol were investigated by specular microscopy, applanation tonometer, alizarin red staining, scanning electron microscope (SEM, and TEM.RESULTS: Exposure to betaxolol at doses from 0.0875g/L to 2.8g/L induced morphological and ultrastructural changes of in vitro cultured HCE cells such as cytoplasmic vacuolation, cellular shrinkage, structural disorganization, chromatin condensation, and apoptotic body appearance. Simultaneously, betaxolol elevated plasma membrane permeability and induced DNA fragmentation of these cells in a dose-dependent manner in AO/EB staining. Furthermore, betaxolol at a dose of 2.8g/L also induced decrease of density of CCE cells in vivo, and non-hexagonal and shrunk apoptotic cells were also found in betaxolol-treated cat corneal endothelia.CONCLUSION: Betaxolol has significant cytotoxicity on HCE cells in vitro by inducing apoptosis of these cells, and induced apoptosis of CCE cells in vivo as well. The findings help provide new insight into the apoptosis

  16. The TLR4-Active Morphine Metabolite Morphine-3-Glucuronide Does Not Elicit Macrophage Classical Activation In Vitro.

    Science.gov (United States)

    Khabbazi, Samira; Xie, Nan; Pu, Wenjun; Goumon, Yannick; Parat, Marie-Odile

    2016-01-01

    Macrophages are abundant in the tumor microenvironment where they adopt a pro-tumor phenotype following alternative polarization induced by paracrine factors from cancer and stromal cells. In contrast, classically activated macrophages have tumoricidal activities, such that the polarization of tumor-associated macrophages has become a novel therapeutic target. Toll-like receptor 4 engagement promotes classical activation of macrophages, and recent literature suggests TLR4 agonism to prevent metastasis and promote survival in experimental metastasis models. A growing number of studies indicate that TLR4 can respond to opioids, including the opioid receptor-inactive morphine metabolite morphine-3-glucuronide (M3G). We measured the activation of TLR4 in a reporter cell line exogenously expressing TLR4 and TLR4 co-receptors, and confirmed that M3G weakly but significantly activates TLR4. We hypothesized that M3G would promote the expression of classical activation signature genes in macrophages in vitro. We exposed mouse and human macrophage cell lines to M3G or the TLR4 activator lipopolysaccharide (LPS), alone or in combination with interferon gamma (IFN-γ). The classical macrophage activation markers tested were iNOS, CD86, IL-6, or TNF-α in RAW 264.7 cells and IL-6, IL-12, IL-23, TNF-α, CXCL10, and CXCL11 in THP1 cells. Our results show that despite exhibiting TLR4-activation ability, M3G does not elicit the expression of classical activation markers in LPS-responsive macrophages.

  17. Learning in a simple biological system: a pilot study of classical conditioning of human macrophages in vitro

    Directory of Open Access Journals (Sweden)

    Nilsonne Gustav

    2011-11-01

    Full Text Available Abstract Recent advances in cell biology and gene regulation suggest mechanisms whereby associative learning could be performed by single cells. Therefore, we explored a model of classical conditioning in human macrophages in vitro. In macrophage cultures, bacterial lipopolysaccharide (LPS; unconditioned stimulus was paired once with streptomycin (conditioned stimulus. Secretion of interleukin-6 (IL-6 was used as response measure. At evocation, conditioning was not observed. Levels of IL-6 were higher only in those cultures that had been exposed to LPS in the learning phase (p's However, habituation was evident, with a 62% loss of the IL-6 response after three LPS presentations (p

  18. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Chung [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan (China); Chen, Chia-Ling [Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Yang, Tsan-Tzu; Choi, Pui-Ching [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan (China); Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin@mail.ncku.edu.tw [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  19. A comparative evaluation of cytotoxicity of root canal sealers: an in vitro study

    Science.gov (United States)

    Warhadpande, Manjusha Madhukar; Meshram, Ganesh Kothiramji; Bahadure, Rakesh Namdeoraoji; Tawani, Shubha Gopal; Tawani, Gopal; Badole, Shital Gautam

    2013-01-01

    Objectives The objective of this in vitro study was to evaluate and compare the cytotoxicity of four different root canal sealers i.e. Apexit Plus (Ivoclar Vivadent), Endomethasone N (Septodont), AH-26 (Dentsply) and Pulpdent Root Canal Sealer (Pulpdent), on a mouse fibroblast cell line (L929). Materials and Methods Thirty two discs for each sealer (5 mm in diameter and 2 mm in height) were fabricated in Teflon mould. The sealer extraction was made in cell culture medium (Dulbecco's Modified Eagle's Medium, DMEM) using the ratio 1.25 cm2/mL between the surface of the sealer samples and the volume of medium in a shaker incubator. Extraction of each sealer was obtained at 24 hr, 7th day, 14th day, and one month of interval. These extracts were incubated with L929 cell line and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay was done. Two-way ANOVA for interaction effects between sealer and time and Post-hoc multiple comparison using Tukey's test across all the 16 different groups were used for statistical analysis. Results Apexit Plus root canal sealer was significantly less toxic than other sealers (p Sealer showed severe to moderate toxicity. Conclusions Apexit Plus was relatively biocompatible sealer as compared to other three sealers which were cytotoxic at their initial stages, however, they became biocompatible with time. PMID:24303354

  20. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guoqiang, E-mail: zhougq1982@163.com; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying [Hebei University, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science (China)

    2016-05-15

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  1. In vitro cytotoxicity of carbon black nanoparticles synthesized from solution plasma on human lung fibroblast cells

    Science.gov (United States)

    Panomsuwan, Gasidit; Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Ueno, Tomonaga; Saito, Nagahiro

    2018-01-01

    Carbon black nanoparticles (CB-NPs) have been synthesized from liquid benzene by a solution plasma method at room temperature and atmospheric pressure. The morphological observation by scanning electron microscopy revealed the agglomeration of aggregated fine particles. The synthesized CB-NPs were predominantly amorphous as confirmed by X-ray diffraction. The in vitro cytotoxicity of CB-NPs on the human lung fibroblast (MRC-5) cell line was assessed by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and systematically compared with those of two types of commercial carbon blacks (i.e., Vulcan XC-72 and Ketjenblack EC-600JD). Cell viabilities were studied at different concentrations of 32.5, 65, 125, and 250 µg/mL. It was found that the CB-NPs derived from solution plasma exhibited a lower cytotoxicity on the MRC-5 cells than the other two comparative carbon blacks. The viability of MRC-5 cells exposed to CB-NPs remained higher than 90% even at a high concentration of 250 µg/mL. This result preliminarily confirmed the biosafety and potential use of CB-NPs in the field of biological applications.

  2. Antibacterial Activity, in Vitro Cytotoxicity, and Cell Cycle Arrest of Gemini Quaternary Ammonium Surfactants.

    Science.gov (United States)

    Zhang, Shanshan; Ding, Shiping; Yu, Jing; Chen, Xuerui; Lei, Qunfang; Fang, Wenjun

    2015-11-10

    Twelve gemini quaternary ammonium surfactants have been employed to evaluate the antibacterial activity and in vitro cytotoxicity. The antibacterial effects of the gemini surfactants are performed on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with minimum inhibitory concentrations (MIC) ranging from 2.8 to 167.7 μM. Scanning electron microscopy (SEM) analysis results show that these surfactants interact with the bacterial cell membrane, disrupt the integrity of the membrane, and consequently kill the bacteria. The data recorded on C6 glioma and HEK293 human kidney cell lines using an MTT assay exhibit low half inhibitory concentrations (IC50). The influences of the gemini surfactants on the cell morphology, the cell migration ability, and the cell cycle are observed through hematoxylin-eosin (HE) staining, cell wound healing assay, and flow cytometric analyses, respectively. Both the values of MIC and IC50 decrease against the growth of the alkyl chain length of the gemini surfactants with the same spacer group. In the case of surfactants 12-s-12, the MICs and IC50s are found to decrease slightly with the spacer chain length changing from 2 to 8 and again to increase at higher spacer length (s = 10-12). All of the gemini surfactants show great antibacterial activity and cytotoxicity, and they might exhibit potential applications in medical fields.

  3. In vitro cytotoxicity of Fe–Cr–Nb–B magnetic nanoparticles under high frequency electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, Horia, E-mail: hchiriac@phys-iasi.ro [National Institute of Research and Development for Technical Physics, Iasi (Romania); Petreus, Tudor; Carasevici, Eugen [“Gr.T. Popa” University of Medicine and Pharmacy, Iasi (Romania); Labusca, Luminita; Herea, Dumitru-Daniel; Danceanu, Camelia; Lupu, Nicoleta [National Institute of Research and Development for Technical Physics, Iasi (Romania)

    2015-04-15

    The heating potential, cytotoxicity, and efficiency of Fe{sub 68.2}Cr{sub 11.5}Nb{sub 0.3}B{sub 20} magnetic nanoparticles (MNPs), as such or coated with a chitosan layer, to decrease the cell viability in a cancer cell culture model by using high frequency alternating magnetic fields (AMF) have been studied. The specific absorption rate varied from 215 W/g for chitosan-free MNPs to about 190 W/g for chitosan-coated ones, and an equilibrium temperature of 46 °C was reached when chitosan-coated MNPs were subjected to AMF. The chitosan-free Fe{sub 68.2}Cr{sub 11.5}Nb{sub 0.3}B{sub 20} MNPs proved a good biocompatibility and low cytotoxicity in all testing conditions, while the chitosan-coated ones induced strong tumoricidal effects when a cell–particle simultaneous co-incubation approach was used. In high frequency AMF, the particle-mediated heat treatment has proved to be a critical cause for decreasing in vitro the viability of a cancer cell line.

  4. In vitro evaluation of triazenes: DNA cleavage, antibacterial activity and cytotoxicity against acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, Vanessa O.; Hoerner, Rosmari; Reetz, Luiz G.B.; Kuhn, Fabio, E-mail: rosmari.ufsm@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Analises Clinicas e Toxicologicas; Coser, Virginia M.; Rodrigues, Jacqueline N.; Bauchspiess, Rita; Pereira, Waldir V. [Hospital Universitario de Santa Maria, RS (Brazil). Dept. de Hematologia-Oncologia; Paraginski, Gustavo L.; Locatelli, Aline; Fank, Juliana de O.; Giglio, Vinicius F.; Hoerner, Manfredo, E-mail: hoerner.manfredo@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2010-07-01

    The asymmetric diazoamines 1-(2-chlorophenyl)-3-(4-carboxyphenyl)triazene (1), 1-(2-fluorophenyl)-3-(4-carboxyphenyl)triazene (2) and 1-(2-fluorophenyl)-3-(4-amidophenyl) triazene (3) were evaluated for their ability to cleave pUC18 and pBSKII plasmid DNA, antibacterial activity and in vitro cytotoxicity against acute myeloid leukemia cells and normal leukocytes using the bioassay of reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The triazenes showed ability to cleave the two types of plasmid DNA: triazene 1 at pH 8.0 and 50 deg C; triazene 2 at pH 6.5 and 37 and 50 deg C; triazene 3 at pH 6.5 and 37 deg C. The compounds presented cytotoxic activity against myeloid leukemia cells. Compound 1 showed high activity against B. cereus (MIC = 32 {mu}g mL{sup -1}). The observation of intermolecular hydrogen bonding in the solid state of compound 3, based on the structural analysis by X-ray crystallography, as well as the results of IR and UV-Vis spectroscopic analyses of compounds 1, 2 and 3 are discussed in the present work. (author)

  5. Increased in vivo skin penetration of quantum dots with UVR and in vitro quantum dot cytotoxicity

    Science.gov (United States)

    Mortensen, Luke; Zheng, Hong; Faulknor, Renea; De Benedetto, Anna; Beck, Lisa; DeLouise, Lisa A.

    2009-02-01

    The growing presence of quantum dots (QD) in a variety of biological, medical, and electronics applications means an increased risk of human exposure in manufacturing, research, and consumer use. However, very few studies have investigated the susceptibility of skin to penetration of QD - the most common exposure route- and the results of those that exist are conflicting. This suggests that a technique allowing determination of skin barrier status and prediction of skin permeability to QD would be of crucial interest as recent findings have provided evidence of in vitro cytotoxicity and long-term in vivo retention in the body for most QD surface chemistries. Our research focuses on barrier status of the skin (intact and with ultraviolet radiation induced barrier defect) and its impact on QD skin penetration. These model studies are particularly relevant to the common application condition of NP containing sunscreen and SPF cosmetics to UV exposed skin. Herein we present our initial efforts to develop an in vivo model of nanoparticle skin penetration using the SKH-1 hairless mouse with transepidermal water loss (TEWL) to evaluate skin barrier status and determine its ability to predict QD penetration. Our results show that ultraviolet radiation increases both TEWL and skin penetration of QD. Additionally, we demonstrate cytotoxic potential of QD to skin cells using a metastatic melanoma cell line. Our research suggests future work in specific targeting of nanoparticles, to prevent or enhance penetration. This knowledge will be used to develop powerful therapeutic agents, decreased penetration cosmetic nanoparticles, and precise skin cancer imaging modalities.

  6. In vitro acute cytotoxicity of neonicotinoid insecticide imidacloprid to gill cell line of flounder Paralichthy olivaceus

    Science.gov (United States)

    Su, Feng; Zhang, Shicui; Li, Hongyan; Guo, Huarong

    2007-04-01

    In vitro acute cytotoxicity of neonicotinoid insecticide imidacloprid (IMI) to the gill cell line of flounder (FG) that collected in the gill of Paralichthys olivaceus, was examined by 3 widely used endpoint bioassays: NR (neutral red), MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) and TCP (total cell protein). The result shows that the IMI increased at concentrations ≥0.5 μg/ml. The IC50 value of NR. MTT, and TCP was 41.86, 38.46, and 39.08 μg/ml, respectively. The ultrastructural observation revealed that the mitochondria of the cells exposed to 60 μg/ml IMI for 48 h were severely damaged, swollen or disrupted, while their nuclei and rough endoplasmic reticulum (RER) remained normal. This would suggest that the mitochondria are probably the primary target of IMI.

  7. Chemical composition and in vitro cytotoxic, genotoxic effects of essential oil from Urtica dioica L.

    Science.gov (United States)

    Gül, Süleyman; Demirci, Betül; Başer, Kemal Hüsnü Can; Akpulat, H Aşkin; Aksu, Pinar

    2012-05-01

    The aim of this study was to determine the chemical composition of Urtica dioica essential oil, and to evaluate its cytotoxic and genotoxic effects, using cytogenetic tests such as the cytokinesis-block micronucleus assay and chromosomal aberration analysis in human lymphocyte cultures in vitro. GC-MS analysis of U. dioica essential oil identified 43 compounds, representing 95.8% of the oil. GC and GC-MS analysis of the essential oil of U. dioica revealed that carvacrol (38.2%), carvone (9.0%), naphthalene (8.9%), (E)-anethol (4.7%), hexahydrofarnesyl acetone (3.0%), (E)-geranyl acetone (2.9%), (E)-β-ionone (2.8%) and phytol (2.7%) are the main components, comprising 72.2% of the oil. A significant correlation was found between the concentration of essential oil and the following: chromosomal aberrations, micronuclei frequency, apoptotic cells, necrotic cells, and binucleated cells.

  8. In vitro antiplasmodial and cytotoxic activities of sesquiterpene lactones from Vernonia fimbrillifera Less. (Asteraceae).

    Science.gov (United States)

    Bordignon, Annélise; Frédérich, Michel; Ledoux, Allison; Campos, Pierre-Eric; Clerc, Patricia; Hermann, Thomas; Quetin-Leclercq, Joëlle; Cieckiewicz, Ewa

    2017-07-10

    Due to the in vitro antiplasmodial activity of leaf extracts from Vernonia fimbrillifera Less. (Asteraceae), a bioactivity-guided fractionation was carried out. Three sesquiterpene lactones were isolated, namely 8-(4'-hydroxymethacrylate)-dehydromelitensin (1), onopordopicrin (2) and 8α-[4'-hydroxymethacryloyloxy]-4-epi-sonchucarpolide (3). Their structures were elucidated by spectroscopic methods (1D and 2D NMR and MS analyses) and by comparison with published data. The isolated compounds exhibited antiplasmodial activity with IC50 values ≤ 5 μg/mL. Cytotoxicity of the compounds against a human cancer cell line (HeLa) and a mouse lung epithelial cell line (MLE12) was assessed to determine selectivity. Compound 3 displayed promising selective antiplasmodial activity (SI > 10).

  9. Enhanced cytotoxicity of TATp-bearing paclitaxel-loaded micelles in vitro and in vivo.

    Science.gov (United States)

    Sawant, Rupa R; Torchilin, Vladimir P

    2009-06-05

    Cell-penetrating peptide (TATp) was attached to the distal tips of polyethyleneglycol (PEG) moieties of polyethyleneglycol-phosphatidylethanolamine (PEG-PE) micelles loaded with paclitaxel (PCT). The TATp-modified micelles demonstrated an increased interaction with cancer cells compared to non-modified micelles resulting in a significant increase of the in vitro cytotoxicity to different cancer cells. TATp-modified PCT-loaded micelles were administered intratumorally in mice and the induction of apoptosis in tumor cells was studied after 48h with the Terminal Deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling (TUNEL) assay using free PCT and TATp-free PCT-loaded PEG-PE micelles as controls. A significant apoptotic cell death was observed in tumors treated with PCT-loaded micelles modified with TATp, while the treatment with free PCT or with non-modified PCT-loaded micelles resulted in much smaller number of TUNEL-positive cells within tumors.

  10. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant.

    Directory of Open Access Journals (Sweden)

    JunFeng Dong

    Full Text Available Reconstruction materials currently used in clinical for osteoarticular tuberculosis (TB are unsatisfactory due to a variety of reasons. Rifampicin (RFP is a well-known and highly effective first-line anti-tuberculosis (anti-TB drug. Poly-DL-lactide (PDLLA and nano-hydroxyapatite (nHA are two promising materials that have been used both for orthopedic reconstruction and as carriers for drug release. In this study we report the development of a novel anti-TB implant for osteoarticular TB reconstruction using a combination of RFP, PDLLA and nHA.RFP, PDLLA and nHA were used as starting materials to produce a novel anti-TB activity implant by the solvent evaporation method. After manufacture, the implant was characterized and its biodegradation and drug release profile were tested. The in vitro cytotoxicity of the implant was also evaluated in pre-osteoblast MC3T3-E1 cells using multiple methodologies.A RFP/PDLLA/nHA composite was successfully synthesized using the solvent evaporation method. The composite has a loose and porous structure with evenly distributed pores. The production process was steady and no chemical reaction occurred as proved by Fourier Transform Infrared Spectroscopy (FTIR and X-Ray Diffraction (XRD. Meanwhile, the composite blocks degraded and released drug for at least 12 weeks. Evaluation of in vitro cytotoxicity in MC3T3-E1 cells verified that the synthesized composite blocks did not affect cell growth and proliferation.It is feasible to manufacture a novel bioactive anti-TB RFP/PDLLA/nHA composite by the solvent evaporation method. The composite blocks showed appropriate properties such as degradation, drug release and biosafety to MC3T3-E1 cells. In conclusion, the novel composite blocks may have great potential for clinical applications in repairing bone defects caused by osteoarticular TB.

  11. In vitro evaluation of the cytotoxic and trypanocidal activities of Ampelozizyphus amazonicus (Rhamnaceae

    Directory of Open Access Journals (Sweden)

    L.V. Rosas

    2007-05-01

    Full Text Available Ampelozizyphus amazonicus Ducke is a tree commonly found in the Amazon region and an extract of its stem bark is popularly used as an antimalarial and anti-inflammatory agent and as an antidote to snake venom. Ursolic acid; five lupane type triterpenes: betulin, betulinic acid, lupenone, 3ß-hydroxylup-20(29-ene-27,28-dioic acid, and 2a,3ß-dihydroxylup-20(29-ene-27,28-dioic acid, and three phytosteroids: stigmasterol, sitosterol and campesterol, have been isolated from stem extracts of A. amazonicus Ducke. Their structures were characterized by spectral data including COSY and HMQC. In an in vitro biological screening of the isolated compounds, 3ß-hydroxylup-20(29-ene-27,28-dioic acid was cytotoxic against the SKBR-3 human adenocarcinoma cell line (1 to 10 mg/mL, while 2a,3ß-dihydroxylup-20(29-ene-27,28-dioic acid exhibited cytotoxicity against both SKBR-3 human adenocarcinoma and C-8161 human melanoma tumor cell lines (>0.1 mg/mL. In the present study, different extracts and some fractions of this plant were also investigated for trypanocidal activity due to the presence of pentacyclic triterpenes. The triterpene classes are potent against Trypanosoma cruzi. The bioassays were carried out using blood collected from Swiss albino mice by cardiac puncture during the parasitemic peak (7th day after infection with the Y strain of T. cruzi. The results obtained showed that A. amazonicus is a potential source of bioactive compounds since its extracts and fractions isolated from it exhibited in vitro parasite lysis against trypomastigote forms of T. cruzi at concentrations >100 µg/mL. Fractions containing mainly betulin, lupenone, 3ß-hydroxylup-20(29-ene-27,28-dioic acid, and 2a,3ß-dihydroxylup-20(29-ene-27,28-dioic acid showed more activity than crude extracts.

  12. Effect of surface modification on the In vitro protein adsorption and cell cytotoxicity of vinorelbine nanoparticles

    Directory of Open Access Journals (Sweden)

    Nandhakumar Sathyamoorthy

    2017-01-01

    Full Text Available Context: Nanocarriers possessing long-circulating abilities could take advantage of the pathophysiology of tumor vasculature to achieve spatial placement. To attain such qualities, the drug carriers should possess suitable physicochemical properties such as size and surface hydrophilicity. Aim: The aim of this study was to prepare poly(ε-caprolactone nanoparticles (NPs loaded with vinorelbine bitartrate (VB and to modify its steric properties using polyethylene glycol and poloxamer. Furthermore, the influence of surface modification of NPs on their physicochemical and cell interactive properties was evaluated. Materials and Methods: NPs were prepared by double emulsion solvent extraction–evaporation technique. The prepared NPs were evaluated for their physicochemical properties, in vitro protein adsorption and cell cytotoxicity. Results and Discussion: The NPs were <250 nm with an entrapment efficiency ranging between 40% and 52%. The zeta potential of the NPs varied from −7.52 mV to −1.27 mV depending on the surface modification. The in vitro release studies exhibited a biphasic pattern with an initial burst release followed by controlled release of the drug over 72 h. The protein adsorption studies revealed that the ability to resist protein adsorption was influenced by the concentration of surface-modifying agents and the amount of proteins available for interaction. The surface-modified NPs produced cell cytotoxicity comparable to free VB at higher concentrations owing to sustained release of the drug into the cellular environment. Conclusion: The results emphasize that surface modification of nanocarriers is an essential and effective tool to dodge opsonization and phagocytosis in the physiological milieu.

  13. Comparison between three adjuvants for a vaccine against canine leishmaniasis: In vitro evaluation of macrophage killing ability.

    Science.gov (United States)

    Trotta, T; Fasanella, A; Scaltrito, D; Gradoni, L; Mitolo, V; Brandonisio, O; Acquafredda, A; Panaro, M A

    2010-03-01

    The aim of this study was to evaluate, in terms of dog macrophage killing ability in vitro, a vaccine based on Leishmania infantum promastigote soluble antigen (LSA) formulated with three different adjuvants (BCG, AdjuPrime, MPL/TDM/CWS). A significant increase of the macrophage killing ability was observed in dogs vaccinated with LSA+MPL/TDM/CWS after 1 month from vaccination. A similar increase of macrophage parasitocidal ability was present only after 5 months in dogs vaccinated with LSA+BCG or LSA+AdjuPrime. In all dogs the augmented killing percentage was still present after 12 months from vaccination. Therefore, in particular LSA+MPL/TDM/CWS vaccine seems promising for further studies in dogs. 2009 Elsevier Ltd. All rights reserved.

  14. In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis

    Directory of Open Access Journals (Sweden)

    Saranya S.

    Full Text Available In vitro cytotoxic effects of ZnO, FeO and Cu metallic nanopowders (NPs on Vero (African green monkey kidney cell line, PK 15 (Pig kidney cell line and Madin Darby Bovine Kidney (MDBK cell lines were investigated at different time intervals (24 and 48 h. MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay was used to determine the cytotoxic effects of green synthesized (plant based nanopowders. The comparative effects of exposure period and concentration of nanopowders on cell viability were studied. Green synthesized nanopowders showed varying activity on different type of cells and the effect was generally based on the concentration and exposure time. In MDBK cells, only ZnO nanopowder (NP showed significant effect on cell viability. The ZnO NP showed improved cell viability at lower concentration (10 μg/100 μl in all type of cells (Vero, PK 15 and MDBK cells. In contrast, FeO NP showed better activity at the concentration of 10 μg/100 μl, 50 μg/100 μl and 40 μg/100 μl after 24 h exposure time in Vero, PK 15 and MDBK cells respectively. However better cell viability was observed in Cu NP treated Vero, PK 15 and MDBK cells at 40 μg/100 μl, 20 μg/100 μl and 10 μg/100 μl correspondingly. These studies suggested that the activity of green synthesized NPs were highly dependent on concentration, exposure time and type of cells. Keywords: ZnO, FeO, Cu, Nanopowders, MTT, in vitro cytotoxicity

  15. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo

    Science.gov (United States)

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M.; Brennan, Patrick J.; Banerjee, Pinaki P.; Wiener, Susan J.; Orange, Jordan S.; Brenner, Michael B.; Grupp, Stephan A.; Nichols, Kim E.

    2013-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we find that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially-induced by iNKT cell agonists of varying TCR affinities, such as OCH, α-galactosyl ceramide and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of T cell receptor (TCR) signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell-deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T-lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T-lymphoma. PMID:24563871

  16. Cytotoxic activity of metformin in vitro does not correlate with its antitumor action in vivo.

    Science.gov (United States)

    Pyaskovskaya, O N; Kolesnik, D L; Fedorchuk, A G; Gorbik, G V; Solyanik, G I

    2017-12-01

    It is known that metformin is a hypoglycemic drug used to treat type II diabetes mellitus. Recently active studies of its antitumor activity in relation to different types of malignant cells are conducted. To determine the relationship between cytotoxic activity of metformin in vitro and its antitumor activity in vivo. The rat C6 glioma cell line and mouse Lewis lung carcinoma cells (LLC) were used in this work. The number of living cells in the cytotoxic test was evaluated using sulforhodamine B. Parameters of tumor cell susceptibility to metformin activity in vitro were calculated using nonlinear and linear regression of experimental data. The antitumor action of metformin in vivo was evaluated routinely by the extension of survival time (ST) (in rats with intracerebral C6 glioma) and its effect on the volume of the primary tumor, the number and volume of metastases (in mice with LLC). In cultured LLC cells in vitro, the proportions of metformin-resistant (A1, %) and metformin-sensitive (A2, %) subpopulations were 10.0 ± 2.2% and 92.0 ± 3.5%, respectively, in terms of the total number of living cells. Parameter t, which characterizes the sensitivity of cancer cells to metformin action (the lower is the value of this parameter the higher is sensitivity of cells to metformin cytotoxicity), for metformin-resistant and metformin-sensitive subpopulations was: t1(mM) = ∞ and t2(mM) = 2.9 ± 0.3, correspondingly. For metformin-sensitive subpopulation of LLC cells IC50 (mM) = 2.42 ± 0.34. The volume of the primary tumor, the amount and volume of metastases in mice receiving metformin at a dose of Dmin (0.15 g/kg) and Dmax (0.3 g/kg) values did not significantly differ from those in the control. However, in the case of Dmin, there was a tendency to increased volume of the primary tumor, in the case of Dmax, there was a tendency to increased volume of metastases. The analogical parameters (A1, A2, b1, b2, IC50 (1), IC50 (2)) characterizing cell sensitivity

  17. Epidermal growth factor receptor inhibition by erlotinib prevents vascular smooth muscle cell and monocyte-macrophage function in vitro.

    Science.gov (United States)

    Savikko, Johanna; Rintala, Jukka M; Rintala, Sini; Koskinen, Petri

    2015-06-01

    Vascular smooth muscle cells (VSMCs) and monocyte-macrophages play a central role during the development of chronic allograft injury, which still remains an important challenge in organ transplantation. Inflammation, fibrosis and accelerated arteriosclerosis are typical features for chronic allograft injury. Growth factors participate in cell proliferation, differentiation and migration in this pathological process. Here we studied the role of epidermal growth factor receptor (EGFR) in VSMC and monocyte-macrophage function in vitro. EGFR inhibition by erlotinib, a selective EGF tyrosine kinase inhibitor, was studied in VSMC proliferation and migration as well as monocyte-macrophage proliferation and differentiation. Rat coronary artery SMCs were used for VSMC studies. As a model for monocyte-macrophage proliferation and differentiation human monocytic cell line U937 was used. Phorbol ester TPA was used to induce these cells to differentiate into macrophages. Platelet-derived growth factor (PDGF)-B, a known VSMC inducer, caused 2.1-fold stimulation in VSMC proliferation compared to non-stimulated VSMC. Erlotinib prevented this VSMC proliferation in a dose-dependent manner, p < 0.001 in all groups compared to controls. PDGF-B stimulation increased VSMC migration to 2.5-fold when compared with non-stimulated cells. Erlotinib decreased VSMC migration dose-dependently and this effect was significant with all doses, p < 0.05. Erlotinib inhibited dose-dependently the proliferation of U937 monocytic cells, p < 0.001. Erlotinib prevented also TPA-induced macrophage differentiation in a dose-dependent way, p < 0.05. Erlotinib significantly prevents VSMC proliferation and migration in vitro. Erlotinib inhibited also significantly both monocyte proliferation and differentiation. Our data suggest that EGFR inhibition in VSMC and monocyte function has beneficial effects on chronic allograft injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation

    Directory of Open Access Journals (Sweden)

    D. Jesus

    2015-01-01

    Full Text Available This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7. To determine the minimum inhibitory concentration (MIC, microdilution in broth (CLSI M27-S4 protocol was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n=10 with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n=10. After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h, the values of colony forming units per milliliter (CFU/mL were converted to log10 and analyzed (ANOVA and Tukey test, 5%. The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P<0.001 of the biofilm at concentrations of 50 (0.580±0.209 log10, 100 (0.998±0.508 log10, and 200 mg/mL (1.093±0.462 log10 was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%.

  19. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation.

    Science.gov (United States)

    Jesus, D; Oliveira, J R; Oliveira, F E; Higa, K C; Junqueira, J C; Jorge, A O C; Back-Brito, G N; Oliveira, L D

    2015-01-01

    This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%.

  20. Interactions of polysaccharide-based tissue adhesives with clinically relevant fibroblast and macrophage cell lines.

    Science.gov (United States)

    Bhatia, Sujata K; Arthur, Samuel D; Chenault, H Keith; Kodokian, George K

    2007-11-01

    The effects of polysaccharide-based tissue adhesives on cell survival and inflammatory cell activation were determined using in vitro mouse cell cultures. Cytotoxicity of tissue adhesives was evaluated by placing adhesives in direct contact with 3T3 fibroblast cells. Polysaccharide-based tissue adhesives composed of dextran aldehyde and star PEG amine were non-cytotoxic to fibroblasts; in contrast, a commercial adhesive composed of 2-octyl cyanoacrylate was highly cytotoxic to fibroblasts. The inflammatory potential of tissue adhesives was evaluated by exposing J774 macrophage cells to adhesives, and measuring TNF-alpha release from macrophages. Polysaccharide-based tissue adhesives did not elicit inflammatory TNF-alpha release from macrophages. These results suggest that polysaccharide-based tissue adhesives are non-cytotoxic and non-inflammatory; the results are therefore significant in the design of in vitro cell culture systems to study biomaterials.

  1. Quantum dot cytotoxicity in vitro: an investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials.

    Science.gov (United States)

    Clift, Martin J D; Varet, Julia; Hankin, Steven M; Brownlee, Bill; Davidson, Alan M; Brandenberger, Christina; Rothen-Rutishauser, Barbara; Brown, David M; Stone, Vicki

    2011-12-01

    The aim of this study was to assess the effects of a series of different surface coated quantum dots (QDs) (organic, carboxylated [COOH] and amino [NH₂] polytethylene glycol [PEG]) on J774.A1 macrophage cell viability and to further determine which part of the QDs cause such toxicity. Cytotoxic examination (MTT assay and LDH release) showed organic QDs to induce significant cytotoxicity up to 48 h, even at a low particle concentration (20 nM), whilst both COOH and NH₂ (PEG) QDs caused reduced cell viability and cell membrane permeability after 24 and 48 h exposure at 80 nM. Subsequent analysis of the elements that constitute the QD core, core/shell and (organic QD) surface coating showed that the surface coating drives QD toxicity. Elemental analysis (ICP-AES) after 48 h, however, also observed a release of Cd from organic QDs. In conclusion, both the specific surface coating and core material can have a significant impact on QD toxicity.

  2. Immunostimulatory activity of snake fruit (Salacca edulis Reinw.) cultivar Pondoh Hitam extract on the activation of macrophages in vitro

    Science.gov (United States)

    Wijanarti, Sri; Putra, Agus Budiawan Naro; Nishi, Kosuke; Harmayani, Eni; Sugahara, Takuya

    2017-05-01

    Snake fruit (Salacca edulis Reinw) cultivar Pondoh Hitam is a tropical fruit produced in Indonesia. It is consumed freshly or processed and believed as the most delicious snake fruit cultivar. Snake fruit flesh contains high polisaccharides such as pectin and dietary fiber. Therefore, snake fruit is a potential immunostimulator candidates but the immunological effect of snake fruit flesh has not been reported. In the present study, immunostimulatory activity of snake fruit flesh extract (SFFE) on macrophages activation was evaluated. SFFE was prepared by extracting from snake fruit flesh with water, methanol 70%, and ethanol 70% for 15 h at 4°C. Then obtained SFFE was used to stimulated cytokine production in vitro using J774.1 cell line. The extract giving strongest stimulation was sellected for in vivo assay to stimulate cytokines production and gene expression using peritoneal macrophage (P-mac) of BALB/c mice. The results showed that SFFE exhibited immunostimulatory activities. Immunostimulatory activity could be indicated by macrophages activation characteristics such as cytokines production. Water extract of SFFE gave strongest stimulation on cytokines production in vitro and sellected for in vivo assay. In vivo assay showed that SFFE stimulated cytokines production as well as their gene expression levels. The optimum stimulation was demonstrated by SFFE 16.7 mg/g. Overall findings suggest that SFFE has a potent beneficial effects to promote the body health through activating macrophages.

  3. BK/TD models for analyzing in vitro impedance data on cytotoxicity.

    Science.gov (United States)

    Teng, S; Barcellini-Couget, S; Beaudouin, R; Brochot, C; Desousa, G; Rahmani, R; Pery, A R R

    2015-06-01

    The ban of animal testing has enhanced the development of new in vitro technologies for cosmetics safety assessment. Impedance metrics is one such technology which enables monitoring of cell viability in real time. However, analyzing real time data requires moving from static to dynamic toxicity assessment. In the present study, we built mechanistic biokinetic/toxicodynamic (BK/TD) models to analyze the time course of cell viability in cytotoxicity assay using impedance. These models account for the fate of the tested compounds during the assay. BK/TD models were applied to analyze HepaRG cell viability, after single (48 h) and repeated (4 weeks) exposures to three hepatotoxic compounds (coumarin, isoeugenol and benzophenone-2). The BK/TD models properly fit the data used for their calibration that was obtained for single or repeated exposure. Only for one out of the three compounds, the models calibrated with a single exposure were able to predict repeated exposure data. We therefore recommend the use of long-term exposure in vitro data in order to adequately account for chronic hepatotoxic effects. The models we propose here are capable of being coupled with human biokinetic models in order to relate dose exposure and human hepatotoxicity. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. In vitro cytotoxic activity of chitosan-bullfrog oil microemulsion against melanoma cells.

    Science.gov (United States)

    Bonatto, Cínthia Caetano; Joanitti, Graziella Anselmo; Silva, Luciano Paulino

    2015-08-01

    Microemulsion-based animal oils, alone or associated with polymers have been extensively used in pharmacy, medicine and cosmetics, since the major lipid constituents of the oils show several biological activities. Despite showing antimicrobial activity, there are no reports in the literature regarding the effects of bullfrog oil on cytotoxic activity against tumor cells. The aim of the present study was to synthesize, characterise and evaluate the in vitro effects on melanoma cell line (B16F10) of bullfrog oil microemulsions associated or not with chitosan, surfactant and bullfrog oil (CSBO) and surfactant and bullfrog oil (SBO), respectively. The microemulsions were developed and their physical-chemical characteristics were evaluated by light microscopy, dynamic light scattering, atomic force microscopy and zeta potential. The microemulsions showed regular spherical shapes, high polydispersity and excellent (+82.2 ± 1.0 mV) to low (-16.0 ± 0.5 mV), colloidal stability. The systems significantly decreased the in vitro cell viability of melanoma skin cancer by up to 90.2% (CSBO) and 91.8% (SBO); while free bullfrog oil showed no effects. The results obtained from microemulsions of bullfrog oil indicate the potential of the microemulsions developed, alone or in combination with other chemotherapeutic agents, for future use in biomedical approaches aiming towards cancer therapy.

  5. Effect of Astralagus radix on proliferation and nitric oxide production of head kidney macrophages in Cyprinus carpio: an in vitro study

    NARCIS (Netherlands)

    Guo-Jun, Y.; Wiegertjes, G.F.; Yue-Ming, L.; Schrama, J.W.; Verreth, J.A.J.; Pao, X.; Hong-qi, Z.

    2004-01-01

    The in vitro effect of Astragalus radix water extract onthe non-specific immune responses of macrophages isolated from the head kidney of Cyprinus carpio was evaluated. Astragalus radix extract stimulated the proliferation of the head kidney macrophages, and it alone had no effect on nitrogen burst

  6. Cytotoxicity assessment of modified bioactive glasses with MLO-A5 osteogenic cells in vitro.

    Science.gov (United States)

    Modglin, Vernon C; Brown, Roger F; Jung, Steven B; Day, Delbert E

    2013-05-01

    The primary objective of this study was to evaluate in vitro responses of MLO-A5 osteogenic cells to two modifications of the bioactive glass 13-93. The modified glasses, which were designed for use as cell support scaffolds and contained added boron to form the glasses 13-93 B1 and 13-93 B3, were made to accelerate formation of a bioactive hydroxyapatite surface layer and possibly enhance tissue growth. Quantitative MTT cytotoxicity tests revealed no inhibition of growth of MLO-A5 cells incubated with 13-93 glass extracts up to 10 mg/ml, moderate inhibition of growth with 13-93 B1 glass extracts, and noticeable inhibition of growth with 13-93 B3 glass extracts. A morphology-based biocompatibility test was also performed and yielded qualitative assessments of the relative biocompatibilities of glass extracts that agree with those obtained by the quantitative MTT test. However, as a proof of concept experiment, when MLO-A5 cells were seeded onto 13-93 B3 scaffolds in a dynamic in vitro environment, cell proliferation occurred as evidenced by qualitative and quantitative MTT labeling of scaffolds. Together these results demonstrate the in vitro toxicity of released borate ion in static experiments; however borate ion release can be mitigated in a dynamic environment similar to the human body where microvasculature is present. Here we argue that despite toxicity in static environments, boron-containing 13-93 compositions may warrant further study for use in tissue engineering applications.

  7. Cellular mechanisms of the cytotoxic effects of the zearalenone metabolites α-zearalenol and β-zearalenol on RAW264.7 macrophages.

    Science.gov (United States)

    Lu, Jia; Yu, Ji-Yeon; Lim, Shin-Saeng; Son, Young-Ok; Kim, Dong-Hern; Lee, Seung-Ah; Shi, Xianglin; Lee, Jeong-Chae

    2013-04-01

    Zearalenone (ZEN) and its metabolites are commonly found in many food commodities and are known to cause reproductive disorders and genotoxic effects. The major ZEN metabolites are α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). Although many studies have demonstrated the cytotoxic effects of these metabolites, the mechanisms by which α-ZOL or β-ZOL mediates their cytotoxic effects appear to differ according to cell type and the exposed toxins. We evaluated the toxicity of α-ZOL and β-ZOL on RAW264.7 macrophages and investigated the underlying mechanisms. β-ZOL not only more strongly reduced the viability of cells than did α-ZOL, but it also induced cell death mainly by apoptosis rather than necrosis. The ZEN metabolites induced loss of mitochondrial membrane potential (MMP), mitochondrial changes in Bcl-2 and Bax proteins, and cytoplasmic release of cytochrome c and apoptosis-inducing factor (AIF). Use of an inhibitor specific to c-Jun N-terminal kinase (JNK), p38 kinase or p53, but not pan-caspase or caspase-8, decreased the toxin-induced generation of reactive oxygen species (ROS) and also attenuated the α-ZOL- or β-ZOL-induced decrease of cell viability. Antioxidative enzyme or compounds such as catalase, acteoside, and (E)-1-(3,4-dihydroxyphenethyl)-3-(4-hydroxystyryl)urea suppressed the ZEN metabolite-mediated reduction of cell viability. Further, knockdown of AIF via siRNA transfection diminished the ZEN metabolite-induced cell death. Collectively, these results suggest that the activation of p53, JNK or p38 kinase by ZEN metabolites is the main upstream signal required for the mitochondrial alteration of Bcl-2/Bax signaling pathways and intracellular ROS generation, while MMP loss and nuclear translocation of AIF are the critical downstream events for ZEN metabolite-mediated apoptosis in macrophages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Cytotoxic Activity of Holothuria leucospilota Extract against Leishmania infantum In Vitro

    Directory of Open Access Journals (Sweden)

    Shahram Khademvatan

    2016-01-01

    Full Text Available Leishmaniasis is a tropical parasitic infection. The resistance and toxicity issues are the major complications and remain significant consequences related to the treatment of leishmaniasis with the recent and classical drugs. Thus there is an immediate requirement to develop new compounds for the treatment of this protozoan disease. Sea cucumbers or holothurians are potentially presented as the marine sources of antimicrobial and cytotoxic compounds. The aim of this study was investigation of in vitro antileishmanial activity of methanol extract of body wall, coelomic fluid, and cuvierian organs of Holothuria leucospilota obtained from coastal parts of Persian Gulf against Leishmania infantum promastigotes and axenic amastigotes. The colorimetric MTT assay was used to determine L. infantum promastigotes and axenic amastigotes viability at different concentrations of the extracts and drug control (Glucantime® at time dependent manner and the results are represented as IC50 (50% of inhibitory concentration. Coelomic fluid was the most active extract among the three different extracts of H. leucospilota against L. infantum promastigotes and axenic amastigotes with IC50s of 62.33 μg/mL and 22.4 μg/mL and 73 μg/mL and 46 μg/mL at 48 and 72 hours after treatment, respectively. Cuvierian organs extract showed less toxicity with IC50s more than 1000 μg/mL for both Leishmania infantum axenic amastigotes and promastigotes forms after 48 and 72 hours of exposure. Results acquired from the present study propose that the sea cucumber H. leucospilota may be a provoking source of antileishmanial compounds and could be a lead source in the development of the potent antileishmanial and cytotoxic drugs.

  9. Cytotoxic Activity of Holothuria leucospilota Extract against Leishmania infantum In Vitro.

    Science.gov (United States)

    Khademvatan, Shahram; Eskandari, Alborz; Saki, Jasem; Foroutan-Rad, Masoud

    2016-01-01

    Leishmaniasis is a tropical parasitic infection. The resistance and toxicity issues are the major complications and remain significant consequences related to the treatment of leishmaniasis with the recent and classical drugs. Thus there is an immediate requirement to develop new compounds for the treatment of this protozoan disease. Sea cucumbers or holothurians are potentially presented as the marine sources of antimicrobial and cytotoxic compounds. The aim of this study was investigation of in vitro antileishmanial activity of methanol extract of body wall, coelomic fluid, and cuvierian organs of Holothuria leucospilota obtained from coastal parts of Persian Gulf against Leishmania infantum promastigotes and axenic amastigotes. The colorimetric MTT assay was used to determine L. infantum promastigotes and axenic amastigotes viability at different concentrations of the extracts and drug control (Glucantime®) at time dependent manner and the results are represented as IC50 (50% of inhibitory concentration). Coelomic fluid was the most active extract among the three different extracts of H. leucospilota against L. infantum promastigotes and axenic amastigotes with IC50s of 62.33 μg/mL and 22.4 μg/mL and 73 μg/mL and 46 μg/mL at 48 and 72 hours after treatment, respectively. Cuvierian organs extract showed less toxicity with IC50s more than 1000 μg/mL for both Leishmania infantum axenic amastigotes and promastigotes forms after 48 and 72 hours of exposure. Results acquired from the present study propose that the sea cucumber H. leucospilota may be a provoking source of antileishmanial compounds and could be a lead source in the development of the potent antileishmanial and cytotoxic drugs.

  10. Evaluation in vitro of cytotoxicity of dentin desensitizers on human gingival fibroblasts.

    Directory of Open Access Journals (Sweden)

    Diego Vergara

    2015-02-01

    Full Text Available The purpose of this study is to compare the cytotoxic effect of three materials, which have been used for treating dental hypersensitivity. Material and method: In vitro study. Clinpro (3M Co, St. Paul, MN. USA, Seal & Protect (Dentsply, DeTrey GmbH. Germany and UltraEZ (Ultradent Products, Inc., S. South Jordan UT. USA were used at concentrations of 0.1, 0.05, 0.01 and 0.001g/ml on human gingival fibroblasts. Furthermore, Clinpro and Seal & Protect were applied to this cell culture as polymerized disks. Toxicity was assessed at 24 and 48 hours by the use of the cell viability assay (MTT. Statistical analysis for cell viability was performed using two-way ANOVA and Tukey’s post hoc test. Statistical significance was set at 5%. Results: Seal & Protect and Clinpro were found to be highly toxic at 24 and 48 hours, reaching 70% toxicity at concentrations over 0.01g/ml. Seal & Protect and Clinpro polymerized disks were toxic at 24 and 48 hours. UltraEZ showed an increased between 46% and 67% in cell viability at 24 hours and between 8% and 45% at 48 hours. Statistical analysis showed differences between these three desensitizers when comparing concentration and control group (p<0.05. Discussion: UltraEZ did not have a cytotoxic effect and may be considered a compatible and safe material, whereas polymerized and non-polymerized Clinpro and Seal & Protect should be used with caution.

  11. In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis.

    Science.gov (United States)

    S, Saranya; K, Vijayaranai; S, Pavithra; N, Raihana; K, Kumanan

    2017-01-01

    In vitro cytotoxic effects of ZnO, FeO and Cu metallic nanopowders (NPs) on Vero (African green monkey kidney cell line), PK 15 (Pig kidney cell line) and Madin Darby Bovine Kidney (MDBK) cell lines were investigated at different time intervals (24 and 48 h). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to determine the cytotoxic effects of green synthesized (plant based) nanopowders. The comparative effects of exposure period and concentration of nanopowders on cell viability were studied. Green synthesized nanopowders showed varying activity on different type of cells and the effect was generally based on the concentration and exposure time. In MDBK cells, only ZnO nanopowder (NP) showed significant effect on cell viability. The ZnO NP showed improved cell viability at lower concentration (10 μg/100 μl) in all type of cells (Vero, PK 15 and MDBK cells). In contrast, FeO NP showed better activity at the concentration of 10 μg/100 μl, 50 μg/100 μl and 40 μg/100 μl after 24 h exposure time in Vero, PK 15 and MDBK cells respectively. However better cell viability was observed in Cu NP treated Vero, PK 15 and MDBK cells at 40 μg/100 μl, 20 μg/100 μl and 10 μg/100 μl correspondingly. These studies suggested that the activity of green synthesized NPs were highly dependent on concentration, exposure time and type of cells.

  12. Chemical constituents from Sonneratia ovata Backer and their in vitro cytotoxicity and acetylcholinesterase inhibitory activities.

    Science.gov (United States)

    Nguyen, Thi-Hoai-Thu; Pham, Huu-Viet-Thong; Pham, Nguyen-Kim-Tuyen; Quach, Ngo-Diem-Phuong; Pudhom, Khanitha; Hansen, Poul Erik; Nguyen, Kim-Phi-Phung

    2015-06-01

    Sonneratia ovata Backer, Sonneratiaceae, is a widespread plant in mangrove forests in Vietnam, Cambodia, Thailand, Indonesia. Sonneratia ovata's chemical composition remains mostly unknown. Therefore, we now report on the structural elucidation of three new phenolics, sonnerphenolic A (1), sonnerphenolic B (2), and sonnerphenolic C (23), a new cerebroside, sonnercerebroside (3) together with nineteen known compounds, including nine lignans (5-13), two steroids (14, 15), two triterpenoids (16, 17), three gallic acid derivatives (18-20), two phenolic derivatives (4, 22) and a 1-O-benzyl-β-d-glucopyranose (21) isolated from the leaves of Sonneratia ovata. Their chemical structures were established by spectroscopic data, as well as high resolution mass spectra and comparison with literature data. The in vitro acetylcholinesterase (AChE) inhibition and cytotoxic activities against HeLa (human epithelial carcinoma), NCI-H460 (human lung cancer), MCF-7 (human breast cancer) cancer cell lines and PHF (primary human fibroblast) cell were evaluated on some extracts and purified compounds at a concentration of 100 μg/mL. Compounds (5, 6, 23) exhibited cytotoxicity against the MCF-7 cell line with the IC50 values of 146.9±9.0, 114.5±7.2, and 112.8±9.4 μM, respectively, while they showed nontoxic with the normal cell (PHF) with IC50s >277 μM. Among 15 tested compounds, (S)-rhodolatouchol (22) showed inhibition against AChE with an IC50 value of 96.1±14.5 μM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Detection of DOPA-melanin in the dimorphic fungal pathogen Penicillium marneffei and its effect on macrophage phagocytosis in vitro.

    Directory of Open Access Journals (Sweden)

    Donghua Liu

    Full Text Available The fungal pathogen Penicillium marneffei produces melanin-like pigment in vitro. The synthetic pathway of melanin and its possible influence in the protective yeast cells surviving within macrophage cells are not known. In this work, P. marneffei produced brown black pigment in the presence of L-DOPA and black particles were extracted from yeast cells treated with proteolytic enzymes, denaturant and concentrated hot acid. Kojic acid inhibited the brown-black pigment production of P. marneffei yeast grown on brain heart infusion agar. Transmitting electron microscopy showed spherical granular electron-dense particles with an average diameter of 100 nm in a beaded arrangement in the innermost cell wall. Electron-paramagnetic resonance revealed that the black particles contain a stable free radical compound. The UV-visible and Fourier transform infrared spectra of particles extracted from P. marneffei and synthetic DOPA-melanin showed a high degree of similarity. Melanized yeast cells decreased phagocytosis by macrophage cells and increased resistance to intracellular digestion in vitro. These results indicate that P. marneffei can synthesize DOPA-melanin or melanin-like compounds in vitro and suggest that the DOPA-melanin pathway is associated with cell wall structure and enhances the resistance to phagocytosis by macrophages.

  14. In Vitro Parallel Evaluation of Antibacterial Activity and Cytotoxicity of Commercially Available Silver-Containing Wound Dressings.

    Science.gov (United States)

    Yunoki, Shunji; Kohta, Masushi; Ohyabu, Yoshimi; Iwasaki, Tetsuji

    2015-01-01

    This study evaluated the in vitro antibacterial activity and cytotoxicity of various commercially available silver-containing dressings (Ag dressing). Biohesive Ag (hydrocolloid, silver sulfadiazine), Aquacel® Ag (nonwoven fabric, ionic silver [Ag]), Algisite™ Ag (nonwoven fabric, Ag), Mepilex® Ag (foam, silver sulfate), and PolyMem® Ag (foam, nanocrystalline silver) were tested for characteristics of Ag release, antibacterial activity, and cytotoxicity. The release of Ag was investigated in cell culture medium at immersion periods of 6, 24, and 48 hours. The antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa were accessed by a disc diffusion test. The cytotoxicity was evaluated using V79 cells, by an extraction method. The cytotoxicity was not a monotonic function of the antibacterial activity among the Ag dressings and could not be simply explained by Ag-release properties. Biohesive Ag was regarded as a slow-release Ag dressing, showing the lowest cytotoxicity, while the antibacterial activity was classified as "strong" or "significant" against the two species of bacteria. Aquacel Ag and Algisite Ag showed higher antibacterial activity and cytotoxic effects, which were supported by the higher Ag release. Mepilex Ag showed the highest release of Ag, and the cytotoxicity was the highest among the Ag dressings. However, the antibacterial activity was classified as "significant" or "no activity" for P. aeruginosa and S. aureus, respectively. PolyMem Ag showed the lowest Ag release, and the antibacterial activity classified as "significant" or "no activity" for S. aureus and P. aeruginosa, respectively, whereas the cytotoxicity was similar to those of Aquacel Ag and Algisite Ag. The efficacy and adverse effects of the Ag dressings revealed differences that should be considered by clinicians during wound management.

  15. Cytotoxic T cell immunity against the non-immunogenic, murine, hepatocellular carcinoma Hepa1-6 is directed towards the novel alternative form of macrophage colony stimulating factor.

    Science.gov (United States)

    Ge, Lisheng; Zhang, Jian Gang; Samathanam, Christina A; Delgado, Christina; Tarbiyat-Boldaji, Mary; Dan, Qinghong; Hoa, Neil; Nguyen, Tuong-Vi; Alipanah, Reza; Pham, Jimmy T H; Sanchez, Ramon; Wepsic, H Terry; Morgan, Timothy R; Jadus, Martin R

    2009-01-01

    Mouse Hepa1-6 hepatocellular carcinoma (HCC) cells were transduced with the membrane form of macrophage colony stimulating factor (mM-CSF). When mM-CSF transduced Hepa1-6 cells were injected subcutaneously into mice, these cells did not form tumors. The spleens of these immunized mice contained cytotoxic CD8+ T lymphocytes (CTL) that killed the unmodified Hepa1-6 cells. We show that the alternative form of macrophage colony stimulating factor (altM-CSF) induced CTL-mediated immunity against Hepa1-6 cells. AltM-CSF is restricted to the H-2D(b) allele. CTLs killed RMA-S cells loaded with exogenous altM-CSF peptide. Vaccination of mice with dendritic cells pulsed with the altM-CSF peptide stimulated anti-Hepa1-6 CTLs. Hyper-immunization of mice with mM-CSF Hepa1-6 cells showed inflammation of the liver and kidneys. Although altM-CSF was expressed within liver and kidney cells, its intensity was lower than Hepa1-6 cells. AltM-CSF was detected within the human HepG2 cell line. These studies suggest that altM-CSF may be a tumor antigen for HCC.

  16. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages

    Directory of Open Access Journals (Sweden)

    C. Guo

    Full Text Available Glucagon-like peptide 1 (GLP-1, a kind of gut hormone, is used in the treatment of type 2 diabetes (T2D. Emerging evidence indicates that GLP-1 has anti-inflammatory activity. Chronic inflammation in the adipose tissue of obese individuals is a cause of insulin resistance and T2D. We hypothesized that GLP-1 analogue therapy in patients with T2D could suppress the inflammatory response of macrophages, and therefore inhibit insulin resistance. Our results showed that GLP-1 agonist (exendin-4 not only attenuated macrophage infiltration, but also inhibited the macrophage secretion of inflammatory cytokines including TNF-β, IL-6, and IL-1β. Furthermore, we observed that lipopolysaccharide (LPS-induced macrophage conditioned media could impair insulin-stimulated glucose uptake. This effect was compensated by treatment with the conditioned media from macrophages treated with the combination of LPS and exendin-4. It was also observed that exendin-4 directly inhibited the activation of NF-κB in macrophages. In conclusion, our results indicated that GLP-1 improved inflammatory macrophage-derived insulin resistance by inhibiting NF-κB pathway and secretion of inflammatory cytokines in macrophages. Furthermore, our observations suggested that the anti-inflammatory effect of GLP-1 on macrophages can contribute to GLP-1 analogue therapy of T2D.

  17. Quercetin uptake and metabolism by murine peritoneal macrophages in vitro

    Directory of Open Access Journals (Sweden)

    Chieh-Jung Liu

    2015-12-01

    Full Text Available Quercetin (Q, a bioflavonoid ubiquitously distributed in vegetables, fruits, leaves, and grains, can be absorbed, transported, and excreted after oral intake. However, little is known about Q uptake and metabolism by macrophages. To clarify the puzzle, Q at its noncytotoxic concentration (44μM was incubated without or with mouse peritoneal macrophages for different time periods. Medium alone, extracellular, and intracellular fluids of macrophages were collected to detect changes in Q and its possible metabolites using high-performance liquid chromatography. The results showed that Q was unstable and easily oxidized in either the absence or the presence of macrophages. The remaining Q and its metabolites, including isorhamnetin and an unknown Q metabolite [possibly Q– (O-semiquinone], might be absorbed by macrophages. The percentage of maximal Q uptake by macrophages was found to be 2.28% immediately after incubation; however, Q uptake might persist for about 24 hours. Q uptake by macrophages was greater than the uptake of its methylated derivative isorhamnetin. As Q or its metabolites entered macrophages, those compounds were metabolized primarily into isorhamnetin, kaempferol, or unknown endogenous Q metabolites. The present study, which aimed to clarify cellular uptake and metabolism of Q by macrophages, may have great potential for future practical applications for human health and immunopharmacology.

  18. Effects of organic extracts of six Bangladeshi plants on in vitro thrombolysis and cytotoxicity.

    Science.gov (United States)

    Rahman, M Atiar; Sultana, Rabeya; Bin Emran, Talha; Islam, M Saiful; Rahman, M Ashiqur; Chakma, Joti Sankhar; Rashid, Harun-ur; Hasan, Chowdhury Mohammad Monirul

    2013-01-30

    Thrombus formed in blood vessels lead to atherothrombotic diseases such as myocardial or cerebral infarction. Thrombolytic agents are used to dissolve the already formed clots in the blood vessels; however, these drugs sometimes cause serious and fatal consequences. Herbal preparations have been used since ancient times for the treatment of several diseases although they show little toxicity in some cases. Aqueous extracts of herbs used in thrombolysis have been reported before with cytotoxic data, however, the organic extracts of herbs have not been documented. This study aims to investigate whether organic extracts possess thrombolytic properties with minimal or no toxicity. An in vitro thrombolytic model was used to check the clot lysis effect of six Bangladeshi herbal extracts viz., Ageratum conyzoides L., Clausena suffruticosa, Leea indica (Burm.f.) Merr., Leucas aspera Willd., Senna sophera L. Roxb., and Solanum torvum Swartz. using streptokinase as a positive control and water as a negative control. Briefly, venous blood drawn from twenty healthy volunteers was allowed to form clots which were weighed and treated with the test plant materials to disrupt the clots. Weight of clot after and before treatment provided a percentage of clot lysis. Cytotoxicity was screened by brine shrimp lethality bioassay using vincristine sulfate as positive control. Using an in vitro thrombolytic model, Ageratum conyzoides, Clausena suffruticosa, Leea indica, Leucas aspera, Senna sophera and Solanum torvum showed 18.12 ± 2.34%, 48.9 ± 2.44%, 39.30 ± 0.96%, 37.32 ± 2.00%, 31.61 ± 2.97% and 31.51 ± 0.57% and clot lysis respectively. Among the herbs studied Clausena suffruticosa, Leea indica and Leucas aspera showed very significant (p Solanum torvum showed LC50 values 508.86 ± 6.62,41.16 ± 1.26, 2.65 ± 0.16, 181.67 ± 1.65, 233.37 ± 7.74 and 478.40 ± 3.23 μg/ml, respectively, with reference to vincristine sulfate (LC50 0.76 ± 0.04). Through our study it was found

  19. Phenolic Composition, Antioxidant Capacity and in vitro Cytotoxicity Assessment of Fruit Wines

    Directory of Open Access Journals (Sweden)

    Ana Ljevar

    2016-01-01

    Full Text Available Fruit wines contain a wide range of phenolic compounds with biological effects, but their composition and potential benefits to human health have been studied to the much lesser extent compared to grape wines. The aim of this research is to study the phenolic profile of different types of fruit wines and to evaluate their antioxidant and biological potential. Commercially available fruit wines from blackberry, cherry, raspberry, blackcurrant, strawberry and apple produced in Croatia were analyzed. To the best of our knowledge, this study represents the first comprehensive screening of Croatian fruit wines. The phenolic characterization was performed by spectrophotometry and HPLC-PDA/MS analysis. The antioxidant capacity was determined using ABTS and FRAP assays, while in vitro biological activity was analyzed by the cytotoxicity assay on human breast (MCF-7, colon (CaCo-2 and cervical (HeLa cancer cell lines. Among the studied fruit wines, blackberry, cherry and blackcurrant wines contained the highest amount of total phenolics, while the last two also contained the highest amount of total anthocyanins. The analysis of individual phenolic compounds showed distinctive phenolic composition of each type of fruit wine, notably as regards anthocyanins. Blackberry, followed by cherry, raspberry and blackcurrant wines also had a significantly higher antioxidant capacity than strawberry and apple wines. Fruit wines inhibited the growth of human cancer cells in vitro in a dose-dependent manner with differing susceptibility among tested cancer cells. Blackberry, cherry, raspberry and blackcurrant wines in the volume ratio of 10 and 20 % showed to be the most effective anti-proliferative agents, with higher susceptibility in HeLa and MCF-7 cells than CaCo-2 cells.

  20. Bactericidal and cytotoxic effects of chloramine-T on wound pathogens and human fibroblasts in vitro.

    Science.gov (United States)

    Kloth, Luther C; Berman, Joseph E; Laatsch, Linda J; Kirchner, Phyllis A

    2007-06-01

    To evaluate cytotoxicity and bactericidal effects of chloramine-T. In vitro study of various concentrations and exposure times to preparations containing human fibroblasts or 1.5 x 10 colony forming units per milliliter (CFU/mL) of 3 gram-positive bacteria-Staphylococcus aureus, methicillin-resistant S aureus, and vancomycin-resistant Enterococcus faecalis-and 2 gram-negative bacteria-Escherichia coli and Pseudomonas aeruginosa-with and without fetal bovine serum present. Percentage reduction of bacterial growth and percentage of viable fibroblasts 48 hours after exposure. All gram-positive growth was reduced by 95% to 100%, regardless of dose, with or without serum. E coli (gram-negative; with/without serum) was reduced 94% to 100% at antiseptic concentrations of 300 and 400 ppm. At 200 ppm, E coli growth was fully inhibited without serum present and by 50% with serum. P aeruginosa (gram-negative) was not significantly affected under any conditions. At 100 and 200 ppm, cell viability remained greater than 90% under all experimental conditions. A 300-ppm, 3-minute exposure to chloramine-T resulted in cell viability of up to 70%, with longer exposures producing lower viabilities. Serum did not affect cell viability in any condition. In vitro, chloramine-T at 200 ppm for 5 to 20 minutes was effective against 3 virulent gram-positive bacteria without fibroblast damage. At 300 ppm and 3 and 5 minutes, 30% of fibroblasts were damaged and 95% to 100 % of E coli were inhibited, respectively.

  1. In vivo and in vitro effects of ozone on murine alveolar macrophages; Interaktion von Maus-Makrophagen und Ozon in vivo und in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Schuermann, W.H.T. [Abt. fuer Pneumologie, Medizinische Hochschule, Hannover (Germany); Emmendoerffer, A. [Fraunhofer Inst. fuer Toxikologie und Aerosol-Forschung, Hannover (Germany); Franke, G. [Fraunhofer Inst. fuer Toxikologie und Aerosol-Forschung, Hannover (Germany); Lohmann-Matthes, M.L. [Fraunhofer Inst. fuer Toxikologie und Aerosol-Forschung, Hannover (Germany); Freihorst, J. [Abt. fuer Paediatrische Pneumologie, Medizinische Hochschule Hannover (Germany); Muhle, H. [Abt. fuer Paediatrische Pneumologie, Medizinische Hochschule Hannover (Germany)

    1994-04-01

    Macrophages from Balb/c mice were exposed both in vivo and in vitro to ozone. Since a 14-day ozone exposure period had not shown significant changes in the functions of alveolar macrophages a 6h exposure was performed in order to exclude possible adaptation effects. However also under these conditions no significant changes were observed neither in terms of macrophage numbers nor in terms of production of TNF, IFN or IL-6. When the animals were challenged intranasally with respiratory syncytial virus however significantly higher virus burden was detected in the ozone exposed mice. In order to identify the cell type or cellular cooperations, which are influenced by ozone and are responsible for the increased virus load, an in vitro ozone-exposure chamber was established. Alveolar macrophages exposed in vitro to 1,5 and 0,5 ppm ozone had a clearly decreased capability to perform phagocytosis-associated killing of Leishmania parasites and to produce IL-6. Further parameters will be studied. Type II pneumocyte cultures have been established and will be studied alone and in interaction with macrophages under ozone-exposure conditions. (orig.) [Deutsch] Makrophagen von Balb/c Maeusen wurden in vivo und in vitro Ozon exponiert. Nachdem eine 14-taegige in vivo Ozonexposition keinen wesentlichen Einfluss auf die Funktionen der Alveolarmakrophagen zeigte, wurde, um moegliche Adaptationseffekte auszuschliessen, eine 6-Std. Exposition durchgefuehrt. Auch hier zeigten die von uns gemessenen Parameter (Tumornecrosisfaktor, Interferon, Interleukin 6, Anzahl der Alveolarmakrophagen) weder spontan noch auch nach Stimulation mit LPS oder Respiratory Syncytial Virus (RSV) einen signifikanten Unterschied. Wurden die Maeuse aber mit Virus infiziert, so wiesen die Lungen eine deutlich hoehere Virusbelastung auf. Um zu klaeren, welcher Zelltyp oder was fuer Zellkooperationen so auf Ozon reagieren, dass es zu einer erhoehten Virusbelastung kommt, haben wir eine in vitro

  2. Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro.

    Science.gov (United States)

    Bonaterra, Gabriel A; Driscoll, David; Schwarzbach, Hans; Kinscherf, Ralf

    2017-03-15

    Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.

  3. Carbohydrate-conjugate heterobimetallic complexes: synthesis, DNA binding studies, artificial nuclease activity and in vitro cytotoxicity.

    Science.gov (United States)

    Tabassum, Sartaj; Khan, Rais Ahmad; Arjmand, Farukh; Aziz, Mubashira; Juvekar, Aarti S; Zingde, Surekha M

    2011-12-27

    New carbohydrate-conjugated heterobimetallic complexes [C(32)H(62)N(10)O(8)NiSn(2)Cl(4)]Cl(2)(1) and [C(32)H(62)N(10)O(8)CuSn(2)Cl(4)]Cl(2) (2) were synthesized and characterized by spectroscopic (IR, (1)H, (13)C, and (119)Sn NMR, EPR, UV-vis, ESI-MS) and analytical methods. The interaction studies of 2 with CT DNA were studied by using various biophysical techniques, which showed high binding affinity of 2 toward CT DNA. The extent of interaction was further confirmed by the interaction of 2 with the nucleotides viz.; 5'-AMP, 5'-CMP, 5'-GMP, and 5'-TMP, by absorption titration. (1)H, (31)P, (119)Sn NMR spectroscopy further validated the interaction mode of 2 with 5'-GMP. The electrophoresis pattern observed for 2 with supercoiled pBR322 DNA, exhibited significantly good nuclease activity following oxidative pathway. The preferential selectivity of 2 toward the major groove was observed on interaction of 2 with pBR322 DNA, in the presence of standard groove binders viz.; DAPI and methyl green. Additionally, in vitro antitumor activity of 2 was evaluated on a panel of human cancer cell lines, exhibiting remarkable cytotoxicity activity against Colo205 (colon) and MCF7 (breast) cell lines with GI(50) values <10 μg/mL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica papaya Leaf Extracts.

    Science.gov (United States)

    Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K

    2015-12-24

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  5. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica Papaya Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Thao T. Nguyen

    2015-12-01

    Full Text Available In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  6. Synthesis and spectroscopic characterization of fluorescent 4-aminoantipyrine analogues: Molecular docking and in vitro cytotoxicity studies

    Science.gov (United States)

    Premnath, D.; Mosae Selvakumar, P.; Ravichandiran, P.; Tamil Selvan, G.; Indiraleka, M.; Jannet Vennila, J.

    2016-01-01

    Two substituted aromatic carbonyl compounds (compounds 1 and 2) of 4-aminoantipyrine were synthesized by condensation of fluorine substituted benzoyl chlorides and 4-aminoantipyrine. The structures of synthesized derivatives were established on the basis of UV-Vis, IR, and Mass, 1H, 13C NMR and Fluorescence spectroscopy. Both compounds showed significant fluorescence emission and two broad emission bands were observed in the region at 340 nm and 450 nm on excitation at 280 nm. Theoretically to prove that the molecule has anticancer activity against cervical cancer cells, the compounds were analyzed for molecular docking interactions with HPV16-E7 target protein by Glide protocol. Furthermore, 4-aminoantipyrine derivatives were evaluated for their in vitro cytotoxic activity against human cervical cancer cells (SiHa) by MTT assay. Compound 1 showed two fold higher activity (IC50 = 0.912 μM) over compound 2, and its activity was similar to that of Pazopanib, suggesting that although the two compounds were chemically very similar the difference in substituent on the phenyl moiety caused changes in properties.

  7. In vitro studies on the binding, antioxidant, and cytotoxic actions of punicalagin.

    Science.gov (United States)

    Kulkarni, Anand P; Mahal, H S; Kapoor, S; Aradhya, S M

    2007-02-21

    The protective bioactivity of punicalagin, a high molecular weight polyphenol isolated from pomegranate fruit pith and carpellary membrane, against oxidative damages to lipids, amino acids constituting the proteins, and guanosine as a model for DNA has been investigated. The ABTS*-, guanosine, and tryptophan radical generated pulse radiolytically were repaired by punicalagin, k = (0.9-15) x 10(7) dm3 mol-1 s-1. The results are rationalized on the basis of the scavenging activity of punicalagin against various one-electron oxidizing radicals, namely, .OH, N3., and NO2. . The formation of the transient species in these reactions and the rate constants of the scavenging reactions have been probed using a time-resolved kinetic spectrophotometric technique. The antioxidant action of punicalagin is expressed not only through its scavenging reactions but also by its ability to form metal chelates. Binding of punicalagin with bovine serum albumin and metal ions such as iron and copper revealed different binding affinities, whereas its binding with DNA was very weak and nonspecific. In vitro cytotoxic studies against three cell lines, namely, Vero (normal African green monkey kidney cell line), Hep-2 (human larynx epithelial cancer cell line), and A-549 (human small cell lung carcinoma cell line) showed that this polyphenol is toxic only at higher concentration.

  8. Production of cyanobacterial toxins from two Nostoc species (Nostocales and evaluation of their cytotoxicity in vitro

    Directory of Open Access Journals (Sweden)

    RUMEN MLADENOV

    2012-01-01

    Full Text Available Cyanobacteria are among the oldest autotrophic organisms with cosmopolitan distribution and known as producers of secondary metabolites with toxic properties named "cyanotoxins". Studies with respect to toxin production of genus Nostoc are yet limited. In the present study we have investigated two Nostoc species (Nostoc linckia and Nostoc punctiforme for production of intracellular and/or extracellular compounds with cytotoxic potential. Extracts and algal growth media were assessed by different in vitro tests using freshly established mouse primary cultures from different tissues and one fish cell line. Our data showed that the mouse cells are more sensitive to toxic compounds than the fish cells. Both Nostoc species produced intracellular and extracellular bioactive compounds with different effects on mouse and fish cells. The presence of cyanotoxins as anatoxin-a and microcystins/nodularin was confirmed by HPLC and ELISA analyses. Therefore, Nostoc species are not only sources of bioactive compounds with therapeutic action, but they can be a potential hazard to aquatic systems as well as to animal and human health.

  9. In-vitro cytotoxicity and cellular uptake studies of luminescent functionalized core-shell nanospheres

    Directory of Open Access Journals (Sweden)

    Anees A. Ansari

    2017-09-01

    Full Text Available Monodispersed luminescent functionalized core-shell nanospheres (LFCSNs were successfully synthesized and investigated for their cyto-toxic effect on human liver hepatocellular carcinoma cell line (HepG2 cells by adopting MTT, DNA Ladder, TUNEL assay and qPCR based gene expressions through mRNA quantifications. The TUNEL and DNA ladder assays suggested an insignificant apoptosis in HepG2 cells due to the LFCSNs treatment. Further, the qPCR results also show that the mRNA expressions of cell cycle checkpoint gene p53 and apoptosis related gene (caspase-9 was up-regulated, while the antiapoptotic gene BCl-2 and apoptosis related genes FADD and CAS-3 (apoptosis effecter gene were down-regulated in the LFCSNs treated cells. The nanospheres that were loaded into the cells confirm their intracellular uptake by light and fluorescent spectro-photometry and microscopy imaging analysis. The loaded nanospheres demonstrate an absolute resistance to photo-bleaching, which were applied for dynamic imaging to real-time tracking in-vitro cell migratory activity for continuous 24 and 48 h durations using a time-lapsed fluorescent microscope. These properties of LFCSNs could therefore promote applications in the area of fluorescent protein biolabeling and drug-delivery.

  10. In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review

    Energy Technology Data Exchange (ETDEWEB)

    Valdiglesias, Vanessa [University of A Coruna, Toxicology Unit, Department of Psychobiology, A Coruna (Spain); University of A Coruna, Department of Cell and Molecular Biology, Faculty of Sciences, A Coruna (Spain); Pasaro, Eduardo; Laffon, Blanca [University of A Coruna, Toxicology Unit, Department of Psychobiology, A Coruna (Spain); Mendez, Josefina [University of A Coruna, Department of Cell and Molecular Biology, Faculty of Sciences, A Coruna (Spain)

    2010-05-15

    Selenium is an oligoelement with essential biological functions. Diet is the most important selenium source, and intake of this element depends on its concentration in food and amount of food consumed. Among the essential human micronutrients, selenium is peculiar due to its beneficial physiological activity and toxicity. It may have anticarcinogenic effects at low concentrations, whereas at concentrations higher than those necessary for nutrition, it can be genotoxic and carcinogenic. Because of that, selenium is probably the most widely investigated of all the oligonutrients. In the last decades, there has been increasing interest in several nutritional Se compounds because of their environmental, biological, and toxicological properties, particularly for their cancer- and disease-preventing activities. This article gives an overview of the results of in vitro studies on mutagenicity, genotoxicity, cytotoxicity, and DNA repair conducted within the last decades with different organic and inorganic selenium compounds. Results from these studies provide a better knowledge on the selenium activity and help to elucidate the reasons underlying its duality in order to regulate its correct use in nutrition and clinic. (orig.)

  11. Novel pyrrole derivatives bearing sulfonamide groups: Synthesis in vitro cytotoxicity evaluation, molecular docking and DFT study

    Science.gov (United States)

    Bavadi, Masoumeh; Niknam, Khodabakhsh; Shahraki, Omolbanin

    2017-10-01

    The synthesis of new derivatives of pyrrole substituted sulfonamide groups is described. The in vitro anticancer activity of these pyrroles was evaluated against MCF7, MOLT-4 and HL-60 cells using MTT assay. The target compounds showed inhibitory activity against tested cell lines. Among the compounds, compound 1a exhibited good cytotoxic activity. The potential of this analog to induce apoptosis was confirmed in a nuclear morphological assay by Hoechst 33258 staining in the PC-12 cells. Finally, molecular docking was performed to determine the probable binding mode of the designed pyrrole derivatives into the active site of FGFR1 protein. DFT calculations were carried out at the B3LYP levels of theory with 6-31+G (d,p) basis set for compound 1a. The point group (C1) of it was obtained based on the optimized structures; the calculation of the FT-IR vibrational frequencies, 1H NMR and 13C NMR chemical shifts of the compound were carried out and compared with those obtained experimentally.

  12. Cardiorenal Syndrome Type 5: In Vitro Cytotoxicity Effects on Renal Tubular Cells and Inflammatory Profile

    Directory of Open Access Journals (Sweden)

    Alessandra Brocca

    2015-01-01

    Full Text Available Background. Cardiorenal Syndrome Type 5 (CRS Type 5 reflects concomitant cardiac and renal dysfunctions in the setting of a wide spectrum of systemic disorders. Our aim was to study in vitro effects of CRS Type 5 plasma on renal tubular cells (RTCs, in terms of cellular death and the characterization of inflammatory plasma profile in these patients. Material and Methods. We enrolled 11 CRS Type 5 patients from ICU and 16 healthy controls. Plasma from patients and controls was incubated with renal tubular cells (RTCs and cell death was evaluated. Plasma cytokines were detected. Results. RTCs incubated with CRS Type 5 plasma showed significantly higher apoptosis and necrosis with respect to controls. Plasma cytokine profile of CRS Type 5 patients was significantly different from controls: we observed the production of pro- and anti-inflammatory mediators in these patients. Caspase-3, caspase-8, and caspase-9 were activated in cells treated with CRS Type 5 plasma compared to controls. Conclusions. Our results underline the cytotoxic effect of CRS Type 5 mediators on RTC viability, probably due to the activation of both intrinsic and extrinsic pathways of apoptosis and to the deregulation of cytokine release. The consequence may be the damage of distant organs which lead to the worsening of condition of patients.

  13. Cytotoxicity of Portuguese Propolis: The Proximity of the In Vitro Doses for Tumor and Normal Cell Lines

    Directory of Open Access Journals (Sweden)

    Ricardo C. Calhelha

    2014-01-01

    Full Text Available With a complex chemical composition rich in phenolic compounds, propolis (resinous substance collected by Apis mellifera from various tree buds exhibits a broad spectrum of biological activities. Recently, in vitro and in vivo data suggest that propolis has anticancer properties, but is the cytoxicity of propolis specific for tumor cells? To answer this question, the cytotoxicity of phenolic extracts from Portuguese propolis of different origins was evaluated using human tumor cell lines (MCF7—breast adenocarcinoma, NCI-H460—non-small cell lung carcinoma, HCT15—colon carcinoma, HeLa—cervical carcinoma, and HepG2—hepatocellular carcinoma, and non-tumor primary cells (PLP2. The studied propolis presented high cytotoxic potential for human tumor cell lines, mostly for HCT15. Nevertheless, excluding HCT15 cell line, the extracts at the GI50 obtained for tumor cell lines showed, in general, cytotoxicity for normal cells (PLP2. Propolis phenolic extracts comprise phytochemicals that should be further studied for their bioactive properties against human colon carcinoma. In the other cases, the proximity of the in vitro cytotoxic doses for tumor and normal cell lines should be confirmed by in vivo tests and may highlight the need for selection of specific compounds within the propolis extract.

  14. The in vitro cytotoxicity of eluates from dentin bonding resins and their effect on tyrosine phosphorylation of L929 cells.

    Science.gov (United States)

    Kaga, M; Noda, M; Ferracane, J L; Nakamura, W; Oguchi, H; Sano, H

    2001-07-01

    The aim of this study was to examine the relationship between the monomers eluted from dentin-bonding systems and their cytotoxicities, and to investigate the biochemical effect of the monomers on tyrosine phosphorylation, especially relating to the cell growth activity, of L929 cells in vitro. The primers, uncured or cured adhesives (3M and Kuraray) were tested to determine the cytotoxicity of confluent L929 cells cultured by Eagle's MEM medium supplemented with 10% FCS. The area of cells affected by the eluted monomers were evaluated with an image analyzer and the concentrations of monomers eluted into the medium were measured with high performance liquid chromatography (HPLC) after 24h incubation. The protein composition of the stimulated cells was compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tyrosine phosphorylation was detected by Western blot. The primer and uncured adhesives revealed variable cytotoxicities. 2-hydroxyethyl-methacrylate (HEMA) was the major component eluted from uncured primers and adhesives. Small amounts of triethylene glycol dimethacrylate (TEGDMA) were also detected from the uncured adhesives. The cytotoxicities of the adhesives decreased as photo activation time increased. The amount of monomers eluted from the cured adhesives was almost undetectable and did not reach a sufficient concentration to suppress cell viability or cell growth. The cytotoxicities of the primers and adhesives correlated well with the amounts of either HEMA or TEGDMA eluted. Moreover, a high concentration of HEMA (4 mg/ml medium) affected intracellular tyrosine phosphorylation, which is related to cellular activities. Although the monomers present in dentin bonding resins are cytotoxic to L929 cells, the amount from cured bonding resin is very small and does not provide a cytotoxic dose. This data does however suggest that clinical exposure to the uncured primers and adhesives of dentin bonding resins should be minimized.

  15. Interaction of standardized mistletoe (Viscum album) extracts with chemotherapeutic drugs regarding cytostatic and cytotoxic effects in vitro

    OpenAIRE

    Weissenstein, Ulrike; Kunz, Matthias; Urech, Konrad; Baumgartner, Stephan

    2014-01-01

    Background Given the importance of complementary and alternative medicine (CAM) to cancer patients, there is an increasing need to learn more about possible interactions between CAM and anticancer drugs. Mistletoe (Viscum album L.) belongs to the medicinal herbs that are used as supportive care during chemotherapy. In the in vitro study presented here the effect of standardized mistletoe preparations on the cytostatic and cytotoxic activity of several common conventional chemotherapeutic drug...

  16. Quartz-Containing Ceramic Dusts: In vitro screening of the cytotoxic, genotoxic and pro-inflammatory potential of 5 factory samples

    Energy Technology Data Exchange (ETDEWEB)

    Ziemann, C; Creutzenberg, O [Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover (Germany); Jackson, P [CERAM Research Ltd., Stoke-on-Trent (United Kingdom); Brown, R [TOXSERVICES, Stretton (United Kingdom); Attik, G; Rihn, B H, E-mail: christina.ziemann@item.fraunhofer.d [Nancy-University, Faculte de Pharmacie, Nancy (France)

    2009-02-01

    Inhalation of some respirable crystalline silica (MMAD < approx. 4 mum) leads to inflammatory and malignant diseases. Comprehensive physicochemical/biological data and suitable in vitro/in vivo methods may distinguish between more or less harmful quartz-varieties. Within the European Collective Research Project SILICERAM an in vitro screening battery was established to evaluate cytotoxicity (LDH-release, MTT-assay), genotoxicity (Comet-assay) and pro-inflammatory potential (PGE{sub 2}-liberation, TNF-a mRNA expression) of 5 respirable quartz-containing dusts from ceramic plants: brickwork (BR: 7.8% quartz), tableware granulate/cast (TG/TC: 5.8%/3.1%), tiles (TI: 8.1%), refractory (RF: 3.7%). DQ12 (87% a-quartz) and Al{sub 2}O{sub 3} were used as particulate positive and negative controls, respectively. Primary rat alveolar macrophages and the macrophage cell line NR8383 served as model systems. Aluminium lactate was used as inhibitor of biologically active silica, enabling differentiation of silica- and non-specific toxicity. At 200mug/cm{sup 2} (2h) the dusts did not alter significantly LDH-release (except TC), whereas the MTT-assay demonstrated the mainly quartz-independent rank order: DQ12>RF>TG>Ti>BR>TC>Al{sub 2}O{sub 3}. DNA-damage was maximal for BR and TI followed by DQ12>TG>TC>RF>Al{sub 2}O{sub 3}. All dusts induced PGE{sub 2}-liberation (DQ12>BR>TC>TG>Ti>RF>Al{sub 2}O{sub 3}) at 50mug/cm{sup 2} (4h), but TNF-a mRNA (10mug/cm{sup 2}, 24h) was only increased by DQ12, TG (quartz-dependently), and TC. In conclusion, these in vitro tests were an adequate approach to screen the toxic potential of quartz-containing ceramic dusts, but the quartz-content was too low to differentiate the various quartz-varieties.

  17. Distinct Macrophage Fates after in vitro Infection with Different Species of Leishmania: Induction of Apoptosis by Leishmania (Leishmania) amazonensis, but Not by Leishmania (Viannia) guyanensis.

    Science.gov (United States)

    DaMata, Jarina Pena; Mendes, Bárbara Pinheiro; Maciel-Lima, Kátia; Menezes, Cristiane Alves Silva; Dutra, Walderez Ornelas; Sousa, Lirlândia Pires; Horta, Maria Fátima

    2015-01-01

    Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection.

  18. Distinct Macrophage Fates after in vitro Infection with Different Species of Leishmania: Induction of Apoptosis by Leishmania (Leishmania amazonensis, but Not by Leishmania (Viannia guyanensis.

    Directory of Open Access Journals (Sweden)

    Jarina Pena DaMata

    Full Text Available Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6, whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection.

  19. Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators.

    Science.gov (United States)

    Marcinkiewicz, J; Grabowska, A; Bereta, J; Stelmaszynska, T

    1995-12-01

    Taurine (Tau) is an exceptionally abundant free amino acid in the cytosol of inflammatory cells and especially in neutrophils. Taurine protects cells from self-destruction during processes that generate oxidants. The major function of Tau in leukocytes is to trap chlorinated oxidants (HOCl). Taurine reacts with HOCl to produce the long-lived compound taurine chloramine (TauCl). Previously, we have shown that other products of the neutrophil chlorinating system are able to modify functions of macrophages. In this study, we investigated in vitro the influence of TauCl on the generation of inflammatory mediators by activated macrophages. We have found that TauCl inhibited the generation of nitric oxide, prostaglandin E2, tumor necrosis factor alpha, and interleukin-6, but TauCl slightly enhanced the release of IL-1 alpha. The formation of nitrites by interferon-gamma-activated macrophages was inhibited by TauCl in a dose-dependent manner. Taurine chloramine also reduced the level of inducible nitric oxide synthase (iNOS) mRNA in macrophages, in a similar concentration-dependent manner. Although our experiments do not exclude a direct effect of TauCl on enzymatic activity of iNOS, the inhibition of iNOS expression seems to be the major mechanism responsible for suppression of NO formation. Finally, we discuss the biological role of TauCl in vivo. We suggest that at the site of inflammation TauCl works as a specific signaling molecule of activated neutrophils that coordinates the generation of inflammatory mediators in macrophages.

  20. Assessment of the in vitro cytotoxicity and in vivo anti-tumor activity of the alcoholic stem bark extract/fractions of Mimusops elengi Linn

    National Research Council Canada - National Science Library

    Kumar, Harish; Savaliya, Mihir; Biswas, Subhankar; Nayak, Pawan G; Maliyakkal, Naseer; Manjunath Setty, M; Gourishetti, Karthik; Pai, K Sreedhara Ranganath

    2016-01-01

    .... Extract/fractions were prepared and in vitro cytotoxicity was assessed using SRB assay. Most effective fractions were subjected to fluorescence microscopy based acridine orange/ethidium bromide (AO/EB...

  1. An In Vitro Model for the Study of the Macrophage Response Upon Trichophyton rubrum Challenge.

    Science.gov (United States)

    Yoshikawa, Fabio Seiti Yamada; Ferreira, Lucas Gonçalves; de Almeida, Fernando Gonçalves; de Almeida, Sandro Rogerio

    2017-02-01

    Diversity in the macrophage models currently employed in immunology studies may lead to opposed results and interpretations. In this study, we aimed to analyze the suitability of J774 macrophage-like cells as a model for the interaction between the dermatophyte Trichophyton rubrum and macrophages. J774 cells were competent in fungal phagocytosis, but succumbed to hyphal growth. Nevertheless, they could also secrete IL-1β in response to the dermatophyte. On the opposite direction, inflammatory, thioglycollate-induced peritoneal macrophages did not succumb to fungal growth and showed no significant IL-1β production. The proteomic profiling of these cells uncovered vimentin and plastin-2 as proteins whose abundance was altered by the fungal interaction. Our study indicates that this cell line could be an interesting tool in the investigation of T. rubrum infection biology.

  2. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays.

    Science.gov (United States)

    Guo, Xiaoqing; Li, Yan; Yan, Jian; Ingle, Taylor; Jones, Margie Yvonne; Mei, Nan; Boudreau, Mary D; Cunningham, Candice K; Abbas, Mazhar; Paredes, Angel M; Zhou, Tong; Moore, Martha M; Howard, Paul C; Chen, Tao

    2016-11-01

    The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.

  3. Effects of organic extracts of six Bangladeshi plants on in vitro thrombolysis and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Rahman M Atiar

    2013-01-01

    Full Text Available Abstract Background Thrombus formed in blood vessels lead to atherothrombotic diseases such as myocardial or cerebral infarction. Thrombolytic agents are used to dissolve the already formed clots in the blood vessels; however, these drugs sometimes cause serious and fatal consequences. Herbal preparations have been used since ancient times for the treatment of several diseases although they show little toxicity in some cases. Aqueous extracts of herbs used in thrombolysis have been reported before with cytotoxic data, however, the organic extracts of herbs have not been documented. This study aims to investigate whether organic extracts possess thrombolytic properties with minimal or no toxicity. Methods An in vitro thrombolytic model was used to check the clot lysis effect of six Bangladeshi herbal extracts viz., Ageratum conyzoides L., Clausena suffruticosa, Leea indica (Burm.f. Merr., Leucas aspera Willd., Senna sophera L. Roxb., and Solanum torvum Swartz. using streptokinase as a positive control and water as a negative control. Briefly, venous blood drawn from twenty healthy volunteers was allowed to form clots which were weighed and treated with the test plant materials to disrupt the clots. Weight of clot after and before treatment provided a percentage of clot lysis. Cytotoxicity was screened by brine shrimp lethality bioassay using vincristine sulfate as positive control. Results Using an in vitro thrombolytic model, Ageratum conyzoides, Clausena suffruticosa, Leea indica, Leucas aspera, Senna sophera and Solanum torvum showed 18.12 ± 2.34%, 48.9 ± 2.44%, 39.30 ± 0.96%, 37.32 ± 2.00%, 31.61 ± 2.97% and 31.51 ± 0.57% and clot lysis respectively. Among the herbs studied Clausena suffruticosa, Leea indica and Leucas aspera showed very significant (p Ageratum conyzoides, Clausena suffruticosa, Leea indica, Leucas aspera, Senna sophera and Solanum torvum showed LC50 values 508.86 ± 6.62,41.16 ± 1.26, 2.65 ± 0.16, 181.67 ± 1.65, 233

  4. Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity.

    Science.gov (United States)

    Privalova, L I; Katsnelson, B A; Osipenko, A B; Yushkov, B N; Babushkina, L G

    1980-04-01

    The adaptation of the alveolar phagocytosis response to the quantitative and qualitative features of dust deposited during inhalation consists not only in enhanced recruitment of alveolar macrophages (AM), but also in adding a more or less pronounced neutrophil leukocyte (NL) recruitment as an auxiliary participant of particle clearance. The NL contribution to clearance is especially typical for response to cytotoxic particles (quartz, in particular). An important feature of the adaptation considered is the limitation of the number of AM and NL recruited when an efficient clearance can be achieved by a lesser number of cells due to increased AM reistance to the damaging actin of phagocytized particles. The main mechanism providing the adequacy of the alveolar phagocytosis response is its self-regulation thrugh the products of macrophage breakdown (PMB). In a series of experiments with intraperitoneal and intratracheal injections of syngenetic PMB into rats and mice, it was shown that these products stimulate respiration and migration of phagocytic cells, their dose-dependent attraction to the site of PMB formation with the predominant NL contribution, increasing with the increase of amount of PMB, the AM and NL precursor cells recruitment from reserve pools, and the replenishment of these reserves in the process of hemopoiesis. At least some of the above effects are connected with the action of the lipid components of PMB. The action of specialized regulative systems of the organism can modify the response to PMB, judging by the results obtained by hydrocortisone injection. Autocontrol of alveolar phagocytosis requires great care in attempts at artificial stimulation of this process, as an excessive cell recruitment may promote the retention of particles in lungs.

  5. Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro

    Directory of Open Access Journals (Sweden)

    Sandro Santucci

    2013-02-01

    Full Text Available Owing to their radical scavenging and UV-filtering properties, ceria nanoparticles (CeO2-NPs are currently used for various applications, including as catalysts in diesel particulate filters. Because of their ability to filter UV light, CeO2-NPs have garnered significant interest in the medical field and, consequently, are poised for use in various applications. The aim of this work was to investigate the effects of short-term (24 h and long-term (10 days CeO2-NP exposure to A549, CaCo2 and HepG2 cell lines. Cytotoxicity assays tested CeO2-NPs over a concentration range of 0.5 μg/mL to 5000 μg/mL, whereas genotoxicity assays tested CeO2-NPs over a concentration range of 0.5 μg/mL to 5000 μg/mL. In vitro assays showed almost no short-term exposure toxicity on any of the tested cell lines. Conversely, long-term CeO2-NP exposure proved toxic for all tested cell lines. NP genotoxicity was detectable even at 24-h exposure. HepG2 was the most sensitive cell line overall; however, the A549 line was most sensitive to the lowest concentration tested. Moreover, the results confirmed the ceria nanoparticles’ capacity to protect cells when they are exposed to well-known oxidants such as H2O2. A Comet assay was performed in the presence of both H2O2 and CeO2-NPs. When hydrogen peroxide was maintained at 25 μM, NPs at 0.5 μg/mL, 50 μg/mL, and 500 μg/mL protected the cells from oxidative damage. Thus, the NPs prevented H2O2-induced genotoxic damage.

  6. Proinflammatory effects of bacterial lipoprotein on human neutrophil activation status, function and cytotoxic potential in vitro.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    Bacterial lipoprotein (BLP) is the most abundant protein in gram-negative bacterial cell walls, heavily outweighing lipopolysaccharide (LPS). Herein we present findings demonstrating the potent in vitro effects of BLP on neutrophil (PMN) activation status, function, and capacity to transmigrate an endothelial monolayer. PMNs are the principal effectors of the initial host response to injury or infection and constitute a significant threat to invading bacterial pathogens. The systemic inflammatory response syndrome (SIRS) is characterised by significant host tissue injury mediated, in part, by uncontrolled regulation of PMN cytotoxic activity. We found that BLP-activated human PMN as evidenced by increased CD11b\\/CD18 (Mac-1) expression. Up-regulation of PMN Mac-1 in response to BLP occurred independently of membrane-bound CD14 (mCD14). A similar up-regulation of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells was observed whilst E-Selectin expression was unaffected. PMN transmigration across a human umbilical vein endothelial cell (HUVEC) monolayer was markedly increased after treating either PMN\\'s or HUVEC independently with BLP. This increased transmigration did not occur as a result of any direct effect of BLP on HUVEC monolayer permeability, assessed objectively using the passage of FITC-labeled Dextran-70. BLP primed PMN for enhanced respiratory burst and superoxide anion production in response to PMA, but did not influence phagocytosis of opsonized Escherichia coli. BLP far exceeds LPS as a gram-negative bacterial wall component, these findings therefore implicate BLP as an additional putative mediator of SIRS arising from gram-negative infection.

  7. An In Vitro Assessment of Antimicrobial and Cytotoxic Effects of Nanosilver

    Directory of Open Access Journals (Sweden)

    Rokhsareh Sadeghi

    2015-10-01

    Full Text Available Background: The antimicrobial activity of silver nanoparticles has been investigated in medical fields in recent years, but there are few studies regarding its effect on oral microorganisms. The aim of the present study was to evaluate the in vitro antimicrobial and toxicity properties of nanosilver against two dental plaque microorganisms  and Human Gin- gival Fibroblast (HGF cell line.Methods: Antibacterial effects of nanosilver colloidal solution were de-termined by minimal inhibitory concentration (MIC and minimal bacte- ricidal   concentration   (MBC   using  microdilution   method.   Standard strains of Streptococcus sanguis and Actinomyces viscosus were used. For toxicity assessment,  MTT  and LDH  tests were performed  under  con- trolled conditions. Different concentrations of nanosilver were prepared and their toxic effects  on HGF were determined  after 24, 48 and 72 hours.Results: The MIC of nanosilver solution for S. sanguis and A. viscosuswere 16 and 4 µ g/ml, respectively. The MBC of nanosilver was 64 µ g/ml for S. sanguis and 16 µ g/ml for A. viscosus. MTT results showed that after 24 hours the concentrations of ≥ 0.5 µ g/ml of nanosilver solution affected cell viability when compared with control group. After 48 and 72 hours only the concentration of  ≥ 5 µ g/ml showed significant effect on cultured cell viability. LDH release test demonstrated toxic effect only after 48, 72 hours by 20 and 50 µ g/ml of nanosilver.Conclusion: The results demonstrated that beside its antibacterial activityagainst S. sanguis and A. viscosus, nanosilver mediated a concentration and time dependent cytotoxicity on HGF.

  8. Cartilage inflammation and degeneration is enhanced by pro-inflammatory (M1) macrophages in vitro, but not inhibited directly by anti-inflammatory (M2) macrophages

    NARCIS (Netherlands)

    L. Utomo (Lizette); Y.M. Bastiaansen-Jenniskens (Yvonne); J.A.N. Verhaar (Jan); G.J.V.M. van Osch (Gerjo)

    2016-01-01

    textabstractObjective Macrophages play a crucial role in the progression of osteoarthritis (OA). Their phenotype may range from pro-inflammatory to anti-inflammatory. The aim of this study was to evaluate the direct effects of macrophage subtypes on cartilage by culturing macrophage conditioned

  9. Development of an in vitro macrophage system to assess Penicillium marneffei growth and susceptibility to nitric oxide.

    OpenAIRE

    Cogliati, M.; Roverselli, A; Boelaert, J R; Taramelli, D.; Lombardi, L,; Viviani, M A

    1997-01-01

    We investigated the effect of nitric oxide (NO) and reactive nitrogen intermediates on the in vitro growth of Penicillium marneffei both in a cell-free system and in a novel macrophage culture system. In the cell-free system, NO that was chemically generated from NaNO2 in acid media (pH 4 and 5) markedly inhibited the growth of P. marneffei. On the contrary, inhibition of growth did not occur in neutral medium (pH 7.4) in which NO was not produced. P. marneffei conidia were phagocytized by no...

  10. Environmental Legionella spp. collected in urban test sites of South East Queensland, Australia, are virulent to human macrophages in vitro.

    Science.gov (United States)

    Lawrence, Amba; Eglezos, Sofroni; Huston, Wilhelmina

    2016-01-01

    Legionellae are frequent contaminants of potable water supplies, resulting in sporadic infections and occasional outbreaks. Isolates of Legionella were collected from urban test sites within South East Queensland and evaluated for their virulence potential in vitro. Two strains (from the species Legionella londiniensis and Legionella quinlivanii) were demonstrated to have the ability to infect human macrophages, while a strain from the species Legionella anisa did not maintain an infection over the same time course. This suggests that the spectrum of urban environmentally associated Legionella with potential to cause human disease might be greater than currently considered. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. In Vitro Cytotoxicity Test and Surface Characterization of CoCrW Alloy in Artificial Saliva Solution for Dental Applications.

    Science.gov (United States)

    Souza, Klester Santos; Jaimes, Ruth Flavia Vera Villamil; Rogero, Sizue Otta; Nascente, Pedro Augusto de Paula; Agostinho, Silvia Maria Leite

    2016-01-01

    In order to evaluate its application as a dental prosthesis material, a CoCrW alloy was subjected to in vitro cytotoxicity test, surface characterization and electrochemical studies performed in artificial saliva and 0.15 mol.L-1 NaCl medium. The used techniques were: anodic polarization curves, chronoamperometric measurements, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) analysis and X-ray photoelectron spectroscopy (XPS). Cytotoxicity test was also performed. The electrochemical behavior of CoCrW alloy was compared in both studied media, from corrosion potential (Ecorr) to a 600 mV anodic overvoltage. From the electrochemical measurements it was observed that the CoCrW alloy in both media presents only generalized corrosion. SEM and EDS analysis showed that the alloy presents carbide niobium and silicon and manganese oxides as nonmetallic inclusions. XPS results indicated that cobalt does not significantly contribute to the passivating film formation. Cytotoxicity test showed no cytotoxic character of CoCrW alloy. These results suggest that the CoCrW alloy can be used as biomaterial to be applied as prosthesis in dental implants.

  12. Poly(lactic acid) nanoparticles loaded with ursolic acid: Characterization and in vitro evaluation of radical scavenging activity and cytotoxicity.

    Science.gov (United States)

    Antônio, Emilli; Antunes, Osmar Dos Reis; de Araújo, Isis Souza; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2017-02-01

    The purpose of this study was to develop poly(lactic acid) (PLA) nanoparticles containing ursolic acid (UA) by an emulsification-solvent evaporation technique and evaluate the radical scavenging activity over hypochlorous acid (HOCl) and cytotoxicity over erythrocytes and tumor cells. Nanoparticles were successfully obtained and presented mean size of 246nm with spherical or slightly oval morphology, negative zeta potential and 96% of UA encapsulation efficiency. Analyses of FTIR, XRD and DSC-DTG suggest interaction/complexation of UA with PLA matrix and drug amorphization promoted by nanoencapsulation process. Stability study showed that room temperature was the best condition for nanoparticles storage. The in vitro release study showed UA was released from the polymeric matrix over two constants (α, β), suggesting a second order kinetics. After 120h of assay, 60% of UA were released by diffusion. In the HOCl scavenging activity, after 72h of assay UA-loaded nanoparticles presented the same efficacy of free drug. In cytotoxicity test over red blood cells, UA-loaded nanoparticles showed less toxicity on cells than free drug. The cytotoxicity assay over melanoma cells line (B16-F10) showed after 72h that nanoparticles were able to reduce the cell viability in 70%. PLA nanoparticles showed be potential carriers for UA maintaining the antioxidant and antitumor activity of the UA and decreasing its cytotoxicity over normal cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The low molecular weight DNA diffusion assay as an indicator of cytotoxicity for the in vitro comet assay.

    Science.gov (United States)

    Speit, Günter; Vesely, Alexandra; Schütz, Petra; Linsenmeyer, Regina; Bausinger, Julia

    2014-07-01

    The low molecular weight DNA diffusion assay (LMW assay) has been recommended as a measure for cytotoxicity for the in vivo comet assay. To better understand the relationship between effects in the LMW assay, DNA migration in the comet assay and effects in established cytotoxicity tests, we performed in vitro experiments with cultured human cell lines (TK6, A549) and comparatively investigated five test substances (methyl methanesulfonate, (±)-benzo[a]pyrene diol epoxide, sodium dodecyl sulphate, menthol and sodium arsenite). We measured DNA migration (tail intensity) in the comet assay and the frequency of 'hedgehogs' (cells with almost all DNA in the tail), DNA diffusion in the LMW assay, cell viability (trypan blue and fluorescein diacetate/ethidium bromide staining) and inhibition of proliferation (relative cell counts). Our in vitro experiments indicate that effects in the LMW assay occur independently from DNA effects in the comet assay and are not related to the occurrence of hedgehogs. Results from the LMW assay are in good agreement with results from viability assays and seem to allow discriminating genotoxic from non-genotoxic substances when appropriate preparation times are considered. Measurements of cytotoxicity by these methods only at an early preparation time after exposure to genotoxic substances may lead to erroneous results. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Prostaglandins can modify gamma-radiation and chemical induced cytotoxicity and genetic damage in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Das, U.N.; Ramadevi, G.; Rao, K.P.; Rao, M.S. (Nizam' s Institute of Medical Sciences, Hyderabad (India))

    1989-12-01

    The effect of prostaglandin E1, E2, and F2 alpha on gamma-radiation, benzo(a)pyrene and diphenylhydantoin-induced cytotoxicity in vivo and genotoxicity in vitro was investigated. Prostaglandin E1 prevented both cytotoxic and genotoxic actions of all the three agents, where as both PGE2 and PGF2 alpha were ineffective. In fact, it was seen that both PGE2 and PGF2 alpha are genotoxic by themselves. Gamma-linolenic acid and dihomogamma-linolenic acid, the precursor of PGE1 were also as protective as that of PGE1, where as arachidonic acid, the precursor of 2 series PGs, has genotoxic actions to human lymphocytes in vitro. These results suggest that prostaglandins and their precursors can determine the susceptibility of cells to cytotoxic and genotoxic actions of chemicals and radiation. This study is particularly interesting since, it is known that some tumor cells contain excess of PGE2 and PGF2 alpha and many carcinogens can augment the synthesis of 2 series of PGs.

  15. Semisynthesis and in vitro cytotoxic evaluation of new analogues of 1-O-acetylbritannilactone, a sesquiterpene from Inula britannica.

    Science.gov (United States)

    Dong, Shuai; Tang, Jiang-Jiang; Zhang, Cheng-Chen; Tian, Jun-Mian; Guo, Jun-Tao; Zhang, Qiang; Li, He; Gao, Jin-Ming

    2014-06-10

    Semisynthetic analogues of the natural product 1-O-acetylbritannilactone (ABL), a sesquiterpene isolated from the medicinal plant Inula britannica, have been prepared and exhibited significant in vitro cytotoxic activities against four cell lines including three human cancer cell lines (HCT116, HEp-2 and HeLa) and one normal hamster cell line (CHO). Structure-activity relationships indicate that esterification of 6-OH (enhanced lipophilicity) and α-methylene-γ-lactone functionalities play important roles in conferring cytotoxicity. Among the tested compounds, 14 bearing a lauroyl group (12C) at the 6-OH position displayed most potent in vitro cytotoxic activity, with IC50 values between 2.91 and 6.78 μM, comparable to the positive control etoposide (VP-16, IC50 values between 2.13 and 4.79 μM). Moreover, the compound 14 triggered remarkable apoptosis at a low concentration, and induced cell cycle arrest in G2/M phase in HCT116 cells. The biological assays conducted with normal cells (CHO) revealed that all the synthetic compounds are no selective against cancer cell lines tested. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Extracts of Crinum latifolium inhibit the cell viability of mouse lymphoma cell line EL4 and induce activation of anti-tumour activity of macrophages in vitro.

    Science.gov (United States)

    Nguyen, Hoang-Yen T; Vo, Bach-Hue T; Nguyen, Lac-Thuy H; Bernad, Jose; Alaeddine, Mohamad; Coste, Agnes; Reybier, Karine; Pipy, Bernard; Nepveu, Françoise

    2013-08-26

    Crinum latifolium L. (CL) leaf extracts have been traditionally used in Vietnam and are now used all over the world for the treatment of prostate cancer. However, the precise cellular mechanisms of the action of CL extracts remain unclear. To examine the effects of CL samples on the anti-tumour activity of peritoneal murine macrophages. The properties of three extracts (aqueous, flavonoid, alkaloid), one fraction (alkaloid), and one pure compound (6-hydroxycrinamidine) obtained from CL, were studied (i) for redox capacities (DPPH and bleaching beta-carotene assays), (ii) on murine peritoneal macrophages (MTT assay) and on lymphoma EL4-luc2 cells (luciferine assay) for cytotoxicity, (iii) on macrophage polarization (production of ROS and gene expression by PCR), and (iv) on the tumoricidal functions of murine peritoneal macrophages (lymphoma cytotoxicity by co-culture with syngeneic macrophages). The total flavonoid extract with a high antioxidant activity (IC50=107.36 mg/L, DPPH assay) showed an inhibitory action on cancer cells. Alkaloid extracts inhibited the proliferation of lymphoma cells either by directly acting on tumour cells or by activating of the tumoricidal functions of syngeneic macrophages. The aqueous extract induced mRNA expression of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin 6 (IL-6) indicating differentiation of macrophages into pro-inflammatory M1 polarized macrophages. The total flavonoid, alkaloid extracts and an alkaloid fraction induced the expression of the formyl peptide receptor (FPR) on the surface of the polarized macrophages that could lead to the activation of macrophages towards the M1 phenotype. Aqueous and flavonoid extracts enhanced NADPH quinine oxido-reductase 1 (NQO1) mRNA expression in polarized macrophages which could play an important role in cancer chemoprevention. All the samples studied were non-toxic to normal living cells and the pure alkaloid tested, 6-hydroxycrinamidine, was not

  17. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro.

    Science.gov (United States)

    Pazár, Borbála; Ea, Hang-Korng; Narayan, Sharmal; Kolly, Laeticia; Bagnoud, Nathalie; Chobaz, Véronique; Roger, Thierry; Lioté, Frédéric; So, Alexander; Busso, Nathalie

    2011-02-15

    Basic calcium phosphate (BCP) crystals are associated with severe osteoarthritis and acute periarticular inflammation. Three main forms of BCP crystals have been identified from pathological tissues: octacalcium phosphate, carbonate-substituted apatite, and hydroxyapatite. We investigated the proinflammatory effects of these BCP crystals in vitro with special regard to the involvement of the NLRP3-inflammasome in THP-1 cells, primary human monocytes and macrophages, and mouse bone marrow-derived macrophages (BMDM). THP-1 cells stimulated with BCP crystals produced IL-1β in a dose-dependent manner. Similarly, primary human cells and BMDM from wild-type mice also produced high concentrations of IL-1β after crystal stimulation. THP-1 cells transfected with short hairpin RNA against the components of the NLRP3 inflammasome and mouse BMDM from mice deficient for NLRP3, apoptosis-associated speck-like protein, or caspase-1 did not produce IL-1β after BCP crystal stimulation. BCP crystals induced macrophage apoptosis/necrosis as demonstrated by MTT and flow cytometric analysis. Collectively, these results demonstrate that BCP crystals induce IL-1β secretion through activating the NLRP3 inflammasome. Furthermore, we speculate that IL-1 blockade could be a novel strategy to inhibit BCP-induced inflammation in human disease.

  18. Molecular etiology of atherogenesis--in vitro induction of lipidosis in macrophages with a new LDL model.

    Directory of Open Access Journals (Sweden)

    Luis M B B Estronca

    Full Text Available BACKGROUND: Atherosclerosis starts by lipid accumulation in the arterial intima and progresses into a chronic vascular inflammatory disease. A major atherogenic process is the formation of lipid-loaded macrophages in which a breakdown of the endolysomal pathway results in irreversible accumulation of cargo in the late endocytic compartments with a phenotype similar to several forms of lipidosis. Macrophages exposed to oxidized LDL exihibit this phenomenon in vitro and manifest an impaired degradation of internalized lipids and enhanced inflammatory stimulation. Identification of the specific chemical component(s causing this phenotype has been elusive because of the chemical complexity of oxidized LDL. METHODOLOGY/PRINCIPAL FINDINGS: Lipid "core aldehydes" are formed in oxidized LDL and exist in atherosclerotic plaques. These aldehydes are slowly oxidized in situ and (much faster by intracellular aldehyde oxidizing systems to cholesteryl hemiesters. We show that a single cholesteryl hemiester incorporated into native, non-oxidized LDL induces a lipidosis phenotype with subsequent cell death in macrophages. Internalization of the cholesteryl hemiester via the native LDL vehicle induced lipid accumulation in a time- and concentration-dependent manner in "frozen" endolysosomes. Quantitative shotgun lipidomics analysis showed that internalized lipid in cholesteryl hemiester-intoxicated cells remained largely unprocessed in those lipid-rich organelles. CONCLUSIONS/SIGNIFICANCE: The principle elucidated with the present cholesteryl hemiester-containing native-LDL model, extended to other molecular components of oxidized LDL, will help in defining the molecular etiology and etiological hierarchy of atherogenic agents.

  19. In vitro parallel evaluation of antibacterial activity and cytotoxicity of commercially available silver-containing wound dressings

    Directory of Open Access Journals (Sweden)

    Yunoki S

    2015-01-01

    Full Text Available Shunji Yunoki,1 Masushi Kohta,2 Yoshimi Ohyabu,1 Tetsuji Iwasaki2 1Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, 2Medical Engineering Laboratory, ALCARECo., Ltd, Tokyo, Japan Purpose: This study evaluated the in vitro antibacterial activity and cytotoxicity of various commercially available silver-containing dressings (Ag dressing. Methods: Biohesive Ag (hydrocolloid, silver sulfadiazine, Aquacel® Ag (nonwoven fabric, ionic silver [Ag+], Algisite™ Ag (nonwoven fabric, Ag+, Mepilex® Ag (foam, silver sulfate, and PolyMem® Ag (foam, nanocrystalline silver were tested for characteristics of Ag+ release, antibacterial activity, and cytotoxicity. The release of Ag+ was investigated in cell culture medium at immersion periods of 6, 24, and 48 hours. The antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa were accessed by a disc diffusion test. The cytotoxicity was evaluated using V79 cells, by an extraction method. Results: The cytotoxicity was not a monotonic function of the antibacterial activity among the Ag dressings and could not be simply explained by Ag+-release properties. Biohesive Ag was regarded as a slow-release Ag dressing, showing the lowest cytotoxicity, while the antibacterial activity was classified as “strong” or “significant” against the two species of bacteria. Aquacel Ag and Algisite Ag showed higher antibacterial activity and cytotoxic effects, which were supported by the higher Ag+ release. Mepilex Ag showed the highest release of Ag+, and the cytotoxicity was the highest among the Ag dressings. However, the antibacterial activity was classified as “significant” or “no activity” for P. aeruginosa and S. aureus, respectively. PolyMem Ag showed the lowest Ag+ release, and the antibacterial activity classified as “significant" or "no activity” for S. aureus and P. aeruginosa, respectively, whereas the cytotoxicity was similar to those of Aquacel

  20. One-pot synthesis of cinnamylideneacetophenones and their in vitro cytotoxicity in breast cancer cells

    OpenAIRE

    Weldon, David J.; Saulsbury, Marilyn D.; Goh, Joshua; Rowland, Leah; Campbell, Petreena; Robinson, Laijia; Miller, Calvin; Christian, Joshua; Amis, Louisa; Taylor, Nia; Davis, Willie; Evans, Stanley L.; Brantley, Eileen

    2014-01-01

    A series of cinnamylideneacetophenones were synthesized via a modified Claisen-Schmidt condensation reaction and evaluated for cytotoxicity against breast cancer cells using the Alamar Blue™assay. Derivatives 17 and 18 bearing a 2-nitro group on the B ring, exhibited sub-micromolar cytotoxicity in MCF-7 cells (IC50 = 71 and 1.9 nM) respectively. Derivative 17 also displayed sub-micromolar (IC50 = 780 nM) cytotoxicity in MDA-MB-468 cells. Additionally, 17 and 18 displayed significantly less cy...

  1. Docosahexaenoic acid decreases pro-inflammatory mediators in an in vitro murine adipocyte macrophage co-culture model.

    Directory of Open Access Journals (Sweden)

    Anna A De Boer

    Full Text Available Paracrine interactions between adipocytes and macrophages contribute to chronic inflammation in obese adipose tissue. Dietary strategies to mitigate such inflammation include long-chain polyunsaturated fatty acids, docosahexaenoic (DHA and eicosapentaenoic (EPA acids, which act through PPARγ-dependent and independent pathways. We utilized an in vitro co-culture model designed to mimic the ratio of macrophages:adipocytes in obese adipose tissue, whereby murine 3T3-L1 adipocytes were cultured with RAW 264.7 macrophages in direct contact, or separated by a trans-well membrane (contact-independent mechanism, with 125 µM of albumin-complexed DHA, EPA, palmitic acid (PA, or albumin alone (control. Thus, we studied the effect of physical cell contact versus the presence of soluble factors, with or without a PPARγ antagonist (T0070907 in order to elucidate putative mechanisms. After 12 hr, DHA was the most anti-inflammatory, decreasing MCP1 and IL-6 secretion in the contact system (-57%, -63%, respectively, p ≤ 0.05 with similar effects in the trans-well system. The trans-well system allowed for isolation of cell types for inflammatory mediator analysis. DHA decreased mRNA expression (p<0.05 of Mcp1 (-7.1 fold and increased expression of the negative regulator, Mcp1-IP (+1.5 fold. In macrophages, DHA decreased mRNA expression of pro-inflammatory M1 polarization markers (p ≤ 0.05, Nos2 (iNOS; -7 fold, Tnfα (-4.2 fold and Nfκb (-2.3 fold, while increasing anti-inflammatory Tgfβ1 (+1.7 fold. Interestingly, the PPARγ antagonist co-administered with DHA or EPA in co-culture reduced (p ≤ 0.05 adiponectin cellular protein, without modulating other cytokines (protein or mRNA. Overall, our findings suggest that DHA may lessen the degree of MCP1 and IL-6 secreted from adipocytes, and may reduce the degree of M1 polarization of macrophages recruited to adipose tissue, thereby decreasing the intensity of pro-inflammatory cross-talk between adipocytes

  2. Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on alveolar macrophages: The case of green sand mould casting for iron production.

    Science.gov (United States)

    Di Benedetto, Francesco; Gazzano, Elena; Tomatis, Maura; Turci, Francesco; Pardi, Luca A; Bronco, Simona; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Muniz Miranda, Maurizio; Zoleo, Alfonso; Capacci, Fabio; Fubini, Bice; Ghigo, Dario; Romanelli, Maurizio

    2016-07-15

    Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Synthesis, in vitro macrophage response and detoxification of bamboo charcoal beads for purifying blood.

    Science.gov (United States)

    Hsieh, Ming-Fa; Wen, Hsiao-Wei; Shyu, Chih-Liang; Chen, Szu-Hau; Li, Wen-Tyng; Wang, Wei-Chieh; Chen, Wen-Chi

    2010-09-15

    Bamboo charcoal beads (BCBs) were formed by coprecipitating bamboo charcoal particles with chitosan in alkaline solution. The amount of chitosan in the BCBs and their surface properties were measured. When 13-52 mg BCBs were exposed to RAW 264.7 macrophages, the amount of nitric oxide released and the cell viability were close to those of the blank. The amount of cytokine IL-6 secreted by macrophages did not depend on the dose of BCBs but macrophages secreted more TNF-alpha in response to higher doses of BCBs. However, the cytokine levels were relatively low, suggesting the favorable biocompatibility of BCBs. In adsorption experiments, BCBs adsorbed and released bovine serum albumin at particular concentrations, whereas BCBs adsorbed L-phenylalanine without a sign of release. This difference is attributed to the hydrophilicity and the pore size of the BCBs. Finally, the potential of BCBs as biocompatible adsorbents in blood detoxification is considered. (c) 2010 Wiley Periodicals, Inc.

  4. Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro

    Directory of Open Access Journals (Sweden)

    Gabriel A. Bonaterra

    2017-03-01

    Full Text Available Background: Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO-in-water emulsion in human macrophages in vitro. Materials and Methods: Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4 in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. Results: KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL and 75% (at 25 µg/mL, whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL also inhibited (30%, 40%, or 75%, respectively the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. Conclusion: KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.

  5. No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro

    DEFF Research Database (Denmark)

    Bengtson, Stefan; Kling, Kirsten; Madsen, Anne Mette

    2016-01-01

    and in vivo. Here, we report in‐depth physicochemical characterization of three commercial graphene materials, one graphene oxide (GO) and two reduced graphene oxides (rGO) and assess cytotoxicity and genotoxicity in the murine lung epithelial cell line FE1. The studied GO and rGO mainly consisted of 2......Graphene and graphene oxide receive much attention these years, because they add attractive properties to a wide range of applications and products. Several studies have shown toxicological effects of other carbon‐based nanomaterials such as carbon black nanoparticles and carbon nanotubes in vitro...... sulphur, manganese, and silicon. GO generated more ROS than the two rGO materials, but none of the graphene materials influenced cytotoxicity in terms of cell viability and cell proliferation after 24 hr. Furthermore, no genotoxicity was observed using the alkaline comet assay following 3 or 24 hr...

  6. In Vitro Cytotoxic Evaluation of MgO Nanoparticles and Their Effect on the Expression of ROS Genes

    Science.gov (United States)

    Kumaran, Rangarajulu Senthil; Choi, Yong-Keun; Singh, Vijay; Song, Hak-Jin; Song, Kyung-Guen; Kim, Kwang Jin; Kim, Hyung Joo

    2015-01-01

    Water-dispersible MgO nanoparticles were tested to investigate their cytotoxic effects on oxidative stress gene expression. In this in vitro study, genes related to reactive oxygen species (ROS), glutathione S-transferase (GST) and catalase, were quantified using real-time polymerase chain reactions (molecular level) and molecular beacon technologies (cellular level). The monodispersed MgO nanoparticles, 20 nm in size, were used to treat human cancer cell lines (liver cancer epithelial cells) at different concentrations (25, 75 and 150 µg/mL) and incubation times (24, 48 and 72 h). Both the genetic and cellular cytotoxic screening methods produced consistent results, showing that GST and catalase ROS gene expression was maximized at 150 µg/mL nanoparticle treatment with 48 h incubation. However, the genotoxic effect of MgO nanoparticles was not significant compared with control experiments, which indicates its significant potential applications in nanomedicine as a diagnostic and therapeutic tool. PMID:25854426

  7. In Vitro Cytotoxic Evaluation of MgO Nanoparticles and Their Effect on the Expression of ROS Genes

    Directory of Open Access Journals (Sweden)

    Rangarajulu Senthil Kumaran

    2015-04-01

    Full Text Available Water-dispersible MgO nanoparticles were tested to investigate their cytotoxic effects on oxidative stress gene expression. In this in vitro study, genes related to reactive oxygen species (ROS, glutathione S-transferase (GST and catalase, were quantified using real-time polymerase chain reactions (molecular level and molecular beacon technologies (cellular level. The monodispersed MgO nanoparticles, 20 nm in size, were used to treat human cancer cell lines (liver cancer epithelial cells at different concentrations (25, 75 and 150 µg/mL and incubation times (24, 48 and 72 h. Both the genetic and cellular cytotoxic screening methods produced consistent results, showing that GST and catalase ROS gene expression was maximized at 150 µg/mL nanoparticle treatment with 48 h incubation. However, the genotoxic effect of MgO nanoparticles was not significant compared with control experiments, which indicates its significant potential applications in nanomedicine as a diagnostic and therapeutic tool.

  8. A systematic in vitro investigation on poly-arginine modified nanostructured lipid carrier: Pharmaceutical characteristics, cellular uptake, mechanisms and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Mingshuang Sun

    2017-01-01

    Full Text Available The aim of the present study was to develop a poly-arginine modified nanostructured lipid carrier (R-NLC by fusion-emulsification method and to test its pharmaceutical characteristics. The influence of R-NLC on A549 cells like cellular uptake and cytotoxicity was also appraised using unmodified NLC as the controlled group. As the results revealed, R-NLC had an average diameter of about 40 nm and a positive zeta potential of about +17 mv, the entrapment efficiency decreased apparently, and no significant difference on the in vitro drug release was found after R8-modification. The cellular uptake and cytotoxicity increased obviously compared with unmodified NLC. The cellular uptake mechanisms of R-NLC involved energy, macropinocytosis, clathrin-mediated endocytosis, and caveolin-mediated endocytosis. The outcomes of the present study strongly support the theory that cell penetrating peptides have the ability of enhancing the cellular uptake of nanocarriers.

  9. Lantana camara Linn root extract-mediated gold nanoparticles and their in vitro antioxidant and cytotoxic potentials.

    Science.gov (United States)

    Ramkumar, Rajendiran; Balasubramani, Govindasamy; Raja, Ramalingam Karthik; Raja, Manickam; Govindan, Raji; Girija, Easwaradas Kreedapathy; Perumal, Pachiappan

    2017-06-01

    The Lantana camara Linn root extract derived gold nanoparticles (Au NPs) were characterized by Ultraviolet-Visible spectroscopy, X-ray diffraction, fourier transform-infrared, high resolution transmission electron microscopy, selected area electron diffraction pattern and energy dispersive X-ray analyses. In DPPH assay, the inhibitory concentration (IC50) of Au NPs and gallic acid was 24.17 and 5.39 μg/ml, whereas, for cytotoxicity assay, the IC50 of Au NPs was 17.72 and 32.98 μg/ml on MBA-MB-231 and Vero cells, respectively. Thus, the Au NPs possess significant in vitro antioxidant and cytotoxic properties which could be considered as potential alternate for the development of anticancer drug in future.

  10. In vitro generation of polysialylated cervical mucins by bacterial polysialyltransferases to counteract cytotoxicity of extracellular histones.

    Science.gov (United States)

    Galuska, Sebastian P; Galuska, Christina E; Tharmalingam, Tharmala; Zlatina, Kristina; Prem, Gerlinde; Husejnov, Farzali C O; Rudd, Pauline M; Vann, Willie F; Reid, Colm; Vionnet, Justine; Gallagher, Mary E; Carrington, Faye A; Hassett, Sarah-Louise; Carrington, Stephen D

    2017-06-01

    Neutrophil extracellular traps (NET) are formed against pathogens. However, various diseases are directly linked to this meshwork of DNA. The cytotoxic properties of extracellular histones especially seem to be an important trigger during these diseases. Furthermore, NET accumulation on implants is discussed to result in an impaired efficiency or failure, depending on the category of implant. Interestingly, mucins have been investigated as surface coatings potentially capable of reducing neutrophil adhesion. Similarly, polysialic acid was shown to inactivate the cytotoxic properties of extracellular histones. We wanted to combine the probability to decrease the adhesion of neutrophils using mucins with the capability of sialic acid polymers to counteract histone-mediated cytotoxicity. To this end, we elongate cervical mucins using bacterial polysialyltransferases. Subsequent cell-based experiments demonstrated the activity of elongated mucins against histone-mediated cytotoxicity. Thus, polysialylated mucins may represent a novel component to coat implants or to combat diseases with exaggerated NET formation. © 2017 Federation of European Biochemical Societies.

  11. One-pot synthesis of cinnamylideneacetophenones and their in vitro cytotoxicity in breast cancer cells.

    Science.gov (United States)

    Weldon, David J; Saulsbury, Marilyn D; Goh, Joshua; Rowland, Leah; Campbell, Petreena; Robinson, Laijia; Miller, Calvin; Christian, Joshua; Amis, Louisa; Taylor, Nia; Dill, Cassandra; Davis, Willie; Evans, Stanley L; Brantley, Eileen

    2014-08-01

    A series of cinnamylideneacetophenones were synthesized via a modified Claisen-Schmidt condensation reaction and evaluated for cytotoxicity against breast cancer cells using the Alamar Blue™ assay. Derivatives 17 and 18 bearing a 2-nitro group on the B ring, exhibited sub-micromolar cytotoxicity in MCF-7 cells (IC50=71 and 1.9 nM), respectively. Derivative 17 also displayed sub-micromolar (IC50=780 nM) cytotoxicity in MDA-MB-468 cells. Additionally, 17 and 18 displayed significantly less cytotoxicity than the chemotherapeutic doxorubicin in non-tumorigenic MCF-10A cells. This study provides evidence supporting the continued development of nitro-substituted cinnamylideneacetophenones as small molecules to treat breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evaluation of Genotoxic and Cytotoxic Effects in Human Peripheral Blood Lymphocytes Exposed In Vitro to Neonicotinoid Insecticides News

    Science.gov (United States)

    Calderón-Segura, María Elena; Gómez-Arroyo, Sandra; Villalobos-Pietrini, Rafael; Martínez-Valenzuela, Carmen; Carbajal-López, Yolanda; Calderón-Ezquerro, María del Carmen; Cortés-Eslava, Josefina; García-Martínez, Rocío; Flores-Ramírez, Diana; Rodríguez-Romero, María Isabel; Méndez-Pérez, Patricia; Bañuelos-Ruíz, Enrique

    2012-01-01

    Calypso (thiacloprid), Poncho (clothianidin), Gaucho (imidacloprid), and Jade (imidacloprid) are commercial neonicotinoid insecticides, a new class of agrochemicals in México. However, genotoxic and cytotoxic studies have not been performed. In the present study, human peripheral blood lymphocytes (PBL) were exposed in vitro to different concentrations of the four insecticides. The genotoxic and cytotoxic effects were evaluated using the alkaline comet and trypan blue dye exclusion assays. DNA damage was evaluated using two genotoxicity parameters: tail length and comet frequency. Exposure to 9.5 × 10−6 to 5.7 × 10−5 M Jade; 2.8 × 10−4 to 1.7 × 10−3 M Gaucho; 0.6 × 10−1 to 1.4 × 10−1 M Calypso; 1.2 × 10−1 to 9.5 × 10−1 M Poncho for 2 h induced a significant increase DNA damage with a concentration-dependent relationship. Jade was the most genotoxic of the four insecticides studied. Cytotoxicity was observed in cells exposed to 18 × 10−3 M Jade, 2.0 × 10−3 M Gaucho, 2.0 × 10−1 M Calypso, 1.07 M Poncho, and cell death occurred at 30 × 10−3 M Jade, 3.3 × 10−3 M Gaucho, 2.8 × 10−1 M Calypso, and 1.42 M Poncho. This study provides the first report of genotoxic and cytotoxic effects in PBL following in vitro exposure to commercial neonicotinoid insecticides. PMID:22545045

  13. Evaluation of Genotoxic and Cytotoxic Effects in Human Peripheral Blood Lymphocytes Exposed In Vitro to Neonicotinoid Insecticides News

    Directory of Open Access Journals (Sweden)

    María Elena Calderón-Segura

    2012-01-01

    Full Text Available Calypso (thiacloprid, Poncho (clothianidin, Gaucho (imidacloprid, and Jade (imidacloprid are commercial neonicotinoid insecticides, a new class of agrochemicals in México. However, genotoxic and cytotoxic studies have not been performed. In the present study, human peripheral blood lymphocytes (PBL were exposed in vitro to different concentrations of the four insecticides. The genotoxic and cytotoxic effects were evaluated using the alkaline comet and trypan blue dye exclusion assays. DNA damage was evaluated using two genotoxicity parameters: tail length and comet frequency. Exposure to 9.5×10-6 to 5.7×10-5 M Jade; 2.8×10-4 to 1.7×10-3 M Gaucho; 0.6×10-1 to 1.4×10-1 M Calypso; 1.2×10-1 to 9.5×10-1 M Poncho for 2 h induced a significant increase DNA damage with a concentration-dependent relationship. Jade was the most genotoxic of the four insecticides studied. Cytotoxicity was observed in cells exposed to 18×10-3 M Jade, 2.0×10-3 M Gaucho, 2.0×10-1 M Calypso, 1.07 M Poncho, and cell death occurred at 30×10-3 M Jade, 3.3×10-3 M Gaucho, 2.8×10-1 M Calypso, and 1.42 M Poncho. This study provides the first report of genotoxic and cytotoxic effects in PBL following in vitro exposure to commercial neonicotinoid insecticides.

  14. Pyruvate diminishes the cytotoxic activity of ascorbic acid in several tumor cell lines in vitro.

    Science.gov (United States)

    Rodemeister, Sandra; Hill, Katharina

    2017-11-25

    The anticancer potential of ascorbic acid (AA) has been controversially discussed for decades. Although the cytotoxic effect of pharmacologic concentrations of ascorbic acid has already been successfully demonstrated in numerous studies in vitro, it could not be verified to the same extent in vivo. We propose that the ubiquitous metabolite pyruvate diminishes the effect of AA by reacting with its presumable cytotoxic mediator hydrogen peroxide (H 2 O 2 ). MTT assays confirm that co-incubation with 1.4 mM pyruvate abolishes the cytotoxic effect of pharmacologic concentrations of AA in all cancer cell lines tested (human melanoma (WM451-Lu), breast (MCF-7) and hypopharyngeal cancer cells (FaDu)). We further investigated whether pyruvate diminishes the anticancer effect of AA by interfering with the generation of H 2 O 2 . Therefore, we analyzed the concentration of AFR, a proposed intermediate in the AA-dependent formation of H 2 O 2, by electron paramagnetic resonance spectroscopy, during incubation with AA and pyruvate in WM451-Lu cells as a model system. In addition, we measured H 2 O 2 concentration by indirect detection with Clark-type oxygen electrode. AFR concentration was not significantly influenced by pyruvate, whereas H 2 O 2 concentration was significantly reduced. In parallel, pyruvate concentrations of the stimulation medium declined with increasing AA and consequently H 2 O 2 concentrations. In summary, pyruvate diminishes the cytotoxic activity of ascorbic acid in vitro. The AFR concentration measured remains unaffected by pyruvate whereas the H 2 O 2 concentration is reduced; confirming that pyruvate directly reacts with AA-induced H 2 O 2 , without influencing its formation. However, further experiments are needed to elucidate the complex mechanisms being responsible for the reduced efficacy of AA in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. [In vitro cytotoxicity of different self-etching dental adhesive systems].

    Science.gov (United States)

    Wiegand, Annette; Caspar, Caroline; Becker, Klaus; Werner, Carola; Attin, Thomas

    2006-01-01

    The study evaluated the cytotoxicity of five self-etching dentin adhesive systems applied on dentin specimens of different thicknesses. The test materials (A: Adper Prompt-L-Pop, B: Xeno II, C: Clearfil SE Bond, D: One up Bond F, E: Resulcin Aqua Prime & Monobond) and a positive control (35% H202) were applied on 1.0, 1.5 and 2.5 mm thick bovine dentin specimens (each subgroup n = 5) in a dentin barrier test device. The experiments were performed with perfusion (2 ml/h) of the pulpal part of the chamber. The eluates were obtained before (baseline) and 15, 30, 45, 60 and 120 min after application of the adhesives and pipetted onto L-929 fibroblasts. Cytotoxicity of the materials was determined in relation to the baseline value using the MTT assay and statistical analysis was performed by ANOVA. After 15 min perfusion, test materials B-E applied on 1.0 mm and B and E applied on 1.5 mm dentin specimens exhibited cytotoxic potential. However, after 30 min perfusion none of the adhesives showed any toxicity. Cytotoxicity decreased with increasing thickness of the dentin slices and was lower for Adper Prompt-L-Pop compared to adhesives B-E. Self-etching adhesive systems might exhibit cytotoxic potential when applied on dentin of less than 1.5 mm thickness. However, cytotoxicity of the materials decreased with increasing dentin thickness and increasing duration of perfusion.

  16. Dexamethasone promotes phagocytosis and bacterial killing by human monocytes/macrophages in vitro

    NARCIS (Netherlands)

    van der Goes, A.; Hoekstra, K.; van den Berg, T. K.; Dijkstra, C. D.

    2000-01-01

    One of the actions of glucocorticoids (GC) in multiple sclerosis (MS) is an inhibitory effect on demyelination. This can be caused by a reduction in the number of infiltrating macrophages and/or by an effect on the phagocytosis of myelin. Here we investigate the effect of GC on the phagocytosis of

  17. Guiding synovial inflammation by macrophage phenotype modulation: An in vitro study towards a therapy for osteoarthritis

    NARCIS (Netherlands)

    L. Utomo (Lizette); G.J.V.M. van Osch (Gerjo); Y. Bayon (Yves); J.A.N. Verhaar (Jan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    markdownabstractObjective: The aims of this study were to modulate inflammation in synovial explants with the compounds: dexamethasone, rapamycin, bone morphogenetic protein 7 (BMP-7) and pravastatin, and to investigate the modulatory capacity of the compounds on specific macrophage phenotypes.

  18. Tumour cell derived effects on monocyte/macrophage polarization and function and modulatory potential of Viscum album lipophilic extract in vitro.

    Science.gov (United States)

    Estko, Myriam; Baumgartner, Stephan; Urech, Konrad; Kunz, Matthias; Regueiro, Ursula; Heusser, Peter; Weissenstein, Ulrike

    2015-04-24

    Macrophages are highly versatile cells that play an important role in tumour microenvironment. Tumour associated macrophages (TAMs) have been linked to both, good or bad prognosis of several cancer types depending on their number, composition and polarization. Viscum album lipophilic extract (VALE) contains several pentacyclic triterpenes known to modulate the activity of monocytes and other immune cells and to exhibit anticancer properties. In our in vitro study, we investigated the effect of tumour cell lines on macrophage polarization and monocyte chemotactic transmigration and examined the modulatory potential of VALE and its predominant triterpene oleanolic acid (OA). Human peripheral blood monocytes were differentiated into monocyte derived macrophages (MDM) using M-CSF and polarized into M1 by IFN-γ and LPS and into M2 macrophages by IL-4 and IL-13 or by co-culture with two different tumour cell lines. Polarized macrophages were subsequently treated with VALE or OA. Phenotypic markers and cytokines were assessed by flow cytometry and immunoanalysis. Migration of human peripheral blood monocytes induced by monocyte chemotactic protein-1 (MCP-1) or supernatants of different tumour cell lines under the influence of VALE or OA was measured in a chemotaxis transmigration assay. In vitro polarized M1 and M2 type macrophages revealed specific phenotypic patterns and tumour cell co-cultured MDM displayed ambiguous phenotypes with M1 as well as M2 associated markers. VALE and OA showed modest influence on cell surface marker profile and cytokine expression of tumour cell co-cultured macrophages. All tumour cell supernatants markedly enhanced the migratory activity of monocytes. VALE and OA significantly inhibited MCP-1 induced monocyte transmigration, whereas monocyte migration initiated by tumour cell derived supernatants was not affected. In our study we reconfirmed that co-culture with different tumour cell lines can result in a mixed macrophage phenotype with M1

  19. Chemical constituents from Tabernaemontana catharinensis root bark: a brief NMR review of indole alkaloids and in vitro cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Paulo Sergio; Franca, Suzelei de Castro; Oliveira, Paulo Vinicius Anderson de; Breves, Camila Moniz de Souza; Pereira, Sarazete Izidia Vaz [Universidade de Ribeirao Preto (UNAERP), SP (Brazil). Unidade de Biotecnologia]. E-mail: ppereira@unaerp.br; Sampaio, Suely Vilela; Nomizo, Auro [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Analises Clinicas, Toxicologicas e Bromatologicas; Dias, Diones Aparecida [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Fisica e Quimica

    2008-07-01

    This work describes the isolation and structural determination of pharmacological compounds present in the bark of roots of Tabernaemontana catharinensis (Apocynaceae). Among the 27 substances detected 12 were identified as terpenoid-indole alkaloids, 2 steroids and 13 pentacyclic triterpenes. Structures were outlined based on HMQC, COSY, DEPT, {sup 13}C, and {sup 1}H NMR data and MS. Spectral data of indole alkaloids were reviewed. An in vitro screening of the extracts and isolated compounds was carried out. Compounds ibogamine (5), 3-oxo-coronaridine (9) and 12-methoxy-4-methylvoachalotine (MMV) demonstrated effective cytotoxicity towards SKBR-3 breast adenocarcinoma and C-8161 human melanoma tumor cell lines. (author)

  20. Synthesization, Characterization, and in Vitro Evaluation of Cytotoxicity of Biomaterials Based on Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Antonio Sánchez-Fernández

    2014-12-01

    Full Text Available Halloysite is an aluminosilicate clay that has been widely used for controlled drug delivery, immobilization of enzymes, and for the capture of circulating tumor cells (CTCs. Surface modification of halloysite by organosilanes has been explored to improve their properties. In this study halloysite clay nanotubes (HNTs were functionalized by two different organosilanes: Trimethoxy(propylsilane (TMPS, and Triethoxy(octylsilane (EOS. Untreated and modified samples were characterized by scanning electron microscopy (SEM, X-ray diffractometry (XRD, thermogravimetrical analysis (TGA, and Fourier transform infrared spectroscopy (FTIR. Results showed a strong interaction of organosilanes with the chemical groups present in HNTs. Biocompatibility and cytotoxicity of these nanomaterials were determined using C6 rat glioblastoma cells. Our results indicate that prior to functionalization, HNTs show a high biocompatibility and low cytotoxicity. However, HNTs functionalized with EOS and TMPS showed high cytotoxicity by inducing apoptosis. These results allow the identification of potential applications in biomedical areas for HNTs.

  1. In Vitro Cytotoxic Evaluation of a Novel Phosphinyl Derivative of Boldine

    Directory of Open Access Journals (Sweden)

    Franz A. Thomet

    2011-03-01

    Full Text Available 2,9-Dimethoxymethylboldine (2, 2,9-dimethoxymethyl-3-bromoboldine (3 and 2,9-dimethoxymethyl-3-diphenylphosphinylboldine (4 have been synthesized in an effort to find compounds with potential pharmacological applications. The cytotoxic activities of the natural precursor 1 and these three derivatives have been measured as IC50 inhibitory growth. The diphenylphosphinyl derivative 4 showed a significant cytotoxic activity on two breast cancer cell lines, namely MCF-7 and MDA-MB-231, with IC50 values of 55.5 and 62.7 [µM], respectively. These results suggest that the kind of structural modifications introduced to synthesize compound 4 represent a promising way to enhance the cytotoxic activity of boldine derivatives.

  2. In vitro cytotoxicity of different desensitizers under simulated pulpal flow conditions.

    Science.gov (United States)

    Wiegand, Annette; Buchholz, Katharina; Werner, Carola; Attin, Thomas

    2008-06-01

    To evaluate the cytotoxicity of three desensitizers, one nonrinse, and one etch-and-rinse adhesive system applied on dentin specimens of different thickness. The test materials (A: Admira Protect, B: Gluma Desensitizer, C: Seal&Protect, D: Clearfil Protect Bond, E: Optibond FL) and a positive control (35% H2O2) were applied on 1.0-, 1.5-, and 2.5-mm-thick bovine dentin specimens (each subgroup n = 5) in a dentin barrier test device. The experiments were performed with perfusion (2 ml/h) of the pulpal part of the chamber. The eluates were obtained before (baseline) and 15, 30, 45, 60, and 120 min after application of the adhesives and pipetted onto L-929 fibroblasts. Cytotoxicity of the materials was determined in relation to the baseline value using the MTT assay (succinic dehydrogenase activity). Statistical analysis was performed using ANOVA and Student's t-test. With regard to 1.0-mm dentin specimens, application of Clearfil Protect Bond (D) decreased enzyme activity significantly, while test materials A to C and E were not cytotoxic. However, cytotoxicity of D was limited to up to 15 min and decreased thereafter. Application of the test materials A to E on 1.5- and 2.5-mm dentin samples exhibited no significant cytotoxic effects within 120 min. Generally, ANOVA found significant interactions between the test materials and dentin thickness. However, only for Admira Protect was a significant increase of enzyme activity with increasing dentin thickness observed. Desensitizing agents might exhibit cytotoxic potential when applied on dentin less than 1.0 mm thick. The tested desensitizers and the adhesive systems caused similar effects, in which cytotoxicty might be influenced by the duration of perfusion and dentin thickness.

  3. Human recombinant anti-thyroperoxidase autoantibodies: in vitro cytotoxic activity on papillary thyroid cancer expressing TPO.

    Science.gov (United States)

    Rebuffat, S A; Morin, M; Nguyen, B; Castex, F; Robert, B; Péraldi-Roux, S

    2010-03-02

    Thyroid cancers are difficult to treat due to their limited responsiveness to chemo- and radiotherapy. There is thus a great interest in and a need for alternative therapeutic approaches. We studied the cytotoxic activity of anti-thyroperoxidase autoantibodies (anti-TPO aAbs, expressed in baculovirus/insect cell (B4) and CHO cells (B4') or purified from patients' sera) against a papillary thyroid cancer (NPA) cell line. Anti-TPO aAbs from patients' sera led to a partial destruction of NPA cell line by complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) and exhibited an anti-proliferative activity. Comparison of the cytotoxic activity of anti-TPO aAbs shows that B4' induced an anti-proliferative effect and a better ADCC than B4, but a lower one than anti-TPO aAbs from patients' sera. Antibody-dependent cell-mediated cytotoxicity was increased when human peripheral blood mononuclear cells were used as effector cells, suggesting that FcgammaRs, CD64, CD32 and CD16 are involved. Indeed, anti-TPO aAbs from patients' sera, but not B4 and B4', exhibited CDC activity. These data indicate that anti-TPO aAbs display moderate ADCC and anti-proliferative activities on NPA cells; IgG glycosylation appears to be important for cytotoxic activity and ADCC efficiency depends on FcgammaR-bearing cells. Finally, recombinant human anti-TPO aAbs cannot yet be considered as an optimal tool for the development of a novel therapeutic approach for thyroid cancer.

  4. Decreasing effect of an anti-Nfa1 polyclonal antibody on the in vitro cytotoxicity of pathogenic Naegleria fowleri

    Science.gov (United States)

    Jeong, Seok-Ryoul; Kang, Su-Yeon; Lee, Sang-Chul; Song, Kyoung-Ju; Im, Kyung-il

    2004-01-01

    The nfa1 gene was cloned from a cDNA library of pathogenic Naegleria fowleri by immunoscreening; it consisted of 360 bp and produced a 13.1 kDa recombinant protein (rNfa1) that showed the pseudopodia-specific localization by immunocytochemistry in the previous study. Based on the idea that the pseudopodia-specific Nfa1 protein mentioned above seems to be involved in the pathogenicity of N. fowleri, we observed the effect of an anti-Nfa1 antibody on the proliferation of N. fowleri trophozoites and the cytotoxicity of N. fowleri trophozoites on the target cells. The proliferation of N. fowleri trophozoites was inhibited after being treated with an anti-Nfa1 polyclonal antibody in a dose-dependent manner for 48 hrs. By a light microscope, CHO cells co-cultured with N. fowleri trophozoites (group I) for 48 hrs showed severe morphological destruction. On the contrary, CHO cells co-cultured with N. fowleri trophozoites and anti-Nfa1 polyclonal antibody (1:100 dilution) (group II) showed less destruction. In the LDH release assay results, group I showed 50.6% cytotoxicity, and group II showed 39.3%. Consequently, addition of an anti-Nfa1 polyclonal antibody produced a decreasing effect of in vitro cytotoxicity of N. fowleri in a dosedependent manner. PMID:15060338

  5. Cytotoxic and cell transforming activities of the fungicide methyl thiophanate on BALB/c 3T3 cells in vitro.

    Science.gov (United States)

    Perocco, P; Del Ciello, C; Mazzullo, M; Rocchi, P; Ferreri, A M; Paolini, M; Pozzetti, L; Cantelli-Forti, G

    1997-11-27

    Cytotoxic and cell-transforming activities of methyl thiophanate a systemic fungicide capable of entering plant cells and thus controlling fungal diseases that have already started were studied in an in vitro medium-term (6-8 weeks) experimental model utilizing BALB/c 3T3 cells. Cells were exposed to the chemical, dissolved in dimethyl sulfoxide, in the absence or presence of an exogenous metabolizing system derived from rat livers supplemented with cofactors (S9 mix). In the absence of metabolic activation, methyl thiophanate exerted cytotoxic activity, evidenced through the formation of cell colonies, at low doses (> 10 micrograms/ml). However, the cytotoxic activity was greatly reduced by the S9 mix-induced metabolic activation of the chemical. Without bioactivation, cell-transforming potential, evidenced through the induction of transformation foci, was observable only at the highest (weakly toxic) dose employed (25 micrograms/ml). On the contrary, in the presence of metabolic activation, the cell-transforming activity was detectable at all tested doses (i.e. from 20 to 200 micrograms/ml) and it was particularly evident in a level-II transformation amplification test when the cells were allowed to perform active proliferative activity. These results, providing further information on the activity of methyl thiophanate in multistep carcinogenesis as possible genotoxic and/or co-carcinogenic agent, may contribute to better evaluate the oncogenic risk to man.

  6. Mefloquine and Its Enantiomers Are Active against Mycobacterium tuberculosis In Vitro and in Macrophages

    Directory of Open Access Journals (Sweden)

    Luiz E. Bermudez

    2014-01-01

    Full Text Available Objective. Tuberculosis is a serious problem of public health. The increase on the number of clinical cases of tuberculosis infected with multidrug resistant (MDR M. tuberculosis calls for the development of novel therapy. Design. We investigated the effect of mefloquine and two enantiomers, (+erythro-mefloquine and (+threo-mefloquine against M. tuberculosis strains in the environment resembling the aspects of the granuloma environment and in macrophages. Results. The results suggest that mefloquine (racemic mixture and (+erythro-mefloquine have bactericidal activity against M. tuberculosis strains both in acidic, low oxygen tension and in macrophages. The activity, however, was impaired under increased osmolarity. Conclusion. Identification of the target for mefloquine in the pathogen will allow for the development of novel drugs with antituberculosis activity.

  7. Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: the influence of vehicle type.

    Science.gov (United States)

    Justo, Oselys Rodriguez; Simioni, Patricia Ucelli; Gabriel, Dirce Lima; Tamashiro, Wirla Maria da Silva Cunha; Rosa, Paulo de Tarso Vieira; Moraes, Ângela Maria

    2015-10-29

    Numerous plants from have been investigated due to their anti-inflammatory activity and, among then, extracts or components of ginger (Zingiber officinale Roscoe) and rosemary (Rosmarinus officinalis L.), sources of polyphenolic compounds. 6-gingerol from ginger rhizome and carnosic acid and carnosol from rosemary leaves present anti-tumor, anti-inflammatory and antioxidant activities. However, the evaluation of the mechanisms of action of these and other plant extracts is limited due to their high hydrophobicity. Dimethylsulfoxide (DMSO) is commonly used as a vehicle of liposoluble materials to mammalian cells in vitro, presenting enhanced cell penetration. Liposomes are also able to efficiently deliver agents to mammalian cells, being capable to incorporate in their structure not only hydrophobic molecules, but also hydrophilic and amphiphilic compounds. Another strategy is based on the use of Pluronic F-68, a biocompatible low-foaming, non-ionic surfactant, to disperse hydrophobic components. Here, these three delivery approaches were compared to analyze their influence on the in vitro anti-inflammatory effects of ginger and rosemary extracts, at different concentrations, on primary mammalian cells and on a tumor cell line. Ginger and rosemary extracts free of organic solvents were obtained by supercritical fluid extraction and dispersed in DMSO, Pluronic F-68 or liposomes, in variable concentrations. Cell viability, production of inflammatory mediators and nitric oxide (NO) release were measured in vitro on J774 cell line and murine macrophages primary culture stimulated with bacterial lipopolysaccharide and interferon-γ after being exposed or not to these extracts. Ginger and rosemary extracts obtained by supercritical CO2 extraction inhibited the production of pro-inflammatory cytokines and the release of NO by peritoneal macrophages and J774 cells. The delivery vehicles influenced the anti-inflammatory effects. Comparatively, the ginger extract showed the

  8. Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from Benin.

    Science.gov (United States)

    Kpoviessi, Salomé; Bero, Joanne; Agbani, Pierre; Gbaguidi, Fernand; Kpadonou-Kpoviessi, Bénédicta; Sinsin, Brice; Accrombessi, Georges; Frédérich, Michel; Moudachirou, Mansourou; Quetin-Leclercq, Joëlle

    2014-01-01

    Cymbopogon species are largely used in folk medicine for the treatment of many diseases some of which related to parasitical diseases as fevers and headaches. As part of our research on antiparasitic essential oils from Beninese plants, we decided to evaluate the in vitro antiplasmodial and antitrypanosomal activities of essential oils of four Cymbopogon species used in traditional medicine as well as their cytotoxicity. The essential oils of four Cymbopogon species Cymbopogon citratus (I), Cymbopogon giganteus (II), Cymbopogon nardus (III) and Cymbopogon schoenantus (IV) from Benin obtained by hydrodistillation were analysed by GC/MS and GC/FID and were tested in vitro against Trypanosoma brucei brucei and Plasmodium falciparum respectively for antitrypanosomal and antiplasmodial activities. Cytotoxicity was evaluated in vitro against Chinese Hamster Ovary (CHO) cells and the human non cancer fibroblast cell line (WI38) through MTT assay to evaluate the selectivity. All tested oils showed a strong antitrypanosomal activity with a good selectivity. Sample II was the most active against Trypanosoma brucei brucei and could be considered as a good candidate. It was less active against Plasmodium falciparum. Samples II, III and IV had low or no cytotoxicity, but the essential oil of Cymbopogon citratus (I), was toxic against CHO cells and moderately toxic against WI38 cells and needs further toxicological studies. Sample I (29 compounds) was characterised by the presence as main constituents of geranial, neral, β-pinene and cis-geraniol; sample II (53 compounds) by trans-p-mentha-1(7),8-dien-2-ol, trans-carveol, trans-p-mentha-2,8-dienol, cis-p-mentha-2,8-dienol, cis-p-mentha-1(7),8-dien-2-ol, limonene, cis-carveol and cis-carvone; sample III (28 compounds) by β-citronellal, nerol, β-citronellol, elemol and limonene and sample IV (41 compounds) by piperitone, (+)-2-carene, limonene, elemol and β-eudesmol. Our study shows that essential oils of Cymbopogon genus can

  9. Synthesis, spectroscopic characterization, X-ray study and in vitro cytotoxicity of 5-hydroxycoumarin derivatives and their copper complexes

    Science.gov (United States)

    Ostrowska, Kinga; Maciejewska, Dorota; Drzewiecka-Antonik, Aleksandra; Klepka, Marcin T.; Wolska, Anna; Dobrzycki, Łukasz; Sztokfisz, Alicja; Czajkowska, Agnieszka; Młynarczuk-Biały, Izabela

    2017-10-01

    We have synthesized a series of bromo derivatives of 5-hydroxycoumarin and two new Cu(II) complexes with 6-acetyl-8-bromo-5-hydroxy-4,7-dimethylcoumarin (L2) and 6-acetyl-3,8-dibromo-5-hydroxy-4,7-dimethylcoumarin (L3) ligands, designed as potential active compounds against human cancer cell lines. The elemental analysis, mass spectroscopy, NMR and infrared spectroscopy have been used for basic characterization of analyzed compounds. The X-ray crystal structure analysis for one representative organic compound, 3,6,8-tribromo-5-hydroxy-4,7-dimethylcoumarin (c) has been performed. It has shown that coumarin system is nearly planar and the Br⋯Br interaction is a very characteristic feature of the molecular association for organic ligands. The complexes, Cu(L2)2·3H2O and Cu(L3)(ClO4)·2.5H2O, have been found as four-coordinated and contain copper in the +2 oxidation state according to X-ray absorption spectroscopy. All the compounds have been screened in vitro for their cytotoxic activity against mouse fibroblast and human prostate cancer cells. The coordination products of brominated ligands have shown to be more active than the free ligands and demonstrate significant in-vitro cytotoxicity against human prostate cancer cells (DU145).

  10. Interaction of standardized mistletoe (Viscum album) extracts with chemotherapeutic drugs regarding cytostatic and cytotoxic effects in vitro.

    Science.gov (United States)

    Weissenstein, Ulrike; Kunz, Matthias; Urech, Konrad; Baumgartner, Stephan

    2014-01-08

    Given the importance of complementary and alternative medicine (CAM) to cancer patients, there is an increasing need to learn more about possible interactions between CAM and anticancer drugs. Mistletoe (Viscum album L.) belongs to the medicinal herbs that are used as supportive care during chemotherapy. In the in vitro study presented here the effect of standardized mistletoe preparations on the cytostatic and cytotoxic activity of several common conventional chemotherapeutic drugs was investigated using different cancer cell lines. Human breast carcinoma cell lines HCC1937 and HCC1143 were treated with doxorubicin hydrochloride, pancreas adenocarcinoma cell line PA-TU-8902 with gemcitabine hydrochloride, prostate carcinoma cell line DU145 with docetaxel and mitoxantrone hydrochloride and lung carcinoma cell line NCI-H460 was treated with docetaxel and cisplatin. Each dose of the respective chemotherapeutic drug was combined with Viscum album extract (VAE) in clinically relevant concentrations and proliferation and apoptosis were measured. VAE did not inhibit chemotherapy induced cytostasis and cytotoxicity in any of our experimental settings. At higher concentrations VAE showed an additive inhibitory effect. Our in vitro results suggest that no risk of safety by herb drug interactions has to be expected from the exposition of cancer cells to chemotherapeutic drugs and VAE simultaneously.

  11. Long-chain metabolites of α-tocopherol occur in human serum and inhibit macrophage foam cell formation in vitro.

    Science.gov (United States)

    Wallert, Maria; Mosig, Sandy; Rennert, Knut; Funke, Harald; Ristow, Michael; Pellegrino, Roberto Maria; Cruciani, Gabriele; Galli, Francesco; Lorkowski, Stefan; Birringer, Marc

    2014-03-01

    Despite intensive research the physiological role and molecular mechanisms of action of the lipophilic antioxidant α-tocopherol (α-TOH) are still poorly understood. Hepatic α-TOH catabolism results in intermediate formation of the long-chain metabolites (α-LCMs) α-13'-hydroxy- and α-13'-carboxychromanol (α-13'-OH and α-13'-COOH). We propose that α-LCMs have biological functions that need further exploration. Here we report that α-13'-COOH, as detected by LC/MS Q-TOF, occurs in human serum, providing evidence for its systemic bioavailability. Using semisynthetically derived α-LCMs we performed flow cytometric analyses and found that α-LCMs decrease oxidized LDL (oxLDL) uptake (α-13'-OH, 24±6%, α-13'-COOH, 20±5% vs control) and oxLDL-induced lipid accumulation in human macrophages in vitro (α-13'-OH, 26±4%, α-13'-COOH, 21±9% vs oxLDL), probably owing to α-LCM-mediated reduction in phagocytosis of oxLDL (α-13'-OH, 16±6%, α-13'-COOH, 41±3% vs oxLDL). At the same time, α-LCMs induced expression of CD36, the major scavenger receptor for oxLDL, in human macrophages by about 4.5-fold. Blocking experiments provided evidence that α-LCMs influence oxLDL uptake independent of CD36. A key finding of our study is that bioactivity of the α-LCMs occurs at lower concentrations and with mechanisms distinct from those of their metabolic precursor α-TOH. Our findings shed new light on the mechanistic aspects of α-TOH function in macrophages, which seem to be complicated by circulating α-LCMs. We speculate that α-LCMs represent a new class of regulatory metabolites. Further studies are required to elucidate their physiological role and contribution to cardiovascular disease. © 2013 Elsevier Inc. All rights reserved.

  12. Synthesis and In Vitro Cytotoxic Activity of Novel Chalcone-Like Agents

    Directory of Open Access Journals (Sweden)

    Bahram letafat

    2013-11-01

    We described synthesis and cytotoxic activity of poly-functionalized 3-benzylidenechroman-4-ones as new chalcone-like agents. These compounds can be considered as conformationally constrained congeners of chalcones to tolerate the poly-functionalization on the core structures for further optimization.

  13. In Vitro antibacterial and in Vivo cytotoxic activities of Grewia paniculata

    Directory of Open Access Journals (Sweden)

    Mahmuda Nasrin

    2015-02-01

    Full Text Available Objectives: Grewia paniculata (Family: Malvaceae has been used to treat inflammation, respiratory disorders and fever. It is additionally employed for other health conditions including colds, diarrhea and as an insecticide in Bangladesh. The aim of the present study was to investigate the antibacterial and cytotoxic activities of different extracts of Grewia paniculata. Materials and Methods: The antibacterial activity was evaluated against both gram negative and gram positive bacteria using disc diffusion method by determination of the diameter of zone of inhibition. Cytotoxic activity was performed by brine shrimp (Artemia salina lethality bioassay. Results: In disc diffusion method, all the natural products (400 μg/disc showed moderate to potent activity against all the tested bacteria. The ethanol extract of bark (EEB and ethanol fraction of bark (EFB (400 μg/disc exhibited highest activity against Shigella dysenteriae with a zone of inhibition of 23±1.63 mm and  23±1.77 mm respectively. In the brine shrimp lethality bioassay all the extracts showed moderate cytotoxic activity when compared with the standard drug vincristin sulphate. For example, LC50 value of the ethanol fraction of bark (EFB was 3.01 μg/ml while the LC50 of vincristine sulphate was 0.52 μg/ml. Conclusions: The results suggest that all the natural products possess potent antibacterial and moderate cytotoxic.

  14. Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary intravascular macrophages (PIMs): in vitro comparisons with pulmonary alveolar macrophages (PAMs).

    Science.gov (United States)

    Thanawongnuwech, R; Thacker, E L; Halbur, P G

    1997-11-01

    Porcine pulmonary intravascular macrophages (PIMs) were recovered by in situ pulmonary vascular perfusion with 0.025% collagenase in saline from six 8-week old, crossbred pigs. Pulmonary alveolar macrophages (PAMs) were recovered by bronchoalveolar lavage from the same pigs for comparisons in each assay. The macrophages were exposed to PRRSV (ATCC VR-2385) in vitro for 24 h and infection was confirmed by an indirect immunofluorescence test or transmission electron microscopy. Viral particles tended to accumulate in the vesicles of the Golgi apparatus or endoplasmic reticulum. Bactericidal function assays were performed on the recovered macrophages to determine the effects of the virus on macrophage functions. In vitro PRRSV infection reduced the bactericidal ability of PIMs from 68.3% to 56.4% (P 0.1) at 24 h post-infection. The mean percentage of bacteria killed by macrophages after PRRSV infection was not significantly different among the treatment groups or between the treatment groups and non-infected controls based on colorimetric MTT bactericidal (Staphylococcus aureus) assay. PRRSV did not affect the ability of PIMs or PAMs to internalize opsonized 125I-iododeoxyuridine-labeled S. aureus (P > 0.05). PRRSV infection significantly decreased the production of superoxide anion (P PIMs and by 69.4% in PAMs. PRRSV reduced the myeloperoxidase-H2O2-halide product (P PIMs and by 48.1% for PAMs. The results suggest: (1) PIMs should be considered as an important replication site of PRRSV; (2) PRRSV may have a detrimental effect on both PIMs and PAMs; (3) loss of bactericidal function in PIMs may facilitate hematogenous bacterial infections.

  15. [Cytotoxicity of DMSO for MRC5, Chang liver and CV1 cells evaluated in vitro by LK, MTT and NR assays].

    Science.gov (United States)

    Siennicka, Joanna; Gut, Włodzimierz; Zuk, Anna; Litwińska, Bogumiła

    2003-01-01

    Evaluation of chemicals cytotoxicity plays fundamental role in many in vitro investigations. The way of assessment of cytotoxicity depend on aim of study, characteristic of used cells and mode of action of investigated chemicals. The principal aspect of these investigations is validation of used method. In this paper validation of three different cytotoxicity assays is presented: total cell number measurement (LK), microplate assay measured mitochondrial dehydrogenase activity (MTT) and colorimetric assay measured ability of live cell to uptake neutral red (NR). The investigation was performed on different cells (MRC5, CV1 i Chang Liver) with DMSO as reference agent.

  16. In vitro cytotoxicity induced by Clostridium perfringens isolate carrying a chromosomal cpe gene is exclusively dependent on sporulation and enterotoxin production.

    Science.gov (United States)

    Yasugi, Mayo; Sugahara, Yuki; Hoshi, Hidenobu; Kondo, Kaori; Talukdar, Prabhat K; Sarker, Mahfuzur R; Yamamoto, Shigeki; Kamata, Yoichi; Miyake, Masami

    2015-08-01

    Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Variability in In Vitro Macrophage Activation by Commercially Diverse Bulk Echinacea Plant Material is Predominantly Due to Bacterial Lipoproteins and Lipopolysaccharides

    Science.gov (United States)

    We previously reported that the majority of in vitro monocyte/macrophage activation exhibited by extracts of Echinacea and other botanicals depends upon bacterial lipopolysaccharides and Braun-type bacterial lipoproteins. We determined the contribution made by these bacterial components to the overa...

  18. [An in vitro study on toxic effect of vanadium-titanium-magnetite dust on alveolar macrophage in rabbits].

    Science.gov (United States)

    Song, Y; Chen, Q; Guan, Y

    1998-11-01

    To study the toxic effect of vanadium-titanium-magnetite (VTM) dust on alveolar macrophage (AM) and its hazardous extent. Survival rates, morphology and function of AM were compared in rabbits exposed to dust of VTM, vanadium oxide, titanium dioxide and silica in various doses and length of time with in vitro cell culture and putamen membrane cover glass transmission electron microscopy, and changes in activities of lactic dehydrogenase (LDH) and acid phosphatase (ACP) in cell culture were measured. Exposure to all the four kinds of dust could lead to decrease in survival rate of AM, increase in activities of LDH and ACP in the cell culture, and changes in their morphology and function to the extent dependent on the nature of dust. Toxic effect of exposure to VTM dust was lower than that to vanadium oxide and silica, but higher than that to titanium dioxide, which had slight toxic effect.

  19. In Vitro Detection of Apoptosis in Monocytes/Macrophages Infected with Human Coronavirus

    OpenAIRE

    Collins, Arlene R.

    2002-01-01

    Human coronavirus (HCoV) strain 229E infection, but not HCoV strain OC43 infection, of monocytes/macrophages from healthy donors and patients with multiple sclerosis in remission resulted in increased apoptosis, as measured by DNA changes and annexin V staining. Apoptosis correlated with the differential release of infectious virus. HCoV strain 229E titers were 103.5 to 106 50% tissue culture-infective doses (TCID50)/ml, and HCoV strain OC43 titers were only 101.2 to 102.7 TCID50/ml.

  20. Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells

    Science.gov (United States)

    Tomitaka, Asahi; Hirukawa, Atsuo; Yamada, Tsutomu; Morishita, Shin; Takemura, Yasushi

    2009-05-01

    Magnetic nanoparticles for thermotherapy must be biocompatible and possess high thermal efficiency as heating elements. The biocompatibility of Fe 3O 4 (20-30 nm), ZnFe 2O 4 (15-30 nm) and NiFe 2O 4 (20-30 nm) nanoparticles was studied using a cytotoxicity colony formation assay and a cell viability assay. The Fe 3O 4 sample was found to be biocompatible on HeLa cells. While ZnFe 2O 4 and NiFe 2O 4 were non-toxic at low concentrations, HeLa cells exhibited cytotoxic effects when exposed to concentrations of 100 μg/ml nanoparticles.

  1. Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomitaka, Asahi [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Yokohama, Kanagawa 240-8501 (Japan)], E-mail: d07gd158@ynu.ac.jp; Hirukawa, Atsuo; Yamada, Tsutomu [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Yokohama, Kanagawa 240-8501 (Japan); Morishita, Shin [Department of Mechanical Engineering and Materials Science, Yokohama National University, Tokiwadai 79-5, Yokohama, Kanagawa 240-8501 (Japan); Takemura, Yasushi [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Yokohama, Kanagawa 240-8501 (Japan)

    2009-05-15

    Magnetic nanoparticles for thermotherapy must be biocompatible and possess high thermal efficiency as heating elements. The biocompatibility of Fe{sub 3}O{sub 4} (20-30 nm), ZnFe{sub 2}O{sub 4} (15-30 nm) and NiFe{sub 2}O{sub 4} (20-30 nm) nanoparticles was studied using a cytotoxicity colony formation assay and a cell viability assay. The Fe{sub 3}O{sub 4} sample was found to be biocompatible on HeLa cells. While ZnFe{sub 2}O{sub 4} and NiFe{sub 2}O{sub 4} were non-toxic at low concentrations, HeLa cells exhibited cytotoxic effects when exposed to concentrations of 100 {mu}g/ml nanoparticles.

  2. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    OpenAIRE

    Farzin Heravi; Mohammad Ramezani; Maryam Poosti; Mohsen Hosseini; Arezoo Shajiei; Farzaneh Ahrari

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extrac...

  3. A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products

    Science.gov (United States)

    Carballo, José Luis; Hernández-Inda, Zaira L; Pérez, Pilar; García-Grávalos, María D

    2002-01-01

    Background The brine shrimp lethality assay is considered a useful tool for preliminary assessment of toxicity. It has also been suggested for screening pharmacological activities in plant extracts. However, we think that it is necessary to evaluate the suitability of the brine shrimp methods before they are used as a general bio-assay to test natural marine products for pharmacological activity. Material and Methods The bioactivity of the isopropanolic (2-PrOH) extracts of 14 species of marine invertebrates and 6 species of macroalgae was evaluated with the shrimp lethality assay (lethality assay), as well as with another assay based on the inhibition of hatching of the cyst (hatchability assay). The extracts were also assayed for cytotoxicity against two human cell lines, lung carcinoma A-549 and colon carcinoma HT-29, in order to assess the sensitivity of the shrimp assays to detect cytotoxic activity. Results Two sponges (Hyatella sp, Dysidea sp.), two gorgonians (Pacifigorgia adamsii, Muricea sp.), one tunicate (Polyclinum laxum), and three echinoderms (Holothuria impatiens, Pseudoconus californica and Pharia pyramidata) showed a strong cytostatic (growth inhibition) and cytotoxic effect. The hatchability assay showed a strong activity in 4 of the species active against the two human cell lines tested (Hyatella sp, Dysidea sp., Pacifigorgia adamsii and Muricea sp.), and the lethality assay also showed a high lethality in 4 of them (Pacifigorgia adamsii, Muricea sp., Polyclinum laxum, and Pharia pyramidata). Each bioassay detected activity in 50% of the species that were considered active against the two human cell lines tested. However, the simultaneous use of both bioassays increased the percentage to 75%. Conclusions Our results seem consistent with the correlation previously established between cytotoxicity and brine shrimp lethality in plant extracts. We suggest using both bioassays simultaneously to test natural marine products for pharmacological

  4. Semisynthetic Esters of 17-Hydroxycativic Acid with in Vitro Cytotoxic Activity against Leukemia Cell Lines

    Czech Academy of Sciences Publication Activity Database

    Cavallaro, V.; Řezníčková, Eva; Jorda, Radek; Alza, N.P.; Murray, A.P.; Kryštof, Vladimír

    2017-01-01

    Roč. 40, č. 11 (2017), s. 1923-1928 ISSN 0918-6158 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : biological evaluation * derivatives * andrographolide * apoptosis * cancer * agents * diterpenes * inhibition * activation * chemistry * diterpenoid * 17-hydroxycativic acid * cytotoxic activity * human cancer cell * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.683, year: 2016

  5. Delineation of cytotoxic concentrations of two dentin bonding agents in vitro.

    Science.gov (United States)

    Hanks, C T; Wataha, J C; Parsell, R R; Strawn, S E

    1992-12-01

    Until adhesiveness of dentin bonding agents and other restorative materials to dental structures can be assured, microleakage into resulting "gaps" and dentin permeability will remain major concerns in cases of pulpal irritation. The objectives of the present study were to (a) delineate the kinds and levels of metabolic cytotoxicity of the GLUMA and Scotchbond 2 systems as well as glutaraldehyde and 2-hydroxyethylmethacrylate, and (b) compare the effects of these same materials after diffusion through dentin discs approximately 0.5-mm thick. In monolayer cultures, glutaraldehyde was much more cytotoxic than 2-hydroxyethylmethacrylate. However, GLUMA sealer and Scotchbond 2 adhesive exhibited similar cytotoxicity in monolayer cultures. After diffusion through dentin, glutaraldehyde and 2-hydroxyethylmethacrylate effects were diluted 14.7 and 26.7 times, respectively. The postdiffusional effects of the GLUMA and Scotchbond 2 systems were not significantly different and less than those effects in monolayer cultures. This study should help in the evaluation of possible causes of pulpal irritation following restorative procedures.

  6. Diarylheptanoid from Pleuranthodium racemigerum with in vitro prostaglandin E(2) inhibitory and cytotoxic activity.

    Science.gov (United States)

    Wohlmuth, Hans; Deseo, Myrna A; Brushett, Don J; Thompson, Dion R; Macfarlane, Graham; Stevenson, Lesley M; Leach, David N

    2010-04-23

    Bioactivity-guided fractionation of an ethanolic extract of the rhizome of Pleuranthodium racemigerum, a tropical Zingiberaceae species from Northeastern Australia, resulted in the isolation and structural elucidation of 1-(4''-methoxyphenyl)-7-(4'-hydroxyphenyl)-(E)-hept-2-ene (1), a new diarylheptanoid related to curcumin. Compound 1 was a fairly potent inhibitor of prostaglandin E(2) production in 3T3 murine fibroblasts (IC(50) approximately 34 microM) and also displayed moderate cytotoxicity against this cell line (IC(50) = 52.8 microM). The compound also demonstrated cytotoxic activity against the P388D1 murine lymphoblast cell line (IC(50) = 117.0 microM) and four human cell lines: Caco-2 colonic adenocarcinoma (IC(50) = 44.8 microM), PC3 prostate adenocarcinoma (IC(50) = 23.6 microM), HepG2 hepatocyte carcinoma (IC(50) = 40.6 microM), and MCF7 mammary adenocarcinoma (IC(50) = 56.9 microM). The cytotoxicity of compound 1 closely resembled that of curcumin, in terms of both IC(50) values and dose-response curves.

  7. Effect of biflavones of Ginkgo biloba against UVB-induced cytotoxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Jin [Chonnam National Univ., Kwangju (Korea, Republic of). Medical School

    2001-04-01

    The effect of Ginkgo biloba extract on Ultraviolet B (UVB) irradiated fibroblasts was examined by using a neutral red dye uptake assay and a lactic dehydrogenase (LDH) release assay. Crude extract along with individual components, including flavone-glycosides and biflavones, were applied to cultured normal human skin fibroblasts for 12 hours, and 0, 20, 40 and 80 mJ/cm{sup 2} of UVB were irradiated. Two synthetic flavonoids, quercetin and rutin, which have polyphenol structures close to the flavonoids in Ginkgo biloba extract, were used to compare any structure-related activity under the same conditions. At the concentrations (from 0.25 to 2 mg/ml) treated with biflavone components (isoginkgetin/ginkgetin, sciadopitysin) and quercetin, high neutral red dye uptake was detected with gradual increases in UVB irradiation. The time-course release of LDH was determined as the cytotoxicity index (%) during 24 hours following a high dose UVB irradiation (200 mJ/cm{sup 2}), and the pattern of this cytotoxicity index was similar to that of the neutral red dye uptake results. Sciadopitysin, isoginkgetin/ginkgetin and quercetin treatments lowered cytotoxicity indices to 50.81, 67.81 and 62.19%, respectively, compared to 95.38% for the untreated control. The antioxidant potential of biflavones of Ginkgo biloba could be explained on the basis of structure-related activity; hydroxy- and methyl-substitutions on the basic structure of these flavonoids played a role, as other reports have suggested. (author)

  8. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials.

    Science.gov (United States)

    Tuomi, Jukka T; Björkstrand, Roy V; Pernu, Mikael L; Salmi, Mika V J; Huotilainen, Eero I; Wolff, Jan E H; Vallittu, Pekka K; Mäkitie, Antti A

    2017-03-01

    Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.

  9. In vitro combined cytotoxic effects of pesticide cocktails simultaneously found in the French diet.

    Science.gov (United States)

    Takakura, Natsuko; Sanders, Pascal; Fessard, Valérie; Le Hégarat, Ludovic

    2013-02-01

    Although human populations may be constantly exposed to complex pesticide mixtures through their diet, the human health risk of pesticide exposure is currently assessed on the basis of toxicity data on individual compounds. To investigate the combined toxic effects of pesticide cocktails previously identified in the French diet, we first studied the cytotoxicity induced by seven cocktails composed of two to six pesticides on human hepatic (HepG2) and colon (Caco-2) cell lines using the MTT and neutral red uptake assays. Secondly, we challenged to assess the combined effects of the two most cytotoxic cocktails by comparing the measured effects of the mixtures with the predictions based on additive effects on two concepts-independent action (IA) and concentration addition (CA). For the cocktail composed of dichlorodiphenyltrichloroethane (DDT) and dieldrin, the cytotoxicity of the equimolar cocktail proved greater than the additive effect estimated by the two concepts. Furthermore, apoptosis induction was higher in equimolar cocktail than predicted by summing the effects of DDT and dieldrin. Thus, some supra-additive toxicity was found in the DDT-dieldrin cocktail. Nevertheless, if IA and CA models could reveal combined effects of pesticide cocktails, an accurate evaluation remains challenging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. In vitro cytotoxic, genotoxic and antioxidant/oxidant effects of guaiazulene on human lymphocytes

    Directory of Open Access Journals (Sweden)

    Başak Toğar

    2015-02-01

    Full Text Available The aim of this study was to evaluate for the cytotoxicity, genotoxicity and antioxidant/oxidant activity of GYZ on human peripheral blood lymphocytes (PBLs. Guaiazulene (GYZ was added into culture tubes at various concentrations (0-400 µg/mL-1. Cytotoxicity against the human lymphocytes cultures was examined by lactate dehydrogenase (LDH release assay. The proliferative response was estimated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay. Antioxidant/oxidant activity was evaluated by measuring the total oxidant status (TOS and total antioxidant capacity (TAC levels. Micronucleus (MN and chromosomal aberration (CA tests were used in genotoxicity studies. The results showed that GYZ caused cytotoxicity in the PBLs at high concentrations, but TOS level were not affected, while the level of TAC was significantly increased. GYZ also did not induce chromosomal aberrations when compared to that of the control group. Results this study clearly revealed that GYZ was not genotoxic and also increased the capacity of the antioxidant in the culture of human PBL cells. This report is first report on the impact of GYZ on human PBL cells.

  11. Bioassay-guided in vitro study of the antileishmanial and cytotoxic properties of Bixa orellana seed extract

    Directory of Open Access Journals (Sweden)

    Marley García

    2014-06-01

    Full Text Available Objective: To investigate the leishmanicidal effect of the Bixa orellana crude seed extract and its fractions against Leishmania amazonensis. Methods: Four main fractions (BO-A, BO-B, BO-C and BO-D were obtained by exhaustion with solvent with increased polarity from the Bixa orellana crude seed extract and 28 sub-fractions. The antileishmanial activity was evaluated in intracellular amastigotes and the cytotoxicity was assessed in murine intraperitoneal macrophages. Results: The BO-A and BO-B fractions showed a good antileishmanial activity with IC50 values of (12.9±4.1 and (12.4±0.3 μg/mL, respectively. The sub-fractions BO-B1 (IC50=(11.8±3.8 μg/mL and BO-B3 [IC50=(13.6±4.7 μg/mL] also proved to have a good leishmanicidal effect. In general, the sub-fractions showed a lower toxicity than the crude extract. A selectivity index of 9 indicated a moderate selectivity of the BO-A, BO-B and BO-C fractions and BO-B1 sub-fraction. Conclusions: Potential of this plant against cutaneous leishmaniasis should be further investigated.

  12. Evaluation of In Vitro Cytotoxic and Antioxidant Activity of Datura metel Linn. and Cynodon dactylon Linn. Extracts

    Science.gov (United States)

    Roy, Soumen; Pawar, Sandip; Chowdhary, Abhay

    2016-01-01

    Aim: To evaluate in vitro cytotoxicity and antioxidant activity of Datura metel L. and Cynodon dactylon L. extracts. Materials and Methods: The extraction of plants parts (datura seed and fruit pulp) and areal parts of durva was carried out using soxhlet and cold extraction method using solvents namely methanol and distilled water. The total phenolic content (TPC) and total flavonoid content (TFC) was determined by established methods. The in vitro cytotoxicity assay was performed in vero cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay method. In vitro antioxidant activity of the extract was performed by 2, 2-diphenyl-1-picrylhydrazyl radical scavenging method. Results: We found that the highest amount of TPC and TFC in methanolic extracts of seed (268.6 μg of gallic acid equivalence/mg of dry plant material) and fruit pulp (8.84 μg of quercetin equivalence/mg dry plant material) of D. metel, respectively prepared by Soxhlet method. The methanolic extract of C. dactylon prepared using soxhlation has shown potent free radical scavenging activity with 50% inhibitory concentration (IC50) value of 100 μg/ml. The IC50 of a methanolic cold extract of datura fruit was found to be 3 mg/ml against vero cell line. Conclusion: We observed that plant parts of C. dactylon and D. metel have a high antioxidant activity. Further research is needed to explore the therapeutic potential of these plant extracts. SUMMARY In the present study we observed a positive correlation was between the phenolic and flavanoid content of the Datura metel and cynodon doctylon (durva) extracts with the free radical scavenging activities. Both were found to have a high antioxidant activity. Abbreviations used: BHA: Butylated hydroxyanisole, BHT: Butylated hydroxytoluene, CC50: 50% cell cytotoxic concentration, CNS: Central nervous system, DPPH: 2, 2-diphenyl-1-picrylhydrazyl, IC50: 50% inhibitory concentration, MTT: 3-(4,5-dimethylthiazol-2-yl)-2

  13. Sophorolipid Butyl Ester Diacetate Does Not Affect Macrophage Polarization but Enhances Astrocytic Glial Fibrillary Acidic Protein Expression at Micromolar Concentrations in Vitro.

    Science.gov (United States)

    Ziemba, Alexis M; Gottipati, Manoj K; Totsingan, Filbert; Hanes, Cheryl M; Gross, Richard A; Lennartz, Michelle R; Gilbert, Ryan J

    2017-04-19

    Peritoneal macrophages (PMACs) and spinal cord astrocytes were exposed to varying concentrations of soluble sophorolipid butyl ester diacetate (SLBEDA) in vitro. Macrophages and astrocytes demonstrated no decrease in viability in response to SLBEDA. Studying pro- and anti-inflammatory genes, PMACs did not show a shift toward a pro-inflammatory phenotype. However, at higher concentrations (3 and 30 μM), astrocytes showed an increase in their expression of glial acidic fibrillary protein. This novel category of compounds poses low risk to PMAC and astrocyte viability; however, the effect on PMAC polarization and astrocyte reactivity requires more elucidation.

  14. Digital holographic microscopy as multimodal read out for in vitro nanomaterial cytotoxicity testing

    Science.gov (United States)

    Mues, Sarah; Ketelhut, Steffi; Kemper, Björn; Schnekenburger, Jürgen

    2017-07-01

    Digital holographic microscopy (DHM) was used as multimodal optical method for nanomaterial toxicity testing that overcomes the limitations and assay disturbances of conventional in vitro assays based on absorbance or fluorescence read outs.

  15. A comparison of the in vitro cytotoxicity of conventional and resin modified glass ionomer cements

    Science.gov (United States)

    Selimović-Dragaš, Mediha; Huseinbegović, Amina; Kobašlija, Sedin; Hatibović-Kofman, Šahza

    2012-01-01

    To evaluate cytotoxicity of experimental conventional and resin modified glass-ionomer cements on UMR-106 osteoblast cell cultures and cell cultures of NIH3T3 mouse fibroblasts specimens were prepared for every experimental material and divided into: group 1. Conventional glass-ionomer cements: GC Fuji IX GP Fast, GC Fuji Triage and Ketac Silver; group 2. Resin modified glass-ionomer cements: GC Fuji II LC, GC Fuji Plus and Vitrebond; group 3. Positive control was presented by specimens of composite Vit-l-ecence® and negative control-group 4. was presented by α-minimum essential medium for UMR-106 – osteoblast-like cells and Dulbecco’s Modified Eagle’s Medium for NIH3T3 mouse fibroblast cells. Both cell cultures were exposed to 10% of eluate of each single specimen of each experimental material. Experimental dishes were incubated for 24 h. Cell metabolism was evaluated using methyltetrazolium assay. Kruskal-Wallis test and Tukey-Kramer post hoc test for the materials evaluated on NIH3T3 mouse fibroblast cells, as well as UMR-106 osteoblast-like cells showed significantly more cytotoxicity of RMGICs, predominantly Vitrebond to both GICs and composite-Vit-l-ecence®. The lowest influence on cell’s metabolism on UMR-106 osteoblas-like cells was shown by Ketac Silver and the lowest influence on cell’s metabolism on NIH3T3 mouse fibroblast cells was shown by Fuji IX GP Fast. Statistical evaluation of sensitivity of cell lines UMR-106 osteoblast-like cells and NIH3T3 mouse fibroblast cells, using Mann-Whitney test, showed that NIH3T3 mouse fibroblast cells were more sensitive for the evaluation of cytotoxicity of dental materials. PMID:23198945

  16. Evaluation of in vitro cytotoxicity and genotoxicity of copper-zinc alloy nanoparticles in human lung epithelial cells.

    Science.gov (United States)

    Kumbıçak, Umit; Cavaş, Tolga; Cinkılıç, Nilüfer; Kumbıçak, Zübeyde; Vatan, Ozgür; Yılmaz, Dilek

    2014-11-01

    In the present study, in vitro cytotoxic and genotoxic effect of copper-zinc alloy nanoparticles (Cu-Zn ANPs) on human lung epithelial cells (BEAS-2B) were investigated. XTT test and clonogenic assay were used to determine cytotoxic effects. Cell death mode and intracellular reactive oxygen species formations were analyzed using M30, M65 and ROS Elisa assays. Genotoxic effects were evaluated using micronucleus, comet and γ-H2AX foci assays. Cu-Zn ANPs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. Characterization of Cu-Zn ANPs showed an average size of 200nm and zeta potential of -22mV. TEM analyses further revealed the intracellular localization of Cu-Zn ANPs in cytoplasm within 24h. Analysis of micronucleus, comet and γ-H2AX foci counts showed that exposure to Cu-Zn ANPs significantly induced chromosomal damage as well as single and double stranded DNA damage in BEAS-2B cells. Our results further indicated that exposure to Cu-Zn ANPs significantly induced intracellular ROS formation. Evaluation of M30:M65 ratios suggested that cell death was predominantly due to necrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. In Vitro Cytotoxicity of GuttaFlow Bioseal, GuttaFlow 2, AH-Plus and MTA Fillapex

    Science.gov (United States)

    Saygili, Gokhan; Saygili, Suna; Tuglu, Ibrahim; Davut Capar, Ismail

    2017-01-01

    Introduction: The aim of the present in vitro study was to evaluate the cytotoxicity of different sealers including GuttaFlow Bioseal, GuttaFlow 2, AH-Plus and MTA Fillapex on L929 murine fibroblasts. Methods and Materials: Samples of GuttaFlow Bioseal, GuttaFlow 2, AH-Plus and MTA Fillapex were fabricated in Teflon disks of 5 mm diameter and 3 mm thickness. L929 fibroblasts were exposed to the extracts of these materials for 3, 24, 72 and 168 h at 37°C with 5% CO2. Cell viability was evaluated by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. The data were analysed by ANOVA. Results: GuttaFlow Bioseal was nontoxic at all experimental time points (P>0.05), whereas MTA Fillapex and AH-Plus were toxic (Psealers are less cytotoxic than MTA Fillapex and AH-Plus. At all experimental time points, there was no significant difference in the cell viability between the GuttaFlow Bioseal group and the control group. PMID:28808465

  18. Dendritic cells transduced with Rsf-1/HBXAP gene generate specific cytotoxic T lymphocytes against ovarian cancer in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li [Department of Gynecology Oncology, Shan Dong Tumor Hospital, Jinan, Shandong (China); Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong (China); Kong, Beihua, E-mail: kongbeihua@sdu.edu.cn [Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong (China); Sheng, Xiugui [Department of Gynecology Oncology, Shan Dong Tumor Hospital, Jinan, Shandong (China); Sheu, Jim Jinn-Chyuan [Human Genetic Center, China Medical University Hospital and Graduate Institute of Chinese Medical Science, China Medical University, Taichung City, Taiwan (China); Shih, Ie-Ming [Departments of Pathology, Oncology, and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21231 (United States)

    2010-04-09

    Recently, some studies have indicated that Rsf-1/HBXAP plays a role in chromatin remodeling and transcriptional regulation that may contribute to tumorigenesis in ovarian cancer. The present study demonstrates that using dendritic cells (DCs) from human cord blood CD34{sup +} cells transduced with Rsf-1/HBXAP DNA plasmids by nucleofection generate specific cytotoxic T lymphocytes (CTL) against ovarian cancer in vitro. After transfection, DCs were analyzed for Rsf-1/HBXAP mRNA expression by RT-PCR and protein expression by Western blot. Then the DC phenotypes, T-cell stimulatory capacity, endocytic activity and migration capacity were explored by flow cytometry analysis, allogeneic mixed lymphocyte reaction, endocytosis and transwell chemotaxis assay, respectively. After transfection, Rsf-1/HBXAP expression was detected at mRNA and protein levels. Allogeneic T-cell proliferation induced by transfected DCs was obviously higher than non-transfected DCs, but the endocytosis capacity and migratory ability were not different. Rsf-1/HBXAP gene-transduced DCs could induce antigen-specific CTL and generate a very potent cytotoxicity to OVCAR3 cells. These data suggest that Rsf-1/HBXAP gene-transduced DCs may be a potential adjuvant immunotherapy for ovarian cancer in clinical applications.

  19. In vitro cytotoxicity of crude alkaloidal extracts of South African Menispermaceae against three cancer cell lines

    CSIR Research Space (South Africa)

    De Wet, H

    2009-07-20

    Full Text Available -35-9026491. species, although species from five genera in this family are used in cancer treatment (De Wet, 2006) in other parts of the world. These genera are Cissampelos, Sphe- nocentrum, Menispermum, Stephania and Tinospora, and were used in treating stomach... recorded (published) history of use against stomach and skin cancer in South Africa (Van Wyk and Gericke, 2000), but no screening for cytotoxicity against cancer cell lines has been reported on any of the 13 South African spe- cies. Most...

  20. Genotoxic and Cytotoxic Safety Evaluation of Papain (Carica papaya L. Using In Vitro Assays

    Directory of Open Access Journals (Sweden)

    Claudia R. da Silva

    2010-01-01

    This work evaluated the toxic and mutagenic potential of papain and its potential antioxidant activity against induced-H2O2 oxidative stress in Escherichia coli strains. Cytotoxicity assay, Growth inhibition test, WP2-Mutoxitest and Plasmid-DNA treatment, and agarose gel electrophoresis were used to investigate if papain would present any toxic or mutagenic potential as well as if papain would display antioxidant properties. Papain exhibited negative results for all tests. This agent presented an activity protecting cells against H2O2-induced mutagenesis.

  1. In-vitro Evaluation of Cytotoxic and Apoptogenic Properties of Sophora Pachycarpa

    OpenAIRE

    Mousavi, Seyed Hadi; Motaez, Mahsa; Zamiri-Akhlaghi, Amir; Emami, Seyed Ahmad; Tayarani-Najaran, Zahra

    2014-01-01

    Sophora pachycarpa Schrenk ex C.A.Mey. belongs to the family Fabaceae. Some species of the genus Sophora have shown to possess anti-proliferative and apoptosis-inducing activities in cancer cells. However, there is no available information addressing this effect in S. pachycarpa. Here, we investigated the cytotoxic effects of methanol extract and different fractions obtained from S. pachycarpa root on different cancer cell lines including A549, HeLa, HL-60, MCF-7, and PC3 cell lines and leuko...

  2. Biopolymer-mediated synthesis of Fe3O4 nanoparticles and investigation of their in vitro cytotoxicity effects

    Science.gov (United States)

    Gholoobi, Aida; Meshkat, Zahra; Abnous, Khalil; Ghayour-Mobarhan, Majid; Ramezani, Mohammad; Homaei Shandiz, Fatemeh; Verma, K. D.; Darroudi, Majid

    2017-08-01

    Superparamagnetic iron oxide nanoparticles (SPIONs; Fe3O4) were synthesized by a ;green; co-precipitation method in aqueous starch solution as a food media. Powder X-ray diffraction (PXRD) patterns indicated that the synthesized samples were pure Fe3O4 with a spinel structure, and the coating of starch did not undergo any phase change. Fourier transform infrared (FTIR) spectra confirmed the formation of starch coated Fe3O4 nanoparticles. Field emission scanning electron microscopy (FESEM) micrographs illustrated the formation of nanoparticles in the size range of below 25 nm. Magnetic measurements revealed that the saturated magnetization of the starch-SPIONs reached 36.5 emu/g. The non-toxic effect of SPIONs concentration below 50 and 100 μg/ml was observed in the studies of in vitro cytotoxicity on normal and cancerous cell lines, respectively. The dose dependent toxicity made it a suitable candidate for various medical applications.

  3. Cytotoxic effects of procyanidins from Castanea mollissima Bl. shell on human hepatoma G2 cells in vitro.

    Science.gov (United States)

    Zhang, H; Ke, J; Shao, T; Li, J; Duan, Y; He, Y; Zhang, C; Chen, G; Sun, G; Sun, X

    2014-02-01

    Significant cytotoxic effects of procynadins from chestnut (Castanea mollissima Bl.) shell (CSPC) on human hepatoma G2 (HepG2) cells were found in vitro. CSPC could inbibit HepG2 proliferation in a dose-dependent manner (100-400 μg/mL), arrest cell cycle in the G0/G1 phase, induce apoptosis and trigger necrosis of HepG2. Proapoptotic effect of CSPC was evidenced by nuclear condensation, internucleosomal DNA fragmentation. Treatment of HepG2 cells with CSPC caused a loss of mitochondrial membrane potential and stimulated reactive oxidative species (ROS) generation. These results suggested CSPC could trigger apoptosis and necrotic cell death in HepG2 cell, which might be associated with ROS generation through the mitochondria-dependent signaling way. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages.

    Science.gov (United States)

    Hyam, Supriya R; Lee, In-Ah; Gu, Wan; Kim, Kyung-Ah; Jeong, Jin-Ju; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2013-05-15

    Seeds of Arctium lappa, containing arctigenin and its glycoside arctiin as main constituents, have been used as a diuretic, anti-inflammatory and detoxifying agent in Chinese traditional medicine. In our preliminary study, arctigenin inhibited IKKβ and NF-κB activation in peptidoglycan (PGN)- or lipopolysaccharide (LPS)-induced peritoneal macrophages. To understand the anti-inflammatory effect of arctigenin, we investigated its anti-inflammatory effect in LPS-stimulated peritoneal macrophages and on LPS-induced systemic inflammation as well as 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Arctigenin inhibited LPS-increased IL-1β, IL-6 and TNF-α expression in LPS-stimulated peritoneal macrophages, but increased LPS-reduced IL-10 and CD204 expression. Arctigenin inhibited LPS-induced PI3K, AKT and IKKβ phosphorylation, but did not suppress LPS-induced IRAK-1 phosphorylation. However, arctigenin did not inhibit NF-κB activation in LPS-stimulated PI3K siRNA-treated peritoneal macrophages. Arctigenin suppressed the binding of p-PI3K antibody and the nucleus translocation of NF-κB p65 in LPS-stimulated peritoneal macrophages. Arctigenin suppressed blood IL-1β and TNF-α level in mice systemically inflamed by intraperitoneal injection of LPS. Arctigenin also inhibited colon shortening, macroscopic scores and myeloperoxidase activity in TNBS-induced colitic mice. Arctigenin inhibited TNBS-induced IL-1β, TNF-α and IL-6 expression, as well as PI3K, AKT and IKKβ phosphorylation and NF-κB activation in mice, but increased IL-10 and CD204 expression. However, it did not affect IRAK-1 phosphorylation. Based on these findings, arctigenin may ameliorate inflammatory diseases, such as colitis, by inhibiting PI3K and polarizing M1 macrophages to M2-like macrophages. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Antileishmanial activities of macrophages from C3H/HeN and C3H/HeJ mice treated with Mycobacterium bovis strain BCG.

    Science.gov (United States)

    Pappas, M G; Nacy, C A

    1983-09-01

    C3H/HeN and C3H/HeJ mice were infected ip with viable BCG, a macrophage-activating agent, and their peritoneal exudate macrophages exposed to Leishmania tropica amastigotes. Macrophages from BCG-infected C3H/HeN mice had both leishmanicidal activities described for lymphokine activation of C3H/HeN macrophages in vitro: increased resistance to L. tropica infection, followed by intracellular killing of the parasite. Macrophages from BCG-infected C3H/HeN mice were also activated to kill tumor cells in vitro. In contrast, macrophages from BCG-treated C3H/HeJ mice were not resistant to L. tropica infection, did not kill intracellular amastigotes over 72 hr in culture, and were not cytotoxic to tumor cells.

  6. In vitro wound healing and cytotoxic activity of the gel and whole-leaf materials from selected aloe species.

    Science.gov (United States)

    Fox, Lizelle T; Mazumder, Anisha; Dwivedi, Anupma; Gerber, Minja; du Plessis, Jeanetta; Hamman, Josias H

    2017-03-22

    Aloe vera is one of the most important medicinal plants in the world with applications in the cosmetic industry and also in the tonic or health drink product market. Different parts of Aloe ferox and Aloe marlothii are used as traditional medicines for different applications. Although wound healing has been shown for certain aloe gel materials (e.g. A. vera ) previously, there are conflicting reports on this medicinal application of aloe leaf gel materials. The present study aimed at determining the wound healing properties of the gel and whole-leaf materials of Aloe vera, Aloe ferox and Aloe marlothii, as well as their cytotoxic effects on normal human keratinocyte cells (HaCaT). Nuclear magnetic resonance spectroscopy was used to chemically fingerprint the aloe gel and whole-leaf materials by identifying characteristic marker molecules of aloe gel and whole-leaf materials. An MTT assay was performed to determine the cytotoxicity of the various aloe whole-leaf and gel materials on HaCaT cells. Wound healing and in vitro cell migration were investigated with HaCaT cells by means of the CytoSelect™ assay kit. The in vitro wound healing assay suggested that all the aloe gel and whole-leaf materials examined, exhibited faster wound healing activity than the untreated control group. After 48h, all the aloe gel and whole-leaf materials almost completely caused full wound closure, displaying 98.07% (A. marlothii whole-leaf), 98.00% (A. vera gel), 97.20% (A. marlothii gel), 96.00% (A. vera whole-leaf), 94.00% (A. ferox gel) and 81.30% (A. ferox whole-leaf) wound closure, respectively. It was noteworthy that the gel materials of all the three aloe species exhibited significantly faster (pAloe species showed negligible toxicity towards the HaCaT cells. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity.

    Science.gov (United States)

    Ishak, Rania A H; Osman, Rihab

    2015-05-15

    The aim of the present work was to develop a new solid self-microemulsifying drug delivery system (SMEDDS) for the pulmonary delivery of the poorly water-soluble anti-cancer drug atorvastatin (AVT). Microemulsion (ME) was first developed using isopropyl myristate (IPM), a combination of 2 biocompatible surfactants: lecithin/d-α-tocopheryl polyethylene glycol succinate (TPGS) and ethanol as co-surfactant. Two types of lecithin with different phosphatidylcholine (PC) contents were compared. Phase diagram, physico-chemical characterization and stability studies were used to investigate ME region. Solid SMEDDS were then prepared by spray-drying the selected ME using a combination of carriers composed of sugars, leucine as dispersibility enhancer with or without polyethylene glycol (PEG) 6000. Yield, flow properties, particle size and in vitro pulmonary deposition were used to characterize the spray-dried powders. Reconstituted MEs were characterized in terms of morphology, particle size and size distribution. In vitro cytotoxicity study was undertaken on lung cancer cell line for the selected MEs and SD-SMEDDS formulae. Results showed that the most satisfactory MEs properties were obtained with 1:3 lecithin/TPGS, 1:1 lecithin/oil and 1:1 surfactant/co-surfactant ratios. A larger ME area was obtained with lecithin containing 100% PC compared to the less expensive lecithin containing 20% PC. By manipulating spray drying parameters, carrier composition and ratio of ME lipids to carrier, microparticles with more than 70% of respirable fraction could be prepared. The ME was efficiently recovered in simulated lung fluid even after removal of alcohol. The concurrent delivery of AVT with TPGS in solid SMEDDS greatly enhanced the cytotoxic activity on lung cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Beta2 toxin is not involved in in vitro cell cytotoxicity caused by human and porcine cpb2-harbouring Clostridium perfringens.

    Science.gov (United States)

    Allaart, Janneke G; van Asten, Alphons J A M; Vernooij, Johannes C M; Gröne, Andrea

    2014-06-25

    Clostridium perfringens is a common cause of intestinal disease in animals and humans. Its pathogenicity is attributed to the toxins it can produce, including the beta2 toxin. The presence of cpb2, the gene encoding the beta2 toxin, has been associated with diarrhoea in neonatal piglets and humans. However, the exact role of the beta2 toxin in the development of diarrhoea is still unknown. In this study we investigated the level of cytotoxicity to porcine IPI-21 and human Caco-2 cell-lines caused by porcine and human cpb2-harbouring C. perfringens and the significance of the beta2 toxin for the induction of cell cytotoxicity. Supernatants of porcine cpb2-harbouring C. perfringens strains were cytotoxic to both cell lines. Cell cytotoxicity caused by supernatant of human cpb2-harbouring C. perfringens strains was variable among strains. However, removal of the beta2 toxin by anti-beta2 toxin antibodies or degradation of the beta2 toxin by trypsin did not reduce the cytotoxic effect of any of the supernatants. These data suggest that beta2 toxin does not play a role in the development of cell cytotoxicity in in vitro experiments. In vivo studies are necessary to definitely define the role of beta2 toxin in the development of cell cytotoxicity and subsequent diarrhoea. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2013-12-01

    Full Text Available Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2 nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM. The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05. There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001. L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  10. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae).

    Science.gov (United States)

    Unlu, Mehmet; Ergene, Emel; Unlu, Gulhan Vardar; Zeytinoglu, Hulya Sivas; Vural, Nilufer

    2010-11-01

    The essential oil from the bark of Cinnamomum zeylanicum Blume was analyzed by GC-MS and bioassays were carried out. Nine constituents representing 99.24% of the oil were identified by GC-MS. The major compounds in the oil were (E)-cinnamaldehyde (68.95%), benzaldehyde (9.94%) and (E)-cinnamyl acetate (7.44%). The antimicrobial activity of the oil was investigated in order to evaluate its efficacy against 21 bacteria and 4 Candida species, using disc diffusion and minimum inhibitory concentration methods. The essential oil showed strong antimicrobial activity against all microorganisms tested. The cytotoxic and apoptotic effects of the essential oil on ras active (5RP7) and normal (F2408) fibroblasts were examined by MTT assay and acridine orange/ethidium bromide staining, respectively. The cytotoxicity of the oil was quite strong with IC(50) values less than 20 μg/mL for both cell lines. 5RP7 cells were affected stronger than normal cells. Morphological observation of apoptotic cells indicated the induction of apoptosis at the high level of the oil, especially in 5RP7 cells. The present study showed the potential antimicrobial and anticarcinogenic properties of the essential oil of cinnamon bark, indicating the possibilities of its potential use in the formula of natural remedies for the topical treatment of infections and neoplasms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Mutagenic, Anti-Mutagenic and Cytotoxic Activities of Artediffusin (Tehranolide, in vitro, extracted from Artemisia diffusa

    Directory of Open Access Journals (Sweden)

    Mahboubeh Taherkhani

    2015-06-01

    Full Text Available Background: Artediffusin is a sesquiterpene lactone with an endoperoxide group which has been isolated from Artemisia diffusa. Artemisia has always been of great botanical and pharmaceutical interest and is useful in traditional medicines for the treatment of a variety of diseases and complaints. The aims of the present study were to evaluate the cytotoxic, mutagenic and anti-mutagenic activities of Artediffusin (Tehranolide extracted from Artemisia diffusa. Methods: Cytotoxicity was measured using a modified MTT assay on normal human lymphocytes and cancer cells. The mutagenic and anti-mutagenic activities of Artediffusin were evaluated using the Salmonella typhimurium tester strains TA98 and TA100 with and without metabolic activation S9. Results: 28μg/ml concentration of Artediffusin inactivated 77.73±0.78% of HeLa cells activity and 5600µg/ml concentration of Artediffusin inactivated 28.79±1.82% of lymphocytes activity. The maximum percentage of anti-mutagenic activity of Artediffusin was observed in the strain of S. typhimurium TA98, with the presence of metabolic activation S9. Conclusion: Artediffusin may be exploited as a natural anti-cancer and anti-mutagenic agent with low adverse side effects.

  12. In vitro evaluation of anti-diabetic activity and cytotoxicity of chemically analysed Ocimum basilicum extracts.

    Science.gov (United States)

    Kadan, Sleman; Saad, Bashar; Sasson, Yoel; Zaid, Hilal

    2016-04-01

    The aim of this study was to evaluate the role of glucose transporter-4 (GLUT4) in the anti-diabetic effects of methanol, hexane and dichloromethane extracts of the aerial parts of Ocimum basilicum (OB) and to analyze their phytochemical composition. Phytochemical analysis of the three extracts by GC/MS using the silylation derivatization technique revealed 53 compounds, 17 of them were found for the first time in OB. Cytotoxic and anti-diabetic properties of the extracts were evaluated using L6-GLUT4myc muscle cells stably expressing myc epitope at the exofacial loop (GLUT4). No cytotoxic effects were observed in treated cells up to 0.25 mg/ml extract as measured with MTT and LDH-leakage assays. GLUT4 translocation to the plasma membrane was elevated by 3.5 and 7 folds (-/+ insulin) after treatment with OB extracts for 20 h. Our findings suggest that the observed anti-diabetic properties of OB extracts are possibly mediated in part through one or more of the 17 new identified compound. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. In vitro cytotoxic and antioxidant activities of phenolic components of Algerian Achillea odorata leaves

    Directory of Open Access Journals (Sweden)

    Hanane Boutennoun

    2017-03-01

    Full Text Available In this study, methanol extract from Achillea odorata was evaluated for its phenolic contents using Folin–Ciocalteu reagent, and antioxidant activity using: 1,1-diphenyl-2-picrylhidrazyl (DPPH radical scavenging activity, reducing activity of H2O2 and ferric reducing power assay. The total phenolic content was determined as gallic acid (GAE equivalent. Flavonoids and flavonols contents were determined as quercetin (QE equivalents. The cytotoxicity of the plant extract was tested against three tumor cell lines: MCF-7, Hep2 and WEHI using 3-(4,5-dimethyl thiazol-2-yl-2,5-diphynyl tetrazolium bromide (MTT assay. Preliminary screening was concluded in the presence of substances with large therapeutic values. The total phenolic content confirmed the presence of total phenolics in the extract and showed strong association with antioxidant activity. An important content of flavonoids and flavonols was also detected. The results of the antioxidant activities obtained indicate that A. odorata recorded a good capacity. For the cytotoxic activity, the results showed the plant extract significantly inhibited tumor cell growth and colony formation at various concentrations.

  14. In Vitro Cytotoxicity of Calcium Silicate-Based Endodontic Cement as Root-End Filling Materials

    Directory of Open Access Journals (Sweden)

    Selen Küçükkaya

    2016-01-01

    Full Text Available The aim of this study was to evaluate the cytotoxicity of three types of calcium silicate-based endodontic cement after different incubation periods with human periodontal ligament fibroblasts. Human periodontal ligament fibroblasts were cultured from extracted third molars and seeded in 96-well plates. MTA, calcium enriched mixture (CEM cement, and Biodentine were prepared and added to culture insert plates which were immediately placed into 96-well plates containing cultured cells. After incubation periods of 24, 48, and 72 hours, cell viability was determined with WST-1 assay. Data were analysed statistically by ANOVA with repeated measures and Bonferroni tests. There was no significant difference in cell viability amongst the test materials after each incubation period (P>0.05. MTA and CEM presented more than 90% cell viability after 24 and 48 hours of incubation and showed statistically significant decrease in cell viability after 72 hours of incubation (P<0.05. Biodentine showed significantly less cell viability (73% after 24 hours of incubation, whereas more than 90% cell viability was seen after 48 and 72 hours of incubation (P<0.05. Despite the significant changes in cell viability over time, materials presented similar cytotoxicity profile. Biodentine and CEM can be considered as alternative materials for root-end surgery procedures.

  15. In Vitro Antimicrobial, Antioxidant, Cytotoxicity and GC-MS Analysis of Mazus goodenifolius

    Directory of Open Access Journals (Sweden)

    Muhammad Riaz

    2012-12-01

    Full Text Available The antimicrobial, antioxidant and cytotoxic properties of Mazus goodenifolius (Hornem. Pennell essential oil, methanol extract and some solvent-extracted subfractions of the latter were appraised. A qualitative, quantitative analysis of the classes of phytochemicals in the various fractions and GC-MS analysis of the essential oil was carried out. The activity of the plant extract and various subfractions against selected bacterial (Pasturella multocida, Escherichia coli, Bacillus subtilis and Staphylococcus aureus and fungal strains (Aspergillus niger, Aspergillus flavus, Alternaria alternata and Rhizopus solani was evaluated. The antioxidant activity was assayed using the DPPH radical scavenging and % inhibition of linoleic acid peroxidation tests. In the DPPH radical scavenging test the IC50 values ranged from 7.21 to 91.79 µg/mL, and in the latter the range of % peroxidation inhibition was 35.42–93.48%. Protective effects of the absolute methanol extract, which had the highest content of phenolics and flavonoids, against H2O2 induced oxidative damage in plasmid pBR322 DNA was also evaluated, and it was found to offer some protection at the highest tested dose (1,000 µg/mL. Finally the cytotoxicity of the plant extract, fractions and essential oil was analyzed by examining haemolytic activity against human blood erythrocytes (RBCs, whereby the % lysis of RBCs was found to be in the range of 1.65 to 4.01%.

  16. In vitro antimicrobial and cytotoxic effects of Anacardium occidentale and Mangifera indica in oral care.

    Science.gov (United States)

    Anand, Geethashri; Ravinanthan, Manikandan; Basaviah, Ravishankar; Shetty, A Veena

    2015-01-01

    Oral health is an integral and important component of general health. Infectious diseases such as caries, periodontal, and gingivitis indicate the onset of imbalance in homeostasis between oral micro biota and host. The present day medicaments used in oral health care have numerous side effects. The uses of herbal plants as an alternative have gained popularity due to side effects of antibiotics and emergence of multidrug resistant strains. Anacardium occidentale (cashew) and Mangifera indica (mango) have been used as traditional oral health care measures in India since time immemorial. The ethanol extracts of cashew and mango leaves were obtained by maceration method. The antimicrobial activity was evaluated by clear zone produced by these plant extracts against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Candida albicans in agar plate method, determination of minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and suppression of biofilm. The cytotoxic effects of plants extract was determined by microculture tetrazolium assay on human gingival fibroblast and Chinese hamster lung fibroblast (V79) cell lines. Cashew and mango leaf extract significantly (P extracts significantly (P extracts were less cytotoxic (P extracts are superior to the mouth rinses and have a promising role in future oral health care.

  17. In vitro cytotoxic, antioxidant and antiviral effects of Pterocaulon alopecuroides and Bidens segetum extracts

    Directory of Open Access Journals (Sweden)

    Cristiane Silva Silveira

    Full Text Available Pterocaulon alopecuroides (Lamark De Candolle and Bidens segetum Mart. ex Colla are two species belonging to the Asteraceae family. Extracts from those two species were evaluated to their cytotoxic, antioxidant and antiviral activities. All the extracts assayed have shown a very high cytotoxity against RBL-2H3 cell line. The antioxidant assay pointed out a really high activity of the ethyl acetate extracts for B. segetum and P. alopecuroides. This can be partially explained due to the high content of coumarins, at least for P. alopecuroides. None of the total ethanol extracts from B. segetum showed significant activity against the two strains of Herpes simplex virus (Types 1 and 2 resistant to acyclovir. P. alopecuroides ethanol extract was also inactive against the Herpes simplex virus type 1 resistant to acyclovir. However, this extract presented inhibitory activity against the Herpes simplex virus type 2 resistant to acyclovir. From the ethanol crude extract of P. alopecuroides, it was possible to isolate 7-(2',3'-dihidroxy-3'-methylbutyloxy-6-methoxycoumarin, which was tested in the same conditions, showing a viral inhibitory rate almost twice bigger than the P. alopecuroides sample for HSV-2-ACVr. The coumarin was also active against HSV-1-ACVr. Those results provide further evidence of the importance of Pterocaulon alopecuroides and Bidens segetum as medicinal plants.

  18. In Vitro Antioxidant and Cytotoxic Activities of Some Marine Sponges Collected off Misamis Oriental Coast, Philippines

    Directory of Open Access Journals (Sweden)

    A. P. Rivera

    2012-01-01

    Full Text Available The phosphomolybdenum method for total antioxidant activity determination showed that the hexane, dichloromethane and ethyl acetate extracts of five marine sponge species collected off misamis oriental coast-Aaptos suberitoides, Dactylospongia elegans, Stylissa massa, Haliclona sp. and an unidentified species coded as KL-05, have varying degrees of antioxidant capacity. Expressed as ascorbic acid equivalents in μg/mL of extract, the hexane extract of Dactylospongia elegans (DeH and the ethyl acetate extract of Aaptos suberitoides (AsE showed the highest antioxidant capacity. Although the hexane extract of KL-05 (KL-05H has considerable antioxidant activity, the ethyl acetate extract (KL-05E showed no antioxidant activity. The brine shrimp assay for cytotoxicity indicated high bioactivity, with Haliclona sp., Dactylospongia elegans, Aaptos suberitoides and Stylissa massa exhibiting high % mortality and low LC50 values. The antioxidant and cytotoxic activities of the marine sponges may be attributed to the zoochemicals present. All sponge species contain alkaloids, saponins, tannins, and flavonoids. Terpenoids are present only in Haliclona sp. and the cardiac glycosides, only in Aaptos suberitoides and Haliclona sp.

  19. Macrophage colony-stimulating factor and its receptor signaling augment glycated albumin-induced retinal microglial inflammation in vitro

    Directory of Open Access Journals (Sweden)

    Jiang Chun H

    2011-01-01

    Full Text Available Abstract Background Microglial activation and the proinflammatory response are controlled by a complex regulatory network. Among the various candidates, macrophage colony-stimulating factor (M-CSF is considered an important cytokine. The up-regulation of M-CSF and its receptor CSF-1R has been reported in brain disease, as well as in diabetic complications; however, the mechanism is unclear. An elevated level of glycated albumin (GA is a characteristic of diabetes; thus, it may be involved in monocyte/macrophage-associated diabetic complications. Results The basal level of expression of M-CSF/CSF-1R was examined in retinal microglial cells in vitro. Immunofluorescence, real-time PCR, immunoprecipitation, and Western blot analyses revealed the up-regulation of CSF-1R in GA-treated microglial cells. We also detected increased expression and release of M-CSF, suggesting that the cytokine is produced by activated microglia via autocrine signaling. Using an enzyme-linked immunosorbent assay, we found that GA affects microglial activation by stimulating the release of tumor necrosis factor-α and interleukin-1β. Furthermore, the neutralization of M-CSF or CSF-1R with antibodies suppressed the proinflammatory response. Conversely, this proinflammatory response was augmented by the administration of M-CSF. Conclusions We conclude that GA induces microglial activation via the release of proinflammatory cytokines, which may contribute to the inflammatory pathogenesis of diabetic retinopathy. The increased microglial expression of M-CSF/CSF-1R not only is a response to microglial activation in diabetic retinopathy but also augments the microglial inflammation responsible for the diabetic microenvironment.

  20. In vitro effects of plant and mushroom extracts on immunological function of chicken lymphocytes and macrophages

    Science.gov (United States)

    The present study was conducted to examine the effects of milk thistle (Silybum marianum), turmeric (Curcuma longa), reishi mushroom (Ganoderma lucidum), and shiitake mushroom (Lentinus edodes) on innate immunity and tumor cell viability. In vitro culture of chicken spleen lymphocytes with extracts ...

  1. In vitro assessment of anti-HCV, antioxidant, cytotoxic and hypolipidemic activities of glycoprotein isolated from Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Azza Abdelmageed Matloub

    2017-11-01

    Full Text Available Objective: To evaluate the glycoprotein isolated from Spirulina platensis (S. platensis as antiHCV, cytotoxicity, antioxidant and hypolypidemic activities. Method: Cold and hot aqueous extraction methods (SCEM and SHEM of S. platensis were performed and their physico-chemical characterizations were studied. Further, monosaccharides and amino acids composition of SCEM and SHEM were studied using GLC and amino acid analyzer, respectively. Both glycoproteins SCEM and SHEM were evaluated in vitro for anti-HCV replicon, cytotoxicity, antioxidant and hypolipidemic activities. SCEM was fractionated and their physico-chemical characterization and anti-HCV replicon were studied. Results: The yield of SCEM and SHEM was 4.45% and 3.37% of dried algal sample, respectively. The physico-chemical characterizations of SCEM and SHEM revealed the presence of ash (13.33% and 10.42% w/w, sulfur (1.22% and 0.71% w/w, nitrogen (7.14% and 5.59% w/w and sugar (67.29% and 64.66% w/w contents. The physico-chemical characterizations confirmed that SCEM and SHEM were polysaccharide bounded protein (glycoprotein. Twelve and eleven sugars could be identified in SCEM and SHEM polysaccharide of S. platensis using gas chromatography analysis, respectively. Glucose, galactose and mannose are predominant sugars in both extracts. Further, amino acid analysis of SCEM and SHEM revealed the presence 16 amino acids. Aspartic acid and alanine were detected as predominant non-essential amino acids in SCEM while glutamic and aspartic acids were existed as dominant amino acids in glycoprotein SHEM. Whereas leucine, phenylalanine and valine were presented as mean essential amino acids. Evaluation of both glycoproteins of SCEM and SHEM for anti-HCV, cytotoxic, antioxidant, and hypolipidemic activities revealed that SCEM reduced the HCV (genotype 4 replicon to 50% at non-toxic dose (522 µg/mL. In addition, SCEM inhibitd enzyme activity, β-hydroxy-β- methyl glutaryl coA reductase, to 80

  2. In vitro assessment of the structure-activity relationship of tyrosinase-dependent cytotoxicity of a series of substituted phenols.

    Science.gov (United States)

    Naish-Byfield, S; Cooksey, C J; Latter, A M; Johnson, C I; Riley, P A

    1991-01-01

    The rate of oxidation by purified mushroom tyrosinase of 30 compounds was measured by oximetry, and the tyrosinase-dependent cytotoxicity of each estimated in an in vitro assay using exposure of non-melanogenic cells to the agents in the presence and absence of tyrosinase. Cytotoxicity was estimated by immediate inhibition of DNA synthesis; 4-hydroxyanisole was used as the reference material. Compounds that were not oxidized by tyrosinase were found to be non-toxic but there was no direct relationship between the rate of oxidation and the relative cytotoxicity of those materials that acted as substrates for the enzyme. Thioethers were found to be more cytotoxic than the corresponding phenoxyethers. This was partly due to their greater rate of oxidation by tyrosinase and, in the case of propylthiophenol, the consequence of higher effective toxicity of the lipophilic species. The optimum chain length for the side chain of the oxyethers was three saturated carbon atoms and the toxicity appeared to be influenced by the lipophilicity of the compounds, possibly reflecting the relative lipid solubility of the putative toxic ortho-quinones generated from them. The maximum tyrosinase-dependent toxicity observed was in the range 5-6 times the relative toxicity of 4-hydroxyanisole. Sulphinyl and sulphonyl derivatives were inactive. In addition to oxyethers and thioethers, esters and glycosides of oxyethers were also examined and were found to be toxic in the presence of tyrosinase when hydrolysed. The succinates were found to be oxidized and toxic in our test system, suggesting that they rapidly underwent spontaneous hydrolysis. Oximetry data suggest that slight spontaneous hydrolysis of the other compounds occurs but they were not toxic in our assay. Ring-methylated phenoxyethers were oxidized relatively slowly and were non-toxic. Fluorine-substituted phenoxyethers were oxidized slightly more rapidly and exhibited clear toxicity in our system. Sesamol was oxidized to a black

  3. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yijuan [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018 (China); Guan, Rongfa, E-mail: rongfaguan@163.com [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018 (China); Lyu, Fei [Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014 (China); Kang, Tianshu; Wu, Yihang [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018 (China); Chen, Xiaoqiang [Hubei University of Technology, Wuhan 430068 (China)

    2014-11-15

    Highlights: • The characterization of Ag NPs and ZnO NPs. • The various morphologies of Caco-2 cells stained with AO/EB. • The viability of Caco-2 cells after Ag NPs and ZnO NPs exposure. • The cytotoxicity of Ag NPs and ZnO NPs on Caco-2 cells by oxidative stress assays. - Abstract: With the increasing applications of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) in foods and cosmetics, the concerns about the potential toxicities to human have been raised. The aims of this study are to observe the cytotoxicity of Ag NPs and ZnO NPs to human epithelial colorectal adenocarcinoma (Caco-2) cells in vitro, and to discover the toxicity mechanism of nanoparticles on Caco-2 cells. Caco-2 cells were exposed to 10, 25, 50, 100, 200 μg/mL of Ag NPs and ZnO NPs (90 nm). AO/EB double staining was used to characterize the morphology of the treated cells. The cell counting kit-8 (CCK-8) assay was used to detect the proliferation of the cells. Reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) assay were used to explore the oxidative damage of Caco-2 cells. The results showed that Ag NPs and ZnO NPs (0–200 μg/mL) had highly significant effect on the Caco-2 cells activity. ZnO NPs exerted higher cytotoxicity than Ag NPs in the same concentration range. ZnO NPs have dose-depended toxicity. The LD{sub 50} of ZnO NPs in Caco-2 cells is 0.431 mg/L. Significant depletion of SOD level, variation in GSH level and release of ROS in cells treated by ZnO NPs were observed, which suggests that cytotoxicity of ZnO NPs in intestine cells might be mediated through cellular oxidative stress. While Caco-2 cells treated with Ag NPs at all experimental concentrations showed no cellular oxidative damage. Moreover, the cells’ antioxidant capacity increased, and reached the highest level when the concentration of Ag NPs was 50 μg/mL. Therefore, it can be concluded that Ag NPs are safer antibacterial material in food packaging materials

  4. The loss of immunodominant epitopes affects interferon-γ production and lytic activity of the human influenza virus-specific cytotoxic T lymphocyte response in vitro

    NARCIS (Netherlands)

    E.G.M. Berkhoff (Eufemia); M.M. Geelhoed-Mieras (Martina); E.J. Verschuren (Esther); C.A. van Baalen (Carel); R.A. Gruters (Rob); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); G.F. Rimmelzwaan (Guus)

    2007-01-01

    textabstractIn the present study, we examined the effect of the loss of the human leucocyte antigen (HLA)-B*3501-restricted nucleoprotein (NP)418-426epitope on interferon (IFN)-γ-production and lytic activity of the human cytotoxic T lymphocyte (CTL) response in vitro. Extensive amino acid variation

  5. Cytotoxicity, interaction with dentine and efficacy on multispecies biofilms of a modified salt solution intended for endodontic disinfection in a new in vitro biofilm model

    NARCIS (Netherlands)

    van der Waal, S.V.; Scheres, N.; de Soet, J.J.; Wesselink, P.R.; Crielaard, W.

    2014-01-01

    Aim To investigate the cytotoxicity of a modified salt solution (MSS) and evaluate the antimicrobial properties of MSS on in vitro biofilm models. Methodology In a metabolic assay, fibroblasts derived from periodontal ligaments (PDL) of human extracted teeth were cultured and challenged with MSS or

  6. Effect of hyperthermia on the cytotoxicity of 4 chemotherapeutic agents currently used for the treatment of transitional cell carcinoma of the bladder: an in vitro study.

    NARCIS (Netherlands)

    Heijden, A.G. van der; Verhaegh, G.W.C.T.; Jansen, C.F.J.; Schalken, J.A.; Witjes, J.A.

    2005-01-01

    PURPOSE: Hyperthermia combined with chemotherapy is not a novel cancer treatment. However, the working mechanism of this combination therapy is not fully understood. In the current in vitro study we investigated the differences in cytotoxicity of 4 chemotherapeutic agents at 37C or 43C. MATERIALS

  7. In vitro and in vivo evaluation of NCX 4040 cytotoxic activity in human colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Zupi Gabriella

    2005-02-01

    Full Text Available Abstract Background Nitric oxide-releasing nonsteroidal antiinflammatory drugs (NO-NSAIDs are reported to be safer than NSAIDs because of their lower gastric toxicity. We compared the effect of a novel NO-releasing derivate, NCX 4040, with that of aspirin and its denitrated analog, NCX 4042, in in vitro and in vivo human colon cancer models and investigated the mechanisms of action underlying its antitumor activity. Methods In vitro cytotoxicity was evaluated on a panel of colon cancer lines (LoVo, LoVo Dx, WiDr and LRWZ by sulforhodamine B assay. Cell cycle perturbations and apoptosis were evaluated by flow cytometry. Protein expression was detected by Western blot. In the in vivo experiments, tumor-bearing mice were treated with NCX 4040, five times a week, for six consecutive weeks. Results In the in vitro studies, aspirin and NCX 4042 did not induce an effect on any of the cell lines, whereas NCX 4040 produced a marked cytostatic dose-related effect, indicating a pivotal role of the -NO2 group. Furthermore, in LoVo and LRWZ cell lines, we observed caspase-9 and -3-mediated apoptosis, whereas no apoptotic effect was observed after drug exposure in WiDr or LoVo Dx cell lines. In in vivo studies, both NCX 4040 and its parental compound were administered per os. NCX 4040 induced a 40% reduction in tumor weight. Conversely, aspirin did not influence tumor growth at all. Conclusions NCX 4040, but not its parental compound, aspirin, showed an in vitro and in vivo antiproliferative activity, indicating its potential usefulness to treat colon cancer.

  8. Essential oils: in vitro activity against Leishmania amazonensis, cytotoxicity and chemical composition.

    Science.gov (United States)

    Andrade, Milene Aparecida; Azevedo, Clênia Dos Santos; Motta, Flávia Nader; Santos, Maria Lucília Dos; Silva, Camila Lasse; Santana, Jaime Martins de; Bastos, Izabela M D

    2016-11-08

    The current chemotherapy for cutaneous leishmaniosis (CL) has a series of drug limitations such as toxic side effects, long duration, high costs and drug resistance, which requires the development of new drugs or effective alternatives to the CL treatment. Essential oils (EOs) are complex mixtures of secondary metabolites from various plants. It has been shown that several EOs, or their constituents, have inhibitory activity against protozoa. Thus, this study aims to evaluate the biological activity of different essential oils (EOs) on Leishmania (L.) amazonensis promastigotes forms, as well as their cytotoxicity on mammalian cells and chemical composition. Sixteen EOs were evaluated by mean of IC 50 /24 h and cytotoxicity against L6 cells (CC 50 /24 h) using Resazurin assay. Only those EOs that presented better results for IC 50 /24 h were submitted to GC-MS analysis to determine their chemical constitution. The EO from Cinnamodendron dinisii, Matricaria chamomilla, Myroxylon peruiferum, Salvia sclarea, Bulnesia sarmientoi, Ferula galbaniflua, Siparuna guianensis and Melissa officinalis were the most active against L. amazonensis with IC50/24 h ranging from 54.05 to 162.25 μg/mL. Analysis of EOs by GC-MS showed mainly the presence of β-farnesene (52.73 %) and bisabolol oxide (12.09 %) for M. chamomilla; α-copaene (13.41 %), safrole (8.35 %) and δ-cadinene (7.08 %) for M. peruiferum; linalool (28.80 %) and linalyl acetate (60.08 %) for S. sclarea; guaiol (48.29 %) and 2-undecanone (19.49 %) for B. sarmientoi; ethyl phthalate (13.09 %) and methyl-8-pimaren-18-oate (41.82 %) for F. galbaniflua; and neral (37.18 %) and citral (5.02 %) for M. officinalis. The EO from F. galbaniflua showed to be effective against L. amazonensis promastigotes forms and presented low cytotoxic activity against L6 cells. Thus, it represents a strong candidate for future studies aiming its molecular activity on these pathogenic parasites.

  9. The cytotoxic activity of Ziziphus Jujube on cervical cancer cells: In Vitro study.

    Science.gov (United States)

    Hoshyar, R; Jamali, S; Fereidouni, M; Abedini, M R

    2015-12-30

    Recently, there are tendency to use natural products such as Ziziphus Jujube (Jujube) as therapeutic agents for cancer. Understanding the molecular mechanisms of anti-cancer effects of Jujube may improve the current therapeutic strategies against cervical cancer. Our MTT data showed a significant dose- and time-dependent inhibition of OV-2008 cell proliferation following Jujube administration. Moreover, qRT-PCR analyses significantly revealed the suppression of cyclin D1 and the enhancement of P53, P21 and P27 expression in treated cells. These results suggest that the herb exerts a cytotoxic effect on cervical cancer cells through alternation of the expression of the genes that are involved in regulation of cell cycle.

  10. In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using Embelia ribes.

    Science.gov (United States)

    Dhayalan, Manikandan; Denison, Michael Immanuel Jesse; L, Anitha Jegadeeshwari; Krishnan, Kathiravan; N, Nagendra Gandhi

    2017-02-01

    In recent years, the green synthesis of gold (GNPs) and silver (SNPs) nanoparticles has gained great interest among chemists and researchers. The present study reports an eco-friendly, cost-effective, rapid and easy method for the synthesis of gold and silver nanoparticles using the seed extract of Embelia ribes (SEEr) as capping and reducing agent. The synthesised GNPs and SNPs were characterised using the following techniques: UV-vis spectroscopy, DLS, HR-TEM, FT-IR and XRD. The free radical scavenging potential of GNPs and SNPs was measured by DPPH assay and Phosphomolybdenum assay. Further, the antimicrobial activity against two micro-organisms were tested using disc diffusion method and cytotoxicity of GNPs and SNPs was determined against MCF-7 cell lines at different concentrations by MTT assay. Both the GNPs and SNPs prepared from E. ribes comparatively showed promising results thereby proving their clinical importance.

  11. Does zinc sulfate inhibit the in vitro cytotoxicity of crude toxin from Pelagia noctiluca?

    Directory of Open Access Journals (Sweden)

    G.L. Mariottini

    2011-01-01

    Full Text Available The Scyphomedusa Pelagia noctiluca is known to be an harmful species able to cause contact dermatitis and also systemic symptoms in sensitive subjects. Taking into account that some compounds are known to be protective agents against jellyfish venoms, in this research the protection of non-cytotoxic zinc sulfate concentrations was evaluated on cultured L929 mouse fibroblasts exposed to nematocyst crude venom at doses ranging between 60x103 and 240x103 nematocysts/ml. The results indicate that the pre-treatment with 10-6 M zinc sulfate allowed a significant cell survival increase and protection after exposition to nematocyst does from 60x103 to 180x103 nematcysts/ml. Therefore, zinc sulfate could be a valuable protective agent in barrier creams applied to bather'sskin with the purpuse to protect from Pelagia noctiluca sting.

  12. Cytotoxicity of hydroxyapatite, fluorapatite and fluor-hydroxyapatite: a comparative in vitro study.

    Science.gov (United States)

    Theiszova, M; Jantova, S; Letasiova, S; Palou, M; Cipak, L

    2008-01-01

    The purpose of this study was to evaluate the cytotoxicity of two formulations of hydroxyapatite (HA), namely fluorapatite (FA) and fluor-hydroxyapatite (FHA). HA is used as carrier material for antibiotics or anticancer drugs during treatment of bone metastasis. Negative control, represented by HA, was included for comparative purposes. Leukemia cells were used as a model cell line, and the effect of eluates of tested biomaterials on cell proliferation/viability and mechanism of antiproliferative activity were assessed. Study design attempted to reveal the toxicity of tested biomaterials with an emphasis to decide if tested biomaterials have promise for further studies in vivo. Results showed that eluates of FA and FHA inhibit the growth of leukemia cells and induce programmed cell death through mitochondrial/caspase-9/caspase-3-dependent pathway. Due to these differences compare to HA, it is concluded that FA and FHA have promise for evaluation of their behaviour in vivo.

  13. The influence of dentine permeability on cytotoxicity of four dentine bonding systems, in vitro.

    Science.gov (United States)

    Bouillaguet, S; Virgillito, M; Wataha, J; Ciucchi, B; Holz, J

    1998-01-01

    Dentine adhesives are often placed directly on dentine from which the smear layer has been removed, the thickness of the dentine is minimal and the potential for diffusion of adhesive components into the pulp is greatest. The permeability of the dentine is one factor that should be critical to whether sufficient diffusion of adhesive components occurs to cause damage to pulpal cells. Dentine discs were prepared and divided into those with low-, medium-, and high-permeability. They were then treated with four different dentine adhesives, after which the pulpal side of the dentine was placed in contact with 1 mL of cell-culture medium. The medium was collected at 24 h intervals for 168 h, and was then placed on monolayers of human pulpal fibroblasts for 24 h. The response of the cells was assessed by succinic dehydrogenase activity (MTT method). The results showed that four dentine adhesive systems released sufficient components to cause suppression of cellular metabolism through dentine. High-permeability dentine generally allowed more diffusion of these components, but the effect of dentine permeability depended on the material. On the other hand, the time interval between the application of the bonding agent and collection of the eluant was consistently important for all materials. Materials were most cytotoxic at early intervals, and were generally less cytotoxic at later intervals, although there were exceptions and there was persistent (> 15%) suppression of cellular metabolism even at late (168 h) intervals. The results suggest that application of these materials to dentine, and particularly dentine with high permeability, poses a potential risk to the health of pulpal tissues.

  14. In vitro antimicrobial and cytotoxic effects of Anacardium occidentale and Mangifera indica in oral care

    Directory of Open Access Journals (Sweden)

    Geethashri Anand

    2015-01-01

    Full Text Available Background: Oral health is an integral and important component of general health. Infectious diseases such as caries, periodontal, and gingivitis indicate the onset of imbalance in homeostasis between oral micro biota and host. The present day medicaments used in oral health care have numerous side effects. The uses of herbal plants as an alternative have gained popularity due to side effects of antibiotics and emergence of multidrug resistant strains. Anacardium occidentale (cashew and Mangifera indica (mango have been used as traditional oral health care measures in India since time immemorial. Materials and Methods: The ethanol extracts of cashew and mango leaves were obtained by maceration method. The antimicrobial activity was evaluated by clear zone produced by these plant extracts against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Candida albicans in agar plate method, determination of minimum inhibitory concentration (MIC, minimum bactericidal/fungicidal concentration (MBC/MFC, and suppression of biofilm. The cytotoxic effects of plants extract was determined by microculture tetrazolium assay on human gingival fibroblast and Chinese hamster lung fibroblast (V79 cell lines. Results: Cashew and mango leaf extract significantly (P < 0.05 produced larger zone of inhibition against test pathogens when compared to povidone---iodine-based mouth rinses. Although the MIC and MBC/MFC values of mouth rinses were effective in lower concentrations; plant extracts significantly (P < 0.001 suppressed the biofilms of oral pathogens. The leaf extracts were less cytotoxic (P < 0.001 compared to mouth rinses. Conclusions: Plant extracts are superior to the mouth rinses and have a promising role in future oral health care.

  15. In vitro cytotoxicity of all-ceramic substructural materials after aging

    Directory of Open Access Journals (Sweden)

    Kerem Kilic

    2013-09-01

    Conclusion: Several types of all-ceramic substructures did not cause the same in vitro responses. Finesse and Zirkonzahn did not carry high biologic risk. However, our results suggest that In-Ceram Alumina, In-Ceram Zirconia, Turkom Cera, and IPS e.max should not be considered as entirely biocompatible materials.

  16. The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics

    Science.gov (United States)

    Juraski, Amanda De Castro; Dorion Rodas, Andrea Cecilia; Elsayed, Hamada; Bernardo, Enrico; Oliveira Soares, Viviane; Daguano, Juliana

    2017-01-01

    Ca-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD) glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich glass. The in vitro degradation, bioactivity, and cell response of these new WD glass-ceramics, fired at 900–1100 °C for 1 h, as a function of the Ca/Mg-rich glass content, are the aim of this investigation The results showed that WD glass-ceramics from formulations comprising different glass contents (70–100% at 900 °C, 30% at 1100 °C) exhibit the formation of an apatite-like layer on their surface after immersion in SBF for seven days, thus confirming their surface bioactivity. The XRD results showed that these samples crystallized, mainly forming wollastonite (CaSiO3) and diopside (CaMgSi2O6), but combeite (Na2Ca2Si3O9) crystalline phase was also detected. Besides in vitro bioactivity, cytotoxicity and osteoblast adhesion and proliferation tests were applied after all characterizations, and the formulation comprising 70% glass was demonstrated to be promising for further in vivo studies. PMID:28772783

  17. Cytotoxicity studies of AZ31D alloy and the effects of carbon dioxide on its biodegradation behavior in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiali, E-mail: wangjialicsu@yahoo.cn [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Qin, Ling [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Wang, Kai [School of Humanities and Social Sciences, Hunan University of Chinese Medicine, Changsha 410208 (China); Wang, Jue; Yue, Ye [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Li, Yangde [Guangdong Innovation Team for Biodegradable Magnesium and Medical Implants, E-ande, Dongguan 523660 (China); Tang, Jian [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Li, Weirong [Guangdong Innovation Team for Biodegradable Magnesium and Medical Implants, E-ande, Dongguan 523660 (China)

    2013-10-01

    Magnesium alloys have been advocated as potential artificial bone materials due to their biocompatibility and biodegradability. The understanding of their corrosive mechanism in physiological environments is therefore essential for making application-orientated designs. Thus, this in vitro study was designed to assess the effects of CO{sub 2} on corrosive behavior of AZ31D to mimic in vivo special ingredient. Electrochemical technologies accompanied with Scanning electron microscope, Fourier transform infrared, X-ray diffraction, Energy dispersive spectroscopy and hydrogen evolution measurement were employed to analyze corrosive rates and mechanisms of AZ31D. Moreover, the biocompatibility of AZ31D was assessed with a direct cell attachment assay and an indirect cytotoxicity test in different diluted extracts. The ion concentrations in extracts were measured using inductively coupled plasma mass spectrometry to offer explanations on the differences of cell viability in the indirect test. The results of the direct cytotoxicity assay showed that the corrosive rate of AZ31D was too rapid to allow for cell adhesion. Extracts diluted less than 20 times would cause adverse effects on cell proliferation, likely due to excessive ions and gas release. Moreover, the presence of CO{sub 2} did not cause significant differences on corrosive behavior of AZ31D according to the results of electrochemical testing and hydrogen evolution measurement. This might be caused by the simultaneous process of precipitation and dissolution of MgCO{sub 3} due to the penetration role of CO{sub 2}. This analysis of corrosive atmospheres on the degradation behavior of magnesium alloys would contribute to the design of more scientific in vitro testing systems in the future. - Highlights: • We evaluate the effects of CO{sub 2} on corrosion behavior of magnesium alloys. • We assess the feasibility of commercial AZ31D alloy as potential implants. • CO{sub 2} is not the key factor to minimize

  18. PDT-treated apoptotic cells induce macrophage synthesis NO

    Science.gov (United States)

    Song, S.; Xing, D.; Zhou, F. F.; Chen, W. R.

    2009-11-01

    Nitric oxide (NO) is a biologically active molecule which has multi-functional in different species. As a second messenger and neurotransmitter, NO is not only an important regulatory factor between cells' information transmission, but also an important messenger in cell-mediated immunity and cytotoxicity. On the other side, NO is involving in some diseases' pathological process. In pathological conditions, the macrophages are activated to produce a large quantity of nitric oxide synthase (iNOS), which can use L-arginine to produce an excessive amount of NO, thereby killing bacteria, viruses, parasites, fungi, tumor cells, as well as in other series of the immune process. In this paper, photofrin-based photodynamic therapy (PDT) was used to treat EMT6 mammary tumors in vitro to induce apoptotic cells, and then co-incubation both apoptotic cells and macrophages, which could activate macrophage to induce a series of cytotoxic factors, especially NO. This, in turn, utilizes macrophages to activate a cytotoxic response towards neighboring tumor cells. These results provided a new idea for us to further study the immunological mechanism involved in damaging effects of PDT, also revealed the important function of the immune effect of apoptotic cells in PDT.

  19. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture.

    Science.gov (United States)

    Chen, Gui; Shen, Yuexin; Li, Xiyue; Jiang, Qin; Cheng, Shanshan; Gu, Yuxiu; Liu, Liangliang; Cao, Yi

    2017-03-01

    It was recently shown that exposure to ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress both in vivo and in vitro, but the role of ER stress in ZnO NP induced toxicity remains unclear. Because macrophages are sensitive to ER stress, we hypothesized that stressing macrophages with ER stress inducer could enhance the toxicity of ZnO NPs. In this study, the effects of ER stress inducer thapsigargin (TG) on the toxicity of ZnO NPs to THP-1 macrophages were investigated. The results showed that TG enhanced ZnO NP induced cytotoxicity as revealed by water soluble tetrazolium-1 (WST-1) and neutral red uptake assays, but not lactate dehydrogenase (LDH) assay. ZnO NPs dose-dependently enhanced the accumulation of intracellular Zn ions without the induction of reactive oxygen species (ROS), and the presence of TG did not significantly affect these effects. In the co-culture, exposure of THP-1 macrophages in the upper chamber to ZnO NPs and TG significantly reduced the viability of human umbilical vein endothelial cells (HUVECs) in the lower chamber, but the release of tumor necrosis factor α (TNFα) was not induced. In summary, our data showed that stressing THP-1 macrophages with TG enhanced the cytotoxicity of ZnO NPs to macrophages and macrophage-endothelial co-cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. In Vitro AuNPs’ Cytotoxicity and Their Effect on Wound Healing

    Directory of Open Access Journals (Sweden)

    Veronika Pivodová

    2015-07-01

    Full Text Available Recently, due to their unique properties, gold nanoparti‐ cles (AuNPs have been used in many biological applica‐ tions. However, little is known about their toxicity when they come into contact with a biological system. Based on the proposal that AuNPs can have a positive effect on wound healing, the present study investigated the influence of negatively-charged-surface AuNPs (average diameter 25-50 nm on the viability of normal human dermal fibroblasts (NHDF and normal human epider‐ mal keratinocytes (NHEK. Moreover, we evaluated the effect of AuNPs on the secretion of proteins involved in wound healing, such as interleukin-8 and -12 (IL-8, IL-12, tumour necrosis factor-alpha (TNF-α, vascular endothe‐ lial growth factor (VEGF, basic fibroblast grow factor (bFGF, and granulocyte-macrophage colony-stimulating factor (GM-CSF. The results showed that AuNPs were not toxic to NHDF and NHEK. They showed a decrease in AuNPs’ production of pro-inflammatory cytokines IL-6, IL-12 and TNF-α, as well as proteins involved in angiogenesis such as VEGF and bFGF. Thus, we sug‐ gest that AuNPs could have anti-inflammatory and anti- angiogenic activity.

  1. Cinétique de l'apoptose induite après irradiation α in vitro de macrophages alvéolaires de rat

    Science.gov (United States)

    Lizon, C.; Poncy, J. L.; Fritsch, P.

    1998-04-01

    After in vitro α-particle irradiation of rat alveolar macrophages, apoptosis and necrosis induction have been quantified. Results show a different radiosensitivity depending on time after cell plating and a maximal apoptosis frequency which occurred 48 hours after the end of irradiation. L'induction d'apoptose et de nécrose a été quantifiée d'après irradation α in vitro de macrophages alvéolaires de rats. Les résultats montrent une radiosensibilité dépendante du temps de culture et l'apparition d'un pic d'apoptose 48 heures après la fin de l'irradiation.

  2. In vitro antiplasmodial and cytotoxic activities of sesquiterpene lactones from Vernonia fimbrillifera Less. (Asteraceae)

    OpenAIRE

    Bordignon, Annélise; Frederich, Michel; Ledoux, Allison; Campos, Pierre-Eric; Clerc, Patricia; Hermann, Thomas; Quetin-Leclercq, Joëlle; Cieckiewicz, Ewa

    2017-01-01

    International audience; Due to the in vitro antiplasmodial activity of leaf extracts from Vernonia fimbrillifera Less. (Asteraceae), a bioactivity-guided fractionation was carried out. Three sesquiterpene lactones were isolated, namely 8-(4’-hydroxymethacrylate) dehydromelitensin (1), onopordopicrin (2) and 8α-[4’-hydroxymethacryloyloxy]-4-epi-sonchucarpolide (3). Their structures were elucidated by spectroscopic methods (1D and 2D NMR and MS analyses) and by comparison with published data. T...

  3. Study on the Cytotoxic, Genotoxic and Clastogenic Potential of Attalea phalerata Mart. ex Spreng. Oil Pulp In Vitro and In Vivo Experimental Models.

    Science.gov (United States)

    Freitas de Lima, Fernando; Lima Tolouei Menegati, Sara Emilia; Karenina Traesel, Giseli; Souza de Araújo, Flávio Henrique; Honaiser Lescano, Caroline; Moraes Peixoto, Sara; Mao Silva, Felipe Ariel; Heredia Vieira, Silvia Cristina; do Carmo Vieira, Maria; Oesterreich, Silvia Aparecida

    2016-01-01

    Attalea phalerata Mart. ex Spreng. (Arecaceae), popularly known as "bacuri", is used in Brazilian folk medicine. Its oil is used orally to relieve pulmonary congestion and joint pain. In topical applications, it is applied as an effective hair tonic and anti-dandruff. The in natura pulp and its nuts are used as food because of its nutritional value. Despite its use in folk medicine, there is a lack of data regarding its in vivo/in vitro cytotoxic/genotoxic and clastogenic effects. Therefore, in this study, we evaluated the cytotoxic, genotoxic and clastogenic effects of Attalea phalerata Mart. ex Spreng. oil (APMO) in vitro and in vivo. For the analysis of cytotoxic potential, the Artemia salina and MTT (3-(4,5-dimethizzol-zyl)-2,5-diphenyltetrazolium bromide) assays were performed. Possible cytotoxic, genotoxic and clastogenic effects of APMO intake were determined by performing the comet and micronucleus assays. Male and female Wistar rats were orally treated with doses of 125, 250, 500 or 1000 mg.kg-1 of the APMO daily for 28 consecutive days (four weeks). The results showed that the APMO did not induce cell death in the experiments of Artemia salina and MTT, indicating that it has no cytotoxicity. The APMO did not cause significant damage to the DNA of the rats in the four doses used when compared to the negative control group (saline + Tween® 80). The APMO did not present any significant increase in micronucleated polychromatic erythrocytes (MNPCEs) for the four tested doses. When compared to the positive control group, all groups (comet and micronucleus tests) were statistically different. These data suggest that the administration of Attalea phalerata Mart oil. ex Spreng does not cause cytotoxicity, genotoxicity and clastogenicity in experimental models in vitro and in vivo following oral administration in this study.

  4. Cytotoxicity and apoptotic gene expression in an in vitro model of the blood-brain barrier following exposure to poly(butylcyanoacrylate) nanoparticles.

    Science.gov (United States)

    Hall, Andrew M; Hemmer, Ruth; Spaulding, Robert; Wetzel, Hanna N; Curcio, Joseph; Sabel, Bernhard A; Henrich-Noack, Petra; Pixley, Sarah; Hopkins, Tracy; Boyce, Richard L; Schultheis, Patrick J; Haik, Kristi L

    2016-08-01

    Background Poly(butylcyanoacrylate) (PBCA) nanoparticles (NPs) loaded with doxorubicin (DOX) and coated with polysorbate 80 (PS80) have shown efficacy in the treatment of rat glioblastoma. However, cytotoxicity of this treatment remains unclear. Purpose The purpose of this study was to investigate cytotoxicity and apoptotic gene expression using a proven in vitro co-culture model of the blood-brain barrier. Methods The co-cultures were exposed to uncoated PBCA NPs, PBCA-PS80 NPs or PBCA-PS80-DOX NPs at varying concentrations and evaluated using a resazurin-based cytotoxicity assay and an 84-gene apoptosis RT-PCR array. Results The cytotoxicity assays showed PBCA-PS80-DOX NPs exhibited a decrease in metabolic function at lower concentrations than uncoated PBCA NPs and PBCA-PS80 NPs. The apoptosis arrays showed differential expression of 18 genes in PBCA-PS80-DOX treated cells compared to the untreated control. Discussion As expected, the cytotoxicity assays demonstrated enhanced dose-dependent toxicity in the DOX loaded NPs. The differentially expressed apoptotic genes participate in both the tumor necrosis factor receptor-1 and mitochondria-associated apoptotic pathways implicated in current DOX chemotherapeutic toxicity. Conclusion The following data suggest that the cytotoxic effect may be attributed to DOX and not the NPs themselves, further supporting the use of PBCA-PS80 NPs as an effective drug delivery vehicle for treating central nervous system conditions.

  5. Effects of in vitro ozone exposure on peroxidative damage, membrane leakage, and taurine content of rat alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Banks, M.A.; Porter, D.W.; Martin, W.G.; Castranova, V. (National Institute for Occupational Safety and Health, Morgantown, WV (USA))

    1990-08-01

    Rat alveolar macrophages (AM) were isolated by pulmonary lavage, allowed to adhere to a tissue culture flask, and then exposed to 0.45 +/- 0.05 ppm ozone. After exposures ranging from 0 to 60 min, the medium was decanted and cells were harvested. Cells were assayed for oxidant damage and media analyzed for leakage of intracellular components. Increasing length of exposure to ozone resulted in a decreased number of adherent AM and decreased cell viability. Resting and zymosan-stimulated chemiluminescence increased immediately after ozone exposure and reached a maximum at 15-30 min, then declined to initial levels after 60 min of ozone exposure. Lipid peroxidation and leakage of protein and K+ ions increased with increasing length of exposure to ozone, while leakage of reduced and oxidized glutathione increased through 30 min, then declined (reduced) or leveled off (oxidized). Activity of the Na+/K+ ATPase decreased with time while intracellular taurine concentration exhibited an initial rise, peaked at 30 min, and then returned to the untreated level. Leakage of taurine into the medium increased with time of exposure, suggesting that exposure of AM to ozone results in a shift from bound to free intracellular taurine. These data indicate that in vitro exposure of AM to ozone results in a time-dependent alteration of cell function, membrane integrity, and viability.

  6. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    Science.gov (United States)

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (Pnano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  7. Substituted N-aminothioglycolurils containing thiosemicarbazone moiety and their cytotoxic activity in vitro.

    Science.gov (United States)

    Gazieva, Galina A; Anikina, Lada V; Pukhov, Sergei A; Karpova, Tatyana B; Nelyubina, Yulia V; Kravchenko, Angelina N

    2016-11-01

    A library of hybrid molecules bearing thioglycoluril and (hetero)aromatic aldehyde thiosemicarbazone moieties was synthesized via a tandem hydrazone formation-ring contraction reaction of 5,7-dialkyl-3-thioxoperhydroimidazo[4,5-e]-1,2,4-triazin-6-ones with (hetero)aromatic aldehydes. All synthesized compounds were tested for their cytotoxic activity against rhabdomyosarcoma, A549, and MS human cancer cell lines by MTT-assay. Among the derivatives, (E)-4-benzylideneamino-1,3-dimethyl-5-thioxohexahydroimidazo[4,5-d]imidazol-2(1H)-one 1f was found to have the most marked antiproliferative activity toward the tested cell lines (1f: IC[Formula: see text] 23.7, and 6.4 [Formula: see text]M, respectively). The IC[Formula: see text] value of thioglycoluril 1f against normal human embryonic kidney cells HEK293 was 72.5 [Formula: see text]M, which appeared to be 3-11-fold higher than IC[Formula: see text] values of 1f against human cancer cells.

  8. Fluorescent chitosan functionalized magnetic polymeric nanoparticles: Cytotoxicity and in vitro evaluation of cellular uptake.

    Science.gov (United States)

    Kaewsaneha, Chariya; Jangpatarapongsa, Kulachart; Tangchaikeeree, Tienrat; Polpanich, Duangporn; Tangboriboonrat, Pramuan

    2014-11-01

    Nanoparticles possessing magnetic and fluorescent properties were fabricated by the covalent attachment of fluorescein isothiocyanate onto magnetic polymeric nanoparticles functionalized by chitosan. The synthesized magnetic polymeric nanoparticles-chitosan/fluorescein isothiocyanate were successfully used for labeling the living organ and blood-related cancer cells, i.e., HeLa, Hep G2, and K562 cells. The cytotoxicity test of nanoparticles at various incubation times indicated the high cell viability (>90%) without morphological change. The confocal microscopy revealed that they could pass through cell membrane within 2 h for K562 cells and 3 h for HeLa and Hep G2 cells and then confine inside cytoplasm of all types of tested cells for at least 24 h. Therefore, the synthesized magnetic polymeric nanoparticles-chitosan/fluorescein isothiocyanate would potentially be used as cell tracking in theranostic applications. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Synthesis and In Vitro Cytotoxic Properties of Polycarbo-Substituted 4-(Arylaminoquinazolines

    Directory of Open Access Journals (Sweden)

    Hugues Kamdem Paumo

    2016-10-01

    Full Text Available Herein, we describe the synthesis of novel unsymmetrical polycarbo-substituted 4-anilinoquinazolines derived from the 2-aryl-6-bromo-8-iodoquinazolines via one-pot three-step reaction sequences involving initial amination and subsequent double cross-coupling (bis-Suzuki, Sonogashira/Stille or Sonogashira/Suzuki-Miyaura reactions with different cross coupling partners for the two carbon–carbon bond formation steps. The 4-anilinoquinazolines were evaluated for potential cytotoxicity against three cancer cell lines, namely, human breast adenocarcinoma (MCF-7 cells, human cervical cancer (HeLa and human lung cancer (A549 cells. The most active compounds, 2b, 2c, 3c, 4a, 4c and 5a, were found to be more selective against the MCF-7 and HeLa cell lines than the human lung carcinoma (A549 cells. We selected compounds 2c, 3c and 7a as representatives for further evaluation for potential to induce apoptosis and/or necrotic properties in the three cancer cell lines. Compound 2c induced apoptosis of MCF-7 cells through cell membrane alteration. Treatment of Hela and A549 cell lines with compounds 3c and 7a, respectively, led to caspase-3 activation in both cell lines. Compound 3c, on the other hand, caused more necrosis than apoptosis induction in the membrane alteration assay.

  10. Polyethyleneimine anchored copper(II) complexes: synthesis, characterization, in vitro DNA binding studies and cytotoxicity studies.

    Science.gov (United States)

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Akbarsha, Mohammad Abdulkader

    2015-01-01

    The water soluble polyethyleneimine-copper(II) complexes, [Cu(phen)(L-tyr)BPEI]ClO4 (where phen=1,10-phenanthroline, L-tyr=L-tyrosine and BPEI=branched polyethyleneimine) with various degree of copper(II) complex units in the polymer chain were synthesized and characterized by elemental analysis and electronic, FT-IR, EPR spectroscopic techniques. The binding of these complexes with CT-DNA was studied using UV-visible absorption titration, thermal denaturation, emission, circular dichroism spectroscopy and cyclic voltammetric methods. The changes observed in the physicochemcial properties indicated that the binding between the polymer-copper complexes and DNA was mostly through electrostatic mode of binding. Among these complexes, the polymer-copper(II) complex with the highest degrees of copper(II) complex units (higher degrees of coordination) showed higher binding constant than those with lower copper(II) complex units (lower degrees of coordination) complexes. The complex with the highest number of metal centre bound strongly due to the cooperative binding effect. Therefore, anticancer study was carried out using this complex. The cytotoxic activity for this complex on MCF-7 breast cancer cell line was determined adopting MTT assay, acridine orange/ethidium bromide (AO/EB) staining and comet assay techniques, which revealed that the cells were committed to specific mode of cell death either apoptosis or necrosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Modifications of nano-titania surface for in vitro evaluations of hemolysis, cytotoxicity, and nonspecific protein binding

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Aparna, E-mail: adatta.research@gmail.com [Jadavpur University, School of Materials Science and Nanotechnology (India); Dasgupta, Sayantan [NRS Medical College and Hospital, Department of Biochemistry (India); Mukherjee, Siddhartha [Jadavpur University, Department of Metallurgical and Material Engineering (India)

    2017-04-15

    In the past decade, a variety of drug carriers based on mesoporous silica nanoparticles has been extensively reported. However, their biocompatibility still remains debatable, which motivated us to explore the porous nanostructures of other metal oxides, for example titanium dioxide (TiO{sub 2}), as potential drug delivery vehicles. Herein, we report the in vitro hemolysis, cytotoxicity, and protein binding of TiO{sub 2} nanoparticles, synthesized by a sol–gel method. The surface of the TiO{sub 2} nanoparticles was modified with hydroxyl, amine, or thiol containing moieties to examine the influence of surface functional groups on the toxicity and protein binding aspects of the nanoparticles. Our study revealed the superior hemocompatibility of pristine, as well as functionalized TiO{sub 2} nanoparticles, compared to that of mesoporous silica, the present gold standard. Among the functional groups studied, aminosilane moieties on the TiO{sub 2} surface substantially reduced the degree of hemolysis (down to 5%). Further, cytotoxicity studies by MTT assay suggested that surface functional moieties play a crucial role in determining the biocompatibility of the nanoparticles. The presence of NH{sub 2}– functional groups on the TiO{sub 2} nanoparticle surface enhanced the cell viability by almost 28% as compared to its native counterpart (at 100 μg/ml), which was in agreement with the hemolysis assay. Finally, nonspecific protein adsorption on functionalized TiO{sub 2} surfaces was examined using human serum albumin and it was found that negatively charged surface moieties, like –OH and –SH, could mitigate protein adsorption to a significant extent.

  12. Poly (ɛ-caprolactone) nanoparticles of carboplatin: Preparation, characterization and in vitro cytotoxicity evaluation in U-87 MG cell lines.

    Science.gov (United States)

    Karanam, Vamshikrishna; Marslin, Gregory; Krishnamoorthy, Balakumar; Chellan, Vijayaraghavan; Siram, Karthik; Natarajan, Tamilselvan; Bhaskar, Balaji; Franklin, Gregory

    2015-06-01

    Carboplatin is a platinum based drug used in the treatment of several malignancies. Due to poor cellular uptake, generally, a larger dose of drug is administered to achieve therapeutic levels, causing harmful side-effects such as hematologic toxicity. In order to enhance the cellular uptake of carboplatin, we have developed carboplatin loaded nanoparticles using the biodegradable polymer poly (ɛ-caprolactone) (PCL). Nanoparticles ranging from the size of 23.77±1.37 to 96.73±2.79 nm with positive zeta potential and moderate entrapment efficiency (54.21±0.98%) were obtained. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) confirmed the spherical morphology and smooth surface of all nanoformulations. The concentrations of PCL and the stabilizer (DMAB) are found to play a role in determining the size and the entrapment efficiency of the nanoparticles. Drug release from nanoparticles followed a biphasic pattern with an initial burst release followed by a sustained release for 10h. Results of in vitro cellular uptake and cytotoxicity studies revealed that carboplatin in the form of PCL-nanoparticles were efficiently up taken and displayed profound cytotoxicity to U-87 MG (human glioma) cells than the free drug. Importantly, unlike the free carboplatin, carboplatin in the form of PCL nanoparticles did not present any haemolytic activity in rat erythrocytes, a major side effect of this chemotherapeutic drug. This suggests that poly (ɛ-caprolactone) nanoencapsulation of carboplatin might be an efficient approach to treat cancer, while reducing carboplatin induced haemolysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. In vitro anticancer and cytotoxic activities of some plant extracts on HeLa and Vero cell lines.

    Science.gov (United States)

    Tugba Artun, Fulya; Karagoz, Ali; Ozcan, Gul; Melikoglu, Gulay; Anil, Sezin; Kultur, Sukran; Sutlupinar, Nurhayat

    2016-01-01

    The aim of our study was to evaluate the effect of in vitro anticancer and cytotoxic activity of the methanolic extracts of 14 medicinal plants, 8 of which are endemic species in Anatolia, against the human HeLa cervical cancer cell line and to compare to the normal African green monkey kidney epithelial cell line (Vero) using the MTT colorimetric assay. Values for cytotoxicity measured by MTT assay were expressed as the concentration that causes 50% decrease in cell viability (IC50, μg/mL). The degree of selectivity of the compounds can be expressed by its selectivity index (SI) value. High SI value (>2) of a compound gives the selective toxicity against cancer cells (SI = IC50 normal cell/IC50 cancer cell). Dose-dependent studies revealed IC50 of 293 mg/mL and >1000 mg/mL for Cotinus coggygria Scop., IC50 of 265 μg/mL and >1000 mg/mL for Rosa damascena Miller, IC50 of 2 μg/mL and 454 mg/mL for Colchicum sanguicolle K.M. Perss, IC50 of 427 μg/mL and >1000 μg/mL for Centaurea antiochia Boiss. var. praealta (Boiss & Bal) Wagenitz on the HeLa cells and the Vero cells, respectively. Four plants showed significant SI values which were 227 for Colchicum sanguicolle K.M. Perss (endemic species), >3.8 for Rosa damascena Miller, >3.4 for Cotinus coggygria Scop. and >2.3 for Centaurea antiochia Boiss. var. praealta (Boiss & Bal)Wagenitz (endemic species). According to our study, 4 methanolic extracts of 14 tested plants exhibit greater activity on the HeLa cell line and little activity on the Vero cell line, meaning that these plants can be evaluated for potential promising anticancer activity.

  14. Structural characterization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R.Br.) Asch. & Magnus mediated silver nanoparticles.

    Science.gov (United States)

    Chanthini, Abdhul Basheer; Balasubramani, Govindasamy; Ramkumar, Rajendiran; Sowmiya, Rajamani; Balakumaran, Manickam Dakshinamoorthi; Kalaichelvan, Pudhupalayam Thangavelu; Perumal, Pachiappan

    2015-12-01

    The present study pertains to the synthesis, structural elucidation, antioxidant and in vitro cytotoxic properties of silver nanoparticles (AgNPs) from marine angiosperm, Cymodocea serrulata aqueous extract (CSAE). The characterization was made through UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential and dynamic light scanning (DLS) analyses. The UV-Vis spectrum resulted in a strong surface plasmon resonance (SPR) at 430 nm. The average crystalline size of the AgNPs was predicted through XRD peaks that indicated the 2 theta values of 37.84°, 44.06°, 64.42° and 77.74° for Bragg's refraction index. The functional groups responsible for the bio-reduction of Ag(+) into Ag(0) were focused through FTIR spectrum. The FESEM images showed that the C. serrulata mediated AgNPs (CS-AgNPs) were spherical in shape. DPPH assay revealed the higher free radical scavenging activity in CS-AgNPs, when compared to CSAE. The cytotoxicity assay on the cervical cancer (HeLa) and African green monkey kidney (Vero) cells upon treatment with CSAE: 107.7 & 124.3 μgml(-1) and CS-AgNPs: 34.5 & 61.24 μgml(-1), respectively showed good inhibition rate. These findings highlight the fact that C. serrulata could be a potential source for developing potent drugs and further studies are needed. Copyright © 2015. Published by Elsevier B.V.

  15. In vitro antioxidant activity, phytochemical screening, cytotoxicity and total phenolic content in extracts of Caesalpinia pulcherrima (Caesalpiniaceae) pods.

    Science.gov (United States)

    Kumbhare, M R; Sivakumar, T; Udavant, P B; Dhake, A S; Surana, A R

    2012-04-01

    Caesalpinia pulcherrima L. Swartz (Caesalpiniaceae) is an ornamental plant also used as a common medicinal plant in India, Taiwan and South-East Asian countries. Majority of the diseases/disorders are mainly linked to oxidative stress due to free radicals. The aims of this study were to screen for phytochemical constituents, evaluate cytotoxicity, in vitro antioxidant activity and estimation of total phenolic content of extracts of pods of Caesalpinia pulcherrima. Phytochemical analysis revealed the presence of tannins, flavonoids, steroids and alkaloids. Brine Shrimp Lethality (BSL) bioassay was used to investigate the cytotoxic effects. The LC50(microg mL(-1)) values obtained for extracts as 750 microg mL(-1) for petroleum ether extract, 800 microg mL(-1) for chloroform extract and 900 microg mL(-1) for methanol extract. The total phenolic content of the methanolic extract was 38.04% w/w, equivalent to gallic acid. Petroleum ether, chloroform and methanolic extracts of Caesalpinia pulcherrima and standard ascorbic acid were found to be scavenger of DPPH radical with an IC50 of 124.75, 112.08, 54.34 and 13.86 microg mL(-1), respectively. Methanolic extract was good scavenger of DPPH radical. Petroleum ether, chloroform, ethyl acetate soluble fraction of methanolic extracts of pods of Caesalpinia pulcherrima and ascorbic acid were found to be scavenger of nitric oxide radical with an IC50 of 93.32, 65.12, 54.83 and 12.59 microg mL(-1), respectively. Ethyl acetate soluble fraction was found to be good scavenger of nitric oxide radical. Our conclusion provides support that the crude extracts of C. pulcherrima is a probable source of natural antioxidants and this justified its uses in folkloric medicines.

  16. In vitro studies on the cytotoxicity, and elastase and tyrosinase inhibitory activities of marigold (Tagetes erecta L.) flower extracts

    Science.gov (United States)

    VALLISUTA, OMBOON; NUKOOLKARN, VEENA; MITREVEJ, AMPOL; SARISUTA, NARONG; LEELAPORNPISID, PIMPORN; PHRUTIVORAPONGKUL, AMPAI; SINCHAIPANID, NUTTANAN

    2014-01-01

    Marigold (Tagetes erecta L.) has long been used as a medicinal herb for a number of therapeutic activities. In the present study, the cytotoxicities of ethanol and ethyl acetate extracts of marigold flowers and their inhibitory effects on elastase and tyrosinase enzymes were investigated. An MTT assay was performed to measure the cytotoxicity of these two extracts on the H460 lung cancer and the Caco-2 colon cancer cell lines. An elastase assay kit, based on the digestion of a non-fluorescent elastin substrate to highly fluorescent fragments by elastase, was used for the elastase inhibition assay. Tyrosinase inhibition activity was investigated using the dopachrome method with L-3,4-dihydroxyphenylalanine (L-DOPA) as a substrate. The data obtained in this study demonstrated that the extracts were nontoxic to H460 and Caco-2 cell lines. The elastase inhibition activities of ethanol (250 μg/ml) and ethyl acetate (125 μg/ml) extracts were found to be significantly higher than that of the negative control. The tyrosinase inhibition activities of ethanol and ethyl acetate extracts, in terms of the mean inhibition concentration (IC50), were 1,078 and 1,467 μg/ml, respectively. To the best of our knowledge, the present study has demonstrated for the first time that marigold flower extracts possess tyrosinase inhibition activity. The activities of ethanol and ethyl acetate extracts of marigold flowers were investigated in vitro and indicated that these extracts possess useful properties that may be of interest for cosmetic development. PMID:24348799

  17. In vitro cytotoxicity of Nicotiana gossei leaves, used in the Australian Aboriginal smokeless tobacco known as pituri or mingkulpa.

    Science.gov (United States)

    Moghbel, Nahid; Ryu, BoMi; Cabot, Peter J; Steadman, Kathryn J

    2016-07-08

    The Aboriginal population of Central Australia use endemic Nicotiana species to make a smokeless tobacco product known usually as pituri or mingkulpa. Nicotiana leaves are masticated with wood ash into a 'quid' that is chewed/sucked for absorption of nicotine. In addition to nicotine, smokeless tobacco products contain a spectrum of biologically active compounds that may contribute to effects on health. The objective of this study was to quantify nicotine, and related alkaloids and tobacco specific nitrosamines (TSNAs), in Nicotiana leaves used in pituri, and compare in vitro toxicity of pure nicotine with Nicotiana leaf extract at the same concentration of nicotine. An aqueous extract of dry leaves of Nicotiana gossei and a reference smokeless tobacco (CORESTA CRP2) were quantified for major pyridine alkaloids and TSNAs using HPLC-UV and LC-MS/MS. A range of extract concentrations and corresponding concentrations of nicotine standard were tested using an MTS assay to measure human lung epithelium cell (A549) survival. Cells treated for 24h with the maximum concentration of 1.5mg/ml of nicotine resulted in 77% viability. In contrast, extracts from N. gossei leaves and CRP2 containing a similar concentration of nicotine (1.3mg/ml) resulted in remarkably lower viability of 1.5 and 6%, respectively. Comparison of cytotoxicity of pure nicotine with that of the extracts revealed that nicotine was not the source of their cytotoxicity. Other biologically active compounds such as the known carcinogens NNK and NNN, derived from nicotine and nornicotine and found to be present in the smokeless tobacco extracts, may be responsible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. A bioactive peptide analogue for myxoma virus protein with a targeted cytotoxicity for human skin cancer in vitro.

    Science.gov (United States)

    Almansour, Nahlah M; Pirogova, Elena; Coloe, Peter J; Cosic, Irena; Istivan, Taghrid S

    2012-07-17

    Cancer is an international health problem, and the search for effective treatments is still in progress. Peptide therapy is focused on the development of short peptides with strong tumoricidal activity and low toxicity. In this study, we investigated the efficacy of a myxoma virus peptide analogue (RRM-MV) as a candidate for skin cancer therapy. RRM-MV was designed using the Resonant Recognition Model (RRM) and its effect was examined on human skin cancer and normal human skin cells in vitro. Cell cultures were treated with various concentrations of the peptides at different incubation intervals. Cellular morphological changes (apoptosis and necrosis) were evaluated using confocal laser scanning microscopy. The cytotoxic effects of RRM-MV on human skin cancer and normal human skin cells were quantitatively determined by cytotoxicity and cell viability assays. The effect on human erythrocytes was also determined using quantitative hemolysis assay. DNA fragmentation assay was performed to detect early apoptotic events in treated cancer cells. Furthermore, to investigate the possible cell signalling pathway targeted by the peptides treatment, the levels of p-Akt expression in skin cancer and normal cells were detected by immunoblotting. Our results indicate that RRM-MV has a dose-dependent toxic effect on cancer cells only up to 18 h. The immunoblotting results indicated that the RRM-MV slightly increased p-Akt expression in melanoma and carcinoma cells, but did not seem to affect p-Akt expression in normal skin cells. RRM-MV targets and lethally harms cancer cells and leaves normal cells unharmed. It is able to reduce the cancer cell viability, disrupting the LDH activity in cancer cells and can significantly affect cancer progression. Further investigation into other cell signalling pathways is needed in the process leading to the in vivo testing of this peptide to prove its safety as a possible effective treatment for skin cancer.

  19. A bioactive peptide analogue for myxoma virus protein with a targeted cytotoxicity for human skin cancer in vitro

    Directory of Open Access Journals (Sweden)

    Almansour Nahlah M

    2012-07-01

    Full Text Available Abstract Background Cancer is an international health problem, and the search for effective treatments is still in progress. Peptide therapy is focused on the development of short peptides with strong tumoricidal activity and low toxicity. In this study, we investigated the efficacy of a myxoma virus peptide analogue (RRM-MV as a candidate for skin cancer therapy. RRM-MV was designed using the Resonant Recognition Model (RRM and its effect was examined on human skin cancer and normal human skin cells in vitro. Methods Cell cultures were treated with various concentrations of the peptides at different incubation intervals. Cellular morphological changes (apoptosis and necrosis were evaluated using confocal laser scanning microscopy. The cytotoxic effects of RRM-MV on human skin cancer and normal human skin cells were quantitatively determined by cytotoxicity and cell viability assays. The effect on human erythrocytes was also determined using quantitative hemolysis assay. DNA fragmentation assay was performed to detect early apoptotic events in treated cancer cells. Furthermore, to investigate the possible cell signalling pathway targeted by the peptides treatment, the levels of p-Akt expression in skin cancer and normal cells were detected by immunoblotting. Results Our results indicate that RRM-MV has a dose-dependent toxic effect on cancer cells only up to 18 h. The immunoblotting results indicated that the RRM-MV slightly increased p-Akt expression in melanoma and carcinoma cells, but did not seem to affect p-Akt expression in normal skin cells. Conclusions RRM-MV targets and lethally harms cancer cells and leaves normal cells unharmed. It is able to reduce the cancer cell viability, disrupting the LDH activity in cancer cells and can significantly affect cancer progression. Further investigation into other cell signalling pathways is needed in the process leading to the in vivo testing of this peptide to prove its safety as a possible

  20. Modifications of nano-titania surface for in vitro evaluations of hemolysis, cytotoxicity, and nonspecific protein binding

    Science.gov (United States)

    Datta, Aparna; Dasgupta, Sayantan; Mukherjee, Siddhartha

    2017-04-01

    In the past decade, a variety of drug carriers based on mesoporous silica nanoparticles has been extensively reported. However, their biocompatibility still remains debatable, which motivated us to explore the porous nanostructures of other metal oxides, for example titanium dioxide (TiO2), as potential drug delivery vehicles. Herein, we report the in vitro hemolysis, cytotoxicity, and protein binding of TiO2 nanoparticles, synthesized by a sol-gel method. The surface of the TiO2 nanoparticles was modified with hydroxyl, amine, or thiol containing moieties to examine the influence of surface functional groups on the toxicity and protein binding aspects of the nanoparticles. Our study revealed the superior hemocompatibility of pristine, as well as functionalized TiO2 nanoparticles, compared to that of mesoporous silica, the present gold standard. Among the functional groups studied, aminosilane moieties on the TiO2 surface substantially reduced the degree of hemolysis (down to 5%). Further, cytotoxicity studies by MTT assay suggested that surface functional moieties play a crucial role in determining the biocompatibility of the nanoparticles. The presence of NH2- functional groups on the TiO2 nanoparticle surface enhanced the cell viability by almost 28% as compared to its native counterpart (at 100 μg/ml), which was in agreement with the hemolysis assay. Finally, nonspecific protein adsorption on functionalized TiO2 surfaces was examined using human serum albumin and it was found that negatively charged surface moieties, like -OH and -SH, could mitigate protein adsorption to a significant extent.

  1. Cytotoxicity of nano-hydroxyapatite on human-derived oral epithelium cell line: an in vitro study

    Directory of Open Access Journals (Sweden)

    Farid Abassi

    2016-08-01

    Full Text Available Background: Hydroxyapatite nanoparticles have a more surface contact and solubility than conventional hydroxyapatite. Hydroxynanoparticles enhances the biological and mechanical properties of new regenerated tissues. The hydroxyapatite nanoparticles have received attention as a new and effective osseous graft for using as scaffolds in bone regeneration. The reports on hydroxyapatite nanoparticles biocompatibility are controversial. It has been shown that hydroxyapatite nanoparticles induces inflammatory reaction and apoptosis. The aim of the present study was to evaluate the cytotoxicity of nano-hydroxyapatite on the human epithelial cells. Methods: The study was experimental and completed in vitro. The study was carried out in department of Immonulogy, Faculty of Medicine, Shahid Beheshti University of Medical Sciences in November 2014. The human-derived oral epithelium cell line (KB obtained from Pasteur Institute, Tehran, Iran were exposed to hydroxyapatite nanoparticles at 0.01, 0.05, 0.1, 0.5, 0.75, 1, 2.5 and 5 mg/ml concentrations in 24, 48 and 72 hours. Rod-shaped hydroxyapatite nanoparticles with 99% purity and maximum 100 nm sized particles were used. Methylthiazol tetrazolium bromide (MTT method was employed for cell vitality evaluation. Enzyme-linked immunosorbent assay (ELISA was used for assessing the viability of cells. Distilled water and fetal bovine serum (FBS were positive and negative controls. ANOVA and Duncan tests were used for statistical analysis. Results: The cytotoxicity of different concentrations of hydroxyapatite nanoparticles on human-derived oral epithelium cell line in 24 (P< 0.001, 48 (P< 0.001 and 72 hours (P< 0.001 was significantly different. The nano-hydroxyapatite particles at 0.5 to 1 mg/ml had the highest cytotoxicity effect on human-derived oral epithelium cells in 24, 48 and 72 hours. Lower concentrations than 0.05 mg/ml had the best biocompatibility properties in 24, 48 and 72 hours. Conclusion

  2. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yongxian Zhuang

    cytotoxicity of metformin against cancer cells was observed both in vitro and in vivo.

  3. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo.

    Science.gov (United States)

    Zhuang, Yongxian; Chan, Daniel K; Haugrud, Allison B; Miskimins, W Keith

    2014-01-01

    Different cancer cells exhibit altered sensitivity to metformin treatment. Recent studies suggest these findings may be due in part to the common cell culture practice of utilizing high glucose, and when glucose is lowered, metformin becomes increasingly cytotoxic to cancer cells. In low glucose conditions ranging from 0 to 5 mM, metformin was cytotoxic to breast cancer cell lines MCF7, MDAMB231 and SKBR3, and ovarian cancer cell lines OVCAR3, and PA-1. MDAMB231 and SKBR3 were previously shown to be resistant to metformin in normal high glucose medium. When glucose was increased to 10 mM or above, all of these cell lines become less responsive to metformin treatment. Metformin treatment significantly reduced ATP levels in cells incubated in media with low glucose (2.5 mM), high fructose (25 mM) or galactose (25 mM). Reductions in ATP levels were not observed with high glucose (25 mM). This was compensated by enhanced glycolysis through activation of AMPK when oxidative phosphorylation was inhibited by metformin. However, enhanced glycolysis was either diminished or abolished by replacing 25 mM glucose with 2.5 mM glucose, 25 mM fructose or 25 mM galactose. These findings suggest that lowering glucose potentiates metformin induced cell death by reducing metformin stimulated glycolysis. Additionally, under low glucose conditions metformin significantly decreased phosphorylation of AKT and various targets of mTOR, while phospho-AMPK was not significantly altered. Thus inhibition of mTOR signaling appears to be independent of AMPK activation. Further in vivo studies using the 4T1 breast cancer mouse model confirmed that metformin inhibition of tumor growth was enhanced when serum glucose levels were reduced via low carbohydrate ketogenic diets. The data support a model in which metformin treatment of cancer cells in low glucose medium leads to cell death by decreasing ATP production and inhibition of survival signaling pathways. The enhanced cytotoxicity of metformin

  4. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells.

    Science.gov (United States)

    Song, Yijuan; Guan, Rongfa; Lyu, Fei; Kang, Tianshu; Wu, Yihang; Chen, Xiaoqiang

    2014-11-01

    With the increasing applications of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) in foods and cosmetics, the concerns about the potential toxicities to human have been raised. The aims of this study are to observe the cytotoxicity of Ag NPs and ZnO NPs to human epithelial colorectal adenocarcinoma (Caco-2) cells in vitro, and to discover the toxicity mechanism of nanoparticles on Caco-2 cells. Caco-2 cells were exposed to 10, 25, 50, 100, 200μg/mL of Ag NPs and ZnO NPs (90nm). AO/EB double staining was used to characterize the morphology of the treated cells. The cell counting kit-8 (CCK-8) assay was used to detect the proliferation of the cells. Reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) assay were used to explore the oxidative damage of Caco-2 cells. The results showed that Ag NPs and ZnO NPs (0-200μg/mL) had highly significant effect on the Caco-2 cells activity. ZnO NPs exerted higher cytotoxicity than Ag NPs in the same concentration range. ZnO NPs have dose-depended toxicity. The LD50 of ZnO NPs in Caco-2 cells is 0.431mg/L. Significant depletion of SOD level, variation in GSH level and release of ROS in cells treated by ZnO NPs were observed, which suggests that cytotoxicity of ZnO NPs in intestine cells might be mediated through cellular oxidative stress. While Caco-2 cells treated with Ag NPs at all experimental concentrations showed no cellular oxidative damage. Moreover, the cells' antioxidant capacity increased, and reached the highest level when the concentration of Ag NPs was 50μg/mL. Therefore, it can be concluded that Ag NPs are safer antibacterial material in food packaging materials than ZnO NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Iron availability and complex stability of iron hydroxyethyl starch and iron dextran a comparative in vitro study with liver cells and macrophages.

    Science.gov (United States)

    Ternes, Nina; Scheiber-Mojdehkar, Barbara; Landgraf, Grit; Goldenberg, Hans; Sturm, Brigitte

    2007-10-01

    Intravenous iron (IVI) therapy is required in patients with end-stage renal disease (ESRD) under chronic haemodialysis (HD). In this in vitro study we investigated the availability and stability of iron hydroxyethyl starch (iron-Hes) compounds in THP-1 cells (macrophage phenotype) and liver cells (HepG2 cells) and compared it with the well-known iron dextran. The uptake and release of these iron formulations by THP-1 cells (macrophage phenotype) and HepG2 cells were investigated with atomic absorption spectrometry (AAS). Ferritin was measured by ELISA. HepG2 cells were used to investigate effects of IVI on the intracellular labile iron pool (LIP), which was measured by using the fluorescent calcein assay. The amount of redox-active iron within the iron formulations was assayed using dichlorofluorescein as fluorescent probe. All iron preparations were taken up, stored in ferritin and released again by macrophages and HepG2-cells. This study shows that the availability and stability of iron-HES formulations in vitro are comparable with the well-known iron dextran compounds. Our results indicate that these new iron formulations have a good stability and availability in vitro and are comparable with the well-known iron dextran complexes.

  6. Comparison of five different in vitro assays for assessment of sodium metavanadate cytotoxicity in Chinese hamster ovary cells (CHO-K1 line).

    Science.gov (United States)

    Zwolak, Iwona

    2015-08-01

    This investigation was undertaken to compare five different in vitro cytotoxicity assays for their power in revealing vanadium-mediated toxicity in Chinese hamster ovary (CHO)-K1 cells. The cells were exposed to sodium metavanadate (NaVO(3)) in the range of 10-1000 µM for 24 h and thereafter the cytotoxic effects of NaVO(3) were measured by colorimetric in vitro assays: the neutral red (NR) test, the 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt (XTT) assay, the resazurin assay, the sulforhodamine B (SR-B) assay, and by microscopic assessment of cell viability using the trypan blue (TB) staining method. Among the assays used, the NR test was the most sensitive, since it revealed metavanadate cytotoxicity at the lowest NaVO(3) dose (=50 µM). Also, NaVO(3) cytotoxicity expressed as inhibitory concentration (IC) showed the lowest values for the NR test. Three other tests XTT, resazurin, and SR-B assays showed intermediate sensitivity revealing the cytotoxicity of NaVO(3) at 100 µM. The corresponding IC10 and IC50 values calculated for the XTT, resazurin, and SR-B tests were similar. The TB staining method was the least sensitive, since it recorded metavanadate cytotoxicity at the highest NaVO(3) concentration tested (=600 µM). Based on the cytotoxicity end points measured with the above assays, it can be concluded that lysosomal/Golgi apparatus damage (measured by NR assay) may be the primary effect of NaVO(3) on CHO-K1 cells. The disintegration of mitochondria (assessed with the XTT and resazurin assays) probably follows lysosomal impairment. Plasma membrane permeability (staining with TB) occurs at a late stage of NaVO(3)-induced cytotoxicity on CHO-K1 cells. The results obtained in this research work show that the NR test can be recommended as a very sensitive assay for the assessment of NaVO(3) cytotoxicity in the CHO-K1 cell culture model. Considering the convenience of assay performance along with adequate sensitivity

  7. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy.

    Science.gov (United States)

    Zheng, Y F; Gu, X N; Xi, Y L; Chai, D L

    2010-05-01

    Mg/Ca (1 wt.%, 5 wt.%, 10 wt.% Ca) composites were prepared from pure magnesium and calcium powders using the powder metallurgy method, aiming to enlarge the addition of Ca content without the formation of Mg(2)Ca. The microstructures, mechanical properties and cytotoxicities of Mg/Ca composite samples were investigated. The corrosion of Mg/Ca composites in Dulbecco's modified Eagle's medium (DMEM) for various immersion intervals was studied by electrochemical impedance spectroscopy measurements and environmental scanning electron microscope, with the concentrations of released Mg and Ca ions in DMEM for various immersion time intervals being measured. It was shown that the main constitutional phases were Mg and Ca, which were uniformly distributed in the Mg matrix. The ultimate tensile strength (UTS) and elongation of experimental composites decreased with increasing Ca content, and the UTS of Mg/1Ca composite was comparable with that of as-extruded Mg-1Ca alloy. The corrosion potential increased with increasing Ca content, whereas the current density and the impedance decreased. It was found that the protective surface film formed quickly at the initial immersion stage. With increasing immersion time, the surface film became compact, and the corrosion rate of Mg/Ca composites slowed down. The surface film consisted mainly of CaCO(3), MgCO(3)x3H(2)O, HA and Mg(OH)(2) after 72 h immersion in DMEM. Mg/1Ca and Mg/5Ca composite extracts had no significant toxicity (p>0.05) to L-929 cells, whereas Mg/10Ca composite extract induced approximately 40% reduced cell viability. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Acute toxicity and cytotoxicity evaluation of Dendrobium moniliforme aqueous extract in vivo and in vitro

    Science.gov (United States)

    Lee, Mu-Jin; Jung, Ho-Kyung; Kim, Min-Suk; Jang, Ji-Hun; Sim, Mi-Ok; Kim, Tea-Mook; Park, Ho; Ahn, Byung-Kwan; Cho, Hyun-Woo; Cho, Jung-Hee

    2016-01-01

    Dendrobium moniliforme (L.) Sw., an herb of the Orchidaceae family, has long been used in traditional medicine to strengthen bones, nourish the stomach, and promote the production of bodily fluid. Recently, polysaccharides isolated from Dendrobium have been used in functional foods and nutraceutical products. A traditional method to process Dendrobium is to soak fresh stems in an ethanol solution, which is the most important factor to ensure high yields of aqueous-extractable polysaccharides. The present study was carried out to investigate the potential acute toxicity of D. moniliforme aqueous extract (DMAE), by a single oral dose in Sprague-Dawley rats. The test article was orally administered once by gavage to male and female rats at doses of 0, 2,500, and 5,000 mg/kg body weight (n=5 male and female rats for each dose). Throughout the study period, no treatment-related deaths were observed and no adverse effects were noted in clinical signs, body weight, food consumption, serum biochemistry, organ weight, or gross findings at any dose tested. The results show that a single oral administration of DMAE did not induce any toxic effects at a dose below 5,000 mg/kg in rats, and the minimal lethal dose was considered to be over 5,000 mg/kg body weight for both sexes. With respect to cytotoxicity, the cell viability of human embryonic kidney (HEK293) cells was less than 50% when the cells were treated with 10 mg/mL aqueous extract for 24 h. PMID:27729930

  9. Capsule and O-antigen from an extraintestinal isolate of Escherichia coli modulate cytokine levels in rat macrophages in vitro and in a rat model of pneumonia.

    Science.gov (United States)

    Russo, Thomas A; Davidson, Bruce A; Beanan, Janet M; Olson, Ruth; Holm, Bruce A; Notter, Robert H; Knight, Paul R

    2007-09-01

    Gram-negative pneumonia results in significant morbidity, mortality, and cost to the healthcare system. Previously the authors demonstrated that capsule and O-antigen, virulence factors of the extraintestinal Escherichia coli isolate CP9, modulate pulmonary neutrophil influx in a rat pneumonia model. In this report, the authors utilized CP9 and mutants deficient in O-antigen (CP921), capsule (CP9.137), or both (CP923) to test the hypothesis that modulation of cytokine levels by capsule and/or O-antigen may be a contributory mechanism. Effects of capsule and O-antigen on cytokine levels in rats in vivo and in isolated pulmonary macrophages in vitro were assessed. In vivo, capsule and O-antigen had no significant effect on tumor necrosis factor (TNF)-alpha levels in bronchoalveolar lavage fluid (BALF), but both were associated with significant increases in the levels of interleukin (IL)-1beta and Cytokine-induced neutrophil Chemoattractant-1 (CINC-1). However, potential difficulties in interpreting data occurred because challenge bacterial strains exhibited differential growth, and clearance characteristics and mixed cell populations were present. Therefore, added mechanistic studies investigated specific interactions of capsule and O-antigen with pulmonary macrophages purified from normal rats and exposed to CP9, CP921, CP9.137, or CP923 in vitro. Results indicated that the presence of capsule led to significantly increased levels of TNF-alpha, IL-1beta, and CINC-1, whereas O-antigen significantly decreased macrophage-associated levels of these mediators. These findings support the hypothesis that CP9 capsule is proinflammatory for macrophage-induced neutrophil recruitment, whereas O-antigen attenuates macrophage production of proinflammatory mediators in pneumonia. These results expand our understanding on the mechanisms by which these virulence traits may contribute to the inflammatory pathogenesis of pneumonia.

  10. Development of Budesonide Loaded Biopolymer Based Dry Powder Inhaler: Optimization, In Vitro Deposition, and Cytotoxicity Study

    Directory of Open Access Journals (Sweden)

    Ashwin J. Mali

    2014-01-01

    Full Text Available The progress in the development of DPI technology has boosted the use of sensitive drug molecules for lung diseases. However, delivery of these molecules from conventional DPI to the active site still poses a challenge with respect to deposition efficiency in the lung. At same time, serious systemic side effects of drugs have become a cause for concern. The developed budesonide loaded biopolymer based controlled release DPI had shown maximum in vitro lung deposition with least toxicity. The subject of present study, lactose-free budesonide loaded biopolymer based DPI, further corroborates the great potential of antiasthmatic drugs. This technology is expected to revolutionize the approaches towards enhanced therapeutic delivery of prospective drugs.

  11. Phytochemical analysis and differential in vitro cytotoxicity assessment of root extracts of Inula racemosa.

    Science.gov (United States)

    Mohan, Shikha; Gupta, Damodar

    2017-05-01

    The root of Inula racemosa is known for its antifungal, hypolipdemic and antimicrobial properties in traditional Indian Ayurvedic and Chinese system of medicine. The biological efficacy of Inula species is mainly due to the presence sesquiterpene lactone (Isoalantolactone and Alantolactone), which are reported to be inducers of Nrf2 antioxidant pathway. The investigation of properties and efficacy of root extracts of I. racemosa and their comparison was done with a view to find most efficacious extract for use at cellular level (both normal and transformed). In the present study different extracts of root of I. racemosa (aqueous, ethanolic, and 50% aqueous-ethanolic) were prepared and compared for their antioxidant potential, reducing capacity, polyphenol content and flavonoid content. Our investigations suggested that the aqueous extract possess highest antioxidant capacity and reducing potential. The polyphenol content was found to be highest in aqueous extract in comparison with other two extracts. However, all the three extracts showed less flavonoid content. Further, the preliminary phytochemical screening of all the extracts revealed the presence of terpenoids, phytosterols and glycosides. The TLC profile of ethanolic and 50% aqueous-ethanolic extracts showed the presence of alantolactone while aqueous extracts did not exhibit its strong presence. This warrants the need of more stringent techniques for characterization of aqueous extract in future. The in vitro cell based toxicity assays revealed that the aqueous extract was less toxic to kidneys cells while ethanolic extract was toxic to cells even at low concentrations. Hence, the current investigations showed better efficacy of the aqueous extract with respect to other extracts and found to be promising for its future application at in vitro levels. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Systematic analysis of in vitro photo-cytotoxic activity in extracts from terrestrial plants in Peninsula Malaysia for photodynamic therapy.

    Science.gov (United States)

    Ong, Cheng Yi; Ling, Sui Kiong; Ali, Rasadah Mat; Chee, Chin Fei; Samah, Zainon Abu; Ho, Anthony Siong Hock; Teo, Soo Hwang; Lee, Hong Boon

    2009-09-04

    One hundred and fifty-five extracts from 93 terrestrial species of plants in Peninsula Malaysia were screened for in vitro photo-cytotoxic activity by means of a cell viability test using a human leukaemia cell-line HL60. These plants which can be classified into 43 plant families are diverse in their type of vegetation and their natural habitat in the wild, and may therefore harbour equally diverse metabolites with potential pharmaceutical properties. Of these, 29 plants, namely three from each of the Clusiaceae, Leguminosae, Rutaceae and Verbenaceae families, two from the Piperaceae family and the remaining 15 are from Acanthaceae, Apocynaceae, Bignoniaceae, Celastraceae, Chrysobalanaceae, Irvingiaceae, Lauraceae, Lythraceae, Malvaceae, Meliaceae, Moraceae, Myristicaceae, Myrsinaceae, Olacaceae and Sapindaceae. Hibiscus cannabinus (Malvaceae), Ficus deltoidea (Moraceae), Maranthes corymbosa (Chrysobalanaceae), Micromelum sp., Micromelum minutum and Citrus hystrix (Rutaceae), Cryptocarya griffithiana (Lauraceae), Litchi chinensis (Sapindaceae), Scorodocarpus bornensis (Olacaceae), Kokoona reflexa (Celastraceae), Irvingia malayana (Irvingiaceae), Knema curtisii (Myristicaceae), Dysoxylum sericeum (Meliaceae), Garcinia atroviridis, Garcinia mangostana and Calophyllum inophyllum (Clusiaceae), Ervatamia hirta (Apocynaceae), Cassia alata, Entada phaseoloides and Leucaena leucocephala (Leguminosae), Oroxylum indicum (Bignoniaceae), Peronema canescens,Vitex pubescens and Premna odorata (Verbenaceae), Piper mucronatum and Piper sp. (Piperaceae), Ardisia crenata (Myrsinaceae), Lawsonia inermis (Lythraceae), Strobilanthes sp. (Acanthaceae) were able to reduce the in vitro cell viability by more than 50% when exposed to 9.6J/cm(2) of a broad spectrum light when tested at a concentration of 20 microg/mL. Six of these active extracts were further fractionated and bio-assayed to yield four photosensitisers, all of which are based on the pheophorbide-a and -b core structures

  13. The cytotoxic and pro-apoptotic effects of phenylephrine on corneal stromal cells via a mitochondrion-dependent pathway both in vitro and in vivo.

    Science.gov (United States)

    Zhao, Jun; Qiu, Yue; Tian, Cheng-Lei; Fan, Ting-Jun

    2016-08-01

    Phenylephrine (PHE), a selective α1-adrenergic receptor agonist, is often used as a decongestant for mydriasis prior to cataract surgery, and its abuse might be cytotoxic to the cornea and result in blurred vision. However, the cytotoxicity of PHE to the cornea and its cellular and molecular mechanisms remain unknown. To provide references for secure medication and prospective therapeutic interventions of PHE, we investigated the cytotoxicity of PHE to corneal stroma and its possible mechanisms using an in vitro model of human corneal stromal (HCS) cells and an in vivo model of cat keratocytes. We found that PHE, above the concentration of 0.0781125% (1/128 of its clinical therapeutic dosage), had a dose- and time-dependent cytotoxicity to HCS cells by inducing morphological abnormality and viability decline, as well as S phase arrest. Moreover, PHE induced apoptosis of HCS cells by inducing plasma membrane permeability elevation, phosphatidylserine externalization, DNA fragmentation and apoptotic body formation. Furthermore, PHE could induce activations of caspase-3 and -9, disruption of mitochondrial transmembrane potential, downregulation of anti-apoptotic Bcl-xL, upregulation of pro-apoptotic Bax, along with upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor. The cytotoxic and pro-apoptotic effects of PHE were also proven by the induced apoptotic-like ultrastructural alterations of keratocytes in vivo. Taken together, our results suggest that PHE has a significant cytotoxicity to corneal stroma cells both in vitro and in vivo by inducing cell apoptosis, and the pro-apoptotic effect of PHE is achieved via a Bcl-2 family proteins-mediated mitochondrion-dependent pathway. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Cytotoxicity and molecular effects of biocidal disinfectants (quaternary ammonia, glutaraldehyde, poly(hexamethylene biguanide) hydrochloride PHMB) and their mixtures in vitro and in zebrafish eleuthero-embryos.

    Science.gov (United States)

    Christen, Verena; Faltermann, Susanne; Brun, Nadja Rebecca; Kunz, Petra Y; Fent, Karl

    2017-05-15

    Frequently used biocidal disinfectants, including quaternary ammonium compounds (QAC), glutaraldehyde and poly(hexamethylene biguanide) hydrochloride (PHMB), occur in the aquatic environment but their potential effects in fish are poorly known, in particular when occurring as mixtures. To investigate their joint activity, we assessed the cytotoxicity of three QACs (BAC, barquat and benzalkonium chloride), glutaraldehyde andPHMB by the MTT assay individually, followed by assessing binary and ternary mixtures in zebrafish liver cells (ZFL) and human liver cells (Huh7). We also analysed molecular effects by quantitative PCR in vitro and in zebrafish eleuthero-embryos employing a targeted gene expression approach. QACs displayed strong cytotoxicity in both cell lines with EC50 values in the low μg/ml range, while glutaraldehyde and PHMB were less cytotoxic. Most of the binary and both ternary mixtures showed synergistic activity at all equi-effective concentrations. A mixture containing all five compounds mixed at their no observed effect concentrations showed strong cytotoxicity, suggesting a synergistic interaction. Additionally, we determined transcriptional alterations of target genes related to endoplasmatic reticulum (ER) stress, general stress, inflammatory action and apoptosis. Induction of ER stress genes occurred at non-cytotoxic concentrations of barquat, glutaraldehyde and BAC in ZFL cells. Barquat and BAC induced tumor necrosis factor alpha (tnf-α). Similar transcriptional alterations were found in vivo upon exposure of zebrafish eleuthero-embryos for 120h. Glutaraldehyde led to induction of ER stress genes and tnf-α, while BAC additionally induced genes indicative of apoptosis, which was also the case with benzalkonium chloride at the highest concentration. We demonstrated strong cytotoxicity of QACs, and synergistic activity of binary, ternary and quintuple mixtures. Barquat and BAC let to induction of ER stress and inflammation in vitro, and BAC and

  15. Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite–gelatin–polyvinyl alcohol macroporous scaffold

    Directory of Open Access Journals (Sweden)

    Sanjaya Kumar Swain

    2014-09-01

    Full Text Available Freeze casting and cryogenic treatment both low temperature process have been employed to fabricate nanobiocomposite hydroxyapatite (HA–gelatin–polyvinyl alcohol (PVA macroporous scaffolds from synthesized three different spherical, rod and fibrous HA nanoparticles and composition optimized vis-á-vis porosity architecture, content and compressive strength. A critical HA morphology, solid loading and liquid nitrogen interaction time have a significant effect to enhance the mechanical response of developed scaffolds. Cryo-treated 40 wt.% nanorod HA–gelatin–PVA scaffold posses interconnected pore structure with 80 vol.% porosity, average pore diameter 50–200 μm and highest 5.8 MPa compressive strength. Different degree of the apatite deposition phenomenon in simulated body fluid solution at 37 °C and pH ∼ 7.4 varies with respect to time. In vitro cytotoxicity and L929 mouse fibroblast cell culture in the presence of Dulbecco's Modified Eagle Medium and 10% Fetal Bovine Serum at 37 °C and 5% CO2 atmosphere exhibit excellent cytocompatibility and cell viability at low extract concentration up to 25%.

  16. Comparative cytotoxic and genotoxic effects of permethrin and its nanometric form on human erythrocytes and lymphocytes in vitro.

    Science.gov (United States)

    Sundaramoorthy, Rajiv; Velusamy, Yuvaraj; Balaji, A P B; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2016-09-25

    The research on the novel pesticides such as nanopesticides has become inevitable to control the mosquito population. Nanopermethrin (NP), one of such kind was formulated in pesticide loaded oil-in-water (o/w) microemulsion by rapid evaporation. Even though NP possess improved efficacy against the target pests, the toxicological investigation on the human or mammalian system remains unexplored. So, the present study focused on a comparative investigation of the cytotoxic and genotoxic effects of NP in vitro and its commercial parental bulk form of permethrin (BP) on human peripheral erythrocyte/lymphocyte by erythrocyte morphology analysis, cell viability assay, and cytokinesis-block micronucleus (CBMN) assay. The NP and BP concentrations (10, 25, 50 and 100 μg/ml) interacted with human blood cells, and the morphological changes were observed using a phase contrast microscope. The drastic increase of echinocyte was observed at 24, 48 and 72 h treatment as compared with the control. The cell viability studies have shown the significant decrease with increase in NP and BP concentration. CBMN study showed a series correlation in the number of micronuclei, bridge, bud, trinucleated and tetranucleated when interacted with different levels of NP and BP, as comparative to control *p < 0.05, **p < 0.001, ***p < 0.0001. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Cytotoxicity, In vitro anti-Leishmanial and fingerprint HPLC- photodiode array analysis of the roots of Trillium govanianum.

    Science.gov (United States)

    Khan, Kashif Maqbool; Nahar, Lutfun; Mannan, Abdul; Ul-Haq, Ihsan; Arfan, Muhammad; Ali Khan, Ghazanfar; Hussain, Izhar; Sarker, Satyajit D

    2017-09-05

    Trillium govanianum Wall. ex D. Don (Melanthiaceae alt. Trilliaceae), commonly known as 'nagchhatry' or 'teen patra', distributed from Pakistan to Bhutan about 2500-3800 m altitude is indigenous to Himalayas region. In folk medicine the plant has been reported for the treatment of wound healing, sepsis and in various sexual disorders. This paper reports, for the first time, to evaluate the cytotoxicity, in vitro anti-leishmanial (promastigotes) and fingerprint HPLC-photodiode array analysis of the MeOH extract of the roots of T. govanianum and its solid phase extraction fractions. Reverse phase HPLC-PDA based quantification revealed the presence of significant amount of quercetin, myrecetin and kaemferol ranging from 0.221to 0.528 μg/mg DW. MeOH extract revealed distinguishable protein kinase inhibitory activity against Streptomyces 85E strain with 18 mm bald phenotype. The remarkable toxicity profile against brine shrimps and leishmanial was manifested by MeOH extract with LC50 10 and 38.5 μg/mL, respectively.

  18. In Vitro Cytotoxicity of Mesoporous SiO2@Eu(OH3 Core-Shell Nanospheres in MCF-7

    Directory of Open Access Journals (Sweden)

    M. Atif

    2016-01-01

    Full Text Available Initially, the sample was synthesized by a modified sol-gel process. Morphological analysis of growth SiO2@Eu(OH3 was confirmed by applying field emission transmission electron microscopy (high and low resolution FETEM. The images confirmed the average diameter of mesoporous SiO2@Eu(OH3 core-shell nanospheres (~392–400 nm with a silica core of ~230 nm in diameter and a shell composed of europium hydroxide ~162 nm (thickness. Moreover, an absorption band at 280 nm was confirmed which initiates from the europium hydroxide. The photoluminescence spectrum of the nanosphere was also recorded at ambient temperature under the excitation of 3.82 eV. Cytotoxic studies in vitro were performed by applying MTT, NR assays, and morphological analysis. Morphological changes and % loss in cellular viability was assessed in human breast cancer cells (MCF-7 labeled with mesoporous SiO2@Eu(OH3 core-shell nanospheres at different concentrations ranging from 10 µg/mL to 200 µg/mL. Current study demonstrates the quite rational strategy which might be useful in future clinical approach/applications.

  19. Synthesis and high in vitro cytotoxicity of some (S,S-ethylenediamine-N,N’-di-2-propanoate dihydrochloride esters

    Directory of Open Access Journals (Sweden)

    Pantelić Nebojša

    2014-01-01

    Full Text Available Novel (S,S-R2eddip ester, O,O’-diisoamyl-(S,S-ethylenediamine-N,N’-di-2-propanoate dihydrochloride, 1, was synthesized and characterized by IR, 1H and 13C NMR spectroscopy, mass spectroscopy and elemental analysis.In vitro antitumor action of 1, and two more R2eddip esters, O,O’-dialkyl-(S,S-ethylenediamine-N,N’-di-2-propanoate dihydrochlorides, obtained before, (alkyl = n-Bu, n-Pe; 2 and 3, respectively, was determined against cervix adenocarcinoma (HeLa, human melanoma (Fem-x, human chronic myelogenous leukemia (K562 cells, and a non-cancerous cell line human embryonic lung fibroblast (MRC-5, using MTT assay. Esters 1-3 showed higher cytotoxicity and better selectivity in comparison to cisplatin, used as reference compound. The highest activityis expressed by1,with IC50(Fem-xvalue1.51 ± 0.09 µM. [Projekat Ministarstva nauke republike Srbije, br. 172035 i br. 175011

  20. NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-γ-stimulated J774.2 macrophages

    Science.gov (United States)

    Gilberthorpe, Nicola J.; Lee, Margaret E.; Stevanin, Tania M.; Read, Robert C.; Poole, Robert K.

    2007-01-01

    Over the past decade, the flavohaemoglobin Hmp has emerged as the most significant nitric oxide (NO)-detoxifying protein in many diverse micro-organisms, particularly pathogenic bacteria. Its expression in enterobacteria is dramatically increased on exposure to NO and other agents of nitrosative stress as a result of transcriptional regulation of hmp gene expression, mediated by (at least) four regulators. One such regulator, NsrR, has recently been shown to be responsible for repression of hmp transcription in the absence of NO in Escherichia coli and Salmonella, but the roles of other members of this regulon in Salmonella, particularly in surviving nitrosative stresses in vitro and in vivo, have not been elucidated. This paper demonstrates that an nsrR mutant of Salmonella enterica Serovar Typhimurium expresses high levels of Hmp both aerobically and anaerobically, exceeding those that can be elicited in vitro by supplementing media with S-nitrosoglutathione (GSNO). Elevated transcription of ytfE, ygbA, hcp and hcp is also observed, but no evidence was obtained for tehAB upregulation. The hyper-resistance to GSNO of an nsrR mutant is attributable solely to Hmp, since an nsrR hmp double mutant has a wild-type phenotype. However, overexpression of NsrR-regulated genes other than hmp confers some resistance of respiratory oxygen consumption to NO. The ability to enhance, by mutating NsrR, Hmp levels without recourse to exposure to nitrosative stress was used to test the hypothesis that control of Hmp levels is required to avoid oxidative stress, Hmp being a potent generator of superoxide. Within IFN-γ-stimulated J774.2 macrophages, in which high levels of nitrite accumulated (indicative of NO production) an hmp mutant was severely compromised in survival. Surprisingly, under these conditions, an nsrR mutant (as well as an nsrR hmp double mutant) was also disadvantaged relative to the wild-type bacteria, attributable to the combined oxidative effect of the

  1. A novel Poly(ε-caprolactone-Pluronic-Poly(ε-caprolactone grafted Polyethyleneimine(PCFC-g-PEI, Part 1, synthesis, cytotoxicity, and in vitro transfection study

    Directory of Open Access Journals (Sweden)

    Zhao Xia

    2009-07-01

    Full Text Available Abstract Background Polyethyleneimine (PEI, a cationic polymer, is one of the successful and widely used vectors for non-viral gene transfection in vitro. However, its in vivo application was greatly limited due to its high cytotoxicity and short duration of gene expression. To improve its biocompatibility and transfection efficiency, PEI has been modified with PEG, folic acid, and chloroquine in order to improve biocompatibility and enhance targeting. Results Poly(ε-caprolactone-Pluronic-Poly(ε-caprolactone (PCFC was synthesized by ring-opening polymerization, and PCFC-g-PEI was obtained by Michael addition reaction with GMA-PCFC-GMA and polyethyleneimine (PEI, 25 kD. The prepared PCFC-g-PEI was characterized by 1H-NMR, SEC-MALLS. Meanwhile, DNA condensation, DNase I protection, the particle size and zeta potential of PCFC-g-PEI/DNA complexes were also determined. According to the results of flow cytometry and MTT assay, the synthesized PCFC-g-PEI, with considerable transfection efficiency, had obviously lower cytotoxicity against 293 T and A549 cell lines compared with that of PEI 25 kD. Conclusion The cytotoxicity and in vitro transfection study indicated that PCFC-g-PEI copolymer prepared in this paper was a novel gene delivery system with lower cytotoxicity and considerable transfection efficiency compared with commercial PEI (25 kD.

  2. Aerosolized liposomal amphotericin B: prediction of lung deposition, in vitro uptake and cytotoxicity.

    Science.gov (United States)

    Fauvel, Mélanie; Farrugia, Cécile; Tsapis, Nicolas; Gueutin, Claire; Cabaret, Odile; Bories, Christian; Bretagne, Stéphane; Barratt, Gillian

    2012-10-15

    To predict the efficacy and toxicity of pulmonary administration of liposomal amphotericin B (L-AMB) for the treatment or the prevention of pulmonary invasive aspergillosis, a multistage liquid impinger was used to estimate the concentrations of drug that could be attained in different lung compartments after nebulization. The highest concentration of amphotericin B was found in the alveolar compartment, where it was calculated that the concentration in the lung surfactant could reach 54 μM or more when 21.6 μmoles of drug as liposomes was nebulized. The uptake and toxicity of L-AMB were studied in vitro using the A549 human lung epithelial cell line. Uptake was time and concentration-dependent and reached intracellular concentrations exceeding the minimal inhibitory concentrations for most Aspergillus species. The toxicity of L-AMB toward these cells, estimated by the MTT reduction assay, was reduced compared with the conventional form, deoxycholate amphotericin B (D-AMB), with an IC(50) value of about 120 μM after 24 h of exposure for D-AMB, but only a 13% reduction in viability for 200 μM L-AMB at 24 h. These results indicate that aerosol therapy with nebulized L-AMB could be efficient but that doses need to be carefully controlled to avoid toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Exosomes isolated from sera of mice fed Lactobacillus strains affect inflammatory cytokine production in macrophages in vitro.

    Science.gov (United States)

    Aoki-Yoshida, Ayako; Saito, Shinichi; Tsuruta, Takeshi; Ohsumi, Arisa; Tsunoda, Hinako; Sonoyama, Kei

    2017-07-22

    Orally administered Lactobacillus strains, including L. plantarum No.14 and L. rhamnosus GG, reportedly reduce inflammatory cytokine production in mice. The present study tested our idea that circulating exosomes mediate the action of Lactobacillus strains. The lipopolysaccharide-induced production of TNF-α and IL-6 in vitro was attenuated in peritoneal exudate cells (PECs) isolated from C57BL/6N mice that had been fed L. plantarum No.14. When PECs were cultured for 24 h with exosomes isolated from the serum of mice fed L. plantarum No.14 or L. rhamnosus GG, accumulation of both TNF-α and of the corresponding mRNA was lowered. Growth in the presence of these exosomes also decreased the production of TNF-α and IL-6 by the murine macrophage cell line RAW264.7. In contrast, supplementation with exosome-depleted serum of mice fed L. plantarum No.14 or L. rhamnosus GG failed to affect the production of TNF-α and IL-6 by RAW264.7 cells. When PECs and RAW264.7 cells were cultured for 24 h with PKH67-labeled exosomes isolated from murine serum, fluorescent signal was observed inside the cells, suggesting that these cells incorporate serum exosomes. We propose that the anti-inflammatory activity of orally administered L. plantarum No.14 and L. rhamnosus GG is mediated, at least in part, by circulating exosomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Thymus vulgaris L. and thymol assist murine macrophages (RAW 264.7) in the control of in vitro infections by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans.

    Science.gov (United States)

    de Oliveira, Jonatas Rafael; Figueira, Leandro Wagner; Sper, Fábia Lugli; Meccatti, Vanessa Marques; Camargo, Samira Esteves Afonso; de Oliveira, Luciane Dias

    2017-08-01

    Microorganisms are capable to combat defense cells by means of strategies that contribute to their stabilization and proliferation in invaded tissues. Frequently antimicrobial-resistant strains appear; therefore, alternative methods to control them must be investigated, for example, the use of plant products. The capacity of the thyme extract (Thymus vulgaris L.) and phytocompound thymol in the control of in vitro infections by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans in murine macrophages (RAW 264.7) was evaluated. Minimal inhibitory concentrations (MIC) of the plant products were used. The effect of these MIC were analyzed in the assays of phagocytosis and immunoregulation by analysis of the production of cytokines (IL-1β, TNF-α, and IL-10) and nitric oxide (NO). The plant products effectively assisted the macrophages in the phagocytosis of microorganisms, presenting significant reductions of S. aureus and P. aeruginosa. The macrophages also regulated the production of inflammatory mediators in the infections by S. aureus, P. aeruginosa, and C. albicans. In addition, thyme provided a satisfactory effect in response to the bacterial infections, regarding generation of NO. Thus, the effectiveness of the thyme and thymol to control in vitro infections by S. aureus, P. aeruginosa, and C. albicans was observed. Phagocytosis of S. aureus by RAW 264.7 was enhanced with thymol Thyme enhanced the phagocytosis of P. aeruginosa by RAW 264.7 Plant products provided immunoregulation of inflammatory cytokines Production of nitric oxide was improved with the treatments in bacterial infections.

  5. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1.

    Science.gov (United States)

    Sasmono, R Tedjo; Ehrnsperger, Achim; Cronau, Stephen L; Ravasi, Timothy; Kandane, Rangi; Hickey, Michael J; Cook, Andrew D; Himes, S Roy; Hamilton, John A; Hume, David A

    2007-07-01

    The differentiation of macrophages from their progenitors is controlled by macrophage colony-stimulating factor (CSF-1), which binds to a receptor (CSF-1R) encoded by the c-fms proto-oncogene. We have previously used the promoter region of the CSF-1R gene to direct expression of an enhanced green fluorescent protein (EGFP) reporter gene to resident macrophage populations in transgenic mice. In this paper, we show that the EGFP reporter is also expressed in all granulocytes detected with the Gr-1 antibody, which binds to Ly-6C and Ly-6G or with a Ly-6G-specific antibody. Transgene expression reflects the presence of CSF-1R mRNA but not CSF-1R protein. The same pattern is observed with the macrophage-specific F4/80 marker. Based on these findings, we performed a comparative array profiling of highly purified granulocytes and macrophages. The patterns of mRNA expression differed predominantly through granulocyte-specific expression of a small subset of transcription factors (Egr1, HoxB7, STAT3), known abundant granulocyte proteins (e.g., S100A8, S100A9, neutrophil elastase), and specific receptors (fMLP, G-CSF). These findings suggested that appropriate stimuli might mediate rapid interconversion of the major myeloid cell types, for example, in inflammation. In keeping with this hypothesis, we showed that purified Ly-6G-positive granulocytes express CSF-1R after overnight culture and can subsequently differentiate to form F4/80-positive macrophages in response to CSF-1.

  6. Arachidonic acid and lipoxin A4 attenuate alloxan-induced cytotoxicity to RIN5F cells in vitro and type 1 diabetes mellitus in vivo.

    Science.gov (United States)

    Gundala, Naveen K V; Naidu, Vegi G M; Das, Undurti N

    2017-03-01

    We studied whether polyunsaturated fatty acids (PUFAs) can protect rat insulinoma (RIN5F) cells against alloxan-induced apoptosis in vitro and type 1 diabetes mellitus (type 1 DM) in vivo and if so, mechanism of this beneficial action. In vitro study was conducted using RIN5F cells while in vivo study was performed in Wistar rats. The effect of PUFAs, cyclo-oxygenase and lipoxygenase inhibitors, various eicosanoids and PUFAs metabolites: lipoxin A4 (LXA4), resolvin D2 and protectin against alloxan-induced cytotoxicity to RIN5F cells and type 1 DM was studied. Expression of PDX1, P65 NF-kB and IKB in RIN5F cells and Nrf2, GLUT2, COX2, iNOS protein levels in the pancreatic tissue and plasma glucose, insulin and tumor necrosis factor-α and antioxidants, lipid peroxides and nitric oxide were measured. Of all, arachidonic acid (AA) was found to be the most effective against alloxan-induced cytotoxicity to RIN5F cells and preventing type 1 DM. Both cyclo-oxygenase and lipoxygenase inhibitors did not block the beneficial actions of AA in vitro and in vivo. Alloxan inhibited LXA4 production by RIN5F cells and in alloxan-induced type 1 DM Wistar rats. AA-treatment restored LXA4 levels to normal both in vitro and in vivo. LXA4 protected RIN5F cells against alloxan-induced cytotoxicity and prevented type 1 DM and restored expression of Nrf2, Glut2, COX2, and iNOS genes and abnormal antioxidants to near normal. AA seems to bring about its beneficial actions against alloxan-induced cytotoxicity and type 1 DM by enhancing the production of LXA4. © 2016 BioFactors, 43(2):251-271, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  7. In vitro Cytotoxic Activities of the Oral Platinum(IV) Prodrug Oxoplatin and HSP90 Inhibitor Ganetespib against a Panel of Gastric Cancer Cell Lines

    OpenAIRE

    Klameth, Lukas; Rath, Barbara; Hamilton, Gerhard

    2017-01-01

    Gastric cancer exhibits a poor prognosis and is the third most common cause of cancer death worldwide. Chemotherapy of metastatic gastric cancer is based on combinations of platinum drugs and fluoropyrimidines, with added agents. Oxoplatin is a stable oral platinum(IV) prodrug which is converted to a highly active tetrachlorido(IV) complex under acidic conditions. In the present work, we studied the cytotoxic effects of oxoplatin against a panel of four gastric cancer cell lines in vitro. Fur...

  8. Curcumin-loaded mixed micelles: preparation, optimization, physicochemical properties and cytotoxicity in vitro.

    Science.gov (United States)

    Duan, Yuwei; Wang, Juan; Yang, Xiaoye; Du, Hongliang; Xi, Yanwei; Zhai, Guangxi

    2015-01-01

    Although curcumin (CUR) can inhibit proliferation and induce apoptosis of tumors, the poor water solubility restricted its clinical application. The aim of this study was to improve the aqueous solubility of CUR and make more favorable changes to bioactivity by preparing curcumin-loaded phospholipid-sodium deoxycholate-mixed micelles (CUR-PC-SDC-MMs). CUR-PC-SDC-MMs were prepared by the thin-film dispersion method. Based on the results of single factor exploration, the preparation technology was optimized using the central composite design-response surface methodology with drug loading and entrapment efficiency (EE%) as indicators. The images of transmission electron microscopy showed that the optimized CUR-PC-SDC-MMs were spherical and well dispersed. The average size of the mixed micelles was 66.5 nm, the zeta potential was about -26.96 mV and critical micelle concentration was 0.0087 g/l. CUR was encapsulated in PC-SDC-MMs with loading capacity of 13.12%, EE% of 87.58%, and the solubility of CUR in water was 3.14 mg/ml. The release results in vitro showed that the mixed micelles presented sustained release behavior compared to the propylene glycol solution of CUR. The IC50 values of CUR-loaded micelles and free drug in human breast carcinoma cell lines were 4.10 μg/ml and 6.93 µg/ml, respectively. It could be concluded from the above results that the CUR-PC-SDC-MMs system might serve as a promising nanocarrier to improve the solubility and bioactivity of CUR.

  9. Volatile components of four Ethiopian Artemisia species extracts and their in vitro antitrypanosomal and cytotoxic activities.

    Science.gov (United States)

    Nibret, Endalkachew; Wink, Michael

    2010-04-01

    Artemisia species are one of the many traditional medicinal plants of Ethiopia used for the treatment of infectious and non-infectious health problems. In the present study, eight extracts prepared from leaves and aerial parts of four Artemisia species (Artemisia absinthium, A. abyssinica, A. afra, and A. annua) growing in Ethiopia were tested in vitro against bloodstream forms of Trypanosoma brucei brucei. The most active extract was the dichloromethane extract from aerial parts of A. abyssinica with an IC(50) value of 19.13 microg/ml. A selectivity index (SI) of 8.24 was obtained with HL-60 cells treated with the same extract. Artemisinin, the best known antimalarial compound from A. annua showed antitrypanosomal activity with an IC(50) value of 35.91 microg/ml and with a selectivity index of 2.44. The dichloromethane extracts of the four species were further investigated for their volatile components using GLC/MS. Camphor was detected in the four species and was found to be the principal compound (38.73%) of A. absinthium extract. Octa-3,5-diene-2,7-dione, 4,5-dihydroxy was detected in three species except in A. afra and was present as the main volatile component (54.95%) of A. abyssinica. Epoxylinalool was detected only in A. afra and was the principal component (29.10%) of dichloromethane extract of the plant. Deoxyqinghaosu was only present in A. annua and absent in the other three Artemisia species. Deoxyqinghaosu was the principal volatile component (20.44%) of the dichloromethane extract of A. annua. In conclusion, the dichloromethane extract from aerial part of A. abyssinica should be considered for further study for the treatment of trypanosomiasis. Copyright 2009 Elsevier GmbH. All rights reserved.

  10. Silica/potassium ferrite nanocomposite: Structural, morphological, magnetic, thermal and in vitro cytotoxicity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Lavanya, E-mail: lavanshya@yahoo.co.in; Verma, N.K.

    2013-11-01

    Highlights: • Silica coating on potassium ferrite nanoparticles is reported. • Their structural, morphological, thermal behaviour is studied and compared. • Both bare and coated nanoparticles are superparamagnetic and biocompatible. -- Abstract: The coating of silica on potassium ferrite (KFeO{sub 2}) nanoparticles has been reported in the present study. The X-ray diffraction pattern revealed the formation of orthorhombic structure of bare potassium ferrite nanoparticles, which was also retained after the silica coating, along with a broad band near 2θ ∼ 20–25° pertaining to the presence of amorphous silica. The size of bare and coated potassium ferrite nanoparticles was found to be 4–8 nm and 10–22 nm, respectively, as observed from transmission electron microscope. The presence of silica was also revealed by the Fourier transform infrared spectrum and high resolution transmission electron microscope. In vibrating sample magnetometer analysis, both bare as well as coated potassium ferrite nanoparticles exhibited superparamagnetic behaviour with magnetic saturation values, 49.01 and 21.17 emu/g, respectively. Dose-dependent cellular toxicity was observed in the in vitro MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) – assay study on Jurkat cells, where both bare as well as silica coated nanoparticles exhibited non-toxicity below 250 μg/ml. An augmentation of cell viability was observed in case of silica coated potassium ferrite nanoparticles. The nanosize, superparamagnetic behaviour and enhanced cell viability make silica coated potassium ferrite nanoparticles a potential claimant for biomedical applications.

  11. Metformin and phenethyl isothiocyanate combined treatment in vitro is cytotoxic to ovarian cancer cultures

    Directory of Open Access Journals (Sweden)

    Chan Daniel K

    2012-07-01

    Full Text Available Abstract Background High mortality rates in ovarian cancer are largely a result of resistance to currently used chemotherapies. Expanding therapies with a variety of drugs has the potential to reduce this high mortality rate. Metformin and phenethyl isothiocyanate (PEITC are both potentially useful in ovarian cancer, and they are particularly attractive because of their safety. Methods Cell proliferation of each drug and drug combination was evaluated by hemacytometry with Trypan blue exclusion or Sytox green staining for cell death. Levels of total and cleaved PARP were measured by Western blot. General cellular and mitochondrial reactive oxygen species were measured by flow cytometry and live cell confocal microscopy with the fluorescent dyes dihydroethidine and MitoSOX. Results Individually, metformin and PEITC each show inhibition of cell growth in multiple ovarian cancer cell lines. Alone, PEITC was also able to induce apoptosis, whereas metformin was primarily growth inhibitory. Both total cellular and mitochondrial reactive oxygen species were increased when treated with either metformin or PEITC. The growth inhibitory effects of metformin were reversed by methyl succinate supplementation, suggesting complex I plays a role in metformin's anti-cancer mechanism. PEITC's anti-cancer effect was reversed by N-acetyl-cysteine supplementation, suggesting PEITC relies on reactive oxygen species generation to induce apoptosis. Metformin and PEITC together showed a synergistic effect on ovarian cancer cell lines, including the cisplatin resistant A2780cis. Conclusions Here we show that when used in combination, these drugs are effective in both slowing cancer cell growth and killing ovarian cancer cells in vitro. Furthermore, the combination of these drugs remains effective in cisplatin resistant cell lines. Novel combinations such as metformin and PEITC show promise in expanding ovarian cancer therapies and overcoming the high incidence of

  12. Comparative study of nanosecond electric fields in vitro and in vivo on hepatocellular carcinoma indicate macrophage infiltration contribute to tumor ablation in vivo.

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    Full Text Available BACKGROUND AND AIM: Recurrence and metastasis are associated with poor prognosis in hepatocellular carcinoma even in the patients who have undergone radical resection. Therefore, effective treatment is urgently needed for improvement of patients' survival. Previously, we reported that nanosecond pulse electric fields (nsPEFs can ablate melanoma by induction of apoptosis and inhibition of angiogenesis. This study aims to investigate the in vivo ablation strategy by comparing the dose effect of nanosecond electric fields in vitro and in vivo on hepatocellular carcinoma. MATERIALS AND METHODS: Four hepatocellular carcinoma cell lines HepG2, SMMC7721, Hep1-6, and HCCLM3 were pulsed to test the anti-proliferation and anti-migration ability of 100 ns nsPEFs in vitro. The animal model of human subdermal xenograft HCCLM3 cells into BALB/c nude mouse was used to test the anti-tumor growth and macrophage infiltration in vivo. RESULTS: In vitro assays showed anti-tumor effect of nsPEFs is dose-dependant. But the in vivo study showed the strategy of low dose and multiple treatments is superior to high dose single treatment. The macrophages infiltration significantly increased in the tumors which were treated by multiple low dose nsPEFs. CONCLUSION: The low dose multiple nsPEFs application is more efficient than high dose single treatment in inhibiting the tumor volume in vivo, which is quite different from the dose-effect relationship in vitro. Beside the electric field strength, the macrophage involvement must be considered to account for effect variability and toxicology in vivo.

  13. Folic Acid Conjugated Chitosan for Targeted Delivery of siRNA to Activated Macrophages in vitro and in vivo

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Gao, Shan; Kjems, Jørgen

    2014-01-01

    Activated macrophages play an important role in the initiation and development of inflammatory diseases. The aim of this study is to develop a delivery system that targets siRNA to activated macrophages. Exploiting the presence of folate receptors on the surface of activated macrophages, folic acid...... was conjugated to chitosan (FA–CS) and used to formulate siRNA into nanoparticles capable of cell specific delivery. The physiochemical properties of the nanoparticles, including size, zeta-potential and encapsulation efficiency, were characterized and the intracellular uptake and gene silencing efficiency were......–CS can be a potential siRNA carrier for anti-inflammatory therapy...

  14. Antibodies Induced by Lipoarabinomannan in Bovines: Characterization and Effects on the Interaction between Mycobacterium avium Subsp. paratuberculosis and Macrophages In Vitro

    Directory of Open Access Journals (Sweden)

    Ana Jolly

    2011-01-01

    Full Text Available Lipoarabinomannan (LAM is a major glycolipidic antigen on the mycobacterial envelope. The aim of this study was to characterize the humoral immune response induced by immunization with a LAM extract in bovines and to evaluate the role of the generated antibodies in the in vitro infection of macrophages with Mycobacterium avium subsp. paratuberculosis (MAP. Sera from fourteen calves immunized with LAM extract or PBS emulsified in Freund's Incomplete Adjuvant and from five paratuberculosis-infected bovines were studied. LAM-immunized calves developed specific antibodies with IgG1 as the predominant isotype. Serum immunoglobulins were isolated and their effect was examined in MAP ingestion and viability assays using a bovine macrophage cell line. Our results show that the antibodies generated by LAM immunization significantly increase MAP ingestion and reduce its intracellular viability, suggesting an active role in this model.

  15. In vitro evidence for the protective role of Sida rhomboidea. Roxb extract against LDL oxidation and oxidized LDL-induced apoptosis in human monocyte-derived macrophages.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjisinh V; Ramachandran, A V

    2011-06-01

    The present study was undertaken to evaluate protective role of S. rhomboidea. Roxb (SR) leaf extract against in vitro low-density lipoprotein (LDL) oxidation and oxidized LDL (Ox-LDL) induced macrophage apoptosis. Copper and cell-mediated LDL oxidation, Ox-LDL-induced peroxyl radical generation, mitochondrial activity, and apoptosis in human monocyte-derived macrophages (HMDMs) were assessed in presence of SR extract. Results clearly indicated that SR was capable of reducing LDL oxidation and formation of intermediary oxidation products. Also, SR successfully attenuated peroxyl radical formation, mitochondrial dysfunction, nuclear condensation, and apoptosis in Ox-LDL-exposed HMDMs. This scientific report is the first detailed investigation that establishes anti-atherosclerotic potential of SR extract.

  16. Facile reduction and stabilization of ginsenoside-functionalized gold nanoparticles: optimization, characterization, and in vitro cytotoxicity studies

    Science.gov (United States)

    Hurh, Joon; Markus, Josua; Kim, Yeon-Ju; Ahn, Sungeun; Castro-Aceituno, Veronica; Mathiyalagan, Ramya; Kim, Yu Jin; Yang, Deok Chun

    2017-09-01

    Gold nanoparticles (GNPs) are forecasted to provide an attractive platform in biomedicine and catalysis with their potentials of combining a variety of biophysicochemical properties into an integrated nanodevice with great therapeutic and optical functions. There are several reports of crude plant extracts mediating the conversion of metal ions into nanoparticles. However, we aimed to investigate the capability of single bioactive compounds, namely ginsenosides compound K (C-K) and Rh2, to accommodate a synergistic chemical reduction of gold salts by one-pot green chemistry. Ginsenosides C-K and Rh2 are unique triterpenoid saponins present in Panax ginseng Meyer, a perennial plant traditionally used as an oriental medicinal herbal with long history. C-K and Rh2 have demonstrated diverse pharmacological properties such as anticancer, anti-inflammation, anti-aging, and neuroprotective properties. The reduction of gold ions by these ginsenosides led to the production of nontoxic GNPs as tested in mouse macrophage (J774A.1) and human kidney epithelial (HEK-293) in vitro. The kinetics of the bioreduction and the influence of pH were examined by an ultraviolet-visible (UV-Vis) spectrophotometer. GNPs were characterized by field emission transmission electron microscopy (FE-TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and Fourier transform infrared (FTIR) spectroscopy. Ginsenoside loading efficiency of C-K-GNPs and Rh2-GNPs was determined to be approximately 62.83% and 54.91%, respectively, by thermogravimetric analysis (TGA). These results suggest that one-pot synthesis by ginsenosides C-K and Rh2 may be useful for producing ginsenoside-loaded gold nanocarriers. [Figure not available: see fulltext.

  17. A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages.

    Science.gov (United States)

    Badding, Melissa A; Fix, Natalie R; Antonini, James M; Leonard, Stephen S

    2014-01-01

    Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. While federal regulations have reduced permissible worker exposure limits to Cr(VI), this is not always practical considering that welders may work in confined spaces and exhaust ventilation may be ineffective. Thus, there has been a recent initiative to minimize the potentially hazardous components in welding materials by developing new consumables containing much less Cr(VI) and Mn. A new nickel (Ni) and copper (Cu)-based material (Ni-Cu WF) is being suggested as a safer alternative to stainless steel consumables; however, its adverse cellular effects have not been studied. This study compared the cytotoxic effects of the newly developed Ni-Cu WF with two well-characterized welding fumes, collected from gas metal arc welding using mild steel (GMA-MS) or stainless steel (GMA-SS) electrodes. RAW 264.7 mouse macrophages were exposed to the three welding fumes at two doses (50 µg/ml and 250 µg/ml) for up to 24 hours. Cell viability, reactive oxygen species (ROS) production, phagocytic function, and cytokine production were examined. The GMA-MS and GMA-SS samples were found to be more reactive in terms of ROS production compared to the Ni-Cu WF. However, the fumes from this new material were more cytotoxic, inducing cell death and mitochondrial dysfunction at a lower dose. Additionally, pre-treatment with Ni-Cu WF particles impaired the ability of cells to phagocytize E. coli, suggesting macrophage dysfunction. Thus, the toxic cellular responses to welding fumes are largely due to the metal composition. The results also suggest that reducing Cr(VI) and Mn in the generated fume by increasing the concentration of other metals (e.g., Ni, Cu) may not necessarily improve welder safety.

  18. Lipopolysaccharide enhances the cytotoxicity of 2-chloroethyl ethyl sulfide

    Directory of Open Access Journals (Sweden)

    Qui Min

    2003-01-01

    Full Text Available Abstract Background The bacterial endotoxin, lipopolysaccharide (LPS, is a well-characterized inflammatory factor found in the cell wall of Gram-negative bacteria. In this investigation, we studied the cytotoxic interaction between 2-chloroethyl ethyl sulfide (CEES or ClCH2CH2SCH2CH3 and LPS using murine RAW264.7 macrophages. CEES is a sulfur vesicating agent and is an analog of 2,2'-dichlorodiethyl sulfide (sulfur mustard. LPS is a ubiquitous natural agent found in the environment. The ability of LPS and other inflammatory agents (such as TNF-alpha and IL-1beta to modulate the toxicity of CEES is likely to be an important factor in the design of effective treatments. Results RAW 264.7 macrophages stimulated with LPS were found to be more susceptible to the cytotoxic effect of CEES than unstimulated macrophages. Very low levels of LPS (20 ng/ml dramatically enhanced the toxicity of CEES at concentrations greater than 400 μM. The cytotoxic interaction between LPS and CEES reached a maximum 12 hours after exposure. In addition, we found that tumor necrosis factor-alpha (TNF-alpha and interleukin-1-beta (IL-1-beta as well as phorbol myristate acetate (PMA also enhanced the cytotoxic effects of CEES but to a lesser extent than LPS. Conclusion Our in vitro results suggest the possibility that LPS and inflammatory cytokines could enhance the toxicity of sulfur mustard. Since LPS is a ubiquitous agent in the natural environment, its presence is likely to be an important variable influencing the cytotoxicity of sulfur mustard toxicity. We have initiated further experiments to determine the molecular mechanism whereby the inflammatory process influences sulfur mustard cytotoxicity.

  19. Lipopolysaccharide enhances the cytotoxicity of 2-chloroethyl ethyl sulfide.

    Science.gov (United States)

    Stone, William L; Qui, Min; Smith, Milton

    2003-01-06

    The bacterial endotoxin, lipopolysaccharide (LPS), is a well-characterized inflammatory factor found in the cell wall of Gram-negative bacteria. In this investigation, we studied the cytotoxic interaction between 2-chloroethyl ethyl sulfide (CEES or ClCH2CH2SCH2CH3) and LPS using murine RAW264.7 macrophages. CEES is a sulfur vesicating agent and is an analog of 2,2'-dichlorodiethyl sulfide (sulfur mustard). LPS is a ubiquitous natural agent found in the environment. The ability of LPS and other inflammatory agents (such as TNF-alpha and IL-1beta) to modulate the toxicity of CEES is likely to be an important factor in the design of effective treatments. RAW 264.7 macrophages stimulated with LPS were found to be more susceptible to the cytotoxic effect of CEES than unstimulated macrophages. Very low levels of LPS (20 ng/ml) dramatically enhanced the toxicity of CEES at concentrations greater than 400 microM. The cytotoxic interaction between LPS and CEES reached a maximum 12 hours after exposure. In addition, we found that tumor necrosis factor-alpha (TNF-alpha) and interleukin-1-beta (IL-1-beta) as well as phorbol myristate acetate (PMA) also enhanced the cytotoxic effects of CEES but to a lesser extent than LPS. Our in vitro results suggest the possibility that LPS and inflammatory cytokines could enhance the toxicity of sulfur mustard. Since LPS is a ubiquitous agent in the natural environment, its presence is likely to be an important variable influencing the cytotoxicity of sulfur mustard toxicity. We have initiated further experiments to determine the molecular mechanism whereby the inflammatory process influences sulfur mustard cytotoxicity.

  20. Thalidomide inhibits alternative activation of macrophages in vivo and in vitro: a potential mechanism of anti-asthmatic effect of thalidomide.

    Science.gov (United States)

    Lee, Hyun Seung; Kwon, Hyouk-Soo; Park, Da-Eun; Woo, Yeon Duk; Kim, Hye Young; Kim, Hang-Rae; Cho, Sang-Heon; Min, Kyung-Up; Kang, Hye-Ryun; Chang, Yoon-Seok

    2015-01-01

    Thalidomide is known to have anti-inflammatory and immunomodulatory actions. However, the effect and the anti-asthmatic mechanism of thalidomide in the pathogenesis of asthmatic airways are not fully understood. This study is designed to determine the effect and the potential mechanism of thalidomide in the pathogenesis of asthmatic airways using animal model of allergic asthma. Six-week-old female BALB/C mice were sensitized with alum plus ovalbumin (OVA) and were exposed to OVA via intranasal route for 3 days for challenge. Thalidomide 200 mg/kg was given via gavage twice a day from a day before the challenge and airway hyperresponsivenss (AHR), airway inflammatory cells, and cytokines in bronchoalveolar lavage fluids (BALF) were evaluated. The expression levels of pro-inflammatory cytokines and other mediators were evaluated using ELISA, real time (RT)-qPCR, and flow cytometry. CRL-2456, alveolar macrophage cell line, was used to test the direct effect of thalidomide on the activation of macrophages in vitro. The mice with thalidomide treatment showed significantly reduced levels of allergen-induced BALF and lung inflammation, AHR, and the expression of a number of pro-inflammatory cytokines and mediators including Th2 related, IL-17 cytokines, and altered levels of allergen-specific IgG1/IgG2a. Of interesting note, thalidomide treatment significantly reduced expression levels of allergen- or Th2 cytokine-stimulated alternative activation of macrophages in vivo and in vitro. These studies highlight a potential use of thalidomide in the treatment of allergic diseases including asthma. This study further identified a novel inhibitory effect of thalidomide on alternative activation of macrophages as a potential mechanism of anti-asthmatic effect of thalidomide.

  1. Thalidomide inhibits alternative activation of macrophages in vivo and in vitro: a potential mechanism of anti-asthmatic effect of thalidomide.

    Directory of Open Access Journals (Sweden)

    Hyun Seung Lee

    Full Text Available Thalidomide is known to have anti-inflammatory and immunomodulatory actions. However, the effect and the anti-asthmatic mechanism of thalidomide in the pathogenesis of asthmatic airways are not fully understood.This study is designed to determine the effect and the potential mechanism of thalidomide in the pathogenesis of asthmatic airways using animal model of allergic asthma.Six-week-old female BALB/C mice were sensitized with alum plus ovalbumin (OVA and were exposed to OVA via intranasal route for 3 days for challenge. Thalidomide 200 mg/kg was given via gavage twice a day from a day before the challenge and airway hyperresponsivenss (AHR, airway inflammatory cells, and cytokines in bronchoalveolar lavage fluids (BALF were evaluated. The expression levels of pro-inflammatory cytokines and other mediators were evaluated using ELISA, real time (RT-qPCR, and flow cytometry. CRL-2456, alveolar macrophage cell line, was used to test the direct effect of thalidomide on the activation of macrophages in vitro.The mice with thalidomide treatment showed significantly reduced levels of allergen-induced BALF and lung inflammation, AHR, and the expression of a number of pro-inflammatory cytokines and mediators including Th2 related, IL-17 cytokines, and altered levels of allergen-specific IgG1/IgG2a. Of interesting note, thalidomide treatment significantly reduced expression levels of allergen- or Th2 cytokine-stimulated alternative activation of macrophages in vivo and in vitro.These studies highlight a potential use of thalidomide in the treatment of allergic diseases including asthma. This study further identified a novel inhibitory effect of thalidomide on alternative activation of macrophages as a potential mechanism of anti-asthmatic effect of thalidomide.

  2. Thalidomide Inhibits Alternative Activation of Macrophages In Vivo and In Vitro: A Potential Mechanism of Anti-Asthmatic Effect of Thalidomide

    Science.gov (United States)

    Park, Da-Eun; Woo, Yeon Duk; Kim, Hye Young; Kim, Hang-Rae; Cho, Sang-Heon; Min, Kyung-Up; Kang, Hye-Ryun; Chang, Yoon-Seok

    2015-01-01

    Background Thalidomide is known to have anti-inflammatory and immunomodulatory actions. However, the effect and the anti-asthmatic mechanism of thalidomide in the pathogenesis of asthmatic airways are not fully understood. Objective This study is designed to determine the effect and the potential mechanism of thalidomide in the pathogenesis of asthmatic airways using animal model of allergic asthma. Methods Six-week-old female BALB/C mice were sensitized with alum plus ovalbumin (OVA) and were exposed to OVA via intranasal route for 3 days for challenge. Thalidomide 200 mg/kg was given via gavage twice a day from a day before the challenge and airway hyperresponsivenss (AHR), airway inflammatory cells, and cytokines in bronchoalveolar lavage fluids (BALF) were evaluated. The expression levels of pro-inflammatory cytokines and other mediators were evaluated using ELISA, real time (RT)-qPCR, and flow cytometry. CRL-2456, alveolar macrophage cell line, was used to test the direct effect of thalidomide on the activation of macrophages in vitro. Results The mice with thalidomide treatment showed significantly reduced levels of allergen-induced BALF and lung inflammation, AHR, and the expression of a number of pro-inflammatory cytokines and mediators including Th2 related, IL-17 cytokines, and altered levels of allergen-specific IgG1/IgG2a. Of interesting note, thalidomide treatment significantly reduced expression levels of allergen- or Th2 cytokine-stimulated alternative activation of macrophages in vivo and in vitro. Conclusion These studies highlight a potential use of thalidomide in the treatment of allergic diseases including asthma. This study further identified a novel inhibitory effect of thalidomide on alternative activation of macrophages as a potential mechanism of anti-asthmatic effect of thalidomide. PMID:25905462

  3. Effect of Tityus serrulatus venom on cytokine production and the activity of murine macrophages

    Directory of Open Access Journals (Sweden)

    Vera L. Petricevich

    2002-01-01

    Full Text Available The purpose of this study was to investigate the effects of Tityus serrulatus venom (TSV on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2 and nitric oxide (NO in supernatants of peritoneal macrophages. Several functional bioassays were employed including an in vitro model for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6 and interferon-γ (IFN-γ were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-γ. Incubation of macrophages with TSV increased production of IL-6 and IFN-γ in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-γ. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2 release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functions in vitro.

  4. Comparative Study of Cigarette Smoke Cytotoxicity Using Two In Vitro Assay Systems

    Directory of Open Access Journals (Sweden)

    Fukushima Toshiro

    2014-09-01

    Full Text Available L'objet de la présente étude fut de comparer les résultats obtenus à partir de deux essais de cytotoxicité in vitro s'appuyant sur des mécanismes/modes d'action différents. Le test de fixation du rouge neutre (Neutral Red Uptake - NRU se fonde sur l'endocytose tandis que le test des sels de tetrazolium hydrosolubles (WST-1 s'appuie sur l'activité de la déshydrogénase mitochondriale. Ces deux tests furent analysés à la lumière de leur fréquence d'utilisation et de leur validation documentée. La matière particulaire totale (MPT et la phase gaz/vapeur (PGV de la fumée principale produite par les cigarettes de référence Kentucky 3R4F et les dix cigarettes testées composées à 100% de tabac Burley ou à 100% de tabac jaune furent appliquées individuellement dans les deux essais utilisant des cellules CHO-K1. En outre, les constituants de fumée de cigarette et les agents cytotoxiques connus, dont la capacité à affecter certains indicateurs de résultat est documentée, furent évalués lors des deux tests. Bien que le test de fixation du rouge neutre se révéla, dans un premier temps, plus sensible que le test aux WST-1, les deux essais livrèrent des résultats comparables en termes de classement par ordre de rang de la cytotoxicité des échantillons de fumée de cigarette. Eu égard à la cytotoxicité des constituants de fumée de cigarette, l'acroléine, l'hydroquinone et la catéchine présentèrent de claires diminutions de viabilité cellulaire proportionnelles à la dose (un indicateur de résultat commun aux deux essais. Par ailleurs, les inhibiteurs enzymatiques de la chaîne respiratoire mitochondriale et les produits chimiques portant atteinte à la membrane cellulaire présentèrent également des réactions similaires, indépendamment de l'indicateur de résultat spécifique visé lors du test de cytotoxicité. En conclusion, les résultats glanés lors du test de fixation du rouge neutre et du test aux sels de

  5. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells

    NARCIS (Netherlands)

    Bhattacharjee, S.; Haan, de L.H.J.; Evers, N.M.; Jiang, X.; Marcelis, A.T.M.; Zuilhof, H.; Rietjens, I.M.C.M.; Alink, G.M.

    2010-01-01

    Background - Surface charge and oxidative stress are often hypothesized to be important factors in cytotoxicity of nanoparticles. However, the role of these factors is not well understood. Hence, the aim of this study was to systematically investigate the role of surface charge, oxidative stress and

  6. Entry and elimination of marine mammal Brucella spp. by hooded seal (Cystophora cristata alveolar macrophages in vitro.

    Directory of Open Access Journals (Sweden)

    Anett K Larsen

    Full Text Available A high prevalence of Brucellapinnipedialis serology and bacteriology positive animals has been found in the Northeast Atlantic stock of hooded seal (Cystophoracristata; however no associated gross pathological changes have been identified. Marine mammal brucellae have previously displayed different infection patterns in human and murine macrophages. To investigate if marine mammal Brucella spp. are able to invade and multiply in cells originating from a presumed host species, we infected alveolar macrophages from hooded seal with a B. pinnipedialis hooded seal isolate. Hooded seal alveolar macrophages were also challenged with B. pinnipedialis reference strain (NCTC 12890 from harbor seal (Phocavitulina, B. ceti reference strain (NCTC 12891 from harbor porpoise (Phocoenaphocoena and a B. ceti Atlantic white-sided dolphin (Lagenorhynchusacutus isolate (M83/07/1, to evaluate possible species-specific differences. Brucella suis 1330 was included as a positive control. Alveolar macrophages were obtained by post mortem bronchoalveolar lavage of euthanized hooded seals. Phenotyping of cells in the lavage fluid was executed by flow cytometry using the surface markers CD14 and CD18. Cultured lavage cells were identified as alveolar macrophages based on morphology, expression of surface markers and phagocytic ability. Alveolar macrophages were challenged with Brucella spp. in a gentamicin protection assay. Following infection, cell lysates from different time points were plated and evaluated quantitatively for colony forming units. Intracellular presence of B. pinnipedialis hooded seal isolate was verified by immunocytochemistry. Our results show that the marine mammal brucellae were able to enter hooded seal alveolar macrophages; however, they did not multiply intracellularly and were eliminated within 48 hours, to the contrary of B. suis that showed the classical pattern of a pathogenic strain. In conclusion, none of the four marine mammal strains

  7. Tumor infiltrating macrophages reduce development of peritoneal colorectal carcinoma metastases

    NARCIS (Netherlands)

    van der Bij, Gerben J.; Bögels, Marijn; Oosterling, Steven J.; Kroon, Jeffrey; Schuckmann, Dénise T. M.; de Vries, Helga E.; Meijer, Sybren; Beelen, Robert H. J.; van Egmond, Marjolein

    2008-01-01

    Macrophages generally constitute a major component of tumor stroma, and possess either tumor growth promoting or inhibiting capabilities. Classically activated macrophages exert cytotoxicity and produce inflammatory cytokines, which limits tumor growth. By contrast, alternatively activated or M2

  8. In vitro effect of low intensity laser on the cytotoxicity produced by substances released by bleaching gel

    Directory of Open Access Journals (Sweden)

    Caroline Maria Gomes Dantas

    2010-12-01

    Full Text Available This in vitro study aimed to analyze the effect of different parameters of phototherapy with low intensity laser on the viability of human dental pulp fibroblasts under the effect of substances released by bleaching gel. Cells were seeded into 96 wells plates (1 x 10³ cells/well and placed in contact with culture medium conditioned by a 35 % hydrogen peroxide bleaching gel for 40 minutes, simulating the clinical condition of the in-office bleaching treatment. Cells cultured in ideal growth conditions served as positive control group (PC, and the cells grown in conditioned medium and non-irradiated served as negative control group (NC. Cells grown in conditioned medium were submitted to a single irradiation with a diode laser (40 mW, 0.04 cm² emitting at visible red (660 nm; RL or near infrared (780 nm; NIR using punctual technique, in contact mode and energy densities of 4, 6 or 10 J/cm². The cell viability was analyzed through the MTT reduction assay immediately and 24 hours after the irradiation. The data was compared by ANOVA followed by the Tukey's test (p < 0.05. The cell viability increased significantly in 24 hours within each group. The PC presented cell viability significantly higher than NC in both experimental times. Only the NIR/10 J/cm² group presented cell viability similar to that of PC in 24 hours. The phototherapy with low intensity laser in defined parameters is able to compensate the cytotoxic effects of substances released by 35 % hydrogen peroxide bleaching gel.

  9. In vitro evaluation of cytotoxicity, possible alteration of apoptotic regulatory proteins, and antibacterial activity of synthesized copper oxide nanoparticles.

    Science.gov (United States)

    Khan, Shahanavaj; Ansari, Anees A; Khan, Azmat Ali; Abdulla, Maha; Al-Obaid, Omar; Ahmad, Rehan

    2017-05-01

    Copper oxide nanoparticles (CuO-NPs) were synthesized using a urea-based thermal decomposition technique, and characterized using different techniques. X-ray diffraction (XRD) and Raman spectroscopy confirmed the phase purity and crystalline structure of CuO-NPs. The size of CuO-NPs was investigated using XRD and was confirmed via dynamic light scattering analysis. CuO-NPs showed an average diameter of ∼20nm. The possible cytotoxicity of CuO-NPs was evaluated in HT-29 and SW620 cancer cell lines. The median inhibitory concentration of CuO-NPs in HT-29 and SW-620 cells was 4.99 and 3.75μg/mL, respectively. The underlying mechanism responsible for apoptosis in colon cancer cells after CuO-NP exposure has not been well understood. In this study, we investigated the possible mechanisms of induction of apoptosis via analysis of the expression of Bcl-2 and Bcl-xL proteins in HT-29 human colon cancer cells after CuO-NP exposure. Western blot assay showed downregulation of Bcl-2 and Bcl-xL protein expression after CuO-NP exposure. Our findings may aid in the understanding of the potential mechanisms responsible for induction of apoptosis owing to inhibition of Bcl-2 and Bcl-xL protein expression. Furthermore, the antibacterial activity assay showed that the synthesized CuO-NPs did not exert significant inhibitory effects against different gram-positive and gram-negative bacteria in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Human epidermal growth factor receptor 2-positive breast cancer: which cytotoxic agent best complements trastuzumab's efficacy in vitro?

    Directory of Open Access Journals (Sweden)

    Hurrell T

    2013-06-01

    Full Text Available Tracey Hurrell, Kim OuthoffDepartment of Pharmacology, University of Pretoria, Pretoria, South AfricaIntroduction: Despite trastuzumab having enhanced selectivity for human epidermal growth factor receptor 2 (HER-2 overexpressing breast cancer cells, treatment is hampered by interindividual variation and tumors with high mitogenic potential. The lack of significant clinical benefit in certain patient cohorts suggests that HER-2 expression is ineffective as a sole prognostic indicator of response to therapy. Therefore, optimizing the clinical role of trastuzumab in drug combinations remains critical for clinical success.Aim: To investigate the effects of trastuzumab in combination with either doxorubicin or geldanamycin on in vitro cell viability, cell cycling, apoptosis and relative HER-2 expression in HER-2-positive (SK-BR-3 and estrogen receptor-positive (MCF-7 breast adenocarcinoma models.Results: HER-2-rich SK-BR-3 cells demonstrated a greater sensitivity to the effects of doxorubicin than MCF-7 cells. Concurrent trastuzumab exposure resulted in a further reduction in cell viability. This decreased cell viability induced by doxorubicin was associated with activation of executioner caspases as well as with alterations in cell-cycle kinetics, primarily promoting S-phase accumulation. Doxorubicin had no effect on surface HER-2 density expression. Geldanamycin reduced cell viability significantly greater in SK-BR-3 than MCF-7 cells, and was associated with G2 cell-cycle accumulation. The addition of trastuzumab did not augment these effects. Geldanamycin promoted substantial reductions in relative surface HER-2 density in SK-BR-3 cells.Conclusion: The in vitro data supported the rationale for using doxorubicin in trastuzumab-based therapies. Therefore, despite the incidence of cardiotoxicity, doxorubicin could retain a fundamental role in treating HER-2-positive breast cancer. While geldanamycin is a potent cytotoxic agent, its concurrent use

  11. In vitro antimalarial activity and cytotoxicity of some selected cuban medicinal plants Actividad antimalárica in vitro y citotoxicidad de algunas plantas medicinales Cubanas seleccionadas

    Directory of Open Access Journals (Sweden)

    Aymé Fernández-Calienes Valdés

    2010-08-01

    Full Text Available Terrestrial plants have been demonstrated to be sources of antimalarial compounds. In Cuba, little is known about antimalarial potentials of plant species used as medicinals. For that reason, we evaluated the antimalarial activity of 14 plant species used in Cuba as antimalarial, antipyretic and/or antiparasitic. Hydroalcoholic extracts were prepared and tested in vitro for the antimalarial activity against Plasmodium falciparum Ghana strain and over human cell line MRC-5 to determine cytotoxicity. Parasite multiplication was determined microscopically by the direct count of Giemsa stained parasites. A colorimetric assay was used to quantify cytotoxicity. Nine extracts showed IC50 values lower than 100 µg/mL against P. falciparum, four extracts were classified as marginally active (SI 10. B. vulgaris showed the most potent and specific antiplasmodial action (IC50 = 4.7 µg/mL, SI = 28.9. Phytochemical characterization of active extracts confirmed the presence of triterpenoids in B. vulgaris and polar compounds with phenol free groups and fluorescent metabolites in both extracts as major phytocompounds, by thin layer chromatography. In conclusion, antimalarial use of B. vulgaris and P. hysterophorus was validated. B. vulgaris and P. granatum extracts were selected for follow-up because of their strong antimalarial activity.Las plantas terrestres han demostrado ser fuentes de compuestos antimaláricos. En Cuba, el conocimiento sobre el potencial antimalárico de las plantas medicinales es escaso. Por esta razón, evaluamos la actividad antimalárica de 14 especies de plantas usadas en Cuba como antimaláricas, antipiréticas y/o antiparasitarias. Se prepararon extractos hidroalcohólicos y se probaron in vitro frente a la cepa Ghana de Plasmodium falciparum para la actividad antimalárica y frente a la línea celular humana MRC-5 para determinar citotoxicidad. La multiplicación de los parásitos se determinó microscópicamente mediante el

  12. A new extract of the plant Calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation.

    Science.gov (United States)

    Jiménez-Medina, Eva; Garcia-Lora, Angel; Paco, Laura; Algarra, Ignacio; Collado, Antonia; Garrido, Federico

    2006-05-05

    Phytopharmacological studies of different Calendula extracts have shown anti-inflammatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in

  13. Global gene expression profiles of canine macrophages and canine mammary cancer cells grown as a co-culture in vitro

    Directory of Open Access Journals (Sweden)

    Król Magdalena

    2012-02-01

    Full Text Available Abstract Background Solid tumours comprise various cells, including cancer cells, resident stromal cells, migratory haemopoietic cells and other. These cells regulate tumour growth and metastasis. Macrophages constitute probably the most important element of all interactions within the tumour microenvironment. However, the molecular mechanism, that guides tumour environment, still remains unknown. Exploring the underlying molecular mechanisms that orchestrate these phenomena has been the aim of our study. A co-culture of canine mammary cancer cells and macrophages was established and maintained for 72 hrs. Having sorted the cells, gene expression in cancer cells and macrophages, using DNA microarrays, was examined. The results were confirmed using real-time qPCR and confocal microscopy. Moreover, their ability for migration and invasion has been assessed. Results Microarray analysis showed that the up-regulated genes in the cancer cell lines are involved in 15 highly over-manifested pathways. The pathways that drew our diligent attention included: the inflammation pathway mediated by chemokine and cytokine, the Toll receptor signalling pathway and the B cell activation. The up-regulated genes in the macrophages were involved in only 18 significantly over-manifested pathways: the angiogenesis, the p53 pathway feedback loops2 and the Wnt signalling pathway. The microarray analysis revealed that co-culturing of cancer cells with macrophages initiated the myeloid-specific antigen expression in cancer cells, as well as cytokine/chemokine genes expression. This finding was confirmed at mRNA and protein level. Moreover, we showed that macrophages increase cancer migration and invasion. Conclusions The presence of macrophages in the cancer environment induces acquisition of the macrophage phenotype (specific antigens and chemokines/cytokines expression in cancer cells. We presumed that cancer cells also acquire other myeloid features, such as

  14. Evaluation of operative stress and peritoneal macrophage function in minimally invasive operations.

    Science.gov (United States)

    Iwanaka, T; Arkovitz, M S; Arya, G; Ziegler, M M

    1997-04-01

    Laparoscopic operative procedures have decreased postoperative pain and the length of hospitalization. In addition, evidence supports a physiologic benefit from laparoscopic surgery. By analyzing several parameters of peritoneal macrophage function, we report a comparison of the magnitude of postoperative stress between two types of minimally invasive access techniques contrasted with an open laparotomy, in a murine model. Immature male A/J mice were exposed to pneumoperitoneum using carbon dioxide, gasless suspension, or laparotomy. Peritoneal macrophages were then harvested, and the number and viability of the macrophages from each group of mice were compared. Last, as a marker of postoperative stress, the in vitro production of nitric oxide and tumor necrosis factor alpha by these macrophages was determined. The number of peritoneal macrophages and the viability of the macrophages in the laparotomy group were significantly decreased 4 hours after operation compared with the minimally invasive and control groups. In addition, macrophage production of tumor necrosis factor alpha and nitric oxide, two markers of macrophage stress, 24 hours after operation was significantly increased in the laparotomy group compared with animals serving as controls. Gasless suspension and pneumoperitoneum decreased the number of macrophages to a lesser degree than did open laparotomy and did not affect macrophage viability. Moreover, gasless suspension and pneumoperitoneum did not lead to an increase in tumor necrosis factor alpha or nitric oxide production by peritoneal macrophages. Postoperative stress, assessed by a decrease in macrophage viability and an increase in cytotoxic cytokine production, is maximized after laparotomy compared with stress in murine hosts that underwent minimally invasive treatment. These data provide basic scientific evidence for the possible physiologic benefit of minimally invasive techniques.

  15. In vitro comparative cytotoxic effect of Nimbolide: A limonoid from Azadirachta indica (Neem tree) on cancer cell lines and normal cell lines through MTT assay.

    Science.gov (United States)

    Kashif, Muhammad; Hwang, Yawon; Hong, Gyeongmi; Kim, Gonhyung

    2017-05-01

    The present study was conducted to find the cytotoxicity in vitro of nimbolide, limonoids derivative of flowers and leaves from Azadirachta indica (neem tree) on the selected cell lines of cancer (Du-145, PC-3, A-549) and normal fibroblast cell lines (NIH3T3, CCD-18Co) using MTT assay. The cells were seeded in 96 multi-well tissue plate using different concentrations of nimbolide for 24hrs and 48hrs. The percentage of viability of cell lines was calculated by optical density obtained by micro plate reader and cytotoxic effect in term of IC50 value was determined by using linear regression analysis. The percentages of viability of cells treated with different concentrations of nimbolide were significantly lower (P0.05) between treated and the non-treated cells was observed. Nimbolide exerted time and dose dependent cytotoxic effect on the cancer lines and mild effect on the normal cell lines. It was further confirmed through PKH 26. Results of the present study suggested nimbolide as a potent chemotherapeutic and chemopreventive agent as it exerted a more cytotoxic effect on cancer cell lines as compared with the normal cell lines. Nimbolide may be a new hope as an anticancer drug in future.

  16. Effect of Shark Liver Oil on Peritoneal Murine Macrophages in Responses to Killed-Candida albicans

    Directory of Open Access Journals (Sweden)

    Monire Hajimoradi

    2009-09-01

    Full Text Available Objective(sShark Liver Oil (SLO is an immunomodulator. Macrophages play a key role in host defense against pathogens like fungi. Candida albicans have mechanisms to escape immune system. We determined the effect of killed-Candida on the in vitro viability of macrophages and the effect of SLO on augmentation of this potency.Materials and MethodsPeritoneal macrophages were separated and cultured (3×105/well. At first, the effect of killed-Candida (200 cells/well on macrophage viability was evaluated, using MTT test. Then, MTT was performed on macrophages stimulated with killed-Candida in the presence of SLO. ResultsKilled-Candida suppressed the ability of MTT reduction and hence macrophages viability (P=0.026, but addition of SLO (100 mg/ml significantly enhanced cell viability (P=0.00. So, SLO could neutralize the inhibitory effect of Candida.ConclusionSimultaneous with cytotoxic effect of killed-Candida cells on macrophages viability, SLO augment macrophages viability. So, it can be applied in candidiasis as a complement.

  17. Chemical Composition and In Vitro Cytotoxic and Antimicrobial Activities of the Essential Oil from Leaves of Zanthoxylum monogynum St. Hill (Rutaceae

    Directory of Open Access Journals (Sweden)

    Fernanda B. da Silva

    2017-05-01

    Full Text Available Background: The Zanthoxylum monogynum species belongs to the family Rutaceae and is found in Southeast, Midwest, and Northeast Brazil. For this genus several biological activities have been described. Methods: The essential oil (EO was obtained from the leaves of Zanthoxylum monogynum by hydro-distillation and was analyzed by gas chromatograph and gas chromatograph/mass spectrometry (GC and GC/MS. Also the EO of Z. monogynum was evaluated for in vitro cytotoxic activity against six tumor cell lines and for antimicrobial activity, performing disk diffusion and MIC assays with yeast and bacterial strains. Results: The chemical analysis afforded the identification of 18 components (99.0% of the EO. The major components were found to be citronellol (43.0% and farnesol (32.0%. The in vitro cytotoxic activity against tumor cell lines, resulted in IC50 values ranging from 11–65 µg/mL against all tested cell lines. Antimicrobial activity of the essential oil was also tested and oil was effective, especially against Cryptococcus sp. yeast. All the tested yeast strains showed at least 90% growth inhibition. Conclusions: the essential oil from leaves of Z. monogynum has a different qualitative and quantitative composition when compared to the composition previously described. Also this EO has significant cytotoxic activity and moderate activity against Cryptococcus sp. and Saccharomyces cereviseae yeasts.

  18. Effect of post-polymerization heat-treatments on degree of conversion, leaching residual MMA and in vitro cytotoxicity of autopolymerizing acrylic repair resin.

    Science.gov (United States)

    Bural, Canan; Aktaş, Esin; Deniz, Günnur; Ünlüçerçi, Yeşim; Kızılcan, Nilgün; Bayraktar, Gülsen

    2011-11-01

    This study evaluated the effect of post-polymerization heat-treatments on degree of conversion (DC), residual methyl methacrylate concentration (MMA(r)) and in vitro cytotoxicity of autopolymerizing acrylic repair resin. A total of 336 specimens were prepared by bench- and hydroflask-curing and subjected to post-polymerization heat-treatments: a) water immersion at 60°C for 30 min, b) microwaving at 500 W for 3 min, c) combined use of water immersion and microwaving d) no treatment (as control). Specimens were eluted in cell culture medium for 1, 2, 5 and 7 days. DC and MMA(r) in eluates were measured by FTIR spectrometry and HPLC, respectively. In vitro cytotoxicity of eluates on L-929 fibroblasts was determined by XTT assay. Data were statistically analyzed with Dunn's multiple comparison and Pearson correlation tests (p≤0.05). DC was highest (99.9%) in bench- and hydroflask-cured groups which were subjected to water immersion. At all elution periods, MMA(r) was detected in eluates of all treatment groups and were higher in bench-cured groups than hydro-flask cured groups. Cell proliferation values indicated slightly cytotoxic effect throughout 7 days; regardless of the curing method or post-polymerization treatment. The correlation between MMA(r) and cell proliferation was negative after elution of 1, 2, 5 days and was only statistically significant (pMMA. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Chemical Composition and In Vitro Cytotoxic and Antimicrobial Activities of the Essential Oil from Leaves of Zanthoxylum monogynum St. Hill (Rutaceae).

    Science.gov (United States)

    Silva, Fernanda B da; Santos, Nara O Dos; Pascon, Renata C; Vallim, Marcelo A; Figueiredo, Carlos R; Martins, Roberto C Campos; Sartorelli, Patricia

    2017-05-19

    Background: The Zanthoxylum monogynum species belongs to the family Rutaceae and is found in Southeast, Midwest, and Northeast Brazil. For this genus several biological activities have been described. Methods: The essential oil (EO) was obtained from the leaves of Zanthoxylum monogynum by hydro-distillation and was analyzed by gas chromatograph and gas chromatograph/mass spectrometry (GC and GC/MS). Also the EO of Z. monogynum was evaluated for in vitro cytotoxic activity against six tumor cell lines and for antimicrobial activity, performing disk diffusion and MIC assays with yeast and bacterial strains. Results: The chemical analysis afforded the identification of 18 components (99.0% of the EO). The major components were found to be citronellol (43.0%) and farnesol (32.0%). The in vitro cytotoxic activity against tumor cell lines, resulted in IC50 values ranging from 11-65 µg/mL against all tested cell lines. Antimicrobial activity of the essential oil was also tested and oil was effective, especially against Cryptococcus sp. yeast. All the tested yeast strains showed at least 90% growth inhibition. Conclusions: the essential oil from leaves of Z. monogynum has a different qualitative and quantitative composition when compared to the composition previously described. Also this EO has significant cytotoxic activity and moderate activity against Cryptococcus sp. and Saccharomyces cereviseae yeasts.

  20. In vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species.

    Science.gov (United States)

    Gordanian, B; Behbahani, M; Carapetian, J; Fazilati, M

    2014-01-01

    The present study was carried out to investigate cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species against breast cancer cell line (MCF7) and human embryonic kidney normal cell line (HEK293). The studied Artemisia species were A. absinthium, A. vulgaris, A. incana, A. fragrans and A. spicigera. The cytotoxic activity was measured by MTT assay at different concentrations (62.5, 125, 250, 500 μg/ml). Among these five species, methanol extracts of flower, leaf, stem and root of A. absinthium and A. vulgaris exhibited considerable cytotoxic activity. The flower extracts of these two species were found to have higher cytotoxic effect on MCF7 cell with an IC50 value of 221.5 and >500 μg/ml, respectively. Leaf methanol extract of A. incana also showed cytotoxic activity. Cytotoxic activity of different extracts of A. absinthium, A. vulgaris and A. incana against MCF7 was 10%-40% more than HEK293 cells. Not only the extracts of A. spicigera and A. fragrans did not show any cytotoxic effect against both cell lines, but also increased the number of cells. This study revealed that A. absinthium and A. vulgaris may have a great potential to explore new anticancer drugs.

  1. Poly(vinyl alcohol) acetoacetate-based tissue adhesives are non-cytotoxic and non-inflammatory.

    Science.gov (United States)

    Bhatia, Sujata K; Arthur, Samuel D

    2008-08-01

    Polymer-based tissue adhesives composed of poly(vinyl alcohol) acetoacetate (PVOH acac) and cross-linking amines were investigated for their effects on cell survival and inflammatory cell activation using in vitro mouse cell cultures. Cytotoxicity of tissue adhesives was evaluated by placing adhesives in direct contact with 3T3 fibroblast cells. Tissue adhesives formulated from PVOH acac and 3-aminopropyltrialkoxysilane (APS) were non-cytotoxic to fibroblasts; adhesives formulated from PVOH acac and aminated poly(vinyl alcohol) (PVOH amine) were also non-cytotoxic to fibroblasts. In contrast, a commercial adhesive composed of 2-octyl cyanoacrylate was highly cytotoxic to fibroblasts. The inflammatory potential of tissue adhesives was evaluated by exposing J774 macrophage cells to adhesives, and measuring TNF-alpha release from macrophages. PVOH acac-based tissue adhesives did not elicit inflammatory TNF-alpha release from macrophages. These results suggest that PVOH acac-based tissue adhesives are non-cytotoxic and non-inflammatory. Such tissue adhesives represent a promising technology for a variety of medical applications, including surgical wound closure and tissue engineering, and the results are also significant in the design of in vitro cell culture systems to study biomaterials.

  2. Immunomodulatory Role of Ocimum gratissimum and Ascorbic Acid against Nicotine-Induced Murine Peritoneal Macrophages In Vitro

    Directory of Open Access Journals (Sweden)

    Santanu Kar Mahapatra

    2011-01-01

    Full Text Available The aim of this present study was to evaluate the immune functions and immune responses in nicotine-induced (10 mM macrophages and concurrently establish the immunomodulatory role of aqueous extract of Ocimum gratissimum (Ae-Og and ascorbic acid. In this study, nitrite generations and some phenotype functions by macrophages were studied. Beside that, release of Th1 cytokines (TNF-α, IL-12 and Th2 cytokines (IL-10, TGF-β was measured by ELISA, and the expression of these cytokines at mRNA level was analyzed by real-time PCR. Ae-Og, at a dose of 10 μg/mL, significantly reduced the nicotine-induced NO generation and iNOSII expression. Similar kinds of response were observed with supplementation of ascorbic acid (0.01 mM. The administration of Ae-Og and ascorbic acid increased the decreased adherence, chemotaxis, phagocytosis, and intracellular killing of bacteria in nicotine-treated macrophages. Ae-Og and ascorbic acid were found to protect the murine peritoneal macrophages through downregulation of Th1 cytokines in nicotine-treated macrophages with concurrent activation of Th2 responses. These findings strongly enhanced our understanding of the molecular mechanism leading to nicotine-induced suppression of immune functions and provide additional rationale for application of anti-inflammatory therapeutic approaches by O. gratissimum and ascorbic acid for different inflammatory disease prevention and treatment during nicotine toxicity.

  3. In-vitro cytotoxic activities of poly(2-ethyl-2-oxazoline-based amphiphilic block copolymers prepared by CuAAC click chemistry

    Directory of Open Access Journals (Sweden)

    S. Gulyuz

    2018-02-01

    Full Text Available Synthesis and characterization of well-defined amphiphilic block copolymers containing poly(2-ethyl-2-oxazoline as hydrophilic block and poly(ε-caprolactone or poly(L-lactide as hydrophobic block is achieved by copper-catalyzed azide-alkyne cycloaddition (CuAAC click chemistry. The clickable precursors, α-alkyne-functionalized poly(ε-caprolactone and poly(L-lactide and ω-azido-functionalized poly(2-ethyl-2-oxazoline are simply prepared and joined using copper sulfate/ascorbic acid catalyst system at room temperature. The structures of precursors and amphiphilic block copolymers are characterized by spectroscopic, chromatographic and thermal analyses. The cytotoxic activities of resulting amphiphilic block copolymers and their precursors are investigated in the prostate epithelial and cancer cells under in-vitro conditions. The treatment of the healthy prostate epithelial cell line PNT1A reveals that no significant cytotoxicity, whereas some significant toxic effects on the prostate cancer cell lines are observed.

  4. Chemotaxonomic Characterization and in-Vitro Antimicrobial and Cytotoxic Activities of the Leaf Essential Oil of Curcuma longa Grown in Southern Nigeria

    Science.gov (United States)

    Essien, Emmanuel E.; Newby, Jennifer Schmidt; Walker, Tameka M.; Setzer, William N.; Ekundayo, Olusegun

    2015-01-01

    Curcuma longa (turmeric) has been used in Chinese traditional medicine and Ayurvedic medicine for many years. Methods: The leaf essential oil of C. longa from southern Nigeria was obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry (GC-MS). The essential oil was screened for in vitro antibacterial, antifungal, and cytotoxic activities. The major components in C. longa leaf oil were ar-turmerone (63.4%), α-turmerone (13.7%), and β-turmerone (12.6%). A cluster analysis has revealed this to be a new essential oil chemotype of C. longa. The leaf oil showed notable antibacterial activity to Bacillus cereus and Staphylococcus aureus, antifungal activity to Aspergillus niger, and cytotoxic activity to Hs 578T (breast tumor) and PC-3 (prostate tumor) cells. The ar-turmerone-rich leaf essential oil of C. longa from Nigeria has shown potent biological activity and therapeutic promise. PMID:28930216

  5. Chemotaxonomic Characterization and in-Vitro Antimicrobial and Cytotoxic Activities of the Leaf Essential Oil of Curcuma longa Grown in Southern Nigeria

    Directory of Open Access Journals (Sweden)

    Emmanuel E. Essien

    2015-12-01

    Full Text Available Curcuma longa (turmeric has been used in Chinese traditional medicine and Ayurvedic medicine for many years. Methods: The leaf essential oil of C. longa from southern Nigeria was obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry (GC-MS. The essential oil was screened for in vitro antibacterial, antifungal, and cytotoxic activities. The major components in C. longa leaf oil were ar-turmerone (63.4%, α-turmerone (13.7%, and β-turmerone (12.6%. A cluster analysis has revealed this to be a new essential oil chemotype of C. longa. The leaf oil showed notable antibacterial activity to Bacillus cereus and Staphylococcus aureus, antifungal activity to Aspergillus niger, and cytotoxic activity to Hs 578T (breast tumor and PC-3 (prostate tumor cells. The ar-turmerone-rich leaf essential oil of C. longa from Nigeria has shown potent biological activity and therapeutic promise.

  6. The Addition of Cocoa, Glycerol, and Saccharose to the Tobacco of Cigarettes: Implications for Smoke Chemistry, In Vitro Cytotoxicity, Mutagenicity and Further Endpoints

    Directory of Open Access Journals (Sweden)

    Roemer E

    2014-12-01

    Full Text Available The cigarette ingredients cocoa powder, glycerol, and saccharose were investigated regarding their potential effect on the resulting mainstream smoke, i.e., smoke chemistry (Hoffmann analytes, mammalian cell cytotoxicity (Neutral Red Uptake assay, and bacterial mutagenicity (Ames assay. Each ingredient was added at three concentrations to the tobacco of a 6 mg and 10 mg ‘tar’ yield experimental American blend filter cigarette (obtained under ISO/FTC smoking regime. The lowest application concentration was equivalent to the normal approximate use level of the ingredients; the highest application level was up to 5-fold higher. The resulting data were compared with the respective control cigarettes without addition of the ingredients. The addition of cocoa powder did not lead to any consistent effects on the measured mainstream smoke analytes. Neither the in vitro cytotoxicity nor the in vitro mutagenicity was affected by cocoa addition. The addition of glycerol resulted in a decrease in the delivery of several smoke constituents (generally around 20%, e.g. aldehydes, phenolics, and N-nitrosamines. Water in the particulate phase (TPM was distinctly increased (up to +150%. The cytotoxicity of the TPM was decreased (approx. !15%. Mutagenicity was not affected. Saccharose addition consistently increased formaldehyde delivery in smoke by up to 40% and decreased tobacco-specific N-nitrosamines by up to approximately 20%. The increase in formaldehyde is discussed in the context of the human smoker. The cytotoxicity was not affected by the addition of saccharose, while the mutagenicity of the TPM was decreased in tester strain TA98 with metabolic activation (!15%. The results are in agreement with currently available literature. Some investigations summarized in this publication are novel and have not yet been reported in the literature. Based on the total evidence, it can be concluded that the three ingredients added at their current use levels do

  7. In-vitro comparative study of cytotoxic and thrombolytic effects of methanolic extract of Cissus pentagona and Thunbergia grandiflora (Roxb. leaves

    Directory of Open Access Journals (Sweden)

    Mohammad Nazmul Alam

    2015-09-01

    Full Text Available Objective: To compare cytotoxic and thrombolytic activity of crude methanolic extract of Cissus pentagona (C. pentagona and Thunbergia grandiflora Roxb. (T. grandiflora leaves. Methods: The screening of cytotoxic activity was done by using brine shrimp lethality bioassay while the thrombolytic activity was evaluated by using the in vitro clot lysis model. In brief, venous blood from five healthy volunteers was allowed to form clots which were weighed and treated with the tested plant materials to disrupt the clots. Weight of clot before and after treatment provided a percentage of clot lysis and the results with streptokinase as positive control and water as negative control were compared. Results: Moderate cytotoxicity was found for both methanol extracts, and it was compared with the standard drug vincristine sulfate in the brine shrimp bioassay. In the present study, the LC50 values of the methanol crude extract of C. pentagona as well as T. grandiflora and vincristine sulfate were 291.33, 243.37 and 12.59 μg/mL, respectively. In thrombolytic study, it was found that C. pentagona and T. grandiflora showed (24.27 ± 2.61% and (19.56 ± 2.98% of clot lysis, respectively. Among the herbs studied, C. pentagona showed very significant (P < 0.001 percentage of clot lysis than T. grandiflora, compared with reference drug streptokinase [(63.54 ± 2.61%]. Conclusions: The results of the study demonstrated that the leaf of the plants contains preliminary cytotoxic effect on brine shrimp and promising thrombolytic activity in vitro when it is tested on human blood. However, further study is needed to evaluate its potential as a thrombolytic agent.

  8. Assessment of the in vitro cytotoxicity and in vivo anti-tumor activity of the alcoholic stem bark extract/fractions of Mimusops elengi Linn.

    Science.gov (United States)

    Kumar, Harish; Savaliya, Mihir; Biswas, Subhankar; Nayak, Pawan G; Maliyakkal, Naseer; Manjunath Setty, M; Gourishetti, Karthik; Pai, K Sreedhara Ranganath

    2016-08-01

    Various parts of Mimusops elengi Linn. (Sapotaceae) have been used widely in traditional Indian medicine for the treatment of pain, inflammation and wounds. The study was conducted to explore the use of stem bark of M. elengi on pharmacological grounds and to evaluate the scientific basis of cytotoxic and anti-tumor activity. Extract/fractions were prepared and in vitro cytotoxicity was assessed using SRB assay. Most effective fractions were subjected to fluorescence microscopy based acridine orange/ethidium bromide (AO/EB) and Hoechst 33342 staining to determine apoptosis induction and DNA fragmentation assay. Comet and micronuclei assay were performed to assess genotoxicity. Cell cycle analysis was also performed. In vivo anti-tumor potential was evaluated by Ehrlich ascites carcinoma (EAC) model in mice. The alcoholic stem bark extract of M. elengi along with four fractions showed potential in vitro cytotoxicity in SRB assay. Of these, dichloromethane and ethyl acetate fractions were selected for further studies. The fractions revealed apoptosis inducing potential in AO/EB and Hoechst 33342 staining, which was further confirmed by DNA fragmentation assay. Genotoxic potential was revealed by comet and micronuclei assay. Fractions also exhibited specific cell cycle inhibition in G0/G1 phase. In EAC model, ethyl acetate fraction along with the standard (cisplatin) effectively reduced the increase in body weight compared to control and improved mean survival time. Both fractions were able to restore the altered hematological and biochemical parameters. Hence, M. elengi stem bark may be a possible therapeutic candidate having cytotoxic and anti-tumor potential.

  9. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis

    Science.gov (United States)

    2012-01-01

    Background Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Methods Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G2), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. Results The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC50 values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC50 values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and propolis extracts. Conclusion This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti

  10. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis

    Directory of Open Access Journals (Sweden)

    Teerasripreecha Dungporn

    2012-03-01

    Full Text Available Abstract Background Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Methods Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474, undifferentiated lung (Chaco, liver hepatoblastoma (Hep-G2, gastric carcinoma (KATO-III and colon adenocarcinoma (SW620 cancers. The human foreskin fibroblast cell line (Hs27 was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. Results The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC50 values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in