WorldWideScience

Sample records for vitrification process pretreatment

  1. Hanford tank waste simulants specification and their applicability for the retrieval, pretreatment, and vitrification processes

    Energy Technology Data Exchange (ETDEWEB)

    GR Golcar; NG Colton; JG Darab; HD Smith

    2000-04-04

    A wide variety of waste simulants were developed over the past few years to test various retrieval, pretreatment and waste immobilization technologies and unit operations. Experiments can be performed cost-effectively using non-radioactive waste simulants in open laboratories. This document reviews the composition of many previously used waste simulants for remediation of tank wastes at the Hanford reservation. In this review, the simulants used in testing for the retrieval, pretreatment, and vitrification processes are compiled, and the representative chemical and physical characteristics of each simulant are specified. The retrieval and transport simulants may be useful for testing in-plant fluidic devices and in some cases for filtration technologies. The pretreatment simulants will be useful for filtration, Sr/TRU removal, and ion exchange testing. The vitrification simulants will be useful for testing melter, melter feed preparation technologies, and for waste form evaluations.

  2. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  3. Selecting a plutonium vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, A. [Centre d`Etudes de la Vallee du Rhone, Bagnols sur Ceze (France)

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  4. Preliminary hazards analysis -- vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  5. Stability of the cytoskeleton of matured buffalo oocytes pretreated with cytochalasin B prior to vitrification.

    Science.gov (United States)

    Wang, C L; Xu, H Y; Xie, L; Lu, Y Q; Yang, X G; Lu, S S; Lu, K H

    2016-06-01

    Stabilizing the cytoskeleton system during vitrification can improve the post-thaw survival and development of vitrified oocytes. The cytoskeleton stabilizer cytochalasin B (CB) has been used in cryopreservation to improve the developmental competence of vitrified oocytes. To assess the effect of pretreating matured buffalo oocytes with CB before vitrification, we applied 0, 4, 8, or 12 μg/mL CB for 30 min. The optimum concentration of CB treatment (8 μg/mL for 30 min) was then used to evaluate the distribution of microtubules and microfilaments, the expression of the cytoskeleton proteins actin and tubulin, and the developmental potential of matured oocytes that were vitrified-warmed by the Cryotop method. Western blotting demonstrated that vitrification significantly decreased tubulin expression, but that the decrease was attenuated for oocytes pretreated with 8 μg/mL CB before vitrification. After warming and intracytoplasmic sperm injection, oocytes that were pretreated with 8 μg/mL CB before vitrification yielded significantly higher 8-cell and blastocyst rates than those that were vitrified without CB pretreatment. The values for the vitrified groups in all experiments were significantly lower (P < 0.01) than those of the control groups. In conclusion, pretreatment with 8 μg/mL CB for 30 min significantly improves the cytoskeletal structure, expression of tubulin, and development capacity of vitrified matured buffalo oocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  7. The controlled vitrification/crystallisation process applied

    Directory of Open Access Journals (Sweden)

    Romero, M.

    2000-02-01

    Full Text Available The glass-ceramic process, as well as the usual processing of ceramic and vitreous materials, is being investigated as a promising way for isolation and recycling of both mineral wastes (debris and mineral residues, clearings in public works and inorganic industrial wastes (muds, slags, fly ashes. Synthetic materials with useful properties to be used as building materials have been prepared from inorganic wastes of different type (red muds from zinc hydrometalurgy, fly ashes from power thermal stations, slags and fly ashes from domiciliary incinerators as well as from mixtures of such wastes with other raw materials. The obtained results allow us to conclude that the ceramic and glass-ceramic processes are outlined as an useful alternative to solve the social and environmental problems associated to wastes production.

    El proceso vitrocerámico, así como el procesado habitual de materiales cerámicos y vítreos, está siendo actualmente investigado como una prometedora vía para el aislamiento, inertización e incluso el reciclado de residuos minerales (escombreras y estériles de minas, desmontes de Obras Públicas, etc... e industriales (lodos, fangos, escorias, cenizas, etc.... A partir de residuos inorgánicos de diferente naturaleza (lodos de la hidrometalurgia del zinc, cenizas de centrales térmicas, escorias y cenizas de plantas incineradoras así como de mezclas de los mismos con otras materias primas, se están obteniendo materiales sintéticos con amplias aplicaciones en la Construcción y en Obras Públicas. Los resultados que se están consiguiendo permiten concluir que los procesos cerámico y vitrocerámico se perfilan como una alternativa real y útil para resolver, al menos parcialmente, los problemas sociales y medioambientales asociados a la producción de dichos residuos.

  8. Processes for pretreating lignocellulosic biomass: A review

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1992-11-01

    This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

  9. Behavior of technetium in nuclear waste vitrification processes.

    Science.gov (United States)

    Pegg, Ian L

    Nearly 100 tests were performed with prototypical melters and off-gas system components to investigate the extents to which technetium is incorporated into the glass melt, partitioned to the off-gas stream, and captured by the off-gas treatment system components during waste vitrification. The tests employed several simulants, spiked with 99m Tc and Re (a potential surrogate), of the low activity waste separated from nuclear wastes in storage in the Hanford tanks, which is planned for immobilization in borosilicate glass. Single-pass technetium retention averaged about 35 % and increased significantly with recycle of the off-gas treatment fluids. The fraction escaping the recycle loop was very small.

  10. Effect of NaOH on the vitrification process of waste Ni-Cr sludge

    Energy Technology Data Exchange (ETDEWEB)

    Chou, I-Cheng [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, 89 Wenhwa 1st St., Rende Shiang, Tainan County 71703, Taiwan (China); Wang, Ya-Fen [Department of Bioenvironmental Engineering and R and D Center of Membrane Technology, Chung Yuan Christian University, Chung-Li 320, Taiwan (China); Chang, Cheng-Ping [Institute of Occupational Safety and Health, Council of Labor Affairs, Taipei City, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, 89 Wenhwa 1st St., Rende Shiang, Tainan County 71703, Taiwan (China); Kuo, Yi-Ming, E-mail: yiming@mail.hwai.edu.tw [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, 89 Wenhwa 1st St., Rende Shiang, Tainan County 71703, Taiwan (China)

    2011-01-30

    This study investigated the effect of NaOH on the vitrification of electroplating sludge. Ni, the major metal in the electroplating sludge, is the target for recovery in the vitrification. Sludge and encapsulation materials (dolomite, limestone, and cullet) were mixed and various amounts of NaOH were added to serve as a glass modifier and a flux. A vitrification process at 1450 deg. C separated the molten specimens into slag and ingot. The composition, crystalline characteristics, and leaching characteristics of samples were measured. The results indicate that the recovery of Ni is optimal with a 10% NaOH mass ratio; the recoveries of Fe, Cr, Zn, Cu, and Mn all exhibited similar trends. The results of the toxicity characteristic leaching procedure (TCLP) show that leaching characteristics of the slag meet the requirements of regulation in Taiwan. In addition, a semi-quantitative X-ray diffraction analysis revealed that the main crystalline phase of slag changed from Ca{sub 3}(Si{sub 3}O{sub 9}) to Na{sub 4}Ca{sub 4}(Si{sub 6}O{sub 18}) with a NaOH mass ratio of over 15%, because the Ca{sup 2+} ions were replaced with Na{sup +} ions during the vitrification process. Na{sub 4}Ca{sub 4}(Si{sub 6}O{sub 18}), a complex mineral which hinders the mobility of metals, accounts for the decrease of metal recovery.

  11. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  12. Pretreatment of in vitro matured bovine oocytes with docetaxel before vitrification: Effects on cytoskeleton integrity and developmental ability after warming.

    Science.gov (United States)

    Chasombat, Jakkhaphan; Nagai, Takashi; Parnpai, Rangsun; Vongpralub, Thevin

    2015-10-01

    The stabilization of spindle fibersis important for successful vitrification of bovine oocytes because microtubules and other cytoskeleton fibers (CSF) can be damaged during vitrification, resulting in failure of fertilization after thawing. Docetaxel, a stabilizing agent, could potentially reduce CSF damage of bovine oocytes induced during vitrification. However, there have been no reports on the effects of docetaxel on their vitrification. Experiment 1 was conducted to investigate the effects of various doses of docetaxel (0.0, 0.05, 0.5, 5.0 and 50 μM) in preincubation medium of in vitro matured (IVM) bovine oocytes on their developmental ability after in vitro fertilization (IVF). The results show that 0.05 μM docetaxel had no adverse effect on embryo development, while docetaxel at a concentration of ⩾0.5 μM inhibited development. Experiments 2 and 3 were conducted to investigate the effects of preincubation of IVM bovine oocytes with 0.05 μM docetaxel for 30 min prior to vitrification-warming on CSF integrity (Experiment 2), and on oocyte survival and viability after IVF (Experiment 3). When preincubated with 0.05 μM docetaxel for 30 min before vitrification, post-thawed oocytes had less CSF damage and higher survival rates compared with those untreated with docetaxel before vitrification. Surviving oocytes also had higher rates of cleavage and development to the blastocyst stage after IVF. In conclusion, preincubation of IVM bovine oocytes with 0.05 μM docetaxel for 30 min before vitrification was effective at preventing CSF damage during vitrification, and improving oocyte viability after warming and subsequent cleavage and blastocyst formation after IVF. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Demonstrating compliance with WAPS 1.3 in the Hanford waste vitrification plant process

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.; Simpson, D.B.

    1996-03-01

    The high-level waste (HLW) vitrification plant at the Hanford Site was being designed to immobilize transuranic and high-level radioactive waste in borosilicate glass. This document describes the statistical procedure to be used in verifying compliance with requirements imposed by Section 1.3 of the Waste Acceptance Product Specifications (WAPS, USDOE 1993). WAPS 1.3 is a specification for ``product consistency,`` as measured by the Product Consistency Test (PCT, Jantzen 1992b), for each of three elements: lithium, sodium, and boron. Properties of a process batch and the resulting glass are largely determined by the composition of the feed material. Empirical models are being developed to estimate some property values, including PCT results, from data on feed composition. These models will be used in conjunction with measurements of feed composition to control the HLW vitrification process and product.

  14. Removal of Aerosol Particles Generated from Vitrification Process for High-Level Liquid Wastes

    OpenAIRE

    加藤 功

    1990-01-01

    The vitrification technology has been developed for the high-level liquid waste (HLLW) from reprocessing nuclear spent fuel in PNC. The removal performance of the aerosol particles generated from the melting process was studied in a nonradioactive full-scale mock-up test facility (MTF). The off-gas treatment system consists of submerged bed scrubber (SBS), venturi scrubber, NOx absorber, high efficiency mist eliminater (HEME). Deoomtamination factors (DFs) were derived from the mass ratio of ...

  15. Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Petitjean, V.; Fillet, C.; Boen, R.; Veyer, C.; Flament, T.

    2002-02-26

    The vitrification of high-level waste is the internationally recognized standard to minimize the impact to the environment resulting from waste disposal as well as to minimize the volume of conditioned waste to be disposed of. COGEMA has been vitrifying high-level waste industrially for over 20 years and is currently operating three commercial vitrification facilities based on a hot metal crucible technology, with outstanding records of safety, reliability and product quality. To further increase the performance of vitrification facilities, CEA and COGEMA have been developing the cold crucible melter technology since the beginning of the 1980s. This type of melter is characterized by a virtually unlimited equipment service life and a great flexibility in dealing with various types of waste and allowing development of high temperature matrices. In complement of and in parallel with the vitrification process, a glass formulation methodology has been developed by the CEA in order to tailor matrices for the wastes to be conditioned while providing the best adaptation to the processing technology. The development of a glass formulation is a trade-off between material properties and qualities, technical feasibility, and disposal safety criteria. It involves non-radioactive and radioactive laboratories in order to achieve a comprehensive matrix qualification. Several glasses and glass ceramics have thus been studied by the CEA to be compliant with industrial needs and waste characteristics: glasses or other matrices for a large spectrum of fission products, or for high contents of specifics elements such as sodium, phosphate, iron, molybdenum, or actinides. New glasses or glass-ceramics designed to minimize the final wasteform volume for solutions produced during the reprocessing of high burnup fuels or to treat legacy wastes are now under development and take benefit from the latest CEA hot-laboratories and technology development. The paper presents the CEA state

  16. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, R.G.

    1995-06-07

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

  17. Pretreatment status report on the identification and evaluation of alternative processes. Milestone Report No. C064

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, D.G. [Westinghouse Hanford Co., Richland, WA (United States); Brothers, A.J. [Pacific Northwest Lab., Richland, WA (United States); Beary, M.M.; Nicholson, G.A. [Science Applications International Corp., San Diego, CA (United States)

    1993-09-01

    The purpose of this report is to support the development and demonstration of a pretreatment system that will (1) destroy organic materials and ferrocyanide in tank wastes so that the wastes can be stored safely, (2) separate the high-activity and low-activity fractions, (3) remove radionuclides and remove or destroy hazardous chemicals in LLW as necessary to meet waste form feed requirements, (4) support development and demonstration of vitrification technology by providing representative feeds to the bench-scale glass melter, (5) support full-scale HLW vitrification operations, including near-term operation, by providing feed that meets specifications, and (6) design and develop pretreatment processes that accomplish the above objectives and ensure compliance with environmental regulations. This report is a presentation of candidate technologies for pretreatment of Hanford Site tank waste. Included are descriptions of studies by the Pacific Northwest Laboratory of Battelle Memorial Institute; Science Applications International Corporation, an independent consultant; BNFL, Inc. representing British technologies; Numatec, representing French technologies; and brief accounts of other relevant activities.

  18. EFFECT OF MELTER-FEED-MAKEUP ON VITRIFICATION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR; SCHWEIGER MJ; HUMRICKHOUSE CJ; MOODY JA; TATE RM; TEGROTENHUIS NE; ARRIGONI BM; RODRIGUEZ CP

    2009-09-10

    Increasing the rate of glass processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will allow shortening the life cycle of waste cleanup at the Hanford Site. While the WTP melters have approached the limit of increasing the rate of melting by enhancing the heat transfer rate from molten glass to the cold cap, a substantial improvement can still be achieved by accelerating the feed-to-glass conversion kinetics. This study investigates how the feed-to-glass conversion process responds to the feed makeup. By identifying the means of control of primary foam formation and silica grain dissolution, it provides data needed for a meaningful and economical design of large-scale experiments aimed at achieving faster melting.

  19. Tellurite glasses for vitrification of technetium-99 from pyrochemical processing

    Science.gov (United States)

    Pyo, Jae-Young; Lee, Cheong Won; Park, Hwan-Seo; Yang, Jae Hwan; Um, Wooyong; Heo, Jong

    2017-09-01

    A new alkali-alumino tellurite glass composition was developed to immobilize highly-volatile technetium (Tc) wastes generated from the pyrochemical processing technology. Tellurite glass can incorporate up to 7 mass% of rhenium (Re, used as a surrogate for Tc) with an average retention of 86%. Normalized elemental releases evaluated by seven-day product consistency test (PCT) satisfied the immobilized low activity waste requirements of United States when concentration of Ca(ReO4)2 in the glass was <12 mass%. Re ions form Re7+ and are coordinated with four oxygens to form ReO4- tetrahedra. These tetrahedra bond to modifiers such as Ca2+ or Na+ that are further connected to the tellurite glass network by Ca2+ (or Na+) - non-bridging oxygen bonds.

  20. Temperature Modelling of the Biomass Pretreatment Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jensen, Jakob M.

    2012-01-01

    that captures the environmental temperature differences inside the reactor using distributed parameters. A Kalman filter is then added to account for any missing dynamics and the overall model is embedded into a temperature soft sensor. The operator of the plant will be able to observe the temperature in any......In a second generation biorefinery, the biomass pretreatment stage has an important contribution to the efficiency of the downstream processing units involved in biofuel production. Most of the pretreatment process occurs in a large pressurized thermal reactor that presents an irregular temperature...... distribution. Therefore, an accurate temperature model is critical for observing the biomass pretreatment. More than that, the biomass is also pushed with a constant horizontal speed along the reactor in order to ensure a continuous throughput. The goal of this paper is to derive a temperature model...

  1. Investigation of Tc Migration Mechanism During Bulk Vitrification Process Using Re Surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Bagaasen, Larry M.; Crum, Jarrod V.; Fluegel, Alex; Gallegos, Autumn B.; Martinez, Baudelio; Matyas, Josef; Meyer, Perry A.; Paulsen, Dan; Riley, Brian J.; Schweiger, Michael J.; Stewart, Charles W.; Swoboda, Robert G.; Yeager, John D.

    2006-12-04

    As a part of Bulk vitrification (BV) performance enhancement tasks, Laboratory scoping tests were performed in FY 2004-2005 to explore possible ways to reduce the amount of soluble Tc in the BV waste package. Theses scoping tests helped identify which mechanisms play an important role in the migration of Tc in the BV process (Hrma et al. 2005 and Kim et al. 2005). Based on the results from these scoping tests, additional tests were identified that will improve the understanding of Tc migration and to clearly identify the dominant mechanisms. The additional activities identified from previous studies were evaluated and prioritized for planning for Tasks 29 and 30 conducted in FY2006. Task 29 focused on the improved understanding of Tc migration mechanisms, and Task 30 focused on identifying the potential process changes that might reduce Tc/Re migration into the castable refractory block (CRB). This report summarizes the results from the laboratory- and crucible-scale tests in the lab for improved Tc migration mechanism understanding utilizing Re as a surrogate performed in Task 29.

  2. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, R.G.

    1995-02-17

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing.

  3. Investigation of potential analytical methods for redox control of the vitrification process. [Moessbauer

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, D.S.

    1985-11-01

    An investigation was conducted to evaluate several analytical techniques to measure ferrous/ferric ratios in simulated and radioactive nuclear waste glasses for eventual redox control of the vitrification process. Redox control will minimize the melt foaming that occurs under highly oxidizing conditions and the metal precipitation that occurs under highly reducing conditions. The analytical method selected must have a rapid response for production problems with minimal complexity and analyst involvement. The wet-chemistry, Moessbauer spectroscopy, glass color analysis, and ion chromatography techniques were explored, with particular emphasis being placed on the Moessbauer technique. In general, all of these methods can be used for nonradioactive samples. The Moessbauer method can readily analyze glasses containing uranium and thorium. A shielded container was designed and built to analyze fully radioactive glasses with the Moessbauer spectrometer in a hot cell environment. However, analyses conducted with radioactive waste glasses containing /sup 90/Sr and /sup 137/Cs were unsuccessful, presumably due to background radiation problems caused by the samples. The color of glass powder can be used to analyze the ferrous/ferric ratio for low chromium glasses, but this method may not be as precise as the others. Ion chromatography was only tested on nonradioactive glasses, but this technique appears to have the required precision due to its analysis of both Fe/sup +2/ and Fe/sup +3/ and its anticipated adaptability for radioactivity samples. This development would be similar to procedures already in use for shielded inductively coupled plasma emission (ICP) spectrometry. Development of the ion chromatography method is therefore recommended; conventional wet-chemistry is recommended as a backup procedure.

  4. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  5. Chapter 20 Gavi-Automated Vitrification Instrument.

    Science.gov (United States)

    Roy, Tammie K; Brandi, Susanna; Peura, Teija T

    2017-01-01

    Gavi is intended for use in a laboratory or clinic environment for the preparation and vitrification of oocytes, cleavage stage embryos and blastocysts. Gavi is designed to automate the equilibration steps in the vitrification process to minimize the variability that occurs during cryopreservation. This automated process reduces the potential for errors and ensures a standardized, repeatable procedure for vitrification in a controlled, closed-system environment.

  6. The role of troublesome components in plutonium vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong; Vienna, J.D.; Peeler, D.K.; Hrma, P.; Schweiger, M.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01

    One option for immobilizing surplus plutonium is vitrification in a borosilicate glass. Two advantages of the glass form are (1) high tolerance to feed variability and, (2) high solubility of some impurity components. The types of plutonium-containing materials in the United States inventory include: pits, metals, oxides, residues, scrap, compounds, and fuel. Many of them also contain high concentrations of carbon, chloride, fluoride, phosphate, sulfate, and chromium oxide. To vitrify plutonium-containing scrap and residues, it is critical to understand the impact of each component on glass processing and chemical durability of the final product. This paper addresses glass processing issues associated with these troublesome components. It covers solubility limits of chlorine, fluorine, phosphate, sulfate, and chromium oxide in several borosilicate based glasses, and the effect of each component on vitrification (volatility, phase segregation, crystallization, and melt viscosity). Techniques (formulation, pretreatment, removal, and/or dilution) to mitigate the effect of these troublesome components are suggested.

  7. Development of pyrometallurgical partitioning technology for TRU in high level radioactive wastes. Vitrification process for salt wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sakamura, Yoshiharu; Inoue, Tadashi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Shimizu, Takafumi; Kobayashi, Kuniaki

    1997-12-31

    A vitrification process for chloride wastes generated in the pyrometallurgical partitioning of TRUs from high level radioactive wastes is being developed. In the process, chlorides are reduced to metals by molten salt electrolysis. The metals are oxidized by air and then vitrified. Lithium metal and chlorine gas are recycled. The behaviors of lithium, sodium and fission products during molten salt electrolysis were studied by using various compositions of salts and cathode materials. It was shown that every metal can be recovered into a liquid lead cathode, and that a liquid cadmium cathode and a solid cathode are suitable for recovering lithium and sodium metal, respectively. Based on the experimental results the process flow sheet was discussed. (author)

  8. Vitrification of bovine blastocysts pretreated with sublethal hydrostatic pressure stress: evaluation of post-thaw in vitro development and gene expression.

    Science.gov (United States)

    Siqueira Filho, E; Caixeta, E S; Pribenszky, C; Molnar, M; Horvath, A; Harnos, A; Franco, M M; Rumpf, R

    2011-01-01

    Sublethal stress treatment has been reported to enhance gametes' performance in subsequent procedures, such as cryopreservation. The aim of the present study was to evaluate the effect of different equilibration times between the termination of a sublethal hydrostatic pressure (HP) stress treatment and the initiation of vitrification on the post-thaw survival, continued in vitro development, hatching rate and gene expression of selected candidate genes of in vitro-produced (IVP) expanded bovine blastocysts. Day 7 IVP blastocysts were subjected to 600 bar pressure for 60 min at 32°C. Immediately after pressure treatment (HP0h) or after 1 or 2h incubation (HP1h and HP2h groups, respectively), embryos were either vitrified and warmed using the open pulled straw method, followed by 72 h in vitro culture or were stored at -80°C until gene expression analysis. Re-expansion and hatching rates after vitrification-warming were significantly (Pbovine embryos.

  9. Techno-economic analysis of organosolv pretreatment process from lignocellulosic biomass

    DEFF Research Database (Denmark)

    Rodrigues Gurgel da Silva, Andrè; Errico, Massimiliano; Rong, Ben-Guang

    2018-01-01

    data, we propose a feasible process flowsheet for organosolv pretreatment. Simulation of the pretreatment process provided mass and energy balances for a techno-economic analysis, and the values were compared with the most prevalent and mature pretreatment method: diluted acid. Organosolv pretreatment...... in the sensitivity analysis turned into possible savings of 42.8% in the minimum ethanol selling price for organosolv pretreatment....

  10. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    Energy Technology Data Exchange (ETDEWEB)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-03-24

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO{sub 3}) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the

  11. Pretreatment of lignocellulose with biological acid recycling (the Biosulfurol process)

    NARCIS (Netherlands)

    Groenestijn, van J.; Hazewinkel, O.; Bakker, R.R.C.

    2006-01-01

    A biomass pretreatment process is being developed based on contacting lignocellulosic biomass with 70% sulfuric acid and subsequent hydrolysis by adding water. In this process, the hydrolysate can be fermented yielding ethanol, while the sulfuric acid is partly recovered by anion-selective membranes

  12. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    Energy Technology Data Exchange (ETDEWEB)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  13. TWRS tank waste pretreatment process development hot test siting report

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.; Banning, D.L.; Dodd, D.A.; Smith, D.A.; Stevens, P.F. [Westinghouse Hanford Co., Richland, WA (United States); Hansen, R.I.; Reynolds, B.A. [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-01

    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities.

  14. Modeling of carbonic acid pretreatment process using ASPEN-Plus.

    Science.gov (United States)

    Jayawardhana, Kemantha; Van Walsum, G Peter

    2004-01-01

    ASPEN-Plus process modeling software is used to model carbonic acid pretreatment of biomass. ASPEN-Plus was used because of the thorough treatment of thermodynamic interactions and its status as a widely accepted process simulator. Because most of the physical property data for many of the key components used in the simulation of pretreatment processes are not available in the standard ASPEN-Plus property databases, values from an in-house database (INHSPCD) developed by the National Renewable Energy Laboratory were used. The standard non-random-two-liquid (NRTL) or renon route was used as the main property method because of the need to distill ethanol and to handle dissolved gases. The pretreatment reactor was modeled as a "black box" stoichiometric reactor owing to the unavailability of reaction kinetics. The ASPEN-Plus model was used to calculate the process equipment costs, power requirements, and heating and cooling loads. Equipment costs were derived from published modeling studies. Wall thickness calculations were used to predict construction costs for the high-pressure pretreatment reactor. Published laboratory data were used to determine a suitable severity range for the operation of the carbonic acid reactor. The results indicate that combined capital and operating costs of the carbonic acid system are slightly higher than an H2SO4-based system and highly sensitive to reactor pressure and solids concentration.

  15. Independent engineering review of the Hanford Waste Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  16. Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment.

    Science.gov (United States)

    Calabrò, Paolo S; Greco, Rosa; Evangelou, Alexandros; Komilis, Dimitrios

    2015-11-01

    The objective of the work was to assess the effect of mild alkaline pretreatment on the anaerobic biodegradability of tomato processing waste (TPW). Experiments were carried out in duplicate BMP bottles using a pretreatment contact time of 4 and 24 h and a 1% and 5% NaOH dosage. The cumulative methane production during a 30 d period was recorded and modelled. The alkaline pretreatment did not significantly affect methane production in any of the treatments in comparison to the control. The average methane production for all runs was 320 NmL/gVS. Based on first order kinetic modelling, the alkaline pretreatment was found to slow down the rate of methanogenesis, mainly in the two reactors with the highest NaOH dosage. The biodegradability of the substrates ranged from 0.75 to 0.82 and from 0.66 to 0.72 based on two different approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Closed system for bovine oocyte vitrification

    Directory of Open Access Journals (Sweden)

    Helena Ševelová

    2012-01-01

    Full Text Available The aim of our study was to develop a vitrification carrier for bovine oocyte cryopreservation. The carrier was to be cheap enough, elementary in its construction and meet contemporary requirements for a safe closed system. In a closed system, a cell is prevented from direct exposure to liquid nitrogen, thus minimizing the risk of cross-contamination. Furthermore, two questions regarding the proper vitrification technique were resolved: if it is necessary to partially denude the oocytes before the vitrification process or whether intact cumulus oocyte complexes should be frozen; and if it is more advantageous to preheat the vitrification solutions to female body temperature (39 °C or to keep them at room temperature. Our results show that it is better to partially denude the oocytes prior to vitrification because cryopreserved intact cumulus oocyte complexes often proved dark, non-homogeneous or fragmented cytoplasm after warming, with many of them having visibly widened perivitelline spaces or fractured zonae pellucidae as a result of extensive damage during vitrification. Consequently, intact cumulus oocyte complexes showed significantly lower numbers of cleavage stage embryos on Day 3 compared to partially denuded oocytes (7.4% and 26%, respectively. On the other hand, the survival rate and following development of fertilized oocytes in preheated vitrification solution were equal to results reached at room temperature conditions. In conclusion, results achieved with the newly developed carrier were comparable to previously published studies and therefore they could be recommended for common use.

  18. Advances in vitrification techniques in Japan

    OpenAIRE

    佐々木 憲明; 虎田 真一郎; 五十嵐 寛; 吉岡 正弘

    1986-01-01

    Liquid-fed Joule-heated ceramic melter (LFCM) process for the vitrification of high-level liquid waste (HLLW) is now under development by Power Reactor and Nuclear Fuel Deyelopment Corporation (PNC) in Japan. All developmental works are focused on the vitrification plant which is in the stage of design improvement in succession to the detailed design finished in 1984. The construction of the plant will be started in late 1987. Major development items in process technology in recent years are ...

  19. Pretreatment Technologies of Lignocellulosic Materials in Bioethanol Production Process

    Directory of Open Access Journals (Sweden)

    Mohamad Rusdi Hidayat

    2013-06-01

    Full Text Available Bioethanol is one type of biofuel that developed significantly. The utilization of bioethanol is not only limited for fuel, but also could be used as material for various industries such as pharmaceuticals, cosmetics, and food. With wide utilization and relatively simple production technology has made bioethanol as the most favored biofuel currently. The use of lignocellulosic biomass, microalgae, seaweeds, even GMO (Genetically modified organisms as substrates for bioethanol production has been widely tested. Differences in the materials eventually led to change in the production technology used. Pretreatment technology in the bioethanol production using lignocellulosic currently experiencing rapid development. It is a key process and crucial for the whole next steps. Based on the advantages and disadvantages from all methods, steam explotion and liquid hot water methods are the most promising  pretreatment technology available.

  20. Innovative Vitrification for Soil Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hnat, James G.; Patten, John S.; Jetta, Norman W.

    1996-12-31

    Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

  1. Environmental Management vitrification activities

    Energy Technology Data Exchange (ETDEWEB)

    Krumrine, P.H. [Waste Policy Institute, Gaithersburg, MD (United States)

    1996-05-01

    Both the Mixed Waste and Landfill Stabilization Focus Areas as part of the Office of Technology Development efforts within the Department of Energy`s (DOE) Environmental Management (EM) Division have been developing various vitrification technologies as a treatment approach for the large quantities of transuranic (TRU), TRU mixed and Mixed Low Level Wastes that are stored in either landfills or above ground storage facilities. The technologies being developed include joule heated, plasma torch, plasma arc, induction, microwave, combustion, molten metal, and in situ methods. There are related efforts going into development glass, ceramic, and slag waste form windows of opportunity for the diverse quantities of heterogeneous wastes needing treatment. These studies look at both processing parameters, and long term performance parameters as a function of composition to assure that developed technologies have the right chemistry for success.

  2. Vitrification of Rocky Flats ash followed by encapsulation in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    McKibben, J.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Land, B. [Safe Sites of Colorado, Golden, CO (United States); Strachan, D.M. [Argonne National Lab., IL (United States); Perez, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Approximately 10 to 20 metric tons of plutonium in the US is in the form of scrap, residues, oxides, ash, metal, sludge, compounds, etc. This paper describes a relatively simple concept of stabilizing most of this type of plutonium by converting it into encapsulated glass. A full-scale hot demonstration of the concept is proposed, in which Rocky Flats ash would be vitrified and sealed in small cans, followed by encapsulation of the cans in Defense Waste Processing Facility (DWPF) canisters with high-level waste glass. The proposal described in this paper offers an integrated national approach for early stabilization and disposition of the nation`s plutonium-bearing residues.

  3. Process performance of the pilot-scale in situ vitrification of a simulated waste disposal site at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.G.; Koegler, S.S.; Bates, S.O.

    1988-06-01

    Process feasibility studies have been successfully performed on three developmental scales to determine the potential for applying in situ vitrification to intermediate-level (low-level) waste placed in seepage pits and trenches at Oak Ridge National Laboratory (ORNL). In the laboratory, testing was performed in crucibles containing a mixture of 50% ORNL soil and 50% limestone. In an engineering-scale test at Pacific Northwest Laboratory a /1/12/-scale simulation of an ORNL waste trench was constructed and vitrified, resulting in a waste product containing soil and limestone concentrations of 68 wt % and 32 wt %, respectively. In the pilot-scale test a /3/8/-scale simulation of the same trench was constructed and vitrified at ORNL, resulting in soil and limestone concentrations of 80% and 20%, respectively, in the waste product. Results of the three scales of testing indicate that the ORNL intermediate-level (low-level) waste sites can be successfully processed by in situ vitrification; the waste form will retain significant quantities of the cesium and strontium. Because cesium-137 and strontium-90 are the major components of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., losses to the off-gas system relative to the waste inventory) of 1.0 E + 4 are desired to minimize activity buildup in the off-gas system. 17 refs., 34 figs., 13 tabs.

  4. HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; James Marra, J

    2007-09-17

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

  5. Waste pretreatment and interfacing system dynamic simulation model (ITHINK model) FY-96 year-end report

    Energy Technology Data Exchange (ETDEWEB)

    Harmsen, R.W.

    1996-09-30

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation (ITHINK) Model (see WHC-SD-WM-DR-013) was originally created to investigate the required pretreatment facility processing rates required to meet the Tri-Party Agreement (TPA) waste vitrification milestones. The TPA milestones are satisfied by retrieving the TX tank farm (salt cake) single-shell tanks (SSTs)first and by utilizing a relatively constant retrieval rate to the year 2018 when retrieval is completed.

  6. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  7. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  8. Process Improvements to Biomass Pretreatment of Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Teymouri, Farzaneh [Michigan Biotechnology Inst., Lansing, MI (United States)

    2015-05-30

    MBI, a 501c(3) company focusing on de-risking and scaling up bio-based technologies, has teamed with Michigan State University and the Idaho National Laboratory to develop and demonstrate process improvements to the ammonia fiber expansion (AFEX) pretreatment process. The logistical hurdles of biomass handling are well known, and the regional depot concept - in which small, distributed bioprocessing operations collect, preprocess, and densify biomass before shipping to a centralized refinery - is a promising alternative to centralized collection. AFEXTM (AFEX is a trademark of MBI) has unique features among pretreatments that would make it desirable as a pretreatment prior to densification at the depot scale. MBI has developed a novel design, using a packed bed reactor for the AFEX process that can be scaled down economically to the depot scale at a lower capital cost as compared to the traditional design (Pandia type reactor). Thus, the purpose of this project was to develop, scale-up, demonstrate, and improve this novel design The key challenges are the recovery of ammonia, consistent and complete pretreatment performance, and the overall throughput of the reactor. In this project an engineering scale packed bed AFEX system with 1-ton per day capacity was installed at MBI’s building. The system has been operational since mid-2013. During that time, MBI has demonstrated the robustness, reliability, and consistency of the process. To date, nearly 500 runs have been performed in the reactors. There have been no incidences of plugging (i.e., inability to remove ammonia from biomass after the treatment), nor has there been any instance of a major ammonia release into the atmosphere. Likewise, the sugar released via enzyme hydrolysis has remained consistent throughout these runs. Our economic model shows a 46% reduction in AFEX capital cost at the 100 ton/day scale compared to the traditional design of AFEX (Pandia type reactor). The key performance factors were

  9. Gas pre-treatment and their impact on liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenbijl, J.M.; Dillion, M.L.; Heyman, E.C.

    1999-07-01

    Natural gas generally requires removal of H{sub 2}S, CO{sub 2}, COS, organic sulfur compounds, mercury and water prior to liquefaction in order to meet product specifications, avoid blockages and to prevent damage to process equipment. The cost of pre-treatment is dependent on the type and concentrations of the contaminants in the natural gas. Most of the operational base load LNG plants process feed gas with only low concentrations of CO{sub 2}, mercury and water as contaminants. This type of gas requires the minimum of treating, often comprising of a CO{sub 2} removal unit, molecular sieves for drying and a carbon bed for mercury removal. The Shell sulfinol process is the most widely applied acid gas removal process, serving some 40% of the installed base load LNG capacity, and has proven to be very reliable and cost effective. If substantial quantities of H{sub 2}S are present in the feed, a sulfur recovery unit is required as well. When mercaptans are also present in gas feed, the Shell Sulfinol process is strongly preferred, Almost the automatic choice for as the acid gas removal step, since it combines total CO{sub 2} and H{sub 2}S removal with mercaptan removal up to 97%. Formulated methyl diethanol amine (MDEA) solvents have a comparable capital cost to Sulfinol, but lack the mercaptan removal capabilities. There is one exception, the Flexsorb formulation (from Exxon) which also contains sulfolane. Later revamp of a gas pre-treatment unit from limited mercaptan handling capability to significant mercaptan handling capability can also elegantly be done using an integrated Sulfinol based concept. Whereas the capital cost for dehydration and mercury removal depend mainly on the natural gas throughput, the relative capital investment for acid gas removal treating in a LNG plant increases significantly with increasing CO{sub 2} content., At 2% mol CO{sub 2} the acid gas unit represents from 6% of the processing equipment cost at 2% mol CO{sub 2} but at 14% mol

  10. Vitrification Facility integrated system performance testing report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.

    1997-05-01

    This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process.

  11. Precipitation softening: a pretreatment process for seawater desalination.

    Science.gov (United States)

    Ayoub, George M; Zayyat, Ramez M; Al-Hindi, Mahmoud

    2014-02-01

    Reduction of membrane fouling in reverse osmosis systems and elimination of scaling of heat transfer surfaces in thermal plants are a major challenge in the desalination of seawater. Precipitation softening has the potential of eliminating the major fouling and scaling species in seawater desalination plants, thus allowing thermal plants to operate at higher top brine temperatures and membrane plants to operate at a reduced risk of fouling, leading to lower desalinated water costs. This work evaluated the use of precipitation softening as a pretreatment step for seawater desalination. The effectiveness of the process in removing several scale-inducing materials such as calcium, magnesium, silica, and boron was investigated under variable conditions of temperature and pH. The treatment process was also applied to seawater spiked with other known fouling species such as iron and bacteria to determine the efficiency of removal. The results of this work show that precipitation softening at a pH of 11 leads to complete elimination of calcium, silica, and bacteria; to very high removal efficiencies of magnesium and iron (99.6 and 99.2 %, respectively); and to a reasonably good removal efficiency of boron (61 %).

  12. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  13. The design of a novel environmentally improved, industrial cotton pre-treatment process

    NARCIS (Netherlands)

    Bouwhuis, Gerhard Herman; Bouwhuis, G.H.

    2011-01-01

    The scope of this thesis is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These processes can be continuous or batch wise. Advances in the science of biocatalytic

  14. Microtubule stabilisers docetaxel and paclitaxel reduce spindle damage and maintain the developmental competence of in vitro-mature bovine oocytes during vitrification.

    Science.gov (United States)

    Pitchayapipatkul, Jakkhaphan; Somfai, Tamás; Matoba, Satoko; Parnpai, Rangsan; Nagai, Takashi; Geshi, Masaya; Vongpralub, Thevin

    2017-09-01

    This study compared the efficacy of docetaxel (DT) and paclitaxel (PT) in reducing spindle damage during vitrification and maintaining the developmental competence of in vitro-matured (IVM) bovine oocytes after vitrification and warming. Pretreatment of IVM oocytes with 0.05µM DT for 30min before vitrification resulted in significantly higher (Pvitrification or those vitrified without pretreatment. When nuclear status and spindle morphology of vitrified oocytes were assess after warming by immunostaining, DT pretreatment before vitrification resulted in a significantly higher (Pbovine oocytes with 0.05µM DT or 1.0µM PT for 30min before vitrification reduces spindle damage to the same extent, without side effects on fertilisation and development. Pretreatment with 0.05µM DT improved the developmental competence of vitrified-warmed oocytes to a greater degree than 1.0µM PT pretreatment.

  15. Pretreatment on Anaerobic Sludge for Enhancement of Biohydrogen Production from Cassava Processing Wastewater

    Directory of Open Access Journals (Sweden)

    Franciele do Carmo Lamaison

    2014-02-01

    Full Text Available Methods for the enrichment of an anaerobic sludge with H2-producing bacteria have been compared by using cassava processing wastewater as substrate.The sludge was submitted to three different pretreatments: 1 heat pretreatment by boiling at 98 °C for 15 min., 2 heat pretreatment followed by sludge washout in a Continuous Stirring Tank Reactor (CSTR operated at a dilution rate (D of 0.021 h-1, and 3 sludge washout as the sole enrichment method. The pretreated sludge and the sludge without pretreatment (control were employed in the seeding of 4 batch bioreactors, in order to verify the volume and composition of the generated biogas. Maximum H2 production rates (Rm from the pretreated sludges, were estimated by the modified Gompertz model. Compared to the control, H2 production was ca. 4 times higher for the sludge submitted to the heat pretreatment only and for the sludge subjected to heat pretreatment combined with washout, and 10 times higher for washout. These findings demonstrated that the use of sludge washout as the sole sludge pretreatment method was the most effective in terms of H2 production, as compared to the heat and to the combined heat and washout pretreatments.

  16. Hanford Waste Vitrification Plant technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  17. HANFORD MEDIUM & LOW CURIE WASTE PRETREATMENT PROJECT PHASE 1 LAB REPORT

    Energy Technology Data Exchange (ETDEWEB)

    HAMILTON, D.W.

    2006-01-30

    A fractional crystallization (FC) process is being developed to supplement tank waste pretreatment capabilities provided by the Waste Treatment and Immobilization Plant (WTP). FC can process many tank wastes, separating wastes into a low-activity fraction (LAW) and high-activity fraction (HLW). The low-activity fraction can be immobilized in a glass waste form by processing in the bulk vitrification (BV) system.

  18. Vitrification facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  19. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  20. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  1. Electric arc vitrification of REFIOM

    Energy Technology Data Exchange (ETDEWEB)

    Fautre, R.; Meunier, R. [Electricite de France, Research and Development Div., Les Renardieres, 77 - Moret sur Loing (France)

    1997-07-01

    The REFIOM produced by the neutralization of incineration fumes accounts for 3 to 5 % of incinerated Municipal Solid Waste. Each year, 370,000 tons of REFIOM are produced in France. The product contains pollutants (heavy metals and salts) which must be stabilized before storage in an hazardous waste dump (Class 1 waste dump in France). Since 1992, the Research and Development Division of Electricite de France has been developing an electric arc REFIOM vitrification process which ensures the confinement of polluting elements in a vitrified or crystallized matrix. Reprocessing the elements vaporized during melting allows a complete vitrification of the pollutants and limits the ultimate waste to less than 1 %. This process stabilizes the REFIOM and converts it into inert vitrified granules which can be recycled. Studies are underway to characterize the vitrified product: long term behavior, leaching tests, mechanical and geotechnical tests. The main partners are C.E.A. for long term behavior, SCREG for mechanical tests, C.E.P for leaching tests. The good results obtained confirm the long term durability of the vitrified product. The evolution of the French regulation is required to allow the valorization of the vitrified product for road building purposes. The experience acquired with our pilot furnace allowed us ro define the basic specifications for an industrial pilot. This is a necessary step prior to commercializing the process. (authors)

  2. The Comparison of One and Two Steps Equilibration in Vitrification Process on The Morphology and Viability of Mouse Blastocysts

    Directory of Open Access Journals (Sweden)

    Ita Djuwita

    2010-09-01

    Full Text Available A study was conducted to compare the effect of one and two steps equilibration method of vitrificationon the morphology and viability of mouse blastocysts. Blastocysts were firstly exposed to modified PhosphateBuffered saline (mPBS containing 1% Bovine Serum Albumin (BSA proceeded by exposure in mPBSrespectively containing 0.25M sucrose (S for 2 minutes . Blastocysts were then exposed for 2 minutesrespectively to mPS+0.5M S (one step method or in mPBS+0.5M S+10% ethylene glycol (EG (two stepmethod.. Blastocysts were then exposed in mPBS+0.5M S+30% EG for 60 second, loaded into 0.25 mlplastic straw, and exposed immediately in vapor of liquid nitrogen for 10 second before they were and thenplunged into liquid nitrogen. The blastocysts were reconstituted by diluting with mPBS+0.5M S followedby mPBS+0.25M S for each 3 min and washed in mPBS without sucrose. The viability of cells was assessedby fluorescent vital staining, by re-expansion for 24 hours in vitro culture, and by implantation into therecipient oviduct. The percentages of morphologically normal blastocysts following recovery fromvitrification were higher (p<0.05 in one step equilibration than in those of two steps methods (89.6%. vs82.6%. The viability of blastocysts examined under light microscope after staining with biz-benzimidizepropidiumiodine and 24 hours in vitro culture in one step methods (64.0%; 57.8% were higher (p<0.05compared with two steps methods (40.0%; 35.6%, respectively. The implantation rate of vitrifiedblastocysts (23.1% was not significantly different to that of fresh blastocysts (33.4%. These resultsshowed that the one and two step equilibration methods are effective for vitrification and maintaining theviability of the mouse blastocysts.

  3. Design of microwave vitrification systems for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    White, T.L.; Wilson, C.T.; Schaich, C.R. [Oak Ridge National Lab., TN (United States); Bostick, T.L. [Oak Ridge K-25 Site, TN (United States)

    1995-12-31

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of Department of Energy (DOE) radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915-MHz, 75-kW microwave vitrification system or ``microwave melter`` is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge.

  4. Design of microwave vitrification systems for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    White, T.L.; Wilson, C.T.; Schaick, C.R. [Oak Ridge National Lab., TN (United States); Bostick, W.D. [Oak Ridge K-25 Site, TN (United States)

    1996-04-01

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of DOE radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915 MHz, 75 kW microwave vitrification system or `microwave melter` is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge.

  5. Effect of pretreatments and processing conditions on anti-nutritional factors in climbing bean flours

    Directory of Open Access Journals (Sweden)

    Emmanuel Mugabo

    2017-04-01

    Full Text Available It is difficult for many Rwandans to utilize climbing bean seeds (Phaseolus vulgaris. L mainly because of longer cooking time (2 hours and the high consumption of basic fuel. Climbing beans also contain anti-nutritional factors such tannins, phytates, trypsin inhibitors and phytohemagglutinins that limit nutrient absorption. One way to solve this problem is to utilize the flour of climbing beans made from different treatments and processing methods. In this study, climbing beans were pre-treated by soaking them in water for 24 hours, soaking in 2% sodium bicarbonate solution and steam blanching for 10 minutes. After that, pre-treated climbing beans were processed into flours by processing methods such as roasting, cooking and germination where anti-nutritional factors were reduced. The pretreatments did not significantly (p>0.05 affect phytates in climbing bean flours but processing conditions significantly (p<0.05 reduced it. Pretreatments and processing conditions significantly (p<0.05 reduced tannin content. The pretreatments followed by different processing conditions significantly (p<0.05 decreased trypsin inhibitors content. The great significant decrease in phytohemagglutinins content was observed in pretreatment followed by different processing methods. All pretreatments and processing conditions effectively decreased anti-nutritional factors at low level. However, pretreatments or untreated followed by germination and roasting were found to be the most and the least effective respectively.  Making flour from germinated climbing bean seeds is a good option for sustainable food processing as it reduces anti-nutritional factors. It is an inexpensive method in terms of time, energy and fuel for Rwandan households, restaurants and industries where climbing bean seeds are integral part of daily meal.

  6. Dynamic Modeling and Validation of a Biomass Hydrothermal Pretreatment Process - A Demonstration Scale Study

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest

    2015-01-01

    Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology for second generation biorefineries. The process occurs in large horizontal and pressurized thermal reactors where the biomatrix is opened under the action of steam pressure and temperature to expose cellulose...

  7. Wet autoclave pretreatment for immunohistochemical demonstration of oestrogen receptors in routinely processed breast carcinoma tissue.

    Science.gov (United States)

    Bier, B; Bankfalvi, A; Grote, L; Blasius, S; Ofner, D; Böcker, W; Jasani, B; Schmid, K W

    1995-02-01

    The immunohistochemical demonstration of oestrogen receptor (OR) was performed on 32 randomly selected and routinely processed breast carcinomas after wet autoclave pretreatment of sections. The autoclave method was compared to the OR status found on frozen sections as well as to alternative pretreatment methods such as enzymatic predigestion and microwave irradiation. Using four different monoclonal antibody clones (H222, LH1, CC4-5, 1D5.26), the OR status was evaluated for each of the various pretreatment methods applied. All cases with a high OR content on frozen sections (n = 11) also showed a high OR status on wet autoclave-pretreated paraffin tissues using antibody clones 1D5.26 and CC4-5; in cases with low OR content on frozen sections, no false-negative cases were recorded using only the antibody 1D5.26 neither after wet autoclave nor microwave pretreatment. In addition, with this antibody, OR was detectable after autoclave pretreatment in two cases which were considered to be OR-negative even on frozen sections. When the primary antibody was omitted, no false-positive cases were observed after wet autoclave pretreatment. Thus, in our hands, wet autoclave pretreatment, in combination with the antibody 1D5.26, offers a highly sensitive method for the immunohistochemical demonstration of OR in routinely formalin-fixed, paraffin-embedded sections of breast carcinomas.

  8. Flammability Control In A Nuclear Waste Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  9. Combination of alkaline and microwave pretreatment for disintegration of meat processing wastewater sludge.

    Science.gov (United States)

    Erden, G

    2013-01-01

    Meat processing wastewater sludge has high organic content but it is very slow to degrade in biological processes. Anaerobic digestion may be a good alternative for this type of sludge when the hydrolysis, known to be the rate-limiting step of biological sludge anaerobic degradation, could be eliminated by disintegration. This investigation deals with disintegration of meat processing wastewater sludge. Microwave (MW) irradiation and combined alkaline pretreatment and MW irradiation were applied to sludge for disintegration purposes. Disintegration performance of the methods was evaluated with disintegration degree based on total and dissolved organic carbon calculations (DD(TOC)), and the solubilization of volatile solids (S(VS)) in the pretreated sludge. Optimum conditions were found to be 140 degrees C and 30 min for MW irradiation using response surface methodology (RSM) and pH = 13 for combined pretreatment. While DD(TOC) was observed as 24.6% and 54.9, S(VS) was determined as 8.54% and 42.5% for MW pretreated and combined pretreated sludge, respectively. The results clearly show that pre-conditioning of sludge with alkaline pretreatment played an important role in enhancing the disintegration efficiency of subsequent MW irradiation. Disintegration methods also affected the anaerobic biodegradability and dewaterability of sludge. An increase of 23.6% in biogas production in MW irradiated sludge was obtained, comparing to the raw sludge at the end of the 35 days of incubation. This increase was observed as 44.5% combined pretreatment application. While MW pretreatment led to a little improvement of the dewatering performance of sludge, in combined pretreatment NaOH deteriorates the sludge dewaterability.

  10. Modelamento do processo de gresificação de massas cerâmicas de revestimento Modelling of the vitrification process of ceramic bodies for whiteware

    Directory of Open Access Journals (Sweden)

    L. Sánchez-Muñoz

    2002-12-01

    Full Text Available Foi proposto um modelo para o processo de gresificação de massas cerâmicas de grés porcelânico, baseado na correlação entre a porosidade e os componentes da massa e sua evolução com a temperatura. A aplicação do modelo foi realizada empregando uma frita especialmente desenvolvida como fundente e uma composição otimizada de argila e caulim. Assim, desenvolveu-se uma massa de grés porcelânico de baixa temperatura de queima (~1150 ºC e uma faixa de estabilidade dimensional de aproximadamente 100 ºC.A model was proposed for the vitrification process of ceramic bodies for porcelain stoneware tiles, based on the correlation among the porosity and the mixture components and its evolution with temperature. The application of the model was accomplished using a frit especially designed as flux and an optimized composition of clay and kaolin. Accordingly, a porcelain stoneware tile body for low firing temperature (~ 1150 ºC and a dimensional stability range of approximately 100 ºC has been developed.

  11. Enhanced dark fermentative biohydrogen production from marine macroalgae Padina tetrastromatica by different pretreatment processes

    Directory of Open Access Journals (Sweden)

    M. Radha

    2017-03-01

    Full Text Available Marine macroalgae are promising substrates for biofuel production. Pretreating macroalgae with chemicals could remove microbial inhibitors and enhance the accessibility of the microorganisms involved in the process to the substrates leading to increased product yield. In the present study, Padina tetrastromatica a seaweed species was subjected to different chemical pretreatment in order to remove phenolic content and to enhance biohydrogen production. Different mineral acids (i.e., HCl, H2SO4, and HNO3 and bases (NaOH and KOH were applied for effective pretreatment of the seaweed. Dilute sulphuric acid treatment of seaweed resulted in the highest cumulative biohydrogen production of 78 ± 2.9 mL/0.05 g VS and reduced phenolic content to 1.6 ±0.072 mg gallic acid equivalent (GAE/g. Optimization of three variables for pretreatment (i.e., substrate concentration, acid concentration, and reaction time was examined by Response Surface Methodology. After the optimization of the pretreatment conditions, phenolic content was decreased to 0.06 mg GAE/g. and enhanced biohydrogen production was observed. Structural changes due to pretreatment was studied by FTIR and XRD analyses. The results clearly indicated that the dilute sulphuric acid pretreatment was effective in removing phenolic content and enhancing biohydrogen production.

  12. Evaluation of pretreatment processes for supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.M.

    1994-01-01

    This report evaluates processes to chemically treat US Department of Energy wastes to remove organic halogens, phosphorus, and sulfur. Chemical equilibrium calculations, process simulations, and responses from developers and licensors form the basis for comparisons. Gas-phase catalytic hydrogenation processes, strong base and base catalyzed processes, high pressure hydrolysis, and other emerging or commercial dehalogenation processes (both liquid and mixed phase) were considered. Cost estimates for full-scale processes and demonstration testing are given. Based on the evaluation, testing of a hydrogenation process and a strong base process are recommended.

  13. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol.

    Science.gov (United States)

    Maurya, Devendra Prasad; Singla, Ankit; Negi, Sangeeta

    2015-10-01

    Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. Proper pretreatment methods can increase concentrations of fermentable sugars after enzymatic saccharification, thereby improving the efficiency of the whole process. Conversion of glucose as well as xylose to bioethanol needs some new fermentation technologies to make the whole process inexpensive. The main goal of pretreatment is to increase the digestibility of maximum available sugars. Each pretreatment process has a specific effect on the cellulose, hemicellulose and lignin fraction; thus, different pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis and fermentation steps. The cost of ethanol production from lignocellulosic biomass in current technologies is relatively high. Additionally, low yield still remains as one of the main challenges. This paper reviews the various technologies for maximum conversion of cellulose and hemicelluloses fraction to ethanol, and it point outs several key properties that should be targeted for low cost and maximum yield.

  14. Hanford Waste Vitrification Plant applied technology plan

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs.

  15. Vitrification publication bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Schmieman, E.; Johns, W.E.

    1996-02-01

    This document was compiled by a group of about 12 graduate students in the Department of Mechanical Engineering and Material Science at Washington State University and was funded by the U.S. Department of Energy. The literature search resulting in the compilation of this bibliography was designed to be an exhaustive search for research and development work involving the vitrification of mixed wastes, published by domestic and foreign researchers, primarily during 1989-1994. The search techniques were dominated by electronic methods and this bibliography is also available in electronic format, Windows Reference Manager.

  16. Process system evaluation-consolidated letters. Volume 1. Alternatives for the off-gas treatment system for the low-level waste vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, L.M.; Deforest, T.J; Richards, J.R.

    1996-03-01

    This report provides an evaluation of alternatives for treating off-gas from the low-level waste (LLW) melter. The study used expertise obtained from the commercial nonradioactive off-gas treatment industry. It was assumed that contact maintenance is possible, although the subsequent risk to maintenance personnel was qualitatively considered in selecting equipment. Some adaptations to the alternatives described may be required, depending on the extent of contact maintenance that can be achieved. This evaluation identified key issues for the off-gas system design. To provide background information, technology reviews were assembled for various classifications of off-gas treatment equipment, including off-gas cooling, particulate control, acid gas control, mist elimination, NO{sub x} reduction, and SO{sub 2} removal. An order-of-magnitude cost estimate for one of the off-gas systems considered is provided using both the off-gas characteristics associated with the Joule-heated and combustion-fired melters. The key issues identified and a description of the preferred off-gas system options are provided below. Five candidate treatment systems were evaluated. All of the systems are appropriate for the different melting/feed preparations currently being considered. The lowest technical risk is achieved using option 1, which is similar to designs for high-level waste (HLW) vitrification in the Hanford Waste Vitrification Project (HWVP) and the West Valley. Demonstration Project. Option 1 uses a film cooler, submerged bed scrubber (SBS), and high-efficiency mist eliminator (HEME) prior to NO{sub x} reduction and high-efficiency particulate air (HEPA) filtration. However, several advantages were identified for option 2, which uses high-temperature filtration. Based on the evaluation, option 2 was identified as the preferred alternative. The characteristics of this option are described below.

  17. Thermophilic aerobic post treatment of anaerobically pretreated paper process water

    NARCIS (Netherlands)

    Vogelaar, J.C.T.

    2002-01-01

    Thermophilic waste- or process water treatment increases in importance as industries shift from end-of-pipe treatment towards integrated process water treatment. The need for process water treatment becomes evident as the levels of pollutants in industrial water

  18. Description of waste pretreatment and interfacing systems dynamic simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.

  19. Pre-treatment of ligno-cellulose with biological acid recycling (the Biosulfurol process)

    NARCIS (Netherlands)

    Groenestijn, van J.W.; Hazewinkel, J.H.O.; Bakker, R.R.

    2008-01-01

    A biomass pretreatment process is being developed based on contacting ligno-cellulosic biomass with 70% sulphuric acid and subsequent hydrolysis by adding water. In this process, the hydrolysate can be fermented yielding ethanol, while the sulphuric acid is partly recovered by anion-selective

  20. Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

    2009-01-01

    This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included • caustic leaching for Al removal • solids crossflow filtration through the cell unit filter (CUF) • stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF • oxidative leaching using sodium permanganate for removing Cr • solids filtration with the CUF • follow-on solids washing and filtration through the CUF • ion exchange processing for Cs removal • evaporation processing of waste stream recycle for volume reduction • combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

  1. Evaluation of high-level waste pretreatment processes with an approximate reasoning model

    Energy Technology Data Exchange (ETDEWEB)

    Bott, T.F.; Eisenhawer, S.W.; Agnew, S.F.

    1999-04-01

    The development of an approximate-reasoning (AR)-based model to analyze pretreatment options for high-level waste is presented. AR methods are used to emulate the processes used by experts in arriving at a judgment. In this paper, the authors first consider two specific issues in applying AR to the analysis of pretreatment options. They examine how to combine quantitative and qualitative evidence to infer the acceptability of a process result using the example of cesium content in low-level waste. They then demonstrate the use of simple physical models to structure expert elicitation and to produce inferences consistent with a problem involving waste particle size effects.

  2. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Murthy Ganti S

    2011-09-01

    Full Text Available Abstract Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for

  3. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production.

    Science.gov (United States)

    Kumar, Deepak; Murthy, Ganti S

    2011-09-05

    While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing

  4. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process.

    Science.gov (United States)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2013-05-01

    Waste printed circuit boards (PCBs) contain a large number of metals such as Cu, Sn, Pb, Cd, Cr, Zn, and Mn. In this work, an efficient and environmentally friendly process for metals recovery from waste PCBs by supercritical water (SCW) pre-treatment combined with acid leaching was developed. In the proposed process, waste PCBs were pre-treated by SCW, then the separated solid phase product with concentrated metals was subjected to an acid leaching process for metals recovery. The effect of SCW pre-treatment on the recovery of different metals from waste PCBs was investigated. Two methods of SCW pre-treatment were studied: supercritical water oxidation (SCWO) and supercritical water depolymerization (SCWD). Experimental results indicated that SCWO and SCWD pre-treatment had significant effect on the recovery of different metals. SCWO pre-treatment was highly efficient for enhancing the recovery of Cu and Pb, and the recovery efficiency increased significantly with increasing pre-treatment temperature. The recovery efficiency of Cu and Pb for SCWO pre-treatment at 420°C was 99.8% and 80%, respectively, whereas most of the Sn and Cr were immobilized in the residue. The recovery of all studied metals was enhanced by SCWD pre-treatment and increased along with pre-treatment temperature. Up to 90% of Sn, Zn, Cr, Cd, and Mn could be recovered for SCWD pre-treatment at 440°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

    2005-03-12

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

  6. Innovative vitrification for soil remediation

    Energy Technology Data Exchange (ETDEWEB)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  7. Innovative vitrification for soil remediation

    Energy Technology Data Exchange (ETDEWEB)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)] [and others

    1996-03-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  8. The effect of prefreezing the diluent portion of the straw in a step-wise vitrification process using ethylene glycol and polyvinylpyrrolidone to preserve bovine blastocysts.

    Science.gov (United States)

    Mtango, N R; Varisanga, M D; Dong, Y J; Otoi, T; Suzuki, T

    2001-03-01

    A total of 678 bovine blastocysts, which had been produced by in vitro maturation, fertilization, and culture, were placed into plastic straws and were vitrified in various solutions of ethylene glycol (EG) + polyvinylpyrrolidone (PVP). Part of the straw was loaded with TCM199 medium + 0.3 M trehalose as a diluent; the diluent portions of the straw were prefrozen to either -30 or -196 degrees C. Then, the embryos suspended in the vitrification solution were pipetted into the balance of the straw and vitrified by direct immersion into liquid nitrogen. For thawing, the straws were warmed for 3 s in air and 20 s in a water bath at 39 degrees C and then agitated to mix the diluent and cryoprotectant solution for 5 min followed by culture in TCM199 + 10% FCS + 5 + microg/ml insulin + 50 microg/ml gentamycin sulfate for 72 h. Variables that were examined were the time of exposure to EG prior to vitrification, the PVP concentration, and the temperature of exposure to EG + PVP prior to vitrification. Survival and hatching rates of the blastocysts exposed to 40% EG in four steps at 4 degrees C were higher than those of embryos exposed in two steps (81.3 +/- 4.3% and 80.2 +/- 3.4% vs 67.6 +/- 4.5% and 71.5 +/- 4.7%, respectively; P straws do favor developmental competence of in vitro produced embryos.

  9. Qualification Of Kapton Pretreatment Process Using 3M Scotch Weld 2216 For Solar Panel Application

    Science.gov (United States)

    Swamy, B. R.; Krishna, Priya G.; Venkatesh, K.; Nagendra, H. R.; Nanjundaswamy, T. S.

    2011-10-01

    Substrates for solar arrays intended to be used on satellite systems are generally made of aluminum honeycomb structure sandwiched with Carbon Fiber Reinforced Plastic (CFRP) face skin. Two mil thick KaptonTM sheets are co cured on one side of the aluminum /CFRP composite structure while realizing the substrate panels. This Kapton sheet would serve as an insulator over which solar cell blankets are bonded with suitable adhesive for the satellite solar panels. The satellite solar panels demands highest degree of quality and reliability and one of the prime factors in this regards is the bond strength of adhesive which is used to bond the solar cell blankets. Various methods of pretreatments of Kapton surface are in use for increasing the surface energy, which in turn results in improved bond strengths. These methods generally provide roughened surface of the Kapton which is achieved either by abrasive means like scrubbing the surface using fine silica chip, or plasma etching or alternatively by an additive process wherein suitable polyester, phenolic or other resins are coated on to the Kapton surface to achieve the desired results. For spacecraft solar panel applications at ISRO, polyester resin coating on to the Kapton surface was used as pretreatment prior to adhesive application. This process had provided adequate bond strengths between the solar cells and Kapton. Due to issues related to the supply of the polyester resin material from the vendor alternative methods of pretreatments were explored. In this paper, a novel process developed for Kapton pretreatment is described along with results of relevant qualifications for the satellite solar panel application. This newly developed pretreatment process for Kapton successfully adopts an epoxy based material 3M Scotch weld 2216 which is widely used in spacecraft electronic hardware.

  10. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    Science.gov (United States)

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Feasibility Study for Vitrification of Sodium-Bearing Waste

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Quigley; B. D. Raivo; S. O. Bates; S. M. Berry; D. N. Nishioka; P. J. Bunnell

    2000-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated under a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is the complete calcination (i.e., treatment) of all SBW by December 31, 2012. One of the proposed options for treatment of SBW is vitrification. This study will examine the viability of SBW vitrification. This study describes the process and facilities to treat the SBW, from beginning waste input from INTEC Tank Farm to the final waste forms. Schedules and cost estimates for construction and operation of a Vitrification Facility are included. The study includes a facility layout with drawings, process description and flow diagrams, and preliminary equipment requirements and layouts.

  12. The Effect of Ionic Liquid Pretreatment on the Bioconversion of Tomato Processing Waste to Fermentable Sugars and Biogas.

    Science.gov (United States)

    Allison, Brittany J; Cádiz, Juan Canales; Karuna, Nardrapee; Jeoh, Tina; Simmons, Christopher W

    2016-08-01

    Tomato pomace is an abundant lignocellulosic waste stream from industrial tomato processing and therefore a potential feedstock for production of renewable biofuels. However, little research has been conducted to determine if pretreatment can enhance release of fermentable sugars from tomato pomace. Ionic liquids (ILs) are an emerging pretreatment technology for lignocellulosic biomass to increase enzymatic digestibility and biofuel yield while utilizing recyclable chemicals with low toxicity. In this study, pretreatment of tomato pomace with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was investigated. Changes in pomace enzymatic digestibility were affected by pretreatment time and temperature. Certain pretreatment conditions significantly improved reducing sugar yield and hydrolysis time compared to untreated pomace. Compositional analyses suggested that pretreatment primarily removed water-soluble compounds and enriched for lignocellulose in pomace, with only subtle changes to the composition of the lignocellulose. While tomato pomace was effectively pretreated with [C2mim][OAc] to improve enzymatic digestibility, as of yet, unknown factors in the pomace caused ionic liquid pretreatment to negatively affect anaerobic digestion of pretreated material. This result, which is unique compared to similar studies on IL pretreatment of grasses and woody biomass, highlights the need for additional research to determine how the unique chemical composition of tomato pomace and other lignocellulosic fruit residues may interact with ionic liquids to generate inhibitors for downstream fermentation to biofuels.

  13. Vitrification as an alternative to landfilling of tannery sewage sludge.

    Science.gov (United States)

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  14. Vitrification as an alternative to landfilling of tannery sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Celary, Piotr, E-mail: pcelary@is.pcz.czest.pl; Sobik-Szołtysek, Jolanta, E-mail: jszoltysek@is.pcz.czest.pl

    2014-12-15

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  15. Cryopreservation: Vitrification and Controlled Rate Cooling.

    Science.gov (United States)

    Hunt, Charles J

    2017-01-01

    Cryopreservation is the application of low temperatures to preserve the structural and functional integrity of cells and tissues. Conventional cooling protocols allow ice to form and solute concentrations to rise during the cryopreservation process. The damage caused by the rise in solute concentration can be mitigated by the use of compounds known as cryoprotectants. Such compounds protect cells from the consequences of slow cooling injury, allowing them to be cooled at cooling rates which avoid the lethal effects of intracellular ice. An alternative to conventional cooling is vitrification. Vitrification methods incorporate cryoprotectants at sufficiently high concentrations to prevent ice crystallization so that the system forms an amorphous glass thus avoiding the damaging effects caused by conventional slow cooling. However, vitrification too can impose damaging consequences on cells as the cryoprotectant concentrations required to vitrify cells at lower cooling rates are potentially, and often, harmful. While these concentrations can be lowered to nontoxic levels, if the cells are ultra-rapidly cooled, the resulting metastable system can lead to damage through devitrification and growth of ice during subsequent storage and rewarming if not appropriately handled.The commercial and clinical application of stem cells requires robust and reproducible cryopreservation protocols and appropriate long-term, low-temperature storage conditions to provide reliable master and working cell banks. Though current Good Manufacturing Practice (cGMP) compliant methods for the derivation and banking of clinical grade pluripotent stem cells exist and stem cell lines suitable for clinical applications are available, current cryopreservation protocols, whether for vitrification or conventional slow freezing, remain suboptimal. Apart from the resultant loss of valuable product that suboptimal cryopreservation engenders, there is a danger that such processes will impose a selective

  16. Fermentable sugar production from paddy straw by two steps chemical pretreatment and hydrolysis process

    Science.gov (United States)

    Lee, Vivian J. Q.; Salimi, M. N.; Yusoff, Ahm

    2017-04-01

    Paddy straw is one of the most abundant lignocellulose wastes and has potential as a feedstock for sugar production. In this study, dilute acid pretreatment and enzymatic hydrolysis are the process that selected for the production of sugar. The paddy straw was pretreated with 1% (v/v) of sulfuric acid at 95 °C for 60 minutes followed by enzymatic hydrolysis. Optimization of enzymatic hydrolysis is desirable to achieve high yield of sugar from solid residues with high cellulose content. The optimization has been carried out by using Central composite design (CCD) to analyze the effect of pH, temperature and enzyme dosing for the enzymatic hydrolysis. For both the process, the concentration of sugar was analyzed by using Dinitrosalicylic acid (DNS) reagent with the aid of the standard glucose curve. The results showed the highest sugar yield from dilute acid pre-treatment was 1.14 g/L. For the optimum condition for enzymatic hydrolysis was at pH 5, 50 °C and 0.10 mL of enzyme and this produced 4.55 g/L of fermentable sugar.

  17. Influence of surface pretreatments on the quality of trivalent chromium process coatings on aluminum alloy

    Science.gov (United States)

    Viroulaud, Rémi; Światowska, Jolanta; Seyeux, Antoine; Zanna, Sandrine; Tardelli, Joffrey; Marcus, Philippe

    2017-11-01

    The effects of surface pretreatments (degreasing and pickling) on the characteristics of the Trivalent Chromium Process (TCP) coating on pure aluminum and on AA2024-T351 aluminum alloy were investigated here by means of surface sensitive techniques: X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The XPS and ToF-SIMS results evidence that the TCP coating homogeneity is strongly dependent on the pretreatment process used. The TCP coverage factor, calculated from XPS results, is significantly lower, on both pure aluminum and AA2024-T351 alloy surface, when a pickling step is applied. One of the main effects of pickling pretreatment is strong metallic copper enrichment at the surface of the 2024 alloy, associated with chemical dissolution of Al-Cu intermetallic particles. However, it is evidenced here, that the copper enrichment is not detrimental for the quality of the TCP coating. The coating failure, observed when the pickling step is applied, can be assigned to a faster kinetics of the coating growth leading to formation of thicker conversion coating more susceptible to cracking or to the localized presence of aluminum fluoride species leading to the appearance of coating defects or detachment.

  18. [Statistical process control applied to intensity modulated radiotherapy pretreatment controls with portal dosimetry].

    Science.gov (United States)

    Villani, N; Gérard, K; Marchesi, V; Huger, S; François, P; Noël, A

    2010-06-01

    The first purpose of this study was to illustrate the contribution of statistical process control for a better security in intensity modulated radiotherapy (IMRT) treatments. This improvement is possible by controlling the dose delivery process, characterized by pretreatment quality control results. So, it is necessary to put under control portal dosimetry measurements (currently, the ionisation chamber measurements were already monitored by statistical process control thanks to statistical process control tools). The second objective was to state whether it is possible to substitute ionisation chamber with portal dosimetry in order to optimize time devoted to pretreatment quality control. At Alexis-Vautrin center, pretreatment quality controls in IMRT for prostate and head and neck treatments were performed for each beam of each patient. These controls were made with an ionisation chamber, which is the reference detector for the absolute dose measurement, and with portal dosimetry for the verification of dose distribution. Statistical process control is a statistical analysis method, coming from industry, used to control and improve the studied process quality. It uses graphic tools as control maps to follow-up process, warning the operator in case of failure, and quantitative tools to evaluate the process toward its ability to respect guidelines: this is the capability study. The study was performed on 450 head and neck beams and on 100 prostate beams. Control charts, showing drifts, both slow and weak, and also both strong and fast, of mean and standard deviation have been established and have shown special cause introduced (manual shift of the leaf gap of the multileaf collimator). Correlation between dose measured at one point, given with the EPID and the ionisation chamber has been evaluated at more than 97% and disagreement cases between the two measurements were identified. The study allowed to demonstrate the feasibility to reduce the time devoted to

  19. Ethanol from softwood. Process development based on steam pretreatment and SSF

    Energy Technology Data Exchange (ETDEWEB)

    Stenberg, Kerstin

    1999-05-01

    Fuel ethanol can be produced from lignocellulosics by the enzymatic hydrolysis process, which consists of a pretreatment step prior to hydrolysis, followed by fermentation and finally refining. This thesis deals with the development of the enzymatic process using softwood as raw material. The focus has not only been on how to obtain high yields, but also on how to solve problems, which can arise in an industrial process, such as inhibition and contamination. The pretreatment step was evaluated using steam-pretreatment and impregnation with an acid catalyst, either SO{sub 2} or H{sub 2}SO{sub 4}. Both impregnation methods resulted in approximately the same yield, 65% of the theoretical of fermentable sugars, i.e. glucose and mannose, after enzymatic hydrolysis. However, impregnation with SO{sub 2}, resulted in higher ethanol productivity and yield in the fermentation. Simultaneous saccharification and fermentation (SSF) was investigated using various substrate and cellulase concentrations. An overall ethanol yield of 70% of the theoretical was obtained using the whole slurry from the pretreatment step at an insoluble dry weight content of 5%, which was shown to be optimal. SSF resulted in both higher productivity and higher ethanol yield than in separate hydrolysis and fermentation, but proved to be more sensitive to infection by lactic aid bacteria. More complex process integration, in the form of recirculation of process streams, which is desirable in an industrial process, was investigated using bench-scale equipment. A reduction in the fresh-water demand of 50%, from 3 kg/kg dry raw material to 1.5 kg/kg dry raw material, was found to be possible without any negative effects on either hydrolysis or fermentation. A techno-economic evaluation of different process configurations in a process applying SSF was also performed. It was found that the ethanol production cost could be reduced by 20% by internal energy integration and by another 15% by recirculation to the

  20. Vitrification and neomineralisation of bentonitic and kaolinitic clays ...

    African Journals Online (AJOL)

    Resultant fired mineral phases depicted mineral compositions of ceramic bodies, and the study suggested that these clays could be gainfully utilized in the making of ceramic wares, subject to selected beneficiation processes. Keywords: kaolin, bentonite, vitrification, neomineralization, ceramic, firing. Global Journal of ...

  1. Evaluation of high-level waste vitrification feed preparation chemistry for an NCAW simulant, FY 1994: Alternate flowsheets (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Merz, M.D.; Wiemers, K.D.; Smith, G.L.

    1996-02-01

    High-level radioactive waste stored in tanks at the U.S. Department of Energy`s (DOE`s) Hanford Site will be pretreated to concentrate radioactive constituents and fed to the vitrification plant A flowsheet for feed preparation within the vitrification plant (based on the Hanford Waste Vitrification Plant (HWVP) design) called for HCOOH addition during the feed preparation step to adjust rheology and glass redox conditions. However, the potential for generating H{sub 2} and NH{sub 3} during treatment of high-level waste (HLW) with HCOOH was identified at Pacific Northwest Laboratory (PNL). Studies at the University of Georgia, under contract with Savannah River Technology Center (SRTC) and PNL, have verified the catalytic role of noble metals (Pd, Rh, Ru), present in the waste, in the generation of H{sub 2} and NH{sub 3}. Both laboratory-scale and pilot-scale studies at SRTC have documented the H{sub 2} and NH{sub 3} generation phenomenal Because H{sub 2} and NH{sub 3} may create hazardous conditions in the vessel vapor space and offgas system of a vitrification plant, reducing the H{sub 2} generation rate and the NH{sub 3} generation to the lowest possible levels consistent with desired melter feed characteristics is important. The Fiscal Year 1993 and 1994 studies were conducted with simulated (non-radioactive), pre-treated neutralized current acid waste (NCAW). Neutralized current acid waste is a high-level waste originating from the plutonium/uranium extraction (PUREX) plant that has been partially denitrated with sugar, neutralized with NaOH, and is presently stored in double-shell tanks. The non-radioactive simulant used for the present study includes all of the trace components found in the waste, or substitutes a chemically similar element for radioactive or very toxic species. The composition and simulant preparation steps were chosen to best simulate the chemical processing characteristics of the actual waste.

  2. Cholesterol added prior to vitrification on the cryotolerance of immature and in vitro matured bovine oocytes.

    Science.gov (United States)

    Arcarons, Núria; Morató, Roser; Vendrell, Meritxell; Yeste, Marc; López-Bejar, Manel; Rajapaksha, Kosala; Anzar, Muhammad; Mogas, Teresa

    2017-01-01

    This study examines whether incorporating cholesterol-loaded methyl-β-cyclodextrin (CLC) in the bovine oocyte plasma membrane improves oocyte tolerance to vitrification. In vitro matured oocytes were incubated with 2 mg/ml BODIPY-labeled CLC for different time intervals in FCS or PVA supplemented medium or exposed to different CLC concentrations to examine the subcellular localization of cholesterol by confocal microscopy live-cell imaging. Subsequently, the effects of optimized CLC concentrations and incubation times prior to vitrification on early embryo development were assessed. Then, we evaluated the effects of pretreatment with 2 mg/ml CLC for 30 min before the vitrification of immature (GV) and in vitro matured (MII) oocytes on developmental competence and gene expression. Our results indicate a high plasma membrane labeling intensity after 30 min of incubation with 2 mg/ml CLC for 30 min, regardless of the holding medium used. When oocytes were incubated with 1 mg/ml, 2 mg/ml and 3 mg/ml of CLC, intense labeling was observed at the plasma membrane after 40, 30 and 20 min, respectively. CLC pre-treatment before the vitrification of bovine oocytes did not affect subsequent cleavage and embryo development rates irrespective of CLC concentrations, incubation times or meiotic stage. However, pretreatment seems to improve the quality of embryos derived from vitrified oocytes, mainly when oocytes were vitrified at the GV stage.

  3. Cholesterol added prior to vitrification on the cryotolerance of immature and in vitro matured bovine oocytes.

    Directory of Open Access Journals (Sweden)

    Núria Arcarons

    Full Text Available This study examines whether incorporating cholesterol-loaded methyl-β-cyclodextrin (CLC in the bovine oocyte plasma membrane improves oocyte tolerance to vitrification. In vitro matured oocytes were incubated with 2 mg/ml BODIPY-labeled CLC for different time intervals in FCS or PVA supplemented medium or exposed to different CLC concentrations to examine the subcellular localization of cholesterol by confocal microscopy live-cell imaging. Subsequently, the effects of optimized CLC concentrations and incubation times prior to vitrification on early embryo development were assessed. Then, we evaluated the effects of pretreatment with 2 mg/ml CLC for 30 min before the vitrification of immature (GV and in vitro matured (MII oocytes on developmental competence and gene expression. Our results indicate a high plasma membrane labeling intensity after 30 min of incubation with 2 mg/ml CLC for 30 min, regardless of the holding medium used. When oocytes were incubated with 1 mg/ml, 2 mg/ml and 3 mg/ml of CLC, intense labeling was observed at the plasma membrane after 40, 30 and 20 min, respectively. CLC pre-treatment before the vitrification of bovine oocytes did not affect subsequent cleavage and embryo development rates irrespective of CLC concentrations, incubation times or meiotic stage. However, pretreatment seems to improve the quality of embryos derived from vitrified oocytes, mainly when oocytes were vitrified at the GV stage.

  4. 'Personalisation' of droplet-vitrification protocols for plant cells: a systematic approach to optimising chemical and osmotic effects.

    Science.gov (United States)

    Kim, Haeng-Hoon; Lee, Sheong-Chun

    2012-01-01

    Although an appropriate cryopreservation protocol is a prerequisite for basic studies and large-scale implementation as well as further cryopreservation studies, the process relies on trial and error. Among the vitrification-based cryopreservation techniques, droplet-vitrification produces high post-cryopreservation recovery. However, the protocol itself cannot solve the problems engaged in plant cryopreservation, prominently due to dehydration with cytotoxic vitrification solutions. This paper proposes a set of treatments to develop droplet-vitrification using a standard procedure associated with additional treatments and alternative vitrification solutions. The proposed standard protocol consists of a progressive preculture with 0.3 M sucrose for 31 h and with 0.7 M for 17 h, loading with vitrification solution C4-35% (17.5 percent glycerol + 17.5 percent sucrose, w/v) for 20 to 40 min, dehydration with vitrification solutions A3-90 percent (37.5 percent glycerol + 15% DMSO + 15 percent EG + 22.5 percent sucrose) for 10 to 30 min or B1-100 percent (PVS3) for 40 to 120 min at room temperature, cooling the samples using aluminum foil strips, rewarming by plunging into pre-heated (40 degree C) unloading solution (0.8 M sucrose) and further unloading for 20 to 60 min, depending on size and permeability of the materials. Using this systematic approach we can identify whether the material is tolerant or sensitive to chemical toxicity and to the osmotic stress of dehydration with vitrification solutions, thus revealing which is the main barrier in solution-based vitrification methods. Based on the sensitivity of samples we can design a droplet-vitrification procedure, i.e. preculture, loading, dehydration with vitrification solutions, cooling and rewarming. Using this approach, the development of appropriate droplet-vitrification protocol is facilitated.

  5. Vitrification of organics-containing wastes

    Science.gov (United States)

    Bickford, D.F.

    1995-01-01

    A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  6. Defense waste vitrification studies during FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    Bjorklund, W.J.

    1981-08-01

    During FY-1980, Pacific Northwest Laboratory (PNL) tested three vitrification processes on simulated high-level radioactive waste typical of that stored or being produced at US defense facilities. Processes tested included a spray calciner/in-can melter, spray calciner/ceramic melter and direct liquid feeding of a ceramic melter. Tests were made on pilot-scale as well as fullscale equipment. Over 16,000 kg of glass product were produced from 68,000 L of simulated waste. Several compositions were tested, and the glass products were evaluated. Emphasis was placed on determining the processing rates and the ability of the waste to be processed. Off-gas data were collected on several runs. Major conclusions drawn from this test program are divided into processing results, glass-product results, and general information.

  7. Bond-controlled configurational entropy reduction in chemical vitrification.

    Science.gov (United States)

    Corezzi, Silvia; Fioretto, Daniele; Rolla, Pierangelo

    2002-12-12

    Glass formation is usually viewed in terms of physical vitrification: a liquid in a metastable state is cooled or compressed so as to avoid crystallization. However, glasses may also be formed by chemical vitrification, a process involving progressive polymerization of the constituent molecules via the formation of irreversible chemical bonds. The formation of most of the materials used in engineering plastics and the hardening of natural and synthetic resins are based on chemical vitrification. Despite the differences in the molecular processes involved in chemical and physical vitrification, surprising similarities are observed in the slowing down of the dynamics and in the thermodynamical properties of the resulting glasses. Explaining such similarities would improve general understanding of the glass transition and may disclose its universal nature. Here we report dielectric and photon-correlation measurements that reveal the origin of the similarity in the dynamical behaviour of physical and chemical glass formers. We find that the evolution of their configurational restrictions proceeds in a similar manner. In particular, we make a connection between the reduction in configurational entropy and the number of chemical bonds, a quantity that can be controlled in experiments.

  8. Optimization of clean fractionation processing as a pre-treatment technology for prairie cordgrass.

    Science.gov (United States)

    Brudecki, Grzegorz; Cybulska, Iwona; Rosentrater, Kurt; Julson, James

    2012-03-01

    The main objective of this study was to fractionate prairie cordgrass (PCG) obtaining the highest cellulose digestibility. Following clean fractionation (CF) processing, the PCG lignocellulosic biomass was fractionated into three main building blocks: cellulose, hemicellulose and lignin. Effects of processing factors such as time, temperature, catalyst concentration and organic solvent mixture composition were evaluated. Organic solvent-aqueous mixture contained methyl isobutyl ketone (MIBK), ethanol and water in different proportions. Sulfuric acid was used as a catalyst. In order to evaluate the degree of pre-treatment, enzymatic saccharification was employed on the cellulose fraction obtained from the CF process. Response surface methodology was used for process optimization and statistical analysis. Optimal conditions (39 min, 154°C, 0.69% catalyst and 9% MIBK) resulted in 84% glucose yield and 87% acid insoluble lignin (AIL). Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Evaluation of pre-treatment processes for increasing biodegradability of agro-food wastes.

    Science.gov (United States)

    Hidalgo, D; Sastre, E; Gómez, M; Nieto, P

    2012-01-01

    Anaerobic digestion (AD) technology can be employed for treating sewage sludge, livestock waste or food waste. Generally, the hydrolysis stage is the rate-limiting step of the AD processes for solid waste degradation. Therefore, physical, chemical and biological pre-treatment methods or their combination are required, in order to reduce the rate of such a limiting step. In this study, four methods (mechanical shredding, acid hydrolysis, alkaline hydrolysis and sonication) were tested to improve methane production and anaerobic biodegradability of different agro-food wastes and their mixtures. The kinetics of anaerobic degradation and methane production ofpre-treated individual wastes and selected mixtures were investigated with batch tests. Sonication at lower frequencies (37 kHz) proved to give the best results with methane productivity enhancements of over 100% in the case of pig manure and in the range of 10-47% for the other wastes assayed. Furthermore, the ultimate methane production was proportional, in all the cases, to the specific energy input applied (Es). Sonication can, thus, enhance waste digestion and the rate and quantity of biogas generated. The behaviour of the other pre-treatments under the conditions assayed is not significant. Only a slight enhancement of biogas production (around 10%) was detected for whey and waste activated sludge (WAS) after mechanical shredding. The lack of effectiveness of chemical pre-treatments (acid and alkaline hydrolysis) can be justified by the inhibition of the methanogenic process due to the presence of high concentrations of sodium (up to 8 g l(-1) in some tests). Only in the case of WAS did the acid hydrolysis considerably increase the biodegradability of the sample (79%), because in this case no inhibition by sodium took place. Some hints of a synergistic effect have been observed when co-digestion of the mixtures was performed.

  10. Swirl chamber for vitrification of fly ashes

    Directory of Open Access Journals (Sweden)

    Zarzycki Robert

    2017-01-01

    Full Text Available The study presents the concept of a swirl chamber used for vitrification of fly ashes. It assumes the use of coal dust in the process of fly ash melting. The coal dust supplied to the swirl chamber and gasified in the atmosphere of O2, CO2 and H2O allows for obtaining combustible gases composed of CO and H2, which are burnt with the pneumatically supplied fly ash. The above process allows for obtaining a product in the form of a molten slag which does not contain coal grains. The study presents numerical calculations for the process of combustion and gasification of coal dust and opportunities for ensuring adequate parameters in the fly ash melting zone. The combustible gases obtained during the process of gasification can be supplied to the chamber of a pulverized-bed boiler.

  11. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, January--March 1987

    Energy Technology Data Exchange (ETDEWEB)

    Brouns, R. A.; Allen, C. R.; Powell, J. A. (comps.)

    1988-05-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to describe the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the second quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, and process/product modeling. 23 refs., 14 figs., 10 tabs.

  12. Vitrification of hazardous and radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  13. Reduction in Energy Consumption for Pretreatment Process and Transportation of Pulverized Wood Fuel

    Science.gov (United States)

    Nishi, Kenji; Sawai, Toru; Ohmasa, Mitsushi; Hirokawa, Noriyasu; Shibue, Tadashi; Kajimoto, Takeshi

    In recent years, much attention has been focused on the energy utilization of biomass to reduce the emission of greenhouse gas. Especially, woody biomass such as the forestry biomass derived from logging and thinning operations in forests is one of the most promising domestic resources in Japan. Woody biomass contributes not only to the improvement of energy self-sufficiency in Japan, but also to the environmental protection of Japanese forests. When the woody biomass is utilized, it is necessary to examine the energy consumption for collection of resources, pretreatment, transportation and after-treatment. In the present study, woody biomass is assumed to be utilized as pulverized wood fuel in local area. The pretreatment of pulverized wood fuel is consisted of three procedures; drying, semi-carbonizaion and fine comminution. The main purpose of the study is to investigate the comminution characteristic of the Japanese cedar thinning and the reduction in energy consumption for pretreatment process and transportation of pulverized wood fuel. The results obtained in the present study are as follows. (1) Comminution energy increases as the water content increases and the sieve of screen becomes small. The comminution energy of hammer mill is largely affected by the water content. Difference in comminution energy between the hammer and cutter mills is large. The ratio of comminution energy of the hammer mill to that of the cutter mill exceeds 10 for the water content of 40% and sieve of screen of 3mm. (2) To estimate the comminution energy of woody biomass, empirical equations of work index in Bond's Law are presented. In woody biomass region, the empirical equations of work index depend on the comminution method. In semi-carbonization and carbonization regions, the empirical equation of work index is presented regardless of comminution method and sieve of screen. The comminution energy can be estimated by using the present empirical equations within accuracy ±50

  14. Optimization of pretreatments and process parameters for sorghum popping in microwave oven using response surface methodology.

    Science.gov (United States)

    Mishra, Gayatri; Joshi, Dinesh C; Mohapatra, Debabandya

    2015-12-01

    Sorghum is a popular healthy snack food. Popped sorghum was prepared in a domestic microwave oven. A 3 factor 3 level Box and Behneken design was used to optimize the pretreatment conditions. Grains were preconditioned to 12-20 % moisture content by the addition of 0-2 % salt solutions. Oil was applied (0-10 % w/w) to the preconditioned grains. Optimization of the pretreatments was based on popping yield, volume expansion ratio, and sensory score. The optimized condition was found at 16.62 % (wb), 0.55 % salt and 10 % oil with popping yield of 82.228 %, volume expansion ratio of 14.564 and overall acceptability of 8.495. Further, the microwave process parameters were optimized using a 2 factor 3 level design having microwave power density ranging from 9 to 18 W/g and residence time ranging from 100 to 180 s. For the production of superior quality pop sorghum, the optimized microwave process parameters were microwave power density of 18 Wg(-1) and residence time of 140 s.

  15. Pretreatment process for mineral analysis in FFH using INAA-method and evaluation of mineral intakes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ok Hee; Youn, Kyung Jin; Lee, Ji Bum; Kim, Mi Jin [Yongin University, Yongin (Korea, Republic of)

    2010-05-15

    This study were aimed to set up the pre-treatment process for FFH and analyse Pretreatment processes for the analysis of food mineral contents by INAA were established according to FFH state using freeze-drying and homogenization. The Se contents showed higher precision with INAA-method than ICP-method. The content of Ca, Na, Mg, Fe, Zn, Cu, Mn, Cr, Co in FFH measured using INAA-method showed that the mineral contents in the amount of recommended intakes by manufacturer were not significantly different according to FFH type. The average Ca contents was the highest in Yousanguns > nutritional supplement> glucosamines. The average K content of FFH with one serving size were the highest in glucosamines>aloes> nutritional supplements. I content among FFH was the highest in nutritional supplements. The average Mg contents were highest in Chlorella-Spirurina and Aloes. The average Cu content of FFH was the highest in Yeasts. The contents of Fe, Zn and Se were the highest in nutritional supplements. The mineral contents in recommended intake amounts by manufacturer were over the maximum contents regulated by Korean FDA in some imported FFH products. their mineral contents of FFH using NAA-method and to assess the mineral intakes by FFH

  16. Vitrification of neat semen alters sperm parameters and DNA integrity.

    Science.gov (United States)

    Khalili, Mohammad Ali; Adib, Maryam; Halvaei, Iman; Nabi, Ali

    2014-05-06

    Our aim was to evaluate the effect of neat semen vitrification on human sperm vital parameters and DNA integrity in men with normal and abnormal sperm parameters. Semen samples were 17 normozoospermic samples and 17 specimens with abnormal sperm parameters. Semen analysis was performed according to World Health Organization (WHO) criteria. Then, the smear was provided from each sample and fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Vitrification of neat semen was done by plunging cryoloops directly into liquid nitrogen and preserved for 7 days. The samples were warmed and re-evaluated for sperm parameters as well as DNA integrity. Besides, the correlation between sperm parameters and DNA fragmentation was assessed pre- and post vitrification. Cryopreserved spermatozoa showed significant decrease in sperm motility, viability and normal morphology after thawing in both normal and abnormal semen. Also, the rate of sperm DNA fragmentation was significantly higher after vitrification compared to fresh samples in normal (24.76 ± 5.03 and 16.41 ± 4.53, P = .002) and abnormal (34.29 ± 10.02 and 23.5 ± 8.31, P neat ejaculates has negative impact on sperm parameters as well as DNA integrity, particularly among abnormal semen subjects. It is, therefore, recommend to process semen samples and vitrify the sperm pellets.

  17. Vitrification in human and domestic animal embryology: work in progress.

    Science.gov (United States)

    Vajta, Gábor

    2013-01-01

    According to the analysis of papers published in major international journals, rapidly increasing application of vitrification is one of the greatest achievements in domestic animal and especially human embryology during the first decade of our century. This review highlights factors supporting or hampering this progress, summarises results achieved with vitrification and outlines future tasks to fully exploit the benefits of this amazing approach that has changed or will change many aspects of laboratory (and also clinical) embryology. Supporting factors include the simplicity, cost efficiency and convincing success of vitrification compared with other approaches in all species and developmental stages in mammalian embryology, while causes that slow down the progress are mostly of human origin: inadequate tools and solutions, superficial teaching, improper application and unjustified concerns resulting in legal restrictions. Elimination of these hindrances seems to be a slower process and more demanding task than meeting the biological challenge. A key element of future progress will be to pass the pioneer age, establish a consensus regarding biosafety requirements, outline the indispensable features of a standard approach and design fully-automated vitrification machines executing all phases of the procedure, including equilibration, cooling, warming and dilution steps.

  18. Statement of work for architect-engineer services, initial pretreatment module

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, K.B.

    1994-09-15

    This Statement of Work describes the Architect-Engineer services to be provided by Raytheon/BNFL in providing a conceptual design (Contract TGW-SVV-063869) for the Initial Pretreatment Module (IPM), Project W-236B, at the Hanford site, Richland, Washington. The IPM Project, a radiochemical process facility, will be designed and constructed for an initial phase of waste pretreatment, which will be for the removal of cesium from supernatant wastes to produce a Low-level waste (LLW) stream to a vitrification facility. The design shall also accommodate side streams of High-Level Waste (HLW) fractions that will be directed to suitable, existing storage tanks where they will be recombined with an additional high-activity waste fraction generated from pretreatment of the tank waste sludges and solids. This combined high-activity waste fraction will be immobilized as glass and disposed in a geological repository.

  19. A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    SCHAUS, P.S.

    2006-09-29

    In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall mission as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW

  20. Enhanced enzymatic saccharification of pretreated biomass using glycerol thermal processing (GTP).

    Science.gov (United States)

    Zhang, Wei; Sathitsuksanoh, Noppadon; Barone, Justin R; Renneckar, Scott

    2016-01-01

    Biomass was heated (200-240°C) in the presence of glycerol, for 4-12 min, under shear to disrupt the native cell wall architecture. The impact of this method, named glycerol thermal processing (GTP), on saccharification efficiency of the hardwood Liquidambar styraciflua, and a control cellulose sample was studied as a function of treatment severity. Furthermore, the enzymatic conversion of samples with varying compositions was studied after extraction of the structural polymers. Interestingly, the sweet gum processed materials crystallinity index increased by 10% of the initial value. The experiments revealed that the residual lignin was not a barrier to limiting the digestibility of cellulose after pretreatment yielding up to 70% glucose based on the starting wood material. Further xylan removal greatly improved the cellulose hydrolysis rate, converting nearly 70% of the cellulose into glucose within 24h, and reaching 78% of ultimate glucan digestibility after 72 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    Science.gov (United States)

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.

  2. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose

    Directory of Open Access Journals (Sweden)

    Palmqvist Benny

    2012-08-01

    Full Text Available Abstract Background A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. Results In this work, we monitor the impeller torque (and hence power input in a stirred tank reactor throughout high solid enzymatic hydrolysis (Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength, whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. Conclusions The results clearly highlight the large differences between the arundo and spruce materials, both in terms of

  3. Alginate-Based Edible Films Delivering Probiotic Bacteria to Sliced Ham Pretreated with High Pressure Processing

    Directory of Open Access Journals (Sweden)

    Foteini Pavli

    2017-08-01

    Full Text Available The aim of the present work was to evaluate the efficacy of Na-alginate edible films as vehicles for delivering probiotic bacteria to sliced ham with or without pretreatment using high pressure processing (HPP. Three strains of probiotic bacteria were incorporated in Na-alginate forming solution. Ham slices (with or without pretreatment using HPP at 500 MPa for 2 min were packed under vacuum in contact with the films and then stored at 4, 8 and 12 °C for 66, 47 and 40 days, respectively. Microbiological analysis was performed in parallel with pH and color measurements. Sensory characteristics were assessed, while the presence and the relative abundance of each probiotic strain during storage was evaluated using pulsed field gel electrophoresis. In ham slices without HPP treatment, probiotic bacteria were enumerated above 106 CFU/g during storage at all temperatures. Same results were obtained in cases of HPP treated samples, but pH measurements showed differences with the latter ones exhibiting higher values. Sensory evaluation revealed that probiotic samples had a more acidic taste and odor than the control ones, however these characteristics were markedly compromised in samples treated with HPP. Overall, the results of the study are promising since probiotic bacteria were successfully delivered in the products by edible films regardless of the HPP treatment.

  4. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Akihito; Bae, Jun Gu; Fukai, Kotaro; Tokumoto, Naoki; Kuroda, Kouichi; Ogawa, Jun; Shimizu, Sakayu; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences; Nakatani, Masato [Daiwa Kasei, Shiga (Japan)

    2012-05-15

    A gene encoding laccase I was identified and cloned from the white-rot fungus Trametes sp. Ha1. Laccase I contained 10 introns and an original secretion signal sequence. After laccase I without introns was prepared by overlapping polymerase chain reaction, it was inserted into expression vector pULD1 for yeast cell surface display. The oxidation activity of a laccase-I-displaying yeast as a whole-cell biocatalyst was examined with 2,2{sup '}-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and the constructed yeast showed a high oxidation activity. After the pretreatment of hydrothermally processed rice straw (HPRS) with laccase-I-displaying yeast with ABTS, fermentation was conducted with yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase with HPRS. Fermentation of HPRS treated with laccase-I-displaying yeast was performed with 1.21-fold higher activities than those of HPRS treated with control yeast. The results indicated that pretreatment with laccase-I-displaying yeast with ABTS was effective for direct fermentation of cellulosic materials by yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase. (orig.)

  5. Pretreatment of Process Condensate with Ammonia Degassing in CAN Fertilizer Production

    Directory of Open Access Journals (Sweden)

    Leaković, S.

    2011-10-01

    Full Text Available In the production process of calcium ammonium nitrate (CAN fertilizer, process-condensate is generated with a high content of ammonium nitrogen. Such high mass concentration of ammonium nitrogen (approximately 2 g L-1 significantly burdens the operation of the wastewater treatment plant, where the process condensate is treated by method of ion exchange. At CAN 1 Plant, a degassing system for process condensate was built. After pretreatment, the concentration of ammonium nitrogen in the process condensate was reduced to less than 500 mg L-1.Before upgrading with degassing system, the process condensate from CAN 1 Plant was collected in tank TK 17 301, from which it was pumped to the wastewater treatment plant to be treated by the method of ion exchange. When CAN 1 Plant is in normal operation, 10 m3h-1 of process condensate is formed with pH around 10, and temperatures around 50 °C. The degassing system of process condensate consists of a new tank, TK 17 504, which is connected with new pipeline to the tank TK 17 301. The process condensate input was transferred from the old to the new tank, TK 17 504. A new pump was installed for regulation of process condensate and bursting above the condensate level.Additional stimulation for ammonia degassing followed, after the return of 12 bar steam condensate into the tank TK 17 504. Consequently, the process condensate temperature increased to 80 C. Degassed ammonia is introduced into the existing system for washing gases and returns into the process of fertilizer production.By degassing ammonia from the process condensate at CAN 1 Plant, 10.7 kg h-1of ammonia returns into the fertilizer production process.Additionally, there has been an improved performance of the wastewater treatment plant, so that in December 2010, the volume of treated wastewater was almost 80 000 m3 which is an increase of 86 %.

  6. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  7. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process.

    Science.gov (United States)

    Nitsos, Christos K; Matis, Konstantinos A; Triantafyllidis, Kostas S

    2013-01-01

    The natural resistance to enzymatic deconstruction exhibited by lignocellulosic materials has designated pretreatment as a key step in the biological conversion of biomass to ethanol. Hydrothermal pretreatment in pure water represents a challenging approach because it is a method with low operational costs and does not involve the use of organic solvents, difficult to handle chemicals, and "external" liquid or solid catalysts. In the present work, a systematic study has been performed to optimize the hydrothermal treatment of lignocellulosic biomass (beech wood) with the aim of maximizing the enzymatic digestibility of cellulose in the treated solids and obtaining a liquid side product that could also be utilized for the production of ethanol or valuable chemicals. Hydrothermal treatment experiments were conducted in a batch-mode, high-pressure reactor under autogeneous pressure at varying temperature (130-220 °C) and time (15-180 min) regimes, and at a liquid-to-solid ratio (LSR) of 15. The intensification of the process was expressed by the severity factor, log R(o). The major changes induced in the solid biomass were the dissolution/removal of hemicellulose to the process liquid and the partial removal and relocation of lignin on the external surface of biomass particles in the form of recondensed droplets. The above structural changes led to a 2.5-fold increase in surface area and total pore volume of the pretreated biomass solids. The enzymatic hydrolysis of cellulose to glucose increased from less than 7 wt% for the parent biomass to as high as 70 wt% for the treated solids. Maximum xylan recovery (60 wt%) in the hydrothermal process liquid was observed at about 80 wt% hemicellulose removal; this was accomplished by moderate treatment severities (log R(o)=3.8-4.1). At higher severities (log R(o)=4.7), xylose degradation products, mainly furfural and formic acid, were the predominant chemicals formed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGa

  8. Vitrification for stability of scrap and residue

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W. [Oak Ridge National Lab., TN (United States)

    1996-05-01

    A conference breakout discussion was held on the subject of vitrification for stabilization of plutonium scrap and residue. This was one of four such sessions held within the vitrification workshop for participants to discuss specific subjects in further detail. The questions and issues were defined by the participants.

  9. UV/H2O2 process performance improvement by ultrafiltration and physicochemical clarification systems for industrial effluent pretreatment

    Directory of Open Access Journals (Sweden)

    Ivanildo Hespanhol

    2012-12-01

    Full Text Available The present study evaluated the removal of TOC from an effluent with high organic load resulted from the treatment of oil-water emulsion by thermal process. Hollow Fiber Ultrafiltration membrane (HF-UF and physicochemical clarification process were used as pretreatment options to assess the influence of feed effluent quality on the UV/H2O2 oxidation process. Results for TOC removals showed HF-UF and physicochemical clarification processes can significantly improve the efficiency of UV/H2O2 oxidation process, when compared with the direct effluent oxidation. Reaction time for obtaining a TOC removal higher than 90% was reduced to approximately half of the time needed when no pretreatment was applied. Considering both pretreatment processes it was not possible to notice any significant difference on the UV/H2O2 oxidation process performance. However, the complexity of physicochemical process due to the use of three different chemicals and sludge production made the HF-UF process the best pretreatment alternative, without increasing the Total Dissolved Solids of the effluent, a very important issue when water reuse is considered.

  10. A NEW PROCESS DEVELOPED FOR SEPARATION OF LIGNIN FROM AMMONIUM HYDROXIDE PRETREATMENT SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S.; Gorensek, M.; Milliken, C.

    2010-12-14

    A method is described for separating lignin from liquid solutions resulting from the pretreatment of lignocellulosic materials such as switchgrass with ammonium hydroxide. The method involves a sequence of steps including acidification, evaporation, and precipitation or centrifugation that are performed under defined conditions, and results in a relatively pure, solid lignin product. The method is tested on ammonium hydroxide solutions containing lignin extracted from switchgrass. Experimental results show that the method is capable of recovering between 66-95% of dissolved lignin as a precipitated solid. Cost estimates of pilot-scale and industrial-scale expressions of the process indicate that breakeven lignin prices of $2.36/kg and $0.78/kg, respectively, may be obtainable with this recovery method.

  11. Development of combined nanofiltration and forward osmosis process for production of ethanol from pretreated rice straw.

    Science.gov (United States)

    Shibuya, Masafumi; Sasaki, Kengo; Tanaka, Yasuhiro; Yasukawa, Masahiro; Takahashi, Tomoki; Kondo, Akihiko; Matsuyama, Hideto

    2017-07-01

    A membrane process combining nanofiltraion (NF) and forward osmosis (FO) was developed for the sugar concentration with the aim of high bio-ethanol production from the liquid fraction of rice straw. The commercial NF membrane, ESNA3, was more adequate for removal of fermentation inhibitors (such as acetic acid) than the FO membrane, whereas the commercial FO membrane, TFC-ES, was more adequate for concentration of the sugars than the NF membrane. The liquid fraction was subjected to the following process: NF concentration with water addition (NF (+H2O) )→enzymatic hydrolysis→FO concentration. This NF (+H2O) -FO hybrid process generated a total sugar content of 107g·L -1 . Xylose-assimilating S. cerevisiae produced 24g·L -1 ethanol from the liquid fraction that was diluted 1.5-fold and then concentrated by the NF (+H2O) -FO hybrid process. The NF (+H2O) -FO hybrid process has the potential for optimized ethanol production from pretreated lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Process analysis of superheated steam pre-treatment of wheat straw and its relative effect on ethanol selling price

    Directory of Open Access Journals (Sweden)

    Dave Barchyn

    2014-12-01

    Full Text Available Existing bioethanol operations rely on starch-based substrates, which have been criticized for their need to displace food crops in order to be produced. As an alternative to these first generation biofuels, the use of agricultural residues is being considered to create more environmentally-benign second generation, or cellulosic biofuels. Recalcitrance of these substrates to fermentation requires extensive pre-treatment processes, which often consume more energy than can be extracted from the ethanol that they produce, so one of the priorities in developing cellulosic ethanol is an effective and efficient pre-treatment method. This study examines the use of superheated steam (SS as a process medium by which wheat straw lignocellulosic material is pre-treated. Following enzymatic hydrolysis, it was found that 47% of the total glucose could be liberated from the substrate, and the optimal conditions for pre-treatment were 15 min in hot water (193 kPa, 119˚C followed by 2 min in SS. Furthermore, a preliminary relative economic analysis showed that the minimum ethanol selling price (MESP was comparable to that obtained from steam explosion, a similar process, while energy consumption was 22% less. The conclusion of the study is that SS treatment stands to be a competitive pre-treatment technology to steam explosion.

  13. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification. Revision 3, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program.

  14. Tailoring Wet Explosion Process Parameters for the Pretreatment of Cocksfoot Grass for High Sugar Yields

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2013-01-01

    glucose release with low formation of by-products. Under these conditions, the cellulose and hemicellulose sugar recovery was 94 % and 70 %, respectively. The efficiency of the enzymatic hydrolysis of cellulose under these conditions was 91 %. On the other hand, the release of pentose sugars was higher......The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response...... when applying less severe pretreatment conditions C (160 °C, 5 min, 0.2 % dilute sulfuric acid). Therefore, the choice of the most suitable pretreatment conditions is depending on the main target product, i.e., hexose or pentose sugars....

  15. Process optimization of biogas energy production from cow dung with alkali pre-treated coffee pulp.

    Science.gov (United States)

    Selvankumar, T; Sudhakar, C; Govindaraju, M; Selvam, K; Aroulmoji, V; Sivakumar, N; Govarthanan, M

    2017-08-01

    Biogas production from cow dung with co-substrate agricultural waste is one of the most demanding technologies for generating energy in a sustainable approach considering eco-friendly. In the present study, coffee pulp (CP) was pre-treated with 1% NaOH and combined with various proportions of cow dung (CD) to explore its biogas producing potentiality. The optimization of the process was studied using Response surface methodology. Statistics based on 3-D plots were generated to evaluate the changes in the response surface and to understand the relationship between the biogas yield and other parameters. The highest methane production (144 mL/kg) was achieved after 90 h of incubation with 1:3 of CP and CD at 40 °C. Gas chromatography analyzes the chemical compositions of the generated biogas and its post combustion emissions. The chemical composition of the substrates before digestion and after fermentation (biogas spent sludge) were measured in terms of fiber content and the values were noted as, total solids (0.53%), ash content (9.2%), volatile fatty acid (100 mg/L), organic carbon (46%) and a total carbohydrate (179 mg/g). The results of the optimization of biogas production presented in this work found to have significance with the process parameters. The outcome of the study has supported the fact of conventional combustion technology that has to be upgraded to prevent these hazardous emissions into the atmosphere.

  16. Effectiveness of coagulation and acid precipitation processes for the pre-treatment of diluted black liquor.

    Science.gov (United States)

    Garg, Anurag; Mishra, I M; Chand, S

    2010-08-15

    The effectiveness of coagulation (using aluminium-based chemicals and ferrous sulfate) and acid precipitation (using H(2)SO(4)) processes for the pre-treatment of diluted black liquor obtained from a pulp and paper mill is reported. Commercial alum was found to be the most economical among all the aluminium and ferrous salts used as a coagulant. A maximum removal of chemical oxygen demand (COD) (ca. 63%) and colour reduction (ca. 90%) from the wastewater (COD = 7000 mg l(-1)) at pH 5.0 was obtained with alum. During the acid precipitation process, at pH < 5.0, significant COD reductions (up to 64%) were observed. Solid residue obtained from the alum treatment at a temperature of 95 degrees C showed much better (3 times) settling rate than that for the residue obtained after treatment with the same coagulant at a temperature of 25 degrees C. The settling curves had three parts, namely, hindered, transition and compression zones. Tory plots were used to determine the critical height of suspension-supernatant interface that is used in the design of a clarifier-thickener unit. High heating values and large biomass fraction of the solid residues can encourage the fuel users to use this waste derived sludge as a potential renewable energy source. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Development of a low-pressure materials pre-treatment process for improved energy efficiency

    Science.gov (United States)

    Lee, Kwanghee; You, Byung Don

    2017-09-01

    Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.

  18. Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Harmsen, P.; Bakker, R. [Wageningen University and Research centre WUR, Food and Biobased Research WUR-FBR, Wageningen (Netherlands); Huijgen, W.J.J. [ECN Biomass, Coal and Environment, Petten (Netherlands); Bermudez Lopez, L. [Abengoa Bioenergia Nuevas Tecnologias ABNT (Spain)

    2010-09-15

    This literature review was performed within the BioSynergy project (2007-2010). BioSynergy is a European Integrated Project supported through the Sixth Framework Programme for Research and Technological Development (038994-SES6). BioSynergy stands for 'BIOmass for the market competitive and environmentally friendly SYNthesis of bio-products together with the production of secondary enERGY carriers through the biorefinery approach'. Within the BioSynergy project the overall goal of the pretreatment routes being developed is to convert raw lignocellulosic biomass into its composing sugars and lignin in a market competitive and environmentally sustainable way. This report reviews lignocellulose pretreatment in general as well as specific pretreatment technologies that are developed within the BioSynergy project including steam explosion (ABNT), mechanical/alkaline fractionation (WUR) and organosolv fractionation (ECN). In addition to these pretreatment technologies, other pretreatment technologies are studied within the BioSynergy project such as acetic/formic acid pretreatment and mild- and strong acid pretreatment.

  19. [Oocyte vitrification in an ART laboratory].

    Science.gov (United States)

    Boyer, P; Montjean, D; Tourame, P; Gervoise-Boyer, M

    2013-09-01

    Oocyte vitrification has been authorized in France after the modification of French bioethics law in July 2011. This evolution will bring a dramatic change in patients' management since, from 2011, infertile couples, oocyte donation and fertility preservation programs will benefit this technique in France. We have introduced oocyte vitrification in our ART laboratory through a validation of the method using Evidence-Based Medicine model: open system Cryotop, Ethylène-glycol 15% and DMSO 15%. Based on our 1-year experience, oocyte vitrification upgrades our daily practice while also minimizing embryo cryoconservation as recommended by the law. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Impact analysis of different chemical pre-treatments on colour of apple discs during drying process

    OpenAIRE

    D. Magdić; Lukinac, Jasmina; Jokić, Stela; F. Čačić-Kenjerić; Bilić, M.; D. Velić

    2009-01-01

    The main purpose of this study was to compare colour changes of chemically pre-treated dried apple discs. Changes were observed by chromameter in L*a*b* colour model by using Minolta chromameter CR-400 and by image analysis system in RGB colour model. Apple discs variety "Gold Rush" were pre-treated and dried in laboratory tray drier at drying temperature 70 °C and at airflow velocity of 1.5 ms-1. Different chemical pre-treatments were applied on apple discs (dipping in 0.5% ascorbic acid sol...

  1. Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation.

    Science.gov (United States)

    Nazari, Laleh; Yuan, Zhongshun; Santoro, Domenico; Sarathy, Siva; Ho, Dang; Batstone, Damien; Xu, Chunbao Charles; Ray, Madhumita B

    2017-04-15

    The present study examines the relationship between the degree of solubilization and biodegradability of wastewater sludge in anaerobic digestion as a result of low-temperature thermal pre-treatment. The main effect of thermal pre-treatment is the disintegration of cell membranes and thus solubilization of organic compounds. There is an established correlation between chemical oxygen demand (COD) solubilization and temperature of thermal pre-treatment, but results of thermal pre-treatment in terms of biodegradability are not well understood. Aiming to determine the impact of low temperature treatments on biogas production, the thermal pre-treatment process was first optimized based on an experimental design study on waste activated sludge in batch mode. The optimum temperature, reaction time and pH of the process were determined to be 80 °C, 5 h and pH 10, respectively. All three factors had a strong individual effect (p effect for temp. pH 2 (p = 0.002). Thermal pre-treatments, carried out on seven different municipal wastewater sludges at the above optimum operating conditions, produced increased COD solubilization of 18.3 ± 7.5% and VSS reduction of 27.7 ± 12.3% compared to the untreated sludges. The solubilization of proteins was significantly higher than carbohydrates. Methane produced in biochemical methane potential (BMP) tests, indicated initial higher rates (p = 0.0013) for the thermally treated samples (k hyd up to 5 times higher), although the ultimate methane yields were not significantly affected by the treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process.

    Science.gov (United States)

    Yoo, Chang Geun; Nghiem, Nhuan P; Hicks, Kevin B; Kim, Tae Hyun

    2011-11-01

    A simple pretreatment method using anhydrous ammonia was developed to minimize water and ammonia inputs for cellulosic ethanol production, termed the low moisture anhydrous ammonia (LMAA) pretreatment. In this method, corn stover with 30-70% moisture was contacted with anhydrous ammonia in a reactor under nearly ambient conditions. After the ammoniation step, biomass was subjected to a simple pretreatment step at moderate temperatures (40-120°C) for 48-144 h. Pretreated biomass was saccharified and fermented without an additional washing step. With 3% glucan loading of LMAA-treated corn stover under best treatment conditions (0.1g-ammonia+1.0 g-water per g biomass, 80°C, and 84 h), simultaneous saccharification and cofermentation test resulted in 24.9 g/l (89% of theoretical ethanol yield based on glucan+xylan in corn stover). Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A NOVEL APPROACH TO MINERAL CARBONATION: ENHANCING CARBONATION WHILE AVOIDING MINERAL PRETREATMENT PROCESS COST

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. McKelvy; Andrew V.G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamadallah Bearat

    2005-10-01

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our first year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the

  4. Startup pattern and performance enhancement of pilot-scale biofilm process for raw water pretreatment.

    Science.gov (United States)

    Yang, Guang-Feng; Feng, Li-Juan; Yang, Qi; Zhu, Liang; Xu, Jian; Xu, Xiang-Yang

    2014-11-01

    The quality of raw water is getting worse in developing countries because of the inadequate treatment of municipal sewage, industrial wastewater and agricultural runoff. Aiming at the biofilm enrichment and pollutant removal, two pilot-scale biofilm reactors were built with different biological carriers. Results showed that compared with the blank carrier, the biofilm was easily enriched on the biofilm precoated carrier and less nitrite accumulation occurred. The removal efficiencies of NH4(+)-N, DOC and UV254 increased under the aeration condition, and a optimum DO level for the adequate nitrification was 1.0-2.6mgL(-1) with the suitable temperature range of 21-22°C. Study on the trihalomethane prediction model indicated that the presentence of algae increased the risk of disinfection by-products production, which could be effectively controlled via manual algae removing and light shading. In this study, the performance of biofilm pretreatment process could be enhanced under the optimized condition of DO level and biofilm carrier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Integration of extrusion and clean fractionation processes as a pre-treatment technology for prairie cordgrass.

    Science.gov (United States)

    Brudecki, Grzegorz; Cybulska, Iwona; Rosentrater, Kurt

    2013-05-01

    Prairie cordgrass (PCG) was pretreated by sequential extrusion and clean fractionation (CF) processing. Following CF, PCG was fractionated into cellulose, hemicellulose and lignin-rich fractions. Cellulose pulp was then enzymatically hydrolyzed, producing glucose. The main purpose of this study was to produce the highest glucose yield as possible. The effects of time, temperature, catalyst concentration and solvent mixture composition on the fractionation were tested. Different proportions of methyl isobutyl ketone (MIBK), ethanol and water with sulfuric acid as a catalyst were evaluated. Optimal conditions for sequential extrusion and clean fractionation (39 min, 129 °C, 0.69% catalyst, and 28% MIBK) resulted in higher glucose yield (92%), and more lignin (87%) and xylan (95%) removal than for clean fractionation alone. Pairwise comparison of raw PCG with extruded PCG clean fractionation revealed no difference in glucose yields, but xylan and AIL removal were higher in the case of clean fractionation of the pre-extruded PCG. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process

    Science.gov (United States)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki

    2017-10-01

    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  7. Is vitrification standard method of cryopreservation

    Directory of Open Access Journals (Sweden)

    Safak Tavukcuoglu

    2012-09-01

    Full Text Available Cryopreservation of human oocytes and embryos or blastocyts is an important choice in assisted reproduction treatment that leads to an increased cumulative outcome while decreasing other attempts’ costs. It provides an opportunity for patients to have more than one attempt following an ovarian stimulation cycle, thereby decreasing the exposure of patients to exogenous gonadotrophins. Vitrification is a cryopreservation technique that leads to a glass-like solidification. Oocyte, zygote, embryo and blastocyst freezing by vitrification method for cryopreservation have been used for many years beside sperms preservation. Moreover, the use of vitrification technology for ovarian tissue cryopreservation to freeze eggs offers such an elderly women who sometime find more difficulty in conceiving or in maintaining pregnancy till full term because of old age compared to relatively younger women who might get better chances to get a healthy pregnancy. Furthermore, vitrification helps cancer patients who are looking to preserve their fertility later on after completing their treatment.

  8. A Novel Approach To Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. McKelvy; Andrew V. G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2006-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our second year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. As our second year progress is intimately related to our earlier work, the report is presented in that context to provide better overall understanding of the progress made. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly

  9. Membrane fouling characteristics and mitigation in a coagulation-assisted microfiltration process for municipal wastewater pretreatment.

    Science.gov (United States)

    Huang, Bao-Cheng; Guan, Yan-Fang; Chen, Wei; Yu, Han-Qing

    2017-10-15

    Maximizing the energy-profitable treatment of municipal wastewater (MW) is of significance to achieve energy-neutral operation for wastewater treatment plant. Direct membrane filtration technology has been considered as an effective way to separate organic carbon from MW for subsequent anaerobic energy-recovering process, but its application is restrained by severe membrane fouling issues. Thus, it is essential to identify the substances in MW that are responsible for membrane fouling and find out efficient anti-fouling methods. In this work, an integrated approach through combining multivariate curve resolution-alternating least squares analysis with infrared attenuated total reflection mapping was adopted to explore the membrane fouling process, and three coagulants, i.e., polyacrylamide, Al2(SO4)3 and FeCl3, were individually used to mitigate membrane fouling. Results show that the 1-8 μm biopolymer clusters, i.e., humic-like and protein-like substances, were the predominant foulants in MW. In addition, membrane fouling caused by proteins was found to be more severe than that by humic substances. Coagulation pretreatment was demonstrated to be effective in mitigating membrane fouling. Al2(SO4)3 or FeCl3 had superior anti-fouling performance comparing to that of polyacrylamide. The dosage of polyacrylamide needs to be optimized according to the actual MW characteristics as its overdose would cause a substantial decline of membrane flux. These results provide a deep understanding of the membrane fouling mechanisms for organic carbon separation from MW and are beneficial for developing efficient and cost-effective membrane fouling mitigation strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Deammonification for digester supernatant pretreated with thermal hydrolysis: overcoming inhibition through process optimization.

    Science.gov (United States)

    Zhang, Qi; De Clippeleir, Haydée; Su, Chunyang; Al-Omari, Ahmed; Wett, Bernhard; Vlaeminck, Siegfried E; Murthy, Sudhir

    2016-06-01

    The thermal hydrolysis process (THP) has been proven to be an excellent pretreatment step for an anaerobic digester (AD), increasing biogas yield and decreasing sludge disposal. The goal of this work was to optimize deammonification for efficient nitrogen removal despite the inhibition effects caused by the organics present in the THP-AD sludge filtrate (digestate). Two sequencing batch reactors were studied treating conventional digestate and THP-AD digestate, respectively. Improved process control based on higher dissolved oxygen set-point (1 mg O2/L) and longer aeration times could achieve successful treatment of THP-AD digestate. This increased set-point could overcome the inhibition effect on aerobic ammonium-oxidizing bacteria (AerAOB), potentially caused by particulate and colloidal organics. Moreover, based on the mass balance, anoxic ammonium-oxidizing bacteria (AnAOB) contribution to the total nitrogen removal decreased from 97 ± 1 % for conventional to 72 ± 5 % for THP-AD digestate treatment, but remained stable by selective AnAOB retention using a vibrating screen. Overall, similar total nitrogen removal rates of 520 ± 28 mg N/L/day at a loading rate of 600 mg N/L/day were achieved in the THP-AD reactor compared to the conventional digestate treatment operating at low dissolved oxygen (DO) (0.38 ± 0.10 mg O2/L).

  11. Structural Changes in Cattle Immature Oocytes Subjected to Slow Freezing and Vitrification

    Directory of Open Access Journals (Sweden)

    H. Wahid*, M. Thein1, E.A. El-Hafez2, M.O. Abas3, K. Mohd Azam4, O. Fauziah5, Y. Rosnina and H. Hajarian

    2012-05-01

    Full Text Available This study was conducted to evaluate the effect of different cryopreservation methods (slow-freezing and vitrification on structural changes of bovine immature oocytes. Bovine ovaries were collected from local abattoirs. Cumulus-oocyte-complexes (COCs were retrieved using aspiration method from 2-6 mm follicles. In Experiment 1, selected oocytes were randomly divided into 4 treatment groups namely freezing solution-exposed, frozen-thawed, vitrification solution-exposed and vitrified-thawed and then oocytes abnormalities were examined under a stereomicroscope. In Experiment 2, oocytes were randomly allocated to the same grouping as experiment 1 plus control group. Following freezing or vitrification, all oocytes were fixed in glutaraldehyde and processed for transmission electron microscopy. In experiment 1, there was a higher incidence of abnormalities in the frozen-thawed and vitrified-warmed oocytes compared to those in freezing solution and vitrification solution-exposed groups (P<0.05. In experiment 2, there were marked alterations in the perivitelline space, microvilli and vesicles of frozen-thawed and vitrified-warmed oocytes characterized by loss of elasticity and integrity of cytoplasmic processes and microvilli following cooling and warming. In conclusion, ethylene glycol-based freezing and vitrification solutions are suitable choices for cryopreservation of immature oocytes and most organelles are able to retain their normal morphology following cryopreservation and thawing processes.

  12. Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes.

    Science.gov (United States)

    McIntosh, S; Vancov, T; Palmer, J; Morris, S

    2014-12-01

    Cotton ginning trash (CGT) collected from Australian cotton gins was evaluated for bioethanol production. CGT composition varied between ginning operations and contained high levels of extractives (26-28%), acid-insoluble material (17-22%) and holocellulose (42-50%). Pretreatment conditions of time (4-20 min), temperature (160-220 °C) and sulfuric acid concentration (0-2%) were optimised using a central composite design. Response surface modelling revealed that CGT fibre pretreated at 180 °C in 0.8% H2SO4 for 12 min was optimal for maximising enzymatic glucose recoveries and achieved yields of 89% theoretical, whilst the total accumulated levels of furans and acetic acid remained relatively low at <1 and 2 g/L respectively. Response surface modelling also estimated maximum xylose recovery in pretreated liquors (87% theoretical) under the set conditions of 150 °C in 1.9% H2SO4 for 23.8 min. Yeast fermentations yielded high ethanol titres of 85%, 88% and 70% theoretical from glucose generated from: (a) enzymatic hydrolysis of washed pretreated fibres, (b) enzymatic hydrolysis of whole pretreated slurries and (c) simultaneous saccharification fermentations, respectively. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Impact analysis of different chemical pre-treatments on colour of apple discs during drying process

    Directory of Open Access Journals (Sweden)

    Jasmina Lukinac

    2009-01-01

    Full Text Available The main purpose of this study was to compare colour changes of chemically pre-treated dried apple discs. Changes were observed by chromameter in L*a*b* colour model by using Minolta chromameter CR-400 and by image analysis system in RGB colour model. Apple discs variety "Gold Rush" were pre-treated and dried in laboratory tray drier at drying temperature 70 °C and at airflow velocity of 1.5 ms-1. Different chemical pre-treatments were applied on apple discs (dipping in 0.5% ascorbic acid solution; 0.3% L–cysteine solution; 0.1% 4–hexyl resorcinol solution and 1% sodium metabisulphite solution. Mean values of colour parameters, colour changes and correlation coefficients for apple discs were calculated for both colour models. The analysis showed statistically significant influence of pre-treatment method on total colour changes for both chosen colour models of dried apples. Calculated correlation coefficient between colour changes for used models was found to be 0.894. According to colour characteristics the best results were achieved when samples were pre-treated with 0.5% ascorbic acid solution. According to calculated results it was found that image analysis method as well as colorimetric method can be used to observe the colour changes on dried apple discs.

  14. Green coconut mesocarp pretreated by an alkaline process as raw material for bioethanol production.

    Science.gov (United States)

    Soares, Jimmy; Demeke, Mekonnen M; Foulquié-Moreno, Maria R; Van de Velde, Miet; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2016-09-01

    Cocos nucifera L., coconut, is a palm of high importance in the food industry, but a considerable part of the biomass is inedible. In this study, the pretreatment and saccharification parameters NaOH solution, pretreatment duration and enzyme load were evaluated for the production of hydrolysates from green coconut mesocarp using 18% (w/v) total solids (TS). Hydrolysates were not detoxified in order to preserve sugars solubilized during the pretreatment. Reduction of enzyme load from 15 to 7.5 filter paper cellulase unit (FPU)/g of biomass has little effect on the final ethanol titer. With optimized pretreatment and saccharification, hydrolysates with more than 7% (w/v) sugars were produced in 48h. Fermentation of the hydrolysate using industrial Saccharomyces cerevisiae strains produced 3.73% (v/v) ethanol. Our results showed a simple pretreatment condition with a high-solid load of biomass followed by saccharification and fermentation of undetoxified coconut mesocarp hydrolysates to produce ethanol with high titer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development of an efficient pretreatment process for enzymatic saccharification of Eastern redcedar.

    Science.gov (United States)

    Ramachandriya, Karthikeyan D; Wilkins, Mark R; Hiziroglu, Salim; Dunford, Nurhan T; Atiyeh, Hasan K

    2013-05-01

    This study investigates the potential for extracting sugars from the polysaccharides of Eastern redcedar. Pretreatment temperature, time, sulfuric acid loading, sodium bisulfite loading and impregnation time were varied using factorial treatment design experiments for identifying near optimal overall wood glucan-to-glucose yields during acid bisulfite pretreatments. The highest overall wood glucan-to-glucose yield of 87% was achieved when redcedar was impregnated with pretreatment liquor containing 3.75 g of sulfuric acid/100g of dry wood and 20 g of sodium bisulfite/100g of dry wood at 90 °C for 3h followed by increasing the temperature to 200 °C with a hold time of 10 min. Hemicellulose and lignin removal during pretreatments made the substrate amenable to enzymatic hydrolysis using 0.5 ml of Accelerase® 1500/g of glucan at 2% (w/w) solid loading. Preliminary mass balances showed 97% glucan recovery at pretreatment condition with 87% overall wood glucan-to-glucose yield and 59% delignification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: first steps in the process development

    Energy Technology Data Exchange (ETDEWEB)

    Sieker, Tim; Tippkoetter, Nils; Muffler, Kai; Ulber, Roland [Institute of Bioprocess Engineering, University of Kaiserslautern (Germany); Neuner, Andreas; Heinzle, Elmar [Biochemical Engineering, Saarland University, Saarbruecken (Germany); Dimitrova, Darina; Bart, Hans-Joerg [Chair of Separation Science and Technology, University of Kaiserslautern (Germany)

    2011-08-15

    Grass silage provides a great potential as renewable feedstock. Two fractions of the grass silage, a press juice and the fiber fraction, were evaluated for their possible use for bioethanol production. Direct production of ethanol from press juice is not possible due to high concentrations of organic acids. For the fiber fraction, alkaline peroxide or enzymatic pretreatment was used, which removes the phenolic acids in the cell wall. In this study, we demonstrate the possibility to integrate the enzymatic pretreatment with a simultaneous saccharification and fermentation to achieve ethanol production from grass silage in a one-process step. Achieved yields were about 53 g ethanol per kg silage with the alkaline peroxide pretreatment and 91 g/kg with the enzymatic pretreatment at concentrations of 8.5 and 14.6 g/L, respectively. Furthermore, it was shown that additional supplementation of the fermentation medium with vitamins, trace elements and nutrient salts is not necessary when the press juice is directly used in the fermentation step. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Improved microbial conversion of de-oiled Jatropha waste into biohydrogen via inoculum pretreatment: process optimization by experimental design approach

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2015-03-01

    Full Text Available In this study various pretreatment methods of sewage sludge inoculum and the statistical process optimization of de-oiled jatropha waste have been reported. Peak hydrogen production rate (HPR and hydrogen yield (HY of 0.36 L H2/L-d and 20 mL H2/g Volatile Solid (VS were obtained when heat shock pretreatment (95 oC, 30 min was employed. Afterwards, an experimental design was applied to find the optimal conditions for H2 production using heat-pretreated seed culture. The optimal substrate concentration, pH and temperature were determined by using response surface methodology as 205 g/L, 6.53 and 55.1 oC, respectively. Under these circumstances, the highest HPR of 1.36 L H2/L-d was predicted. Verification tests proved the reliability of the statistical approach. As a result of the heat pretreatment and fermentation optimization, a significant (~ 4 folds increase in HPR was achieved. PCR-DGGE results revealed that Clostridium sp. were majorly present under the optimal conditions.

  18. Technology evaluation report: Babcock and Wilcox Cyclone Furnace Vitrification technology. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Groeber, P.

    1992-09-01

    The project consists of an analysis of the Babcock and Wilcox (B and W) Cyclone Furnace Vitrification process. The SITE Demonstration took place at the B and W Research and Development Division in Alliance, Ohio. The vitrification process was performed on a synthetic soil matrix (SSM) that was spiked with known concentrations of semivolatile organic compounds, metals, and simulated radionuclides. The Demonstration effort was directed at obtaining information on the performance and cost of the process for use at other sites. Documentation will consist of two reports. This Technology Evaluation Report (TER) is contained in two volumes and describes the field activities and laboratory results.

  19. Hanford Waste Vitrification program pilot-scale ceramic melter Test 23

    Energy Technology Data Exchange (ETDEWEB)

    Goles, R.W.; Nakaoka, R.K.

    1990-02-01

    The pilot-scale ceramic melter test, was conducted to determine the vitrification processing characteristics of simulated Hanford Waste Vitrification Plant process slurries and the integrated performance of the melter off-gas treatment system. Simulated melter feed was prepared and processed to produce glass. The vitrification system, achieved an on-stream efficiency of greater than 98%. The melter off-gas treatment system included a film cooler, submerged bed scrubber, demister, high-efficiency mist eliminator, preheater, and high-efficiency particulate air filter (HEPA). Evaluation of the off-gas system included the generation, nature, and capture efficiency of gross particulate, semivolatile, and noncondensible melter products. 17 refs., 48 figs., 61 tabs.

  20. UV/H2O2 process performance improvement by ultrafiltration and physicochemical clarification systems for industrial effluent pretreatment

    OpenAIRE

    Mierzwa, José Carlos; Subtil, Eduardo Lucas; Hespanhol, Ivanildo

    2012-01-01

    The present study evaluated the removal of TOC from an effluent with high organic load resulted from the treatment of oil-water emulsion by thermal process. Hollow Fiber Ultrafiltration membrane (HF-UF) and physicochemical clarification process were used as pretreatment options to assess the influence of feed effluent quality on the UV/H2O2 oxidation process. Results for TOC removals showed HF-UF and physicochemical clarification processes can significantly improve the efficiency of UV/H2O2 o...

  1. The Increased Expression of Connexin and VEGF in Mouse Ovarian Tissue Vitrification by Follicle Stimulating Hormone

    Directory of Open Access Journals (Sweden)

    Yanzhou Yang

    2015-01-01

    Full Text Available Ovarian follicular damages were caused by cryoinjury during the process of ovarian vitrification and ischemia/reperfusion during the process of ovarian transplantation. And appropriate FSH plays an important role in antiapoptosis during ovarian follicle development. Therefore, in this study, 0.3 IU/mL FSH was administered into medium during mouse ovarian cryopreservation by vitrification to ascertain the function of FSH on ovarian vitrification and avascular transplantation. The results suggested that the expressions of Cx37, Cx43, apoptotic molecular caspase-3, and angiogenesis molecular VEGF were confirmed using immunohistochemistry, western blotting, and real-time PCR, and the results suggested that the treatment with FSH remarkably increased the number of morphologically normal follicles in vitrified/warmed ovaries by upregulating the expression of Cx37, Cx43, VEGF, and VEGF receptor 2, but downregulating the expression of caspase-3. In addition, the vitrified/warmed ovaries were transplanted, and the related fertility was analyzed, and the results suggested that the fertility, neoangiogenesis, and follicle reserve were remarkably increased in the FSH administrated group. Taken together, administration of 0.3 IU/mL FSH during ovarian cryopreservation by vitrification can maintain ovarian survival during ovarian vitrification and increases the blood supply with avascular transplantation via upregulation of Cx43, Cx37, and VEGF/VEGFR2, as well as through its antiapoptotic effects.

  2. In situ vitrification of radioactive underground tanks

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, S.S.; Gibby, R.D.; Thompson, L.E.

    1991-10-01

    In situ vitrification (ISV) is a treatment process with great potential for remediating underground tanks previously used for storing radioactive and hazardous chemical wastes at US Department of Energy (DOE) sites. Tests at several scales have demonstrated the utility of ISV for these tanks. An engineering-scale test vitrified a 30-cm-diameter buried steel and concrete tank that contained simulated tank sludge. Hazardous components of the tank sludge were immobilized, or removed and captured in the off-gas treatment system, and the tank walls were melted or incorporated into the ISV block. A pilot-scale ISV test vitrified a 1-m simulated underground tank than contained a simulated refractory sludge. The ISV process completely vitrified the tank, its contents, and the soil below the tank to a depth of 2.4 m, producing a uniform glass and crystalline monolith with an estimated mass of 30 tons. A large-scale underground tank test is scheduled for early 1991. 5 refs., 4 figs.

  3. Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes

    Directory of Open Access Journals (Sweden)

    Miguel A. Hurtado

    2011-02-01

    Full Text Available This study evaluates the pre-treatment of cellulose from kenaf plant to yield sugar precursors for the production of ethanol or butanol for use as biofuel additives. In order to convert the crystalline cellulosic form to the amorphous form that can undergo enzymatic hydrolysis of the glycosidic bond to yield sugars, kenaf pulp samples were subjected to two different pre-treatment processes. In the acid pre-treatment, the pulp samples were treated with 37.5% hydrochloric acid in the presence of FeCl3 at 50 °C or 90 °C whereas in the alkaline method, the pulp samples were treated with 25% sodium hydroxide at room temperature and with 2% or 5% sodium hydroxide at 50 °C. Microwave-assisted NaOH-treatment of the cellulose was also investigated and demonstrated to be capable of producing high glucose yield without adverse environmental impact by circumventing the use of large amounts of concentrated acids i.e., 83–85% phosphoric acid employed in most digestion processes. The treated samples were digested with the cellulase enzyme from Trichoderma reesei. The amount of glucose produced was quantified using the QuantichromTM glucose bioassay for assessing the efficiency of glucose production for each of the treatment processes. The microwave-assisted alkaline pre-treatment processes conducted at 50 °C were found to be the most effective in the conversion of the crystalline cellulose to the amorphous form based on the significantly higher yields of sugar produced by enzymatic hydrolysis compared to the untreated sample.

  4. An efficient method for the sanitary vitrification of bovine oocytes in straws.

    Science.gov (United States)

    Zhou, Yanhua; Fu, Xiangwei; Zhou, Guangbin; Jia, Baoyu; Fang, Yi; Hou, Yunpeng; Zhu, Shien

    2014-01-01

    At present, vitrification has been widely applied to humans, mice and farm animals. To improve the efficiency of vitrification in straw, bovine oocytes were used to test a new two-step vitrification method in this study. When in vitro matured oocytes were exposed to 20% ethylene glycol (EG20) for 5 min and 40% ethylene glycol (EG40) for 30 s, followed by treatment with 30% glycerol (Gly30), Gly40 or Gly50, a volume expansion was observed in Gly30 and Gly40 but not Gly50. This indicates that the intracellular osmotic pressure after a 30 s differs between EG40 and ranged between Gly40 (approximately 5.6 mol/L) and Gly50 (approximately 7.0 mol/L). Since oocytes are in EG40 just for only a short period of time (30 s) and at a lower temperature (4°C), we hypothesize that the main function of this step in to induce dehydration. Based on these results, we omitted the EG40 step, before oocytes were pretreated in EG20 for 5 min, exposed to pre-cooled (4°C) Gly50, for 30 s, and then dipped into liquid nitrogen. After warming, 81.1% of the oocytes survived, and the surviving oocytes developed into cleavage stage embryos (63.5%) or blastocysts (20.0%) after parthenogenetic activation. These results demonstrate that in a two-step vitrification procedure, the permeability effect in the second step is not necessary. It is possible that the second step is only required to provide adequate osmotic pressure to condense the intracellular concentration of CPAs to a level required for successful vitrification.

  5. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    Science.gov (United States)

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment.

    Science.gov (United States)

    Reid, Sable; Tam, Jason; Yang, Mingfan; Azimi, Gisele

    2017-11-10

    Some rare earth elements (REEs) are classified under critical materials, i.e., essential in use and subject to supply risk, due to their increasing demand, monopolistic supply, and environmentally unsustainable and expensive mining practices. To tackle the REE supply challenge, new initiatives have been started focusing on their extraction from alternative secondary resources. This study puts the emphasis on technospheric mining of REEs from bauxite residue (red mud) produced by the aluminum industry. Characterization results showed the bauxite residue sample contains about 0.03 wt% REEs. Systematic leaching experiments showed that concentrated HNO3 is the most effective lixiviant. However, because of the process complexities, H2SO4 was selected as the lixiviant. To further enhance the leaching efficiency, a novel process based on microwave pretreatment was employed. Results indicated that microwave pretreatment creates cracks and pores in the particles, enabling the lixiviant to diffuse further into the particles, bringing more REEs into solution, yielding of 64.2% and 78.7% for Sc and Nd, respectively, which are higher than the maximum obtained when HNO3 was used. This novel process of "H2SO4 leaching-coupled with-microwave pretreatment" proves to be a promising technique that can help realize the technological potential of REE recovery from secondary resources, particularly bauxite residue.

  8. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  9. Vitrification of copper flotation waste.

    Science.gov (United States)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  10. Effect of vitrification using the Cryotop method on the gene expression profile of in vitro-produced bovine embryos.

    Science.gov (United States)

    de Oliveira Leme, Ligiane; Dufort, Isabelle; Spricigo, José Felipe Warmling; Braga, Thiago Felipe; Sirard, Marc-André; Franco, Maurício Machaim; Dode, Margot Alves Nunes

    2016-03-01

    The present study analyzed the changes in gene expression induced by the Cryotop vitrification technique in bovine blastocyst-stage embryos, using Agilent EmbryoGENE microarray slides. Bovine in vitro-produced embryos were vitrified and compared with nonvitrified (control) embryos. After vitrification, embryos were warmed and cultured for an additional 4 hours. Survived embryos were used for microarray analysis and quantitative polymerase chain reaction (qPCR) quantification. Survival rates were higher (P vitrification seems to be the activation of the apoptosis pathway in some cells. Indeed, FOSL1 is part of the activating protein 1 transcription factor complex and is implicated in a variety of cellular processes, including proliferation, differentiation, and apoptosis. Therefore, our results suggest that a limited increase in the rate of apoptosis was the only detectable response of the embryos to vitrification stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Comparison of Pretreatment Methods on Vetiver Leaves for Efficient Processes of Simultaneous Saccharification and Fermentation by Neurospora sp.

    Science.gov (United States)

    Restiawaty, E.; Dewi, A.

    2017-07-01

    Lignocellulosic biomass is a potential raw material for bioethanol production. Neurospora sp. can be used to convert lignocellulosic biomass into bioethanol because of its ability to perform simultaneous saccharification and fermentation. However, lignin content, degree of polymerization, and crystallinity of cellulose contained in lignocellulosic biomass can inhibit cellulosic-biomass digestion by Neurospora sp, so that a suitable pretreatment method of lignocellulosic biomass is needed. The focus of this research was to investigate the suitable pretreatment method for vetiver leaves (Vetiveria zizanioides L. Nash) used as a raw material producing bioethanol in the process of simultaneous saccharification and fermentation (SSF) by Neurospora sp.. Vetiver plants obtained from Garut are deliberately cultivated to produce essential oils extracted from the roots of this plant. Since the vetiver leaves do not contain oil, some of harvested leaves are usually used for crafts and cattle feed, and the rest are burned. This study intended to look at other potential of vetiver leaves as a source of renewable energy. Pretreatments of the vetiver leaves were conducted using hot water, dilute acid, alkaline & dilute acid, and alkaline peroxide, in which each method was accompanied by thermal treatment. The results showed that the alkaline peroxide treatment is a suitable for vetiver leaves as indicated by the increase of cellulose content up to 65.1%, while the contents of hot water soluble, hemicellulose, lignin, and ash are 8.7%, 18.3%, 6.8%, and 1.1%, respectively. Using this pretreatment method, the vetiver leaves can be converted into bioethanol by SSF process using Neurospora sp. with a concentration of bioethanol of 6.7 g/L operated at room temperature.

  12. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    Energy Technology Data Exchange (ETDEWEB)

    Andrew V. G. Chizmeshya; Michael J. McKelvy; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2007-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li+, Na+, K+, Rb+, Cl-, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus

  13. Survival and development of bovine blastocysts produced in vitro after assisted hatching, vitrification and in-straw direct rehydration.

    Science.gov (United States)

    Vajta, G; Holm, P; Greve, T; Callesen, H

    1997-09-01

    The purpose of this study was to establish an efficient combination of assisted hatching and cryopreservation procedures for producing bovine embryos in vitro. A total of 1312 day 7 blastocysts were subjected randomly to 14 different combinations of three factors: osmotic stress, assisted hatching and vitrification. Re-expansion, initiation and completion of the hatching process, as well as attachment to the culture dish, were analysed by SAS Genmod procedure. Incubation with sucrose was found to decrease survival rates; among the assisted hatching procedures used, zona fenestration resulted in higher survival rates compared with partial zona dissection and controls; and vitrification decreased survival and further development. The combined effect of sucrose incubation and vitrification decreased further development markedly, as did partial zona dissection followed by vitrification. Partial zona dissection performed in medium containing sucrose severely lowered embryo survival. Zona fenestration without sucrose incubation followed by vitrification did not compromise further embryo development: 86%, 84% and 79% of the blastocysts initiated, completed hatching and attached to the bottom, respectively. These data were not different from the controls (80%, 76% and 63%, respectively; P > 0.05). Cell count analysis revealed a decrease in the total number of cells as a result of the assisted hatching and vitrification compared with controls (135 versus 202, respectively; P embryo transfer results (36% pregnancy rate and 30% calving rate) require further improvement, this combination of methods may prove useful in the commercial production of bovine embryos in vitro.

  14. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process?

    Science.gov (United States)

    Liu, Jibao; Jia, Ruilai; Wang, Yawei; Wei, Yuansong; Zhang, Junya; Wang, Rui; Cai, Xing

    2017-04-01

    This study investigated the effects of residual H2O2 on hydrolysis-acidification and methanogenesis stages of anaerobic digestion after microwave-H2O2 (MW-H2O2) pretreatment of waste activated sludge (WAS). Results showed that high sludge solubilization at 35-45 % was achieved after pretreatment, while large amounts of residual H2O2 remained and refractory compounds were thus generated with high dosage of H2O2 (0.6 g H2O2/g total solids (TS), 1.0 g H2O2/g TS) pretreatment. The residual H2O2 not only inhibited hydrolysis-acidification stage mildly, such as hydrolase activity, but also had acute toxic effect on methanogens, resulting in long lag phase, low methane yield rate, and no increase of cumulative methane production during the 30-day BMP tests. When the low dosage of H2O2 at 0.2 g H2O2/g TS was used in MW-H2O2 pretreatment, sludge anaerobic digestion was significantly enhanced. The cumulative methane production increased by 29.02 %, but still with a lag phase of 1.0 day. With removing the residual H2O2 by catalase, the initial lag phase of hydrolysis-acidification stage decreased from 1.0 to 0.5 day.

  15. Solution-Sensitivity and Comprehensive Mechanism of Lignin Breakdown during the Phosphoric Acid-Acetone Pretreatment Process

    OpenAIRE

    Wu Qin; Zong-Ming Zheng; Peng Kang; Changqing Dong; Yongping Yang

    2013-01-01

    This work focused on the solution-sensitivity and the comprehensive mechanism of lignin breakdown during the phosphoric acid-acetone pretreatment process using density functional theory calculations. The structures and properties of alpha-O-4 lignin, β-5-3 lignin, and β-β lignin were detected, which showed that the bond length follows the order: alpha-O-4 bond < β-5-3 bond < β-β bond, but alpha-O-4 lignin is more sensitive to solvent molecule than β-β lignin and β-5-3 lignin. The decompositio...

  16. 76 FR 13605 - Notice of Availability of Draft Waste Incidental to Reprocessing Evaluation for the Vitrification...

    Science.gov (United States)

    2011-03-14

    ... vitrified the waste (combined it at a high temperature with borosilicate glass) and transferred the molten glass-waste mixture into specially developed ] stainless steel canisters where the mixture hardened into a solid glass waste form. DOE used the vitrification melter as part of this process, specifically to...

  17. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  18. Oxytocin and social pretreatment have similar effects on processing of negative emotional faces in healthy adult males

    Directory of Open Access Journals (Sweden)

    Anna eKis

    2013-08-01

    Full Text Available Oxytocin has been shown to affect several aspects of human social cognition, including facial emotion processing. There is also evidence that social stimuli (such as eye-contact can effectively modulate endogenous oxytocin levels.In the present study we directly tested whether intranasal oxytocin administration and pre-treatment with social stimuli had similar effects on face processing at the behavioural level. Subjects (N=52 healthy adult males were presented with a set of faces with expressions of different valence (negative, neutral, positive following different types of pretreatment (oxytocin – OT or placebo – PL and social interaction – Soc or no social interaction – NSoc, N=13 in each and were asked to rate all faces for perceived emotion and trustworthiness. On the next day subjects’ recognition memory was tested on a set of neutral faces and additionally they had to again rate each face for trustworthiness and emotion.Subjects in both the OT and the Soc pretreatment group (as compared to the PL and to the NSoc groups gave higher emotion and trustworthiness scores for faces with negative emotional expression. Moreover, 24 h later, subjects in the OT and Soc groups (unlike in control groups gave lower trustworthiness scores for previously negative faces, than for faces previously seen as emotionally neutral or positive.In sum these results provide the first direct evidence of the similar effects of intranasal oxytocin administration and social stimulation on the perception of negative facial emotions as well as on the delayed recall of negative emotional information.

  19. Effects of drying pretreatment and particle size adjustment on the composting process of discarded flue-cured tobacco leaves.

    Science.gov (United States)

    Zhao, Gui-Hong; Yu, Yan-Ling; Zhou, Xiang-Tong; Lu, Bin-Yu; Li, Zi-Mu; Feng, Yu-Jie

    2017-05-01

    The main characteristic of discarded flue-cured tobacco leaves is their high nicotine content. Aerobic composting is an effective method to decrease the nicotine level in tobacco leaves and stabilize tobacco wastes. However, high levels of nicotine in discarded flue-cured tobacco leaves complicate tobacco waste composting. This work proposes a drying pretreatment process to reduce the nicotine content in discarded flue-cured tobacco leaves and thus enhance its carbon-to-nitrogen ratio to a suitable level for composting. The effect of another pretreatment method, particle size adjustment, on composting efficiency was also tested in this work. The results indicated that the air-dried (nicotine content: 1.35%) and relatively long discarded flue-cured tobacco leaves (25 mm) had a higher composting efficiency than damp (nicotine content: 1.57%) and short discarded flue-cured tobacco leaves (15 mm). When dry/25 mm discarded flue-cured tobacco leaves mixed with tobacco stems in an 8:2 ratio was composted at a temperature above 55 °C for 9 days, the nicotine content dropped from 1.29% to 0.28%. Since the discarded flue-cured tobacco leaves was successfully composted to a fertile and harmless material, the germination index values increased to 85.2%. The drying pretreatment and particle size adjustment offered ideal physical and chemical conditions to support microbial growth and bioactivity during the composting process, resulting in efficient conversion of discarded flue-cured tobacco leaves into a high quality and mature compost.

  20. PROJECT W-551 INTERIM PRETREATMENT SYSTEM PRECONCEPTUAL CANDIDATE TECHNOLOGY DESCRIPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    MAY TH

    2008-08-12

    The Office of River Protection (ORP) has authorized a study to recommend and select options for interim pretreatment of tank waste and support Waste Treatment Plant (WTP) low activity waste (LAW) operations prior to startup of all the WTP facilities. The Interim Pretreatment System (IPS) is to be a moderately sized system which separates entrained solids and 137Cs from tank waste for an interim time period while WTP high level waste vitrification and pretreatment facilities are completed. This study's objective is to prepare pre-conceptual technology descriptions that expand the technical detail for selected solid and cesium separation technologies. This revision includes information on additional feed tanks.

  1. Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Saumita [Environmental Biotechnology Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020 Maharashtra (India); Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 West Bengal (India); Sen, Ramkrishna [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 West Bengal (India); Pandey, R.A.; Chakrabarti, Tapan; Satpute, Dewanand; Giri, Balendu Shekher; Mudliar, Sandeep [Environmental Biotechnology Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020 Maharashtra (India)

    2009-12-15

    The pretreatment of rice husk by the wet air oxidation (WAO) technique was investigated by means of a statistically designed set of experiments. Reaction temperature, air pressure, and reaction time were the process parameters considered. WAO pretreatment of rice husk increased the cellulose content of the solid fraction by virtue of lignin removal and hemicellulose solubilization. The cellulose recovery was around 92%, while lignin recovery was in the tune of 8-20%, indicating oxidation of a bulk quantity of lignin. The liquid fraction was found to be rich in hexose and pentose sugars, which could be directly utilized as substrate for ethanol fermentation. The WAO process was optimized by multi-objective numerical optimization with the help of MINITAB 14 suite of statistical software, and an optimum WAO condition of 185 C, 0.5 MPa, and 15 min was predicted and experimentally validated to give 67% (w/w) cellulose content in the solid fraction, along with 89% lignin removal, and 70% hemicellulose solubilization; 13.1 gl{sup -1} glucose and 3.4 gl{sup -1} xylose were detected in the liquid fraction. The high cellulose content and negligible residual lignin in the solid fraction would greatly facilitate subsequent enzymatic hydrolysis, and result in improved ethanol yields from rice husk. (author)

  2. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    Science.gov (United States)

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and

  3. Vitrification preserves proliferation capacity in human spermatogonia.

    Science.gov (United States)

    Poels, Jonathan; Van Langendonckt, Anne; Many, Marie-Christine; Wese, François-Xavier; Wyns, Christine

    2013-03-01

    Does vitrification of human immature testicular tissue (ITT) have potential benefits for future fertility preservation? Does vitrification of human ITT have potential benefits in an in vivo murine xenotransplantation model? Vitrification is able to maintain proliferation capacity in spermatogonial cells after 6 months of xenografting. Controlled slow-freezing is the procedure currently applied for ITT cryobanking in clinical practice. Vitrification has been proposed as a promising technique for long-term storage of ITT, with a view to preserving spermatogonial stem cells (SSCs) for future fertility restoration in young boys suffering from cancer. After vitrification of ITT, in vitro survival of SSCs was demonstrated, but their functionality was not evaluated. Ten ITT pieces issuing from 10 patients aged 2-12 years were used. Fragments of fresh tissue (serving as controls) and fresh, frozen-thawed and vitrified-warmed testicular pieces xenografted to the scrotum of nude mice for 6 months were compared. Upon graft removal, histological and immunohistochemical analyses were performed to evaluate spermatogonia (SG) (MAGE-A4), intratubular proliferation (Ki67), proliferating SG and Leydig cells (3β-HSD). The entire piece of grafted tissue was assessed in each case. Seminiferous tubules showed good integrity after cryopreservation and xenografting for 6 months in all three groups. Survival of SG and their ability to proliferate was observed by immunohistochemistry in all grafted groups. SG were able to initiate spermatogenesis, but blockage at the pachytene stage was observed. The recovery rate of SG was 3.4 ± 3.8, 4.1 ± 7.3 and 7.3 ± 6.3%, respectively, for fresh, slow-frozen and vitrified-warmed tissue after 6 months of xenografting. The study is limited by the low availability of ITT samples of human origin. The mouse xenotransplantation model needs to be refined to study human spermatogenesis. The findings of the present study have potential implications for

  4. Changes in feedwater organic matter concentrations based on intake type and pretreatment processes at SWRO facilities, Red Sea, Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah

    2015-03-01

    Transparent exopolymer particles (TEP), natural organic matter, and bacterial concentrations in feedwater are important factors that can lead to membrane biofouling in seawater reverse osmosis (SWRO) systems. Two methods for controlling these concentrations in the feedwater prior to pretreatment have been suggested; use of subsurface intake systems or placement of the intake at a greater depth in the sea. These proposed solutions were tested at two SWRO facilities located along the Red Sea of Saudi Arabia. A shallow well intake system was very effective in reducing the algae and bacterial concentrations and somewhat effective in reducing TEP concentrations. An intake placed at a depth of 9. m below the surface was found to have limited impact on improving water quality compared to a surface intake. The algae and bacteria concentration in the feedwater (deep) was lower compared to the surface seawater, but the overall TEP concentration was higher. Bacteria and TEP measurements made in the pretreatment process train in the plant and after the cartridge filters suggest that regrowth of bacteria is occurring within the cartridge filters.

  5. Ozonation as a pretreatment process for nanofiltration brines: Monitoring of transformation products and toxicity evaluation.

    Science.gov (United States)

    Azaïs, Antonin; Mendret, Julie; Cazals, Guillaume; Petit, Eddy; Brosillon, Stephan

    2017-09-15

    Considerable interest has been given to using nanofiltration (NF) in lieu of reverse osmosis for water reclamation schemes due to lower energy consumption, higher flux rates while ensuring good micropollutants rejection. The application NF results in the generation of a large concentrated waste stream. Treatment of the concentrate is a major hurdle for the implementation of membrane technologies since the concentrate is usually unusable due to a large pollutants content. This work focuses on the application of ozonation as pretreatment of urban NF concentrates, the generation of transformation products and their relative toxicity. Three pharmaceutical micropollutants largely encountered in water cycle were selected as target molecules: acetaminophen, carbamazepine and atenolol. Through accurate-mass Q-TOF LC-MS/MS analyses, more than twenty ozonation products were detected, structure proposals and formation pathways were elaborated. Attempts were made to understand the correlation between the transformation products and acute toxicity on Vibrio fischeri strain. It is the first time that an integrated study reported on the ozonation of pharmaceuticals in urban membrane concentrates, in terms of transformation products, kinetics, degradation mechanisms, as well as toxicity assessment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Pre-treatment of oil palm frond biomass via extensive high temperature drying for gasification process

    Directory of Open Access Journals (Sweden)

    Mat Razali Nur Hazwani

    2017-01-01

    Full Text Available Oil palm frond has been utilized as a solid biomass fuel for gasification to produce synthesis gas or syngas to be used for heat and power generation. A fuel pre-treatment method by means of extensively-drying OPF blocks at 150°C and 200°C for 4 hours was implemented to investigate the effects of the fuel in terms of drying efficiency and gasification performances. Tar, pyrolysis oil and condensates were found to be squeezed out by heat during drying, signifying volatilization of fuel at temperatures between water boiling point at 100°C and fuel pyrolysis point at 280°C. Syngas produced from the updraft gasification of extensively-dried OPF blocks was analyzed and tested for sustainable gas flares. The syngas was found to be composed of 16.5% CO, 10% CO2, 4% H2 and 0.9% CH4 and was produced at gasification temperatures lower than that exhibited by normal OPF blocks.

  7. The Effect of Vitrification on Follicular Morphology of Ovarian Rat

    Directory of Open Access Journals (Sweden)

    Foroozan Esmaeilzadeh

    2015-08-01

    Full Text Available Background & Objective: Some efforts have been made for keeping cryopreservation of gametes and embryos safe, including new vitrification methods of the ovary. This study evaluates the effect of ethylene glycole vitrification on follicular morphology of ovarian rat.Materials & Methods: Eighty ovaries belonging to 40 rats are divided into 2 groups. Twenty five ovaries are control group, 25 the vitrification, and30 toxicologic effects. For freezing, equilibrium solution, ethylene glycole and methyl sulfoxide are used. For defreezeing, different concentrations of saccharose and for morphological evaluation, H&E staining are undertaken. The number of healthy and atretic follicles are determined after 24 hours, 1 week and one month after vitrification.Results: No morphological changes are observed in all follicular cells. The percent of primordial, primary, secondary, anthral and developed follicles in the vitrification group are 34.5%, 17.7%, 17.4%, 15.2% and 50.3%. In vitrification and toxicological groups, the percent of both normal and atretic follicles is 47.5% and 11.9%. These figures for the control group were 59.7% and 16.9%. In vitrification method, 91% of oocytes are viable, 81% have mitosis, and 50% enters blastocyst stage.Conclusion: Because in vitrification of ovary in comparison with the follicles, many types of follicles in different cycles can be recovered with no morphological and structural changes, vitrification of ovary can be a safe method for cryopreservation of the oocytes

  8. Vitrification of Germinal Vesicle Stage Oocytes

    OpenAIRE

    ABE, Yasuyuki; AONO, Nobuya; Hara, Kenshiro; Matsumoto, Hiromichi; BAKHTIYARI, Mehrdad; Sasada, Hiroshi; Sato, Eimei

    2004-01-01

    In order to cryopreserve germinal vesicle (GV) stage oocytes, we first need to develop a novel container for keeping large quantities of GV oocytes, because of collecting them as cumulus oocytes complexes (COCs) that have bigger size and larger volume than oocytes themselves, and second modify a protocol for optimizing vitrification of them. In this mini-review, we describe our recent progress for attaining these objectives. When 65 bovine COCs having GV oocytes could be placed on a sheet of ...

  9. Successful ongoing pregnancies after vitrification of oocytes.

    Science.gov (United States)

    Lucena, Elkin; Bernal, Diana Patricia; Lucena, Carolina; Rojas, Alejandro; Moran, Abby; Lucena, Andrés

    2006-01-01

    To demonstrate the efficiency of vitrifying mature human oocytes for different clinical indications. Descriptive case series. Cryobiology laboratory, Centro Colombiano de Fertilidad y Esterilidad-CECOLFES LTDA. (Bogotá, Colombia). Oocyte vitrification was offered as an alternative management for patients undergoing infertility treatment because of ovarian hyperstimulation syndrome, premature ovarian failure, natural ovarian failure, male factor, poor response, or oocyte donation. Mature oocytes were obtained from 33 donor women and 40 patients undergoing infertility treatment. Oocytes were retrieved by ultrasound-guided transvaginal aspiration and vitrified with the Cryotops method, with 30% ethylene glycol, 30% dimethyl sulfoxide, and 0.5 mol/L sucrose. Viability was assessed 3 hours after thawing. The surviving oocytes were inseminated by intracytoplasmic sperm injection. Fertilization was evaluated after 24 hours. The zygotes were further cultured in vitro for up to 72 hours until time of embryo transfer. Recovery, viability, fertilization, and pregnancy rates. Oocyte vitrification with the Cryotop method resulted in high rates of recovery, viability, fertilization, cleavage, and ongoing pregnancy. Vitrification with the Cryotop method is an efficient, fast, and economical method for oocyte cryopreservation that offers high rates of survival, fertilization, embryo development, and ongoing normal pregnancies, providing a new alternative for the management of female infertility.

  10. Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process.

    Science.gov (United States)

    Yang, Haitao; Xie, Yimin; Zheng, Xing; Pu, Yunqiao; Huang, Fang; Meng, Xianzhi; Wu, Weibing; Ragauskas, Arthur; Yao, Lan

    2016-05-01

    To understand the structural changes of lignin after soda-AQ and kraft pretreatment, milled straw lignin, black liquor lignin and residual lignin extracted from wheat straw were characterized by FT-IR, UV, GPC and NMR. The results showed that the main lignin linkages were β-aryl ether substructures (β-O-4'), followed by phenylcoumaran (β-5') and resinol (β-β') substructures, while minor content of spirodienone (β-1'), dibenzodioxocin (5-5') and α,β-diaryl ether linkages were detected as well. After pretreatment, most lignin inter-units and lignin-carbohydrate complex (LCC) linkages were degraded and dissolved in black liquor, with minor amount left in residual pretreated biomass. In addition, through quantitative (13)C and 2D-HSQC NMR spectral analysis, lignin and LCC were found to be more degraded after kraft pretreatment than soda-AQ pretreatment. Furthermore, the subsequent enzymatic hydrolysis results showed that more cellulose in wheat straw was converted to glucose after kraft pretreatment, indicating that LCC linkages were important in the enzymatic hydrolysis process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Green and chemical-free process of enzymatic xylooligosaccharide production from corncob: Enhancement of the yields using a strategy of lignocellulosic destructuration by ultra-high pressure pretreatment.

    Science.gov (United States)

    Seesuriyachan, Phisit; Kawee-Ai, Arthitaya; Chaiyaso, Thanongsak

    2017-10-01

    In this study, the pressures at 50-500MPa were evaluated at different time to pretreat and further enzyme hydrolysis. The ultra-high pressure (UHP) pretreatment at 100MPa for 10min led to improved accessibility of enzyme for conversion of xylan to xylooligosaccharide (XOS). The maximum XOS yield of 35.6mg/g substrate was achieved and firstly reported at 10% (w/v) of substrate, 100U of endo-xylanase/g corncobs and incubation time of 18h. The enzymatic hydrolysis efficiency was increased by 180.3% and released a high amount of xylobiose. The UHP pretreatment relatively did not affect to the composition of corncob, but decreased 34.3% of lignin. Interestingly, antioxidant activities of XOS using UHP pretreatment were higher than untreated corncob. The UHP pretreatment improved lignocellulosic destructuration and XOS yields in a shorter time without the need of chemicals, implying that UHP could be an effective pretreatment of biomass with a chemical-free process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A combined microwave pretreatment/solvent extraction process for the production of oil from palm fruit: optimisation, oil quality and effect of prolonged exposure.

    Science.gov (United States)

    Tan, Jason Cx; Chuah, Cheng-Hock; Cheng, Sit-Foon

    2017-04-01

    Conventional palm oil milling involves multiple stages after fruit collection; in particular, oil clarification introduces water into the pressed oil, which results in a large quantity of wastewater. A combined process of microwave pretreatment and solvent extraction to mill crude palm oil, without introducing water or steam, is described. An excellent yield (up to 30%) of oil was obtained with pretreatment in a 42 L, 1000 W and 2450 MHz microwave oven followed by hexane extraction. The optimum conditions (10 min microwave pretreatment and 12 h solvent extraction) yielded an oil with a low free fatty acid content (oil had a fatty acid composition not resembling those of conventional crude palm oil and crude palm kernel oil. In the pretreatment, the leached oil had 6.3% lauric acid whereas the solvent extracted oil had only 1.5% lauric acid. Among the factors affecting the oil quality, microwave pretreatment affected the oil quality significantly; however, an optimised duration that would ensure high efficiency in solvent extraction also resulted in ruptured fruitlets, although not to the extent of causing excessive oxidation. In fact, microwave pretreatment should exceed 12 min; after only 15 min, the oil had 1-methylcyclopentanol (12.96%), 1-tetradecanol (9.44%), 1-nonadecene (7.22%), nonanal (7.13%) and 1-tridecene (5.09%), which probably arose from the degradation of fibres. Microwave pretreatment represents an alternative milling process for crude palm oil compared with conventional processes in the omission of wet treatment with steam. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Vitrification: a solution for the wastes of wastes; La vitrification: ca chauffe pour les ultimes

    Energy Technology Data Exchange (ETDEWEB)

    Guihard, B. [Europlasma, 33 - Saint Medard en Jalles (France)

    1997-07-01

    The incineration of wastes generates other wastes (fly ashes) that concentrate a large amount of polluting substances (heavy metals, salts..). French law requires a stabilization of this kind of wastes before their storage. Today vitrification can be considered as an alternative to the stabilization and storage way, the vitrified products could be seen as an interesting material in the building industry or in road works. A few years ago the municipality of Bordeaux decided to launch a demonstration program and a REFIOM (fly ashes) vitrification unit has been operating since 1997. (A.C.)

  14. Meiotic maturation and developmental capability of ovine oocytes at germinal vesicle stage following vitrification using different cryodevices.

    Science.gov (United States)

    Quan, Guo Bo; Wu, Guo Quan; Wang, Ya Jing; Ma, Yuan; Lv, Chun Rong; Hong, Qiong Hua

    2016-02-01

    In order to assess effects of vitrification on ovine oocytes at the germinal vesicle (GV) stage, the conventional plastic straw (CS), the open-pulled straw (OPS), and Cryoloop were used to vitrify ovine oocytes. Oocytes were randomly divided into five groups: (1) Control; (2) Oocytes exposed to vitrification and dilution solutions without any cryopreservation (toxicity); (3) Oocytes vitrified using CS (CS); (4) Oocytes vitrified using OPS (OPS), and (5) Oocytes vitrified using Cryoloop (Cryoloop). The viability, cumulus cell expansion, nuclear maturation after in vitro maturation (IVM), and developmental capability of vitrified oocytes following parthenogenetic activation (PA) or in vitro fertilization (IVF) were assessed. The pretreatment in the vitrification and dilution solutions without any freezing or thawing did not adversely influence oocytes. The viability of vitrified oocytes were significantly declined compared to unfrozen oocytes (P straws or Cryoloop was significantly higher than that in the CS group (P plastic straws was significantly less than those of the other freezing groups (P straws. However, the cleavage rate of vitrified oocytes in the CS group was significantly less than that in the OPS or Cryoloop group (P plastic straw developed to the blastocyst stage following IVF. There was no significant difference existing between OPS and Cryoloop with respect to the blastocyst rate. After staining with cFDA and PI, cumulus cells surrounding oocytes were partly damaged by vitrification and thawing while the membrane of vitrified oocyte still remained intact. In conclusion, vitrification can seriously damage ovine immature oocytes and cumulus cells surrounding oocytes, which may subsequently affect their developmental capability. Finally, this study further proves that increasing the freezing and thawing velocity benefits survival of vitrified immature oocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Alternative TRUEX-Based Pretreatment Processing of INEEL Sodium Bearing Waste

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Fiskum, Sandra K.; Lumetta, Gregg J.

    2000-09-27

    The goals of this study were to demonstrate a selective complexant for separating mercury from the transuranic (TRU) elements in the transuranic extraction (TRUEX) process and to demonstrate alternative stripping methods to eliminate phosphorus-containing, actinide stripping agents during TRUEX processing. The work described in this report provides the basis for implementing an improved TRUEX-based flowsheet for processing INEEL sodium-bearing waste using only minor modifications to the current Idaho National Engineering and Environmental Laboratory (INEEL) flowsheet design.

  16. High hydrostatic pressure: a new way to improve in vitro developmental competence of porcine matured oocytes after vitrification

    DEFF Research Database (Denmark)

    Du, Y; Pribenszky, C S; Molnár, M

    2008-01-01

    The purpose of the present study was to improve cryotolerance using high hydrostatic pressure (HHP) pretreatment of porcine in vitro matured (IVM) oocytes, to facilitate their further developmental competence after parthenogenetic activation. A total of 1668 porcine IVM oocytes were used in our...... present study. The pressure tolerance and optimal duration of recovery after HHP treatment were determined. Oocytes were treated with either 20 or 40 MPa (200 and 400 times greater than atmospheric pressure) for 60 min, with an interval of 10, 70, and 130 min between pressure treatment and subsequent...... vitrification under each pressure parameter. Oocytes from all vitrification groups had much lower developmental competence than fresh oocytes (Ppressure, with either 70...

  17. A Conversation on Data Mining Strategies in LC-MS Untargeted Metabolomics: Pre-Processing and Pre-Treatment Steps.

    Science.gov (United States)

    Tugizimana, Fidele; Steenkamp, Paul A; Piater, Lizelle A; Dubery, Ian A

    2016-11-03

    Untargeted metabolomic studies generate information-rich, high-dimensional, and complex datasets that remain challenging to handle and fully exploit. Despite the remarkable progress in the development of tools and algorithms, the "exhaustive" extraction of information from these metabolomic datasets is still a non-trivial undertaking. A conversation on data mining strategies for a maximal information extraction from metabolomic data is needed. Using a liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomic dataset, this study explored the influence of collection parameters in the data pre-processing step, scaling and data transformation on the statistical models generated, and feature selection, thereafter. Data obtained in positive mode generated from a LC-MS-based untargeted metabolomic study (sorghum plants responding dynamically to infection by a fungal pathogen) were used. Raw data were pre-processed with MarkerLynx(TM) software (Waters Corporation, Manchester, UK). Here, two parameters were varied: the intensity threshold (50-100 counts) and the mass tolerance (0.005-0.01 Da). After the pre-processing, the datasets were imported into SIMCA (Umetrics, Umea, Sweden) for more data cleaning and statistical modeling. In addition, different scaling (unit variance, Pareto, etc.) and data transformation (log and power) methods were explored. The results showed that the pre-processing parameters (or algorithms) influence the output dataset with regard to the number of defined features. Furthermore, the study demonstrates that the pre-treatment of data prior to statistical modeling affects the subspace approximation outcome: e.g., the amount of variation in X-data that the model can explain and predict. The pre-processing and pre-treatment steps subsequently influence the number of statistically significant extracted/selected features (variables). Thus, as informed by the results, to maximize the value of untargeted metabolomic data, understanding

  18. A Conversation on Data Mining Strategies in LC-MS Untargeted Metabolomics: Pre-Processing and Pre-Treatment Steps

    Directory of Open Access Journals (Sweden)

    Fidele Tugizimana

    2016-11-01

    Full Text Available Untargeted metabolomic studies generate information-rich, high-dimensional, and complex datasets that remain challenging to handle and fully exploit. Despite the remarkable progress in the development of tools and algorithms, the “exhaustive” extraction of information from these metabolomic datasets is still a non-trivial undertaking. A conversation on data mining strategies for a maximal information extraction from metabolomic data is needed. Using a liquid chromatography-mass spectrometry (LC-MS-based untargeted metabolomic dataset, this study explored the influence of collection parameters in the data pre-processing step, scaling and data transformation on the statistical models generated, and feature selection, thereafter. Data obtained in positive mode generated from a LC-MS-based untargeted metabolomic study (sorghum plants responding dynamically to infection by a fungal pathogen were used. Raw data were pre-processed with MarkerLynxTM software (Waters Corporation, Manchester, UK. Here, two parameters were varied: the intensity threshold (50–100 counts and the mass tolerance (0.005–0.01 Da. After the pre-processing, the datasets were imported into SIMCA (Umetrics, Umea, Sweden for more data cleaning and statistical modeling. In addition, different scaling (unit variance, Pareto, etc. and data transformation (log and power methods were explored. The results showed that the pre-processing parameters (or algorithms influence the output dataset with regard to the number of defined features. Furthermore, the study demonstrates that the pre-treatment of data prior to statistical modeling affects the subspace approximation outcome: e.g., the amount of variation in X-data that the model can explain and predict. The pre-processing and pre-treatment steps subsequently influence the number of statistically significant extracted/selected features (variables. Thus, as informed by the results, to maximize the value of untargeted metabolomic data

  19. Ethanol production in a simultaneous saccharification and fermentation process with interconnected reactors employing hydrodynamic cavitation-pretreated sugarcane bagasse as raw material.

    Science.gov (United States)

    Terán Hilares, Ruly; Ienny, João Vitor; Marcelino, Paulo Franco; Ahmed, Muhammad Ajaz; Antunes, Felipe A F; da Silva, Silvio Silvério; Santos, Júlio César Dos

    2017-11-01

    In this study, sugarcane bagasse (SCB) pretreated with alkali assisted hydrodynamic cavitation (HC) was investigated for simultaneous saccharification and fermentation (SSF) process for bioethanol production in interconnected column reactors using immobilized Scheffersomyces stipitis NRRL-Y7124. Initially, HC was employed for the evaluation of the reagent used in alkaline pretreatment. Alkalis (NaOH, KOH, Na 2 CO 3 , Ca(OH) 2 ) and NaOH recycled black liquor (successive batches) were used and their pretreatment effectiveness was assessed considering the solid composition and its enzymatic digestibility. In SSF process using NaOH-HC pretreatment SCB, 62.33% of total carbohydrate fractions were hydrolyzed and 17.26g/L of ethanol production (0.48g of ethanol/g of glucose and xylose consumed) was achieved. This proposed scheme of HC-assisted NaOH pretreatment together with our interconnected column reactors showed to be an interesting new approach for biorefineries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Role of cumulus cells during vitrification and fertilization of mature bovine oocytes: Effects on survival, fertilization, and blastocyst development.

    Science.gov (United States)

    Ortiz-Escribano, N; Smits, K; Piepers, S; Van den Abbeel, E; Woelders, H; Van Soom, A

    2016-07-15

    This study was designed to determine the role of cumulus cells during vitrification of bovine oocytes. Mature cumulus-oocyte complexes (COCs) with many layers of cumulus cells, corona radiata oocytes (CRs), with a few layers of cumulus cells, and denuded oocytes (DOs) without cumulus cells were vitrified in 15% ethylene glycol, 15% dimethyl sulfoxide, and 0.5-M sucrose. Oocytes that survived the vitrification process were fertilized. Denuded oocytes were fertilized with or without supplementation of intact COCs (DOsCOCs). First, survival and embryo development rates were studied. Higher survival rates were obtained for DOs and DOsCOCs (94% and 95%, respectively) compared with COCs (82.7%, P vitrification of mature bovine oocytes. Because cumulus cells are required for fertilization, the use of partially DOs (CRs) or the addition of intact COCs (DOsCOCs) during fertilization can result in higher survival and embryo development after vitrification. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Optimization of vitrification protocol for cryopreservation of groundnut

    African Journals Online (AJOL)

    user

    2014-01-08

    Jan 8, 2014 ... Embryonic axes obtained from seeds of four groundnut genotypes were dehydrated in Plant. Vitrification Solution (PVS2) solution ... The seed contain high quality edible oil (44 to 52%), easily digestible protein (26 to ..... in vitro- grown grape (Vitis) by a two-step vitrification protocol. Euphytica 131:299-304.

  2. Ethanol production from SPORL-pretreated lodgepole pine : preliminary evaluation of mass balance and process energy efficiency

    Science.gov (United States)

    Junyong Zhu; Wenyuan Zhu; Patricia OBryan; Bruce S. Dien; Shen Tian; Roland Gleisner; X.J. Pan

    2010-01-01

    Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-...

  3. Technology evaluation report: Babcock and Wilcox Cyclone Furnace Vitrification technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Groeber, P.

    1992-09-01

    The Babcock and Wilcox (B and W) Cyclone Furnace Vitrification Technology is a treatment process for contaminated soils. The process was evaluated to determine its ability to destroy semivolatile organics and to isolate metals and simulated radionuclides into a non-leachable slag material. The feed material for the system was a prepared synthetic soil matrix (SSM) that was spiked with two organic compounds and six metals. This volume contains the appendices.

  4. Vitrification of immature feline oocytes with a commercial kit for bovine embryo vitrification.

    Science.gov (United States)

    Apparicio, M; Ruggeri, E; Luvoni, G C

    2013-04-01

    The aim of this study was to evaluate the suitability of a commercial kit for bovine embryo vitrification for cryopreserving cat oocytes and to evaluate comparatively the effects of its use with slow freezing procedure on cryotolerance in terms of morphology and oocyte resumption of meiosis. Germinal vesicle stage oocytes isolated from cat ovaries were either vitrified (n = 72) using a vitrification kit for bovine embryo or slow frozen (n = 69) by exposing oocyte to ethylene glycol solution before being transferred to a programmable embryo freezer. After thawing and warming, oocytes were cultured for 48 h and then were examined for meiosis resumption using bisbenzimide fluorescent staining (Hoechst 33342). Fresh immature oocytes (n = 92) were used as the control group. The proportion of oocytes recovered in a morphologically normal state after thawing/warming was significantly higher in frozen oocytes (94.5%) than in the vitrified ones (75%, p vitrification compared to 60.9% of those submitted to slow freezing procedure (p bovine embryos retain their capacity to resume meiosis after warming and culture, albeit at lower rates than slow frozen oocytes. Vitrification and slow freezing methods show similar proportions of oocytes with normal morphology after culture, which demonstrate that thawed and warmed oocytes that resist to cryodamage have the same chances to maintain their integrity after 48 h of culture. © 2012 Blackwell Verlag GmbH.

  5. A study on safety assessment methodology for a vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. C.; Lee, G. S.; Choi, Y. C.; Kim, G. H. [Yonsei Univ., Seoul (Korea, Republic of)

    2002-03-15

    In this study, the technical and regulatory status of radioactive waste vitrification technologies in foreign and domestic plants is investigated and analyzed, and then significant factors are suggested which must be contained in the final technical guideline or standard for the safety assessment of vitrification plants. Also, the methods to estimate the stability of vitrified waste forms are suggested with property analysis of them. The contents and scope of the study are summarized as follows : survey of the status on radioactive waste vitrification technologies in foreign and domestic plants, survey of the characterization methodology for radioactive waste form, analysis of stability for vitrified waste forms, survey and analysis of technical standards and regulations concerned with them in foreign and domestic plants, suggestion of significant factors for the safety assessment of vitrification plants, submission of regulated technical standard on radioactive waste vitrification plats.

  6. The effect of pretreatment on the performance of membrane separation processes in the circulation water systems of paper production; Esikaesittelyiden vaikutus kalvoerotusprosessien toimintaan paperinvalmistuksen vesikierroissa - EKT 01

    Energy Technology Data Exchange (ETDEWEB)

    Nuortila-Jokinen, J.; Nystroem, M. [Lappeenranta Univ. of Technology (Finland). Dept. of Chemical Technology

    1998-12-31

    The aim of this project is to establish an optimized membrane filtration process for internal water treatment in the pulp and paper industry. In membrane filtration fouling reduces the capacity of a plant, and frequent or ineffective membrane washing reduces the membrane lifetime. These factors affect directly the feasibility of the process. Moreover, the retentates have to be economically destroyed. In this project effective pretreatment systems for membrane filtration processes will be developed. The pretreatments studied will be chemical, biological (thermophilic aerobic or anaerobic processes), oxidative (ozonation or other AOP methods) or enzymatic methods or their combinations. The target is to increase capacity and/or reduce fouling in the membrane process. In addition, the effect of the different pretreatment methods on the washability of the membranes will be studied and an optimized washing routine will be developed. The composition of the forming retentates are also affected by the pretreatment used and additionally the same methods can be used for developing a sensible and economically feasible retentate posttreatment method, which will also be developed in the project. (orig.)

  7. Vitrification of a monatomic simple liquid in two dimensions

    Science.gov (United States)

    Odagaki, Takashi; Mizuguchi, Tomoko

    2011-03-01

    We investigate vitrification and crystallization process of a monatomic system by molecular dynamics simulation, where atoms interact via Lennard-Jones-Gauss potential. We first determine the time-temperature-transformation diagram by observing the crystallization time of the rapidly quenched state from the melt. The crystallization time becomes shortest at a certain temperature T*. The glassy state at low temperatures is shown to be fairly long-lived. In order to examine atomic mechanism of the crystallization, we introduce a modified incoherent intermediate scattering function which measures the structural correlation to a target structure. We show that the crystallization above and below T* take different paths. We also determine the free energy landscape (FEL) and show that the atomic dynamics is consistent with the FEL picture of the glass transition. This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture.

  8. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc

  9. Effect of pretreatments and processing conditions on anti-nutritional factors in climbing bean flours

    OpenAIRE

    Emmanuel Mugabo; Emmanuel Ohene Afoakwa; George Annor; Bernard Rwubatse

    2017-01-01

    It is difficult for many Rwandans to utilize climbing bean seeds (Phaseolus vulgaris. L) mainly because of longer cooking time (2 hours) and the high consumption of basic fuel. Climbing beans also contain anti-nutritional factors such tannins, phytates, trypsin inhibitors and phytohemagglutinins that limit nutrient absorption. One way to solve this problem is to utilize the flour of climbing beans made from different treatments and processing methods. In this study, climbing beans were pre-tr...

  10. Coal cinder filtration as pretreatment with biological processes to treat pharmaceutical wastewater.

    Science.gov (United States)

    Zheng, Wei; Li, Xiao-ming; Hao, Zhi-ming; Wang, Dong-bo; Yang, Qi; Zeng, Guang-ming

    2010-01-01

    This study aims at coupling coal cinder filter with biological process to improve pharmaceutical wastewater quality and reduce the disposal cost. In the coal cinder filter, the removal efficiencies of COD, BOD(5), SS and color were 90+/-2%, 72+/-2%, 95+/-2% and 80+/-2%, respectively. The results attribute to the big specific surface area and strong adsorption ability. Coal cinder filter removes a large portion of the pollutants in the influent wastewater, which would strongly stable the effluent waste water quality, and reduce the load of follow-up biological treatment process. The average removal efficiencies for COD, BOD(5), SS and color of the combined process were about 99.7+/-3%, 98.2+/-4%, 98.5+/-3% and 96.3+/-2%, respectively, with the average effluent quality of COD 16+/-1 mg/L, BOD(5) 11+/-1 mg/L, SS 10+/-0.6 mg/L and color 22+/-1 (multiple), which are consistent with the national requirements of the waste pollutants for pharmaceutical industry of chinese traditional medicine discharge standard (GB 21906-2008). The results indicated that the combined procedure could offer an attractive solution for pharmaceutical wastewater treatment with considerable low cost.

  11. Ozone pretreatment of process waste water generated in course of fluoroquinolone production.

    Science.gov (United States)

    Daoud, Fares; Pelzer, David; Zuehlke, Sebastian; Spiteller, Michael; Kayser, Oliver

    2017-10-01

    During production of active pharmaceutical ingredients, process waste water is generated at several stages of manufacturing. Whenever possible, the resulting waste water will be processed by conventional waste water treatment plants. Currently, incineration of the process waste water is the method to eliminate compounds with high biological activity. Thus, ozone treatment followed by biological waste water treatment was tested as an alternative method. Two prominent representatives of the large group of fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) were investigated, focussing on waste water of the bulk production. Elimination of the target compounds and generation of their main transformation products were determined by liquid chromatography - high resolution mass spectrometry (LC-HRMS). The obtained results demonstrated, that the concentration of moxifloxacin and its metabolites can be effectively reduced (>99.7%) prior entering the receiving water. On the contrary, the concentration of ciprofloxacin and its metabolites remained too high for safe discharge, necessitating application of prolonged ozonation for its further degradation. The required ozonation time can be estimated based on the determined kinetics. To assure a low biological activity the ecotoxicity of the ozonated waste water was investigated using three trophic levels. By means of multiple-stage mass spectrometry (MSn) experiments several new transformation products of the fluoroquinolones were identified. Thus, previously published proposed structures could be corrected or confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation.

    Science.gov (United States)

    Kasmi, Mariam; Hamdi, Moktar; Trabelsi, Ismail

    2017-05-01

    Processed milk waste (MW) presents a serious problem within the dairy industries due to its high polluting load. Its chemical oxygen demand (COD) can reach values as high as 80,000 mg O2 L-1. This study proposes to reduce the organic load of those wastes using thermal coagulation and recover residual valuable components via fermentation. Thermal process results showed that the COD removal rates exceeded 40% when samples were treated at temperature above 60 °C to reach 72% at 100 °C. Clarified supernatants resulting from thermal treatment of the samples at the temperatures of 60 (MW60), 80 (MW80), and 100 °C (MW100) were fermented using lactic acid bacteria strains without pH control. Lactic strains recorded important final cell yields (5-7 g L-1). Growth mediums prepared using the thermally treated MW produced 73% of the bacterial biomass recorded with a conventional culture medium. At the end of fermentation, mediums were found exhausted from several valuable components. Industrial scale implementation of the proposed process for the recycling of industrial MWs is described and discussed.

  13. Eco-friendly process combining physical-chemical and biological technics for the fermented dairy products waste pretreatment and reuse.

    Science.gov (United States)

    Kasmi, Mariam; Hamdi, Moktar; Trabelsi, Ismail

    2017-01-01

    Residual fermented dairy products resulting from process defects or from expired shelf life products are considered as waste. Thus, dairies wastewater treatment plants (WWTP) suffer high input effluents polluting load. In this study, fermented residuals separation from the plant wastewater is proposed. In the aim to meet the municipal WWTP input limits, a pretreatment combining physical-chemical and biological processes was investigated to reduce residual fermented dairy products polluting effect. Yoghurt (Y) and fermented milk products (RL) were considered. Raw samples chemical oxygen demand (COD) values were assessed at 152 and 246 g.L-1 for Y and RL products, respectively. Following the thermal coagulation, maximum removal rates were recorded at 80 °C. Resulting whey stabilization contributed to the removal rates enhance to reach 72% and 87% for Y and RL samples; respectively. Residual whey sugar content was fermented using Candida strains. Bacterial growth and strains degrading potential were discussed. C. krusei strain achieved the most important removal rates of 78% and 85% with Y and RL medium, respectively. Global COD removal rates exceeded 93%.

  14. Ozone Induced Impairment of Systemic Metabolic Processes: Influence of Prior Ozone Exposure and Metformin Pre-treatment on Aged Wistar Kyoto (WKY) Rats.

    Science.gov (United States)

    SOT2014 Abstract for presentation: March 23-27, 2014; Phoenix, AZ Ozone Induced Impairment of Systemic Metabolic Processes: Influence of Prior Ozone Exposure and Metformin Pre-treatment on Aged Wistar Kyoto (WKY) Rats. V. Bass, D. Andrews, J. Richards, M. Schladweiler, A. Ledb...

  15. Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure

    Directory of Open Access Journals (Sweden)

    Shou-Qing Ni

    2014-04-01

    Full Text Available With rising environmental concerns on potable water safety and eutrophication, increased media attention and tighter environmental regulations, managing animal waste in an environmentally responsible and economically feasible way can be a challenge. In this study, the possibility of using granular anammox process for ammonia removal from swine waste treatment water was investigated. A rapid decrease of NO2−–N and NH4+–N was observed during incubation with wastewater from an activated sludge deodorization reactor and anaerobic digestion-partial oxidation treatment process treating swine manure and its corresponding control artificial wastewaters. Ammonium removal dropped from 98.0 ± 0.6% to 66.9 ± 2.7% and nearly absent when the organic load in the feeding increased from 232 mg COD/L to 1160 mg COD/L and 2320 mg COD/L. The presence of organic carbon had limited effect on nitrite and total nitrogen removal. At a COD to N ratio of 0.9, COD inhibitory organic load threshold concentration was 727 mg COD/L. Mass balance indicated that denitrifiers played an important role in nitrite, nitrate and organic carbon removal. These results demonstrated that anammox system had the potential to effectively treat swine manure that can achieve high nitrogen standards at reduced costs.

  16. Effects of chemical-physical pre-treatment processes on hemp fibres for reinforcement of composites and textiles

    DEFF Research Database (Denmark)

    Thomsen, Anne Belinda; Thygesen, Anders; Bohn, Vibeke

    2006-01-01

    of base and oxidant. These treatments were performed to make fibres that are useful as reinforcement in composite materials and for textiles. All pre-treatments tested increased the content of cellulose in the fibres by degrading and dissolving non-cell wall material (NCWM, e.g., pectin and waxes), lignin......, the pre-treatments gave fibre colours ranging from white to dark brown. Alkaline wet oxidation produced the brightest fibres with potential for use in textiles. Use of retted fibres in the pre-treatment resulted in fibres with high cellulose content (86-90%) of potential as reinforcement in composite...

  17. Pretreatment with ceramic membrane microfiltration in the clarification process of sugarcane juice by ultrafiltration

    Directory of Open Access Journals (Sweden)

    Priscilla dos Santos Gaschi

    2014-04-01

    Full Text Available In the present study, the sugar cane juice from COCAFE Mill, was clarified using tubular ceramic membranes (α-Al2O3/TiO2 with pore size of 0.1 and 0.3 µm, and membrane area of 0.005 m2. Experiments were performed in batch with sugar cane juice, in a pilot unit of micro and ultrafiltration using the principle of tangential filtration. The sugar cane juice was settled for one hour and the supernatant was treated by microfiltration. After that, the MF permeate was ultrafiltered. The experiments of micro and ultrafiltration were carried out at 65ºC and 1 bar. The ceramic membranes were able to remove the colloidal particles, producing a limpid permeated juice with color reduction. The clarification process with micro- followed by ultrafiltration produced a good result with an average purity rise of 2.74 units, 99.4% lower turbidity and 44.8% lighter color in the permeate.

  18. Formulation and optimization of biological removal of flue gas pretreatment wastewater and sulfur recycling process by Box-Behnken design.

    Science.gov (United States)

    Wang, Juan; Cao, Yuan; Zhong, Qin

    2013-01-01

    The aim of this study was to investigate optimum conditions for biological removal of flue gas pretreatment wastewater and achieve maximum elemental sulfur yield. A three-factor, three-level Box-Behnken design was used to derive a second-order polynomial equation and construct contour plots to predict responses. The independent variables selected were hydraulic retention time (X₁), inlet sulfate concentration (X₂), and air flow (X₃). Fifteen batches were done in a biological united system and evaluated for elemental sulfur yield (Y₁). The transformed values of the independent variables and Y₁ were subjected to a full-model second-order polynomial equation. The equation was modified based on Fisher's F- and probability P-values. The computer optimization process and contour plots predicted the values of independent variables X₁, X₂ and X₃ (16 h, 1,348 mg L⁻¹ and 165 L h⁻¹ respectively), for maximized response of Y₁. The experimental results at predicted conditions demonstrate that the modified model equation has good applicability to the practical system.

  19. Ultrastructure of human mature oocytes after vitrification

    Directory of Open Access Journals (Sweden)

    M.A. Khalili

    2012-08-01

    Full Text Available Since the introduction of human assisted reproduction, oocyte cryopreservation has been regarded as an attractive option to capitalize the reproductive potential of surplus oocytes and preserve female fertility. However, for two decades the endeavor to store oocytes has been limited by the not yet optimized methodologies, with the consequence of poor clinical outcome or of uncertain reproducibility. Vitrification has been developed as the promising technology of cryopreservation even if slow freezing remains a suitable choice. Nevertheless, the insufficiency of clinical and correlated multidisciplinary data is still stirring controversy on the impact of this technique on oocyte integrity. Morphological studies may actually provide a great insight in this debate. Phase contrast microscopy and other light microscopy techniques, including cytochemistry, provided substantial morphofunctional data on cryopreserved oocyte, but are unable to unraveling fine structural changes. The ultrastructural damage is one of the most adverse events associated with cryopreservation, as an effect of cryo-protectant toxicity, ice crystal formation and osmotic stress. Surprisingly, transmission electron microscopy has attracted only limited attention in the field of cryopreservation. In this review, the subcellular structure of human mature oocytes following vitrification is discussed at the light of most relevant ultrastructural studies.

  20. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment.

    Science.gov (United States)

    Moustakas, K; Fatta, D; Malamis, S; Haralambous, K; Loizidou, M

    2005-08-31

    Plasma gasification/vitrification is a technologically advanced and environmentally friendly method of disposing of waste, converting it to commercially usable by-products. This process is a drastic non-incineration thermal process, which uses extremely high temperatures in an oxygen-starved environment to completely decompose input waste material into very simple molecules. The intense and versatile heat generation capabilities of plasma technology enable a plasma gasification/vitrification facility to treat a large number of waste streams in a safe and reliable manner. The by-products of the process are a combustible gas and an inert slag. Plasma gasification consistently exhibits much lower environmental levels for both air emissions and slag leachate toxicity than other thermal technologies. In the framework of a LIFE-Environment project, financed by Directorate General Environment and Viotia Prefecture in Greece, a pilot plasma gasification/vitrification system was designed, constructed and installed in Viotia Region in order to examine the efficiency of this innovative technology in treating industrial hazardous waste. The pilot plant, which was designed to treat up to 50kg waste/h, has two main sections: (i) the furnace and its related equipment and (ii) the off-gas treatment system, including the secondary combustion chamber, quench and scrubber.

  1. Plasma vitrification of waste materials

    Science.gov (United States)

    McLaughlin, David F.; Dighe, Shyam V.; Gass, William R.

    1997-01-01

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.

  2. Development of the vitrification compositional envelope to support complex-wide application of MAWS technology

    Energy Technology Data Exchange (ETDEWEB)

    Mazer, J.J. [ed.] [Argonne National Lab., IL (United States); Muller, I.S.; Gan, H.; Buechele, A.C.; Lai, S.T.; Pegg, I.L. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.]|[GTS Duratek, Inc., Columbia, MD (United States)

    1996-09-01

    This report presents the results from a study of the application of the Minimum Additive Waste Stabilization (MAWS) approach using vitrification as a treatment technology to a variety of waste streams across the DOE complex. This work has involved both experimental vitrification work using actual mixed wastes and surrogate waste streams from several DOE sites (Hanford, Idaho, and Oak Ridge) as well as the development of a computer-based, integrated glass property-composition database. The long-term objective is that this data base will assist glass formulation studies with single waste streams or combinations of waste streams subject to a variety of user-imposed constraints including waste stream usage priorities, process related constraints (e.g., melt viscosity, electrical conductivity, etc.), and waste form performance related constraints (e.g., TCLP and PCT leaching results). 79 refs., 143 figs., 65 tabs.

  3. Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Arthur

    2001-09-01

    Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344°F.

  4. GREET Pretreatment Module

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from cellulosic biomass via different pretreatment technologies that yield sugars. Process simulations of dilute acid and ammonia fiber expansion pretreatment processes and subsequent hydrolysis were developed in Aspen Plus for four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar). This processing yields sugars that can be subsequently converted to biofuels or biochemical. Material and energy consumption data from Aspen Plus were then compiled in a new Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREETTM) pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  5. Biologically pretreated sugarcane top as a potential raw material for the enhancement of gaseous energy recovery by two stage biohythane process.

    Science.gov (United States)

    Kumari, Sinu; Das, Debabrata

    2016-10-01

    The aim of the present study was to develop a suitable pretreatment method to enhance the microbial degradation of lignocellulosic biomass and to maximize the overall energy recovery by using biohythane process. An efficient and eco-friendly biological pretreatment was used. Maximum lignin removal using biological pretreatment of sugarcane top was 60.4% w/w after 21d incubation at 28°C in static condition. Confocal microscopy observation and FTIR analysis confirmed the removal of lignin from sugarcane top. The maximum hydrogen production rate (Rm), hydrogen production potential (P) and lag time (λ) using pretreated sugarcane top were 16.76mL/g-VS/h, 87.40mL/g-VS and 3.38h respectively. The maximum methane production potential using spent medium of dark fermentation was 180.86mL/g-VS with the lag time of 2.9d. The overall gaseous energy recovery was 37.7% which is 54% higher than that of the untreated one. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Vitrification of mouse MII oocytes: Developmental competency using paclitaxel

    Directory of Open Access Journals (Sweden)

    Farzaneh Fesahat

    2016-12-01

    Conclusion: A high concentration of paclitaxel, an anticancer drug, interrupted the mouse oocyte competency when supplemented to vitrification media. Consequently, the optimal concentration of this cytoskeleton stabilizer may improve the post-thawed developmental abilities of oocytes.

  7. Aseptic minimum volume vitrification technique for porcine parthenogenetically activated blastocyst.

    Science.gov (United States)

    Lin, Lin; Yu, Yutao; Zhang, Xiuqing; Yang, Huanming; Bolund, Lars; Callesen, Henrik; Vajta, Gábor

    2011-01-01

    Minimum volume vitrification may provide extremely high cooling and warming rates if the sample and the surrounding medium contacts directly with the respective liquid nitrogen and warming medium. However, this direct contact may result in microbial contamination. In this work, an earlier aseptic technique was applied for minimum volume vitrification. After equilibration, samples were loaded on a plastic film, immersed rapidly into factory derived, filter-sterilized liquid nitrogen, and sealed into sterile, pre-cooled straws. At warming, the straw was cut, the filmstrip was immersed into a 39 degree C warming medium, and the sample was stepwise rehydrated. Cryosurvival rates of porcine blastocysts produced by parthenogenetical activation did not differ from control, vitrified blastocysts with Cryotop. This approach can be used for minimum volume vitrification methods and may be suitable to overcome the biological dangers and legal restrictions that hamper the application of open vitrification techniques.

  8. Lignocellulosic Biomass Pretreatment Using AFEX

    Science.gov (United States)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  9. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1993-12-31

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  10. Slow-freezing versus vitrification for human ovarian tissue cryopreservation.

    Science.gov (United States)

    Klocke, Silke; Bündgen, Nana; Köster, Frank; Eichenlaub-Ritter, Ursula; Griesinger, Georg

    2015-02-01

    Ovarian tissue can be cryopreserved prior to chemotherapy using either the slow-freezing or the vitrification method; however, the data on the equality of the procedures are still conflicting. In this study, a comparison of the cryo-damage of human ovarian tissue induced by either vitrification or slow-freezing was performed. Ovarian tissue from 23 pre-menopausal patients was cryopreserved with either slow-freezing or vitrification. After thawing/warming, the tissue was histologically and immunohistochemically analyzed and cultured in vitro. During tissue culture the estradiol release was assessed. No significant difference was found in the proportion of high-quality follicles after thawing/warming in the slow-freezing and vitrification group, respectively (72.7 versus 66.7 %, p = 0.733). Estradiol secretion by the ovarian tissue was similar between groups during 18 days in vitro culture (area-under-the-curve 5,411 versus 13,102, p = 0.11). Addition of Sphingosine-1-Phosphate or Activin A to the culture medium did not alter estradiol release in both groups. The proportion of Activated Caspase-3 or 'Proliferating-Cell-Nuclear-Antigen' positive follicles at the end of the culture period was similar between slow-freezing and vitrification. Slow-freezing and vitrification result in similar morphological integrity after cryopreservation, a similar estradiol release in culture, and similar rates of follicular proliferation and apoptosis after culture.

  11. Further development of chemical and biological processes for production of bioethanol: Optimisation of pre-treatment processes and characterisation of products

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Anne Belinda; Schmidt, Anette Skammelsen

    1999-03-01

    The efficiency of several processes for pre-treatment of lignocellulose has been investigated to provide feedstock for enzymatic hydrolysis and fermentation. Wet oxidation (WO) (with and without alkaline) has been investigated for wheat straw, birch wood, and willow treating 60 g/L. Three different harvest years of wheat straw were included to evaluate the effect of crop variation from year to year. Comparative studies were made using steaming and steam explosion of wheat straw. Alkaline WO fractionated wheat straw efficiently into solubilised hemicellulose and a highly convertible cellulose fraction. High oxygen (12 bar) during WO and low lignin in treated fibres resulted in highly convertible cellulose. Different optimal reaction conditions were found for different harvest years. For straw 1993 and 1997, conditions were 185 deg. C, 15 minutes resulting in 9-10 g/L solubilised hemicellulose and 63-67% cellulose convertibility. For straw 1994, conditions were 195 deg. C, 5 minutes resulting in 7.5 g/L solubilised hemicellulose and 96% cellulose convertibility. For willow, the optimal pre-treatment was WO without alkaline using 185 deg. C, 15 minutes, giving 8.2 g/L hemicellulose in solution and 50% cellulose convertibility. For birch wood, the best process conditions were hydrothermal treatment (without oxygen and alkaline). At 200 deg. C and 15 minutes, 8 g/L hemicellulose was solubilised with high recoveries for both polysaccharides, however, poor cellulose convertibility was found (<30%). Alkaline WO resulted in the highest cellulose convertibility but low contents of solubilised hemicellulose (<4 g/L). In general, formation of furfural was avoided by adding alkaline during wet oxidation. In the absence of alkaline, furfural formation was higher (up to 130 mg/100 g wheat straw) than that of steam explosion (43 mg/100 g straw). Formation of carboxylic acids was highest during alkaline wet oxidation and highest for birch wood (up to 8 g/L). Minor amounts of

  12. Worst-Case" Simulant for INTEC Soduim-Bearing Waste Vitrification Tests

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Jerry Dale; Batcheller, Thomas Aquinas

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is developing technologies to process the radioactive liquid sodium-bearing waste from the waste tanks at INTEC to solidify the waste into a form suitable for disposition in a National high-level waste repository currently being considered at Yucca Mountain, Nevada. The requirement is for a qualified glass waste form. Therefore, vitrification is being developed using laboratory, research-scale, and pilot scale melters. While some laboratory experiments can be done with actual waste, the larger scale and most laboratory experiments must be done on non-radioactive simulant waste solutions. Some tests have previously been done on simulants of a representative waste that has been concentrated and will remain unchanged in tank WM-180 until it is vitrified. However, there is a need to develop glass compositions that will accommodate all future wastes in the tanks. Estimates of those future waste compositions have been used along with current compositions to develop a “worst-case” waste composition and a simulant preparation recipe suitable for developing a bracketing glass formulation and for characterizing the flowpath and decontamination factors of pertinent off-gas constituents in the vitrification process. The considerations include development of criteria for a worst-case composition. In developing the criteria, the species that are known to affect vitrification and glass properties were considered. Specific components that may need to be characterized in the off-gas cleanup system were considered in relation to detection limits that would need to be exceeded in order to track those components. Chemical aspects of various constituent interactions that should be taken into account when a component may need to be increased in concentration from that in the actual waste for detection in experiments were evaluated. The worst-case waste simulant composition is comprised of the highest concentration of each

  13. A two-stage pretreatment process using dilute hydrochloric acid followed by Fenton oxidation to improve sugar recovery from corn stover.

    Science.gov (United States)

    Li, Wenzhi; Liu, Qiyu; Ma, Qiaozhi; Zhang, Tingwei; Ma, Longlong; Jameel, Hasan; Chang, Hou-Min

    2016-11-01

    A two-stage pretreatment process is proposed in this research in order to improve sugar recovery from corn stover. In the proposed process, corn stover is hydrolyzed by dilute hydrochloric acid to recover xylose, which is followed by a Fenton reagent oxidation to remove lignin. 0.7wt% dilute hydrochloric acid is applied in the first stage pretreatment at 120°C for 40min, resulting in 81.0% xylose removal. Fenton reagent oxidation (1g/L FeSO4·7H2O and 30g/L H2O2) is performed at room temperature (about 20°C) for 12 has a second stage which resulted in 32.9% lignin removal. The glucose yield in the subsequent enzymatic hydrolysis was 71.3% with a very low cellulase dosage (3FPU/g). This two-stage pretreatment is effective due to the hydrolysis of hemicelluloses in the first stage and the removal of lignin in the second stage, resulting in a very high sugar recovery with a low enzyme loading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  15. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions.

    Science.gov (United States)

    Rafieenia, Razieh; Girotto, Francesca; Peng, Wei; Cossu, Raffaello; Pivato, Alberto; Raga, Roberto; Lavagnolo, Maria Cristina

    2017-01-01

    Aerobic pre-treatment was applied prior to two-stage anaerobic digestion process. Three different food wastes samples, namely carbohydrate rich, protein rich and lipid rich, were prepared as substrates. Effect of aerobic pre-treatment on hydrogen and methane production was studied. Pre-aeration of substrates showed no positive impact on hydrogen production in the first stage. All three categories of pre-aerated food wastes produced less hydrogen compared to samples without pre-aeration. In the second stage, methane production increased for aerated protein rich and carbohydrate rich samples. In addition, the lag phase for carbohydrate rich substrate was shorter for aerated samples. Aerated protein rich substrate yielded the best results among substrates for methane production, with a cumulative production of approximately 351ml/gVS. With regard to non-aerated substrates, lipid rich was the best substrate for CH4 production (263ml/gVS). Pre-aerated P substrate was the best in terms of total energy generation which amounted to 9.64kJ/gVS. This study revealed aerobic pre-treatment to be a promising option for use in achieving enhanced substrate conversion efficiencies and CH4 production in a two-stage AD process, particularly when the substrate contains high amounts of proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cytochalasin B efficiency in the cryopreservation of immature bovine oocytes by Cryotop and solid surface vitrification methods.

    Science.gov (United States)

    Sripunya, Nucharin; Liang, Yuanyuan; Panyawai, Kanchana; Srirattana, Kanokwan; Ngernsoungnern, Apichart; Ngernsoungnern, Piyada; Ketudat-Cairns, Mariena; Parnpai, Rangsun

    2014-12-01

    The present study was undertaken to compare the efficacies of Cryotop (CT), solid surface vitrification (SSV) methods and cytochalasin B (CB) treatment for the cryopreservation of immature bovine oocytes, in terms of survival, nuclear maturation, and in vitro development. Solution exposed oocytes were in vitro maturated and fertilized. No difference was found in the rates of survival, nuclear maturation and blastocyst among solution exposed groups and fresh control group, except blastocysts rates in oocytes exposed to CB, cryoprotectant (CPA) and fluorescein diacetate (FDA) group (CB-CPA-FDA) (23%) significantly lower than that of control group (32%). CB pretreated ((+)CB) or non-pretreated ((-)CB) COCs were vitrified either by SSV or CT. Among four vitrified groups the nuclear maturation rates (CT(-)CB: 58%, CT(+)CB: 57%, SSV(-)CB: 60%, SSV(+)CB: 63%), cleavage (CT(-)CB: 36%, CT(+)CB: 24%, SSV(-)CB: 34%, SSV(+)CB: 26%) and blastocysts rates (CT(-)CB: 6%, CT(+)CB: 7%, SSV(-)CB: 4%, SSV(+)CB: 6%) did not differ, but the rates of the four vitrified groups were significantly lower than those of non-vitrified group (81%, 71% and 26%, respectively). We thus conclude that CT and SSV perform equally in vitrification of bovine immature oocytes, and CB did not increase the viability, nuclear maturation, or in vitro development of vitrified oocytes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  18. Dual effect of soluble materials in pretreated lignocellulose on simultaneous saccharification and co-fermentation process for the bioethanol production.

    Science.gov (United States)

    Qin, Lei; Li, Xia; Liu, Li; Zhu, Jia-Qing; Guan, Qi-Man; Zhang, Man-Tong; Li, Wen-Chao; Li, Bing-Zhi; Yuan, Ying-Jin

    2017-01-01

    In this study, wash liquors isolated from ethylenediamine and dry dilute acid pretreated corn stover were used to evaluate the effect of soluble materials in pretreated biomass on simultaneous saccharification and co-fermentation (SSCF) for ethanol production, respectively. Both of the wash liquors had different impacts on enzymatic hydrolysis and fermentation. Enzymatic conversions of glucan and xylan monotonically decreased as wash liquor concentration increased. Whereas, with low wash liquor concentrations, xylose consumption rate, cell viability and ethanol yield were maximally stimulated in fermentation without nutrient supplementary. Soluble lignins were found as the key composition which promoted sugars utilization and cell viability without nutrient supplementary. The dual effects of soluble materials on enzymatic hydrolysis and fermentation resulted in the reduction of ethanol yield as soluble materials increased in SSCF. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cryopreservation of zebrafish (Danio rerio) oocytes by vitrification.

    Science.gov (United States)

    Guan, M; Rawson, D M; Zhang, T

    2010-01-01

    Cryopreservation of fish oocytes is challenging because these oocytes have low membrane permeability to water and cryoprotectant and are highly chilling sensitive. Vitrification is considered to be a promising approach for their cryopreservation as it involves rapid freezing and thawing of the oocytes and therefore minimising the chilling injury. In the present study, vitrification properties and the toxicity of a range of vitrification solutions containing different concentrations of Me2SO, methanol, propylene glycol and ethylene glycol were investigated. Two different base media and vitrification methods were compared. The effect of different post-thaw dilution solutions together with incubation periods on oocyte viability were also investigated. Stage III zebrafish oocytes were equilibrated in increasing concentrations of cryoprotectants for 30 min in 3 steps. Oocytes were thawed rapidly in a water bath and cryoprotectants were removed in 4 steps. Oocyte viability was assessed using trypan blue staining. The results showed that vitrification solutions V3 and V4 in KCl buffer had low toxicity and vitrified well. The survivals of oocytes after stepwise dilution using solutions containing permeable cryoprotectants were significant higher than those diluted in 0.5M glucose, and the use of CVA65 vitrification system improved oocyte survival when compared with plastic straws after 30 min at 22 degrees C post-thawing. Cryopreservation of zebrafish oocytes by vitrification is reported here for the first time, although oocyte survivals after cryopreservation assessed by trypan blue staining were relatively high shortly after thawing, they became swollen and translucent after incubation in KCl buffer. Further studies are needed to optimise the post-thaw culturing conditions.

  20. The effects of autohydrolysis pretreatment on the structural characteristics, adsorptive and catalytic properties of the activated carbon prepared from Eucommia ulmoides Oliver based on a biorefinery process.

    Science.gov (United States)

    Zhu, Ming-Qiang; Wang, Zhi-Wen; Wen, Jia-Long; Qiu, Ling; Zhu, Ya-Hong; Su, Yin-Quan; Wei, Qin; Sun, Run-Cang

    2017-05-01

    Eucommia ulmoides Oliver (EU) wood was consecutively treated by autohydrolysis pretreatment and chemical carbonization post-treatment based on a biorefinery process. Results showed that the optimal condition of the autohydrolysis pretreatment and carbonization process yielded 10.37kg xylooligosaccharides (XOS), 1.39kg degraded hemicellulosic products, 17.29kg other degraded products from hemicelluloses and 40.72kg activated carbon (S BET of 1534.06m 2 /g) from the 100kg raw materials. Simultaneously, 29.14kg gas products generated from the optimum integrated process was significantly lower than that from the direct carbonization process (68.84kg). Besides, the optimal activated carbon (AC 170-1.0 ) also showed a moderate catalytic activity and high stability for hydrogen production by catalytic methane decomposition. Overall, the data presented indicated that the integrated process is an eco-friendly and efficient process to produce XOS and activated carbon, which is beneficial for value-added and industrial application of EU wood. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluation of Fenton method and ozone-based processes for colour and organic matter removal from biologically pre-treated swine manure.

    Science.gov (United States)

    Riaño, Berta; Coca, Mónica; García-González, Mari Cruz

    2014-12-01

    This work evaluates the efficiency of different advanced oxidation processes (Fenton method, O3, H2O2 and O3/H2O2) for removing total COD (TCOD) and colour from biologically pre-treated swine manure. The Fenton process with a dosage of 100 mg L(-1) of Fe(2+) and 800 mg L(-1) of H2O2 resulted in about 78% TCOD and 96% colour reductions at an initial pH=3 after a reaction time of 30 min. Coagulation, rather than oxidation process, was identified as a crucial mechanism for removing pollutants. Otherwise, single ozonation achieved only 27-30% TCOD and 53-88% colour removals for ozone dosages ranging between 0.7 and 4.3 g O3 h(-1) at the original wastewater pH (pH=8.1) after 30 min reaction time. The combined treatment with O3/H2O2 at pH=8.1 did not produce any significant TCOD or colour reduction improvement. Therefore, direct reactions with ozone rather than radical reactions were elucidated as the main removal mechanisms in the ozone-based processes. Finally, a rough estimation of the operational costs involved in each process was also performed to compare their economic feasibility. The findings suggested that the Fenton process was more suitable than ozonation for reducing TCOD and colour from the biologically pre-treated swine manure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Pretreatment and processing of field biomasses for production of precious, bulk and energy fiber fractions; Peltobiomassojen esikaesittely ja prosessointi arvo-, bulkki- ja energiakuitujakeiden tuottamiseksi

    Energy Technology Data Exchange (ETDEWEB)

    Vilppunen, P.; Sohlo, J. [Oulu Univ., Oulu (Finland). Dept. of Process Engineering

    1995-12-31

    The objective of the research was to make a preliminary study on pretreatment and processing possibilities of different field biomasses for production of specific product fractions with dry and wet separation methods. Pretreatment processes and possible combinations, before pulping and energy production, were studied in the dry-fraction part of the research. Sieving technology, air-classifier and a collision separator were tested. Additionally, the fuel processing systems of present power/thermal plants were studied in practice. A new type of separation system, based on removal of fines with collision-separator, was designed in the sub-project. The results of the sub-project are now utilized in other researches of the Bioenergy Research Programme. Separation processes for energy and fiber fractions, predominantly those for seed flax, using traditional pulp classifiers and the new pressure classifier process were studied in the wet-separation part of the project. A combined plant fiber further-refining process, based on mechanical and biotechnical separation, operating on the basis of fiber length, was developed on the basis of dry and wet frection tests

  3. Vitrification of in vivo and in vitro produced ovine blastocysts.

    Science.gov (United States)

    Zhu, S E; Zeng, S M; Yu, W L; Li, S J; Zhang, Z C; Chen, Y F

    2001-11-01

    Although cryopreservation of bovine embryo has made great progress in recent years, little achievement was obtained in ovine embryo freezing, especially in vitro produced embryos. However, a simple and efficient method for cryopreservation of sheep embryos will be important for application of ovine embryonic techniques such as in vitro fertilization, transgenic, cloning and etc. In this study ovine blastocysts, produced in vivo or in vitro, were cryopreserved by vitrification in EFS40 (40% ethylene glycol (EG), 18% ficoll and 0.5 M sucrose) or GFS40 (40% glycerol (GL), 18% ficoll and 0.5 Mol sucrose). In vitro produced, early blastocysts were directly plunged into liquid nitrogen (LN2) after preparation by one of the following procedures at 25 degrees C: (A) equilibration in EFS40 for 1 min; (B) equilibration in EFS40 for 2 min; (C) equilibration in EFS40 for 30 s following pretreatment in 10% EG for 5 min; (D) equilibration in EFS40 for 30 s following pretreatment in EFS20 for 2 min (E) equilibration in GFS30 for 30 s following pretreatment in 10% GL for 5 min. The survival rates observed after thawing and in vitro culture for 12 h were A 78.0% (39/50), B 50.0% (26/52), C 93.3% (70/75), D 92.0% (46/50) and E 68.0% (34/50). Survival rates were not significantly different for treatments C and D (p>0.05), but those for groups C and D were significantly higher than for A, B and E (pvitro culture, hatched blastocyst rates were A 28.0% (14/50), B 21.1% (11/52), C 49.3% (37/75), D 48.0% (24/50), E 32.0% (16/50) and control 54.0% (27/50). The hatching rates for groups A, B and E were significantly lower than the control (p0.05). The freezing procedures A, B and C were used to vitrify in vivo produced, early blastocysts recovered from superovulated ewes. The survival rates of frozen-thawed in vivo embryos were A 94.7% (72/76), B 75.0% (45/60) and C 96.4% (54/56) and for group B was significantly lower than for the other two treatment groups (p0.05). Frozen-thawed embryos

  4. Improvement in shelf life of minimally processed cilantro leaves through integration of kinetin pretreatment and packaging interventions: Studies on microbial population dynamics, biochemical characteristics and flavour retention.

    Science.gov (United States)

    Ranjitha, K; Shivashankara, K S; Sudhakar Rao, D V; Oberoi, Harinder Singh; Roy, T K; Bharathamma, H

    2017-04-15

    Effect of integrating optimized combination of pretreatment with packaging on shelf life of minimally processed cilantro leaves (MPCL) was appraised through analysis of their sensory attributes, biochemical characteristics, microbial population and flavour profile during storage. Minimally pretreated cilantro leaves pretreated with 50ppm kinetin and packed in 25μ polypropylene bags showed a shelf life of 21days. Optimized combination helped in efficiently maintaining sensory parameters, flavour profile, and retention of antioxidants in MPCL until 21days. Studies conducted on the effect of optimized combination on microbial population and flavour profile revealed that among different microorganisms, pectinolysers had a significant effect on spoilage of MPCL and their population of ⩽3.59logcfu/g was found to be acceptable. Principal component analysis of headspace volatiles revealed that (E)-2-undecenal, (E)-2-hexadecenal, (E)-2-tetradecenal & (E)-2-tetradecen-1-ol in stored samples clustered with fresh samples and therefore, could be considered as freshness indicators for MPCL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The fate of Transparent Exopolymer Particles (TEP) in integrated membrane systems: removal through pre-treatment processes and deposition on reverse osmosis membranes.

    Science.gov (United States)

    Villacorte, Loreen O; Kennedy, Maria D; Amy, Gary L; Schippers, Jan C

    2009-12-01

    The abundance of Transparent Exopolymer Particles (TEP) in surface waters has been unnoticed for many years until recently as a potential foulant in reverse osmosis systems. Recent studies indicate that TEP may cause organic and biological fouling and may enhance particulate/colloidal fouling in reverse osmosis membranes. The presence of TEP was measured in the raw water, the pre-treatment processes and reverse osmosis (RO) systems of 6 integrated membrane installations. A spectrophotometric method was used to measure TEP in the particulate size range (>0.40microm) and was extended to measure TEP in the colloidal size range (0.05-0.40microm). Ultrafiltration pre-treatment applied in 4 plants, totally removed particulate TEP while microfiltration systems (2 plants) and coagulation/sedimentation/rapid sand filtration systems (3 plants) partially removed this fraction. None of the pre-treatment systems investigated totally removed colloidal TEP. Biopolymer analysis using LC-OCD showed consistency between colloidal TEP and polysaccharide removal by UF pre-treatment and further verified the presence of TEP in the RO feedwater. TEP deposition in the RO system was determined after measuring total TEP concentrations in the RO feed and concentrate. The TEP deposition factors and specific deposition rates indicate that TEP accumulation had occurred in all plants investigated. This observation was verified by an autopsy of RO modules from two RO plants. Further improvement and verification of the (modified) TEP method, in particular the calibration, is necessary so that it can be employed to investigate the role of TEP in the fouling of RO systems.

  6. Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C.J.; Abrigo, G.P.; Shafer, P.J.; Merrill, R.A.

    1995-07-01

    This report provides reviews of papers and reports for three basic categories of melters: arc/plasma-heated melters, combustion-heated melters, and joule-heated melters. The literature reviewed here represents those publications which may lend insight to phase I testing of low-level waste vitrification being performed at the Hanford Site in FY 1995. For each melter category, information from those papers and reports containing enough information to determine steady-state mass balance data is tabulated at the end of each section. The tables show the composition of the feed processed, the off-gas measured via decontamination factors, gross energy consumptions, and processing rates, among other data.

  7. Highly efficient vitrification method for cryopreservation of human oocytes.

    Science.gov (United States)

    Kuwayama, Masashige; Vajta, Gábor; Kato, Osamu; Leibo, Stanley P

    2005-09-01

    Two experiments were performed to develop a method to cryopreserve MII human oocytes. In the first experiment, three vitrification methods were compared using bovine MII oocytes with regard to their developmental competence after cryopreservation: (i) vitrification within 0.25-ml plastic straws followed by in-straw dilution after warming (ISD method); (ii) vitrification in open-pulled straws (OPS method); and (iii) vitrification in plastic handle (Cryotop method). In the second experiment, the Cryotop method, which had yielded the best results, was used to vitrify human oocytes. Out of 64 vitrified oocytes, 58 (91%) exhibited normal morphology after warming. After intracytoplasmic sperm injection, 52 became fertilized, and 32 (50%) developed to the blastocyst stage in vitro. Analysis by fluorescence in-situ hybridization of five blastocysts showed that all were normal diploid embryos. Twenty-nine embryo transfers with a mean number of 2.2 embryos per transfer on days 2 and 5 resulted in 12 initial pregnancies, seven healthy babies and three ongoing pregnancies. The results suggest that vitrification using the Cryotop is the most efficient method for human oocyte cryopreservation.

  8. MAVIS: An integrated system for live microscopy and vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Koning, Roman I., E-mail: r.i.koning@lumc.nl [Department of Molecular Cell Biology, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Faas, Frank G. [Department of Molecular Cell Biology, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Boonekamp, Michael; Visser, Bram de; Janse, Jan [Department of Instrumental Development, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Wiegant, Joop C. [Department of Molecular Cell Biology, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Breij, Anna de [Department of Infectious Diseases, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Willemse, Joost [Department of Molecular Cell Biology, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Nibbering, Peter H. [Department of Infectious Diseases, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Tanke, Hans J.; Koster, Abraham J. [Department of Molecular Cell Biology, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands)

    2014-08-01

    Cryo-electron microscopy of vitrified biological samples can provide three-dimensional reconstructions of macromolecules and organelles within bacteria and cells at nanometer scale resolution, even in native conditions. Localization of specific structures and imaging of cellular dynamics in cellular cryo-electron microscopy is limited by (i) the use of cryo-fixation to preserve cellular structures, (ii) the restricted availability of electron dense markers to label molecules inside cells and (iii) the inherent low contrast of cryo electron microscopy. These limitations can be mitigated to a large extend by correlative light and electron microscopy, where the sample is imaged by both light and electron microscopy. Here we present a Microscopy and Vitrification Integrated System (MAVIS) that combines a light microscope with a plunger to vitrify thin specimens. MAVIS provides the capability for fluorescence light microscopic imaging of living cells and bacteria that are adhered to an electron microscopy grid and subsequent vitrification within a time frame of seconds. The instrument allows targeting of dynamic biological events in time and space by fluorescence microscopy for subsequent cryo light and electron microscopy. Here we describe the design and performance of the MAVIS, illustrated with biological examples. - Highlights: • We developed new plunger: a Microscopy and Vitrification Integrated System (MAVIS). • The MAVIS is a new tool for integrating of live microscopy and vitrification. • The MAVIS allows fluorescence LM of living cells and vitrification within seconds. • Here we describe the MAVIS design and performance, and show biological examples.

  9. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-07-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  10. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  11. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    Science.gov (United States)

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.

  12. Vitrification of cesium-contaminated organic ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, Jr., Thomas N. [Clemson Univ., SC (United States)

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  13. Process optimization of biogas production at Nemščak biogas plant by pre-treatment of the substrate and combining with waste sludge

    OpenAIRE

    Žitek, Filip

    2015-01-01

    The purpose of this thesis is to increase the amount of biogas produced by pre-treatment of the substrate and combining with waste sludge. For anaerobic digestion of different substrates, we used a pilot reactor to determine the biogas potential at Nemščak biogas plant. The pilot reactor was built in 2009 for the purpose of testing new substrates in the process of biogas production. The pilot reactor has a working volume of 2000 litres; there is a gas tank above it with the volume of 500 litr...

  14. Synergy of Siam weed (Chromolaena odorata) and poultry manure for energy generation: Effects of pretreatment methods, modeling and process optimization.

    Science.gov (United States)

    Dahunsi, S O; Oranusi, S; Owolabi, J B; Efeovbokhan, V E

    2017-02-01

    The co-digestion of Chromolaena odorata with poultry manure was evaluated in this study. Two samples of the weed: (A: which was pre-treated with mechanical, chemical and thermal methods) and (B: which was pretreated using mechanical and chemical methods only) were separately digested with poultry manure. Biogas generation started from the 2nd to 4th and 4th to 7th day for samples 'A' and 'B' respectively. The most desired actual biogas yield from samples 'A' and 'B' were 3884.20 and 2544.70 (10-4m3/kg VS) respectively and the gas composition was 68±2% Methane and 20±2% Carbon dioxide for sample A while it was 62±3% Methane and 22±2% Carbon dioxide for sample B. In all, there was a 38.06% increase in gas generation in 'A' over 'B'. The coefficient of determination (R2) for the Response Surface Methodology (RSM) model (0.9009) was high suggesting high accuracy in the modeling and prediction. The worldwide usage of C. odorata is encouraged. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. KONVERSI LIMBAH TANDAN KOSONG KELAPA SAWIT MENJADI GLUKOSA DENGAN PROSES HIDROTERMAL TANPA MELALUI PROSES PRETREATMENT - (Conversion of Waste Palm Oil Empty Fruit Bunches into Glucose using Hydrothermal Process without Pretreatment

    Directory of Open Access Journals (Sweden)

    Rakhman Sarwono

    2016-12-01

    Full Text Available Palm oil empty fruit bunch (EFB is a waste from palm oil industry and commonly used as compost for soil breeding. EFB could be hydrolized into glucose using hydrothermal process with hydrochloric acid as catalyst.  Eight gram of EFB in particle sizes (–30+40 mesh were hydrolyzed with HCl 10% 80 mL in a tube reactor. Reaction time were 2, 3 and 4 hours in temperature range 140-240oC. EFB decomposition did not increase despite of higher temperature while reaction time influenced the process significantly. EFB conversion was 47% in 4 hours and 240oC while in 3 hours resulted 34% same with 2 hours in 210oC. EFB decomposition did not influence glucose yield which was 23% in 2 hours  170oC, 24% in 3 hours 160oC and 6% in 4 hours 150oC. The optimum conditions of conversion were 2 and 3 hours with temperature range 150-170oC.Keywords: conversion, EFB, glucose, hydrothermal, pretreatment ABSTRAKLimbah tandan kosong kelapa sawit (TKKS merupakan hasil samping dari industri minyak sawit dan terdapat dalam jumlah banyak. Sampai saat ini belum termanfaatkan dengan baik, biasanya dipakai sebagai kompos untuk pemuliaan tanah perkebunan sawit. Persentase TKKS sebesar 23% dari tandan buah segar (TBS dengan komponen utama berupa selulosa, hemi-selulosa dan lignin. TKKS bisa dihidrolisis menjadi gula atau glukosa dengan proses hidrotermal menggunakan katalis asam klorida. TKKS  seberat 8 g dengan ukuran partikel (–30+40 mesh dikonversi secara hidrotermal pada reaktor tabung dengan penambahan 80 ml HCl 10% sebagai katalis, waktu reaksi 2, 3 dan 4 jam, suhu reaksi dari 120–240oC. Proses peruraian TKKS tidak menunjukkan kenaikan yang berarti walaupun suhu reaksi semakin tinggi. Waktu reaksi memberi pengaruh yang lebih besar terhadap peruraian TKKS dimana peruraian paling tinggi sebesar 47% pada suhu 240oC dan waktu reaksi 4 jam. Pada waktu reaksi 3 jam dihasilkan peruraian TKKS paling tinggi sebesar 34%, sama dengan hasil pada waktu 2 jam dan suhu 210o

  16. Vitrification of early-stage bovine and equine embryos.

    Science.gov (United States)

    Campos-Chillòn, L F; Suh, T K; Barcelo-Fimbres, M; Seidel, G E; Carnevale, E M

    2009-01-15

    The objectives of this study were to: (1) determine an optimal method and stage of development for vitrification of bovine zygotes or early embryos; and (2) use the optimal procedure for bovine embryos to establish equine pregnancies after vitrification and warming of early embryos. Initially, bovine embryos produced by in-vitro fertilization (IVF) were frozen and vitrified in 0.25mL straws with minimal success. A subsequent experiment was done using two vitrification methods and super open pulled straws (OPS) with 1- or 8-cell bovine embryos. In Method 1 (EG-O), embryos were exposed to 1.5M ethylene glycol (EG) for 5min, 7M ethylene glycol and 0.6M galactose for 30s, loaded in an OPS, and plunged into liquid nitrogen. In Method 2 (EG-DMSO), embryos were exposed to 1.1M ethylene glycol and 1.1M dimethyl sulfoxide (DMSO) for 3min, 2.5M ethylene glycol, 2.5M DMSO and 0.5M galactose for 30s, and loaded and plunged as for EG-O. Cryoprotectants were removed after warming in three steps. One- and eight-cell bovine embryos were cultured for 7 and 4.5 d, respectively, after warming, and control embryos were cultured without vitrification. Cleavage rates of 1-cell embryos were similar (P>0.05) for vitrified and control embryos, although the blastocyst rates for EG-O and control embryos were similar and higher (Pvitrification and warming. In summary, a successful method was established for vitrification of early-stage bovine embryos, and this method was used to establish equine pregnancies after vitrification and warming of 2- to 8-cell embryos produced by ICSI.

  17. Successful vitrification and autografting of baboon (Papio anubis) ovarian tissue.

    Science.gov (United States)

    Amorim, Christiani A; Jacobs, Sophie; Devireddy, Ram V; Van Langendonckt, Anne; Vanacker, Julie; Jaeger, Jonathan; Luyckx, Valérie; Donnez, Jacques; Dolmans, Marie-Madeleine

    2013-08-01

    Can a vitrification protocol using an ethylene glycol/dimethyl sulphoxide-based solution and a cryopin successfully cryopreserve baboon ovarian tissue? Our results show that baboon ovarian tissue can be successfully cryopreserved with our vitrification protocol. Non-human primates have already been used as an animal model to test vitrification protocols for human ovarian tissue cryopreservation. Ovarian biopsies from five adult baboons were vitrified, warmed and autografted for 5 months. After grafting, follicle survival, growth and function and also the quality of stromal tissue were assessed histologically and by immunohistochemistry. The influence of the vitrification procedure on the cooling rate was evaluated by a computer model. After vitrification, warming and long-term grafting, follicles were able to grow and maintain their function, as illustrated by Ki67, anti-Müllerian hormone (AMH) and growth differentiation factor-9 (GDF-9) immunostaining. Corpora lutea were also observed, evidencing successful ovulation in all the animals. Stromal tissue quality did not appear to be negatively affected by our cryopreservation procedure, as demonstrated by vascularization and proportions of fibrotic areas, which were similar to those found in fresh ungrafted ovarian tissue. Despite our promising findings, before applying this technique in a clinical setting, we need to validate it by achieving pregnancies. In addition to encouraging results obtained with our vitrification procedure for non-human ovarian tissue, this study also showed, for the first time, expression of AMH and GDF-9 in ovarian follicles. This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (grant Télévie No. 7.4507.10, grant 3.4.590.08 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, Fondation St Luc, Foundation Against Cancer, and Department of Mechanical Engineering at Louisiana State University (support to Ram Devireddy), and

  18. Bulk Vitrification Performance Enhancement: Refractory Lining Protection Against Molten Salt Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Bagaasen, Larry M.; Schweiger, Michael J.; Evans, Michael B.; Smith, Benjamin T.; Arrigoni, Benjamin M.; Kim, Dong-Sang; Rodriguez, Carmen P.; Yokuda, Satoru T.; Matyas, Josef; Buchmiller, William C.; Gallegos, Autumn B.; Fluegel, Alexander

    2007-08-06

    Bulk vitrification (BV) is a process that heats a feed material that consists of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. This study supports the BV design and operations by exploring various methods aimed at reducing the quantities of soluble Tc in the castable refractory block portion of the refractory lining, which limits the effectiveness of the final waste form.

  19. Bulk Vitrification Castable Refractory Block Protection Study

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the

  20. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2013-11-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  1. Effect of L-Cysteine Pretreatment on the Control of Formaldehyde and Browning of the Culinary-Medicinal Shiitake Mushroom, Lentinus edodes (Higher Basidiomycetes) during Drying and Canning Processes.

    Science.gov (United States)

    Li, Guijie; Wang, Qiang; Sun, Peng; Chen, Feng; Chen, Xiaolin; Wang, Cun; Zhao, Xin

    2015-01-01

    Fresh culinary-medicinal Shiitake mushrooms (Lentinus edodes) were pretreated by soaking in 0.1 mg/mL of L-cysteine solution for 1 hour; then the variation in formaldehyde content and browning degree were studied during hot air-drying and canning processes. The results indicated that L-cysteine pretreatment significantly inhibited the increase of formaldehyde content and browning during the drying process; these increases in the pretreatment groups ranged from 7.0% to 14.0% and 65.4% to 68.9%, respectively, of that of the control groups. While the L-cysteine pretreatment did not seem to have a significant effect on controlling the formaldehyde content during the canning process, the increase of the browning degree of the canned products of the pretreatment groups ranged from 64.8% to 78.5% of that of the control groups, indicating the inhibitive effect of L-cysteine on browning during the canning process of L. edodes. Overall, L-cysteine pretreatment improved the sensory quality of both dried and canned L. edodes.

  2. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z. [and others

    1997-12-01

    Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).

  3. Bovine oocyte vitrification using the Cryotop method: effect of cumulus cells and vitrification protocol on survival and subsequent development.

    Science.gov (United States)

    Zhou, X L; Al Naib, A; Sun, Da-Wen; Sun, D W; Lonergan, P

    2010-08-01

    The ability to successfully cryopreserve mammalian oocytes has numerous practical, economical and ethical benefits, which may positively impact animal breeding programs and assisted conception in humans. However, oocyte survival and development following vitrification remains poor. The aim of the present study was (1) to evaluate the effect of the presence of cumulus cells on the outcome of vitrification of immature (GV) or mature (MII) bovine oocytes, (2) to compare empirical and theoretical vitrification protocols, and (3) to assess the effect of adding ice blockers to vitrification media on survival and development competence of bovine oocytes following vitrification using the Cryotop method. In Experiment 1, cumulus-enclosed and partially-denuded GV and MII oocytes were vitrified in 15% EG+15% Me(2)SO+0.5M sucrose in two steps. In Experiment 2, GV oocytes were vitrified either as above or using theoretical modeling based on permeability and osmotic tolerance characteristics in 30% EG+11.4% trehalose in three steps or 40% EG+11.4% trehalose in four steps. In Experiment 3, GV oocytes were vitrified in media supplemented or not with 1 of 2 ice blockers (21st Century Medicine, Fontana, CA) 1% X-1000, 1% Z-1000 or both in three steps. In Experiment 1, the survival, cleavage and blastocyst rate of cumulus-enclosed oocytes was significantly higher than those of partially-denuded oocytes when vitrified at the GV stage (93.8% vs. 81.3%, 65.8% vs. 47.3%, 11.3% vs. 4.0%, respectively, P0.05). In conclusion, cumulus-enclosed GV bovine oocytes survived vitrification and subsequently developed at higher rates than MII oocytes using Cryotop method and conventional IVF procedure. Theoretical analysis of permeability characteristics and tolerance limits could not explain the low developmental competence of vitrified oocytes. (c) 2010 Elsevier Inc. All rights reserved.

  4. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study

    Energy Technology Data Exchange (ETDEWEB)

    Yetilmezsoy, Kaan [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)], E-mail: yetilmez@yildiz.edu.tr; Ilhan, Fatih; Sapci-Zengin, Zehra; Sakar, Suleyman; Gonullu, M. Talha [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)

    2009-02-15

    The performance of electrocoagulation (EC) technique for decolorization and chemical oxygen demand (COD) reduction of anaerobically pretreated poultry manure wastewater was investigated in a laboratory batch study. Two identical 15.7-L up-flow anaerobic sludge blanket (UASB) reactors were first run under various organic and hydraulic loading conditions for 216 days. Effects of operating parameters such as type of sacrificial electrode material, time of electrolysis, current density, initial pH, and electrolyte concentration were further studied to optimize conditions for the post-treatment of UASB pretreated poultry manure wastewater. Preliminary tests conducted with two types of sacrificial electrodes (Al and Fe) resulted that Al electrodes were found to be more effective for both COD and color removals than Fe electrodes. The subsequent EC tests performed with Al electrodes showed that optimal operating conditions were determined to be an initial pH of 5.0, a current density of 15 mA/cm{sup 2}, and an electrolysis time of 20 min. The results indicated that under the optimal conditions, about 90% of COD and 92% of residual color could be effectively removed from the UASB effluent with the further contribution of the EC technology used as a post-treatment unit. In this study, the possible acute toxicity of the EC effluent was also evaluated by a static bioassay test procedure using guppy fish (Lebistes reticulatus). Findings of this study clearly indicated that incorporation of a toxicological test into conventional physicochemical analyses provided a better evaluation of final discharge characteristics.

  5. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products.

    Science.gov (United States)

    Biller, Patrick; Friedman, Cerri; Ross, Andrew B

    2013-05-01

    Microalgae are regarded as a promising source of lipids for bio-diesel production and bio-products. The current paper investigates the processing of microalgal slurries under controlled microwave irradiation. Microwave power was applied to reach temperatures of 80, 100, 120 and 140 °C at a constant residence time of 12 min. Microwave irradiation led to disruption of the algal cell walls which facilitated lipid extraction. The influence of inorganic material on microwave heating was assessed for three strains including, Nannochloropsis occulata, Chlorogloeopsis fritschii and Pseudochoricystis ellipsoidea. Mass balances were calculated and showed that the amount of carbon, nitrogen and total mass recovered in the residue was highly dependent on process conditions and algae strain. Hydrothermal microwave processing (HMP) was found to be an effective pre-treatment for hydrothermal liquefaction and extraction of lipids and phytochemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Optimization of SHINE Process: Design and Verification of Plant-Scale AG 1 Anion-Exchange Concentration Column and Titania Sorbent Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Abdul, Momen [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    Argonne National Laboratory has developed a Mo-recovery and -purification system for the SHINE medical technologies process, which uses a uranyl sulfate solution for the accelerator-driven production of Mo-99. The objective of this effort is to reduce the processing time for the acidification of the Mo-99 product prior to loading onto a concentration column and concentration of the Mo-99 product solution. Two methods were investigated: (1) the replacement of the titania concentration column by an anion-exchange column to decrease processing time and increase the radioiodine-decontamination efficiency and (2) pretreatment of the titania sorbent to improve its effectiveness for the Mo-recovery and -concentration columns. Promising results are reported for both methods.

  7. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Forced collapse of the blastocoel cavity improves developmental potential in cryopreserved bovine blastocysts by slow-rate freezing and vitrification.

    Science.gov (United States)

    Min, S-H; Kim, J-W; Lee, Y-H; Park, S-Y; Jeong, P-S; Yeon, J-Y; Park, H; Chang, K-T; Koo, D-B

    2014-08-01

    This study was conducted to evaluate the effectiveness of forced collapse of the blastocoel before slow-rate freezing and vitrification of bovine blastocysts. Cryopreservation of bovine blastocysts has been proposed as a tool to improve the feasibility of cattle production using the embryo transfer technique. However, the low efficiency of frozen-thawed embryos survival and further development is a crucial problem. In this study, bovine in vitro and in vivo blastocysts were slow-rate frozen and vitrified after forced blastocoele collapse (FBC) of the blastocyst cavity by puncturing the blastocoele with a pulled Pasteur pipet. Differences in the developmental potential of frozen-thawed blastocysts derived from FBC and non-FBC groups were found in both slow-rate freezing and vitrification. Furthermore, we found that the total cell number of blastocysts in FBC groups was increased and the index of apoptosis in FBC groups was decreased. Consistent with these results, real-time RT-PCR analysis data showed that expression of the anti-apoptotic Bcl-XL gene was significantly increased by FBC groups, whereas expression of the pro-apoptotic Bax gene was significantly decreased by FBC groups. Our results also showed that pregnancy outcomes in both slow-rate frozen and vitrified bovine in vivo blastocysts could be improved by reducing the fluid content after FBC of the blastocyst cavity. Therefore, we suggest that FBC of the blastocyst cavity with a pulled Pasteur pipet is an effective pre-treatment technique for both slow-rate freezing and vitrification of bovine blastocysts. © 2014 Blackwell Verlag GmbH.

  9. Biophysical Characteristics of Successful Oilseed Embryo Cryoprotection and Cryopreservation Using Vacuum Infiltration Vitrification: An Innovation in Plant Cell Preservation

    Science.gov (United States)

    Nadarajan, Jayanthi; Pritchard, Hugh W.

    2014-01-01

    Heterogeneity in morphology, physiology and cellular chemistry of plant tissues can compromise successful cryoprotection and cryopreservation. Cryoprotection is a function of exposure time × temperature × permeability for the chosen protectant and diffusion pathway length, as determined by specimen geometry, to provide sufficient dehydration whilst avoiding excessive chemical toxicity. We have developed an innovative method of vacuum infiltration vitrification (VIV) at 381 mm (15 in) Hg (50 kPa) that ensures the rapid (5 min), uniform permeation of Plant Vitrification Solution 2 (PVS2) cryoprotectant into plant embryos and their successful cryopreservation, as judged by regrowth in vitro. This method was validated on zygotic embryos/embryonic axes of three species (Carica papaya, Passiflora edulis and Laurus nobilis) up to 1.6 mg dry mass and 5.6 mm in length, with varying physiology (desiccation tolerances) and 80°C variation in lipid thermal profiles, i.e., visco-elasticity properties, as determined by differential scanning calorimetry. Comparisons between the melting features of cryoprotected embryos and embryo regrowth indicated an optimal internal PVS2 concentration of about 60% of full strength. The physiological vigour of surviving embryos was directly related to the proportion of survivors. Compared with conventional vitrification, VIV-cryopreservation offered a ∼ 10-fold reduction in PVS2 exposure times, higher embryo viability and regrowth and greater effectiveness at two pre-treatment temperatures (0°C and 25°C). VIV-cryopreservation may form the basis of a generic, high throughput technology for the ex situ conservation of plant genetic resources, aiding food security and protection of species from diverse habitats and at risk of extinction. PMID:24788797

  10. Embryo vitrification using a novel semi-automated closed system yields in vitro outcomes equivalent to the manual Cryotop method.

    Science.gov (United States)

    Roy, Tammie K; Brandi, Susanna; Tappe, Naomi M; Bradley, Cara K; Vom, Eduardo; Henderson, Chester; Lewis, Craig; Battista, Kristy; Hobbs, Ben; Hobbs, Simon; Syer, John; Lanyon, Sam R; Dopheide, Sacha M; Peura, Teija T; McArthur, Steven J; Bowman, Mark C; Stojanov, Tomas

    2014-11-01

    Can the equilibration steps prior to embryo vitrification be automated? We have developed the 'Gavi' system which automatically performs equilibration steps before closed system vitrification on up to four embryos at a time and gives in vitro outcomes equivalent to the manual Cryotop method. Embryo cryopreservation is an essential component of a successful assisted reproduction clinic, with vitrification providing excellent embryo survival and pregnancy outcomes. However, vitrification is a manual, labour-intensive and highly skilled procedure, and results can vary between embryologists and clinics. A closed system whereby the embryo does not come in direct contact with liquid nitrogen is preferred by many clinics and is a regulatory requirement in some countries. The Gavi system, an automation instrument with a novel closed system device, was used to equilibrate embryos prior to vitrification. Outcomes for embryos automatically processed with the Gavi system were compared with those processed with the manual Cryotop method and with fresh (non-vitrified) controls. The efficacy of the Gavi system (Alpha model) was assessed for mouse (Quackenbush Swiss and F1 C57BL/6J x CBA) zygotes, cleavage stage embryos and blastocysts, and for donated human vitrified-warmed blastocysts. The main outcomes assessed included recovery, survival and in vitro embryo development after vitrification-warming. Cooling and warming rates were measured using a thermocouple probe. Mouse embryos vitrified after processing with the automated Gavi system achieved equivalent in vitro outcomes to that of Cryotop controls. For example, for mouse blastocysts both the Gavi system (n = 176) and manual Cryotop method (n = 172) gave a 99% recovery rate, of which 54 and 50%, respectively, progressed to fully hatched blastocysts 48 h after warming. The outcomes for human blastocysts processed with the Gavi system (n = 23) were also equivalent to Cryotop controls (n = 13) including 100% recovery for both

  11. Analysis of the phospholipid profile of metaphase II mouse oocytes undergoing vitrification.

    Directory of Open Access Journals (Sweden)

    Jaehun Jung

    Full Text Available Oocyte freezing confers thermal and chemical stress upon the oolemma and various other intracellular structures due to the formation of ice crystals. The lipid profiles of oocytes and embryos are closely associated with both, the degrees of their membrane fluidity, as well as the degree of chilling and freezing injuries that may occur during cryopreservation. In spite of the importance of lipids in the process of cryopreservation, the phospholipid status in oocytes and embryos before and after freezing has not been investigated. In this study, we employed mass spectrometric analysis to examine if vitrification has an effect on the phospholipid profiles of mouse oocytes. Freshly prepared metaphase II mouse oocytes were vitrified using copper grids and stored in liquid nitrogen for 2 weeks. Fresh and vitrified-warmed oocytes were subjected to phospholipid extraction procedure. Mass spectrometric analyses revealed that multiple species of phospholipids are reduced in vitrified-warmed oocytes. LIFT analyses identified 31 underexpressed and 5 overexpressed phospholipids in vitrified mouse oocytes. The intensities of phosphatidylinositol (PI {18∶2/16∶0} [M-H]- and phosphatidylglycerol (PG {14∶0/18∶2} [M-H]- were decreased the most with fold changes of 30.5 and 19.1 in negative ion mode, respectively. Several sphingomyelins (SM including SM {d38∶3} [M+H]+ and SM {d34∶0} [M+K]+ were decreased significantly in positive ion mode. Overall, the declining trend of multiple phospholipids demonstrates that vitrification has a marked effect on phospholipid profiles of oocytes. These results show that the identified phospholipids can be used as potential biomarkers of oocyte undergoing vitrification and will allow for the development of strategies to preserve phospholipids during oocyte cryopreservation.

  12. Evaluation of the Cryotech Vitrification Kit for bovine embryos.

    Science.gov (United States)

    Gutnisky, C; Alvarez, G M; Cetica, P D; Dalvit, G C

    2013-12-01

    The purpose of this work was to assess commercially available Cryotech Vitrification Kit, in terms of survival, in vitro development and pregnancy rate for bovine embryos. Cumulus-oocyte complexes (COCs) were recovered from ovaries obtained from slaughtered cows and then matured in vitro for 22 h. COCs were fertilized by sex-sorted sperm in IVF-mSOF and cultured in IVC-mSOF for 7 days to the blastocyst stage. Blastocysts were vitrified with the Cryotech Vitrification Kit(®) and then either warmed to check viability or transferred to synchronized heifers. We observed 100% survival of the in vitro produced blastocysts and obtained the same pregnancy rate (46.8%) as that obtained using fresh in vitro produced blastocysts. We thus conclude that the Cryotech vitrification method is a valid alternative to other vitrification or slow-cooling methods in the bovine species and that it is ready for livestock production. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Vitrification of caudal fin explants from zebrafish adult specimens.

    Science.gov (United States)

    Cardona-Costa, J; Roig, J; Perez-Camps, M; García-Ximénez, F

    2006-01-01

    No data on vitrification of tissue samples are available in fishes. Three vitrification solutions were compared: V1: 20% ethylene glycol and 20% dimethyl sulphoxide; V2: 25% propylene glycol and 20% dimethyl sulphoxide, and; V3: 20% propylene glycol and 13% methanol, all three prepared in Hanks' buffered salt solution plus 20 percent FBS, following the same one step vitrification procedure developed in mammals. Caudal fin tissue pieces were vitrified into 0.25 ml plastic straws in 30s and stored in liquid nitrogen for 3 days minimum, warmed (10s in nitrogen vapour and 5s in a 25 degree C water bath) and cultured (L-15 plus 20% FBS at 28.5 degree C). At the third day of culture, both attachment and outgrowing rates were recorded. V3 led to the worst results (8% of attachment rate). V1 and V2 allow higher attachment rates (V1: 63% vs V2: 50%. P < 0.05) but not significantly different outgrowing rates (83% to 94%). Vitrification of caudal fin pieces is advantageous in fish biodiversity conservation, particularly in the wild, due to the simplicity of procedure and equipment.

  14. Low-level waste vitrification contact maintenance viability study

    Energy Technology Data Exchange (ETDEWEB)

    Leach, C.E., Westinghouse Hanford

    1996-07-12

    This study investigates the economic viability of contact maintenance in the Low-Level Waste Vitrification Facility, which is part of the Hanford Site Tank Waste Remediation System. This document was prepared by Flour Daniel, Inc., and transmitted to Westinghouse Hanford Company in September 1995.

  15. Nuclear maturation of immature bovine oocytes after vitrification ...

    African Journals Online (AJOL)

    In the second experiment, effectiveness of both vitrification methods was compared for cryopreservation of immature bovine oocytes. After warming, COCs were cultured in vitro for 24 h. The polar body (PB+) and metaphase-II (MII) stage rates differed significantly among treatment groups. Oocytes vitrified using cryotop ...

  16. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward

    2006-01-01

    Full Text Available The preventive pre-treatment of low grade solid fuels is safer, faster, better, and less costly vs. the "end-of-the-pipe" post treatment solutions. The "3R" (Recycle-Reduce-Reuse integrated environment control technology provides preventive pre-treatment of low grade solid fuels, such as brown coal and contaminated solid fuels to achieve high grade cleansed fuels with anthracite and coke comparable quality. The goal of the 3R technology is to provide cost efficient and environmentally sustainable solutions by preventive pre-treatment means for extended operations of the solid fuel combustion power plants with capacity up to 300 MWe power capacities. The 3R Anthracite Clean Coal end product and technology may advantageously be integrated to the oxyfuel-oxy-firing, Foster Wheeler anthracite arc-fired utility type boiler and Heat Pipe Reformer technologies in combination with CO2 capture and storage programs. The 3R technology is patented original solution. Advantages. Feedstock flexibility: application of pre-treated multi fuels from wider fuel selection and availability. Improved burning efficiency. Technology flexibility: efficient and advantageous inter-link to proven boiler technologies, such as oxyfuel and arcfired boilers. Near zero pollutants for hazardous-air-pollutants: preventive separation of halogens and heavy metals into small volume streams prior utilization of cleansed fuels. >97% organic sulphur removal achieved by the 3R thermal pre-treatment process. Integrated carbon capture and storage (CCS programs: the introduction of monolitic GHG gas is improving storage safety. The 3R technology offers significant improvements for the GHG CCS conditions. Cost reduction: decrease of overall production costs when all real costs are calculated. Improved safety: application of preventive measures. For pre-treatment a specific purpose designed, developed, and patented pyrolysis technology used, consisting of a horizontally arranged externally

  17. Strategy for addressing composition uncertainties in a Hanford high-level waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.

    1996-03-01

    Various requirements will be imposed on the feed material and glass produced by the high-level waste (HLW) vitrification plant at the Hanford Site. A statistical process/product control system will be used to control the melter feed composition and to check and document product quality. Two general types of uncertainty are important in HLW vitrification process/product control: model uncertainty and composition uncertainty. Model uncertainty is discussed by Hrma, Piepel, et al. (1994). Composition uncertainty includes the uncertainties inherent in estimates of feed composition and other process measurements. Because feed composition is a multivariate quantity, multivariate estimates of composition uncertainty (i.e., covariance matrices) are required. Three components of composition uncertainty will play a role in estimating and checking batch and glass attributes: batch-to-batch variability, within-batch uncertainty, and analytical uncertainty. This document reviews the techniques to be used in estimating and updating composition uncertainties and in combining these composition uncertainties with model uncertainty to yield estimates of (univariate) uncertainties associated with estimates of batch and glass properties.

  18. Effects of Droplet-Vitrification Cryopreservation Based on Physiological and Antioxidant Enzyme Activities of Brassidium Shooting Star Orchid

    Directory of Open Access Journals (Sweden)

    Safrina Rahmah

    2015-01-01

    Full Text Available Protocorm-like bodies (PLBs of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM, and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX and catalase (CAT showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages.

  19. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp.

    Science.gov (United States)

    Barta, Zsolt; Kreuger, Emma; Björnsson, Lovisa

    2013-04-22

    The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103-128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with higher value products are

  20. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    Science.gov (United States)

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with

  1. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    Energy Technology Data Exchange (ETDEWEB)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  2. Further development of chemical and biological processes for production of bioethanol: Optimisation of pre-treatment processes and characterisation of products

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Schmidt, A.S.

    1999-01-01

    /L. The conditions for willow and birchwood was selected based on the optimal conditions for wheat straw. Three different harvest years of wheat straw were included to evaluate the effect of crop variation from year toyear. Comparative studies were made using steaming and steam explosion of wheat straw. Alkaline wet......, the optimal pre-treatment was wet oxidationwithout alkaline using 185°C, 15 minutes (from 60 g willow/L). These conditions gave 8.2 g/L hemicellulose in solution and 50% cellulose convertibility, which was lower than that of wheat straw. High recoveries were obtained for willow compared to wheatstraw...

  3. Ultra-Structural Alterations in In Vitro Produced Four-Cell Bovine Embryos Following Controlled Slow Freezing or Vitrification.

    Science.gov (United States)

    Cavusoglu, T; Popken, J; Guengoer, T; Yilmaz, O; Uyanikgil, Y; Ates, U; Baka, M; Oztas, E; Zakhartchenko, V

    2016-08-01

    Cryopreservation is the process of freezing and preserving cells and tissues at low temperatures. Controlled slow freezing and vitrification have successfully been used for cryopreservation of mammalian embryos. We investigated the effect of these two cryopreservation methods on in vitro produced four-cell stage bovine embryos which were classified according to their quality and separated into three groups. The first group was maintained as untreated controls (n = 350). Embryos of the second (n = 385) and the third (n = 385) groups were cryopreserved either by controlled slow freezing or by vitrification. Embryos in groups 2 and 3 were thawed after 1 day. Hundred embryos were randomly selected from the control group, and 100 morphologically intact embryos from the second and third group were thawed after 1 day and cultured to observe the development up to the blastocyst stage. The blastocyst development rate was 22% in the control group, 1% in the slow-freezing group and 3% in the vitrification group. Remaining embryos of all three groups were examined by light microscopy, transmission electron microscopy and immunofluorescence confocal microscopy with subsequent histological staining procedures. Cryopreservation caused degenerative changes at the ultra-structural level. Compared with vitrification, slow freezing caused an increased mitochondrial degeneration, cytoplasmic vacuolization, disruption of the nuclear and plasma membrane integrity, organelle disintegration, cytoskeletal damage, a reduced thickness of the zona pellucida and a formation of fractures in the zona pellucida. Further studies are required to understand and decrease the harmful effects of cryopreservation. © 2015 Blackwell Verlag GmbH.

  4. The Roles of Vitrification of Stabilizers/Matrix Formers for the Redispersibility of Drug Nanocrystals After Solidification: a Case Study.

    Science.gov (United States)

    Yue, PengFei; Xiao, MingSheng; Xie, YuanBiao; Ma, YueQin; Guan, YongMei; Wu, ZhenFeng; Hu, PengYi; Wang, YaQi

    2016-12-01

    To elucidate the roles of vitrification of stabilizers/matrix formers for the redispersibility of drug nanocrystal powder after solidification at storage stress, the influence of different drying methods and storage stresses on stability of drug nanocrystals was systemically investigated. A poorly soluble drug, baicalin, used as model drug was converted into baicalin nanocrystals (BCN-NC). The residual moisture contents of BCN-NC were applied at two different stress conditions defined as "conservative" (1%), respectively. The influence of different stabilizers, matrix formers, and storage stresses on the redispersibility of BCN-NC powder was systemically investigated, respectively. The results showed that storage stresses had significantly influence the redispersibility of BCN-NC. Aggressive storage temperature and residual moisture could be unfavorable factors for stability of drug nanocrystals, due to the exacerbation of aggregation of BCN-NC induced by vitrification. It was demonstrated that vitrification of spray-dried BCN-NC was dependent on temperature and time. The polymeric stabilizers hydroxypropylmethylcellulose (HPMC) and sodium carboxymethyl starch (CMS-Na) with high glass transition temperature (T g) played more important role in protecting the BCN-NC from breakage during storage, compared to the surfactants Tween 80, D-α-tocopherol acid polyethylene glycol 1000 succinate (TPGS), or RH 40. Besides, the polyvinylpyrrolidone K30 (PVP K30) and lactose with high T g were effective matrix formers for preserving the redispersibility of BCN-NC. It was concluded that the vitrification transition of stabilizers/matrix formers could be responsible for aggregation of drug nanocrystals during storage, which was a time-dependent process. The suitable residual moisture contents (RMC) and T g were very important for preserving the stability of drug nanocrystals during storage.

  5. Evaluation of the new vacuum infiltration vitrification (viv) cryopreservation technique for native Australian plant shoot tips.

    Science.gov (United States)

    Funnekotter, Bryn; Whiteley, Susan E; Turner, Shane R; Bunn, Eric; Mancera, Ricardo L

    2015-01-01

    The application of a vacuum during the incubation in cryoprotective agents such as PVS2 allows for increased penetration, reducing total incubation times required before vitrification and post-cryopreservation regeneration is achieved. This study compared a conventional droplet-vitrification protocol to the new vacuum infiltration vitrification protocol in four Australian plant species. The new vacuum infiltration vitrification applied an 80 kPa vacuum during incubations in loading solution and PVS2. Infiltration of the cryoprotective agents into shoot tips was determined by differential scanning calorimetry measuring ice formation in the thermographs comparing a range of loading solution and PVS2 incubation times. The application of the vacuum infiltration vitrification technique resulted in a significantly reduced PVS2 incubation time for cryogenic survival and regeneration for all four species, reducing the time needed to adequately protect shoot tips by half to a quarter when compared to a conventional droplet-vitrification technique.

  6. Ultrastructure of preimplantation genetic diagnosis-derived human blastocysts grown in a coculture system after vitrification.

    Science.gov (United States)

    Escribá, María-José; Escobedo-Lucea, Carmen; Mercader, Amparo; de los Santos, María-José; Pellicer, Antonio; Remohí, José

    2006-09-01

    To evaluate ultrastructural features of preimplantation genetic diagnosis (PGD) blastocysts before and after vitrification. Descriptive study of both vitrified and fresh hatching blastocysts. PGD program at the Instituto Universitario, Instituto Valenciano de Infertilidad. Patients undergoing PGD donated their abnormal embryos for research (n = 26). Biopsied embryos were cultured in the presence of human endometrial cells until day 6. Sixteen blastocysts were vitrified. A total of 11 high-scored hatching blastocysts, 6 warmed and 5 fresh, were fixed for ultrastructure. The cytoskeleton structure, type of intercellular junctions, and basic intracellular organelles in trophoectoderm cells and the inner cell mass were analyzed. Ten of 16 blastocysts (62%) survived the warming process. Six of these showed no signs of cell degeneration and light microscopy revealed similar ultrastructural characteristics to those of controls. However, in trophoectoderm cells from both fresh and cryopreserved blastocysts, a reduced number of tight junctions and the presence of degradation bodies were detected. The particular ultrastructural features observed in PGD-derived blastocysts could be related to embryo manipulation and culture conditions. Vitrification does not seem to alter blastocysts, as those that survive hatching do not display detectable cellular alterations when observed through electron microscopy.

  7. Cold-cap reactions in vitrification of nuclear waste glass: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jaehun; Pierce, David A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Pokorný, Richard [Department of Chemical Engineering, Institute of Chemical Technology in Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Hrma, Pavel, E-mail: pavelhrma@postech.ac.kr [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2013-05-10

    Highlights: ► We measured enthalpy-based conversion degree of overlapping reactions using DSC. ► We employed the run/rerun technique to obtain heat flow associated with reactions. ► Batch-to-glass conversion advances via multiple overlapping reactions. ► The kinetic model is intended for the source term in the energy transfer equation. ► The results are relevant for industrial glass making and nuclear waste vitrification. - Abstract: Cold-cap reactions are multiple overlapping reactions that occur in the waste-glass melter during the vitrification process when the melter feed is being converted to molten glass. In this study, we used simultaneous differential scanning calorimetry–thermogravimetry (DSC–TGA) to investigate cold-cap reactions in a high-alumina high-level waste melter feed. To separate the reaction heat from both the heat associated with the heat capacity of the feed and experimental artifacts, we employed the run/rerun method, which enabled us to define the degree of conversion based on the reaction heat and to estimate the heat capacity of the reacting feed. Assuming that the reactions are nearly independent and can be approximated by an nth order kinetic model, we obtained the kinetic parameters using the Kissinger method combined with least squares analysis. The resulting mathematical simulation of the cold-cap reactions provides a key element for the development of an advanced cold-cap model.

  8. How thermal stress alters the confinement of polymers vitrificated in nanopores

    Science.gov (United States)

    Teng, Chao; Li, Linling; Wang, Yong; Wang, Rong; Chen, Wei; Wang, Xiaoliang; Xue, Gi

    2017-05-01

    Understanding and controlling the glass transition temperature (Tg) and dynamics of polymers in confined geometries are of significance in both academia and industry. Here, we investigate how the thermal stress induced by a mismatch in the coefficient of thermal expansion affects the Tg behavior of polystyrene (PS) nanorods located inside cylindrical alumina nanopores. The size effects and molecular weight dependence of the Tg are also studied. A multi-step relaxation process was employed to study the relationship between thermal stress and cooling rate. At fast cooling rates, the imparted thermal stress would overcome the yield stress of PS and peel chains off the pore walls, while at slow cooling rates, chains are kept in contact with the pore walls due to timely dissipation of the produced thermal stress during vitrification. In smaller nanopores, more PS chains closely contact with pore walls, then stronger internal thermal stress would be generated between core and shell of PS nanorod, which results in a larger deviation between two Tgs. The core part of PS shows lower Tg than bulk value, which can induce faster dynamics in the center region. A complex and important role stress plays is supposed in complex confinement condition, e.g., in nanopores, during vitrification.

  9. Using pyrolytic acid leaching as a pretreatment step in a biomass fast pyrolysis plant: Process design and economic evaluation

    OpenAIRE

    Oudenhoven, S.R.G.; van der Ham, A.G.J.; H. Van den Berg; Westerhof, R.J.M.; Kersten, S.R.A.

    2016-01-01

    Removing alkali and alkaline earth metals (AAEMs) from biomass, with pyrolytic acids, before pyrolysis leads to increased organic oil and sugar yields. These pyrolytic acids are produced and concentrated within the pyrolysis process itself. The purpose of this paper was to evaluate under which conditions acid leaching of pinewood, bagasse and straw can improve the technical and economic feasibility of a pyrolysis process. Therefore, a preliminary process design for the implementation of acid ...

  10. Optimized Method for Bovine Blastocyst Vitrification Using a Simple Hand-Made Cryotip

    OpenAIRE

    Vajiheh Asgari; Mohsen Forouzanfar; Sayed Morteza Hosseini; Mehdi Hajian; Fariba Moulavi; Parvaneh Abedi; Laleh Hosseini; Hossein Sadeghi; Hamid Bahramian; Mohammad Hossein Nasr Esfahani

    2009-01-01

    Objective: This study introduced a simple method for bovine blastocyst vitrification.Materials and Methods: Bovine blastocysts were produced in vitro by means of a wholeco-culture system with vero cells. The blastocysts were randomly divided 1:3 into either vitrification(100 blastocysts) or control (43 blastocysts) groups. For vitrification,expanded - blastocystswere incubated first in equilibration medium for 8 minutes and then in the vitrificationsolution for 1 minute. The blastocysts were ...

  11. The role of a combined coagulation and disk filtration process as a pre-treatment to microfiltration and reverse osmosis membranes in a municipal wastewater pilot plant.

    Science.gov (United States)

    Chon, Kangmin; Cho, Jaeweon; Kim, Seung Joon; Jang, Am

    2014-12-01

    A pilot study was conducted to assess the performance of a municipal wastewater reclamation plant consisting of a combined coagulation-disk filtration (CC-DF) process, microfiltration (MF) and reverse osmosis (RO) membranes, in terms of the removal of water contaminants and changes in characteristics of effluent organic matter (EfOM). The CC-DF and MF membranes were not effective for the removal of dissolved water contaminants. However, they could partially reduce the turbidity associated with the cake layer formation by particulate materials on the membrane surfaces. Furthermore, most of water contaminants were completely removed by the RO membranes. Although the CC-DF process could remove approximately 20% of turbidity, the aluminium concentrations considerably increased after the CC-DF process due to the residual coagulants complexed with both carboxylic acid and alcohol functional groups of EfOM. Those aluminium-EfOM complexes had a lower negative charge and higher molecular weight (>0.1 μm pore size of the MF membranes) compared to non-complexed EfOM. These results indicate that the control of the formation of the aluminium-EfOM complexes should be considered as a key step to use the CC-DF process as a pre-treatment of the MF and RO membranes for mitigation of membrane fouling in the tested pilot plant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Pretreatment of shale gas drilling flowback fluid (SGDF) by the microscale Fe(0)/persulfate/O3 process (mFe(0)/PS/O3).

    Science.gov (United States)

    Zhang, Heng; Xiong, Zhaokun; Ji, Fangzhou; Lai, Bo; Yang, Ping

    2017-06-01

    Shale gas drilling flowback fluid (SGDF) generated during shale gas extraction is of great concern due to its high total dissolved solid, radioactive elements and organic matter. To remove the toxic and refractory pollutants in SGDF and improve its biodegradability, a microsacle Fe(0)/Persulfate/O3 process (mFe(0)/PS/O3) was developed to pretreat this wastewater obtained from a shale gas well in southwestern China. First, effects of mFe(0) dosage, O3 flow rate, PS dosage, pH values on the treatment efficiency of mFe(0)/PS/O3 process were investigated through single-factor experiments. Afterward, the optimal conditions (i.e., pH = 6.7, mFe(0) dosage = 6.74 g/L, PS = 16.89 mmol/L, O3 flow rate = 0.73 L/min) were obtained by using response surface methodology (RSM). Under the optimal conditions, high COD removal (75.3%) and BOD5/COD ratio (0.49) were obtained after 120 min treatment. Moreover, compared with control experiments (i.e., mFe(0), O3, PS, mFe(0)/O3, mFe(0)/PS, O3/PS), mFe(0)/PS/O3 system exerted better performance for pollutants removal in SGDF due to strong synergistic effect between mFe(0), PS and O3. In addition, the decomposition or transformation of the organic pollutants in SGDF was analyzed by using GC-MS. Finally, the reaction mechanism of the mFe(0)/PS/O3 process was proposed according to the analysis results of SEM-EDS and XRD. It can be concluded that high-efficient mFe(0)/PS/O3 process was mainly resulted from the combination effect of direct oxidation by ozone and persulfate, heterogeneous and homogeneous catalytic oxidation, Fenton-like reaction and adsorption. Therefore, mFe(0)/PS/O3 process was proven to be an effective method for pretreatment of SGDF prior to biological treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of oocyte vitrification on epigenetic status in early bovine embryos.

    Science.gov (United States)

    Chen, Huanhuan; Zhang, Lei; Deng, Tengfei; Zou, Pengda; Wang, Yongsheng; Quan, Fusheng; Zhang, Yong

    2016-08-01

    Oocyte cryopreservation has a great impact on subsequent embryonic development. Currently, several studies have primarily focused on the consequences of vitrification and the development potential of cellular structures. This study determined whether oocyte vitrification caused epigenetic instabilities of bovine embryos. The effects of oocyte vitrification on DNA methylation, histone modifications, and putative imprinted genes' expression in early embryos derived by intracytoplasmic sperm injection were examined. Results showed that oocyte vitrification did not affect zygote cleavage rates (67.0% vs. 73.8% control, P > 0.05) but reduced the blastocyst rate (9.6% vs. 23.0%, P vitrification group during the early cleavage phases. No differences were observed for DNA methylation, H3K9me3, and acH3K9 in the inner cell mass of blastocysts, whereas decreased levels of DNA methylation and acH3K9 (P vitrification. The expression of putative-imprinted genes PEG10, XIST, and KCNQ1O1T was upregulated in blastocysts. These epigenetic abnormalities may be partially explained by altered expression of genes associated with epigenetic regulations. DNA methylation and H3K9 modification suggest that oocyte vitrification may excessively relax the chromosomes of oocytes and early cleavage embryos. In conclusion, these epigenetic indexes could be used as damage markers of oocyte vitrification during early embryonic development, which offers a new insight to assess oocyte vitrification. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Comparison of vitrification and conventional freezing for cryopreservation of caprine embryos.

    Science.gov (United States)

    Araújo-Lemos, Paula F B; Freitas Neto, Leopoldo M; Moura, Marcelo T; Melo, Janaína V; Lima, Paulo F; Oliveira, Marcos A L

    2015-08-01

    The experiment aimed to compare conventional freezing and different vitrification protocols for cryopreservation of caprine embryos at morphological, ultrastructural, and functional levels. Caprine embryos produced in vivo were allocated randomly to three groups: (1) conventional freezing with ethylene glycol (EG); (2) dimethyl sulfoxide + EG (DMSO/EG) vitrification; and (3) dimethylformamide + EG (DMF/EG) vitrification. All groups were scored for cell viability (propidium iodide staining and ultrastructural levels) and re-expansion rate after thawing or warming. Embryos subjected to DMSO/EG vitrification showed higher cell viability (73.33%), compared with DMF/EG vitrification and conventional freezing group embryos (40.00 and 66.66%, respectively). The ultrastructural study revealed that vitrified embryos had greater preservation of cellular structure than embryos from conventional freezing with EG. DMSO/EG vitrification resulted in higher rates of re-expansion in vitro (47.36%) than DMF/EG vitrification (31.58%), and conventional freezing (25.00%). In conclusion, caprine embryos produced in vivo are better cryopreserved after vitrification than conventional freezing, therefore we conclude that DMSO/EG vitrification is the most effective protocol for cryopreservation.

  15. FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

    2011-12-29

    This report provides data, analysis, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic University of America (VSL) to determine the melter processing rates that are achievable with RPP-WTP HLW simulants. The principal findings were presented earlier in a summary report (VSL-00R2S90-l) but the present report provides additional details. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. As a consequence of the limited amount of relevant information, there exists, for good reasons, a significant disparity between design-base specific glass production rates for the RPP-WTP LAW and HLW conceptual designs (1.0 MT/m{sup 2}/d and 0.4 MT/m{sup 2}/d, respectively); furthermore, small-scale melter tests with HLW simulants that were conducted during Part A indicated typical processing rates with bubbling of around 2.0 MT/m{sup 2}/d. This range translates into more than a factor of five variation in the resultant surface area of the HLW melter, which is clearly not without significant consequence. It is clear that an undersized melter is undesirable in that it will not be able to support the required waste processing rates. It is less obvious that there are potential disadvantages associated with an oversized melter, over and above the increased capital costs. A melt surface that is consistently underutilized will have poor cold cap coverage, which will result in increased volatilization from the melt (which is generally undesirable) and

  16. Safeguardability of the vitrification option for disposal of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. [Los Alamos National Lab., NM (United States)

    1996-05-01

    Safeguardability of the vitrification option for plutonium disposition is rather complex and there is no experience base in either domestic or international safeguards for this approach. In the present treaty regime between the US and the states of the former Soviet Union, bilaterial verifications are considered more likely with potential for a third-party verification of safeguards. There are serious technological limitations to applying conventional bulk handling facility safeguards techniques to achieve independent verification of plutonium in borosilicate glass. If vitrification is the final disposition option chosen, maintaining continuity of knowledge of plutonium in glass matrices, especially those containing boron and those spike with high-level wastes or {sup 137}Cs, is beyond the capability of present-day safeguards technologies and nondestructive assay techniques. The alternative to quantitative measurement of fissile content is to maintain continuity of knowledge through a combination of containment and surveillance, which is not the international norm for bulk handling facilities.

  17. Development of a remote bushing for actinide vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.; Ramsey, W.G.; Johnson, F.M. [and others

    1996-12-31

    The Savannah River Site (SRS) and the Savannah River Technology Center (SRTC) are combining their existing experience in handling highly radioactive, special nuclear materials with commercial glass fiberization technology in order to assemble a small vitrification system for radioactive actinide solutions. The vitrification system or {open_quotes}brushing{close_quotes}, is fabricated from platinum-rhodium alloy and is based on early marble remelt fiberization technology. Advantages of this unique system include its relatively small size, reliable operation, geometrical safety (nuclear criticality), and high temperature capability. The bushing design should be capable of vitrifying a number of the actinide nuclear materials, including solutions of americium/curium, neptunium, and possibly plutonium. State of the art, mathematical and oil model studies are being combined with basic engineering evaluations to verify and improve the thermal and mechanical design concepts.

  18. Effect of surface pretreatment of TiO2 films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation

    Science.gov (United States)

    Rtimi, Sami; Nesic, Jelena; Pulgarin, Cesar; Sanjines, Rosendo; Bensimon, Michael; Kiwi, John

    2015-01-01

    Evidence is presented for radio-frequency plasma pretreatment enhancing the amount and adhesion of TiO2 sputtered on polyester (PES) and on polyethylene (PE) films. Pretreatment is necessary to attain a suitable TiO2 loading leading to an acceptable Escherichia coli reduction kinetics in the dark or under light irradiation for PES–TiO2 and PE–TiO2 samples. The amount of TiO2 on the films was monitored by diffuse reflectance spectroscopy and X-ray fluorescence. X-ray electron spectroscopy shows the lack of accumulation of bacterial residues such as C, N and S during bacterial inactivation since they seem to be rapidly destroyed by TiO2 photocatalysis. Evidence was found for Ti4+/Ti3+ redox catalysis occurring on PES–TiO2 and PE–TiO2 during the bacterial inactivation process. On PE–TiO2 surfaces, Fourier transform infrared spectroscopy (ATR-FTIR) provides evidence for a systematic shift of the na(CH2) stretching vibrations preceding bacterial inactivation within 60 min. The discontinuous IR-peak shifts reflect the increase in the C–H inter-bond distance leading to bond scission. The mechanism leading to E. coli loss of viability on PES–TiO2 was investigated in the dark up to complete bacterial inactivation by monitoring the damage in the bacterial outer cell by transmission electron microscopy. After 30 min, the critical step during the E. coli inactivation commences for dark disinfection on 0.1–5% wt PES–TiO2 samples. The interactions between the TiO2 aggregates and the outer lipopolysaccharide cell wall involve electrostatic effects competing with the van der Waals forces. PMID:25657831

  19. In-situ vitrification of transuranic wastes: systems evaluation and applications assessment

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Brown, D.R.; Buelt, J.L.; FitzPatrick, V.F.; Hawley, K.A.; Mellinger, G.B.; Napier, B.A.; Silviera, D.J.; Stein, S.L.; Timmerman, C.L.

    1983-09-01

    Major advantages of in-situ vitrification (ISV) as a means of stabilizing radioactive waste are: long term durability of the waste form; cost effectiveness; safety in terms of minimizing worker and public exposure; and applicability to different kinds of soils and buried wastes. This document describes ISV technology that is available as another viable tool for in place stabilization of waste sites. The following sections correspond to the chapters in the body of this document: description of the ISV process; analysis of the performane of the ISV tests conducted thus far; parameters of the ISV process; cost analysis for the ISV process; analysis of occupational and public exposure; and assessment of waste site applications.

  20. Evaluation of the rotary drum reactor process as pretreatment technology of municipal solid waste for thermophilic anaerobic digestion and biogas production.

    Science.gov (United States)

    Gikas, Petros; Zhu, Baoning; Batistatos, Nicolas Ion; Zhang, Ruihong

    2017-08-21

    Municipal solid waste (MSW) contains a large fraction of biodegradable organic materials. When disposed in landfills, these materials can cause adverse environmental impact due to gaseous emissions and leachate generation. This study was performed with an aim of effectively separating the biodegradable materials from a Mechanical Biological Treatment (MBT) facility and treating them in well-controlled anaerobic digesters for biogas production. The rotary drum reactor (RDR) process (a sub-process of the MBT facilities studied in the present work) was evaluated as an MSW pretreatment technology for separating and preparing the biodegradable materials in MSW to be used as feedstock for anaerobic digestion. The RDR processes used in six commercial MSW treatment plants located in the USA were surveyed and sampled. The samples of the biodegradable materials produced by the RDR process were analyzed for chemical and physical characteristics as well as anaerobically digested in the laboratory using batch reactors under thermophilic conditions. The moisture content, TS, VS and C/N of the samples varied between 64.7 and 44.4%, 55.6 to 35.3%, 27.0 to 41.3% and 24.5 to 42.7, respectively. The biogas yield was measured to be between 533.0 and 675.6 mL g-1VS after 20 days of digestion. Approximately 90% of the biogas was produced during the first 13 days. The average methane content of the biogas was between 58.0 and 59.9%. The results indicated that the biodegradable materials separated from MSW using the RDR processes could be used as an excellent feedstock for anaerobic digestion. The digester residues may be further processed for compost production or further energy recovery by using thermal conversion processes such as combustion or gasification. Copyright © 2017. Published by Elsevier Ltd.

  1. Development of alternative loading solutions in droplet-vitrification procedures.

    Science.gov (United States)

    Kim, H H; Lee, Y G; Park, S U; Lee, S C; Baek, H J; Cho, E G; Engelmann, F

    2009-01-01

    In plant vitrification protocols, the loading treatment, which involves treating the explants with a moderately concentrated cryoprotectant solution, precedes dehydration of explants with highly concentrated vitrification solutions in order to reduce the toxicity which can be induced by their direct exposure to such highly concentrated solutions. This study aimed at developing alternative loading solutions composed of mixtures of glycerol and sucrose at various concentrations. Differential scanning calorimetry runs of loading solutions and of loaded and dehydrated explants were performed to assay thermal events occurring during cooling and warming. These loading solutions were applied to two model species, viz. garlic and chrysanthemum which were cryopreserved using a droplet-vitrification procedure. The loading treatment proved to be beneficial to both garlic and chrysanthemum and increased recovery of cryopreserved explants. However, response to the loading solutions tested varied between the two model species employed: with garlic, all the loading solutions had a similar effect, whereas survival of chrysanthemum shoot tips was significantly influenced by the composition of the loading solution employed. A loading solution comprising 1.9 M glycerol and 0.5 M sucrose was the most effective. The loading treatment may thus act as an osmotic stress neutralizer and/or induce the physiological adaptation of tissues and cells, including membranes, to both dehydration and freezing.

  2. Improved cryopreservation of chrysanthemum (Chrysanthemum morifolium) using droplet-vitrification.

    Science.gov (United States)

    Lee, Yoon-Geol; Popov, Elena; Cui, Hai-Yan; Kim, Haeng-Hoon; Park, Sang-Un; Bae, Chang-Hyu; Lee, Sheony-Chun; Engelmann, Florent

    2011-01-01

    A droplet-vitrification protocol has been established for cryopreserving Chrysanthemum morifolium cv. Peak using axillary shoot tips and apical shoots of in vitro plants. In the optimized procedure, explants were submitted to a step-wise preculture in liquid sucrose-enriched medium (0.3, 0.5 and 0.7 M for 31,17 and 7 h, respectively). Precultured explants were treated for 40 min with C4 loading solution comprising (w/v) 17.5 percent glycerol + 17.5 percent sucrose, then dehydrated with PVS3 vitrification solution (w/v, 50 percent glycerol + 50 percent sucrose) for 60 min (axillary shoot tips) or 90 min (apical shoots). Explants were cryopreserved by direct immersion in liquid nitrogen in minute drops of PVS3 attached to aluminum foil strips. The optimal age of donor plants was 4-5.5 weeks for apical shoots and 7 weeks for axillary shoot tips, producing post-cryopreservation regeneration percentages of 81.9 percent and 84.9 percernt, respectively. Plants regenerated from cryopreserved samples showed no phenotypical abnormalities and similar profiles of relative DNA content were recorded for control and cryopreserved plants. Our results suggest that the modified droplet-vitrification protocol described in this paper is highly effective and may prove user-friendlier than the cryopreservation protocols already published for chrysanthemum.

  3. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Wastewater sludges pretreated by different oxidation systems at mild conditions to promote the biogas formation in anaerobic processes.

    Science.gov (United States)

    Segura, Y; Puyol, D; Ballesteros, L; Martínez, F; Melero, J A

    2016-12-01

    The effect of different oxidation processes at mild conditions including the coupled-Fenton (sono-Fenton, photo-Fenton, and sono-photo-Fenton) and their blank systems (ultrasound, ultraviolet, zero valent iron, and Fenton) on anaerobic digestion of the sludge for biogas production was investigated. Ultrasounds led to the highest organic matter solubilization (3.8 up to 5.2 g chemical oxygen demand (COD)/L, for the raw and treated sludge, respectively), while for the rest, organic matter transformation was observed resulting in an almost soluble COD net balance. Results indicated that for the most oxidative processes, the released organic matter was probably mineralized by the hydroxyl radicals produced during the treatments. It is interesting to remark that even if the biochemical methane potential was barely enhanced by the different methods applied, all the methods demonstrated to enhance the overall kinetics of the biomethanation processes, increasing the rapidly biodegradable fraction of the sludge.

  5. Catalytic oxidation of hydrogen peroxide and the adsorption combinatory process in leachate waste pretreatment from composting factory

    Directory of Open Access Journals (Sweden)

    Behrooze Karimi

    2012-01-01

    Conclusion: These results indicate that the reaction temperature, residence time, and H2O2 dose are the most important factors affecting the degradation of organic matter. The GAC/Fe catalyst process had a higher efficiency than other absorbents for organic matter oxidation.

  6. Simultaneous saccharification and fermentation of hydrothermal pretreated lignocellulosic biomass: evaluation of process performance under multiple stress conditions

    OpenAIRE

    Kelbert, M.; Romaní, Aloia; Coelho, Eduardo; Pereira, L; Teixeira, J. A.; Domingues, Lucília

    2016-01-01

    Industrial lignocellulosic bioethanol processes are exposed to different environmental stresses (such as inhibitor compounds, high temperature, and high solid loadings). In this study, a systematic approach was followed where the liquid and solid fractions were mixed to evaluate the influence of varied solid loadings, and different percentages of liquor were used as liquid fraction to determine inhibitor effect. Ethanol production by simultaneous saccharification and fermentation (SSF) of hyd...

  7. Pretreated Landfill Gas Conversion Process via a Catalytic Membrane Reactor for Renewable Combined Fuel Cell-Power Generation

    Directory of Open Access Journals (Sweden)

    Zoe Ziaka

    2013-01-01

    Full Text Available A new landfill gas-based reforming catalytic processing system for the conversion of gaseous hydrocarbons, such as incoming methane to hydrogen and carbon oxide mixtures, is described and analyzed. The exit synthesis gas (syn-gas is fed to power effectively high-temperature fuel cells such as SOFC types for combined efficient electricity generation. The current research work is also referred on the description and design aspects of permreactors (permeable reformers carrying the same type of landfill gas-reforming reactions. Membrane reactors is a new technology that can be applied efficiently in such systems. Membrane reactors seem to perform better than the nonmembrane traditional reactors. The aim of this research includes turnkey system and process development for the landfill-based power generation and fuel cell industries. Also, a discussion of the efficient utilization of landfill and waste type resources for combined green-type/renewable power generation with increased processing capacity and efficiency via fuel cell systems is taking place. Moreover, pollution reduction is an additional design consideration in the current catalytic processors fuel cell cycles.

  8. Cryotolerance of porcine in vitro-produced blastocysts relies on blastocyst stage and length of in vitro culture prior to vitrification.

    Science.gov (United States)

    Morató, Roser; Castillo-Martín, Míriam; Yeste, Marc; Bonet, Sergi

    2016-06-01

    The aim of our study was to assess whether the cryotolerance of in vitro-produced embryos could be influenced by the length of in vitro culture and size of blastocoel cavity before vitrification, using the pig as a model. For this purpose we analysed the cryoresistance and apoptosis rate of blastocysts at different stages of development as derived on Day 5 and 6 of in vitro culture. Blastocysts were subsequently vitrified, warmed and cultured for 24h. Re-expansion rates were recorded at 3 and 24h and total cell number and apoptotic cells were determined at 24h. Day-6 blastocysts showed the highest rates of survival after warming, which indicates higher quality compared with Day-5 blastocysts. Higher re-expansion rates were observed for expanded blastocysts and those in the process of hatching when compared with early blastocysts. Total cell number and apoptotic cells were affected by blastocyst stage, vitrification-warming procedures and length of in vitro culture, as expanding and hatching-hatched blastocysts from Day 6 presented higher percentages of apoptotic cells than fresh blastocysts and blastocysts vitrified at Day 5. Our findings suggest that the cryotop vitrification method is useful for the cryopreservation of porcine blastocysts presenting a high degree of expansion, particularly when vitrification is performed after 6 days of in vitro culture. Furthermore, these results show that faster embryo development underlies higher blastocyst cryotolerance and provide evidence that blastocoel cavity expansion before vitrification is a reliable index of in vitro-produced embryo quality and developmental potential.

  9. Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium.

    Science.gov (United States)

    Carrillo-Reyes, Julian; Buitrón, Germán

    2016-12-01

    A native microalgae consortium treated under thermal-acidic hydrolysis was used to produce hydrogen and methane in a two-step sequential process. Different acid concentrations were tested, generating hydrogen and methane yields of up to 45mLH 2 gVS -1 and 432mLCH 4 gVS -1 , respectively. The hydrogen production step solubilized the particulate COD (chemical oxygen demand) up to 30%, creating considerable amounts of volatile fatty acids (up to 10gCODL -1 ). It was observed that lower acid concentration presented higher hydrogen and methane production potential. The results revealed that thermal acid hydrolysis of a native microalgae consortium is a simple but effective strategy for producing hydrogen and methane in the sequential process. In addition to COD removal (50-70%), this method resulted in an energy recovery of up to 15.9kJ per g of volatile solids of microalgae biomass, one of the highest reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A novel treatment processes of struvite with pretreated magnesite as a source of low-cost magnesium.

    Science.gov (United States)

    Yu, Rongtai; Ren, Hongqiang; Wu, Jichun; Zhang, Xuxiang

    2017-10-01

    By crystallization process, phosphorus can be recycled from wastewater. However, the reagent cost limits the application of struvite precipitation. Magnesite, as a low-cost magnesium source, can result in a cost savings, while the poor dissolution offset of low-cost reagent. In this study, most of the pyrolysate of magnesite was dissolved by changing the process of reagent addition; the solubility of the pyrolysate was increased at acid wastewater. The removal rate of phosphate by the pyrolysate was higher than that of magnesite, the phosphate removal rate was from 70.2 to 88.2% at 600 °C, 0.5 h to 1200 °C, 3 h. Phosphate removal rate was achieved optimal when calcination temperature was 700 °C at 2 h. By adding the pyrolysate to acid wastewater (pH ≤ 2) before NH4Cl, phosphate removal rate was closed to that of MgCl2 as magnesium source, while magnesite was priced at similar levels to lime.

  11. Lipid content and cryotolerance of in vitro-produced bovine embryos treated with forskolin before vitrification

    Directory of Open Access Journals (Sweden)

    Melissa Meneghel

    Full Text Available ABSTRACT: The aim of the present study was to evaluate the intracytoplasmic lipid content, development and cryotolerance of in vitro-produced bovine embryos treated with different concentrations of forskolin before vitrification. Embryos were produced from abattoir-derived ovaries and allocated into four groups. In the treatment groups, forskolin was added to the in vitro culture medium on Day 6 and incubated for 24 hours in one of the following concentrations: 2.5μM (Forsk 2.5 group, 5.0μM (Forsk 5.0 group or 10.0μM (Forsk 10.0 group. Embryos from the control group were cultured without forskolin. On Day 7 of culture, the expanded blastocysts were stained with the lipophilic dye Sudan Black B for determination of the intracytoplasmic lipid content or were cryopreserved via the Vitri-Ingá® procedure. Although there were no significant differences (P>0.05 in the blastocyst rates between the Control group (44.9% and the other treatments, the embryo production was lower (P0.05 to that found in Forsk 2.5 (0.92±0.03 and Forsk 10.0 groups (1.06±0.03 groups; however the lipid accumulation in blastocysts from Forsk 5.0 group (0.82±0.04 was lower than in the Control group (P<0.05. Based on these results, Forsk 5.0 treatment was tested for cryotolerance and it was observed that the blastocoel re-expansion rate evaluated 24 hours after warming was greater (P<0.05 in Forsk 5.0 group (72.2% compared to the Control group (46.2%. In conclusion, pre-treatment with forskolin at a concentration of 5.0 μM for 24 hours before vitrification is effective in reducing the intracytoplasmic lipid content and, consequently, improves cryotolerance of IVP bovine embryos.

  12. Viability of zebrafish (Danio rerio) ovarian follicles after vitrification in a metal container.

    Science.gov (United States)

    Marques, Lis S; Bos-Mikich, Adriana; Godoy, Leandro C; Silva, Laura A; Maschio, Daniel; Zhang, Tiantian; Streit, Danilo P

    2015-12-01

    Cryopreservation of ovarian tissue has been studied for female germline preservation of farm animals and endangered mammalian species. However, there are relatively few reports on cryopreservation of fish ovarian tissue and especially using vitrification approach. Previous studies of our group has shown that the use of a metal container for the cryopreservation of bovine ovarian fragments results in good primordial and primary follicle morphological integrity after vitrification. The aim of this study was to assess the viability and in vitro development of zebrafish follicles after vitrification of fragmented or whole ovaries using the same metal container. In Experiment 1, we tested the follicular viability of five developmental stages following vitrification in four vitrification solutions using fluorescein diacetate and propidium iodide fluorescent probes. These results showed that the highest viability rates were obtained with immature follicles (Stage I) and VS1 (1.5 M methanol + 4.5 M propylene glycol). In Experiment 2, we used VS1 to vitrify different types of ovarian tissue (fragments or whole ovaries) in two different carriers (plastic cryotube or metal container). In this experiment, Stage I follicle survival was assessed following vitrification by vital staining after 24 h in vitro culture. Follicular morphology was analyzed by light microscopy after vitrification. Data showed that the immature follicles morphology was well preserved after cryopreservation. Follicular survival rate was higher (P vitrification devices were compared. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Dean Dalton; Barnes, Charles Marshall

    2002-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  14. Review of FY2001 Development Work for Vitrification of Sodium Bearing Waste

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.M.; Taylor, D.D.

    2002-09-09

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  15. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L. [Rocky Mountain Peace Center, Boulder, CO (United States)

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  16. An improved vitrification protocol for equine immature oocytes, resulting in a first live foal

    NARCIS (Netherlands)

    Ortiz-Escribano, N.; Bogado Pascottini, O.; Woelders, H.; Vandenberghe, L.; Schauwer, De C.; Govaere, J.; Abbeel, Van den E.; Vullers, T.; Ververs, C.; Roels, K.; De Velde, Van M.; Soom, van A.; Smits, K.

    2017-01-01

    Background: The success rate for vitrification of immature equine oocytes is low. Although vitrified-warmed oocytes are able to mature, further embryonic development appears to be compromised. Objectives: The aim of this study was to compare two vitrification protocols, and to examine the effect

  17. Biofilm control in water by advanced oxidation process (AOP) pre-treatment: effect of natural organic matter (NOM).

    Science.gov (United States)

    Lakretz, Anat; Ron, Eliora Z; Harif, Tali; Mamane, Hadas

    2011-01-01

    The main goal of this study was to examine the influence of natural organic matter (NOM) on the efficiency of H₂O₂/UV advanced oxidation process (AOP) as a preventive treatment for biofilm control. Pseudomonas aeruginosa PAO1 biofilm-forming bacteria were suspended in water and exposed to various AOP conditions with different NOM concentrations, and compared to natural waters. H₂O₂/UV prevented biofilm formation: (a) up to 24 h post treatment - when residual H₂O₂ was neutralized; (b) completely (days) - when residual H₂O₂ was maintained. At high NOM concentrations (i.e. 25 mg/L NOM or 12.5 mg/L DOC) an additive biofilm control effect was observed for the combined H₂O₂/UV system compared to UV irradiation alone, after short biofilm incubation times (NOM could enhance (•)OH production and promote the formation of additional reactive oxygen species. In addition, maintaining an appropriate ratio of bacterial surviving conc.: residual H₂O₂ conc. post-treatment could prevent bacterial regrowth and biofilm formation.

  18. Pretreatment of poultry manure anaerobic-digested effluents by electrolysis, centrifugation and autoclaving process for Chlorella vulgaris growth and pollutants removal.

    Science.gov (United States)

    Wang, Mengzi; Wu, Yu; Li, Baoming; Dong, Renjie; Lu, Haifeng; Zhou, Hongde; Cao, Wei

    2015-01-01

    Different pretreatments (electrolysis, centrifugation and autoclaving) coupled with Chlorella vulgaris biological system was used for the treatment of poultry manure anaerobic-digested effluents. The pretreated effluents were used as the growth medium for algal cultivation. The pollutant removal efficiencies of the combined treatments were determined. Electrochemical pretreatment can efficiently remove the ammonia (NH4+), total phosphorus (TP), total organic carbon (TOC), total carbon (TC), turbidity and bacteria in the digested effluents. About 100.0% NH4+, turbidity and bacteria, 97.6% TP, 81.5% TOC and 96.6% inorganic carbon were removed by 5-h electrochemical treatment. The maximal algal biomass accumulation (0.53 g L(-1)) was obtained from culture in the effluents pretreated with 2-h electrolysis. The pollutants removal amounts by the combination of electrolysis and biological treatment were much higher than the other combinations.

  19. Cryopreservation of whole ovaries with vascular pedicles: vitrification or conventional freezing?

    Science.gov (United States)

    Zhang, Jian-Min; Sheng, Yan; Cao, Yong-Zhi; Wang, Hong-Yan; Chen, Zi-Jiang

    2011-05-01

    To compare the efficacy of vitrification and conventional freezing of whole ovaries. Ovaries obtained from 5-year-old female bovines were cryopreserved by conventional freezing, rapid freezing and vitrification. The ovarian cortical strips were cryopreserved by conventional freezing. Follicular viability was assessed using the trypan blue test; the percentage of morphologically normal primordial follicles, hormones concentrations in the culture supernatants, and lactate dehyrogenase levels were measured. The efficacy of cryopreservation of whole ovaries by vitrification was higher than those by conventional freezing and rapid freezing. Conventional freezing of ovarian cortical strips was more effective than cryopreservation of whole ovaries by conventional freezing, rapid freezing, and vitrification. Vitrification seems to be more suitable than conventional freezing for cryopreservation of whole ovaries. However, further studies are required to improve the efficacy of vitrifying whole ovaries.

  20. Effects of ultrasonic-assisted thermophilic bacteria pretreatment on hydrolysis, acidification, and microbial communities in waste-activated sludge fermentation process.

    Science.gov (United States)

    Yang, Chunxue; Zhou, Aijuan; He, Zhangwei; Jiang, Lei; Guo, Zechong; Wang, Aijie; Liu, Wenzong

    2015-06-01

    A novel pretreatment method combining ultrasonic with thermophilic bacteria (Geobacillus sp. G1) was employed to pretreat waste-activated sludge (WAS) for enhancing the WAS hydrolysis and subsequent volatile fatty acids (VFAs) production. The soluble protein and carbohydrate were mostly released from intracellular ultrasonic-assisted Geobacillus sp. G1 pretreatment, and accumulated to 917 ± 70 and 772 ± 89 mg COD/L, respectively, which were 2.53- and 2.62-fold higher than that obtained in control test. Excitation emission matrix (EEM) fluorescence spectroscopy revealed the highest fluorescence intensity (FI) of protein-like substances, indicating the synergistic effect of ultrasonic and Geobacillus sp. G1 pretreatments on WAS hydrolysis. The maximum VFAs accumulation was 4437 ± 15 mg COD/L obtained in ultrasonic-assisted Geobacillus sp. G1 pretreatment test. High-throughput pyrosequencing analysis investigated that the microbial communities were substantial determined by the pretreatment used. The hydrolysis enhancement was caused by an increase in extracellular enzymes, which was produced by one of dominant species Caloramator sp. The positive effect was well explained to the enhancement of WAS hydrolysis and final VFAs accumulation.

  1. Crystallization and vitrification of electrons in a glass-forming charge liquid

    Science.gov (United States)

    Sasaki, S.; Hashimoto, K.; Kobayashi, R.; Itoh, K.; Iguchi, S.; Nishio, Y.; Ikemoto, Y.; Moriwaki, T.; Yoneyama, N.; Watanabe, M.; Ueda, A.; Mori, H.; Kobayashi, K.; Kumai, R.; Murakami, Y.; Müller, J.; Sasaki, T.

    2017-09-01

    Charge ordering (CO) is a phenomenon in which electrons in solids crystallize into a periodic pattern of charge-rich and charge-poor sites owing to strong electron correlations. This usually results in long-range order. In geometrically frustrated systems, however, a glassy electronic state without long-range CO has been observed. We found that a charge-ordered organic material with an isosceles triangular lattice shows charge dynamics associated with crystallization and vitrification of electrons, which can be understood in the context of an energy landscape arising from the degeneracy of various CO patterns. The dynamics suggest that the same nucleation and growth processes that characterize conventional glass-forming liquids guide the crystallization of electrons. These similarities may provide insight into our understanding of the liquid-glass transition.

  2. Ultrastructure of bovine oocytes exposed to Taxol prior to OPS vitrification

    DEFF Research Database (Denmark)

    Morató, Roser; Mogas, Teresa; Maddox-Hyttel, Poul

    2008-01-01

    for calves: (1) a control group fixed immediately after maturation; (2) an OPS group cryopreserved by conventional OPS; (3) a Taxol/CPA group exposed to 1 microM Taxol and cryoprotective agents (CPAs); and (4) a Taxol/OPS group vitrified by OPS including 1 microM Taxol to the vitrification solution. All...... oocytes were processed for light and transmission electron microscopy. The main injuries were observed on the metaphase plate and the spindle. In control oocytes, the metaphase appeared as condensed chromosomes arranged in a well-organized metaphase plate and the spindle showed well organized microtubules...... in both cow and calf oocytes. However, in cow OPS oocytes, the metaphase plate was disorganized into scattered chromosomes or the chromosomes were condensed into a single block of chromatin. In addition, microtubules were not organized as typical spindles. In contrast, cow Taxol/OPS oocytes as well...

  3. Human Factors engineering criteria and design for the Hanford Waste Vitrification Plant preliminary safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Wise, J.A.; Schur, A.; Stitzel, J.C.L.

    1993-09-01

    This report provides a rationale and systematic methodology for bringing Human Factors into the safety design and operations of the Hanford Waste Vitrification Plant (HWVP). Human Factors focuses on how people perform work with tools and machine systems in designed settings. When the design of machine systems and settings take into account the capabilities and limitations of the individuals who use them, human performance can be enhanced while protecting against susceptibility to human error. The inclusion of Human Factors in the safety design of the HWVP is an essential ingredient to safe operation of the facility. The HWVP is a new construction, nonreactor nuclear facility designed to process radioactive wastes held in underground storage tanks into glass logs for permanent disposal. Its design and mission offer new opposites for implementing Human Factors while requiring some means for ensuring that the Human Factors assessments are sound, comprehensive, and appropriately directed.

  4. Test plan for BWID Phase 2 electric arc melter vitrification tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Turner, P.C.; Oden, L.L.; Anderson, G.L.

    1994-10-01

    This test plan describes the Buried Waste Integrated Demonstration (BWID), Phase 2, electric arc melter, waste treatment evaluation tests to be performed at the US Bureau of Mines (USBM) Albany Research Center. The BWID Arc Melter Vitrification Project is being conducted to evaluate and demonstrate existing industrial arc melter technology for thermally treating mixed transuranic-contaminated wastes and soils. Phase 1 baseline tests, performed during fiscal year 1993 at the USBM, were conducted on waste feeds representing incinerated buried mixed wastes and soils. In Phase 2, surrogate feeds will be processed that represent actual as-retrieved buried wastes from the Idaho National Engineering Laboratory`s Subsurface Disposal Area at the Radioactive Waste Management Complex.

  5. Cold-cap reactions in vitrification of nuclear waste glass: experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jaehun [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pierce, David A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pokorny, Richard [Inst. of Chemical Technology, Prague (Czech Republic); Hrma, Pavel R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pohang Univ. of Science and Techology (Korea, Republic of)

    2013-05-01

    Cold-cap reactions are multiple overlapping reactions that occur in the waste-glass melter during the vitrification process when the melter feed is being converted to molten glass. In this study, we used differential scanning calorimetry (DSC) to investigate cold-cap reactions in a high-alumina high-level waste melter feed. To separate the reaction heat from both sensible heat and experimental instability, we employed the run/rerun method, which enabled us to define the degree of conversion based on the reaction heat and to estimate the heat capacity of the reacting feed. Assuming that the reactions are nearly independent and can be approximated by the nth order kinetics, we obtained the kinetic parameters using the Kissinger method combined with least squares analysis. The resulting mathematical simulation of the cold-cap reactions provides a key element for the development of an advanced cold-cap model.

  6. Comparison of different vitrification protocols on viability after transfer of ovine blastocysts in vitro produced and in vivo derived.

    Science.gov (United States)

    Dattena, M; Accardo, C; Pilichi, S; Isachenko, V; Mara, L; Chessa, B; Cappai, P

    2004-08-01

    We compare different vitrification protocols on the pregnancy and lambing rate of in vitro produced (IVP) and in vivo derived (IVD) ovine embryos. Ovine blastocysts were produced by in vitro maturation, fertilization and culture of oocytes collected from slaughtered ewes or superovulated and inseminated animals. Embryos were cryopreserved after exposure at room temperature either for 5 min in 10% glycerol (G), then for 5 min in 10% G + 20% ethylene glycol (EG), then for 30 s in 25% G + 25% EG (glycerol group), or for 3 min in 10% EG + 10% dimethyl sulphoxide (DMSO), then for 30s in 20% EG + 20% DMSO + 0.3 M sucrose (DMSO group). One group of in vitro produced embryos was cryopreserved similarly to the DMSO group, but with 0.75 M sucrose added to the vitrification solution (DMSO 0.75 group). Glycerol group embryos were then loaded into French straws or open pulled Straws (OPS) while the DMSO group embryos were all loaded into OPS and directly plunged into liquid nitrogen. Embryos were warmed with either a one step or three step process. In the one step process, embryos were placed in 0.5 M sucrose. The three-step process was a serial dilution in 0.5, 0.25 and 0.125 M sucrose. The embryos of DMSO 0.75 group were warmed directly by plunging them into tissue culture medium-199 (TCM-199) + 20% foetal bovine serum (FBS) in the absence of sucrose (direct dilution). Following these manipulations, the embryos were transferred in pairs into synchronised recipient ewes and allowed to go to term. The pregnancy and the lambing rate within each group of IVP and IVD embryos indicated that there was no statistical difference among the vitrification protocols.

  7. Successful vitrification of bovine blastocysts on paper container.

    Science.gov (United States)

    Kim, Y M; Uhm, S J; Gupta, M K; Yang, J S; Lim, J-G; Das, Z C; Heo, Y T; Chung, H-J; Kong, I-K; Kim, N-H; Lee, H T; Ko, D H

    2012-09-15

    Cryopreservation of bovine embryos can be performed by a variety of methods with variable degree of success. Here, we report a new, easy to perform, simple, inexpensive, and successful method for vitrification of bovine blastocysts. In vitro produced bovine blastocysts were exposed to vitrification solution (5.5 m ethylene glycol, 10% serum and 1% sucrose) in one single step for 20 s, loaded on a paper container prepared from commonly available non-slippery, absorbent writing paper, and then were directly plunged into liquid nitrogen for storage. Vitrified blastocysts were warmed by serial rinsing in 0.5, 0.25 and 0.125 m sucrose solution for 1 min each. Results showed that one step exposure of bovine blastocysts to cryoprotective agents was sufficient to achieve successful cryopreservation. Under these conditions, more than 95% of blastocysts survived the vitrification-warming on paper containers which was significantly higher than those obtained from other containers, such as electron microscope (EM) grid (78.1%), open pulled straw (OPS; 80.2%), cryoloop (76.2%) or plastic straw (73.9%). Embryo transfer of blastocysts vitrified-warmed on paper container resulted in successful conception (19.3%) and full-term live birth of offspring (12.3%) which were lower (P 0.05) to those obtained from blastocysts vitrified-warmed on EM grid (23.3 and 14.2%). Our results, therefore, suggest that paper may be an inexpensive and useful container for the cryopreservation of animal embryos. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Cryopreservation of mouse embryos by ethylene glycol-based vitrification.

    Science.gov (United States)

    Mochida, Keiji; Hasegawa, Ayumi; Taguma, Kyuichi; Yoshiki, Atsushi; Ogura, Atsuo

    2011-11-18

    Cryopreservation of mouse embryos is a technological basis that supports biomedical sciences, because many strains of mice have been produced by genetic modifications and the number is consistently increasing year by year. Its technical development started with slow freezing methods in the 1970s(1), then followed by vitrification methods developed in the late 1980s(2). Generally, the latter technique is advantageous in its quickness, simplicity, and high survivability of recovered embryos. However, the cryoprotectants contained are highly toxic and may affect subsequent embryo development. Therefore, the technique was not applicable to certain strains of mice, even when the solutions are cooled to 4°C to mitigate the toxic effect during embryo handling. At the RIKEN BioResource Center, more than 5000 mouse strains with different genetic backgrounds and phenotypes are maintained(3), and therefore we have optimized a vitrification technique with which we can cryopreserve embryos from many different strains of mice, with the benefits of high embryo survival after vitrifying and thawing (or liquefying, more precisely) at the ambient temperature(4). Here, we present a vitrification method for mouse embryos that has been successfully used at our center. The cryopreservation solution contains ethylene glycol instead of DMSO to minimize the toxicity to embryos(5). It also contains Ficoll and sucrose for prevention of devitrification and osmotic adjustment, respectively. Embryos can be handled at room temperature and transferred into liquid nitrogen within 5 min. Because the original method was optimized for plastic straws as containers, we have slightly modified the protocol for cryotubes, which are more easily accessible in laboratories and more resistant to physical damages. We also describe the procedure of thawing vitrified embryos in detail because it is a critical step for efficient recovery of live mice. These methodologies would be helpful to researchers and

  9. Cryopreservation of Mouse Embryos by Ethylene Glycol-Based Vitrification

    Science.gov (United States)

    Mochida, Keiji; Hasegawa, Ayumi; Taguma, Kyuichi; Yoshiki, Atsushi; Ogura, Atsuo

    2011-01-01

    Cryopreservation of mouse embryos is a technological basis that supports biomedical sciences, because many strains of mice have been produced by genetic modifications and the number is consistently increasing year by year. Its technical development started with slow freezing methods in the 1970s1, then followed by vitrification methods developed in the late 1980s2. Generally, the latter technique is advantageous in its quickness, simplicity, and high survivability of recovered embryos. However, the cryoprotectants contained are highly toxic and may affect subsequent embryo development. Therefore, the technique was not applicable to certain strains of mice, even when the solutions are cooled to 4°C to mitigate the toxic effect during embryo handling. At the RIKEN BioResource Center, more than 5000 mouse strains with different genetic backgrounds and phenotypes are maintained3, and therefore we have optimized a vitrification technique with which we can cryopreserve embryos from many different strains of mice, with the benefits of high embryo survival after vitrifying and thawing (or liquefying, more precisely) at the ambient temperature4. Here, we present a vitrification method for mouse embryos that has been successfully used at our center. The cryopreservation solution contains ethylene glycol instead of DMSO to minimize the toxicity to embryos5. It also contains Ficoll and sucrose for prevention of devitrification and osmotic adjustment, respectively. Embryos can be handled at room temperature and transferred into liquid nitrogen within 5 min. Because the original method was optimized for plastic straws as containers, we have slightly modified the protocol for cryotubes, which are more easily accessible in laboratories and more resistant to physical damages. We also describe the procedure of thawing vitrified embryos in detail because it is a critical step for efficient recovery of live mice. These methodologies would be helpful to researchers and technicians who

  10. Vitrification of high-level alumina nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Brotzman, J.R.

    1979-01-01

    Borophosphate glass compositions have been developed for the vitrification of a high-alumina calcined defense waste. The effect of substituting SiO/sub 2/, P/sub 2/O/sub 5/ and CuO for B/sub 2/O/sub 3/ on the viscosity and leach resistance was measured. The effect of the alkali to borate ratio and the Li/sub 2/O:Na/sub 2/O ratio on the melt viscosity and leach resistance was also measured.

  11. Vitrification of isolated mice blastomeres using a closed loading device

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2009-02-01

    Full Text Available Abstract Isolated blastomeres obtained by embryo biopsy serve mainly for preimplantation genetic screening. Blastomeres are undifferentiated embryonic cells that include all the embryo genetic information. A lot of developing technologies may benefit by the efficient cryopreservation of blastomeres for future potential use, especially for stem cell culture and differentiation control. We are hereby reporting for the first time the feasibility of preserving individual isolated blastomeres in microvolumes in a closed vitrification system. Using a cryotip and propagation in microvolumes, isolated mice blastomeres were vitrified and warmed with 100% post-warming survival.

  12. Comparative effects of slow freezing and vitrification on cryosurvival of spermatozoa obtained from west African dwarf goat bucks.

    Science.gov (United States)

    Daramola, J O; Adekunle, E O

    2016-01-01

    Slow freezing and vitrification are used to improve the viability of spermatozoa from various species but comparative effects of these cryoprotocols have never been evaluated for spermatozoa obtained from West African Dwarf (WAD) goat bucks. This study evaluated the comparative effects of slow freezing and vitrification on the viability of spermatozoa of WAD goat bucks. Semen samples collected with the aid of artificial vagina were allocated to slow freezing and vitrification protocols and cryopreserved for 30 days in liquid nitrogen. Consistent higher (Pfreezing compared to vitrification. Abnormal sperm cells and malondialdehyde (MDA) concentrations reduced (Pfreezing compared to vitrification. Higher (Pfreezing compared to vitrification. The findings indicated that spermatozoa obtained from WAD goat bucks were better preserved in slow freezing compared to vitrification.

  13. Methods for pretreating biomass

    Energy Technology Data Exchange (ETDEWEB)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  14. Innovative pretreatment strategies for biogas production.

    Science.gov (United States)

    Patinvoh, Regina J; Osadolor, Osagie A; Chandolias, Konstantinos; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    Biogas or biomethane is traditionally produced via anaerobic digestion, or recently by thermochemical or a combination of thermochemical and biological processes via syngas (CO and H2) fermentation. However, many of the feedstocks have recalcitrant structure and are difficult to digest (e.g., lignocelluloses or keratins), or they have toxic compounds (such as fruit flavors or high ammonia content), or not digestible at all (e.g., plastics). To overcome these challenges, innovative strategies for enhanced and economically favorable biogas production were proposed in this review. The strategies considered are commonly known physical pretreatment, rapid decompression, autohydrolysis, acid- or alkali pretreatments, solvents (e.g. for lignin or cellulose) pretreatments or leaching, supercritical, oxidative or biological pretreatments, as well as combined gasification and fermentation, integrated biogas production and pretreatment, innovative biogas digester design, co-digestion, and bio-augmentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. In vitro evaluation and pregnancy rates after vitrification of in vitro produced bovine embryos.

    Science.gov (United States)

    Martínez, A G; de Matos, D G; Furnus, C C; Brogliatti, G M

    1998-10-01

    The efficacy of different vitrification solutions to cryopreserve in vitro-produced bovine blastocysts was evaluated based on in vitro development of embryos in culture and on in vivo development of embryos transferred into recipients. In the first experiment, 2 vitrification solutions were compared: propylene glycol + glycerol (Pg + Gly) and ethylene glycol + Ficoll + sucrose (EFS). Differences in the overall development and hatching rates in favor of EFS were found (56.4 vs 33.3% and 35.4 vs 13.3%; P vitrification solutions were compared: EFS, modified EFS (EFSm) and ethylene glycol + glycerol (Eg + Gly). The vitrification solutions EFSm and Eg + Gly yield higher hatching rates than did EFS (57.7 vs 59.6 vs 35.7%; P vitrification solutions: EFSm and Eg + Gly. There were no differences between them based on the results obtained after transfer (35.2 vs 43.7%). The vitrification solutions EFSm and Eg + Gly have resulted in good pregnancy rates. These results demonstrated that vitrification can be used successfully in the cryopreservation of in-vitro produced bovine embryos, and it might be considered for use in commercial programs.

  16. Vitrification of human ovarian tissue: effect of different solutions and procedures.

    Science.gov (United States)

    Amorim, Christiani Andrade; David, Anu; Van Langendonckt, Anne; Dolmans, Marie-Madeleine; Donnez, Jacques

    2011-03-01

    To test the effect of different vitrification solutions and procedures on the morphology of human preantral follicles. Pilot study. Gynecology research unit in a university hospital. Ovarian biopsies were obtained from nine women aged 22-35 years. Ovarian tissue fragments were subjected to [1] different vitrification solutions to test their toxicity or [2] different vitrification methods using plastic straws, medium droplets, or solid-surface vitrification before in vitro culture. Number of morphologically normal follicles after toxicity testing or vitrification with the different treatments determined by histologic analysis. In the toxicity tests, only VS3 showed similar results to fresh tissue before and after in vitro culture (fresh controls 1 and 2). In addition, this was the only solution able to completely vitrify. In all vitrification procedures, the percentage of normal follicles was lower than in controls. However, of the three protocols, the droplet method yielded a significantly higher proportion of normal follicles. Our experiments showed VS3 to have no deleterious effect on follicular morphology and to be able to completely vitrify, although vitrification procedures were found to affect human follicles. Nevertheless, the droplet method resulted in a higher percentage of morphologically normal follicles. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Ash from a pulp mill boiler--characterisation and vitrification.

    Science.gov (United States)

    Ribeiro, Ana S M; Monteiro, Regina C C; Davim, Erika J R; Fernandes, M Helena V

    2010-07-15

    The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53 microm, and a high amount of SiO(2) (approximately 82 wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na(2)O were added to act as fluxing agent. A batch with 80 wt% waste load melted at 1350 degrees C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial. 2010 Elsevier B.V. All rights reserved.

  18. Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos by vitrification.

    Science.gov (United States)

    Adu-Gyamfi, Raphael; Wetten, Andy

    2012-01-01

    Losses of cultivated cocoa (Theobroma cacao L.) due to diseases and continued depletion of forests that harbour the wild progenitors of the crop make ex situ conservation of cocoa germplasm of paramount importance. In order to enhance security of in situ germplasm collections, 2-3 mm floral-derived secondary somatic embryos were cryopreserved by vitrification. This work demonstrates the most uncomplicated clonal cocoa cryopreservation. Optimal post-cryostorage survival (74.5 percent) was achieved by 5 d preculture of SSEs on 0.5 M sucrose medium followed by 60 min dehydration in cold PVS2. To minimise free radical related cryo-injury, cation sources were removed from the embryo development solution and/or the recovery medium, the former treatment resulting in a significant benefit. After optimisation with cocoa genotype AMAZ 15, the same protocol was effective across all five additional cocoa genotypes tested. For the multiplication of clones, embryos regenerated following cryopreservation were used as explant sources, and vitrification was found to maintain their embryogenic potential.

  19. Chemical durability of glasses obtained by vitrification of industrial wastes.

    Science.gov (United States)

    Pisciella, P; Crisucci, S; Karamanov, A; Pelino, M

    2001-01-01

    The vitrification of zinc-hydrometallurgy wastes, electric arc furnace dust (EAFD), drainage mud, and granite mud was shown to immobilize the hazardous components in these wastes. Batch compositions were prepared by mixing the wastes with glass-cullet and sand to force the final glass composition into the glass forming region of the SiO2-Fe2O3-(CaO, MgO) system. The vitrification was carried out in the 1400-1450 degrees C temperature range followed by quenching in water or on stainless steel mold. The United States (US) Environmental Protection Agency (EPA) toxic characterization leaching procedure (TCLP) test was used as a standard method for evaluating the leachability of the elements in the glasses and glass-ceramics samples made with different percentages of wastes. The results for EAFD glasses highlighted that the chemical stability is influenced by the glass structure formed, which, in turn, depends on the Si/O ratio in the glass. The chemical durability of jarosite glasses and glass-ceramics was evaluated by 24 h contact in NaOH, HCl and Na2CO3, at 95 degrees C. Jarosite glass-ceramics containing pyroxene (J40) are more durable than the parent glass in HCl. Jarosite glass-ceramics containing magnetite type spinels (J50) have a durability similar to the parent glass and even lower in HCl because the magnetite is soluble in HCl.

  20. MAVIS: an integrated system for live microscopy and vitrification.

    Science.gov (United States)

    Koning, Roman I; Faas, Frank G; Boonekamp, Michael; de Visser, Bram; Janse, Jan; Wiegant, Joop C; de Breij, Anna; Willemse, Joost; Nibbering, Peter H; Tanke, Hans J; Koster, Abraham J

    2014-08-01

    Cryo-electron microscopy of vitrified biological samples can provide three-dimensional reconstructions of macromolecules and organelles within bacteria and cells at nanometer scale resolution, even in native conditions. Localization of specific structures and imaging of cellular dynamics in cellular cryo-electron microscopy is limited by (i) the use of cryo-fixation to preserve cellular structures, (ii) the restricted availability of electron dense markers to label molecules inside cells and (iii) the inherent low contrast of cryo electron microscopy. These limitations can be mitigated to a large extend by correlative light and electron microscopy, where the sample is imaged by both light and electron microscopy. Here we present a Microscopy and Vitrification Integrated System (MAVIS) that combines a light microscope with a plunger to vitrify thin specimens. MAVIS provides the capability for fluorescence light microscopic imaging of living cells and bacteria that are adhered to an electron microscopy grid and subsequent vitrification within a time frame of seconds. The instrument allows targeting of dynamic biological events in time and space by fluorescence microscopy for subsequent cryo light and electron microscopy. Here we describe the design and performance of the MAVIS, illustrated with biological examples. © 2013 Published by Elsevier B.V.

  1. Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose; Pre-tratamento do bagaco de cana utilizando o processo de oxidacao avancada por feixe de eletrons para hidrolise enzimatica da celulose

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marcia Almeida

    2013-07-01

    The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropan units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most important steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process. (author)

  2. Vitrification of human germinal vesicle oocytes; before or after in vitro maturation?

    Directory of Open Access Journals (Sweden)

    Evangelia Kasapi

    2017-03-01

    Full Text Available Background The use of immature oocytes derived from stimulated cycles could be of great importance, particularly for urgent fertility preservation cases. The current study aimed to determine whether in vitro maturation (IVM was more successful before or after vitrification of these oocytes. Materials and Methods This prospective study was performed in a private in vitro fertilization (IVF center. We collected 318 germinal vesicle (GV oocytes from 104 stimulated oocyte donation cycles. Oocytes were divided into two groups according to whether vitrification was applied at the GV stage (group 1 or in vitro matured to the metaphase II (MII stage and then vitrified (group 2. In the control group (group 3, oocytes were in vitro matured without vitrification. In all three groups, we assessed survival rate after warming, maturation rate, and MII-spindle/chromosome configurations. The chi-square test was used to compare rates between the three groups. Statistical significance was defined at P<0.05 and we used Bonferroni criterion to assess statistical significance regarding the various pairs of groups. The Statistical Package for the Social Sciences version 17.0 was used to perform statistical analysis. Results There was no significant difference in the survival rate after vitrification and warming of GV (93.5% and MII oocytes (90.8%. A significantly higher maturation rate occurred when IVM was performed before vitrification (82.9% compared to after vitrification (51%. There was no significant difference in the incidence of normal spindle/ chromosome configurations among warmed oocytes matured in vitro before (50.0% or after (41.2% vitrification. However, a higher incidence of normal spindle/chromosome configurations existed in the in vitro matured oocytes which were not subjected to vitrification (fresh oocytes, 77.9%. Conclusion In stimulated cycles, vitrification of in vitro matured MII oocytes rather than GV oocytes seems to be more efficient. This

  3. Catalase and superoxide dismutase activities and the total protein content of protocorm-like bodies of Dendrobium sonia-28 subjected to vitrification.

    Science.gov (United States)

    Poobathy, Ranjetta; Sinniah, Uma Rani; Xavier, Rathinam; Subramaniam, Sreeramanan

    2013-07-01

    Dendrobium sonia-28 is an important ornamental orchid in the Malaysian flower industry. However, the genus faces both low germination rates and the risk of producing heterozygous progenies. Cryopreservation is currently the favoured long-term storage method for orchids with propagation problems. Vitrification, a frequently used cryopreservation technique, involves the application of pretreatments and cryoprotectants to protect and recover explants during and after storage in liquid nitrogen. However, cryopreservation may cause osmotic injuries and toxicity to cryopreserved explants from the use of highly concentrated additives, and cellular injuries from thawing, devitrification and ice formation. Reactive oxygen species (ROS), occurring during dehydration and cryopreservation, may also cause membrane damage. Plants possess efficient antioxidant systems such as the superoxide dismutase (SOD) and catalase (CAT) enzymes to scavenge ROS during low temperature stress. In this study, protocorm-like bodies (PLBs) of Dendrobium sonia-28 were assayed for the total protein content, and both SOD and CAT activities, at each stage of a vitrification exercise to observe for deleterious stages in the protocol. The results indicated that cryopreserved PLBs of Dendrobium sonia-28 underwent excessive post-thawing oxidative stress due to decreased levels of the CAT enzyme at the post-thawing recovery stage, which contributed to the poor survival rates of the cryopreserved PLBs.

  4. Evaluation of defense-waste glass produced by full-scale vitrification equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lukacs, J.M.; Petkus, L.L.; Mellinger, G.B.

    1981-09-01

    Three full-scale vitrification processes at the Pacific Northwest Laboratory produced over 67,000 kg of simulated nuclear-waste glass from March 1979 to August 1980. Samples were analyzed to monitor process operation and evaluate the resulting glass product. These processes are: Spray Calciner/In-Can Melter (SC/ICM); Spray Calciner/Calcine-Fed Ceramic Melter (SC/CFCM); and Liquid-Fed Ceramic Melter (LFCM). Waste components in the process feed varied less than +- 10%. The SC/ICM and SC/CFCM which use separate waste and frit feed systems showed larger glass compositional variation than the LFCM, which processed only premixed feed during this period. The SC/ICM and SC/CFCM product contained significant amounts of acmite crystals, while the LFCM product was largely amorphous. In addition, the lower portion of all SC/ICM-filled canisters contained a zone rich in waste components. A product chemical durability as determined by pH4 and soxhlet leach tests varied considerably. Aside from increased durability under pH4 conditions with decreasing waste content, glass composition, microstructure and melting process did not correlate with glass durability. For all samples analyzed, the weight loss under pH4 conditions ranged from 17.7 to 85.2 wt %. Soxhlet conditions produced weight losses from 1.78 to 3.56 wt %.

  5. Vitrification of mouse MII oocytes: Developmental competency using paclitaxel.

    Science.gov (United States)

    Fesahat, Farzaneh; Faramarzi, Azita; Khoradmehr, Arezoo; Omidi, Marjan; Anbari, Fatemeh; Khalili, Mohammad Ali

    2016-12-01

    Oocyte cryopreservation provides an important alternative for fertility preservation for women who will be treated with cytotoxic drugs. However, it can cause spindle disorganization of microtubules, putting the zygote at risk for aneuploidy. Paclitaxel is known to stabilize the microtubules that constitute the spindle. The aim of this study was to investigate the suitable concentration of paclitaxel for adding to the vitrification media to improve the developmental potential of post-thawed mature oocytes to blastocyst formation in mice. A total of 300 MII oocytes were retrieved from superovulated mice, and were divided into three groups of control, Experimental I, and Experimental II. Oocytes in Experimental I and Experimental II were cryopreserved in the presence of 0.5μM or 1μM of paclitaxel in vitrification media, respectively. After thawing, all oocytes were incubated in G-IVF medium for 1 hour. From each group,12 oocytes were selected for viability evaluation by Hoechst/propidium iodide nuclear staining. Standard in vitro fertilization was performed on the rest of the oocytes and embryo development was followed to the blastocyst stage. Fertilization rate was not significantly different between the three groups. However, the cleavage rate (55%) in Experimental II group was significantly lower compared to Experimental I (88%) and control groups (83%). There was a detectable difference between the three groups at the blastocyst rate (Experimental I and control groups, p = 0.004; Experimental II vs. control and Experimental I, p < 0.001). The highest rates of parthenogenesis and arrest were in Experimental II (16% and 21%, respectively) compared with control (6% and 5%, respectively) and Experimental I (5% and 3%, respectively). There was also a significant decrease in viability rate of oocytes in Experimental II compared to the other groups. A high concentration of paclitaxel, an anticancer drug, interrupted the mouse oocyte competency when supplemented to

  6. Lipid content and cryotolerance of in vitro-produced bovine embryos treated with forskolin before vitrification

    National Research Council Canada - National Science Library

    Melissa Meneghel; Priscila Chediek Dall’Acqua; Marcela Ambrogi; Beatriz C.S. Leão; Nathália A.S. Rocha-Frigoni; Gisele Z. Mingoti

    The aim of the present study was to evaluate the intracytoplasmic lipid content, development and cryotolerance of in vitro-produced bovine embryos treated with different concentrations of forskolin before vitrification...

  7. Viability of zebrafish (Danio rerio) ovarian follicles after vitrification in a metal container.

    OpenAIRE

    MARQUES, L.S.; Bos-Mikich, A.; Godoy, L.C.; Silva,L.A; Maschio, D; Zhang, Tiantian; Streit, D.P.

    2015-01-01

    Cryopreservation of ovarian tissue has been studied for female germline preservation of farm animals and endangered mammalian species. However, there are relatively few reports on cryopreservation of fish ovarian tissue and especially using vitrification approach. Previous studies of our group has shown that the use of a metal container for the cryopreservation of bovine ovarian fragments results in good primordial and primary follicle morphological integrity after vitrification. The aim of t...

  8. Effect of macromolecules in solutions for vitrification of mature bovine oocytes.

    Science.gov (United States)

    Checura, C M; Seidel, G E

    2007-03-15

    This study was designed to evaluate vitrification procedures for in vitro matured bovine oocytes for efficient blastocyst production after warming, IVF and culture. A second goal was to replace serum as the macromolecular component of the vitrification solution, without compromising efficacy. The first experiment compared two containers, open pulled straws (OPS) versus cryoloops, and two vitrification protocols: short equilibration (H-TCM-199+10% EG+10% DMSO+20% FCS for 30s, followed by H-TCM-199+20% EG+20% DMSO+20% FCS+0.48M galactose for 20s) versus long equilibration (H-TCM-199+3% EG+20% FCS for 10min, followed by H-TCM-199+31% EG+20% FCS+1M galactose for 20s). Subsequent experiments used only cryoloops and the short equilibration protocol to evaluate the effect of replacing FCS with defined macromolecules (BSA, Ficoll, PVP, and PVA) in vitrification solutions. Cryoloops were superior to OPS for vitrification of oocytes as determined by blastocyst production (Pvitrification protocols gave similar results. The presence of macromolecules in vitrification solutions for bovine oocytes was necessary for acceptable post-warming developmental capacity; 20% FCS, 1% and 2% BSA, 6% and 18% Ficoll, 6% and 20% PVP, 1% PVA, and the combinations of 18% Ficoll+1% BSA, and 6% PVP+1% BSA provided similar protection during vitrification of oocytes; development ranged from 14.8% to 23.0% blastocysts/oocyte, which was not different (P>0.05) from non-vitrified controls (26.9-34.0% blastocysts/oocyte). Too much (6%) and too little (0.3%) BSA, and 0.3% PVA for vitrification resulted in lower blastocyst production (P<0.05) relative to unvitrified oocytes.

  9. Cryopreservation of bovine oocytes: is cryoloop vitrification the future to preserving the female gamete?

    OpenAIRE

    Mavrides, Andreas; Morroll, David

    2002-01-01

    International audience; The cryoloop is a technique where a thin nylon loop is used to suspend a film of cryoprotectant containing the oocytes and directly immersing them in liquid nitrogen. 508 bovine oocytes were collected, of these 351 were cryopreserved by slow freezing using standard straws or a new vitrification method using our self-constructed cryoloops and the remainder were controls. After thawing, the oocytes were inseminated by ICSI or standard IVF. The cryoloop vitrification meth...

  10. Statistical process control applied to intensity modulated radiotherapy pretreatment controls with portal dosimetry;Maitrise statistique des processus appliquee aux controles avant traitement par dosimetrie portale en radiotherapie conformationnelle avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Villani, N.; Noel, A. [Laboratoire de recherche en radiophysique, CRAN UMR 7039, Nancy universite-CNRS, 54 - Vandoeuvre-les-Nancy (France); Villani, N.; Gerard, K.; Marchesi, V.; Huger, S.; Noel, A. [Departement de radiophysique, centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France); Francois, P. [Institut Curie, 75 - Paris (France)

    2010-06-15

    Purpose The first purpose of this study was to illustrate the contribution of statistical process control for a better security in intensity modulated radiotherapy (I.M.R.T.) treatments. This improvement is possible by controlling the dose delivery process, characterized by pretreatment quality control results. So, it is necessary to put under control portal dosimetry measurements (currently, the ionisation chamber measurements were already monitored by statistical process control thanks to statistical process control tools). The second objective was to state whether it is possible to substitute ionisation chamber with portal dosimetry in order to optimize time devoted to pretreatment quality control. Patients and methods At Alexis-Vautrin center, pretreatment quality controls in I.M.R.T. for prostate and head and neck treatments were performed for each beam of each patient. These controls were made with an ionisation chamber, which is the reference detector for the absolute dose measurement, and with portal dosimetry for the verification of dose distribution. Statistical process control is a statistical analysis method, coming from industry, used to control and improve the studied process quality. It uses graphic tools as control maps to follow-up process, warning the operator in case of failure, and quantitative tools to evaluate the process toward its ability to respect guidelines: this is the capability study. The study was performed on 450 head and neck beams and on 100 prostate beams. Results Control charts, showing drifts, both slow and weak, and also both strong and fast, of mean and standard deviation have been established and have shown special cause introduced (manual shift of the leaf gap of the multi-leaf collimator). Correlation between dose measured at one point, given with the E.P.I.D. and the ionisation chamber has been evaluated at more than 97% and disagreement cases between the two measurements were identified. Conclusion The study allowed to

  11. Vitrification of bovine matured oocytes and blastocysts in a paper container.

    Science.gov (United States)

    Paul, Ashit Kumar; Liang, Yuanyuan; Srirattana, Kanokwan; Nagai, Takashi; Parnpai, Rangsun

    2017-10-10

    In the present study, we aimed to determine the applicability of a paper container for the vitrification of in vitro matured (IVM) bovine oocytes. In experiment 1, IVM oocytes were exposed to vitrification solution (20% dimethylsulfoxide (DMSO), 20% ethylene glycol (EG), and 5 mol/L sucrose), using a two-step method, for 30 s; loaded onto either a paper container or Cryotop; and stored in liquid nitrogen. No significant difference (P vitrification was observed between the paper container and Cryotop. In experiment 2, IVM oocytes were exposed to either a two- or three-step vitrification solution. The three-step vitrification solution was not significantly different from the two-step solution in terms of oocyte survival, cleavage and blastocyst rates. In experiment 3, in vitro produced blastocysts were graded according to the manual of the International Embryo Transfer Society (grades 1 and 2) and vitrified using the two- and three-step methods. For grade 2 blastocysts, the three-step method showed significantly higher (P vitrification. © 2017 Japanese Society of Animal Science.

  12. Developmental competence and gene expression of immature oocytes following liquid helium vitrification in bovine.

    Science.gov (United States)

    Chen, Jun-Yi; Li, Xiao-Xia; Xu, Ya-Kun; Wu, Hua; Zheng, Jun-Jun; Yu, Xue-Li

    2014-12-01

    The objective of this study was to develop an effective ultra-rapid vitrification method and evaluate its effect on maturation, developmental competence and development-related gene expression in bovine immature oocytes. Bovine cumulus oocyte complexes were randomly allocated into three groups: (1) controls, (2) liquid nitrogen vitrification, and (3) liquid helium vitrification. Oocytes were vitrified and then warmed, the percentage of morphologically normal oocytes in liquid helium group (89.0%) was significantly higher (Pvitrification had higher cleavage and blastocyst rates (41.1% and 10.0%) than that of liquid nitrogen vitrification (33.0% and 4.5%; Pvitrification. Expression of GDF9 and BAX in the liquid helium vitrification group was not significantly different from that of the control, however there were significant differences between the liquid nitrogen vitrification group and control. In conclusion, it was feasible to use liquid helium for vitrifying bovine immature oocytes. There existed an association between the compromised developmental competence and the altered expression levels of these genes for the vitrified oocytes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. In Vitro Maturation and Embryo Development to blastocyst Mouse Germinal Vesicle Oocytes after Vitrification

    Directory of Open Access Journals (Sweden)

    M Nikseresht

    2013-05-01

    Full Text Available Abstract Background & aim: Vitrification is a simple and ultra rapid technique for the conservation of fertility. Improving pregnancy rate associate with the use of cryopreserved oocytes would be an important advanced in human assisted reproductive technology (ART. The purpose of this study was to evaluate survival, oocytes maturation and embryo development to the blastocyst stage after vitrification of oocytes germinal vesicle-stage and multi stage Methods: In the present experimental study, germinal vesicle oocytes with or without cumulus cells were transferred to vitrification solution containing 30% (v/v ethylene glycol, 18% (w/v Ficoll-70, and 0.3 M sucrose, either by single step or in a step-wise way. After vitrification and storage in liquid nitrogen, the oocytes were thawed and washed twice in culture medium TCM119, and then subjected to in vitro maturation, fertilization, and culture. Data analysis was performed by using One-way variance and Tukey tests. Results: Oocytes survival, metaphase 2 stage oocyte maturation, fertilization and embryo formed blastocyst in vitrification methods multistage were significantly higher than the single step procedure (P<0/05 Conclusion: The Germinal vesicle stage oocytes vitrified with cumulus cells and stepwise procedure had positive effect on the survival, maturation and developmental rate on blastocyst compared to oocytes without cumulus cell and single step procedure. Key words: Germinal Vesicle Oocyte, Blastocyst, Vitrification, Ethylene glycol

  14. Cryopreservation of chicken primordial germ cells by vitrification and slow freezing: A comparative study.

    Science.gov (United States)

    Tonus, C; Connan, D; Waroux, O; Vandenhove, B; Wayet, J; Gillet, L; Desmecht, D; Antoine, N; Ectors, F J; Grobet, L

    2017-01-15

    In the present study, we compare a classical slow freezing (SLF) method and an aseptic vitrification (Vitrif) technique to cryopreserve a stable primordial germ cell (PGCs) line issued from the Ardennaise chicken breed. Viability immediately after warming was close to 80% and did not differ between the two cryopreservation methods. Proliferation tended to be slower for both cryopreservation methods compared with controls, but the difference was significant only for Vitrif. No difference was found between the two methods after flow cytometry analysis of stage-specific embryonic antigen-1 expression and reverse transcription-polymerase chain reaction on several factors related to PGC phenotype. After 1 week in culture, all cryopreserved cells reached controls' main morphologic and expanding (viability/proliferation) features. However, SLF generated more unwanted cells clusters than Vitrif. After injection of the PGCs into recipient embryos, vitrified PGCs reported a clear, yet not significant, tendency to colonize the gonad at a higher rate than slow frozen PGCs. SLF in cryovials remains simple, inexpensive, and less technically demanding than Vitrif. Nevertheless, the intrinsic advantages of our aseptic Vitrif method and the present study suggest that this should be considered as safer than classical SLF for cryopreserving chicken PGCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Good Preservation of Stromal Cells and No Apoptosis in Human Ovarian Tissue after Vitrification

    Directory of Open Access Journals (Sweden)

    Raffaella Fabbri

    2014-01-01

    Full Text Available The aim of this study was to develop a vitrification procedure for human ovarian tissue cryopreservation in order to better preserve the ovarian tissue. Large size samples of ovarian tissue retrieved from 15 female-to-male transgender subjects (18–38 years were vitrified using two solutions (containing propylene glycol, ethylene glycol, and sucrose at different concentrations in an open system. Light microscopy, transmission electron microscopy, and TUNEL assay were applied to evaluate the efficiency of the vitrification protocol. After vitrification/warming, light microscopy showed oocyte nucleus with slightly thickened chromatin and irregular shape, while granulosa and stromal cells appeared well preserved. Transmission electron microscopy showed oocytes with slightly irregular nuclear shape and finely dispersed chromatin. Clear vacuoles and alterations in cellular organelles were seen in the oocyte cytoplasm. Stromal cells had a moderately dispersed chromatin and homogeneous cytoplasm with slight vacuolization. TUNEL assay revealed the lack of apoptosis induction by vitrification in all ovarian cell types. In conclusion after vitrification/warming the stromal compartment maintained morphological and ultrastructural features similar to fresh tissue, while the oocyte cytoplasm was slightly damaged. Although these data are encouraging, further studies are necessary and essential to optimize vitrification procedure.

  16. Good preservation of stromal cells and no apoptosis in human ovarian tissue after vitrification.

    Science.gov (United States)

    Fabbri, Raffaella; Vicenti, Rossella; Macciocca, Maria; Pasquinelli, Gianandrea; Paradisi, Roberto; Battaglia, Cesare; Martino, Nicola Antonio; Venturoli, Stefano

    2014-01-01

    The aim of this study was to develop a vitrification procedure for human ovarian tissue cryopreservation in order to better preserve the ovarian tissue. Large size samples of ovarian tissue retrieved from 15 female-to-male transgender subjects (18-38 years) were vitrified using two solutions (containing propylene glycol, ethylene glycol, and sucrose at different concentrations) in an open system. Light microscopy, transmission electron microscopy, and TUNEL assay were applied to evaluate the efficiency of the vitrification protocol. After vitrification/warming, light microscopy showed oocyte nucleus with slightly thickened chromatin and irregular shape, while granulosa and stromal cells appeared well preserved. Transmission electron microscopy showed oocytes with slightly irregular nuclear shape and finely dispersed chromatin. Clear vacuoles and alterations in cellular organelles were seen in the oocyte cytoplasm. Stromal cells had a moderately dispersed chromatin and homogeneous cytoplasm with slight vacuolization. TUNEL assay revealed the lack of apoptosis induction by vitrification in all ovarian cell types. In conclusion after vitrification/warming the stromal compartment maintained morphological and ultrastructural features similar to fresh tissue, while the oocyte cytoplasm was slightly damaged. Although these data are encouraging, further studies are necessary and essential to optimize vitrification procedure.

  17. OFFGAS GENERATION FROM THE DISPOSITION OF SCRAP PLUTONIUM BY VITRIFICATION SIMULANT TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J; Patricia Toole, P; David Best, D; Timothy Jones, T; Donald02 Miller, D; Whitney Thomas, W; Vickie Williams, V

    2008-03-05

    The Department of Energy Office of Environmental Management is supporting R&D for the conceptual design of the Plutonium Disposition Project at the Savannah River Site in Aiken, SC to reduce the attractiveness of plutonium scrap by fabricating a durable plutonium oxide glass form and immobilizing this form within the high-level waste glass prepared in the Defense Waste Processing Facility. A glass formulation was developed that is capable of incorporating large amounts of actinides as well as accommodating many impurities that may be associated with impure Pu feed streams. The basis for the glass formulation was derived from commercial glasses that had high lanthanide loadings. A development effort led to a Lanthanide BoroSilicate (LaBS) glass that accommodated significant quantities of actinides, tolerated impurities associated with the actinide feed streams and could be processed using established melter technologies. A Cylindrical Induction Melter (CIM) was used for vitrification of the Pu LaBS glass. Induction melting for the immobilization of americium and curium (Am/Cm) in a glass matrix was first demonstrated in 1997. The induction melting system was developed to vitrify a non-radioactive Am/Cm simulant combined with a glass frit. Most of the development of the melter itself was completed as part of that work. This same melter system used for Am/Cm was used for the current work. The CIM system used consisted of a 5 inch (12.7 cm) diameter inductively heated platinum-rhodium (Pt-Rh) containment vessel with a control system and offgas characterization. Scrap plutonium can contain numerous impurities including significant amounts of chlorides, fluorides, sodium, potassium, lead, gallium, chromium, and nickel. Smaller amounts of additional elements can also be present. The amount of chlorides present is unusually high for a melter feed. In commercial applications there is no reason to have chloride at such high concentrations. Because the melter operates at 1400

  18. Vitrification of surrogate mixed wastes in a graphite electrode arc melter

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Ball, L. [and others

    1995-11-01

    Demonstration tests for vitrifying mixed wastes and contaminated soils have been conducted using a small (800 kVA), industrial-scale, three-phase AC, graphite electrode furnace located at the Albany Research Center of the United States Bureau of Mines (USBM). The feed mixtures were non-radioactive surrogates of various types of mixed (radioactive and hazardous), transuranic-contaminated wastes stored and buried at the Idaho National Engineering Laboratory (INEL). The feed mixtures were processed with added soil from the INEL. Objectives being evaluated include (1) equipment capability to achieve desired process conditions and vitrification products for different feed compositions, (2) slag and metals tapping capability, (3) partitioning of transuranic elements and toxic metals among the furnace products, (4) slag, fume, and metal products characteristics, and (5) performance of the feed, furnace and air pollution control systems. The tests were successfully completed in mid-April 1995. A very comprehensive process monitoring, sampling and analysis program was included in the test program. Sample analysis, data reduction, and results evaluation are currently underway. Initial results indicate that the furnace readily processed around 20,000 lb of widely ranging feed mixtures at feedrates of up to 1,100 lb/hr. Continuous feeding and slag tapping was achieved. Molten metal was also tapped twice during the test program. Offgas emissions were efficiently controlled as expected by a modified air pollution control system.

  19. Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries: Hydrothermal Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland WA USA; Tao, Ling [National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Wyman, Charles E. [Chemical and Environmental Engineering Department and Center for Environmental Research and Technology, Bourns College of Engineering, University of California at Riverside, CA, USA, BioEnergy Science Center (BESC), Oak Ridge National Laboratory, TN USA

    2017-10-11

    Pretreatment prior to or during biological conversion is required to achieve high sugar yields essential to economic production of fuels and chemicals from low cost, abundant lignocellulosic biomass. Aqueous thermochemical pretreatments achieve this performance objective from pretreatment coupled with subsequent enzymatic hydrolysis, but chemical pretreatment can also suffer from additional costs for exotic materials of construction, the need to recover or neutralize the chemicals, introduction of compounds that inhibit downstream operations, and waste disposal, as well as for the chemicals themselves. The simplicity of hydrothermal pretreatment with just hot water offers the potential to greatly improve the cost of the entire conversion process if sugar degradation during pretreatment, production of un-fermentable oligomers, and the amount of expensive enzymes needed to obtain satisfactory yields from hydrothermally pretreated solids can be reduced. Biorefinery economics would also benefit if value could be generated from lignin and other components that are currently fated to be burned for power. However, achieving these goals will no doubt require development of advanced hydrothermal pretreatment configurations. For example, passing water through a stationary bed of lignocellulosic biomass in a flowthrough configuration achieves very high yields of hemicellulose sugars, removes more than 75% of the lignin for potential valorization, and improves sugar release from the pretreated solids with lower enzyme loadings. Unfortunately, the large quantities of water needed to achieve this performance result in very dilute sugars, high energy costs for pretreatment and product recover, and large amounts of oligomers. Thus, improving our understanding of hydrothermal pretreatment fundamentals is needed to gain insights into R&D opportunities to improve performance, and help identify novel configurations that lower capital and operating costs and achieve higher yields.

  20. Oocyte maturation, embryo development and gene expression following two different methods of bovine cumulus-oocyte complexes vitrification.

    Science.gov (United States)

    Azari, Mehdi; Kafi, Mojtaba; Ebrahimi, Bita; Fatehi, Roya; Jamalzadeh, Mahboobeh

    2017-03-01

    To examine the maturational competence, embryo development and expression of genes involved in oocyte maturation and cumulus expansion (GDF9, BMP15, HAS2, TNFAIP6, FGF17 and FSHr) following two standard methods of bovine COCs vitrification. Bovine cumulus-oocyte complexes (COCs) were aspirated from slaughtered ovaries and then distributed into three groups: non-vitrified COCs (control), vitrification 1 group (V1); vitrification was performed by 15% ethylene glycol (EG) and 15% DMSO in holding media (TCM-199 with 20% FCS); and vitrification 2 group (V2); vitrification was performed by 40% EG in holding media. After vitrification, COCs were warmed in two steps and cultured and then evaluated for nuclear maturation, embryo development and gene expressions. The mean (±SD) percentages of nuclear maturation and blastocyst/cleaved were higher in control group (79.5 ± 8.0 and 31.0 ± 5.1%) than the V1 (34.8 ± 9.1 and 4.4 ± 5.1%) and V2 (47.8 ± 11.7 and 7.1 ± 5.8%) groups (P vitrification groups (P vitrification procedure and conditions. Using EG alone for vitrification of bovine immature COCs, resulted in higher expression of GDF9, BMP15 and production of more in vitro matured and cleaved oocytes.

  1. Hydrolysis of alkaline pretreated banana peel

    Science.gov (United States)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  2. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2014-10-01

    Full Text Available Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.

  3. Process assessment associated to microbial community response provides insight on possible mechanism of waste activated sludge digestion under typical chemical pretreatments

    DEFF Research Database (Denmark)

    Zhou, Aijuan; Zhang, Jiaguang; Varrone, Cristiano

    2017-01-01

    responses to these chemicals is not well understood. In this study, the effects of five typical chemicals: solubilizer (β-cyclodextrin, CD), alkaline (NaOH), peroxide (peracetic-acid, PA), biological (rhamnolipid, RL) and chemical (sodium dodecylsulphate, SDS) surfactants on WAS digestion were examined...... was dominated by microorganisms that anaerobically hydrolyze organics to acids, while that in NaOH and SDS was mainly associated to biogas production. This study proved that the overall performance of WAS digestion was substantially depended on the initial chemical pretreatments, which in turn influenced...

  4. Successful vitrification of bovine immature oocyte using liquid helium instead of liquid nitrogen as cryogenic liquid.

    Science.gov (United States)

    Yu, Xue-Li; Xu, Ya-Kun; Wu, Hua; Guo, Xian-Fei; Li, Xiao-Xia; Han, Wen-Xia; Li, Ying-Hua

    2016-04-01

    The objectives of this study were to compare the effectiveness of liquid helium (LHe) and liquid nitrogen (LN2) as cryogenic liquid for vitrification of bovine immature oocytes with open-pulled straw (OPS) system and determine the optimal cryoprotectant concentration of LHe vitrification. Cumulus oocyte complexes were divided into three groups, namely, untreated group (control), LN2 vitrified with OPS group, and LHe vitrified with OPS group. Oocyte survival was assessed by morphology, nuclear maturation, and developmental capability. Results indicated that the rates of normal morphology, maturation, cleavage, and blastocyst (89.3%, 52.8%, 42.7%, and 10.1%, respectively) in the LHe-vitrified group were all higher than those (79.3%, 43.4%, 34.1%, and 4.7%) in the LN2-vitrified group (P vitrification solutions (EDS30, EDS35, EDS40, EDS45, and EDS50) in LHe vitrification for bovine immature oocytes vitrification were examined. No difference was found in the rates of morphologically normal oocytes among the EDS30 (87.9%), EDS35 (90.1%), EDS40 (89.4%), and EDS45 (87.2%) groups (P > 0.05). The maturation rate of the EDS35 group (65.0%) was higher than those of the EDS30 (51.3%), EDS40 (50.1%), EDS45 (52.1%), and EDS50 groups (36.9%; P vitrification of bovine immature oocytes, and it is more efficient than LN2-vitrified oocytes in terms of blastocyst production. EDS35 was the optimal cryoprotectant agent combination for LHe vitrification in this study. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Successful application of the strategy of blastocyst biopsy, vitrification, whole genome amplification, and thawed embryo transfer for preimplantation genetic diagnosis of neurofibromatosis type 1

    Directory of Open Access Journals (Sweden)

    Yi-Lin Chen

    2011-03-01

    Conclusion: We first demonstrate successful application of blastocyst biopsy, vitrification, WGA, and thawed embryo transfer for PGD of a monogenic disease. Vitrification of blastocysts after biopsy permits sufficient time for shipment of samples and operation of molecular diagnosis.

  6. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  7. EFFECT OF AQUEOUS PRETREATMENT ON PYROLYSIS CHARACTERISTICS OF NAPIER GRASS

    Directory of Open Access Journals (Sweden)

    ISAH YAKUB MOHAMMED

    2015-11-01

    Full Text Available Effect of non-catalytic aqueous pretretment on pyrolysis characteristics of Napier grass was investigated using thermogravimetric analyser. Increasing pretreatment severity (0.0-2.0 improved pyrolysis process. The residual mass at the end of pyrolysis for the pretreated sample was about 50% less compared to the untreated sample. Kinetics of the process was evaluated using order based model and both pretreated and untreated samples followed first order reaction. The activation energy of the pretreated samples was similar and higher than that of the raw sample which was attributed to faster rate of decomposition due removal of hetromaterials (ash, extractives and some hemicellulose in the pretreatment stage. Finally, this pretreatment method has demonstrated effectiveness for the removal of pyrolysis retardants and will improve the quantity and quality of bio-oil yield.

  8. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  9. Vitrification of bovine preantral follicles with dimethylsulfoxide and sucrose plus α-tocopherol

    Directory of Open Access Journals (Sweden)

    Carolina R. Jimenez

    2016-03-01

    Full Text Available Abstract: The objective of this study was to evaluate the vitrification of bovine preantral follicles with dimethylsulfoxide (D and sucrose (S plus α-tocopherol 5mmol/L (T5 or 10mmol/L (T10 and, evaluate the thawed with minimal essential medium (m with or without sucrose (s. Ovaries of cows were collected from slaughterhouse for the experiment I (n=66 and II (n=51. In the laboratory ovarian fragments were randomly assigned either to fresh control and 8 vitrification treatments (Controle and Dm; Dms, DSm; DSms; DST5m; DST5ms; DST10m; DST10ms. Ovarian fragments were placed in vitrification solution (5 min and immersed in liquid nitrogen (-196°C, after a week, the fragments were thawed and analyzed. In the experiments I, preantral follicles were morphologically observed for histological evaluation, (normal; degenerated and developing of stage. In the experiment II, preantral follicles were mechanically isolated from ovarian tissue and examined with trypan blue, where dead and live corresponded to stained or non-stained. The treatments DSm, DSms and DST10m were effective in preserving the morphology in situ. However, the viability of isolated preantral follicles after vitrification remained high only in treatment DST10m. Thus, DST10m preserves survival rates and morphological integrity during vitrification of bovine preantral follicles.

  10. Effect of bovine ovarian tissue vitrification on the structural preservation of antral follicles.

    Science.gov (United States)

    Faheem, M S; Carvalhais, I; Baron, E; Moreira da Silva, F

    2013-10-01

    This study was performed to evaluate the structural preservation of antral follicles after bovine ovarian tissue vitrification using histological analysis. Ovaries (n = 30) of slaughtered cows were cut into small fragments using a scalpel blade, and the ovarian tissues were randomly assigned to vitrification using 15% dimethyl sulphoxide (DMSO) and 15% ethylene glycol (EG) and fresh tissues (control) groups. For histological evaluations, fresh and post-thawing ovarian tissues were immediately fixed, serially sectioned into 5-μm sections and stained with haematoxylin and eosin (H&E). Nine serial sections per fragment were subjected for morphological assessment. The diameter of the antral follicles was determined and classified into four groups: 1 (≤1 mm), 2 (>1-2 mm), 3 (>2-3 mm) and 4 (>3-4 mm). Then, follicular morphology was evaluated in relation to atresia and categorized into seven grades: Grade A (healthy follicle); Grades B, C and D (early atresia); Grades E and F (moderate atresia); and Grade G (advanced atresia). The results revealed that small diameters of antral follicles (1 and 2 mm) were more susceptible for cryoinjury. The normal follicular morphology (Grade A) was not affected by vitrification throughout follicle diameters. Nevertheless, some damage features were monitored after vitrification. In conclusion, the morphological structure of bovine antral follicles could be successfully preserved by ovarian tissue vitrification. © 2013 Blackwell Verlag GmbH.

  11. Cryopreservation of Thymus cariensis and T. vulgaris shoot tips: comparison of three vitrification-based methods.

    Science.gov (United States)

    Ozudogru, E A; Kaya, E

    2012-01-01

    Thymus is an important genus of the Lamiaceae family, comprising more than 400 perennial aromatic thyme species, which are used extensively for medicinal and culinary purposes. The present study focused on the development of cryopreservation procedures for Thymus vulgaris and T. cariensis, the latter being an endemic and endangered species of Turkey. For cryopreservation of T. vulgaris shoot tips, PVS2-based one-step freezing methods, i.e., PVS2 vitrification, encapsulation-vitrification and droplet-vitrification, were compared. Cold hardening and sucrose preculture were also optimized before the cryopreservation trials. For T. cariensis, a droplet-vitrification method was applied to cold-hardened shoot tips, and after sucrose preculture. In all the methods tested, PVS2 was applied for up to 120 min. The best T. vulgaris cryopreservation was achieved with a droplet-vitrification method, that involved 2-weeks cold hardening of shoot cultures, 48 h preculture of shoot tips on MS medium supplemented with 0.25 M sucrose, and a 90 min PVS2 treatment in droplets. After direct immersion in LN, thawing and plating, 80% of shoot-tips recovered. Post-thaw recovery was significantly lower when the same procedure was applied to T. cariensis shoot tips; however also here 90 min PVS2 treatment produced the highest survival (25 percent) and recovery (25 percent) levels.

  12. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification

    Science.gov (United States)

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang

    2015-01-01

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume). PMID:26640426

  13. Thermal Analyses of a Human Kidney and a Rabbit Kidney During Cryopreservation by Vitrification.

    Science.gov (United States)

    Ehrlich, Lili E; Fahy, Gregory M; Wowk, Brian G; Malen, Jonathan A; Rabin, Yoed

    2018-01-01

    This study focuses on thermal analysis of the problem of scaling up from the vitrification of rabbit kidneys to the vitrification of human kidneys, where vitrification is the preservation of biological material in the glassy state. The basis for this study is a successful cryopreservation protocol for a rabbit kidney model, based on using a proprietary vitrification solution known as M22. Using the finite element analysis (FEA) commercial code ANSYS, heat transfer simulations suggest that indeed the rabbit kidney unquestionably cools rapidly enough to be vitrified based on known intrarenal concentrations of M22. Scaling up 21-fold, computer simulations suggest less favorable conditions for human kidney vitrification. In this case, cooling rates below -100 °C are sometimes slower than 1 °C/min, a rate that provides a clear-cut margin of safety at all temperatures based on the stability of rabbit kidneys in past studies. Nevertheless, it is concluded in this study that vitrifying human kidneys is possible without significant ice damage, assuming that human kidneys can be perfused with M22 as effectively as rabbit kidneys. The thermal analysis suggests that cooling rates can be further increased by a careful design of the cryogenic protocol and by tailoring the container to the shape of the kidney, in contrast to the present cylindrical container. This study demonstrates the critical need for the thermal analysis of experimental cryopreservation and highlights the unmet need for measuring the thermophysical properties of cryoprotective solutions under conditions relevant to realistic thermal histories.

  14. Vitrification, a complementary cryopreservation method for Betula pendula Roth.

    Science.gov (United States)

    Ryynänen, Leena; Aronen, Tuija

    2005-10-01

    Cryopreservation--the storage of plant germplasm in liquid nitrogen--provides a modern tool for the conservation of forest genetic resources. It is especially applicable for species in which their micropropagation can be initiated from mature tree buds, e.g., silver birch (Betula pendula Roth), thus enabling the conservation of specific genotypes: endangered elite trees and trees expressing rare, valuable or interesting characteristics. The aim of the present study was to develop a vitrification protocol applicable for the cryostorage of silver birch that avoids the use of expensive sophisticated freezers. The average recovery of vitrified axillary silver birch buds was 71% using a protocol that started with four-week cold hardening of bud-bearing in vitro donor shoots on modified medium under short day conditions. After cold hardening, the excised axillary buds were precultivated on medium containing 0.7 M sucrose for 24 h under the same conditions as during the cold hardening period. Following preculture, the buds were treated with loading solution containing 2M glycerol and 0.4 M sucrose for 20 min at room temperature. Finally, the buds were dehydrated with PVS2 cryoprotectant for 120 min followed by direct immersion in liquid nitrogen. According to the morphology and the RAPD profiles of regenerated plants in the greenhouse, the genetic fidelity of the vitrified birch material seems to have remained unchanged.

  15. Laser-assisted vitrification of large equine embryos.

    Science.gov (United States)

    Scherzer, J; Davis, C; Hurley, D J

    2011-12-01

    The major difficulty in providing the benefits of embryo cryopreservation for equine agriculture is the mismatch between the optimal embryo age for collection from the mare (7-8 days after ovulation was detected) and the optimal age for freezing under current methods (6.5 days after ovulation). To overcome this limitation, we tested a method to enhance penetration of cryopreservative across the capsule and trophoblast of day 7 and 8 embryos combined with rapid freezing by vitrification. Six small embryos (laser system used to create a small opening in the embryonic capsule and trophectoderm. All embryos were vitrified using a CryoLeaf freezing support. After recovery from freezing and embryo transfer, three of four small untreated embryos (300 μm in diameter, 44%) resulted in a vesicle as detected by ultrasonography approximately one week after transfer. However, only one recipient mare was still pregnant on day 23, and she delivered a live foal. Further investigation is required to determine why most of the embryos in this experiment were lost between day 13 and day 23 of gestation. © 2011 Blackwell Verlag GmbH.

  16. Innovative fossil fuel fired vitrification technology for soil remediation. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Vortec has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conservation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment-as confirmed by both ANS 16.1 and Toxicity Characteristic Leaching Procedure (TCLP) testing. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and did not leach to the environment as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC subsystem design.

  17. Glass optimization for vitrification of Hanford Site low-level tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr. [and others

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

  18. Computer modeling of fluid flow and combustion in the ISV (In Situ Vitrification) confinement hood

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.W.; Paik, S.

    1990-09-01

    Safety and suitability objectives for the application of the In Situ Vitrification (ISV) technology at the INEL require that the physical processes involved in ISVV be modeled to determine their operational behavior. The mathematical models that have been determined to address the modeling needs adequately for the ISV analysis package are detailed elsewhere. The present report is concerned with the models required for simulating the reacting flow that occurs in the ISV confinement hood. An experimental code named COYOTE has been secured that appears adequate to model the combustion in the confinement hood. The COYOTE code is a two-dimensional, transient, compressible, Eulerian, gas dynamics code for modeling reactive flows. It recognizes nonuniform Cartesian and cylindrical geometry and is based on the ICE (Implicit Continuous-fluid Eulerian) family of solution methods. It includes models for chemical reactions based on chemical kinetics as well as equilibrium chemistry. The mathematical models contained in COYOTE, their discrete analogs, the solution procedure, code structure and some test problems are presented in the report. 12 refs., 17 figs., 6 tabs.

  19. Glass matrices for vitrification of radioactive waste - an Update on R & D Efforts

    Science.gov (United States)

    Raj, Kanwar; Kaushik, C. P.

    2009-07-01

    Radioactive waste gets generated at different stages of nuclear fuel cycle like mining/milling, fuel fabrication, reactor operation, reprocessing of spent fuel and the production & application of radioisotopes for various industrial, medical and research purposes. High Level radioactive Waste (HLW) is generated during reprocessing of spent nuclear fuel and it contains most of the radioactivity present in entire fuel cycle. Vitrification of HLW in borosilicate matrix is being practiced using induction heated metallic melters at industrial scale plants at Tarapur and Trombay [1]. The nature of HLW largely depends on off - reactor cooling of spent nuclear fuel, its type and burn - up, and reprocessing flow sheet. In view of varying characteristics, processing of HLW at Tarapur and Trombay has offered a wide spectrum of challenges in terms of development of matrices and characterization to accommodate compositional changes in waste. The present paper summarizes details of extensive R and D efforts made in the Department of Atomic Energy towards development and characterization of glass formulations for immobilization of HLW.

  20. Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet vitrification and encapsulation-dehydration procedures

    Science.gov (United States)

    A droplet-vitrification procedure is described for cryopreservation of Malus shoot tips. Survival patterns, recovery types, histological observations, and genetic integrity were compared for Malus shoot tips cryopreserved using this droplet-vitrification procedure and an encapsulation-dehydration pr...

  1. Fungal pretreatment of lignocellulosic biomass.

    Science.gov (United States)

    Wan, Caixia; Li, Yebo

    2012-01-01

    Pretreatment is a crucial step in the conversion of lignocellulosic biomass to fermentable sugars and biofuels. Compared to thermal/chemical pretreatment, fungal pretreatment reduces the recalcitrance of lignocellulosic biomass by lignin-degrading microorganisms and thus potentially provides an environmentally-friendly and energy-efficient pretreatment technology for biofuel production. This paper provides an overview of the current state of fungal pretreatment by white rot fungi for biofuel production. The specific topics discussed are: 1) enzymes involved in biodegradation during the fungal pretreatment; 2) operating parameters governing performance of the fungal pretreatment; 3) the effect of fungal pretreatment on enzymatic hydrolysis and ethanol production; 4) efforts for improving enzymatic hydrolysis and ethanol production through combinations of fungal pretreatment and physical/chemical pretreatment; 5) the treatment of lignocellulosic biomass with lignin-degrading enzymes isolated from fungal pretreatment, with a comparison to fungal pretreatment; 6) modeling, reactor design, and scale-up of solid state fungal pretreatment; and 7) the limitations and future perspective of this technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Obesity does not aggravate vitrification injury in mouse embryos: a prospective study

    Directory of Open Access Journals (Sweden)

    Ma Wenhong

    2012-08-01

    Full Text Available Abstract Background Obesity is associated with poor reproductive outcomes, but few reports have examined thawed embryo transfer in obese women. Many studies have shown that increased lipid accumulation aggravates vitrification injury in porcine and bovine embryos, but oocytes of these species have high lipid contents (63 ng and 161 ng, respectively. Almost nothing is known about lipids in human oocytes except that these cells are anecdotally known to be relatively lipid poor. In this regard, human oocytes are considered to be similar to those of the mouse, which contain approximately 4 ng total lipids/oocyte. To date, no available data show the impact of obesity on vitrification in mouse embryos. The aim of this study was to establish a murine model of maternal diet-induced obesity and to characterize the effect of obesity on vitrification by investigating the survival rate and embryo developmental competence after thawing. Methods Prospective comparisons were performed between six–eight-cell embryos from obese and normal-weight mice and between fresh and vitrified embryos. Female C57BL/6 mice were fed standard rodent chow (normal-weight group or a high-fat diet (obese group for 6 weeks. The mice were mated, zygotes were collected from oviducts and cultured for 3 days, and six–eight-cell embryos were then selected to assess lipid content in fresh embryos and to evaluate differences in apoptosis, survival, and development rates in response to vitrification. Results In fresh embryos from obese mice, the lipid content (0.044 vs 0.030, Pvs.9.3%, Pvs. 93.1%, P Conclusions This study demonstrated that differences in survival and developmental rates between embryos from obese and normal-weight mice were eliminated after vitrification. Thus, maternal obesity does not aggravate vitrification injury, but obesity alone greatly impairs pre-implantation embryo survival and development.

  3. An improved vitrification protocol for equine immature oocytes, resulting in a first live foal.

    Science.gov (United States)

    Ortiz-Escribano, N; Bogado Pascottini, O; Woelders, H; Vandenberghe, L; De Schauwer, C; Govaere, J; Van den Abbeel, E; Vullers, T; Ververs, C; Roels, K; Van De Velde, M; Van Soom, A; Smits, K

    2017-08-20

    The success rate for vitrification of immature equine oocytes is low. Although vitrified-warmed oocytes are able to mature, further embryonic development appears to be compromised. The aim of this study was to compare two vitrification protocols, and to examine the effect of the number of layers of cumulus cells surrounding the oocyte during vitrification of immature equine oocytes. Experimental in vitro and in vivo trials. Immature equine oocytes were vitrified after a short exposure to high concentrations of cryoprotective agents (CPAs), or a long exposure to lower concentrations of CPAs. In Experiment 1, the maturation of oocytes surrounded by multiple layers of cumulus cells (CC oocytes) and oocytes surrounded by only corona radiata (CR oocytes) was investigated. In Experiment 2, spindle configuration was determined for CR oocytes vitrified using the two vitrification protocols. In Experiment 3, further embryonic development was studied after fertilisation and culture. Embryo transfer was performed in a standard manner. Similar nuclear maturation rates were observed for CR oocytes vitrified using the long exposure and nonvitrified controls. Furthermore, a lower maturation rate was obtained for CC oocytes vitrified with the short exposure compared to control CR oocytes (P = 0.001). Both vitrification protocols resulted in significantly higher rates of aberrant spindle configuration than the control groups (Pfoal. The relatively low number of equine oocytes and embryo transfer procedures performed. For vitrification of immature equine oocytes, the use of 1) CR oocytes, 2) a high concentration of CPAs, and 3) a short exposure time may be key factors for maintaining developmental competence. © 2017 EVJ Ltd.

  4. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    Directory of Open Access Journals (Sweden)

    Chen Ye

    2013-01-01

    Full Text Available Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor and alkali loading based on biomass solids (g alkali/g dry biomass have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline

  5. Acetic acid pretreatment improves the hardness of cooked potato slices.

    Science.gov (United States)

    Zhao, Wenlin; Shehzad, Hussain; Yan, Shoulei; Li, Jie; Wang, Qingzhang

    2017-08-01

    The effects of acetic acid pretreatment on the texture of cooked potato slices were investigated in this work. Potato slices were pretreated with acetic acid immersion (AAI), distilled water immersion (DWI), or no immersion (NI). Subsequently, the cell wall material of the pretreated samples was isolated and fractioned to evaluate changes in the monosaccharide content and molar mass (MM), and the hardness and microscopic structure of the potato slices in different pretreatments before and after cooking were determined. The results showed that the highest firmness was obtained with more intact structure of the cell wall for cooked potato slices with AAI pretreatment. Furthermore, the MM and sugar ratio demonstrated that the AAI pretreated potato slices contained a higher content of the small molecular polysaccharides of cell walls, especially in the hemicellulose fraction. This work may provide a reference for potato processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Serum free embryo culture medium improves in vitro survival of bovine blastocysts to vitrification

    OpenAIRE

    Gómez, E.; Rodríguez, A; Muñoz, M.; Caamaño, J.N. (José); Hidalgo, C.O. (Carlos); Morán, E.; Facal, Nieves; Díez, C.

    2013-01-01

    The aim of this study was to examine the effects of co-culture with Vero cells during the in vitro maturation (IVM) and three culture media, B2+5% fetal calf serum (FCS) on Vero cells, synthetic oviduct fluid (SOF)+5% FCS, and SOF+20 gL(-1) bovine serum albumin (BSA), on the developmental competence of the embryos and their ability to survive vitrification/warming. We also tested the effect of morphological quality and the age of the embryo on its sensitivity to vitrification. The IVM system ...

  7. PNL vitrification technology development project high-waste loaded high-level waste glasses for high-temperature melter: Letter report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.; Hrma, P.R.

    1996-02-01

    For vitrification of high-level wastes (HLW) at the Hanford Site, a Joule-heated overflow type melter with bottom draining capability and capable of operating at temperatures up to 1500{degrees}C is being developed. The original proposed Hanford Waste Vitrification Plant (HWVP) melter used a 1150{degrees}C processing temperature and was tested using glasses with up to 28 wt% waste oxide loading for NCAW (Neutralized Current Acid Waste). The goal of the high-temperature melter (HTM) is the volume reduction of the final product and increase of the waste processing rate by processing high-waste loaded glasses at higher temperatures. This would dramatically decrease waste disposal and processing costs. The aim of glass development for the HTM is to determine compositions and melting temperatures for processible and acceptable glasses with a high waste loading. Glass property/composition models for viscosity and liquidus temperature developed in the Glass Envelope Definition (GED) study were used. The results of glass formulation and experimental testing are presented for NCAW and DST/SST (Double-Shell Tank/Single-Shell Tank) Blend waste. Although the purpose of this report was to summarize the glass development study with Blend waste only, the results with NCAW were needed because glass development with Blend waste was based on the results from the glass development study with NCAW.

  8. Microwave pretreatment of switchgrass for bioethanol production

    Science.gov (United States)

    Keshwani, Deepak Radhakrishin

    conditions, 82% glucose and 63% xylose yields were achieved for switchgrass, and 87% glucose and 59% xylose yields were achieved for coastal bermudagrass following enzymatic hydrolysis of the pretreated biomass. The optimum enzyme loadings were 15 FPU/g and 20 CBU/g for switchgrass and 10 FPU/g and 20 CBU/g for coastal bermudagrass. Dielectric properties for dilute sodium hydroxide solutions were measured and compared to solid loss, lignin reduction and reducing sugar levels in hydrolyzates. Results indicate that the dielectric loss tangent of alkali solutions is a potential indicator of the severity of microwave-based pretreatments. Modeling of pretreatment processes can be a valuable tool in process simulations of bioethanol production from lignocellulosic biomass. Chapter 4 discusses three different approaches that were used to model delignification and carbohydrate loss during microwave-based pretreatment of switchgrass: statistical linear regression modeling, kinetic modeling using a time-dependent rate coefficient, and a Mamdani-type fuzzy inference system. The dielectric loss tangent of the alkali reagent and pretreatment time were used as predictors in all models. The statistical linear regression model for delignification gave comparable root mean square error (RMSE) values for training and testing data and predictions were approximately within 1% of experimental values. The kinetic model for delignification and xylan loss gave comparable RMSE values for training and testing data sets and predictions were approximately within 2% of experimental values. The kinetic model for cellulose loss was not as effective and predictions were only within 5-7% of experimental values. The time-dependent rate coefficients of the kinetic models calculated from experimental data were consistent with the heterogeneity (or lack thereof) of individual biomass components. The Mamdani-type fuzzy inference system was shown to be an effective means to model pretreatment processes and gave

  9. In situ vitrification of Oak Ridge National Laboratory soil and limestone

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.G.; Bates, S.O.; Maupin, G.D.

    1987-03-01

    Process feasibility studies were successfully performed on two different developmental scales to determine the technical application of in situ vitrification (ISV) to Oak Ridge National Laboratory (ORNL) intermediate-level waste. In the laboratory, testing was performed on crucibles containing quantities of 50% ORNL soil and 50% ORNL limestone. In the engineering-scale testing, a 1/12-scaled simulation of ORNL Trench 7 was constructed and vitrified, resulting in waste product soil and limestone concentrations of 68% and 32%, respectively. Results from the two scales of testing indicate that the ORNL intermediate-level waste sites may be successfully processed by ISV; the waste form will retain significant quantities of the cesium and strontium. Because /sup 137/Cs is the major component of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., off gas at the ground surface relative to the waste inventory) of 10/sup 4/ are desired to minimize activity buildup in the off-gas system. These values were realized during the engineering-scale test for both cesium and strontium. The vitrified material effectively contained 99.996% of the cesium and strontium placed in the engineering-scale test. This is equivalent to decontamination factors of greater than 10/sup 4/. Volume reduction for the engineering-scale test was 60%. No migration of the cesium to the uncontaminated surrounding soil was detected. These favorable results indicate that, once verified in a pilot-scale test, an adequately designed ISV system could be produced to treat the ORNL seepage pits and trenches without excessive activity accumulation in the off-gas treatment system.

  10. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  11. Coagulation pretreatment for ultrafiltration of deinking effluents containing flexographic inks

    Science.gov (United States)

    Bruno Chabot; Gopal A. Krishnagopalan; Said Abubakr

    1999-01-01

    This study was carried out to determine the potential of coagulation pretreatment with organic or inorganic coagulants to improve ultrafiltration performance during processing of wash deinking effluents containing flexographic inks. Wash filtrate effluents generated from mixtures of old flexographic and offset newspapers and old magazines were pretreated with a...

  12. 40 CFR 408.184 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 408.184 Section 408.184 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Hand-Butchered Salmon Processing Subcategory § 408.184 Pretreatment standards for existing sources. Any...

  13. Vitrification and Product Testing of C-104 and AZ-102 Pretreated Sludge Mixed with Flowsheet Quantities of Secondary Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Bates, Derrick J.; Goles, Ronald W.; Greenwood, Lawrence R.; Lettau, Ralph C.; Piepel, Gregory F.; Schweiger, Michael J.; Smith, Harry D.; Urie, Michael W.; Wagner, Jerome J.

    2001-02-01

    The U.S. Department of Energy (DOE) Office of River Protection (ORP) has acquired Hanford tank waste treatment services at a demonstration scale. The River Protection Project Waste Treatment Plant (RPP-WTP) team is responsible for producing an immobilized (vitrified) high-level waste (IHLW) waste form. Pacific Northwest National Laboratory, hereafter referred to as PNNL, has been contracted to produce and test a vitrified IHLW waste form from two Envelope D high-level waste (HLW) samples previously supplied to the RPP-WTP project by DOE.

  14. Possibilities and evaluation of straw pretreatment

    DEFF Research Database (Denmark)

    Knudsen, Niels Ole; Jensen, Peter Arendt; Sander, Bo

    1998-01-01

    Biomass utilisation by cofiring of straw in a pulverised coal fire boiler is economically attractive compared to dedicated straw fired plants. However, the high content of potassium and chloride impedes utilisation of the fly ash, deactivates the de NOx catalysts in the flue gas cleaning system...... and may also lead to increased deposit formation. A pretreatment process is required to solve the problems. In this paper two pretreatment processes are considred, one based on straw wash and another based on pyrolysis and char wash. To evaluate and compare the processes, laboratory and technical...... invetsigations were performed. The economy of both processes are favourable compared with seperate straw fired boilers, however, the removal efficiency of potassium of the pyrolysi based process is relatively low. At the present level of invetsigations the straw wash process looks promising and commercially...

  15. Fermentation of pretreated corncob hemicellulose hydrolysate to ...

    African Journals Online (AJOL)

    To investigate the effect of unknown fermentation inhibitors in corncob hemicellulose acid hydrolysate processed by pretreatment and detoxification on fermentation, corncob hemicellulose acid hydrolysate and artificially prepared hydrolysate were fermented in parallel by Candida shehatae YHFK-2. The results show that ...

  16. FLUIDIZED BED STEAM REFORMING (FBSR) OF HIGH LEVEL WASTE (HLW) ORGANIC AND NITRATE DESTRUCTION PRIOR TO VITRIFICATION: CRUCIBLE SCALE TO ENGINEERING SCALE DEMONSTRATIONS AND NON-RADIOACTIVE TO RADIOACTIVE DEMONSTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Williams, M; Gene Daniel, G; Paul Burket, P; Charles Crawford, C

    2009-02-07

    Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate destruction. This was followed by pilot scale testing of simulants at the Science Applications International Corporation (SAIC) Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003-4 and then engineering scale demonstrations by THOR{reg_sign} Treatment Technologies (TTT) and SRS/SRNL at the Hazen Research, Inc. (HRI) test facility in Golden, CO in 2006 and 2008. Radioactive sealed crucible testing with real T48 waste was performed at SRNL in 2008, and radioactive Benchscale Steam Reformer (BSR) testing was performed in the SRNL Shielded Cell Facility (SCF) in 2008.

  17. Vitrification of radioactive waste. Application to other kinds of waste; Vitrification des dechets radioactifs. Application a d`autres types de dechets

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, A.

    1993-12-31

    The containment by vitrification of radioactive waste is applied to concentrate solutions of fission products coming from the spent fuel reprocessing. By the way of liquid state to solid state, it is possible to reduce the volume of waste, to get a material with safety guarantees necessary to long storage and the glass by its chemical resistance, its thermal stability and its well resistance to irradiation answers particularly well to these necessities.

  18. Comparison of the level(s) of DNA damage using Comet assay in bovine oocytes subjected to selected vitrification methods.

    Science.gov (United States)

    Stachowiak, E M; Papis, K; Kruszewski, M; Iwaneńko, T; Bartłomiejczyk, T; Modliński, J A

    2009-08-01

    It was suggested that the cryodamage to oocytes' DNA has been responsible for the compromised developmental competence of cryopreserved oocytes. Vitrification of bovine oocytes affected not only cellular components, but also nuclear material. A significant rate of DNA fragmentation was found in bovine frozen or vitrified oocytes analysed by Comet assay regardless of cryopreservation method. Our method of vitrification using droplet system after gentle pre-equilibration treatment is one of the most effective cryopreservation methods employed for bovine oocytes so far, making it possible to develop 30% blastocyst stage embryos. In this study, the extent of DNA damage in bovine oocytes vitrified using three vitrification methods (droplet system, Open Pulled Straw and traditional vitrification in 0.25 ml insemination straws) was compared using Comet assay. Vitrification in droplet system and Open Pull Straws vitrification did not result in detectable cryoinjuries of DNA of bovine oocytes. On the contrary, DNA fragmentation was found in four of 26 oocytes vitrified in 0.25 ml straws (15.4%, p vitrification methods).

  19. Optimal pretreatment determination of kiwifruit drying via online monitoring.

    Science.gov (United States)

    Nadian, Mohammad Hossein; Abbaspour-Fard, Mohammad Hossein; Sadrnia, Hassan; Golzarian, Mahmood Reza; Tabasizadeh, Mohammad

    2016-11-01

    Pre-treating is a crucial stage of drying process. The best pretreatment for hot air drying of kiwifruit was investigated using a computer vision system (CVS), for online monitoring of drying attributes including drying time, colour changes and shrinkage, as decision criteria and using clustering method. Slices were dried at 70 °C with hot water blanching (HWB), steam blanching (SB), infrared blanching (IR) and acid ascorbic 1% w/w (AA) as pretreatments each with three durations of 5, 10 and 15 min. The results showed that the cells in HWB-pretreated samples stretched without any cell wall rupture, while the highest damage was observed in AA-pretreated kiwifruit microstructure. Increasing duration of AA and HWB significantly lengthened the drying time while SB showed opposite results. The drying rate had a profound effect on the progression of the shrinkage. The total colour change of pretreated samples was higher than those with no pretreatment except for AA and HWB. The AA could well prevent colour change during the initial stage of drying. Among all pretreatments, SB and IR had the highest colour changes. HWB with a duration of 5 min is the optimum pretreatment method for kiwifruit drying. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance.

    Science.gov (United States)

    Zhu, J Y; Pan, Xuejun; Zalesny, Ronald S

    2010-07-01

    This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass: energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies, and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the total sugar recovery divided by total energy consumption for pretreatment, should be used to evaluate the performance of a pretreatment process. A post-chemical pretreatment wood size-reduction approach was proposed to significantly reduce energy consumption. The review also emphasizes using a low liquid-to-wood ratio (L/W) to reduce thermal energy consumption for any thermochemical/physical pretreatment in addition to reducing pretreatment temperature.

  1. Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw

    DEFF Research Database (Denmark)

    Pedersen, Mads; Johansen, Katja S.; Meyer, Anne S.

    2011-01-01

    Background: The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic...... C for 10 min. The maximal enzymatic glucose and xylose yields from the solid, pretreated wheat straw fraction were obtained after pretreatments at the most extreme pH values (pH 1 or pH 13) at the maximum pretreatment temperature of 140 degrees C. Surface response models revealed significantly...... correlating interactions of the pretreatment pH and temperature on the enzymatic liberation of both glucose and xylose from pretreated, solid wheat straw. The influence of temperature was most pronounced with the acidic pretreatments, but the highest enzymatic monosaccharide yields were obtained after...

  2. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  3. Closed pulled straw vitrification of in vitro-produced and in vivo-produced bovine embryos.

    Science.gov (United States)

    Yu, X L; Deng, W; Liu, F J; Li, Y H; Li, X X; Zhang, Y L; Zan, L S

    2010-03-01

    The objective of this study was to evaluate the efficiency of the closed pulled straw (CPS) method for cryopreserving in vitro-produced and in vivo-produced bovine (Bos taurus) embryos. Based on the open pulled straw (OPS) protocol, the top end of a CPS was closed by tweezers (heated in a flame) to prevent the cryoprotectant medium containing embryos from contacting the liquid nitrogen. Bovine in vitro or in vivo morulae and early blastocyst embryos were frozen by slow cryopreservation, OPS vitrification, or CPS vitrification. Morphology of postthawed embryos was evaluated, and normal embryos were used for successive culture for 72h. There were no significant differences between OPS and CPS freezing groups in postthawed in vitro-produced embryos with respect to rates of morphologically normal embryos (mean+/-SD, 87.9+/-5.2% vs. 85.4+/-4.9%), survival at 24h (58.0+/-6.8% vs. 56.3+/-4.4%), and survival at 72h (35.2+/-6.0% vs. 34.9+/-6.7%). However, both OPS and CPS vitrification resulted in higher postthaw rates of morphologically normal embryo and survival at 24 and 72h than those of the slow-freezing method (Pvitrification was a feasible method to cryopreserve both in vitro-derived and in vivo-derived bovine embryos. This method not only eliminated the risk of embryo contamination by preventing contact with liquid nitrogen but also retained the advantages of the OPS vitrification method. Copyright 2010. Published by Elsevier Inc.

  4. A chronologic review of mature oocyte vitrification research in cattle, pigs, and sheep.

    Science.gov (United States)

    Mullen, S F; Fahy, G M

    2012-11-01

    Vitrification as a means of cryopreservation has become a standard approach for oocytes from livestock. This paradigm shift occurred primarily as a result of the demonstration in 1996 that bovine oocytes are extremely susceptible to chilling injury. Since that early work, numerous devices have been used as supports for oocytes during so-called "ultra-rapid cooling", and occasionally, trials involving the deposition of small volumes of media containing oocytes directly into liquid nitrogen to facilitate cooling have been reported. Results reporting blastocyst development exceeding 10% are common, but variability remains high, and a standard method for bovine oocytes remains to be established. Oocytes from pigs are particularly difficult to cryopreserve, even with the use of ultrarapid cooling approaches. Few reports have demonstrated blastocyst development exceeding 5%. The application of hydrostatic pressure before vitrification appears to impart stress tolerance to porcine oocytes, as the results of some treatments have shown development to blastocysts at proportions >10%. Work on sheep oocyte vitrification is relatively new, and a few articles have reported blastocyst development at 10% or more. Messenger RNA levels are reportedly altered in sheep oocytes as a result of vitrification, and damage to the cytoskeleton is common across species. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Role of cumulus cells during vitrification and fertilization of mature bovine oocytes

    NARCIS (Netherlands)

    Ortiz-Escribano, N.; Smits, K.; Piepers, S.; Abbeel, Van den E.; Woelders, H.; Soom, Van A.

    2016-01-01

    This study was designed to determine the role of cumulus cells during vitrification of bovine oocytes. Mature cumulus-oocyte complexes (COCs) with many layers of cumulus cells, corona radiata oocytes (CRs), with a few layers of cumulus cells, and denuded oocytes (DOs) without cumulus cells were

  6. Vitrification of in vitro produced bovine blastocysts: methodological studies and developmental capacity.

    Science.gov (United States)

    Donnay, I; Auquier, P; Kaidi, S; Carolan, C; Lonergan, P; Mermillod, P; Massip, A

    1998-08-21

    Methodological studies were undertaken to test the validity of a three-step vitrification procedure for bovine in vitro produced embryos using glycerol and ethylene glycol as cryoprotectants. Embryos were produced in a low-phosphate culture system (medium VT1 + 10% foetal calf serum) and vitrified at day 7 post-insemination either in a mixture of 25% glycerol--25% ethylene glycol or a mixture of 10% glycerol--40% ethylene glycol. In the first mixture 67% (n = 283) of blastocysts were re-expanded after 72 h of culture and 53% were hatched while in the second one (n = 65) only 5% survived. The mean number of cells of the surviving blastocysts was correlated with the rate of survival (R2 = 0.47; P = 0.0024). Embryo size (diameter to 180 microm) did not influence blastocyst survival or cell number, but hatching rate was higher for embryos > 180 microm. Embryo survival, hatching rate and cell number 72 h post-warming were not affected by the mode of vitrification (direct plunging into nitrogen liquid or vitrification into nitrogen liquid vapour), the mode of preparation of the vitrification solutions (molar or molal basis) or by the concentration of galactose used as a diluent (0 to 0.85 M). Only one calf was born after transfer of 22 vitrified blastocysts. These results confirm the apparent lack of correlation for cryopreserved embryos between in vitro survival or hatching and viability after transfer.

  7. Ultrastructure of bovine in vitro-produced blastocysts cryopreserved by vitrification.

    Science.gov (United States)

    Ohboshi, S; Fujihara, N; Yoshida, T; Tomagane, H

    1998-02-01

    The objective of this study was to examine ultrastructural aspects of bovine in vitro-produced blastocysts associated with cryopreservation by vitrification. Morphologically good embryos were used and treated with ethylene-glycol-based vitrification solution (VS). The untreated embryos had conventional fine structure. The post-warming embryos treated with direct exposure to VS (one-step procedure) showed cellular damage structurally by cryopreservation, which included loss of microvilli, disruption of the plasma membrane, mitochondrial changes and swelling of the endoplasmic reticulum. However, nuclei and junctional regions seemed to be resistant to cryoinjury. In contrast, the post-warming embryos pre-equilibrated with 10% ethylene glycol for 5 min and subsequent exposure to VS (two-step procedure) showed less damage than those treated by the one-step procedure. Post-warming embryos treated by the two-step procedure were cultured in vitro for 18 h. Some embryos survived and their structures re-formed to the former state, while other embryos showed serious injuries and could not reconstitute the blastocoele. Three post-warming embryos treated by the two-step procedure that survived after in vitro culture were transferred to three recipients and one of these resulted in pregnancy. These results indicate that cryopreservation by vitrification can damage membranous structures of the cells of bovine embryos, the extent and nature of this damage being dependent on the vitrification procedure.

  8. Bovine oocyte vitrification before or after meiotic arrest: effects on ultrastructure and developmental ability.

    Science.gov (United States)

    Diez, Carmen; Duque, Paloma; Gómez, Enrique; Hidalgo, Carlos O; Tamargo, Carolina; Rodríguez, Aida; Fernández, Lina; de la Varga, Santiago; Fernández, Alba; Facal, Nieves; Carbajo, Maite

    2005-07-15

    The nuclear stage at which oocytes are cryopreserved influences further development ability and cryopreservation affects ultrastructure of both cumulus cells and the oocyte. In this work, we analyze the effects of vitrification at different nuclear and cytoplasmic maturation stages on the oocyte ultrastructure and developmental ability. Culture in TCM199 + PVA with roscovitine 25 M during 24h led to meiotic arrest (MA) in cumulus-oocyte complexes (COCs), while permissive in vitro maturation (IVM) was performed in TCM199, 10% FCS, FSH-LH and 17beta-estradiol for 24 h. Oocytes were vitrified using the open pulled straw method (OPS) with minor modifications. Fresh and vitrified/warmed COCs were fixed as immature, after IVM, after meiotic arrest (MA) and after MA + IVM. Vitrification combined with MA followed by IVM produced the highest rates of degeneration, regardless of the vitrification time. As a consequence, lower proportions of embryos cleaved in these groups, although differences were eliminated at the five-eight cell stage. Development rates up to day 8 were similar in all experimental groups, being significantly lower than those in fresh controls. Only oocytes vitrified after IVM were able to give blastociysts. The morphological alterations observed can be responsible for compromised development. More research is needed to explain the low survival rates of the bovine oocyte after vitrification and warming.

  9. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.

    Science.gov (United States)

    Yang, Y; Xiao, Y; Voncken, J H L; Wilson, N

    2008-06-15

    Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.

  10. Cryopreservation of Endothelial Cells in Various Cryoprotective Agents and Media - Vitrification versus Slow Freezing Methods.

    Directory of Open Access Journals (Sweden)

    Achim von Bomhard

    Full Text Available Vitrification of endothelial cells (MHECT-5 has not previously been compared with controlled slow freezing methods under standardized conditions. To identify the best cryopreservation technique, we evaluated vitrification and standardized controlled-rate -1°C/minute cell freezing in a -80°C freezer and tested four cryoprotective agents (CPA, namely dimethyl sulfoxide (DMSO, ethylene glycol (EG, propylene glycol (PG, and glycerol (GLY, and two media, namely Dulbecco's modified Eagle medium Ham's F-12 (DMEMand K+-modified TiProtec (K+TiP, which is a high-potassium-containing medium. Numbers of viable cells in proliferation were evaluated by the CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega Corporation, Mannheim, Germany. To detect the exact frozen cell number per cryo vial, DNA content was measured by using Hoechst 33258 dye prior to analysis. Thus, results could be evaluated unconstrained by absolute cell number. Thawed cells were cultured in 25 cm2 cell culture flasks to confluence and examined daily by phase contrast imaging. With regard to cell recovery immediately after thawing, DMSO was the most suitable CPA combined with K+TiP in vitrification (99 ±0.5% and with DMEM in slow freezing (92 ±1.6%. The most viable cells in proliferation after three days of culture were obtained in cells vitrificated by using GLY with K+TiP (308 ±34% and PG with DMEM in slow freezing (280 ±27%.

  11. Comparison of conventional freezing and vitrification with dimethylformamide and ethylene glycol for cryopreservation of ovine embryos.

    Science.gov (United States)

    Varago, F C; Moutacas, V S; Carvalho, B C; Serapião, R V; Vieira, F; Chiarini-Garcia, H; Brandão, F Z; Camargo, L S; Henry, M; Lagares, M A

    2014-10-01

    The aim of this work was to evaluate the efficiency of the cryoprotectants dimethylformamide and ethylene glycol for cryopreservation of ovine embryos using vitrification and conventional freezing. The recovered embryos were distributed randomly in three treatment groups: Gr. 1: conventional freezing (n = 44), Gr. 2: vitrification with ethylene glycol (n = 39) and Gr. 3: vitrification with dimethylformamide (n = 38). Quality of fresh embryos in control group as well as of frozen and vitrified embryos was examined by three methodologies: staining with propidium iodide and Hoechst 33258 and evaluation under fluorescent microscopy, evaluation of re-expansion and hatching rates after culture, and determination of apoptotic index with TUNEL technique. It was established that re-expansion rate in all treatment groups was similar. In the same time, hatching rates were higher in Gr. 1 (40.5%) and Gr. 2 (35.3%) in comparison with Gr. 3 (15.5%, p freezing, 10.1 ± 8.5, p freezing) and fresh embryos. In conclusion, the dimethylformamide and ethylene glycol used as cryoprotectant to vitrify ovine embryos, in the concentrations and exposition time tested in this work, were not as efficient as the conventional freezing for cryopreservation of ovine embryos Thus, the conventional freezing with ethylene glycol was the most efficient method to cryopreserve ovine embryos in comparison with vitrification. © 2014 Blackwell Verlag GmbH.

  12. EMERGING TECHNOLOGY SUMMARY: VITRIFICATION OF SOILS CONTAMINATED BY HAZARDOUS AND/OR RADIOACTIVE WASTES

    Science.gov (United States)

    A performance summary of an advanced multifuel-capable combustion and melting system (CMS) for the vitrification of hazardous wastes is presented. Vortex Corporation has evaluated its patented CMS for use in the remediation of soils contaminated with heavy metals and radionuclid...

  13. BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    ARD KE

    2011-04-11

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  14. Effect of vitrification and post-thawing interval on the cytoskeleton ...

    African Journals Online (AJOL)

    Lucky Nedambale

    2,3# ... Keywords: Vitrification, cytoskeleton, bovine, oocytes, fertilization, in vitro matured. # Corresponding author. ... the sperm for 6 h in 5% CO2 in air at 39 °C. After 6 h of IVF, oocytes were washed six times in TL-HEPES. (Bio-Whittaker ...

  15. Identification of a highly successful cryopreservation method (droplet-vitrification) for petunia

    Science.gov (United States)

    Petunia (Petunia × hybrida Vilm.) is a very important crop conserved in the National Genebank of China. Petunia cultivar “Niu 2” was used to develop a droplet-vitrification protocol to cryopreserve shoot tips. Six variables (age of the in vitro plants, concentration of sucrose in the preculture solu...

  16. Unraveling protein stabilization mechanisms : Vitrification and water replacement in a glass transition temperature controlled system

    NARCIS (Netherlands)

    Grasmeijer, N; Stankovic, M; de Waard, H; Frijlink, H W; Hinrichs, W L J

    2013-01-01

    The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either

  17. Vitrification of human immature oocytes before and after in vitro maturation: a review.

    Science.gov (United States)

    Khalili, Mohammad Ali; Shahedi, Abbas; Ashourzadeh, Sareh; Nottola, Stefania Annarita; Macchiarelli, Guido; Palmerini, Maria Grazia

    2017-08-18

    The use of immature oocytes subjected to in vitro maturation (IVM) opens interesting perspectives for fertility preservation where ovarian reserves are damaged by pathologies or therapies, as in PCO/PCOS and cancer patients. Human oocyte cryopreservation may offer some advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation and postponing childbirth. It also eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In addition, a successful oocyte cryopreservation program could eliminate the need for donor and recipient menstrual cycle synchronization. Recent advances in vitrification technology have markedly improved the oocyte survival rate after warming, with fertilization and implantation rates comparable with those of fresh oocytes. Healthy live births can be achieved from the combination of IVM and vitrification, even if vitrification of in vivo matured oocytes is still more effective. Recently, attention is given to highlight whether vitrification procedures are more successful when performed before or after IVM, on immature GV-stage oocytes, or on in vitro matured MII-stage oocytes. In this review, we emphasize that, even if there are no differences in survival rates between oocytes vitrified prior to or post-IVM, reduced maturation rates of immature oocytes vitrified prior to IVM can be, at least in part, explained by underlying ultrastructural and biomolecular alterations.

  18. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore....... Ionic liquid had been reported to be able to dissolve lignocellulose. However, as our knowledge, in all published researches, the concentration of lignocellulose in ionic liquid were low (5~10%). Besides, pretreatment time were long (from 1 hr to 1 day). Based on the hypothesis that the amount of ionic...... liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time...

  19. Obesity does not aggravate vitrification injury in mouse embryos: a prospective study.

    Science.gov (United States)

    Ma, Wenhong; Yang, Xing; Liang, Xiaoyan

    2012-08-31

    Obesity is associated with poor reproductive outcomes, but few reports have examined thawed embryo transfer in obese women. Many studies have shown that increased lipid accumulation aggravates vitrification injury in porcine and bovine embryos, but oocytes of these species have high lipid contents (63 ng and 161 ng, respectively). Almost nothing is known about lipids in human oocytes except that these cells are anecdotally known to be relatively lipid poor. In this regard, human oocytes are considered to be similar to those of the mouse, which contain approximately 4 ng total lipids/oocyte. To date, no available data show the impact of obesity on vitrification in mouse embryos. The aim of this study was to establish a murine model of maternal diet-induced obesity and to characterize the effect of obesity on vitrification by investigating the survival rate and embryo developmental competence after thawing. Prospective comparisons were performed between six-eight-cell embryos from obese and normal-weight mice and between fresh and vitrified embryos. Female C57BL/6 mice were fed standard rodent chow (normal-weight group) or a high-fat diet (obese group) for 6 weeks. The mice were mated, zygotes were collected from oviducts and cultured for 3 days, and six-eight-cell embryos were then selected to assess lipid content in fresh embryos and to evaluate differences in apoptosis, survival, and development rates in response to vitrification. In fresh embryos from obese mice, the lipid content (0.044 vs 0.030, Pvitrification, no significant difference was found between thawed embryos from obese and normal-weight mice in apoptosis, survival, and development rates on days 4 and 5. In both groups, pre- and post-vitrification embryo apoptosis, survival, and development rates were similar. This study demonstrated that differences in survival and developmental rates between embryos from obese and normal-weight mice were eliminated after vitrification. Thus, maternal obesity does

  20. Developmental competence of ovine oocyte following vitrification: effect of oocyte developmental stage, cumulus cells, cytoskeleton stabiliser, FBS concentration, and equilibration time.

    Science.gov (United States)

    Shirazi, Abolfazl; Taheri, Fatemeh; Nazari, Hassan; Norbakhsh-Nia, Maryam; Ahmadi, Ebrahim; Heidari, Banafsheh

    2014-05-01

    The aim of the present study was to examine the effects of fetal bovine serum (FBS) concentration, equilibration time, and oocyte pre-treatment with cytochalasin B (CCB) on subsequent development of vitrified-warmed ovine immature (GVCOCs) and matured (MII) oocytes with (MIICOCs) or without cumulus cells (MIIDOs). In Experiment 1, the effects of FBS concentrations (10 and 20%) during the vitrification-warming procedure were examined. Survival rates after warming were not different between GVCOCs, MIICOCs and MIIDOs oocytes. After in vitro fertilization, rate of cleaved embryos in MIICOCs group at the presence of 20%FBS was higher than MIIDOs and GVCOCs groups. In Experiment 2, the effects of equilibration times (5, 7, and 10 min) were examined. There was no difference in survival rate of vitrified-warmed oocytes equilibrated at different times. Although, the rate of cleavage in MIICOCs and MIIDOs oocytes equilibrated for 10 and 7 min, respectively, was higher than 5 min equilibrated MIIDOs and 7 and 10 min equilibrated GVCOCs oocytes. In Experiment 3, the effects of oocyte pre-treatment with CCB were examined. Despite the insignificant difference in survival rate of vitrified-warmed ovine immature and matured oocytes, the rates of cleavage in CCB pretreated groups were significantly lower than untreated groups. Moreover, the blastocysts were only derived from those cumulus enclosed vitrified-warmed germinal vesicle (GV) and MII oocytes that had been exposed to 10% FBS in the absence of CCB. In conclusion, the presence of cumulus cells, 10% FBS, and the omission of CCB were beneficial for post-warming development of vitrified ovine oocytes.

  1. Comparison between Slow Freezing and Vitrification in Terms of Ovarian Tissue Viability in a Bovine Model.

    Science.gov (United States)

    Campos, Ana Luisa Menezes; Guedes, Janaína de Souza; Rodrigues, Jhenifer Kliemchen; Pace, Walter Antônio Prata; Fontoura, Renato Rinco; Caetano, João Pedro Junqueira; Marinho, Ricardo Mello

    2016-07-01

    Objective To assess the viability of bovine ovarian tissue after cryopreservation through either slow freezing or vitrification, and to compare it to that of control tissue by performing morphological analyses. Methods The study included 20 bovine ovarian cortex fragments that were divided into control, vitrification, and slow freezing groups. Each group consisted of four fragments of the same ovary, two fixed without cultivation, and two fixed with cultivation. Tissues were evaluated based on follicular morphology immediately after heating and after 7 days of culture, and compared with the control group. Results A total of 240 fragments were analyzed, generating a sample of 1,344 follicles without cultivation and 552 with cultivation. When the non-cultivated samples were classified as non-atretic follicles, 572 were found in the control group, 289 in the vitrification group, and 373 in the slow freezing group, showing no significant differences. When classified as atretic, 46 follicles were found in the control group, 23 in the vitrification group, and 41 in the slow freezing group, also showing no statistical difference. In the post-culture sample, an evolution of the follicular stages could be observed. This finding was important to support that the follicles considered non-atretic in the non-cultivated group were actually viable in the morphological evaluation. Conclusion With no differences between the protocols, vitrification was shown to be an advanced and alternative method for patients who will undergo treatments that carry the risk of ovarian failure, as the method is less expensive, faster, and more adaptable to laboratory routine. Thieme Publicações Ltda Rio de Janeiro, Brazil.

  2. Serum free embryo culture medium improves in vitro survival of bovine blastocysts to vitrification.

    Science.gov (United States)

    Gómez, E; Rodríguez, A; Muñoz, M; Caamaño, J N; Hidalgo, C O; Morán, E; Facal, N; Díez, C

    2008-05-01

    The aim of this study was to examine the effects of co-culture with Vero cells during the in vitro maturation (IVM) and three culture media, B2+5% fetal calf serum (FCS) on Vero cells, synthetic oviduct fluid (SOF)+5% FCS, and SOF+20 gL(-1) bovine serum albumin (BSA), on the developmental competence of the embryos and their ability to survive vitrification/warming. We also tested the effect of morphological quality and the age of the embryo on its sensitivity to vitrification. The IVM system neither affects the embryo development up to Day 7 nor survival rates after vitrification. The culture of embryos in SOF+FCS and in Vero cells+B2 allowed obtaining more Day 6 and Day 7 blastocysts, and a higher % of Day 7 blastocysts vitrified than culture in SOF+BSA. Contrarily, on Day 8, more blastocysts were vitrified in SOF+BSA than in SOF+FCS. Blastocysts quality affected development after vitrification/warming, and Day 7 embryos showed higher survival rates than their Day 8 counterparts. Day 7 blastocysts produced in Vero cells or in SOF+BSA survived at higher rates than those produced in SOF+FCS at 24 and 48 h after warming. Embryo culture with BSA allows obtaining hatching rates after vitrification/warming higher than those obtained after co-culture with Vero cells in B2 and FCS. Moreover, this system provides hatching rates from Day 8 blastocysts comparable to those obtained on Day 7 in Vero cells. Further studies, including embryo transfer to recipients, are needed to clarify factors affecting the freezability of in vitro produced bovine embryos.

  3. Vitrification by Cryotop and the Maturation, Fertilization, and Developmental Rates of Mouse Oocytes

    Science.gov (United States)

    Abedpour, Neda; Rajaei, Farzad

    2015-01-01

    Background: Oocyte cryopreservation is an important part of modern fertility treatment. The effect of vitrification on the fertilization and developmental rates of embryo is still a matter of debate. Objectives: This study aimed to investigate the effect of vitrification on the success of mouse oocyte maturation, fertilization, and preimplantation development in vitro. Materials and Methods: In this experimental study, a total of 200 germinal vesicle (GV) and 200 metaphase II (MII) oocytes were obtained from ovaries and fallopian tubes of NMRI mice, respectively and divided into two control and experimental (vitrified) groups. Oocytes in the experimental group were vitrified by Cryotop using vitrification medium (Origio, Denmark) and kept in liquid nitrogen for one month. Then, they were cultured in maturation medium for 24 hours. In vitro maturated metaphase 2 (IVM-MII) and ovulated metaphase 2 (OV-MII) oocytes were inseminated and the fertilized embryos assessed until the hatching blastocyst stage. Outcomes were assessed for statistical significance by Chi-square test using SPSS software. Results: Vitrification caused a significant reduction in the maturation rate of oocytes. Of those that matured, the fertilization rate of vitrified IVM-MII (44.1%) and OV-MII oocytes (50%) was not significantly different from each other but both were significantly lower than the control group (P < 0.05). There was no significant difference in developmental rates of both vitrified groups and the control group. Conclusions: The present study showed that vitrification using Cryotop and freezing medium can damage oocytes by reducing the maturation and fertilization rates in both developmental stages. PMID:26568845

  4. Impact of multiple blastocyst biopsy and vitrification-warming procedures on pregnancy outcomes.

    Science.gov (United States)

    Bradley, Cara K; Livingstone, Mark; Traversa, Maria V; McArthur, Steven J

    2017-12-01

    To assess the impact of multiple blastocyst biopsy and vitrification-warming procedures on clinical outcomes. Retrospective study. Private fertility clinic. Preimplantation genetic diagnosis (PGD) patients undergoing comprehensive chromosome screening, including monogenic disorder and chromosome rearrangement cases. Warming and transfer of euploid blastocysts biopsied and vitrified-warmed once (group 1 [G1, control]; n = 2,130), biopsied once but vitrified-warmed twice (group 2 [G2]; n = 34), or biopsied and vitrified-warmed twice (group 3 [G3]; n = 29). Thaw (for transfer) survival rate and clinical pregnancy rate (CPR). The thaw survival rates were 98.4% for G1, 97.3% for G2, and 93.3% for G3, with once biopsied and vitrified-warmed embryos being significantly higher than twice biopsied and vitrified-warmed embryos (G1 vs. G3; P=.032). There was a slight reduction in CPR with an additional vitrification-warming (G1 54.3% vs. G2 47.1%) and larger reduction with an additional embryo biopsy (G2 47.1% vs. G3 31.0%), but neither difference was statistically significant. However, the combined effect of both additional biopsy and vitrification-warming resulted in a significantly reduced CPR (G1 54.3% vs. G3 31.0%; P=.013). This study indicates that blastocysts biopsied and vitrified-warmed twice have reduced clinical outcomes compared with blastocysts biopsied and vitrified-warmed once. PGD patients should be advised that performing a second biopsy and vitrification-warming in cases of failure to obtain a result from initial biopsy will reduce the chance of pregnancy. Patients with inherited disorders may elect to proceed with the second biopsy and vitrification to avoid transfer of embryos with the genetic condition. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Effect of Vitrification on Sperm Parameters and Apoptosis in Fertile Men

    Directory of Open Access Journals (Sweden)

    M Adib

    2011-01-01

    Full Text Available Introduction & Objective: Today, cryopreservation of the human sperm is a common technique for treating infertility. It has been indicated that cryopreservation by different methods decrease the sperm motility and viability in fertile men, but still effect of freezing of the sperm by vitrification method have not been evaluated on sperm parameters and apoptosis. The aim of this study was to evaluate the effect of vitrification of sperm of fertile men on different sperm parameters (motility, morphology, viability and count and apoptosis after thawing. Materials & Methods: In this experimental study which was conducted at Yazd Infertility Research and Clinical Center in 2009, seventeen semen samples were collected by masturbation from people who came to this centre. Semen analysis was performed according to WHO standards. Smear was provided from these samples and fixed for TUNEL staining. Some samples were directly cryopreserved by cryoloope in liquid nitrogen and stored at least for Seven days. After thawing, samples were evaluated for sperm parameters. The collected data was analyzed by the SPSS software using paired T-test and Willcoxon statistical test. Results: The progressive movement of sperm was significantly decreased by vitrification. Also significant decrease in viability and morphology of the sperm and increase in the rate of apoptosis was observed after vitrification. The amount of apoptosis had negatively correlated with normal parameters of spermatozoa (especially progressive motility and viability. Conclusion: These results indicated that vitrification is harmful for sperm parameters and of apoptosis rate in fertile men. However, the apoptosis rate was lower compared to other freezing methods.

  6. Extrusion pretreatment of pine wood chips.

    Science.gov (United States)

    Karunanithy, C; Muthukumarappan, K; Gibbons, W R

    2012-05-01

    Pretreatment is the first step to open up lignocellulose structure in the conversion of biomass to biofuels. Extrusion can be a viable pretreatment method due to its ability to simultaneously expose biomass to a range of disruptive conditions in a continuous flow process. Extruder screw speed, barrel temperature, and feedstock moisture content are important factors that can influence sugar recovery from biomass. Hence, the current study was undertaken to investigate the effects of these parameters on extrusion pretreatment of pine wood chips. Pine wood chip at 25, 35, and 45 % wb moisture content were pretreated at various barrel temperatures (100, 140, and 180 °C) and screw speeds (100, 150, and 200 rpm) using a screw with compression ratios of 3:1. The pretreated pine wood chips were subjected to standard enzymatic hydrolysis followed by sugar and byproducts quantification. Statistical analyses revealed the existence of significant differences in sugar recovery due to independent variables based on comparing the mean of main effects and interaction effects. Pine wood chips pretreated at a screw speed of 150 rpm and a barrel temperature of 180 °C with a moisture content of 25 % resulted in a maximum cellulose, hemicellulose, and total sugar recoveries of 65.8, 65.6, and 66.1 %, respectively, which was about 6.7, 7.9, and 6.8 fold higher than the control (unpretreated pine chips). Furthermore, potential fermentation inhibitors such as furfural, hydroxyl methyl furfural, and acetic acid were not found in any of the treatment combinations.

  7. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

  8. Raman-microscopy investigation of vitrification-induced structural damages in mature bovine oocytes.

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    Full Text Available Although oocyte cryopreservation has great potentials in the field of reproductive technologies, it still is an open challenge in the majority of domestic animals and little is known on the biochemical transformation induced by this process in the different cellular compartments. Raman micro-spectroscopy allows the non-invasive evaluation of the molecular composition of cells, based on the inelastic scattering of laser photons by vibrating molecules. The aim of this work was to assess the biochemical modifications of both the zona pellucida and cytoplasm of vitrified/warmed in vitro matured bovine oocytes at different post-warming times. By taking advantage of Principal Component Analysis, we were able to shed light on the biochemical transformation induced by the cryogenic treatment, also pointing out the specific role of cryoprotective agents (CPs. Our results suggest that vitrification induces a transformation of the protein secondary structure from the α-helices to the β-sheet form, while lipids tend to assume a more packed configuration in the zona pellucida. Both modifications result in a mechanical hardening of this cellular compartment, which could account for the reduced fertility rates of vitrified oocytes. Furthermore, biochemical modifications were observed at the cytoplasmic level in the protein secondary structure, with α-helices loss, suggesting cold protein denaturation. In addition, a decrease of lipid unsaturation was found in vitrified oocytes, suggesting oxidative damages. Interestingly, most modifications were not observed in oocytes exposed to CPs, suggesting that they do not severely affect the biochemical architecture of the oocyte. Nevertheless, in oocytes exposed to CPs decreased developmental competence and increased reactive oxygen species production were observed compared to the control. A more severe reduction of cleavage and blastocyst rates after in vitro fertilization was obtained from vitrified oocytes. Our

  9. Raman-microscopy investigation of vitrification-induced structural damages in mature bovine oocytes.

    Science.gov (United States)

    Rusciano, Giulia; De Canditiis, Carolina; Zito, Gianluigi; Rubessa, Marcello; Roca, Maria Serena; Carotenuto, Rosa; Sasso, Antonio; Gasparrini, Bianca

    2017-01-01

    Although oocyte cryopreservation has great potentials in the field of reproductive technologies, it still is an open challenge in the majority of domestic animals and little is known on the biochemical transformation induced by this process in the different cellular compartments. Raman micro-spectroscopy allows the non-invasive evaluation of the molecular composition of cells, based on the inelastic scattering of laser photons by vibrating molecules. The aim of this work was to assess the biochemical modifications of both the zona pellucida and cytoplasm of vitrified/warmed in vitro matured bovine oocytes at different post-warming times. By taking advantage of Principal Component Analysis, we were able to shed light on the biochemical transformation induced by the cryogenic treatment, also pointing out the specific role of cryoprotective agents (CPs). Our results suggest that vitrification induces a transformation of the protein secondary structure from the α-helices to the β-sheet form, while lipids tend to assume a more packed configuration in the zona pellucida. Both modifications result in a mechanical hardening of this cellular compartment, which could account for the reduced fertility rates of vitrified oocytes. Furthermore, biochemical modifications were observed at the cytoplasmic level in the protein secondary structure, with α-helices loss, suggesting cold protein denaturation. In addition, a decrease of lipid unsaturation was found in vitrified oocytes, suggesting oxidative damages. Interestingly, most modifications were not observed in oocytes exposed to CPs, suggesting that they do not severely affect the biochemical architecture of the oocyte. Nevertheless, in oocytes exposed to CPs decreased developmental competence and increased reactive oxygen species production were observed compared to the control. A more severe reduction of cleavage and blastocyst rates after in vitro fertilization was obtained from vitrified oocytes. Our experimental

  10. Vitrification of incinerated tannery sludge in silicate matrices for chromium stabilization.

    Science.gov (United States)

    Varitis, S; Kavouras, P; Pavlidou, E; Pantazopoulou, E; Vourlias, G; Chrissafis, K; Zouboulis, A I; Karakostas, Th; Komninou, Ph

    2017-01-01

    The vitrification process was applied for the stabilization and solidification of a rich in chromium ash that was the by-product of incineration of tannery sludge. Six different batch compositions were produced, based on silica as the glass former and sodium and calcium oxides as flux agents. As-vitrified products (monoliths) were either composed of silicate matrices with separated from the melt Eskolaite (Cr2O3) crystallites or were homogeneous glasses (in one case). All as-vitrified products were thermally treated in order to transform them to partially crystallized, i.e. devitrified products. Devitrification is an important part of the work since studying the transformation of the initial as-vitrified products into glass-ceramics with better properties could result to stabilized products with potential added value. The devitrified products were diversified by the effective crystallization mode and separated crystal phase composition. These variations originated from differences in: (a) batch composition of the initial as-vitrified products and (b) thermal treatment conditions. In devitrified products crystallization led to the separation of Devitrite (Na2Ca3Si6O16), Combeite (Na4Ca4Si6O18) and Wollastonite (CaSiO3) crystalline phases, while Eskolaite crystallites were not affected by thermal treatment. Leaching test results revealed that chromium was successfully stabilized inside the as-vitrified monoliths. Devitrification impairs chromium stabilization, only in the case where the initial as-vitrified product was a homogeneous glass. In all other cases, devitrification did not affect successful chromium stabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Science.gov (United States)

    Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder

    2008-01-01

    Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...

  12. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production.

    Science.gov (United States)

    Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa M; Aguilar, Cristóbal N; Garrote, Gil; Ruiz, Héctor A

    2017-11-01

    This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. What is the net effect of introducing vitrification for cryopreservation of surplus 2PN oocytes in an IVF program?

    Science.gov (United States)

    Golakov, Manja; Depenbusch, Marion; Schultze-Mosgau, Askan; Schoepper, Beate; Hajek, Jennifer; Neumann, Kay; Griesinger, Georg

    2018-02-01

    The aim of this study was to accurately describe outcome differences (cryo-survival, pregnancy rate and live birth rate, both per ET and cumulatively), between the vitrification method and slow-freezing method of surplus 2PN oocytes in an IVF program. In 2004, the freezing method for 2PN oocytes was changed from slow-cooling to vitrification. The data of 711 patients (timespan: 1/1999-7/2011; 410 vitrification and 301 slow-cooling events) undergoing a first IVF/ICSI cycles with freezing of 2PN oocytes were retrospectively analyzed. The outcome of one, the first, IVF cycle per patient was explored. The data were analyzed per freezing-thawing attempt as well as cumulatively per one complete IVF cycle, taking pregnancy occurrence after a fresh embryo transfer preceding the cryo-cycle(s) and other confounders (such as female age, elective vs. surplus 2PN cryopreservation) into account by means of exploratory regression analyses. In the vitrification and slow-cooling group, 756 and 376, respectively, attempts of thawing 2PN oocytes were recorded. Each attempt of thawing 2PN oocytes showed statistically significantly higher mean cryo-survival rates after vitrification (effect size approximately 30-40%, with vitrification cryo-survival consistently above 90% in all thawing attempts). Furthermore, the incidence of "zero survival" was lower after vitrification (0.5 vs. 7.3%, p IVF cycle (fresh and frozen transfers combined) with vitrification of 2PN oocytes is increased approximately 1.4-fold (OR of 1.405, 95% CI 0.968-2.038; p = 0.07); however, statistical significance was not achieved due to sample size. Female age and elective cryopreservation of all 2PN oocytes without a fresh transfer (e.g., hyperresponders) were found to be negatively and positively, respectively, associated with the chance of achieving a live birth. The introduction of vitrification has a measurable impact on the efficacy of an IVF program. However, this effect is not large despite the

  14. Cellular damage suffered by equine embryos after exposure to cryoprotectants or cryopreservation by slow-freezing or vitrification.

    Science.gov (United States)

    Hendriks, W K; Roelen, B A J; Colenbrander, B; Stout, T A E

    2015-11-01

    Equine embryos are cryopreserved by slow-freezing or vitrification. While small embryos (cryopreservation reasonably well, larger embryos do not. It is not clear if slow-freezing or vitrification is less damaging to horse embryos. To compare the type and extent of cellular damage suffered by small and large embryos during cryopreservation by slow-freezing vs. vitrification. Sixty-three Day 6.5-7 embryos were subdivided by size and assigned to one of 5 treatments: control, exposure to slow-freezing or vitrification cryoprotectants (CPs), and cryopreservation by either technique. After thawing/CP removal, embryos were stained with fluorescent stains for various parameters of cellular integrity, and assessed by multiphoton microscopy. Exposing large embryos to vitrification CPs resulted in more dead cells (6.8 ± 1.3%: 95% confidence interval [CI], 3.1-10.4%) than exposure to slow-freezing media (0.3 ± 0.1%; 95% CI 0.0-0.6%: P = 0.001). Cryopreservation by either technique induced cell death and cytoskeleton disruption. Vitrification of small embryos resulted in a higher proportion of cells with fragmented or condensed (apoptotic) nuclei (P = 0.002) than slow-freezing (6.7 ± 1.5%, 95% CI 3.0-10.4% vs. 5.0 ± 2.1%, 95% CI 4.0-14.0%). Slow-freezing resulted in a higher incidence of disintegrated embryos (P = 0.01) than vitrification. Mitochondrial activity was low in control embryos, and was not differentially affected by cryopreservation technique, whereas vitrification changed mitochondrial distribution from a homogenous crystalline pattern in control embryos to a heterogeneous granulated distribution in vitrified embryos (P = 0.05). Cryopreservation caused more cellular damage to large embryos than smaller ones. While vitrification is more practical, it is not advisable for large embryos due to a higher incidence of dead cells. The choice is less obvious for small embryos, as vitrification led to occasionally very high percentages of dead or damaged

  15. Primary Processing

    NARCIS (Netherlands)

    Mulder, W.J.; Harmsen, P.F.H.; Sanders, J.P.M.; Carre, P.; Kamm, B.; Schoenicke, P.

    2012-01-01

    Primary processing of oil-containing material involves pre-treatment processes, oil recovery processes and the extraction and valorisation of valuable compounds from waste streams. Pre-treatment processes, e.g. thermal, enzymatic, electrical and radio frequency, have an important effect on the oil

  16. Targeting key metabolic points for an enhanced phytoremediation of wastewaters pre-treated by the photo-Fenton process using Solanum nigrum L.

    Science.gov (United States)

    Teixeira, Jorge; Ferraz, Pedro; Gouveia, Carlota; Azevedo, Frederico; Neves, Simão; Fidalgo, Fernanda; Silva, Adrián M T

    2015-10-01

    Several physiological, biochemical and molecular biology responses were analysed in Solanum nigrum L. plants exposed for 28 days to an effluent that resulted from the photo-Fenton treatment of a highly concentrated pesticide and systemic fungicide aqueous solution, containing metalaxyl as active compound (150mgL(-1)), in order to pinpoint metabolic steps for a future increase of these plants' capacity to deal with the chemical process by-products. Although plants suffered oxidative stress, as indicated by increased membrane damage and a negative effect on plant biomass, they absorbed the excess iron and acted on the resulting by-products present in the effluent after the photo-Fenton process. Nitrogen assimilation and metallothionein gene expression were down regulated, while glutathione biosynthesis increased. These results suggest an enhanced nitrogen assimilation and/or metallothionein accumulation as relevant key points for further plant improvement in order to increase the efficiency of this innovative strategy that considers integration of the photo-Fenton process (as chemical primary treatment) with S. nigrum L. plants (as biological remediation post-treatment) for heavily polluted wastewaters. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Vitrification of immature bovine cumulus-oocyte complexes: effects of cryoprotectants, the vitrification procedure and warming time on cleavage and embryo development.

    Science.gov (United States)

    Prentice-Biensch, Jennifer R; Singh, Jaswant; Mapletoft, Reuben J; Anzar, Muhammad

    2012-09-06

    The present studies evaluated the effects of cryoprotectants, the vitrification procedure and time in the warming solution containing sucrose on cleavage and embryo development of immature (GV stage) bovine cumulus-oocyte complexes (COCs). Two experiments were conducted. In Experiment 1, COCs (n = 420) were randomly assigned to four groups: 1) CONTROL GROUP: no treatment; 2) VS1 group: COCs were exposed to vitrification solution 1 (VS1) containing 7.5% ethylene glycol [EG] + 7.5% dimethyl sulfoxide [DMSO] + 20% calf serum [CS] in TCM-199 at 37 C for 5 min; 3) VS1 + VS2 group: COCs were exposed to VS1 for 5 min followed by VS2 (15% EG + 15% DMSO + 17.1% sucrose + 20% CS) at 37 C for 45-60 sec; and 4) Vitrified group: COCs were exposed to VS1 and VS2, loaded on cryotops, vitrified in liquid nitrogen and then warmed in TCM-199 + 17.1% sucrose + 20% CS at 37 C for 1 min. In Experiment 2, COCs (n = 581) were assigned to the same groups, but those in VS1, VS1 + VS2 and Vitrified groups were sub-divided and exposed to the warming solution for either 1 or 5 min. After treatment and/or warming, all COCs in both experiments underwent in vitro maturation, in vitro fertilization and in vitro culture. Cleavage and blastocyst rates did not differ among Control, VS1 and VS1 + VS2 groups in either experiment. In Experiment 2, there was no effect of time in the warming solution.However, both cleavage and blastocyst rates were lower (P bovine COCs. However, cleavage rate and early embryo development were reduced following the vitrification and warming.

  18. Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production.

    Science.gov (United States)

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Rehmann, Lars; Marzocchella, Antonio

    2017-11-01

    Waste lettuce leaves - from the "fresh cut vegetable" industry - were pretreated with the deep eutectic solvent (DES) made of choline chloride - glycerol. Reaction time (3-16h) and the operation temperature (80-150°C) were investigated. Enzymatic glucose and xylose yields of 94.9% and 75.0%, respectively were obtained when the biomass was pretreated at 150°C for 16h. Sugars contained in the biomass hydrolysate were fermented in batch cultures of Clostridium acetobutylicum DSMZ 792. The energy consumption and the energy efficiency related to the DES pretreatment were calculated and compared to the most common lignocellulosic pretreatment processes reported in the literature. The DES pretreatment process was characterized by lower energy required (about 28% decrease and 72% decrease) than the NAOH pretreatment and steam explosion process respectively. The Net Energy Ratio (NER) value related to butanol production via DES biomass pretreatment was assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The effect of minimal concentration of ethylene glycol (EG) combined with polyvinylpyrrolidone (PVP) on mouse oocyte survival and subsequent embryonic development following vitrification

    National Research Council Canada - National Science Library

    Wang, Yao; Okitsu, Osamu; Zhao, Xiao-Ming; Sun, Yun; Di, Wen; Chian, Ri-Cheng

    ... actions.The minimal concentration of ethylene glycol (EG) on mouse oocyte survival and subsequent embryonic development was evaluated following vitrification-warming and parthenogenetic activation...

  20. The nature of the volatile technetium species formed during vitrification of borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Bradley C.; Poineau, Frederic; Czerwinski, Kenneth R.; Sattelberger, Alfred P.

    2015-05-26

    Vitrification of sodium pertechnetate into borosilicate glass was performed in air at 1100 C. A glass with a composition similar to the one developed for vitrification of the low activity waste at the Hanford site was used. A red volatile species was observed above 600° C. The extended X-ray absorption fine structure results indicate the environment of the absorbing Tc atom consists of 2.9(6) O atoms at 1.73(2) A° , 2.2(4) O atoms at 2.02(2) A° , and 0.8(2) O atoms at 2.18(2) A° . The results are consistent with the presence of a mononuclear species with a structure closely related to TcO3(OH)(H2O)2.

  1. Waste Separations and Pretreatment Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, J.M. [Westinghouse Hanford Co., Richland, WA (United States); Harrington, R.A. [Kaiser Engineers Hanford Co., Richland, WA (United States); Quadrel, M.J. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1994-01-01

    This document provides the minutes from the Waste Separations and Pretreatment Workshop sponsored by the Underground Storage Tank-Integrated Demonstration in Salt Lake City, Utah, February 3--5, 1993. The Efficient Separations and Processing-Integrated Program and the Hanford Site Tank Waste Remediation System were joint participants. This document provides the detailed minutes, including responses to questions asked, an attendance list, reproductions of the workshop presentations, and a revised chart showing technology development activities.

  2. Bovine oocyte vitrification before or after meiotic arrest: effects on ultrastructure and developmental ability

    OpenAIRE

    Díez, Carmen; Duque, Paloma; Gómez, Enrique; Hidalgo, C.O. (Carlos); Tamargo, Carolina; Rodríguez, Aida; Fernández, Lina; Varga, Santiago; Fernández, Alba; Facal, Nieves; Carbajo, Maite

    2011-01-01

    The nuclear stage at which oocytes are cryopreserved influences further development ability and cryopreservation affects ultrastructure of both cumulus cells and the oocyte. In this work, we analyze the effects of vitrification at different nuclear and cytoplasmic maturation stages on the oocyte ultrastructure and developmental ability. Culture in TCM199 + PVA with roscovitine 25 M during 24 h led to meiotic arrest (MA) in cumulus-oocyte complexes (COCs), while permissive in vitro...

  3. Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes.

    Science.gov (United States)

    Somfai, Tamás; Nakai, Michiko; Tanihara, Fuminori; Noguchi, Junko; Kaneko, Hiroyuki; Kashiwazaki, Naomi; Egerszegi, István; Nagai, Takashi; Kikuchi, Kazuhiro

    2013-01-01

    Our aim was to optimize a cryoprotectant treatment for vitrification of immature porcine cumulus-oocyte complexes (COCs). Immature COCs were vitrified either in 35% ethylene glycol (EG), 35% propylene glycol (PG) or a combination of 17.5% EG and 17.5% PG. After warming, the COCs were in vitro matured (IVM), and surviving oocytes were in vitro fertilized (IVF) and cultured. The mean survival rate of vitrified oocytes in 35% PG (73.9%) was higher (P<0.05) than that in 35% EG (27.8%). Oocyte maturation rates did not differ among vitrified and non-vitrified control groups. Blastocyst formation in the vitrified EG group (10.8%) was higher (P<0.05) than that in the vitrified PG group (2.0%) but was lower than that in the control group (25.0%). Treatment of oocytes with 35% of each cryoprotectant without vitrification revealed a higher toxicity of PG on subsequent blastocyst development compared with EG. The combination of EG and PG resulted in 42.6% survival after vitrification. The maturation and fertilization rates of the surviving oocytes were similar in the vitrified, control and toxicity control (TC; treated with EG+PG combination without cooling) groups. Blastocyst development in the vitrified group was lower (P<0.05) than that in the control and TC groups, which in turn had similar development rates (10.7%, 18.1% and 23.3%, respectively). In conclusion, 35% PG enabled a higher oocyte survival rate after vitrification compared with 35% EG. However, PG was greatly toxic to oocytes. The combination of 17.5% EG and 17.5% PG yielded reasonable survival rates without toxic effects on embryo development.

  4. Survival of mouse embryos after vitrification depending on the cooling rate of the cryoprotectant solution.

    Science.gov (United States)

    Hredzák, R; Ostró, A; Zdilová, Viera; Maracek, I; Kacmárik, J

    2006-03-01

    The aim of the study was to determine the relationship between the rate of cooling of eight-cell mouse embryos to the temperature of liquid nitrogen (-196 degrees C) and their developmental capacity after thawing on the basis of their ability to leave the zona pellucida ('hatching') during in vitro culturing. Eight-cell embryos were obtained from superovulated female mice and divided into three experimental and one control group. Embryos from the experimental groups were cryopreserved by the vitrification method using ethylene glycol as cryoprotectant. The vitrification protocols used in the study differed in the rate of cooling of the cryoprotectant solution. Embryos from the first group were frozen in conventional 0.25-ml plastic straws, those from the second group in pipetting 'tips', and embryos from the third group, placed in vitrification solution, were introduced dropwise directly into liquid nitrogen. The control group of embryos was cultured in vitro without freezing in a culturing medium in an environment consisting of 95% air and 5% CO2. The developmental capacity of thawed embryos was assessed on the basis of their ability to leave the zona pellucida ('hatching') after three days of in vitro culturing. In the control group 95.1% of embryos 'hatched'. A significantly higher number of embryos that 'hatched' after thawing was observed in the group introduced dropwise directly into liquid nitrogen (60.0%) compared to the group frozen in pipetting 'tips' (37.9%). The group frozen in straws yielded significantly the lowest proportion of 'hatching' embryos (8.1%). These results showed that increasing cooling rates during vitrification of embryos improved their survival.

  5. Hanford Waste Vitrification Plant technical background document for toxics best available control technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This document provides information on toxic air pollutant emissions to support the Notice of Construction for the proposed Hanford Waste Vitrification Plant (HWVP) to be built at the the Department of Energy Hanford Site near Richland, Washington. Because approval must be received prior to initiating construction of the facility, state and federal Clean Air Act Notices of construction are being prepared along with necessary support documentation.

  6. Good Preservation of Stromal Cells and No Apoptosis in Human Ovarian Tissue after Vitrification

    OpenAIRE

    Raffaella Fabbri; Rossella Vicenti; Maria Macciocca; Gianandrea Pasquinelli; Roberto Paradisi; Cesare Battaglia; Nicola Antonio Martino; Stefano Venturoli

    2014-01-01

    The aim of this study was to develop a vitrification procedure for human ovarian tissue cryopreservation in order to better preserve the ovarian tissue. Large size samples of ovarian tissue retrieved from 15 female-to-male transgender subjects (18–38 years) were vitrified using two solutions (containing propylene glycol, ethylene glycol, and sucrose at different concentrations) in an open system. Light microscopy, transmission electron microscopy, and TUNEL assay were applied to evaluate the ...

  7. Extensive separations (CLEAN) processing strategy compared to TRUEX strategy and sludge wash ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, B.J.; Jansen, G.; Zimmerman, B.D.; Seeman, S.E. [Westinghouse Hanford Co., Richland, WA (United States); Lauerhass, L.; Hoza, M. [Pacific Northwest Lab., Richland, WA (United States)

    1994-08-01

    Numerous pretreatment flowsheets have been proposed for processing the radioactive wastes in Hanford`s 177 underground storage tanks. The CLEAN Option is examined along with two other flowsheet alternatives to quantify the trade-off of greater capital equipment and operating costs for aggressive separations with the reduced waste disposal costs and decreased environmental/health risks. The effect on the volume of HLW glass product and radiotoxicity of the LLW glass or grout product is predicted with current assumptions about waste characteristics and separations processes using a mass balance model. The prediction is made on three principal processing options: washing of tank wastes with removal of cesium and technetium from the supernatant, with washed solids routed directly to the glass (referred to as the Sludge Wash C processing strategy); the previous steps plus dissolution of the solids and removal of transuranic (TRU) elements, uranium, and strontium using solvent extraction processes (referred to as the Transuranic Extraction Option C (TRUEX-C) processing strategy); and an aggressive yet feasible processing strategy for separating the waste components to meet several main goals or objectives (referred to as the CLEAN Option processing strategy), such as the LLW is required to meet the US Nuclear Regulatory Commission Class A limits; concentrations of technetium, iodine, and uranium are reduced as low as reasonably achievable; and HLW will be contained within 1,000 borosilicate glass canisters that meet current Hanford Waste Vitrification Plant glass specifications.

  8. Vitrification of bovine embryos followed by in vitro hatching and expansion.

    Science.gov (United States)

    Souza, J F; Oliveira, C M; Lienou, L L; Cavalcante, T V; Alexandrino, E; Santos, R R; Rodrigues, A P R; Campello, C C; Figueiredo, J R; Dias, F E F

    2017-12-18

    The objective of this study was to assess the effects of bovine embryo vitrification by applying three different vitrification solutions containing ethylene glycol (EG) and dimethylsulphoxide (DMSO) at different concentrations (10, 20 or 25% each) combined with 1.0 M glucose or 1.0 M sucrose, on the in vitro hatching and expansion rates. Healthy oocytes were selected for in vitro maturation and fertilization from 200 bovine ovaries, and subsequently cultured up to the blastocyst stage (n = 800). Control (n = 200) and vitrified cells (n = 100 per treatment; 600 in total) were cultured for an extra 24 or 48 h to evaluate hatching and expansion, respectively. Vitrification significantly decreased embryonic re-expansion and hatching rates independently of the tested solution when compared with control embryos, but solutions with 25% EG + 25% DMSO resulted in the highest re-expansion (75%) and hatching (70%) rates, independently of the added sugar. The addition of sucrose resulted in higher rates of re-expanded and hatched embryos when compared with glucose addition. We concluded that the combination of 25% EG + 25% DMSO and 1.0 M sucrose allowed hatching and expansion of vitrified-warmed bovine embryos produced in vitro.

  9. The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes.

    Directory of Open Access Journals (Sweden)

    Jun Woo Jo

    Full Text Available Antifreeze proteins (AFPs are a class of polypeptides that permit organismal survival in sub-freezing environments. The purpose of this study was to investigate the effect of AFP supplementation on immature mouse oocyte vitrification. Germinal vesicle-stage oocytes were vitrified using a two-step exposure to equilibrium and vitrification solution in the presence or absence of 500 ng/mL of AFP III. After warming, oocyte survival, in vitro maturation, fertilization, and embryonic development up to the blastocyst stage were assessed. Spindle and chromosome morphology, membrane integrity, and the expression levels of several genes were assessed in in vitro matured oocytes. The rate of blastocyst formation was significantly higher and the number of caspase-positive blastomeres was significantly lower in the AFP-treated group compared with the untreated group. The proportion of oocytes with intact spindles/chromosomes and stable membranes was also significantly higher in the AFP group. The AFP group showed increased Mad2, Hook-1, Zar1, Zp1, and Bcl2 expression and lower Eg5, Zp2, Caspase6, and Rbm3 expression compared with the untreated group. Supplementation of the vitrification medium with AFP has a protective effect on immature mouse oocytes, promoting their resistance to chilling injury. AFPs may preserve spindle forming ability and membrane integrity at GV stage. The fertilization and subsequent developmental competence of oocytes may be associated with the modulation of Zar1, Zp1/Zp2, Bcl2, Caspase6, and Rbm3.

  10. Vitrification preserves murine and human donor cells for generation of tissue-engineered intestine.

    Science.gov (United States)

    Spurrier, Ryan G; Speer, Allison L; Grant, Christa N; Levin, Daniel E; Grikscheit, Tracy C

    2014-08-01

    Short bowel syndrome causes significant morbidity and mortality. Tissue-engineered intestine may serve as a viable replacement. Tissue-engineered small intestine (TESI) has previously been generated in the mouse model from donor cells that were harvested and immediately reimplanted; however, this technique may prove impossible in children who are critically ill, hemodynamically unstable, or septic. We hypothesized that organoid units (OU), multicellular clusters containing epithelium and mesenchyme, could be cryopreserved for delayed production of TESI. OU were isolated from TESI was analyzed by histology and immunofluorescence. After cryopreservation, the viability of murine OU was significantly higher in the vitrification group (93 ± 2%, mean ± standard error of the mean) compared with standard freezing (56 ± 6%) (P TESI was successfully generated from the preserved OU. Hematoxylin and eosin staining demonstrated a mucosa composed of a simple columnar epithelium whereas immunofluorescence staining confirmed the presence of both progenitor and differentiated epithelial cells. Furthermore, beta-2-microglobulin confirmed that the human TESI epithelium originated from human cells. We demonstrated improved multicellular viability after vitrification over conventional cryopreservation techniques and the first successful vitrification of murine and human OU with subsequent TESI generation. Clinical application of this method may allow for delayed autologous implantation of TESI for children in extremis. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Test Summary Report INEEL Sodium-Bearing Waste Vitrification Demonstration RSM-01-1

    Energy Technology Data Exchange (ETDEWEB)

    Goles, Ronald W.; Perez, Joseph M.; Macisaac, Brett D.; Siemer, Darryl D.; Mccray, John A.

    2001-05-21

    The U.S. Department of Energy's Idaho National Engineering and Environmental Laboratory is storing large amounts of radioactive and mixed wastes. Most of the sodium-bearing wastes have been calcined, but about a million gallons remain uncalcined, and this waste does not meet current regulatory requirements for long-term storage and/or disposal. As a part of the Settlement Agreement between DOE and the State of Idaho, the tanks currently containing SBW are to be taken out of service by December 31, 2012, which requires removing and treatment the remaining SBW. Vitrification is the option for waste disposal that received the highest weighted score against the criteria used. Beginning in FY 2000, the INEEL high-level waste program embarked on a program for technology demonstration and development that would lead to conceptual design of a vitrification facility in the event that vitrification is the preferred alternative for SBW disposal. The Pacific Northwest National Laborator's Research-Scale Melter was used to conduct these initial melter-flowsheet evaluations. Efforts are underway to reduce the volume of waste vitrified, and during the current test, an overall SBW waste volume-reduction factor of 7.6 was achieved.

  12. Optimization of a novel nylon mesh container for human embryo ultrarapid vitrification.

    Science.gov (United States)

    Nakashima, Akira; Ino, Nao; Kusumi, Maki; Ohgi, Shirei; Ito, Megumu; Horikawa, Takashi; Nakagawa, Koji; Saito, Takakazu; Kamura, Toshiharu; Saito, Hidekazu

    2010-05-01

    To evaluate the efficacy of a nylon mesh container in vitrification of human embryos and to determine the optimal osmotic pressure of the initial thawing solution. Retrospective analysis. National Center for Child Health and Development, Tokyo, Japan. Infertile patients undergoing either in vitro fertilization or intracytoplasmic sperm injection in our hospital. Embryos, at the cleavage stage, were cryopreserved using the vitrification method in either a plastic straw or a nylon mesh container. The embryos were thawed using an initial osmotic pressure of either 0.5 M or 1.0 M sucrose with subsequent step-wise dilution. After thawing, the embryos were transferred to the uterus. Survival rate of blastomeres, embryo survival rate, implantation, and pregnancy rates, cancellation rate because of embryo damage. Use of nylon mesh and the 1.0 M sucrose thawing solution significantly improved blastomere survival rate (98.0 +/- 1.0%, mean +/- SEM), pregnancy rate (41.0%) and implantation rate (32.3%). Vitrification using a nylon mesh container and subsequent thawing in a 1.0 M sucrose solution is an easy and inexpensive method that improves the reliability of embryo cryopreservation of embryos without adverse effects on clinical outcomes. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Experimental vitrification of human compacted morulae and early blastocysts using fine diameter plastic micropipettes.

    Science.gov (United States)

    Cremades, N; Sousa, M; Silva, J; Viana, P; Sousa, S; Oliveira, C; Teixeira da Silva, J; Barros, A

    2004-02-01

    Vitrification of human blastocysts has been successfully applied using grids, straws and cryoloops. We assessed the survival rate of human compacted morulae and early blastocysts vitrified in pipette tips with a smaller inner diameter and solution volume than the previously described open pulled straw (OPS) method. Excess day 5 human embryos (n = 63) were experimentally vitrified in vessels. Embryos were incubated at 37 degrees C with sperm preparation medium (SPM) for 1 min, SPM + 7.5% ethylene glycol (EG)/dimethylsulphoxide (DMSO) for 3 min, and SPM + 16.5% EG + 16.5% DMSO + 0.67 mol/l sucrose for 25 s. They were then aspirated (0.5 microl) into a plastic micropipette tip (0.36 mm inner diameter), exposed to liquid nitrogen (LN(2)) vapour for 2 min before being placed into a pre-cooled cryotube, which was then closed and plunged into LN(2). Embryos were warmed and diluted using 0.33 mol/l and 0.2 mol/l sucrose. The survival rate for compacted morulae was 73% (22/30) and 82% (27/33) for early blastocysts. The survival rates of human compacted morulae and early blastocysts after vitrification with this simple technique are similar to those reported in the literature achieved by slow cooling and other vitrification protocols.

  14. Effects of various freezing containers for vitrification freezing on mouse oogenesis.

    Science.gov (United States)

    Kim, Ji Chul; Kim, Jae Myeoung; Seo, Byoung Boo

    2016-01-01

    In the present study, various freezing containers were tested for mouse embryos of respective developmental stages; embryos were vitrified and then their survival rate and developmental rate were monitored. Mouse two cell, 8 cell, and blastula stage embryos underwent vitrification freezing-thawing and then their recovery rate, survival rate, development rate, and hatching rate were investigated. EM-grid, OPS, and cryo-loop were utilized for vitrification freezing-thawing of mouse embryos. It was found that recovery rate and survival rate were higher in the group of cryo-loop compared to those of EM-grid (p containers on vitrified embryos of respective developmental stages; it was demonstrated that higher developmental rate was shown in more progressed (or developed) embryos with more blastomeres. There was however, no difference in embryonic development rate was shown amongst containers. Taken together, further additional studies are warranted with regards to 1) manipulation techniques of embryos for various vitrification freezing containers and 2) preventive measures against contamination via liquid nitrogen.

  15. Effect of High Hydrostatic Pressure Processing on Microbiological Shelf-Life and Quality of Fruits Pretreated with Ascorbic Acid or SnCl2

    Directory of Open Access Journals (Sweden)

    Anthoula A. Argyri

    2014-01-01

    Full Text Available In the current study, the processing conditions required for the inactivation of Paenibacillus polymyxa and relevant spoilage microorganisms by high hydrostatic pressure (HHP treatment on apricot, peach, and pear pieces in sucrose (22°Brix solution were assessed. Accordingly, the shelf-life was determined by evaluating both the microbiological quality and the sensory characteristics (taste, odor, color, and texture during refrigerated storage after HHP treatment. The microbiological shelf-life of apricots, peaches, and pears was prolonged in the HHP-treated products in comparison with the untreated ones. In all HHP-treated packages for apricots, peaches, and pears, all populations were below the detection limit of the method (1 log CFU/g and no growth of microorganisms was observed until the end of storage. Overall, no differences of the L*, a*, or b* value among the untreated and the HHP-treated fruit products were observed up to the time at which the unpressurized product was characterized as spoiled. HHP treatment had no remarkable effect on the firmness of the apricots, peaches, and pears. With regard to the sensory assessment, the panelists marked better scores to HHP-treated products compared to their respective controls, according to taste and total evaluation during storage of fruit products.

  16. Remarkable activity of PdIr nanoparticles supported on the surface of carbon nanotubes pretreated via a sonochemical process for formic acid electro-oxidation

    Science.gov (United States)

    Chen, Jinwei; Li, Yuanjie; Liu, Shuangren; Wang, Gang; Tian, Jing; Jiang, Chunping; Zhu, Shifu; Wang, Ruilin

    2013-12-01

    It was reported for the first time that the surface treated multi-walled carbon nanotubes supported PdIr (PdIr/CNT-SCP) catalyst presents remarkable electrocatalytic activity and stability for formic acid electro-oxidation (FAEO). The surface of CNTs was functionalized by a sonochemical process for the deposition of PdIr nanoparticles (NPs). The XRD and TEM characterizations show that the prepared PdIr/CNT-SCP catalyst has small mean size and good dispersion of PdIr NPs on CNTs. The electrochemical measurements show that the onset and anodic peak potentials of FAEO on PdIr/CNT-SCP catalyst are 60 and 50 mV more negative than that on the commercial Pd/C catalyst. The mass-normalized peak current density of PdIr/CNT-SCP is 3365 mA mg-1Pd, which is 4.5, 1.4 and 2.7 times higher than that of PdIr/CNT-Untreated, PdIr/C-SCP and commercial Pd/C, respectively. It demonstrates the promotion of Ir and functionalized CNTs to Pd for FAEO.

  17. Effects of Pretreatments in Convective Dehydration of Rosehip (Rosa eglanteria

    Directory of Open Access Journals (Sweden)

    Alejandra Mabellini

    2012-04-01

    Full Text Available The aim of this work was to experimentally determine drying curves for thin layer and bed drying of rosehip fruits, with and without pretreatments, to reduce processing times as a function of drying air operating variables, to propose dehydration kinetics of fruits and to determine its kinetic parameters for further use within drying simulation software. Fruits were pre-treated both chemically and mechanically, which included dipping the fruits in NaOH and ethyl oleate solutions; and cutting or perforating the fruit cuticle, respectively. Simulation models were then adopted to fit the kinetics drying data considering fruit volume shrinkage. These simple models minimized the calculation time during the simulation of deep-bed driers. Results show that pre-treatments reduced processing times up to 57%, and evaluated models satisfactorily predicted the drying of rosehip fruit. Effective mass diffusion coefficients were up to 4-fold greater when fruit was submitted to mechanical pretreatments.

  18. Vitrification of ICSI- and IVF-derived bovine blastocysts by minimum volume cooling procedure: effect of developmental stage and age.

    Science.gov (United States)

    Abdalla, H; Shimoda, M; Hara, H; Morita, H; Kuwayama, M; Hirabayashi, M; Hochi, S

    2010-10-01

    The objective was to investigate the effects of developmental stage (fully-expanded or expanding blastocysts) and/or age (harvested on Days 7 or 8) on post-vitrification in vitro survival of bovine blastocysts derived from intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). Post-warming survival (re-expansion of blastocoele within 24 h) of ICSI-derived fully-expanded blastocysts (80%) was similar to that of their IVF-derived counterparts (88%). However, the ability of ICSI-derived expanding blastocysts to survive vitrification procedures (61%) was lower than that of IVF-derived blastocysts (85%; P vitrification did not affect cryotolerance for either ICSI-derived (73 and 59% for Days 7 and 8 embryos, respectively) or IVF-derived blastocysts (86% for both Days 7 and 8 embryos). At 24 h of post-warming culture, ICSI-derived blastocysts surviving vitrification contained a higher proportion of dead cells than their IVF-derived counterparts (5-13% vs. 2-4%; P vitrification on the ability of blastocysts to hatch within 72 h of culture only in IVF-derived Day 8 blastocysts (41 and 70% in vitrified and fresh control groups, respectively). In conclusion, the proportion of blastocysts that survived vitrification procedures was similar for ICSI- and IVF-derived bovine blastocysts if the former were cultured to the fully-expanded stage prior to vitrification, with no significant difference between embryos harvested on Day 7 versus Day 8. (c) 2010 Elsevier Inc. All rights reserved.

  19. Effect of Temporary Meiotic Attenuation of Oocytes with Butyrolactone I and Roscovitine in Resistance to Bovine Embryos on Vitrification.

    Science.gov (United States)

    Maziero, R R D; Guaitolini, C R F; Paschoal, D M; Kievitsbosch, T; Guastali, M D; Moraes, C N; Landim-Alvarenga, F C

    2016-04-01

    This study aimed to produce in vitro bovine embryos by the addition of two drugs, which is responsible for oocyte meiosis inhibition: roscovitine (ROS) and butyrolactone I (BL-I). Oocytes were recovered from slaughtered cows and matured in a commercial medium and maintained in a 5% CO2 atmosphere. Oocytes were maintained for 6 h in an in vitro maturation (IVM) medium containing ROS (12.5 μm), BL-I (50 μm) and association of drugs (ROS 6.25 μm and BL-I 25 μm). Oocytes were cultured for 18 h in an agent-free medium for the resumption of meiosis. After 24 h of maturation, oocytes were inseminated in the commercial in vitro fertilization (IVF) medium. Presumptive zygotes were cultured in SOFaa medium in a 5% CO2 atmosphere. On day 3, rate of cleavage was evaluated and on days 6 and 7, rate of blastocyst formation. BL-I and its association with the ROS increased the rates of cleavage and blastocyst formation (p vitrification process, presenting a higher rate of embryonic re-expansion (p < 0.05). In conclusion, block of meiosis using BL-I or its association with ROS increased the rate of blastocyst formation, and the association of ROS+BL-I resulted in a better resistance to the embryo cryopreservation process. © 2016 Blackwell Verlag GmbH.

  20. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 1: Results of treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, B.P.; Naney, M.T.; Cline, S.R.; Bogle, M.A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Tixier, J.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-12-01

    A treatability study was initiated in October 1993 to apply in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was later extended to include all of Pit 1 and was performed to support a possible Interim Record of Decision or removal action for closure of one or more of the seepage pits and trenches beginning as early as FY 1997. This treatability study was carried out to establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability for the overlap of melt settings which will be necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of {sup 137}Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. In April 1996 an expulsion of an estimated 10% of the 196 Mg (216 tons) melt body occurred resulting in significant damage to ISV equipment and, ultimately, led to an indefinite suspension of further ISV operations at Pit 1. This report summarizes the technical accomplishments and status of the project in fulfilling these objectives through September 1997.

  1. Evaluation of new concepts for in situ vitrification: Power system, melt insulation, and off-gas containment

    Energy Technology Data Exchange (ETDEWEB)

    Luey, J.; Powell, T.D.; Heath, W.O.; Richardson, R.L.

    1992-07-01

    In situ vitrification (ISV) is a thermal process that converts contaminated soil into a highly leach-resistant material resembling natural obsidian. The ISV process was developed by the Pacific Northwest Laboratory (PNL)(a) for the US Department of Energy (DOE) to treat soils contaminated with transuranics. Since 1980, ISV has grown from a concept to an innovative technology through bench-, engineering-, intermediate-, and full-scale tests. Efforts by PNL have developed ISV into a technology considered available for limited deployment to remediate contaminated soil. The technology has been transferred to a licensee for commercial application. In September 1991, PNL conducted an operational acceptance test (OAT) of the modified engineering-scale unit. The OAT provided an opportunity to conduct proof-of-principle testing of new concepts for ISV technology. This additional testing was permitted since it was determined that testing of these new concepts would have no impact on the OAT objective. In discussing the proof-of-principle portion of the engineering-scale test, this report presents conclusions from this work and also describes the conceptual bases of the tested concepts, the engineering-scale test equipment and setup, and test results.

  2. Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

    1995-10-30

    The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

  3. Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics

    National Research Council Canada - National Science Library

    Karatzos, Sergios Kimon; Edye, Leslie Alan; Doherty, William Orlando Sinclair

    2012-01-01

    Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs...

  4. Interaction of Solvents and Mechanical Pretreatment with Enzymatic Lignocellulose Hydrolysis

    OpenAIRE

    Wang, Yumei

    2017-01-01

    Renewable plant biomass is considered as an alternative raw material for the production of fuels and chemicals instead of decreasing fossil resources. Enzymatic hydrolysis of pretreated lignocellulosic material to produce high sugar concentrations is one important step in a bio-refinery process, and can be operated under moderate conditions without by-products. However, the efficiency of the enzymatic hydrolysis is hindered by lignocellulose recalcitrance. Therefore, pretreatments of the biom...

  5. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    OpenAIRE

    Giora Rytwo

    2012-01-01

    Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges (“coagulation”) and (b) bridging between several small particles to form larger aggregate...

  6. Understanding the impact of ionic liquid pretreatment on eucalyptus

    Energy Technology Data Exchange (ETDEWEB)

    Centikol, Ozgul [Joint Bioenergy Institute; Dibble, Dean [Joint Bioenergy Institute; Cheng, Gang [Joint Bioenergy Institute; Kent, Michael S [ORNL; Knierim, Manfred [Joint Bioenergy Institute; Melnichenko, Yuri B [ORNL

    2010-01-01

    The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased {beta}-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wall sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.

  7. Enhanced enzymatic conversion with freeze pretreatment of rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ken-Lin; Thitikorn-amorn, Jitladda; Ou, Bay-Ming; Chen, Shan-He; Huang, Po-Jung [Institute of Biological Chemistry and Genomics Research Center Academia Sinica, Nankang, Taipei 115 (China); Hsieh, Jung-Feng [Department of Food Science, Fu Jen Catholic University, Xin Zhuang, Taipei 242 (China); Ratanakhanokchai, Khanok [School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, Bangkok 10150 (Thailand); Chen, Shui-Tein [Institute of Biological Chemistry and Genomics Research Center Academia Sinica, Nankang, Taipei 115 (China); Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106 (China)

    2011-01-15

    Production of bioethanol by the conversion of lignocellulosic waste has attracted much interest in recent years, because of its low cost and great potential availability. The pretreatment process is important for increasing the enzymatic digestibility of lignocellulosic materials. Enzymatic conversion with freeze pretreatment of rice straw was evaluated in this study. The freeze pretreatment was found to significantly increase the enzyme digestibility of rice straw from 48% to 84%. According to the results, enzymatic hydrolysis of unpretreated rice straw with 150 U cellulase and 100 U xylanase for 48 h yielded 226.77 g kg{sup -1} and 93.84 g kg{sup -1} substrate-reducing sugars respectively. However, the reducing sugar yields from freeze pretreatment under the same conditions were 417.27 g kg{sup -1} and 138.77 g kg{sup -1} substrate, respectively. In addition, hydrolyzates analysis showed that the highest glucose yield obtained during the enzymatic hydrolysis step in the present study was 371.91 g kg{sup -1} of dry rice straw, following pretreatment. Therefore, the enhanced enzymatic conversion with freeze pretreatment of rice straw was observed in this study. This indicated that freeze pretreatment was highly effective for enzymatic hydrolysis and low environmental impact. (author)

  8. New prospects in pretreatment of cotton fabrics using microwave heating.

    Science.gov (United States)

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Vitrification of cleavage stage day 3 embryos results in higher live birth rates than conventional slow freezing: a RCT.

    Science.gov (United States)

    Debrock, S; Peeraer, K; Fernandez Gallardo, E; De Neubourg, D; Spiessens, C; D'Hooghe, T M

    2015-08-01

    Is the live birth rate (LBR) per embryo thawed/warmed higher when Day 3 cleavage stage embryos are cryopreserved by vitrification compared with slow freezing? The LBR per embryo thawed/warmed was higher after vitrification than after slow freezing on Day 3, based on better embryo survival, quality and availability of embryos in the vitrification group. Post-thawing survival rate of cleavage-stage embryos has been reported to be higher after vitrification than after slow freezing. This RCT was performed in an academic tertiary center between September 2011 and March 2013. If supernumerary embryos were available on Day 3, patients were randomized at the time of cryopreservation using a computerized system to determine a simple allocation to the vitrification group or the slow freezing group and all embryos were frozen with the same technique. The primary outcome of this study was the LBR per embryo thawed/warmed. Power calculation revealed that 184 thawed embryos were needed in each group (β = 0.8, α freezing (6%). Patients freezing (using 1,2-propanediol and 0.1 M sucrose as cryoprotectant) or by closed vitrification using commercially available freezing/vitrification media. Survival was defined as ≥50% cells were intact after thawing. Thawed embryos were further cultured overnight. In total, 307 patients were randomized to slow freezing (155 patients, 480 embryos) or vitrification (152 patients, 495 embryos). By March 2013, 200 embryos were thawed after slow freezing in 95 cycles for 79 patients and 217 embryos were warmed after vitrification in 121 cycles in 90 patients. The LBR per embryo thawed/warmed was significantly higher after vitrification (16.1% (35/217)) than after slow freezing (5.0% (10/200); P freezing (7.5% (15/200); P = 0.0012; RR 2.76; CI 1.59-4.81). The survival rate was significantly higher after vitrification (84.3% (183/217) than after slow freezing (52.5% (105/200); P freezing (28.6% (30/105); P freezing (73.7% (70/95); P = 0

  10. Prospects of microwave processing: An overview

    Indian Academy of Sciences (India)

    Administrator

    sition, non-destructive evaluation etc (Fathi et al 1996), contaminated soil vitrification, volatile organic compounds treatment and recovery, waste sludge processing, mineral ore grinding, carbon in pulp gold recovery, minerals in- dustry and extractive metallurgical industry (Kingman and Rowson 1998), processing of waste ...

  11. Vitrification of bovine oocytes at different meiotic stages using the Cryotop method: assessment of morphological, molecular and functional patterns.

    Science.gov (United States)

    Sprícigo, J F W; Morais, K; Ferreira, A R; Machado, G M; Gomes, A C M; Rumpf, R; Franco, M M; Dode, M A N

    2014-10-01

    This study aimed to investigate the functional, morphological and molecular patterns of bovine oocytes vitrified at different times during in vitro maturation (IVM). Four groups of oocytes were used: non-vitrified control oocytes (CG), oocytes vitrified at 0 h (V0), oocytes vitrified after 8 h of IVM (V8) and oocytes vitrified after 22 h of IVM (V22). After vitrification, the oocytes were warmed and then returned to the incubator to complete a total of 24h of IVM. To evaluate the effect of vitrification, the nuclear maturation and fertilization rates were assessed by lacmoid staining and ultrastructural electron microscopy. The cleavage and blastocyst rates were evaluated at D2, D7 and D8. The expression levels of CASP3, TP53, HDAC2, SUV39H1 and DNMT1 were investigated by RT-qPCR. The nuclear maturation, oocyte fertilization, cleavage and blastocyst rates were higher (P vitrification (P > 0.05). In conclusion, cytoplasm degeneration seems to be the most severe form of damage caused by vitrification. The use of the Cryotop method for vitrification severely reduces bovine oocyte viability regardless of whether it is performed at GV, GVBD or MII stage. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A SIMPLE AND EFFICIENT VITRIFICATION METHOD FOR IN-STRAW DILUTION AND DIRECT TRANSFER OF BOVINE EMBRYOS.

    Science.gov (United States)

    Zhang, Youwen; Fu, Xiangwei; Chen, Long; Feng, Chuntao; Bi, Jianghua; Mo, Xianhong; Cheng, Keren; Zhang, Rina; Li, Shujing; Zhu, Shien

    2015-01-01

    An easy and user friendly protocol that produces consistent results will facilitate the commercial application of embryo vitrification technology in the field. This study was designed to develop a simple and efficient vitrification, in-straw dilution and direct transfer method for bovine embryos. After being vitrified and in-straw thawed, in vivo-derived and in vitro-produced bovine embryos were subjected to in vitro culture or embryo transplantation. There were no significant differences (P > 0.05) in survival rates (100.0% vs. 93.9%) and expansion rates (93.8% vs. 87.5%) between in vivo-derived and in vitro-produced blastocysts after vitrification and in-straw dilution. And there was also no significant difference (P > 0.05) in conception rates (56.5% vs. 58.8%) after ET between cryopreserved and fresh in vivo-derived blastocysts. Vitrification using EG-based vitrification solution and in-straw dilution with PBS-based diluent is a simple and efficient method for cryopreservation and direct transfer of bovine embryos.

  13. Expression and distribution of cell adhesion-related proteins in bovine parthenogenetic embryos: The effects of oocyte vitrification.

    Science.gov (United States)

    Zeng, Yan; Fu, Xiangwei; Zhou, Guangbin; Yue, Mingxing; Zhou, Yanhua; Zhu, Shien

    2013-07-01

    The objective was to investigate expression of cell adhesion-related proteins (E-cadherin, β-catenin, and the cytoskeletal protein F-actin) in bovine parthenogenetic embryos derived from vitrified-warmed oocytes. Bovine oocytes at metaphase II were randomly allocated into three groups: (1) untreated (control); (2) exposed to vitrification solution without freezing (toxicity); and (3) vitrified and warmed by the open-pulled straw method (vitrification). After parthenogenetic activation, in the vitrification group compared with the control, the timing of compaction was delayed in (108-120 vs. 96-108 hours, respectively), and the percentage of blastocysts that developed from eight-cell embryos was lower (32.08% vs. 61.03%; P vitrification delayed embryo compaction by affecting adhesion junction formation and function, immunostaining and quantitative reverse transcription polymerase chain reaction were done to characterize distribution patterns (E-cadherin, β-catenin, and the cytoskeletal protein F-actin) and expression levels of cell adhesion-related proteins (β-catenin). Distribution of β-catenin in eight-cell embryos from the vitrification group changed dramatically compared with the control and toxicity groups. Relative expression of β-catenin at the mRNA and protein levels was lower (P bovine parthenogenetic eight-cell embryos derived from vitrified-warmed oocytes were associated with embryo compaction and reduced competence for subsequent embryo development. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Three dimensional in vitro culture of preantral follicles following slow-freezing and vitrification of mouse ovarian tissue.

    Science.gov (United States)

    Asgari, Fatemeh; Valojerdi, Mojtaba Rezazadeh; Ebrahimi, Bita; Fatehi, Roya

    2015-12-01

    To evaluate the effects slow-freezing and vitrification on three dimensional in vitro culture of preantral follicles, ovaries of 12-14 days old female NMRI mice were isolated and randomly assigned to fresh control, slow-freezing and vitrification groups. Slow-freezing was performed using programmable freezer. Vitrification was carried out in a medium consisting of ethylene glycol (EG) and dimethyl sulphoxide (Me2SO) by needle immersion method. middle sized preantral follicles were mechanically isolated and cultured for 12 days in 0.7% sodium alginate gel. The follicles development and quantitative expression of oocyte specific genes (Bmp15, Gdf9, Fgf8) and the growth related genes (Igf1, Kit, Kit-l) were assessed after 1, 8 and 12 days of culture. Both cryopreserved groups showed reduction of follicular survival rates compared to the control group on days 8 and 12 of culture (P culture (P culture (P culture (p culture than vitrification and control groups (P culture. Thus, cryopreservation of mouse ovaries by both methods can preserve most developmental parameters and expression of maturation genes. However, vitrification is a better method for cryopreservation of mouse ovaries due to greater antrum formation and expression of growth related markers. Copyright © 2015. Published by Elsevier Inc.

  15. Cryopreservation of human oocytes, zygotes, embryos and blastocysts: A comparison study between slow freezing and ultra rapid (vitrification methods

    Directory of Open Access Journals (Sweden)

    Tahani Al-Azawi

    2013-12-01

    Full Text Available Preservation of female genetics is currently done primarily by means of oocyte and embryo cryopreservation. The field has seen much progress during its four-decade history, progress driven predominantly by research in humans. It can also be done by preservation of ovarian tissue or entire ovary for transplantation, followed by oocyte harvesting or natural fertilization. Two basic cryopreservation techniques rule the field, slow-rate freezing, the first to be developed and vitrification which in recent years, has gained a foothold. The slow-rate freezing method previously reported had low survival and pregnancy rates, along with the high cost of cryopreservation. Although there are some recent data indicating better survival rates, cryopreservation by the slow freezing method has started to discontinue. Vitrification of human embryos, especially at early stages, became a more popular alternative to the slow rate freezing method due to reported comparable clinical and laboratory outcomes. In addition, vitrification is relatively simple, requires no expensive programmable freezing equipment, and uses a small amount of liquid nitrogen for freezing. Moreover, oocyte cryopreservation using vitrification has been proposed as a solution to maintain women’s fertility by serving and freezing their oocytes at the optimal time. The aim of this research is to compare slow freezing and vitrification in cryopreservation of oocytes, zygotes, embryos and blastocysts during the last twelve years. Therefore, due to a lot of controversies in this regard, we tried to achieve an exact idea about the subject and the best technique used.

  16. Design Criteria for Process Wastewater Pretreatment Facilities

    Science.gov (United States)

    1988-05-01

    Nitrosodiphenylarnine N- Nitrosodi-n- propylar-ninie Pentachlorophenol Phenol Bis(2-ethylhexyl ) phthalate Butyl benzyl phthalate Di-n-butyl phthalate Di-n-octyl... phthalate Diethyl phthalate Diniethyl phthalate I.2 -Benzanthracene (benzo( a)anthracene) Benzo(a)pyrene (3,4-benzopyrene) 3.4- Ben zofluoranthene (benzo( b... detention time (volume/flow rate), substrate, type of organisms present. and temperature. The pollutant removal rate is proportional to the concentration of

  17. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Herborn, D.I.

    1993-11-01

    Westinghouse Hanford Company (WHC) is the Integrating Contractor for the Hanford Waste Vitrification Plant (HWVP) Project, and as such is responsible for preparation of the HWVP Preliminary Safety Analysis Report (PSAR). The HWVP PSAR was prepared pursuant to the requirements for safety analyses contained in US Department of Energy (DOE) Orders 4700.1, Project Management System (DOE 1987); 5480.5, Safety of Nuclear Facilities (DOE 1986a); 5481.lB, Safety Analysis and Review System (DOE 1986b) which was superseded by DOE order 5480-23, Nuclear Safety Analysis Reports, for nuclear facilities effective April 30, 1992 (DOE 1992); and 6430.lA, General Design Criteria (DOE 1989). The WHC procedures that, in large part, implement these DOE requirements are contained in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals.

  18. A summary report on feed preparation offgas and glass redox data for Hanford waste vitrification plant: Letter report

    Energy Technology Data Exchange (ETDEWEB)

    Merz, M.D.

    1996-03-01

    Tests to evaluate feed processing options for the Hanford Waste Vitrification Plant (HWVP) were conducted by a number of investigators, and considerable data were acquired for tests of different scale, including recent full-scale tests. In this report, a comparison was made of the characteristics of feed preparation observed in tests of scale ranging from 57 ml to full-scale of 28,000 liters. These tests included Pacific Northwest Laboratory (PNL) laboratory-scale tests, Kernforschungszentrums Karlsruhe (KfK) melter feed preparation, Research Scale Melter (RSM) feed preparation, Integrated DWPF Melter System (IDMS) feed preparation, Slurry Integrated Performance Testing (SIPT) feed preparation, and formic acid addition to Hanford Neutralized Current Acid Waste (NCAW) care samples.` The data presented herein were drawn mainly from draft reports and include system characteristics such as slurry volume and depth, sweep gas flow rate, headspace, and heating and stirring characteristics. Operating conditions such as acid feed rate, temperature, starting pH, final pH, quantities and type of frit, nitrite, nitrate, and carbonate concentrations, noble metal content, and waste oxide loading were tabulated. Offgas data for CO{sub 2}, NO{sub x}, N{sub 2}O, NO{sub 2}, H{sub 2} and NH{sub 3} were tabulated on a common basis. Observation and non-observation of other species were also noted.

  19. The design of a novel, environmentally improved cotton pre-treatment proces

    OpenAIRE

    Bouwhuis, G.H. (Gerrit)

    2011-01-01

    The scope of this thesis of Gerrit Bouwhuis, lecturer at Saxion Research Centre for Design and Technology in Enschede is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These processes can be continuous or batch wise. Advances in the science of biocatalytic pre-treatment of cotton and catalytic bleaching formed the scientific basis for this work. The work of Agrawal on...

  20. Cryopreservation of asian Dioscorea bulbifera l. and D. alata l. by vitrification: importance of plant growth regulators.

    Science.gov (United States)

    Mukherjee, Papiya; Mandal, B B; Bhat, K V; Biswas, A K

    2009-01-01

    The aim of this study was to develop cryopreservation protocols for Asian races of Dioscorea bulbifera and D. alata with high survival and plant regeneration after cryopreservation. Using a vitrification procedure, survival of shoot tips postcryopreservation of up to 89% in D. bulbifera and up to 82% in D. alata were recorded when excised shoot tips were pretreated overnight with 0.3 M sucrose in MS medium, followed by loading with 2 M glycerol plus 0.4 M sucrose for 20 min at 25 degrees C, exposure to PVS2 solution for 90 min at 0 degrees C, immersion in liquid nitrogen for 1 h, rewarming at 40 degrees C for 2 min, unloading in medium with 1.2 M sucrose for 20 min and culturing on growth recovery medium. During growth recovery, 58% shoot regeneration was obtained in D. bulbifera when cryopreserved shoot tips were initially cultured for 40 days on MS medium with 1.5 mg/L BAP, 0.15 mg/L NAA and 0.2 mg/L GA3 followed by culturing on a medium with 0.05 mg/L BAP and 0.15 mg/ L NAA. However, a maximum of 39% shoot regeneration was recorded in D. alata when cryopreserved shoot tips were initially cultured for 40 days on medium M2 (MS containing 1/5 NH4NO3 and 40 g/L sucrose) supplemented with 1.0 mg/L BAP, 1.0 mg/L zeatin, 0.15 mg/L IAA and 0.2 mg/L GA3. Subsequently, the regenerating shoots were cultured for 30 days on medium M2 with 1.0 mg/L BAP, 0.3 mg/L zeatin, 0.02 mg/L NAA and 0.2 mg/L GA3 followed by culturing for another 30 days on medium with 0.5 mg/L BAP, 0.02 mg/L NAA and 0.2 mg/L GA3. Finally, transfer onto medium with 0.05 mg/L BAP and 0.15 mg/L NAA stimulated production of fully grown plantlets. Alteration of post-thaw culture media with plant growth regulators and their application at various stages of growth recovery was crucial for regeneration of shoot tips and formation of plantlets in D. alata.

  1. Pretreatment of microalgae to improve biogas production: a review.

    Science.gov (United States)

    Passos, Fabiana; Uggetti, Enrica; Carrère, Hélène; Ferrer, Ivet

    2014-11-01

    Microalgae have been intensively studied as a source of biomass for replacing conventional fossil fuels in the last decade. The optimization of biomass production, harvesting and downstream processing is necessary for enabling its full-scale application. Regarding biofuels, biogas production is limited by the characteristics of microalgae, in particular the complex cell wall structure of most algae species. Therefore, pretreatment methods have been investigated for microalgae cell wall disruption and biomass solubilization before undergoing anaerobic digestion. This paper summarises the state of the art of different pretreatment techniques used for improving microalgae anaerobic biodegradability. Pretreatments were divided into 4 categories: (i) thermal; (ii) mechanical; (iii) chemical and (iv) biological methods. According to experimental results, all of them are effective at increasing biomass solubilization and methane yield, pretreatment effect being species dependent. Pilot-scale research is still missing and would help evaluating the feasibilit