WorldWideScience

Sample records for vitis vinifera varieties

  1. Monoterpenyl Glycosyltransferases Differentially Contribute to Production of Monoterpenyl Glycosides in Two Aromatic Vitis vinifera Varieties.

    Science.gov (United States)

    Li, Xiang-Yi; Wen, Ya-Qin; Meng, Nan; Qian, Xu; Pan, Qiu-Hong

    2017-01-01

    HIGHLIGHTS A similar trend on accumulation of glycosidically bound monoterpenes was observed in both varietiesTwo VvGT7 alleles mutations occurred at key sites in Muscat blanc à PetitVvGT14 exerted a major role in production of monoterpenyl glycosides in both varieties Terpenoids are the major aroma components and generally exist as both free and glycosidically-bound forms, of which nonvolatile glycosides account for a large fraction in grape berries. Our previous study has indicated that differential accumulation of monoterpenyl glycosides in Vitis vinifera "Muscat blanc à Petit" between two regions is closely correlated to monoterpenyl glucosyltransferase (VvGT14, XM_002285734.2) transcript abundance. However, it has not been determined yet whether this correlation also exists in other Vitis vinifera varieties. This study investigated the evolution of free and glycosidically bound monoterpenes in two Vitis vinifera variety "Muscat blanc à Petit" and "Gewurztraminer" under two vintages, and further assessed the relation between the accumulation of bound monoterpenes and two monoterpenyl glycosyltransferase transcript levels. Results showed that free monoterpenes exhibited three evolution patterns in both varieties during berry development of two vintages, whereas glycosidically bound monoterpenes showed a concentration elevation with berry maturation. The Cis-rose oxide and geraniol were major components contributing to the aroma odors of "Gewürztraminer" grapes while linalool was major aroma contributor to the "Muscat blanc à Petit grain" grapes. The accumulation of glycosidically bound monoterpenes in both varieties was accompanied with the high expression of VvGT7 (XM_002276510.2) and VvGT14. Only one allele of VvGT7 was found in the variety "Gewürztraminer" and no mutation was observed in its enzyme active sites. XB-VvGT7-4 and XB-VvGT7-5 were two alleles of VvGT7 detected in "Muscat blanc à Petit grain." The mutation on its enzyme active site inhibited

  2. Host status of own-rooted Vitis vinifera varieties to Meloidogyne hapla

    Science.gov (United States)

    Plant-parasitic nematodes are microscopic soil worms that attack the roots of grape plants and cause yield loss. One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla, the northern root-knot nematode. The selection of plant...

  3. Antioxidant and antimicrobial potentials of Serbian red wines produced from international Vitis vinifera grape varieties.

    Science.gov (United States)

    Radovanović, Aleksandra N; Jovančićević, Branimir S; Radovanović, Blaga C; Mihajilov-Krstev, Tatjana; Zvezdanović, Jelena B

    2012-08-15

    Antioxidant and antimicrobial potentials of Serbian red wines produced from different international Vitis vinifera grape varieties and their correlation with contents of phenolic compounds were studied by spectrophotometric and chromatographic methods. The antioxidant activity of red wines was estimated through their ability to scavenge 2,2'-diphenyl-1-picrylhydrazyl free radical (DPPH(•) ). The red wines, gallic acid, (+)-catechin and quercetin were screened in vitro for antimicrobial activity against Gram-positive and Gram-negative strains using microdilution and disc diffusion techniques. Excellent correlations between the contents of quercetin-3-glucoside (R(2) = 0.9463) and quercetin (R(2) = 0.9337) and DPPH(•) -scavenging ability of the red wines were found. Serbian red wines exhibited significant activity against Staphylococcus aureus, Listeria inocua, Micrococcus flavus, Sarcina lutea, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis and Shigella sonnei strains, which was in correlation with their phenolic composition and antioxidant activity. The compounds gallic acid, quercetin and (+)-catechin showed high activity against B. subtilis, S. aureus, S. lutea and M. flavus Gram-positive and S. enteritidis and P. aeruginosa Gram-negative strains. The results show that quercetin-3-glucoside and quercetin concentrations can be used as markers for the determination of antioxidant and antimicrobial potentials of red wines. Copyright © 2012 Society of Chemical Industry.

  4. Impact of Grapevine (Vitis vinifera) Varieties on Reproduction of the Northern Root-Knot Nematode (Meloidogyne hapla).

    Science.gov (United States)

    Howland, Amanda D; Skinkis, Patricia A; Wilson, John H; Riga, Ekaterini; Pinkerton, John N; Schreiner, R Paul; Zasada, Inga A

    2015-06-01

    One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla; however, limited research exists on the impact of this nematode on V. vinifera. The objectives of this research were to determine the impact of M. hapla on Chardonnay and Cabernet Sauvignon vine establishment and to determine the host status of V. vinifera varieties/clones predominantly grown in Washington to M. hapla. In a microplot experiment, Chardonnay and Cabernet Sauvignon vines were planted into soil inoculated with different densities of M. hapla; population dynamics of M. hapla and vine performance were monitored over 3 yr. In greenhouse experiments, several clones representing five V. vinifera varieties, Chardonnay, Riesling, Cabernet Sauvignon, Merlot, and Syrah, were evaluated as hosts for M. hapla. In both microplot and greenhouse experiments, white varieties were significantly better hosts than red varieties. In the greenhouse experiments, Chardonnay and Riesling had 40% higher reproduction factor values than Syrah and Merlot, however, all varieties/clones screened were good hosts for M. hapla (reproduction factors > 3). In the microplot experiment, M. hapla eggs/g root were 4.5 times greater in Chardonnay compared to Cabernet Sauvignon 3 yr after planting but there was no evident impact of M. hapla on vine establishment.

  5. Antilisterial activity of grape juice and grape extracts derived from Vitis vinifera variety Ribier.

    Science.gov (United States)

    Rhodes, P L; Mitchell, J W; Wilson, M W; Melton, L D

    2006-04-01

    Grape juice and skin and seed extracts of Vitis vinifera var. Ribier black table grapes were found to be highly inhibitory towards Listeria monocytogenes. This grape juice was also active against all other Listeria species tested but not against Bacillus cereus, Salmonella Menston, Escherichia coli, Staphylococcus aureus or Yersinia enterocolitica. Fractionation of the extracts showed that the antilisterial activity was strongest in the polymeric phenolic fractions. Two different types of active compounds were identified: the red-pigmented polymeric phenolics from juice and skin showed pH-dependent antilisterial activity, while the unpigmented polymeric phenolics from the seed showed antilisterial activity which was independent of pH.

  6. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera of NW Spain

    Science.gov (United States)

    Martínez, Emma M.; Trigo-Córdoba, Emiliano; Bouzas-Cid, Yolanda; Fandiño, María; Rey, Benjamín J.; Mirás-Avalos, Jose M.; Cancela, Javier J.

    2014-05-01

    Inter-annual climate variability, in particular the temporal distribution of rainfall is regarded as a critical factor to obtain an optimal irrigation management on crops, being more marked their relevance in Atlantic climates. The presence of precision irrigation systems in Vitis vinifera (L.) has created the need to understand the physiological effects on plant, and vineyard soils, together with production and quality parameters, to achieve and adequate irrigation management. This trial was performed on two relevant white grapevine varieties from Galicia (NW-Spain), cv. `Albariño` (D.O. Rías Baixas and Ribeiro) and cv. `Godello` (D.O. Valdeorras and D.O. Monterrei) during the 2012 and 2013 seasons. Two treatments were established following a completely randomized block design with four replications (7 plants each). The treatments were rainfed (R) and surface drip irrigation (DI), these last one was not applied in DO Monterrei during 2012. Irrigation was initiated when an average value of 400 cumulative degree days was reached, ending 15 days before the harvest. Different bioclimatic indices were calculated to characterize each season and location: Cool night index (CI); Heliothermal index (HI), which corresponds to Huglin's heliothermal index; and Winkler index. To assess the water status of the vines leaf (Ψmid) and stem (Ψstem) water potentials were measured at noon. Finally, production and qualitative data were collected for each treatment. No differences between DOs were observed for 'Godello' cultivar in bioclimatic indices within the Geoviticulture MCC system (Tonietto and Carboneau, 2004), indicating temperate warm-temperate (HI) and very cool nights (CI). For the Winkler index, cv. Godello is within the region I, near the region II in the case of D.O. Valdeorras in both years. In the case of 'Albariño', warmer nights were observed in DO Rías Baixas compared with DO Ribeiro, whereas the opposite was found for the thermal index. Leaf water potential

  7. A forensic perspective on the genetic identification of grapevine (Vitis vinifera L.) varieties using STR markers.

    Science.gov (United States)

    Santos, Sara; Oliveira, Manuela; Amorim, António; van Asch, Barbara

    2014-11-01

    The grapevine (Vitis vinifera subsp. vinifera) is one of the most important agricultural crops worldwide. A long interest in the historical origins of ancient and cultivated current grapevines, as well as the need to establish phylogenetic relationships and parentage, solve homonymies and synonymies, fingerprint cultivars and clones, and assess the authenticity of plants and wines has encouraged the development of genetic identification methods. STR analysis is currently the most commonly used method for these purposes. A large dataset of grapevines genotypes for many cultivars worldwide has been produced in the last decade using a common set of recommended dinucleotide nuclear STRs. This type of marker has been replaced by long core-repeat loci in standardized state-of-the-art human forensic genotyping. The first steps toward harmonized grapevine genotyping have already been taken to bring the genetic identification methods closer to human forensic STR standards by previous authors. In this context, we bring forward a set of basic suggestions that reinforce the need to (i) guarantee trueness-to-type of the sample; (ii) use the long core-repeat markers; (iii) verify the specificity and amplification consistency of PCR primers; (iv) sequence frequent alleles and use these standardized allele ladders; (v) consider mutation rates when evaluating results of STR-based parentage and pedigree analysis; (vi) genotype large and representative samples in order to obtain allele frequency databases; (vii) standardize genotype data by establishing allele nomenclature based on repeat number to facilitate information exchange and data compilation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Torregrosa, Laurent; Vialet, Sandrine; Adivèze, Angélique; Iocco-Corena, Pat; Thomas, Mark R

    2015-01-01

    Grapevine (Vitis) is considered to be one of the major fruit crops in the world based on hectares cultivated and economic value. Grapes are used not only for wine but also for fresh fruit, dried fruit, and juice production. Wine is by far the major product of grapes, and the focus of this chapter is on wine grape cultivars. Grapevine cultivars of Vitis vinifera L. have a reputation for producing premium quality wines. These premium quality wines are produced from a small number of cultivars that enjoy a high level of consumer acceptance and are firmly entrenched in the market place because of varietal name branding and the association of certain wine styles and regions with specific cultivars. In light of this situation, grapevine improvement by a transgenic approach is attractive when compared to a classical breeding approach. The transfer of individual traits as single genes with a minimum disruption to the original genome would leave the traditional characteristics of the cultivar intact. However, a reliable transformation system is required for a successful transgenic approach to grapevine improvement. There are three criteria for achieving an efficient Agrobacterium-mediated transformation system: (1) the production of highly regenerative transformable tissue, (2) optimal cocultivation conditions for both grapevine tissue and Agrobacterium, and (3) an efficient selection regime for transgenic plant regeneration. In this chapter, we describe a grapevine transformation system that meets these criteria. We also describe a protocol for the production of transformed roots suitable for functional gene studies and for the production of semi-transgenic grafted plants.

  9. Impact of grapevine (Vitis vinifera) varieties on reproduction of the northern root-knot nematode (Meloidogyne hapla)

    Science.gov (United States)

    Plant-parasitic nematodes are microscopic soil worms that attack the roots of grape plants and cause yield loss. One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla, the northern root-knot nematode. The selection of plant...

  10. Rediscovery of historical Vitis vinifera varieties from the South Anatolia region by using amplified fragment length polymorphism and simple sequence repeat DNA fingerprinting methods.

    Science.gov (United States)

    Yilancioglu, Kaan; Cetiner, Selim

    2013-05-01

    Anatolia played an important role in the diversification and spread of economically important Vitis vinifera varieties. Although several biodiversity studies have been conducted with local cultivars in different regions of Anatolia, our aim is to gain a better knowledge on the biodiversity of endangered historical V. vinifera varieties in the northern Adana region of southern Anatolia, particularly those potentially displaying viticulture characteristics. We also demonstrate the genetic relatedness in a selected subset of widely cultivated and commercialized V. vinifera collection cultivars, which were obtained from the National Grapevine Germplasm located at the Institute of Viticulture, Turkey. In the present study, microsatellites were used in narrowing the sample size from 72 accessions down to a collection of 27 varieties. Amplified fragment length polymorphisms were then employed to determine genetic relatedness among this collection and local V. vinifera cultivars. The unweighted pair group method with arithmetic mean cluster and principal component analyses revealed that Saimbeyli local cultivars form a distinct group, which is distantly related to a selected subset of V. vinifera collection varieties from all over Turkey. To our knowledge, this is the first study conducted with these cultivars. Further preservation and use of these potential viticultural varieties will be helpful to avoid genetic erosion and to promote continued agriculture in the region.

  11. Phenolic Compounds and Bioactivity of Healthy and Infected Grapevine Leaf Extracts from Red Varieties Merlot and Vranac (Vitis vinifera L.).

    Science.gov (United States)

    Anđelković, Marko; Radovanović, Blaga; Anđelković, Ana Milenkovic; Radovanović, Vladimir

    2015-09-01

    We investigated the phenolic composition, radical scavenging activity, and antimicrobial activity of grapevine leaf extracts from two red grape varieties, Vranac and Merlot (Vitis vinifera L.). The extracts were prepared from healthy grapevine leaves and those infected by Plasmopara viticola (downy mildew). The phenolic composition of the grapevine leaf extracts was determined using spectrophotometric assays and reverse-phase high performance liquid chromatography (RP-HPLC). The radical scavenging activity of grapevine leaf extracts was determined by the 2,2-diphenyl-1-picrylhydrazyl assay, and their antimicrobial activity was determined by microwell dilution tests. The total phenolic content was higher in healthy grapevine leaf extracts than in infected grapevine leaf extracts. The RP-HPLC analysis detected significant amounts of flavonols, phenolic acids, and flavan-3-ols, and small amounts of stilbenes in the grapevine leaf extracts. Compared with the infected grapevine leaf extracts, the healthy grapevine leaf extracts were richer in flavonols, phenolic acids, and flavan-3-ols, but had lower stilbenes contents. All extracts showed strong free radical scavenging activity, which was strongly correlated with the total phenolic content (R(2) = 0.978). The extracts showed a stronger antimicrobial activity towards Gram-positive bacterial strains than towards Gram-negative bacterial strains and yeast. The phenolic compounds in grapevine leaves were responsible for their strong radical scavenging and antimicrobial activities. Together, these results demonstrate that grapevine leaves have high nutritional value and can be used as a fresh food and to prepare extracts that can be used as additives in food and medicines.

  12. Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.).

    Science.gov (United States)

    Aubert, Christophe; Chalot, Guillaume

    2018-02-01

    Six table grape cultivars (Centennial Seedless, Chasselas, Italia, Italia Rubi, Alphonse Lavallée, and Muscat de Hambourg) were analyzed for their levels of soluble solids, titratable acidity, sugars, organic acids, vitamin C and E, carotenoids, polyphenolics and volatile compounds during two successive years. Descriptive sensory analyses of the six table grape varieties were also performed. Mainly due to anthocyanins, black cultivars had the highest total phenolic contents. Alphonse Lavallée had also both the highest levels of trans-resveratrol and piceid, and Muscat de Hambourg the highest levels of α-tocopherol, β-carotene and monoterpenols, well-known key aroma compounds in Muscat varieties having also interesting pharmacological properties. This study shows that the two traditional black French cultivars, Muscat de Hambourg and Alphonse Lavallée, are particularly rich in bioactive compounds and have a great potential for human health. Finally, Muscat de Hambourg was significantly rated sweeter, juicier and more aromatic than the others cultivars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Determination of carotenoid profiles in grapes, musts, and fortified wines from Douro varieties of Vitis vinifera.

    Science.gov (United States)

    Guedes De Pinho, P; Silva Ferreira, A C; Mendes Pinto, M; Benitez, J G; Hogg, T A

    2001-11-01

    beta-Carotene and six xanthophylls (lutein, neoxanthin, violaxanthin, luteoxanthin, cryptoxanthin, and echinenone) have been identified and semiquantitatively or quantitatively determined in musts and port wines for the first time. An HPLC method was developed and compared with that of one based on thin layer cromatography with scanning densitometry. The most abundant carotenoids present in red grape varieties are beta-carotene and lutein. In wines, significant quantities of violaxanthin, luteoxanthin, and neoxanthin were found. This study was done with berries (skin and pulp), musts, and fortified wines. Some experiments were performed to follow carotenoid content from grapes to wines. Although the levels of beta-carotene and lutein found in fortified wines were lower than those found in musts, other xanthophylls, such as neoxanthin, violaxanthin, and luteoxanthin, exist in appreciable amounts in young ports.

  14. Influência do solvente no conteúdo total de polifenóis, antocianinas e atividade antioxidante de extratos de bagaço de uva (Vitis vinifera variedades Tannat e Ancelota Solvent Influence on total polyphenol content, anthocyanins, and antioxidant activity of grape (Vitis vinifera bagasse extracts from Tannat and Ancelota - different varieties of Vitis vinifera varieties

    Directory of Open Access Journals (Sweden)

    Ismael Ivan Rockenbach

    2008-12-01

    Full Text Available Diferentes sistemas solventes foram aplicados para determinar a eficiência de extração de compostos com capacidade antioxidante em bagaço de uva, importante subproduto do processo de vinificação. Realizou-se a quantificação de compostos fenólicos totais, antocianinas totais e atividade antioxidante nos extratos de bagaço de uva Vitis vinifera das variedades Tannat e Ancelota, provenientes da região de Videira, Santa Catarina. A atividade antioxidante foi determinada pelos métodos ABTS, FRAP e β-caroteno/ácido linoléico. Conteúdos de compostos fenólicos totais em acetona 50 e 70% foram maiores nas duas variedades, enquanto que os conteúdos de antocianinas totais extraídos em ambas as variedades foram maiores no solvente etanol em concentrações de 50 e 70%. Pelo método ABTS, a atividade antioxidante foi maior nas concentrações de 50 e 70% de acetona para a variedade Tannat e 50 e 70% de acetona e etanol para a variedade Ancelota. Em relação ao poder redutor pelo método FRAP, este foi maior em solvente acetona 70% para as duas variedades. No ensaio do poder de inibição da oxidação, a adição de 100 e 200 µL de extratos etanólicos a 50% das variedades Tannat e Ancelota apresentou maior eficiência, sendo quase duas vezes superior aos extratos acetônicos testados.Different solvent systems were applied in order to determine the extraction efficiency of compounds with antioxidant capacity from grape bagasse, an important by-product from wine production. The quantification of total phenolics, anthocyanins, and antioxidant activity was carried out in grape bagasse extracts of Tannat and Ancelota varieties from the region of Videira, state of Santa Catarina. The antioxidant activity was determined by ABTS, FRAP, and β-carotene/linoleic acid system methods. Extracts from acidified aqueous solutions of acetone and ethanol in different concentrations (v/v showed higher yield in aqueous solutions of acetone 50 and 70% for

  15. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L., Benitaka variety, grown in the semiarid region of Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Eldina Castro Sousa

    2014-03-01

    Full Text Available Grape pomace (Vitis vinifera L., Benitaka variety, grown in the semiarid region of Northeast Brazil was evaluated in relation to chemical composition, and content of minerals and functional properties. Its microbiological quality and toxic potential, using Artemia salina sp, were also investigated. The results showed that the flour obtained from these residues had below neutral pH (3.82, moisture (3.33g/100g, acidity of (0.64g of citric acid/100g, and ash (4.65 g/100g. The amount of total dietary fiber (46.17g/100g stood out quantitatively compared to the content of carbohydrate (29.2g/100 g, protein (8.49g/100g, and lipids (8.16g/100g. The total energy was 224Kcal/100g. With regard to the compounds with functional properties, higher values of insoluble fiber 79% (36.4 g/100 g; vitamin C (26.25 mg of acid ascorbic/100g, and anthocyanins (131mg/100g were found. The minerals iron, potassium, zinc, manganese, and calcium were present in higher concentrations. There were no significant copper values. The results showed that the grape residues are an important source of nutrients and compounds with functional properties suggesting that they can be incorporated as an ingredient in the diet and/or used as a dietary supplement aiming at health benefits. The residues did not show microbiological contamination and were considered nontoxic.

  16. Somatic embryogenesis from seeds in a broad range of Vitis vinifera L. varieties: rescue of true-to-type virus-free plants.

    Science.gov (United States)

    San Pedro, Tània; Gammoudi, Najet; Peiró, Rosa; Olmos, Antonio; Gisbert, Carmina

    2017-11-29

    Somatic embryogenesis is the preferred method for cell to plant regeneration in Vitis vinifera L. However, low frequencies of plant embryo conversion are commonly found. In a previous work we obtained from cut-seeds of a grapevine infected with the Grapevine leafroll associated viruses 1 and 3 (GLRaV-1 and GLRaV-3), high rates of direct regeneration, embryo plant conversion and sanitation. The aim of this study is to evaluate the usefulness of this procedure for regeneration of other grapevine varieties which include some infected with one to three common grapevine viruses (GLRaV-3, Grapevine fanleaf virus (GFLV) and Grapevine fleck virus (GFkV)). As grapevine is highly heterozygous, it was necessary to select from among the virus-free plants those that regenerated from mother tissues around the embryo, (true-to-type). Somatic embryogenesis and plant regeneration were achieved in a first experiment, using cut-seeds from the 14 grapevine varieties Airén, Cabernet Franc, Cabernet Sauvignon, Mencía, Merlot, Monastrell, Petit Verdot, Pinot Blanc (infected by GFLV and GFkV), Pinot Gris, Pinot Meunier, Pinot Noir, Syrah, Tempranillo (infected by GFLV), and Verdil. All regenerated plants were confirmed to be free of GFkV whereas at least 68% sanitation was obtained for GFLV. The SSR profiles of the virus-free plants showed, in both varieties, around 10% regeneration from mother tissue (the same genetic make-up as the mother plant). In a second experiment, this procedure was used to sanitize the varieties Cabernet Franc, Godello, Merlot and Valencí Blanc infected by GLRaV-3, GFkV and/or GFLV. Cut-seeds can be used as explants for embryogenesis induction and plant conversion in a broad range of grapevine varieties. The high regeneration rates obtained with this procedure facilitate the posterior selection of true-to-type virus-free plants. A sanitation rate of 100% was obtained for GFkV as this virus is not seed-transmitted. However, the presence of GLRaV-3 and GFLV in

  17. Terpene content of wine from the aromatic grape variety ‘Irsai Oliver’ (Vitis vinifera L. depends on maceration time

    Directory of Open Access Journals (Sweden)

    Baron Mojmir

    2017-03-01

    Full Text Available This study deals with the determination of the content of both free and bound terpenes in berries and wine of the aromatic grapevine variety ‘Irsai Oliver’. Grapes were macerated in juice for different time intervals (viz. 0; 5; 12; 24 hours and thereafter processed to wine. The objective was to map the dependence of some selected terpenes on the period of maceration. Using gas chromatography, some nine organic compounds were detected. Attention was paid to contents of linalool (3,7-dimethylokta-1,6-dien-3-ol, 2,6-dimetyl-3,7-octadiene-2,6-diol, hotrienol ([(5E-3,7-dimethylocta-1,5,7-trien-3-yl] acetate, αterpineol (2-(4-Methyl-1-cyclohex-3-enylpropan-2-ol, β-citronellol (3,7-Dimethyloct-6-en-1-ol, nerol ((Z-3,7-dimethyl-2,6-octadien-1-ol, geraniol ((trans-3,7-dimethyl-2,6-oktadien-1-ol and epoxylinalool (2-(5-ethenyl-5-methyloxolan-2-ylpropan-2- ol: epoxylinalool 1 (trans-linalool oxide (furanoid cis-linalool oxide (furanoid and epoxylinalool 2 (trans-linalool oxide (pyranoid cis-linalool oxide (pyranoid. Some basic wine parameters (alcohol, pH, sugars and total acids were estimated as well. The terpene content in wine increased gradually with the period of maceration. The highest and the lowest amounts of terpenes were recorded after 24 hours of maceration and no maceration, respectively. The terpene glycosides content was higher than that of the aglycones. Linalool and 2,6-dimetyl-3,7-octadiene-2,6-diol were the most abundant terpenes.

  18. Volatile components of vine leaves from two Portuguese grape varieties (Vitis vinifera L.), Touriga Nacional and Tinta Roriz, analysed by solid-phase microextraction.

    Science.gov (United States)

    Fernandes, Bruno; Correia, Ana C; Cosme, Fernanda; Nunes, Fernando M; Jordão, António M

    2015-01-01

    The purpose of this work was to study the volatile composition of vine leaves and vine leaf infusion prepared from vine leaves collected at 30 and 60 days after grape harvest of two Vitis vinifera L. species. Eighteen volatile compounds were identified by gas chromatography-mass spectrometry in vine leaves and in vine leaf infusions. It was observed that the volatile compounds present in vine leaves are dependent on the time of harvest, with benzaldehyde being the major volatile present in vine leaves collected at 30 days after harvesting. There are significant differences in the volatile composition of the leaves from the two grape cultivars, especially in the sample collected at 60 days after grape harvest. This is not reflected in the volatile composition of the vine leaf infusion made from this two cultivars, the more important being the harvesting date for the volatile profile of vine leaf infusion than the vine leaves grape cultivar.

  19. Nutritional Potential of Citrus Sinensis and Vitis Vinifera Peels

    OpenAIRE

    Uraku, A. J

    2015-01-01

    The nutritional potential of the peels of Citrus sinensis and Vitis vinifera was assessed by determining proximate and mineral composition. Results indicate carbohydeate content of the peels of Citrus sinensis and Vitis vinifera as 61.07% and 71.77% respectively. Other findings are crude fibre, 13.51% and 4.96%, proten, 3.73% and 11.35%, fats, 10.34% and 1.16%, moisture, 9.78% and 6.52% and ash 1.57% and 4.24%, for the Citrus sinensis and Vitis vinifera respectively. Mineral analysis revealed...

  20. Metabolic and biological profile of autochthonous Vitis vinifera L. ecotypes.

    Science.gov (United States)

    Impei, Stefania; Gismondi, Angelo; Canuti, Lorena; Canini, Antonella

    2015-05-01

    Vitis vinifera L. is a plant species rich in phenolic compounds that are usually associated with the health benefits of wine and grape consumption in the diet. Anthocyanins, catechins, flavonol, phenolic acids and stilbenes are key molecular constituents of the Vitis berries, affecting the quality of grape products. The purpose of this work was to identify the metabolic profiles of 37 genetically certified V. vinifera Latial accessions. In particular, qualitative and quantitative analyses of specific secondary metabolites and total phenolic and tannin contents were performed by LC-MS and spectrophotometric analysis. In addition, since plant molecules are well-known for their free radical scavenging properties, the antioxidant effects of the sample extracts were evaluated through two different antiradical assays: DPPH and FRAP tests. Finally, a preliminary screening of the antiproliferative activity of each specimen on HCT-116 human colorectal cancer cells was conducted. All the results showed a great variety and amount of phenolic compounds in all accessions; moreover, we observed a significant correlation in the extracts between the metabolite concentration and bioactivity. Besides, some samples presented extraordinary biological effects, such as reduction of tumor cell growth not associated with cytotoxicity, supporting their use as possible future adjuvants for cancer therapy. In conclusion, the present research increased the scientific knowledge about Italian autochthonous vine ecotypes in order to valorize them and support their reintroduction in the local economic system.

  1. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication.

    Science.gov (United States)

    Zhou, Yongfeng; Massonnet, Mélanie; Sanjak, Jaleal S; Cantu, Dario; Gaut, Brandon S

    2017-10-31

    We gathered genomic data from grapes (Vitis vinifera ssp. vinifera), a clonally propagated perennial crop, to address three ongoing mysteries about plant domestication. The first is the duration of domestication; archaeological evidence suggests that domestication occurs over millennia, but genetic evidence indicates that it can occur rapidly. We estimated that our wild and cultivated grape samples diverged ∼22,000 years ago and that the cultivated lineage experienced a steady decline in population size (Ne ) thereafter. The long decline may reflect low-intensity management by humans before domestication. The second mystery is the identification of genes that contribute to domestication phenotypes. In cultivated grapes, we identified candidate-selected genes that function in sugar metabolism, flower development, and stress responses. In contrast, candidate-selected genes in the wild sample were limited to abiotic and biotic stress responses. A genomic region of high divergence corresponded to the sex determination region and included a candidate male sterility factor and additional genes with sex-specific expression. The third mystery concerns the cost of domestication. Annual crops accumulate putatively deleterious variants, in part due to strong domestication bottlenecks. The domestication of perennial crops differs from that of annuals in several ways, including the intensity of bottlenecks, and it is not yet clear if they accumulate deleterious variants. We found that grape accessions contained 5.2% more deleterious variants than wild individuals, and these were more often in a heterozygous state. Using forward simulations, we confirm that clonal propagation leads to the accumulation of recessive deleterious mutations but without decreasing fitness. Copyright © 2017 the Author(s). Published by PNAS.

  2. Can Pierce’s disease resistance introgressed into Vitis vinifera be translocated from a resistant rootstock to a susceptible scion?

    Science.gov (United States)

    The goal of this research is to evaluate the potential of a non-transgenic, PD-resistant Vitis vinifera selection used as an experimental rootstock to confer systemic resistance to PD-susceptible V. vinifera scions. Source of PD-susceptible plant material was the wine grape variety ‘Chardonnay’, kno...

  3. Variability in the Content of Trans-Resveratrol, Trans-ε-Viniferin and R2-Viniferin in Grape Cane of Seven Vitis vinifera L. Varieties during a Three-Year Study

    Directory of Open Access Journals (Sweden)

    Jan Tříska

    2017-06-01

    Full Text Available Grape canes are a waste product from viticulture that show potential as an industrially extractable source of stilbenes, which are valuable for medical and other purposes. In this work, grape canes collected in three consecutive years (2014–2016 at six different places in South Moravia, Czech Republic were extracted, and the contents of trans-resveratrol, trans-ε-viniferin, and r2-viniferin were determined by high-performance liquid chromatography. The study included three blue grape varieties of Vitis vinifera L. (Cabernet Moravia, Blaufränkisch, and Piwi variety Laurot and four white grape varieties (Chardonnay, Green Veltliner, Piwi variety Hibernal, and Piwi variety Malverina. From the viewpoint of producing extracts with high stilbenes content, the Hibernal variety is clearly the best. The mean amounts of the stilbenes for this variety at all localities and for all three years were 4.99 g/kg for trans-resveratrol, 3.24 g/kg for trans-ε-viniferin, and 1.73 g/kg for r2-viniferin. The influence of vintage, locality, and variety on the amounts of stilbenes was studied using PCA analysis. In contrast to expectations, there was no strong impact of locality on stilbenes content. The differences were varietal for most varieties, regardless of the area of cultivation. Laurot and Hibernal varieties did differ significantly in that respect, however, as they exhibited clear dependence on location.

  4. Variability in the Content of Trans-Resveratrol, Trans-ε-Viniferin and R2-Viniferin in Grape Cane of Seven Vitis vinifera L. Varieties during a Three-Year Study.

    Science.gov (United States)

    Tříska, Jan; Vrchotová, Naděžda; Balík, Josef; Soural, Ivo; Sotolář, Radek

    2017-06-03

    Grape canes are a waste product from viticulture that show potential as an industrially extractable source of stilbenes, which are valuable for medical and other purposes. In this work, grape canes collected in three consecutive years (2014-2016) at six different places in South Moravia, Czech Republic were extracted, and the contents of trans-resveratrol, trans-ε-viniferin, and r2-viniferin were determined by high-performance liquid chromatography. The study included three blue grape varieties of Vitis vinifera L. (Cabernet Moravia, Blaufränkisch, and Piwi variety Laurot) and four white grape varieties (Chardonnay, Green Veltliner, Piwi variety Hibernal, and Piwi variety Malverina). From the viewpoint of producing extracts with high stilbenes content, the Hibernal variety is clearly the best. The mean amounts of the stilbenes for this variety at all localities and for all three years were 4.99 g/kg for trans-resveratrol, 3.24 g/kg for trans-ε-viniferin, and 1.73 g/kg for r2-viniferin. The influence of vintage, locality, and variety on the amounts of stilbenes was studied using PCA analysis. In contrast to expectations, there was no strong impact of locality on stilbenes content. The differences were varietal for most varieties, regardless of the area of cultivation. Laurot and Hibernal varieties did differ significantly in that respect, however, as they exhibited clear dependence on location.

  5. Contrasting Susceptibilities to Flavescence Dorée in Vitis vinifera, Rootstocks and Wild Vitis Species

    Science.gov (United States)

    Eveillard, Sandrine; Jollard, Camille; Labroussaa, Fabien; Khalil, Dima; Perrin, Mireille; Desqué, Delphine; Salar, Pascal; Razan, Frédérique; Hévin, Cyril; Bordenave, Louis; Foissac, Xavier; Masson, Jean E.; Malembic-Maher, Sylvie

    2016-01-01

    Flavescence dorée (FD) is a quarantine disease of grapevine, involving interactions between the plants, leafhopper vectors, and FD phytoplasma. Characterizing the susceptibility of vine varieties could limit disease propagation. After extensive surveys in vineyards, we showed that Cabernet Sauvignon (CS) is highly susceptible, with a high proportion of symptomatic branches and phytoplasma titers, in contrast to Merlot (M). Localized insect transmissions and grafting showed that phytoplasma circulate in the whole plant in the CS cultivar, but in M they are restricted to the transmission point. Insect-mediated transmission under high confinement mimicking natural conditions confirmed these phenotypes and allowed the classification of 28 Vitis accessions into three distinct categories, according to the percentage of infected plants and their phytoplasma titers. Reduced symptoms, low phytoplasma titers, and low percentages of infected plants were found to be associated in the Vitis vinifera cultivars tested. Interestingly, the low susceptibility of M was observed for one of its parents, i.e., Magdeleine Noire des Charentes. Rootstocks and their Vitis parents, although having high percentages of infected plants and intermediate to high phytoplasma titers, shared a symptomless response. This is troubling, because rootstocks can constitute a silent reservoir of contamination in mother plants or when they grow wild nearby vineyards. Altogether, data suggest distribution of genetic traits within the Vitis genus involved in insect-mediated phytoplasma transmission, multiplication, circulation, and symptom development. PMID:27965681

  6. Antimicrobial activities of grape (Vitis vinifera L.) pomace ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-01

    Jul 1, 2015 ... Full Length Research Paper. Antimicrobial activities of grape (Vitis vinifera L.) .... washed by using PBS (phosphate buffer saline, pH 7.0), and the test bacterial solution was prepared with PBS .... Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J. Agric.

  7. Bioactive stilbenes from Vitis vinifera grapevine shoots extracts.

    Science.gov (United States)

    Chaher, Nassima; Arraki, Kamel; Dillinseger, Elsa; Temsamani, Hamza; Bernillon, Stéphane; Pedrot, Eric; Delaunay, Jean-Claude; Mérillon, Jean-Michel; Monti, Jean-Pierre; Izard, Jean-Claude; Atmani, Djebbar; Richard, Tristan

    2014-03-30

    Viticultural residues from commercial viticultural activities represent a potentially important source of bioactive stilbenes such as resveratrol. The main aim of the present study was therefore to isolate, identify and perform biological assays against amyloid-β peptide aggregation of original stilbenes from Vitis vinifera shoots. A new resveratrol oligomer, (Z)-cis-miyabenol C (3), was isolated from Vitis vinifera grapevine shoots together with two newly reported oligostilbenes from Vitis vinifera shoots, vitisinol C (1) and (E)-cis-miyabenol C (2), and six known compounds: piceatannol, resveratrol, (E)-ε-viniferin (trans-ε-viniferin), ω-viniferin, vitisinol C and (E)-miyabenol C. The structures of these resveratrol derivatives were established on the basis of detailed spectroscopic analysis including nuclear magnetic resonance experiments. All the newly reported compounds were tested for their anti-aggregative activity against amyloid-β fibril formation. Vitisinol C was found to exert a significant activity against amyloid-β aggregation. Vitis vinifera grapevine shoots are potentially interesting as a source of new bioactive stilbenes, such as vitisinol C. © 2013 Society of Chemical Industry.

  8. Vitis vinifera (Muscat Variety) Seed Ethanolic Extract Preserves Activity Levels of Enzymes and Histology of the Liver in Adult Male Rats with Diabetes.

    Science.gov (United States)

    Giribabu, Nelli; Eswar Kumar, Kilari; Swapna Rekha, Somesula; Muniandy, Sekaran; Salleh, Naguib

    2015-01-01

    The effect of V. vinifera seeds on carbohydrate metabolizing enzymes and other enzymes of the liver in diabetes is currently unknown. We therefore investigated changes in the activity levels of these enzymes following V. vinifera seed extract administration to diabetic rats. Methods. V. vinifera seed ethanolic extract (250 and 500 mg/kg/day) or glibenclamide (600 μg/kg/day) was administered to streptozotocin-induced male diabetic rats for 28 consecutive days. At the end of treatment, liver was harvested and activity levels of various liver enzymes were determined. Levels of thiobarbituric acid reactive substances (TBARS) were measured in liver homogenates and liver histopathological changes were observed. Results. V. vinifera seed ethanolic extract was able to prevent the decrease in ICDH, SDH, MDH, and G-6-PDH and the increase in LDH activity levels in liver homogenates. The seed extract also caused serum levels of ALT, AST, ALP, ACP, GGT, and total bilirubin to decrease while causing total proteins to increase. Additionally, the levels of ALT, AST, and TBARS in liver homogenates were decreased. Histopathological changes in the liver were reduced. Conclusion. Near normal activity levels of various enzymes and histology of the liver following V. vinifera seed ethanolic extract administration may be due to decrease in liver oxidative stress in diabetes.

  9. Mitogen-activated protein kinase cascades in Vitis vinifera.

    Science.gov (United States)

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera.

  10. Mitogen-activated protein kinase cascades in Vitis vinifera

    Science.gov (United States)

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  11. Comparing Wild American Grapes with Vitis vinifera

    DEFF Research Database (Denmark)

    Narduzzi, Luca; Stanstrup, Jan; Mattivi, Fulvio

    2015-01-01

    berries, and we confirmed this result via phloroglucinolysis. In the American grapes considered, we did not detect the accumulation of pleasing aroma precursors (terpenoids, glycosides), whereas they are common in vinifera grapes. We also found accumulation of hydrolyzable tannins and their precursors...

  12. Multiple loss-of-function 5-O-glucosyltransferase alleles revealed in Vitis vinifera, but not in other Vitis species.

    Science.gov (United States)

    Yang, Yingzhen; Labate, Joanne A; Liang, Zhenchang; Cousins, Peter; Prins, Bernard; Preece, John E; Aradhya, Mallikarjuna; Zhong, Gan-Yuan

    2014-11-01

    Wild and loss-of-function alleles of the 5 - O - glucosyltransferase gene responsible for synthesis of diglucoside anthocyanins in Vitis were characterized. The information aids marker development for tracking this gene in grape breeding. Anthocyanins in red grapes are present in two glycosylation states: monoglucoside (3-O-glucoside) and diglucoside (3, 5-di-O-glucoside). While monoglucoside anthocyanins are present in all pigmented grapes, diglucoside anthocyanins are rarely found in the cultivated grape species Vitis vinifera. Biochemically 3-O-glucoside anthocyanins can be converted into 3,5-di-O-glucoside anthocyanins by a 5-O-glucosyltransferase. In this study, we surveyed allelic variation of the 5-O-glucosyltransferase gene (5GT) in 70 V. vinifera ssp. vinifera cultivars, 52 V. vinifera ssp. sylvestris accessions, 23 Vitis hybrid grapes, and 22 accessions of seven other Vitis species. Eighteen 5GT alleles with apparent loss-of-function mutations, including seven premature stop codon mutations and six frameshift indel mutations, were discovered in V. vinifera, but not in the other Vitis species. A total of 36 5GT alleles without apparent loss-of-function mutations (W-type) were identified. These W-type alleles were predominantly present in wild Vitis species, although a few of them were also found in some V. vinifera accessions. We further evaluated some of these 5GT alleles in producing diglucoside anthocyanins by analyzing the content of diglucoside anthocyanins in a set of representative V. vinifera cultivars. Through haplotype network analysis we revealed that V. vinifera ssp. vinifera and its wild progenitor V. vinifera ssp. sylvestris shared many loss-of-function 5GT alleles and extensive divergence of the 5GT alleles was evident within V. vinifera. This work advances our understanding of the genetic diversity of 5GT and provides a molecular basis for future marker-assisted selection for improving this important wine quality trait.

  13. VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera)

    Science.gov (United States)

    Naithani, Sushma; Raja, Rajani; Waddell, Elijah N.; Elser, Justin; Gouthu, Satyanarayana; Deluc, Laurent G.; Jaiswal, Pankaj

    2014-01-01

    We have developed VitisCyc, a grapevine-specific metabolic pathway database that allows researchers to (i) search and browse the database for its various components such as metabolic pathways, reactions, compounds, genes and proteins, (ii) compare grapevine metabolic networks with other publicly available plant metabolic networks, and (iii) upload, visualize and analyze high-throughput data such as transcriptomes, proteomes, metabolomes etc. using OMICs-Viewer tool. VitisCyc is based on the genome sequence of the nearly homozygous genotype PN40024 of Vitis vinifera “Pinot Noir” cultivar with 12X v1 annotations and was built on BioCyc platform using Pathway Tools software and MetaCyc reference database. Furthermore, VitisCyc was enriched for plant-specific pathways and grape-specific metabolites, reactions and pathways. Currently VitisCyc harbors 68 super pathways, 362 biosynthesis pathways, 118 catabolic pathways, 5 detoxification pathways, 36 energy related pathways and 6 transport pathways, 10,908 enzymes, 2912 enzymatic reactions, 31 transport reactions and 2024 compounds. VitisCyc, as a community resource, can aid in the discovery of candidate genes and pathways that are regulated during plant growth and development, and in response to biotic and abiotic stress signals generated from a plant's immediate environment. VitisCyc version 3.18 is available online at http://pathways.cgrb.oregonstate.edu. PMID:25538713

  14. VitisCyc: A metabolic pathway knowledgebase for grapevine (Vitis vinifera

    Directory of Open Access Journals (Sweden)

    Sushma eNaithani

    2014-12-01

    Full Text Available We have developed VitisCyc, a grapevine-specific metabolic pathway database that allows researchers to i search and browse the database for its various components such as metabolic pathways, reactions, compounds, genes and proteins, ii compare grapevine metabolic networks with other publicly available plant metabolic networks, and iii upload, visualize and analyze high-throughput data such as transcriptomes, proteomes, metabolomes etc. using OMICs-Viewer tool. VitisCyc is based on the genome sequence of the nearly homozygous genotype PN40024 of Vitis vinifera ‘Pinot Noir’ cultivar with 12X v1 annotations and was built on BioCyc platform using Pathway Tools software and MetaCyc reference database. Furthermore, VitisCyc was enriched for plant-specific pathways and grape-specific metabolites, reactions and pathways. Currently VitisCyc harbors 68 super pathways, 362 biosynthesis pathways, 118 catabolic pathways, 5 detoxification pathways, 36 energy related and 6 transport pathways, 10,908 enzymes, 2912 enzymatic reactions, 31 transport reactions and 2,024 compounds. VitisCyc, as a community resource, can aid in the discovery of candidate genes and pathways that are regulated during plant growth and development, and in response to biotic and abiotic stress signals generated from a plant’s immediate environment. VitisCyc version 3.18 is available online at http://pathways.cgrb.oregonstate.edu.

  15. Effect of atmospheric pollution on Vitis vinifera L. pollen ultrastructure under natural conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stirban, M.; Craciun, C.; Bathory, D.; Cipleu, D.

    1984-06-01

    The ultrastructural modification of pollen grains in Vitis vinifera L. variety and hybrids in areas of SO atmospheric pollution (the main polluting SO2 usually reaches 2.72 mg/m3), nitrogen oxide, and other gases derived from noniron metal processing factories have been studied. Strains 1001 and 1002, resistant varieties, do not undergo ultrastructural modifications. Neuburger and Issabelle, medium resistant ones, have a heterogeneity in ultrastructural organization from normal forms to forms having both wall covers as well as the main organelles changed.

  16. Activity of Vitis vinifera Tendrils Extract Against Phytopathogenic Fungi.

    Science.gov (United States)

    Fraternale, Daniele; Ricci, Donata; Verardo, Giancarlo; Gorassini, Andrea; Stocchia, Vilberto; Sestili, Piero

    2015-06-01

    The in vitro antifungal activity was determined of an ethanolic extract of Vitis vinifera L. tendrils (TVV) against ten plant pathogenic fungi, using the agar dilution method; activity was shown against all tested fungi. Fusarium species were the most sensitive with MIC values ranging from 250 to 300 ppm, while the basidiomycete fungus Rhizoctonia solani was the most resistant, with a MIC value of 500 ppm. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) was used to obtain qualitative information on the main components of TVV. The high amount of polyphenolic compounds contained in TVV is likely to contribute significantly to its antifungal activity.

  17. [Chemical composition of the virgin oil obtained by mechanical pressing form several grape seed varieties (Vitis vinifera L.) with emphasis on minor constituents].

    Science.gov (United States)

    Navas, Petra Beatriz

    2009-06-01

    The chemical composition of the virgin oils obtained by mechanical pressing of grape seed belonging of the varieties Syrah and Tintorera as well as a mixture of seeds of the varieties Syrah, Tempranillo and Merlot was determined. Official analytical methods were employed for the determination of two quality indexes (acidity and peroxide value), fatty acids profile and for the quantification of the most important minor constituents. The acidity and the peroxide values were in agreement with the values reported by the Codex Alimentarius for good quality edible oils. The linoleic acid was the fatty acid most abundant in all samples, representing around the 65%, followed by the monounsaturated oleic acid with concentrations close to 25%. The total phytosterol concentrations were between 5179 and 5480 mg/kg, where the beta-sytosterol represented more than the 66% in all grape seed oils. The cholesterol was detected in the oils from the varieties Syrah and Tintorera in concentrations below the maximum allowed for vegetable edible oils. The ester 1-buthyl-3-methylacetate was the most abundant in the volatile fraction with concentrations of 5.4; 6.8 and 11.0 mg/kg for Syrah, Tintorera and the seeds mixture respectively. Other volatile compounds also present were the Trans-2-hexenal (0.1 to 0.5 mg/kg), E-2-pentenal (3.1 to 4.2 mg/kg), hexanal (1.4 to 1.9 mg/kg) and heptanal (0.1 to 0.3 mg/kg). These compounds may be the responsible for the fruity flavor detected in all virgin oils studied. The alpha and gamma isomers of the tocotrienols accounted for more than the 80% of the tocochromanols present in the oils, while the tocopherols represented only the 10% The deep green color observed in all oil samples was associated to the presence of chlorophylls and other vegetable pigments

  18. Phenolic profiles and antioxidant properties of young wines made from Yan73 (Vitis vinifera L.) and Cabernet Sauvignon (Vitis vinifera L.) grapes treated by 24-epibrassinolide.

    Science.gov (United States)

    Xu, Fan; Luan, Li-Ying; Zhang, Zhen-Wen; Huo, Shan-Shan; Gao, Xiang; Fang, Yu-Lin; Xi, Zhu-Mei

    2014-07-14

    The grape berries of two varieties, Yan73 (Vitis vinifera L.) and Cabernet Sauvignon (CS) (Vitis vinifera L.) were treated with 0.40 mg/L 24-epibrassinolide (EBR), 1.00 mg/L brassinazole (Brz), and deionized water (control), at the veraison period. The EBR treatment significantly increased total phenolic content (TPC), total tannin content (TTC) and total anthocyanin content (TAC) of Yan73 and CS wines, whereas Brz treatment decreased TPC, total flavonoid content (TFC), TAC in the two wines. Moreover, the content of most of the phenolic compounds identified by HPLC-DAD/ESI-MS in EBR-treated wines was significantly higher than that in control. The antioxidant capacities, which determined using DPPH, ABTS and HRSA methods, of the wines were increased by EBR treatment as well. There was a good correlation between the antioxidant capacity and phenolic content. The results demonstrated that EBR could enhance the phenolic compounds and antioxidant capacity of Yan73 and CS wines, but the effects may vary by different cultivars.

  19. Spliceosomal intron size expansion in domesticated grapevine (Vitis vinifera

    Directory of Open Access Journals (Sweden)

    Goertzen Leslie R

    2011-03-01

    Full Text Available Abstract Background Spliceosomal introns are important components of eukaryotic genes as their structure, sizes and contents reflect the architecture of gene and genomes. Intron size, determined by both neutral evolution, repetitive elements activities and potential functional constraints, varies significantly in eukaryotes, suggesting unique dynamics and evolution in different lineages of eukaryotic organisms. However, the evolution of intron size, is rarely studied. To investigate intron size dynamics in flowering plants, in particular domesticated grapevines, a survey of intron size and content in wine grape (Vitis vinifera Pinot Noir genes was conducted by assembling and mapping the transcriptome of V. vinifera genes from ESTs to characterize and analyze spliceosomal introns. Results Uncommonly large size of spliceosomal intron was observed in V. vinifera genome, otherwise inconsistent with overall genome size dynamics when comparing Arabidopsis, Populus and Vitis. In domesticated grapevine, intron size is generally not related to gene function. The composition of enlarged introns in grapevines indicated extensive transposable element (TE activity within intronic regions. TEs comprise about 80% of the expanded intron space and in particular, recent LTR retrotransposon insertions are enriched in these intronic regions, suggesting an intron size expansion in the lineage leading to domesticated grapevine, instead of size contractions in Arabidopsis and Populus. Comparative analysis of selected intronic regions in V. vinifera cultivars and wild grapevine species revealed that accelerated TE activity was associated with grapevine domestication, and in some cases with the development of specific cultivars. Conclusions In this study, we showed intron size expansion driven by TE activities in domesticated grapevines, likely a result of long-term vegetative propagation and intensive human care, which simultaneously promote TE proliferation and

  20. Plantas medicinales españolas. Vitis vinifera L. subsp. vinifera (Vitaceae)

    OpenAIRE

    Santos Bobillo, María Teresa; Alonso Beato, María Teresa; Ladero Santos, Ignacio; Martín Rodríguez, María Asunción

    2005-01-01

    Se realiza un estudio monográfico de Vitis vinifera L. subsp. vinifera, que comprende: la descripción botánica de la especie, el hábitat y el cultivo; la recolección y la conservación de la droga; el estudio y descripción de las características morfológicas y anatómico-microscópicas de los órganos oficinales, que permiten identificar la droga en trociscos. Se incluye la composición química y la acción farmacológica, y se indican las aplicaciones terapéuticas. Finalmente, se citan algunos tipo...

  1. Characterization of Transcriptional Complexity during Berry Development in Vitis vinifera Using RNA-Seq1[W

    National Research Council Canada - National Science Library

    Sara Zenoni; Alberto Ferrarini; Enrico Giacomelli; Luciano Xumerle; Marianna Fasoli; Giovanni Malerba; Diana Bellin; Mario Pezzotti; Massimo Delledonne

    2010-01-01

    ... of transcriptomes can be studied. Here we report on the first use of RNA-Seq to gain insight into the wide range of transcriptional responses that are associated with berry development in Vitis vinifera 'Corvina...

  2. Spatial distribution of plant-parasitic nematodes in semi-arid Vitis vinifera vineyards in Washington

    Science.gov (United States)

    The most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards are Meloidogyne hapla, Mesocriconema xenoplax, Pratylenchus spp., Xiphinema americanum, and Paratylenchus sp.; however, little is known about their distribution in the soil profile. The vertical an...

  3. In Vivo Visualizations of Drought-Induced Embolism Spread in Vitis vinifera

    National Research Council Canada - National Science Library

    Craig Robert Brodersen; Andrew Joseph McElrone; Brendan Choat; Eric Franklin Lee; Kenneth Andrew Shackel; Mark Allen Matthews

    2013-01-01

    .... Using a recently developed nondestructive diagnostic imaging tool, high-resolution x-ray computed tomography, we documented the dynamics of drought-induced embolism in grapevine (Vitis vinifera...

  4. Characterization of Transcriptional Complexity during Berry Development in Vitis vinifera Using RNA-Seq

    National Research Council Canada - National Science Library

    Sara Zenoni; Alberto Ferrarini; Enrico Giacomelli; Luciano Xumerle; Marianna Fasoli; Giovanni Malerba; Diana Bellin; Mario Pezzotti; Massimo Delledonne

    2010-01-01

    ... of transcriptomes can be studied. Here we report on the first use of RNA-Seq to gain insight into the wide range of transcriptional responses that are associated with berry development in Vitis vinifera 'Corvina...

  5. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera

    National Research Council Canada - National Science Library

    Licausi, Francesco; Giorgi, Federico M; Zenoni, Sara; Osti, Fabio; Pezzotti, Mario; Perata, Pierdomenico

    2010-01-01

    The AP2/ERF protein family contains transcription factors that play a crucial role in plant growth and development and in response to biotic and abiotic stress conditions in plants. Grapevine (Vitis vinifera...

  6. Characterisation of the Vitis vinifera PR10 multigene family

    Science.gov (United States)

    2010-01-01

    Background Genes belonging to the pathogenesis related 10 (PR10) group have been studied in several plant species, where they form multigene families. Until now, such an analysis has not been performed in Vitis vinifera, although three different PR10 genes were found to be expressed under pathogen attack or abiotic stress, and during somatic embryogenesis induction. We used the complete genome sequence for characterising the whole V. vinifera PR10 gene family. The expression of candidate genes was studied in various non-treated tissues and following somatic embryogenesis induction by the auxin 2,4-D. Results In addition to the three V. vinifera PR10 genes already described, namely VvPR10.1, VvPR10.2 and VvPR10.3, fourteen different PR10 related sequences were identified. Showing high similarity, they form a single cluster on the chromosome 5 comprising three pseudogenes. The expression of nine different genes was detected in various tissues. Although differentially expressed in non-treated plant organs, several genes were up-regulated in tissues treated with 2,4-D, as expected for PR genes. Conclusions PR10 genes form a multigene family in V. vinifera, as found in birch, apple or peach. Seventeen closely related PR10 sequences are arranged in a tandem array on the chromosome 5, probably reflecting small-scale duplications during evolution. Various expression patterns were found for nine studied genes, highlighting functional diversification. A phylogenetic comparison of deduced proteins with PR10 proteins of other plants showed a characteristic low intraspecific variability. Particularly, a group of seven close tandem duplicates including VvPR10.1, VvPR10.2 and VvPR10.3 showed a very high similarity, suggesting concerted evolution or/and recent duplications. PMID:20727162

  7. Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress.

    Directory of Open Access Journals (Sweden)

    Haiping Xin

    Full Text Available Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT and cold treatment (CT cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024 annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts than Muscat of Hamburg (2307 transcripts when exposed to cold stress. Common DEGs (408 transcripts suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique

  8. Genome Wide Transcriptional Profile Analysis of Vitis amurensis and Vitis vinifera in Response to Cold Stress

    Science.gov (United States)

    Xin, Haiping; Zhu, Wei; Wang, Lina; Xiang, Yue; Fang, Linchuan; Li, Jitao; Sun, Xiaoming; Wang, Nian; Londo, Jason P.; Li, Shaohua

    2013-01-01

    Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate

  9. Enzymes of Krebs-Henseleit Cycle in Vitis vinifera L

    Science.gov (United States)

    Roubelakis, Kalliopi A.; Kliewer, W. Mark

    1978-01-01

    Arginosuccinate (ASA) synthetase and lyase activities were detected in extracts from Vitis vinifera L. cv. Chenin blanc mature leaves and seedlings. Optimum reaction conditions for ASA synthetase were 10 millimolar l-citrulline, 7.5 millimolar l-aspartate, 3 to 4 millimolar ATP, 12 millimolar Mg2+ (pH 7.5 to 8.0), enzyme extract up to equivalent of about 200 milligrams of fresh tissue, and incubation temperature of 38 to 40 C. Optimum reaction conditions for ASA lyase were 4 millimolar ASA-K salt (pH 7.3 to 7.8), amount of extract up to equivalent of about 180 milligrams of fresh tissue, and incubation temperature of 38 to 40 C. PMID:16660513

  10. VvWRKY13 enhances ABA biosynthesis in Vitis vinifera

    Directory of Open Access Journals (Sweden)

    JIe Hao

    2017-06-01

    Full Text Available Abscisic acid (ABA plays critical roles in plant growth and development as well as in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel transcription factor, from Vitis vinifera (grapevine, and here we present evidence that VvWRKY13 may regulate ABA biosynthesis in plants. When VvWRKY13 was ectopically expressed in Arabidopsis, the transgenic lines showed delayed seed germination, smaller stomatal aperture size, and several other phenotypic changes, indicating elevated ABA levels in these plants. Sequence analysis of several genes that are involved in grapevine ABA synthetic pathway identified WRKY-specific binding elements (W-box or W-like box in the promoter regions. Indeed, transient overexpression of VvWRKY13 in grapevine leaves significantly increased the transcript levels of ABA synthetic pathway genes. Taken together, we conclude that VvWRKY13 may promote ABA production by activating genes in the ABA synthetic pathway.

  11. Profiling of anthocyanins for the taxonomic assessment of ancient purebred V. vinifera red grape varieties.

    Science.gov (United States)

    Picariello, Gianluca; Ferranti, Pasquale; Garro, Giuseppina; Manganiello, Giorgio; Chianese, Lina; Coppola, Raffaele; Addeo, Francesco

    2014-03-01

    For the purpose of a varietal assessment, the berry skin anthocyanin profiles of 11 ancient native red grape varieties, sampled within the Irpinian area (Southern Italy), were compared to those of three reference Vitis vinifera cultivars and of a Kober 5BB rootstook hybrid (Vitisberlandieri×Vitisriparia). The 3,5-O-diglucoside anthocyanins and their acylated derivatives were monitored as signature compounds of non-V. vinifera grapes, using both reversed phase-high performance liquid chromatography (RP-HPLC) and matrix assisted laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry (MS). One variety (i.e. Tenta) was demonstrated to be an interspecific hybrid cross. Three additional varieties, namely Lacrima Nera, Aglianicone and a yet-unnamed variety, were classified as "late generation hybrids" (or non-V. vinifera×V. vinifera hybrids) because of a very diluted hybrid character, that was revealed only by MS methods. Five cultivars, i.e. Aglianico Lasco, Cannella, Coda di Volpe Rossa, Mentuonico, Olivella Nera, were catalogued as purebred V. vinifera. Due to the peculiar anthocyanin profile one variety (Tuccanese) remained unassigned. The methodology is of general applicability to support the process of varietal discrimination on a molecular basis with the objective of classifying autochthonous old grapevine varieties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Lesão renal aguda por glicerol: efeito antioxidante da Vitis vinifera L Acute kidney injury by glycerol: antioxidant effect of Vitis vinifera L

    Directory of Open Access Journals (Sweden)

    Elisabete Cristina de Oliveira Martim

    2007-09-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: A lesão renal aguda (LRA é a complicação mais grave da rabdomiólise. Nessa síndrome, a liberação do pigmento heme desencadeia uma lesão que se caracteriza por vasoconstrição glomerular e toxicidade celular direta com provável componente oxidante. A renoproteção com antioxidantes tem demonstrado efeito satisfatório. As proantocianidinas são antioxidantes naturais encontradas no extrato da semente da uva. O objetivo deste estudo foi avaliar o efeito antioxidante da Vitis vinifera sobre a função renal de ratos submetidos à lesão induzida por rabdomiólise. MÉTODO: Foram utilizados ratos Wistar, machos e adultos pesando entre 250 e 300 g. A LRA foi induzida pela administração de glicerol 50% por via muscular. Os animais foram distribuídos em 4 grupos: grupo Salina (6 mL/kg de NaCl a 0,9%, por via intraperitoneal (dose única, Glicerol (6 mL/kg por via muscular metade da dose em cada região femoral, em dose única, grupo Vitis vinifera (3 mg/kg/dia, por via oral durante cinco dias e grupo Glicerol + Vitis vinifera que recebeu Vitis vinifera por cinco dias antes do glicerol. RESULTADOS: Foram avaliados a função renal (FR e o perfil oxidativo (peróxidos urinários FOX-2 e MDA-TBARS. O grupo glicerol de animais tratado com Vitis vinifera apresentou melhora da FR e redução dos níveis de peroxidação lipídica. CONCLUSÕES: Os resultados deste estudo confirmaram a ação antioxidante da Vitis vinifera na LRA induzida por glicerol.BACKGROUND AND OBJECTIVES: The Acute Kidney Injury (AKI is the most serious complication of rhabdomyolysis. In this syndrome, the delivery of heme pigment induces an injury that distinguishes itself by glomerular vasoconstriction and direct cellular toxicity with oxidative component. The renoprotection with antioxidants has demonstrated satisfactory effect. The proanthocyanidins are natural antioxidants found in the grape seed extract. The aim of this study was to

  13. Differences in the Phenolic Composition and Antioxidant Properties between Vitis coignetiae and Vitis vinifera Seeds Extracts

    Directory of Open Access Journals (Sweden)

    Ryszard Amarowicz

    2013-03-01

    Full Text Available Phenolic compounds were extracted from European and Japanese grapevine species (Vitis vinifera and V. coignetiae seeds using 80% methanol or 80% acetone. The total content of phenolic compounds was determined utilizing Folin-Ciocalteu’s phenol reagent, while the content of tannins was assayed by the vanillin and BSA precipitation methods. Additionally, the DPPH free radical and ABTS cation radical scavenging activities and the reduction power of the extracts were measured. The HPLC method was applied to determine the phenolic compounds, such as phenolic acids and catechins. The seeds contained large amounts of tannins and gallic acid and observable quantities of catechins, p-coumaric, ferulic and caffeic acids. The dominant form of phenolic acids in the extracts was the ester-bound form. The content of total phenolics was higher in the European grape V. vinifera seeds, which also contained more tannins, catechins and phenolic acids, except for caffeic acid. Extracts from V. vinifera seeds showed better radical scavenger properties and stronger reducing power. The total contents of phenolic compounds and tannins in acetone extracts were higher than in methanolic extracts. Acetone extracts also exhibited stronger antiradical properties as well as stronger reducing power.

  14. Protein-precipitable tannin in wines from Vitis vinifera and interspecific hybrid grapes (Vitis ssp.): differences in concentration, extractability, and cell wall binding.

    Science.gov (United States)

    Springer, Lindsay F; Sacks, Gavin L

    2014-07-30

    Although they possess significant viticultural advantages, interspecific hybrid grapes (Vitis spp.) are reported to produce wine with lower tannin concentrations than European wine varieties (Vitis vinifera). However, extensive quantitative data on this phenomenon as well as mechanistic explanations for these differences are lacking. A survey of primarily commercial wines from the Finger Lakes American Viticultural Area (New York) using a protein precipitation method determined that hybrid-based wines had >4-fold lower tannin concentrations than vinifera wines. To elucidate factors responsible for differences in wine tannin, 24 wines were produced from both red hybrid and vinifera cultivars under identical conditions. Lower wine tannin in French-American hybrid- than vinifera-based wines could be partially explained by lower grape tannin. However, experiments in which cell wall material was incubated with tannin indicated that cell wall binding may be of equal or greater importance in explaining lower wine tannin concentrations in hybrid-based wines. Subsequent characterization of cell wall material revealed that protein in flesh cell walls and, to a lesser extent, pectin in skin cell walls were correlated with cell wall binding.

  15. Comparing Wild American Grapes with Vitis vinifera: A Metabolomics Study of Grape Composition.

    Science.gov (United States)

    Narduzzi, Luca; Stanstrup, Jan; Mattivi, Fulvio

    2015-08-05

    We analyzed via untargeted UHPLC-ESI-Q-TOF-MS the metabolome of the berry tissues (skin, pulp, seeds) of some American Vitis species (Vitis cinerea, Vitis californica, Vitis arizonica), together with four interspecific hybrids, and seven Vitis vinifera cultivars, aiming to find differences in the metabolomes of the American Vitis sp. versus Vitis vinifera. Apart from the known differences, that is, more complex content of anthocyanins and stilbenoids in the American grapes, we observed higher procyanidin accumulation (tens to hundreds of times) in the vinifera skin and seeds in comparison to American berries, and we confirmed this result via phloroglucinolysis. In the American grapes considered, we did not detect the accumulation of pleasing aroma precursors (terpenoids, glycosides), whereas they are common in vinifera grapes. We also found accumulation of hydrolyzable tannins and their precursors in the skin of the wild American grapes, which has never been reported earlier in any of the species under investigation. Such information is needed to improve the design of new breeding programs, lowering the risk of retaining undesirable characteristics in the chemical phenotype of the offspring.

  16. Secreted proteins produced by fungi associated with Botryosphaeria dieback trigger distinct defense responses in Vitis vinifera and Vitis rupestris cells.

    Science.gov (United States)

    Stempien, E; Goddard, M-L; Leva, Y; Bénard-Gellon, M; Laloue, H; Farine, S; Kieffer-Mazet, F; Tarnus, C; Bertsch, C; Chong, J

    2017-10-17

    Grapevine trunk diseases (Eutypa dieback, esca and Botryosphaeria dieback) are caused by a complex of xylem-inhabiting fungi, which severely reduce yields in vineyards. Botryosphaeria dieback is associated with Botryosphaeriaceae. In order to develop effective strategies against Botryosphaeria dieback, we investigated the molecular basis of grapevine interactions with a virulent species, Neofusicoccum parvum, and a weak pathogen, Diplodia seriata. We investigated defenses induced by purified secreted fungal proteins within suspension cells of Vitis (Vitis rupestris and Vitis vinifera cv. Gewurztraminer) with putative different susceptibility to Botryosphaeria dieback. Our results show that Vitis cells are able to detect secreted proteins produced by Botryosphaeriaceae, resulting in a rapid alkalinization of the extracellular medium and the production of reactive oxygen species. Concerning early defense responses, N. parvum proteins induced a more intense response compared to D. seriata. Early and late defense responses, i.e., extracellular medium alkalinization, cell death, and expression of PR defense genes were stronger in V. rupestris compared to V. vinifera, except for stilbene production. Secreted Botryosphaeriaceae proteins triggered a high accumulation of δ-viniferin in V. vinifera suspension cells. Artificial inoculation assays on detached canes with N. parvum and D. seriata showed that the development of necrosis is reduced in V. rupestris compared to V. vinifera cv. Gewurztraminer. This may be related to a more efficient induction of defense responses in V. rupestris, although not sufficient to completely inhibit fungal colonization. Overall, our work shows a specific signature of defense responses depending on the grapevine genotype and the fungal species.

  17. Structure and functional annotation of hypothetical proteins having putative Rubisco activase function from Vitis vinifera.

    Science.gov (United States)

    Kumar, Suresh

    2015-01-01

    Rubisco is a very large, complex and one of the most abundant proteins in the world and comprises up to 50% of all soluble protein in plants. The activity of Rubisco, the enzyme that catalyzes CO2 assimilation in photosynthesis, is regulated by Rubisco activase (Rca). In the present study, we searched for hypothetical protein of Vitis vinifera which has putative Rubisco activase function. The Arabidopsis and tobacco Rubisco activase protein sequences were used as seed sequences to search against Vitis vinifera in UniprotKB database. The selected hypothetical proteins of Vitis vinifera were subjected to sequence, structural and functional annotation. Subcellular localization predictions suggested it to be cytoplasmic protein. Homology modelling was used to define the three-dimensional (3D) structure of selected hypothetical proteins of Vitis vinifera. Template search revealed that all the hypothetical proteins share more than 80% sequence identity with structure of green-type Rubisco activase from tobacco, indicating proteins are evolutionary conserved. The homology modelling was generated using SWISS-MODEL. Several quality assessment and validation parameters computed indicated that homology models are reliable. Further, functional annotation through PFAM, CATH, SUPERFAMILY, CDART suggested that selected hypothetical proteins of Vitis vinifera contain ATPase family associated with various cellular activities (AAA) and belong to the AAA+ super family of ring-shaped P-loop containing nucleoside triphosphate hydrolases. This study will lead to research in the optimization of the functionality of Rubisco which has large implication in the improvement of plant productivity and resource use efficiency.

  18. Evaluation of Anticancer Activity of Fruit and Leave Extracts from Virus Infected and Healthy Cultivars of Vitis vinifera.

    Science.gov (United States)

    Esfahanian, Zahra; Behbahani, Mandana; Shanehsaz, Mehrnaz; Hessami, Mohammad Javad; Nejatian, Mohammad Ali

    2013-01-01

    Grape virus diseases are a serious problem in Iran. Leaves and fruits of grape have been used for different purposes like cooking in Iran. The present investigation was carried out to study on the cytotoxic-activities of extracts of fruits and leaves of Vitis vinifera from both virus-free and virus-infected grape cultivars against breast cancer cell line (MDAMB- 231) and human embryonic kidney normal cell line (HEK 293). IN THIS EXPERIMENTAL STUDY, THE CONSIDERED GRAPE CULTIVARS WERE AS FOLLOWS: Rish Baba Sefid, Shahani Ghasre Shirin, Rotabi Zarghan, Asgari Najaf Abad, Fars, Kaj Angor Bojnord, Sarkesh Shiraz and Siahe Zarqan. A real-time multiplex polymerase chain reaction (real-time Multiplex PCR) assay was applied to detect virus infected cultivars. The cytotoxic effect of the methanol extracts of different Vitis vinifera varieties on cultured cells was monitored using (3- (4, 5-Dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide (MTT) assay at different concentrations (62.5, 125, 250, 500, 750, 1000 μg mL(-1)). Among these cultivars, Grapevine fanleaf virus (GFLV) along with related symptoms was detected in Siahe Zarqan and Fars. Methanolic extracts of leaves and fruits of Vitis vinifera from both virus free and virus infected cultivars showed a range of limited to moderate cytotoxic activity. However, methanol extract of leaves belonged to virus infected cultivars was found to have strong cytotoxic effect against MDA-MB-231 at different concentrations. Grapevine fanleaf virus (GFLV) can potentially increase the cytotoxicity of grape cultivars.

  19. Dissecting the transcriptional response to elicitors in Vitis vinifera cells.

    Directory of Open Access Journals (Sweden)

    Lorena Almagro

    Full Text Available The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production.

  20. Influence of shoot topping on yield and quality of Vitis vinifera L.

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Key words: Vitis vinifera L., shoot topping, yield, quality, canopy management, shoot topping, fruit set, yield components, fruit composition. ... vineyard productivity, including fruit composition and disease incidence has ..... topping and ethephon effects on White Riesling grapes and grapevines. Am. J. Enol.

  1. In vivo analgesic activities and safety assessment of Vitis vinifera L ...

    African Journals Online (AJOL)

    Purpose: To investigate the analgesic properties of hydro-alcohol fruit extracts of Vitis vinifera (grape) and Punica granatum (pomegranate) in albino male mice. Methods: The analgesic activity of the fruit extracts was examined in vivo using thermal stimulus assays (tail immersion and hot plate) and chemically-induced ...

  2. Hybridization of cultivated Vitis vinifera with wild V. californica and V. girdiana in California

    Science.gov (United States)

    The native wild grape species of northern California, Vitis californica Benth. (California wild grape), and V. girdiana Munson (desert wild grape) in southern California are under increasing pressure from loss of habitat and from interbreeding with the domesticated grapevine, V. vinifera L. For its...

  3. Mycotoxin potential in high-risk American Vitis vinifera vineyards and wines

    Science.gov (United States)

    Mycotoxins pose a serious worldwide threat to the safety of numerous food commodities. Red wine made from Vitis vinifera grapes is particularly prone to contamination from ochratoxin A, produced by black-spored Aspergillus spp. worldwide, and it was recently discovered that these species can also p...

  4. 76 FR 66625 - Approval of Grape Variety Names for American Wines

    Science.gov (United States)

    2011-10-27

    ... given names which will lead the public into believing they are Vitis vinifera varieties. This commenter does, however, express approval of the listing of Vitis vinifera variety names such as Auxerrois or Gr..., are popular in areas of the country where the climate makes the cultivation of Vitis vinifera...

  5. Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening

    National Research Council Canada - National Science Library

    Pastore, Chiara; Zenoni, Sara; Tornielli, Giovanni Battista; Allegro, Gianluca; Dal Santo, Silvia; Valentini, Gabriele; Intrieri, Cesare; Pezzotti, Mario; Filippetti, Ilaria

    2011-01-01

    .... We profiled the transcriptome of Vitis vinifera cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction...

  6. 3Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening

    National Research Council Canada - National Science Library

    Pastore, Chiara; Zenoni, Sara; Tornielli, Giovanni Battista; Allegro, Gianluca; Dal Santo, Silvia; Valentini, Gabriele; Intrieri, Cesare; Pezzotti, Mario; Filippetti, Ilaria

    2011-01-01

    .... We profiled the transcriptome of Vitis vinifera cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction...

  7. Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile.

    Science.gov (United States)

    Lutz, Mariane; Jorquera, Katterin; Cancino, Beatriz; Ruby, Rene; Henriquez, Carolina

    2011-09-01

    Grapes (Vitis vinifera L.) possess health-promoting effects attributed to their supply of a wide variety of bioactive phenolics. Juice and skin fractions of 4 varieties of table grapes: Red Globe, Crimson Seedless, Autumn Royal, and Ribier were prepared to determine and compare their total phenolics content, antioxidant capacity (DPPH, FRAP, and ORAC), anthocyanins, and specific phenolics (caffeic acid, gallic acid, resveratrol, and catechin) content, since a series of positive health benefits are expected from the intake of any of these fractions. Higher amounts of total phenolics and antioxidant capacity were observed in the skin fractions (P phenolics content and antioxidant capacity (P phenolic compound observed was catechin (P phenolics were observed in grape juice and skin fractions. Autumn Royal juice provides a very high amount of phenolics, anthocyanins, and exhibits the highest antioxidant capacity, offering the best health promoting properties compared with the other grape varieties studied. Grapes possess health-promoting effects attributed to their supply of a wide variety of bioactive phenolics. Grape juice made with blue grapes (Autumn Royal, Ribier) exhibit higher phenolics content and antioxidant capacity than juice elaborated with red grapes (Red Globe, Crimson Seedless). The skin is a good source of phenolics and has a high antioxidant capacity. Specific health-promoting phenolics are more abundant in blue grapes, mainly in their skin fraction, which should not be discarded. © 2011 Institute of Food Technologists®

  8. Adaptogenic and nootropic activities of aqueous extract of Vitis vinifera (grape seed): an experimental study in rat model

    Science.gov (United States)

    Sreemantula, Satyanarayana; Nammi, Srinivas; Kolanukonda, Rajabhanu; Koppula, Sushruta; Boini, Krishna M

    2005-01-01

    Background The aerial parts of Vitis vinifera (common grape or European grape) have been widely used in Ayurveda to treat a variety of common and stress related disorders. In the present investigation, the seed extract of V. vinifera was evaluated for antistress activity in normal and stress induced rats. Furthermore, the extract was studied for nootropic activity in rats and in-vitro antioxidant potential to correlate its antistress activity. Methods For the evaluation of antistress activity, groups of rats (n = 6) were subjected to forced swim stress one hour after daily treatment of V. vinifera extract. Urinary vanillylmandelic acid (VMA) and ascorbic acid were selected as non-invasive biomarkers to assess the antistress activity. The 24 h urinary excretion of vanillylmandelic acid (VMA) and ascorbic acid were determined by spectrophotometric methods in all groups under normal and stressed conditions. The nootropic activity of the extract as determined from acquisition, retention and retrieval in rats was studied by conditioned avoidance response using Cook's pole climbing apparatus. The in vitro antioxidant activity was determined based on the ability of V. vinifera to scavenge hydroxyl radicals. Results Daily administration of V. vinifera at doses of 100, 200 and 300 mg/kg body weight one hour prior to induction of stress inhibited the stress induced urinary biochemical changes in a dose dependent manner. However, no change in the urinary excretion of VMA and ascorbic acid was observed in normal animals at all the doses studied. The cognition, as determined by the acquisition, retention and recovery in rats was observed to be dose dependent. The extract also produced significant inhibition of hydroxyl radicals in comparison to ascorbic acid in a dose dependent manner. Conclusion The present study provides scientific support for the antistress (adaptogenic), antioxidant and nootropic activities of V. vinifera seed extract and substantiate the traditional claims

  9. Adaptogenic and nootropic activities of aqueous extract of Vitis vinifera (grape seed: an experimental study in rat model

    Directory of Open Access Journals (Sweden)

    Koppula Sushruta

    2005-01-01

    Full Text Available Abstract Background The aerial parts of Vitis vinifera (common grape or European grape have been widely used in Ayurveda to treat a variety of common and stress related disorders. In the present investigation, the seed extract of V. vinifera was evaluated for antistress activity in normal and stress induced rats. Furthermore, the extract was studied for nootropic activity in rats and in-vitro antioxidant potential to correlate its antistress activity. Methods For the evaluation of antistress activity, groups of rats (n = 6 were subjected to forced swim stress one hour after daily treatment of V. vinifera extract. Urinary vanillylmandelic acid (VMA and ascorbic acid were selected as non-invasive biomarkers to assess the antistress activity. The 24 h urinary excretion of vanillylmandelic acid (VMA and ascorbic acid were determined by spectrophotometric methods in all groups under normal and stressed conditions. The nootropic activity of the extract as determined from acquisition, retention and retrieval in rats was studied by conditioned avoidance response using Cook's pole climbing apparatus. The in vitro antioxidant activity was determined based on the ability of V. vinifera to scavenge hydroxyl radicals. Results Daily administration of V. vinifera at doses of 100, 200 and 300 mg/kg body weight one hour prior to induction of stress inhibited the stress induced urinary biochemical changes in a dose dependent manner. However, no change in the urinary excretion of VMA and ascorbic acid was observed in normal animals at all the doses studied. The cognition, as determined by the acquisition, retention and recovery in rats was observed to be dose dependent. The extract also produced significant inhibition of hydroxyl radicals in comparison to ascorbic acid in a dose dependent manner. Conclusion The present study provides scientific support for the antistress (adaptogenic, antioxidant and nootropic activities of V. vinifera seed extract and

  10. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update.

    Science.gov (United States)

    Nassiri-Asl, Marjan; Hosseinzadeh, Hossein

    2016-09-01

    Vitis vinifera fruit (grape) contains various phenolic compounds, flavonoids and stilbenes. In recent years, active constituents found in the fruits, seeds, stems, skin and pomaces of grapes have been identified and some have been studied. In this review, we summarize the active constituents of different parts of V. vinifera and their pharmacological effects including skin protection, antioxidant, antibacterial, anticancer, antiinflammatory and antidiabetic activities, as well as hepatoprotective, cardioprotective and neuroprotective effects in experimental studies published after our 2009 review. Clinical and toxicity studies have also been examined. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems.

    Science.gov (United States)

    Bunea, Claudiu-Ioan; Pop, Nastasia; Babeş, Anca Cristina; Matea, Cristian; Dulf, Francisc V; Bunea, Andrea

    2012-07-04

    Organic agriculture involve plants which are cultivated without using synthetic pesticides, herbicides or fertilizers and promotes biodiversity, biological cycles and improve the product quality. The carotenoids, total polyphenols and the antioxidant activity from skins of some wine and table grapes cultivated in organic and conventional agriculture were studied. The main carotenoids identified using high performance liquid chromatography were lutein and ß-carotene. Muscat Ottonel variety has the highest ß-carotene concentration 504.9 μg/kg for organic and 593.2 μg/kg for conventional grapes. For the organic farming, the total polyphenols content were in the range of 163.23 - 1341.37 mg GAE/kg fresh weight (FW) and 148.47 - 1231.38 mg GAE/kg FW for the conventional grapes. The highest ORAC values were obtained for blue-black variety Napoca in both farming system (43.5 ± 0.95 μmol TE/g organic; 40.4 ± 0.5 μmol TE/g conventional) and lowest for Aromat de Iaşi (16.8 ± 0.6 μmol TE/g organic; 14.7 ± 1.6 μmol TE/g conventional). Napoca variety showed also the highest antioxidant activity measured by DPPH method in both cultivated system. Nine grape varieties cultivated in organic and conventional systems were compared regarding the carotenoids, total polyphenols and antioxidant activity. The white grape varieties have a higher carotenoids content compared with the blue-black cultivars while the blue-black varieties contain higher TPC and exhibit higher antioxidant activity (except for Muscat Hamburg-ORAC). Vitis vinifera grape skins originating from wine or table grape varieties can be used as a potential source of natural antioxidants.

  12. DISTANT HYBRIDS IN F4 (VITIS VINIFERA L. X MUSCADINIA ROTUNDIFOLIA MICHX. AND OF CULTIVARS OF VITIS VINIFERA L. AND OF CONCERNING THE CONTENT OF SOME BIOCHEMICAL COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Eugeniu ALEXANDROV

    2015-04-01

    Full Text Available The process of obtaining distant hybrids, as well as any crossing of cultivars of Vitis vinifera L. with representatives of species possessing the necessary qualities (resistance to diseases and pests, low temperature, etc. may change the spectrum of chemical and biochemical compounds responsible for flavour, colour and taste of grapes, obtained juice and wine. Botanical description of distant hybrids was performed during all phases of the vegetative stages; the organs of the plants were studied from spring, at bud unfolding, until early autumn, at the fall of the leaves. For the determination of diglucoside-3,5-malvidin, the fluorimetric method, for determining the methyl anthranilate, the gas chromatographic method was applied. Based on the analyzes of biochemical constituents of grapes of the distant hybrids: DRX-M4-578; -502; -571; -660; -609; -580; etc., compared to the traditional cultivars „Feteasca albă” and „Rară neagră”, it has been found that these varieties are similar. So, the distant hybrids of grapevine haven’t inherited unwanted characters for vines, some of them are strictly limited (diglucoside-3,5-malvidol. These hybrids don’t have the specific characteristics of direct production hybrids, characterised by the foxat taste of the grape berries, caused by the presence of the methyl anthranilate. The distant hybrids studied according to the classical uvologic and technological principles can be classified as follows: 5 distant hybrids are attributed to the table vine species and 2 distant hybrids have mixed properties. According to the physical and biochemical indices of the grapes of the studied distant hybrids, their characteristics are similar to European vine species.

  13. Stilbenes from Vitis vinifera L. Waste: A Sustainable Tool for Controlling Plasmopara Viticola.

    Science.gov (United States)

    Gabaston, Julien; Cantos-Villar, Emma; Biais, Benoît; Waffo-Teguo, Pierre; Renouf, Elodie; Corio-Costet, Marie-France; Richard, Tristan; Mérillon, Jean-Michel

    2017-04-05

    Stilbene-enriched extracts from Vitis vinifera waste (cane, wood, and root) were characterized by UHPLC-MS. Eleven stilbenes were identified and quantified as follows: ampelopsin A, (E)-piceatannol, pallidol, (E)-resveratrol, hopeaphenol, isohopeaphenol, (E)-ε-viniferin, (E)-miyabenol C, (E)-ω-viniferin, r2-viniferin, and r-viniferin. The fungicide concentration inhibiting 50% of growth of Plasmopara viticola sporulation (IC50) was determined for the extracts and also for the main compounds isolated. r-Viniferin followed by hopeaphenol and r2-viniferin showed low IC50 and thus high efficacy against Plasmopara viticola. Regarding stilbene extracts, wood extract followed by root extract showed the highest antifungal activities. These data suggest that stilbene complex mixtures from Vitis vinifera waste could be used as a cheap source of bioactive stilbenes for the development of natural fungicides.

  14. Flower abscission and fruit set on table grapes (Vitis vinifera L.): unraveling physiological and molecular mechanisms

    OpenAIRE

    Domingos, Sara Nobre Gonçalves

    2016-01-01

    Doutoramento em Engenharia Agronómica - Instituto Superior de Agronomia - UL Despite the importance of grapevine (Vitis vinifera L.) as one of the most cultivated species, the molecular events occurring during the critical period of fruit set, are far from elucidated. Aiming at providing a new insight on flower-to-fruit transition and flower abscission regulation, transcriptomic (RNA-Seq) and metabolomic analyzes were performed in the inflorescences and vine physiological alterations were ...

  15. Copper impacts in grapevine (Vitis vinifera L.): molecular, biochemical and biotechnological approaches

    OpenAIRE

    Martins, Viviana Maria Varajão

    2014-01-01

    Tese de doutoramento em Programa Doutoral em Biologia de Plantas Since the development of Bordeaux mixture in the late 1800’s, copper-based fungicides have been widely used against grapevine (Vitis vinifera L.) diseases, mainly in organic but also in conventional viticulture. Although they initially seemed to improve plant growth in unproductive lands, their intensive use has raised concerns regarding toxicity to plants and soil contamination, and research has emerged to characterize coppe...

  16. Molekulare Charakterisierung von Glykosyltransferasen in Vitis vinifera

    OpenAIRE

    Frotscher, Johanna

    2014-01-01

    Terpenoide spielen eine wichtige Rolle für das Aroma von Weinbeeren (Vitis vinifera). Glykosyltransferasen katalysieren die Übertragung von Zuckerresten auf Terpenoide, was diese geruchlos werden lässt. Um die verantwortlichen Enzyme zu identifizieren wurde deren Genfamilie in silico untersucht, 15 Kandidatengene ausgewählt, deren Transkription analysiert und die Ergebnisse mit Terpenoidprofilen verglichen. Dadurch konnten fünf Gene ausgewählt werden, deren offener Leserahmen sequenziert wurd...

  17. Effect of Partial Grapevine Defoliation (Vitis vinifera on Wine Quality / Efecto de la Defoliación Parcial en Uva (Vitis vinifera sobre la Calidad del Vino

    Directory of Open Access Journals (Sweden)

    Peña Olmos Jaime Ernesto

    2013-08-01

    Full Text Available The wine quality was determined for partially-defoliatedgrapevines grown in Villa de Leyva, Colombia at an elevation of2,143 masl. The experimental design was totally randomized,with two treatments (50% defoliation and 0% defoliation andthree repetitions per treatment. The planting material consistedof five-year-old vines of Vitis vinifera cv. Chardonnay, trainedto trellises, with a spacing of 2.1 m x 1 m. Every fifteen days,the plants in the defoliation treatment underwent the removalof half of the newly-emerged leaves. Before undertaking themicro-vinification process, the total soluble solids (TSS weremeasured in the grape must, and after a fermentation of 100days, wine quality parameters were measured, namely: residual sugars (TSS of the wine, pH, total titratable acid (TTA, and potential alcohol content of the wine. In the plants undergoing partial defoliation, the total soluble solids in the grape must increased, as well as the wine pH and potential alcohol content. At the same time, total titratable acid decreased in the wine of partially-defoliated plants. These results demonstrate that the wine quality was greatly improved by the reduction of leaf area in Chardonnay variety grape plants. / Con el uso de un diseño completamente aleatorizado, con dos tratamientos (defoliación al 50% y sin defoliación parcial y tres repeticiones por tratamiento, se determinó la calidad del vino en plantas de uva sometidas a defoliación parcial temprana en Villa de Leyva – Colombia a una altitud de 2.143 msnm. Como material vegetal se utilizaron plantas de Vitis vinifera L. cv. Chardonnay de cinco años de edad, sembradas en un sistema de espalderas a 2,1 x 1 m. Quincenalmente, se realizó la defoliación parcial a las plantas, la cual consistió en retirar una de cada doshojas recién emergidas en cada una de las plantas sometidas al tratamiento de defoliación. Antes de iniciar el proceso de microvinificación se determinaron los sólidos solubles

  18. Isolation of Resveratrol from Vitis Viniferae Caulis and Its Potent Inhibition of Human Tyrosinase

    Directory of Open Access Journals (Sweden)

    Jiaa Park

    2013-01-01

    Full Text Available Tyrosinase (TYR catalyzes rate-limiting reactions of cellular melanin synthesis, and its inhibitors are of commercial interest as potential skin whitening agents. However, the limited availability of human TYR makes the screening of TYR inhibitors difficult. To overcome this hurdle, we transformed nonmelanocytic human embryonic kidney (HEK 293 cells to express human TYR constitutively. Using these cells as a source of human TYR, the ethanolic extracts of 52 medicinal plants grown in Korea were tested for human TYR activity, and the extract of Vitis Viniferae Caulis (dried stems of the grape tree, Vitis vinifera L. was found to inhibit human TYR activity potently. An active compound was isolated from this extract by solvent fractionation followed by liquid column chromatography and identified as resveratrol by spectroscopic and chromatographic analyses. Resveratrol was determined to be a highly potent inhibitor of human TYR (IC50=0.39 μg mL−1 as compared with p-coumaric acid (IC50=0.66 μg mL−1 and arbutin (IC50>100 μg mL−1 and inhibited melanin synthesis by human epidermal melanocytes at subtoxic concentrations. This study suggests that resveratrol and resveratrol-containing extracts of Vitis Viniferae Caulis have a potential use as skin whitening agents.

  19. Comparison of odor-active compounds in grapes and wines from vitis vinifera and non-foxy American grape species.

    Science.gov (United States)

    Sun, Qun; Gates, Matthew J; Lavin, Edward H; Acree, Terry E; Sacks, Gavin L

    2011-10-12

    Native American grape (Vitis) species have many desirable properties for winegrape breeding, but hybrids of these non-vinifera wild grapes with Vitis vinifera often have undesirable aromas. Other than the foxy-smelling compounds in Vitis labrusca and Vitis rotundifolia , the aromas inherent to American Vitis species are not well characterized. In this paper, the key odorants in wine produced from the American grape species Vitis riparia and Vitis cinerea were characterized in comparison to wine produced from European winegrapes (V. vinifera). Volatile compounds were extracted by solid-phase microextraction (SPME) and identified by gas chromatography-olfactometry/mass spectrometry (GC-O/MS). On the basis of flavor dilution values, most grape-derived compounds with fruity and floral aromas were at similar potency, but non-vinifera wines had higher concentrations of odorants with vegetative and earthy aromas: eugenol, cis-3-hexenol, 1,8-cineole, 3-isobutyl-2-methoxypyrazine (IBMP), and 3-isopropyl-2-methoxypyrazine (IPMP). Elevated concentrations of these compounds in non-vinifera wines were confirmed by quantitative GC-MS. Concentrations of IBMP and IPMP were well above sensory threshold in both non-vinifera wines. In a follow-up study, IBMP and IPMP were surveyed in 31 accessions of V. riparia, V. rupestris, and V. cinerea. Some accessions had concentrations of >350 pg/g IBMP or >30 pg/g IPMP, well above concentrations reported in previous studies of harvest-ripe vinifera grapes. Methyl anthranilate and 2-aminoacetophenone, key odorants responsible for the foxiness of V. labrusca grapes, were undetectable in both the V. riparia and V. cinerea wines (<10 μg/L).

  20. Ecophysiological and phytochemical response to ozone of wine grape cultivars of Vitis vinifera L.

    Science.gov (United States)

    Valletta, Alessio; Salvatori, Elisabetta; Rita Santamaria, Anna; Nicoletti, Marcello; Toniolo, Chiara; Caboni, Emilia; Bernardini, Alessandra; Pasqua, Gabriella; Manes, Fausto

    2015-12-18

    Vitis vinifera sensitivity to tropospheric ozone (O3) has been evidenced in several studies. In this work, physiological and metabolic effects of O3 on two wine cultivars of V. vinifera (i.e. Maturano and San Giuseppe) have been studied. Moreover, chlorogenic acid (CGA) production, in consideration of its importance in the biosynthetic pathway of polyphenols and as antioxidant, has been investigated. Maturano cultivar resulted more sensitive to O3, as evidenced by the gas exchange reduction at the early stage of treatment, and by the increase in Ci/Ca and the decoupling of net photosynthesis and the stomatal conductance at the end of the treatment. Unexpectedly, O3 did not activate stilbene production. Ozone induced an early CGA decrease, significantly more consistent in cv. Maturano, and an increase after 8 days, more consistent in cv. S. Giuseppe. These results suggest that CGA could be considered a biochemical marker of O3-induced stress in V. vinifera.

  1. Response of “Red Globe” (Vitis vinifera L. to cane girdling

    Directory of Open Access Journals (Sweden)

    Soltekin Oğuzhan

    2015-01-01

    Full Text Available The effect of cane girdling on skin colour, harvest date, yield, and some quality characteristics of Vitis vinifera L. cv. Red Globe table grape variety, was measured over two growing seasons, 2013–2014, at the facility of Manisa Viticulture Research Station in Turkey. Cane girdling was performed on the spurs after first bud was left from the bottom and 4 mm-wide ring of bark was completely removed with a doubleded knife at veraison period. Statistical analyses showed that total soluble solid content, berry width, berry length, colour parameters, CIRG index and anthocyanin content of the Red Globe was significantly affected by the girdling treatment in both years, 2013 and 2014. In addition it was detected that any effect of girdling treatments cannot be determined statistically significant on total yield, marketable yield, total phenolics, titrable acidity, pH and 50 berry weight. Total and marketable yields of girdled vines had higher value although they weren’t statistically significant. Furthermore it was observed on girdled vines 7 and 11 days earliness compare to the control vines in 2013 and 2014, respectively.

  2. Impact of wine technology on the variability of resveratrol and piceids in Saperavi (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    M.A. Surguladze

    2017-03-01

    Full Text Available The biologically active stilbenoids-resveratrol and its glucosides were identified in the dry bulk wines of different types made with red-grape vintage variety of Saperavi (Vitis vinifera L.: cis-resveratrol, trans-resveratrol, cis-piceid and trans-piceid. Red and pink wines were made by different technology: I – dry, pink, of a European type; alcoholic fermentation with natural microflora; II – dry, pink, of a European type; alcoholic fermentation with dry yeast “B2000”. III – red, dry; alcoholic fermentation with no-stem pomace and aging on it for 5 months; IV – dry, red, of a Kakhetian type; alcoholic fermentation with stem pomace with natural microflora and aging on it for 5 months; V – dry, red, of a Kakhetian type, with preliminary fermentation of cluster stems, then, alcoholic fermentation with natural microflora and aging on it for 5 months. The impact of the wine-making technology on the variability of the concentrations of these substances is proved. Kakhetian bulk wines (IV and V also differ from one another. Bulk wine-V made by the fermentation of grappa fermented in advance contains little concentration of study stilbenoids as a result of the oxidation transformations caused by the preliminary treatment. The role of grape juice, stem and seed in the localization of resveratrols and piceids in the bulk wines is identified.

  3. Evaluating the Polyphenol Profile in Three Segregating Grape (Vitis vinifera L. Populations

    Directory of Open Access Journals (Sweden)

    Alberto Hernández-Jiménez

    2013-01-01

    Full Text Available This paper explores the characteristics of the anthocyanin and flavonol composition and content in grapes from plants resulting from intraspecific crosses of Vitis vinifera varieties Monastrell × Cabernet Sauvignon, Monastrell × Syrah, and Monastrell × Barbera, in order to acquire information for future breeding programs. The anthocyanin and flavonol compositions of twenty-seven hybrids bearing red grapes and 15 hybrids bearing white grapes from Monastrell × Syrah, 32 red and 6 white from Monastrell × Cabernet Sauvignon, and 13 red from Monastrell × Barbera have been studied. Among the intraspecific crosses, plants with grapes presenting very high concentrations of anthocyanins and flavonols were found, indicating a transgressive segregation for this character, and this could lead to highly colored wines with an increased benefits for human health. As regards the qualitative composition of anthocyanins and flavonols, the hydroxylation pattern of the hybrids that also may influence wine color hue and stability presented intermediate values to those of the parentals, indicating that values higher than that showed by the best parental in this respect will be difficult to obtain. The results presented here can be helpful to acquire information for future breeding efforts, aimed at improving fruit quality through the effects of flavonoids.

  4. Evaluation of anxiolytic-like activity of Vitis vinifera juice in mice.

    Science.gov (United States)

    Aslam, Muhammad; Sultana, Nuzhat

    2016-01-01

    Scientific studies have shown that Vitis vinifera (V. vinifera) contains flavonoids and stillbenoids. Flavonoids are well known to possess anxiolytic activities. In view of the idea that flavonoids present in V. vinifera could be useful in anxiety, we evaluated anxiolytic-like activity of V. vinifera juice (VVJ). Light/dark box and the open field test were used to assess the anxiolytic potential of V. vinifera juice (VVJ). The juice was given orally by gavage at the dose of 4 and 8 mL/kg body weight. Diazepam (1 mg/kg i.p.) was used as the standard drug. It was observed that the juice produced significant and dose dependent increase in the time spent in light cubicle (pvinifera also demonstrated significant and dose dependent increase in ambulation (P<0.001) and rearing (p<0.001) in open field test as compared to the control group. In conclusion, the present study establishes the anxiolytic-like activity of VVJ in animal models of anxiety.

  5. Vitis vinifera juice ameliorates depression-like behavior in mice by modulating biogenic amine neurotransmitters

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam

    2015-12-01

    Full Text Available The advantageous effects of Vitis vinifera juice on depressive model mice were examined utilizing a blend of behavioral evaluations and biogenic amine neurotransmitter estimations. During the behavioral evaluations, immobility time on the forced swimming test and tail suspension test were measured in unstressed and immobilization-induced stressed mice. V. vinifera juice (4 mL/kg and 8 mL/kg and fluoxetine (20 mg/kg produced a significant decrease in immobility time of both unstressed and stressed mice when compared with their respective saline-treated control groups in both paradigms. Neurotransmitters were measured using high-performance liquid chromatography with electrochemical detector. V. vinifera juice raised the levels of both serotonin (p<0.001 and noradrenalin (p<0.001 in brain tissue. These outcomes give significant mechanistic insights into the protective effect of V. vinifera juice against depressive disorders. Our results showed that V. vinifera juice could relieve depressive manifestations in the rodent model of depression.

  6. Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1.

    Science.gov (United States)

    Martins, Viviana; Bassil, Elias; Hanana, Mohsen; Blumwald, Eduardo; Gerós, Hernâni

    2014-07-01

    The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport. An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.

  7. [Effects of light intensity on associated enzyme activity and gene expression during callus formation of Vitis vinifera].

    Science.gov (United States)

    Liu, Rong; Yang, Guowei; Wu, Yueyan; Rao, Huiyun; Li, Xuefu; Li, Meiqin; Qian, Pingxian

    2015-08-01

    We analyzed the best light intensity for callus induction and maintenance in Vitis vinifera and explored the mechanism of grape callus browning. Tender stem segments of grape cultivar "gold finger" were used to study the effects of different light intensities (0, 500, 1 000, 1 500, 2 000, 2 500, 3 000 and 4 000 Lx) on the induction rate, browning rate and associated enzyme activity and gene expression during Vitis vinifera callus formation. The callus induction rate under 0, 500, 1 000 and 1 500 Lx was more than 92%, significantly higher than in other treatments (P Vitis vinifera was 1 000-1 500 Lx, higher or lower light intensities significantly impaired normal callus growth.

  8. Development of activated carbon using vine shoots (Vitis vinifera) and its use for wine treatment.

    Science.gov (United States)

    Corcho-Corral, B; Olivares-Marín, M; Valdes-Sánchez, E; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2005-02-09

    An abundant and low-cost agricultural waste such as vine shoots (Vitis vinifera) (VS), which is generated by the annual pruning of vineyards, has been used as raw material in the preparation of powder activated carbon (AC) with a view to develop a new fining agent for white wines. A commercial activated carbon, S5X-Agrovin, was used for comparison purposes. From VS size-reduced pieces, AC was prepared using phosphoric acid as activating agent. The concentration of the H(3)PO(4) solution, the impregnation temperature, and the carbonization conditions were controlled. The carbons were texturally characterized by gas adsorption (N(2), -196 degrees C), mercury porosimetry, and density measurements. FT-IR spectroscopy was used in the analysis of the surface functional groups and structures of the carbons. Three varieties of white wine (i.e., cv. Cayetana, cv. Macabeo, and cv. Sauvignon Blanc) were treated with the activated carbons. Color changes were monitored by UV-vis spectrometry. Significant differences in the degree of uptake of polyphenols were observed depending on the wine variety and on the method of preparation of activated carbon. The carbon prepared by first impregnation of VS with the 60 vol% H(3)PO(4) solution at 50 degrees C and by then carbonization of the resultant product at 400 degrees C for 2 h presents a higher ability to discolor the white wines. The action of this carbon is comparable to that shown by the commercial product. Both carbons possess a well-developed porosity in the macropore range.

  9. Comparative antistress effect of Vitis vinifera and Withania somnifera using unpredictable chronic mild stress model in rats

    Directory of Open Access Journals (Sweden)

    Manish Pal Singh

    2016-07-01

    Full Text Available Introduction: The human society has become complex. However, our physiological responses designed to cope with the ever-increasing adverse situations have not evolved appreciably during the past thousand years. The failure of successful adaptation during stressful situations has resulted in stress-related illnesses. Methods: The objective of the present study was to carry out a comparative assessment of anti-stress effect of Vitis vinifera and Withania somnifera using unpredictable chronic mild stress model in rats. Long-term exposure to multiple stressors can cause depression. The unpredictable chronic administration of various mild stresses, a procedure known as “unpredictable chronic mild stress”, is one of the best-validated rodent models to study stress in animals, for its good etiological and predictive validity. Result: Diazepam, Withania somnifera, Vitis vinifera administration dose dependently reversed the increase in immobility period in stressed rats. In the study of locomotion activity of rats in elevated plus maze apparatus, Stress treated control group rats showed less no of entries in open arm and also less time spent in open arm. Vitis vinifera treated (p<0.0001, Withania somnifera treated (p<0.0001 and Diazepam treated group showed (p<0.0001 no. of entries in open arms which were more than control group and stressed groups. Stressed group produce less average time spent in open arm as compared to treatment groups as Withania somnifera (p<0.05, Vitis vinifera and diazepam. Withania somnifera group showed significant antistress locomotry behaviour in rats. Administration of Vitis vinifera, Withania somnifera and diazepam during stress period restored the ambulatory behaviour of the rats which can be correlated with restoration of plasma corticosterone level. Finally, the results of the present study justified that Withania somnifera, Vitis vinifera and diazepam exhibited significant antistress activity in rats.

  10. Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Gustavo Cordero-Bueso

    2017-11-01

    Full Text Available The increasing level of hazardous residues in the environment and food chains has led the European Union to restrict the use of chemical fungicides. Thus, exploiting new natural antagonistic microorganisms against fungal diseases could serve the agricultural production to reduce pre- and post-harvest losses, to boost safer practices for workers and to protect the consumers' health. The main aim of this work was to evaluate the antagonistic potential of epiphytic yeasts against Botrytis cinerea, Aspergillus carbonarius, and Penicillium expansum pathogen species. In particular, yeast isolation was carried out from grape berries of Vitis vinifera ssp sylvestris populations, of the Eurasian area, and V. vinifera ssp vinifera cultivars from three different farming systems (organic, biodynamic, and conventional. Strains able to inhibit or slow the growth of pathogens were selected by in vitro and in vivo experiments. The most effective antagonist yeast strains were subsequently assayed for their capability to colonize the grape berries. Finally, possible modes of action, such as nutrients and space competition, iron depletion, cell wall degrading enzymes, diffusible and volatile antimicrobial compounds, and biofilm formation, were investigated as well. Two hundred and thirty-one yeast strains belonging to 26 different species were isolated; 20 of them, ascribed to eight species, showed antagonistic action against all molds. Yeasts isolated from V. vinifera ssp sylvestris were more effective (up to 50% against B. cinerea rather than those isolated from V. vinifera ssp vinifera. Six strains, all isolated from wild vines, belonging to four species (Meyerozyma guilliermondii, Hanseniaspora uvarum, Hanseniaspora clermontiae, and Pichia kluyveri revealed one or more phenotypical characteristics associated to the analyzed modes of antagonistic action.

  11. Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens.

    Science.gov (United States)

    Cordero-Bueso, Gustavo; Mangieri, Nicola; Maghradze, David; Foschino, Roberto; Valdetara, Federica; Cantoral, Jesús M; Vigentini, Ileana

    2017-01-01

    The increasing level of hazardous residues in the environment and food chains has led the European Union to restrict the use of chemical fungicides. Thus, exploiting new natural antagonistic microorganisms against fungal diseases could serve the agricultural production to reduce pre- and post-harvest losses, to boost safer practices for workers and to protect the consumers' health. The main aim of this work was to evaluate the antagonistic potential of epiphytic yeasts against Botrytis cinerea, Aspergillus carbonarius, and Penicillium expansum pathogen species. In particular, yeast isolation was carried out from grape berries of Vitis vinifera ssp sylvestris populations, of the Eurasian area, and V. vinifera ssp vinifera cultivars from three different farming systems (organic, biodynamic, and conventional). Strains able to inhibit or slow the growth of pathogens were selected by in vitro and in vivo experiments. The most effective antagonist yeast strains were subsequently assayed for their capability to colonize the grape berries. Finally, possible modes of action, such as nutrients and space competition, iron depletion, cell wall degrading enzymes, diffusible and volatile antimicrobial compounds, and biofilm formation, were investigated as well. Two hundred and thirty-one yeast strains belonging to 26 different species were isolated; 20 of them, ascribed to eight species, showed antagonistic action against all molds. Yeasts isolated from V. vinifera ssp sylvestris were more effective (up to 50%) against B. cinerea rather than those isolated from V. vinifera ssp vinifera. Six strains, all isolated from wild vines, belonging to four species (Meyerozyma guilliermondii, Hanseniaspora uvarum, Hanseniaspora clermontiae, and Pichia kluyveri) revealed one or more phenotypical characteristics associated to the analyzed modes of antagonistic action.

  12. Grapevine (Vitis vinifera) Crown Galls Host Distinct Microbiota.

    Science.gov (United States)

    Faist, Hanna; Keller, Alexander; Hentschel, Ute; Deeken, Rosalia

    2016-09-15

    Crown gall disease of grapevine is caused by virulent Agrobacterium strains and establishes a suitable habitat for agrobacteria and, potentially, other bacteria. The microbial community associated with grapevine plants has not been investigated with respect to this disease, which frequently results in monetary losses. This study compares the endophytic microbiota of organs from grapevine plants with or without crown gall disease and the surrounding vineyard soil over the growing seasons of 1 year. Amplicon-based community profiling revealed that the dominating factor causing differences between the grapevine microbiota is the sample site, not the crown gall disease. The soil showed the highest microbial diversity, which decreased with the distance from the soil over the root and the graft union of the trunk to the cane. Only the graft union microbiota was significantly affected by crown gall disease. The bacterial community of graft unions without a crown gall hosted transient microbiota, with the three most abundant bacterial species changing from season to season. In contrast, graft unions with a crown gall had a higher species richness, which in every season was dominated by the same three bacteria (Pseudomonas sp., Enterobacteriaceae sp., and Agrobacterium vitis). For in vitro-cultivated grapevine plantlets, A. vitis infection alone was sufficient to cause crown gall disease. Our data show that microbiota in crown galls is more stable over time than microbiota in healthy graft unions and that the microbial community is not essential for crown gall disease outbreak. The characterization of bacterial populations in animal and human diseases using high-throughput deep-sequencing technologies, such as 16S amplicon sequencing, will ideally result in the identification of disease-specific microbiota. We analyzed the microbiota of the crown gall disease of grapevine, which is caused by infection with the bacterial pathogen Agrobacterium vitis. All other Agrobacterium

  13. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera cultivated in organic and conventional systems

    Directory of Open Access Journals (Sweden)

    Bunea Claudiu-Ioan

    2012-07-01

    Full Text Available Abstract Background Organic agriculture involve plants which are cultivated without using synthetic pesticides, herbicides or fertilizers and promotes biodiversity, biological cycles and improve the product quality. The carotenoids, total polyphenols and the antioxidant activity from skins of some wine and table grapes cultivated in organic and conventional agriculture were studied. Results The main carotenoids identified using high performance liquid chromatography were lutein and ß-carotene. Muscat Ottonel variety has the highest ß-carotene concentration 504.9 μg/kg for organic and 593.2 μg/kg for conventional grapes. For the organic farming, the total polyphenols content were in the range of 163.23 – 1341.37 mg GAE/kg fresh weight (FW and 148.47 – 1231.38 mg GAE/kg FW for the conventional grapes. The highest ORAC values were obtained for blue-black variety Napoca in both farming system (43.5 ± 0.95 μmol TE/g organic; 40.4 ± 0.5 μmol TE/g conventional and lowest for Aromat de Iaşi (16.8 ± 0.6 μmol TE/g organic; 14.7 ± 1.6 μmol TE/g conventional. Napoca variety showed also the highest antioxidant activity measured by DPPH method in both cultivated system. Conclusion Nine grape varieties cultivated in organic and conventional systems were compared regarding the carotenoids, total polyphenols and antioxidant activity. The white grape varieties have a higher carotenoids content compared with the blue-black cultivars while the blue-black varieties contain higher TPC and exhibit higher antioxidant activity (except for Muscat Hamburg-ORAC. Vitis vinifera grape skins originating from wine or table grape varieties can be used as a potential source of natural antioxidants.

  14. Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera.

    Science.gov (United States)

    Çakır, Birsen; Kılıçkaya, Ozan

    2013-01-01

    The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 "full-size," 41 "half-size," and 15 "soluble" putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.

  15. Vitis vinifera Extract Ameliorate Hepatic and Renal Dysfunction Induced by Dexamethasone in Albino Rats.

    Science.gov (United States)

    Hasona, Nabil A; Alrashidi, Ahmed A; Aldugieman, Thamer Z; Alshdokhi, Ali M; Ahmed, Mohammed Q

    2017-04-11

    This study was conducted to evaluate the biochemical effects of grape seed extract against dexamethasone-induced hepatic and renal dysfunction in a female albino rat. Twenty-eight adult female rats were divided randomly into four equal groups: Group 1: animals were injected subcutaneously with saline and consider as normal control one. Group 2: animals were injected subcutaneously with dexamethasone in a dose of 0.1 mg/kg body weight. Group 3: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 200 mg/kg body weight by oral gavage. Group 4: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 400 mg/kg body weight by oral gavage. After 4 weeks, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, albumin, uric acid, creatinine, and glucose levels were assayed. Hepatic reduced glutathione (GSH), total protein content, and catalase and glucose-6-phosphate dehydrogenase activities were also assayed. Dexamethasone administration caused elevation of serum levels of glucose, uric acid, creatinine, ALT, AST activities, and a decrease in other parameters such as hepatic glutathione, total protein levels, and catalase enzyme activity. Treatment with Vitis vinifera L. seed extract showed a significant increase in the body weight of rats in the group treated with Vitis vinifera L. seed extract orally compared with the dexamethasone control group. An increase in GSH and catalase activity in response to oral treatment with Vitis vinifera L. seed extract was observed after treatment. Grape seed extract positively affects glucocorticoid-induced hepatic and renal alteration in albino rats.

  16. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs)

    Science.gov (United States)

    Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the ‘Vitis vinifera cv. Pinot Noir’ and ‘Vitis vinifera cv. Thompson Seedless’ varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs. PMID:27551866

  17. The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening

    OpenAIRE

    Greer, Dennis H.

    2013-01-01

    The heat event that occurred in many parts of Australia in 2009 was the worst on record for the past decade, with air temperatures exceeding 40oC for 14 days. Our aim was to assess the impacts of this heat event on vine performance, including ripening, yield and gas exchange of Vitis vinifera cv. Semillon grown in a Riverina vineyard. To assess the affect of high temperatures on Semillon grapevines, the vines were covered with a protective layer to reduce radiant heating and were compared wit...

  18. The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening

    OpenAIRE

    Greer, Dennis H.; Weedon, Mark M.

    2013-01-01

    The heat event that occurred in many parts of Australia in 2009 was the worst on record for the past decade, with air temperatures exceeding 40°C for 14 days. Our aim was to assess the impacts of this heat event on vine performance, including ripening, yield, and gas exchange of Vitis vinifera cv. Semillon grown in a Riverina vineyard. To assess the affect of high temperatures on Semillon grapevines, the vines were covered with a protective layer to reduce radiant heating and were compared wi...

  19. Safety assessment of Vitis vinifera (grape)-derived ingredients as used in cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of 24 Vitis vinifera (grape)-derived ingredients and found them safe in the present practices of use and concentration in cosmetics. These ingredients function in cosmetics mostly as skin-conditioning agents, but some function as antioxidants, flavoring agents, and/or colorants. The Panel reviewed the available animal and clinical data to determine the safety of these ingredients. Additionally, some constituents of grapes have been assessed previously for safety as cosmetic ingredients by the Panel, and others are compounds that have been discussed in previous Panel safety assessments. © The Author(s) 2014.

  20. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs).

    Science.gov (United States)

    Tang, Yujin; Wang, Ruipu; Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.

  1. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs.

    Directory of Open Access Journals (Sweden)

    Yujin Tang

    Full Text Available Vacuolar processing enzymes (VPEs have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD, which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177, Cys (219] and substrate binding pocket [Arg (112, Arg (389, Ser (395], except that Ser (395 in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF, close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.

  2. Chlorophyll fluorescence imaging for the noninvasive assessment of anthocyanins in whole grape (Vitis vinifera L.) bunches.

    Science.gov (United States)

    Agati, Giovanni; Traversi, Maria Laura; Cerovic, Zoran G

    2008-01-01

    The distribution of anthocyanins in grape (Vitis vinifera L.) bunches from the Sangiovese cultivar was measured nondestructively by chlorophyll fluorescence imaging using two excitation light bands at 550 and 650 nm in sequence. The pixel intensity in the derived logarithm of the fluorescence excitation ratio image was directly related, by an exponential function (r2 = 0.93), to the anthocyanin concentration of berry extracts. The method will be useful for the assessment of the heterogeneity of anthocyanin accumulation in berries that is known to depend on physiologic and climatic factors. It can also represent a new, rapid and noninvasive technique for the assessment of grape ripening and the appropriate time of harvest.

  3. Gonadotropin promotion of adventitious root production on cuttings of Begonia semperflorens and Vitis vinifera.

    Science.gov (United States)

    Leshem, Y; Lunenfeld, B

    1968-03-01

    Adventitious rooting of Begonia semperflorens cv. Indian Maid and Vitis vinifera cv. Semillon stem cuttings was significantly promoted by human chorionic gonadotropin (HCG). Basal sections of HCG treated cuttings upon which promoted rooting took place had markedly less endogenous gibberellin (GA) activity than non-treated controls or apical sections of treated ones, while changes in auxin levels were not found. HCG also inhibited GA(3)-induced reducing sugar release from embryoless barley endosperm halves. These findings are discussed in the light of a possible analogy to gonadotropin action in animal systems.

  4. Gonadotropin Promotion of Adventitious Root Production on Cuttings of Begonia semperflorens and Vitis vinifera 1

    Science.gov (United States)

    Leshem, Y.; Lunenfeld, B.

    1968-01-01

    Adventitious rooting of Begonia semperflorens cv. Indian Maid and Vitis vinifera cv. Semillon stem cuttings was significantly promoted by human chorionic gonadotropin (HCG). Basal sections of HCG treated cuttings upon which promoted rooting took place had markedly less endogenous gibberellin (GA) activity than non-treated controls or apical sections of treated ones, while changes in auxin levels were not found. HCG also inhibited GA3-induced reducing sugar release from embryoless barley endosperm halves. These findings are discussed in the light of a possible analogy to gonadotropin action in animal systems. PMID:5641189

  5. Foraging leaf-cutting ants learn to reject Vitis vinifera ssp. vinifera plants that emit herbivore-induced volatiles.

    Science.gov (United States)

    Thiele, Theresa; Kost, Christian; Roces, Flavio; Wirth, Rainer

    2014-06-01

    Leaf-cutting ants (LCAs) are dominant herbivores of the Neotropics, as well as economically important pests. Their foraging ecology and patterns/mechanisms of food selection have received considerable attention. Recently, it has been documented that LCAs exhibit a delayed rejection of previously accepted food plants following treatment with a fungicide that makes the plants unsuitable as substrate for their symbiotic fungus. Here, we investigated whether LCAs similarly reject plants with induced chemical defenses, by combining analysis of volatile emissions with dual-choice bioassays that used LCA subcolonies (Atta sexdens L.). On seven consecutive days, foraging ants were given the choice between leaf disks from untreated control plants and test plants of Vitis vinifera ssp. vinifera L. treated with the phytohormone jasmonic acid (JA) to mimic herbivore attack. Chemical analysis revealed the emission of a characteristic set of herbivore-induced volatile organic compounds (VOC) from JA-induced plants. Dual-choice experiments indicated that workers did not show any preference initially, but that they avoided JA-treated plants from day five onwards. Our finding that A. sexdens foragers learn to avoid VOC-emitting plants, which are likely detrimental to their symbiotic fungus, represents the first evidence for avoidance learning in attine ants toward plants with induced defenses.

  6. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit.

    Science.gov (United States)

    Sweetman, C; Sadras, V O; Hancock, R D; Soole, K L; Ford, C M

    2014-11-01

    Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit quality and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate content in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with longer and milder warming (2-4 °C differential for three weeks; Experiment 1) or shorter and more severe warming (4-6 °C differential for 11 days; Experiment 2). We complemented field trials with control (25/15 °C) and elevated (35/20 °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maximum temperatures (4-10 °C above controls) during pre-véraison stages led to higher malate content, particularly with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typically seen in warm vintages. However, when minimum temperatures were also raised by 4-6 °C, malate content was not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Cytotoxicity and apoptotic cell death induced by Vitis vinifera peel and seed extracts in A431 skin cancer cells.

    Science.gov (United States)

    Grace Nirmala, J; Evangeline Celsia, S; Swaminathan, Akila; Narendhirakannan, R T; Chatterjee, Suvro

    2017-10-05

    Vitis vinifera. L is one of the most widely consumed fruits in the world and are rich in antioxidant abundant polyphenols. The present study was carried out to assess the antiproliferative and apoptotic effects of Vitis vinifera peel and seed extracts in an in vitro model using human epidermoid carcinoma A431 cell lines. Vitis vinifera peel and seed extracts were incubated with A431 cells to evaluate the antiproliferative, apoptotic effects and the morphological apoptotic changes induced by the extracts. Mitochondrial membrane potential was also measured after incubating the cells with extracts. At the inhibitory concentration (IC 50 ), grape seed extract (111.11 µg/mL) and grape peel extract (319.14 µg/mL) were incubated for 24 h with A431 cells. Vitis vinifera peel and seed extracts were able to impart cytotoxic effects, induced apoptosis and apoptotic morphological changes in A431 cells significantly (p peel and seed phytochemicals can selectively target cancer cells and the phytochemicals that are occluded can serve as potential anticancer agents providing better efficacy in killing cancer cells.

  8. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera

    Science.gov (United States)

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by str...

  9. Environmental Factors Correlated with the Metabolite Profile of Vitis vinifera cv. Pinot Noir Berry Skins along a European Latitudinal Gradient

    Czech Academy of Sciences Publication Activity Database

    Del-Castillo-Alonso, M. Á.; Castagna, A.; Csepregi, K.; Hideg, É.; Jakab, G.; Jansen, M. A. K.; Jug, T.; Llorens, L.; Mátai, A.; Martínez-Lüscher, J.; Monforte, L.; Neugart, S.; Olejníčková, Julie; Ranieri, A.; Schödl-Hummel, K.; Schreiner, M.; Soriano, G.; Teszlák, P.; Tittmann, S.; Urban, Otmar; Verdaguer, D.; Zipoli, G.; Martínez-Abaigar, J.; Núñez-Olivera, E.

    2016-01-01

    Roč. 64, č. 46 (2016), s. 8722-8734 ISSN 0021-8561 Institutional support: RVO:67179843 Keywords : berry skins * Europe * hydroxylation ratios * latitudinal gradient * phenolic composition * solar radiation * ultraviolet radiation * Vitis vinifera cv. Pinot Noir Subject RIV: EH - Ecology, Behaviour Impact factor: 3.154, year: 2016

  10. Pseudococcus maritimus (Hemiptera: Pseudococcidae) and Parthenolecanium corni (Hemiptera: Coccidae) are capable of transmitting grapevine leafroll-associated virus 3 between Vitis x labruscana and Vitis vinifera.

    Science.gov (United States)

    Bahder, B W; Poojari, S; Alabi, O J; Naidu, R A; Walsh, D B

    2013-12-01

    The grape mealybug, Pseudococcus maritimus (Ehrhorn), and European fruit lecanium scale, Parthenolecanium corni (Bouché), are the predominant species of Coccoidea in Washington State vineyards. The grape mealybug has been established as a vector of Grapevine leafroll-associated virus 3 (GLRaV-3) between wine grape (Vitis vinifera L.) cultivars, elevating its pest status. The objective of this study was to determine if GLRaV-3 could be transmitted between Vitis x labruscana L. and V. vinifera by the grape mealybug and scale insects. Three transmission experiments were conducted with regard to direction; from V. vinifera to V. x labruscana L., from V. x labruscana L. to V. x labruscana L., and from V. x labruscana L. to V. vinifera. Each experiment was replicated 15 times for each vector species. Crawlers (first-instars) of each vector species were allowed 1-wk acquisition and inoculation access periods. The identities of viral and vector species were confirmed by reverse transcription-polymerase chain reaction, cloning, and sequencing of species-specific DNA fragments. GLRaV-3 was successfully transmitted by both species in all experiments, although Ps. maritimus was a more efficient vector under our experimental conditions. To the best of our knowledge, this study represents the first documented evidence of interspecific transmission of GLRaV-3 between two disparate Vitis species. It also highlights the potential role of V. x labruscana L. in the epidemiology of grapevine leafroll disease as a symptomless source of GLRaV-3 inoculum.

  11. Vitis vinifera secondary metabolism as affected by sulfate depletion: diagnosis through phenylpropanoid pathway genes and metabolites.

    Science.gov (United States)

    Tavares, Sílvia; Vesentini, Damiano; Fernandes, João Carlos; Ferreira, Ricardo B; Laureano, Olga; Ricardo-Da-Silva, Jorge M; Amâncio, Sara

    2013-05-01

    Grapevine (Vitis vinifera L.) is rich in phenylpropanoid compounds, namely flavonoids and stilbenes which, present in most tissues, are described as antioxidants and known to accumulate in response to biotic and abiotic stress. Grapevine is then a choice model for studying the interplay between the phenylpropanoid pathway and nutrient deficiency. Here we report the response to sulfur deficiency (-S) of flavonoids and stilbenes biosynthetic pathways in chlorophyll tissues (plantlets) and cell culture. Anthocyanins and trans-resveratrol accumulated in plantlets and trans-resveratrol glucoside in cell cultures in response to sulfur deficiency, while a significant decrease in chlorophyll was observed in -S plantlets. The up-regulation of chalcone synthase gene and the downstream flavonoid biosynthesis genes dihydroflavonol reductase and anthocyanidin synthase matched the accumulation of anthocyanins in -S V. vinifera plantlets. The mRNA level of stilbene synthase gene(s) was correlated tightly with the increase in trans-resveratrol and trans-resveratrol glucoside levels, respectively in -S plantlets and cell cultures. As a whole, the present study unveil that V. vinifera under sulfur deficiency allocates resources to the phenylpropanoid pathway, probably consecutive to inhibition of protein synthesis, which can be advantageous to resist against oxidative stress symptoms evoked by -S conditions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. A Concise Review on Multi-Omics Data Integration for Terroir Analysis in Vitis vinifera.

    Science.gov (United States)

    Fabres, Pastor Jullian; Collins, Cassandra; Cavagnaro, Timothy R; Rodríguez López, Carlos M

    2017-01-01

    Vitis vinifera (grapevine) is one of the most important fruit crops, both for fresh consumption and wine and spirit production. The term terroir is frequently used in viticulture and the wine industry to relate wine sensory attributes to its geographic origin. Although, it can be cultivated in a wide range of environments, differences in growing conditions have a significant impact on fruit traits that ultimately affect wine quality. Understanding how fruit quality and yield are controlled at a molecular level in grapevine in response to environmental cues has been a major driver of research. Advances in the area of genomics, epigenomics, transcriptomics, proteomics and metabolomics, have significantly increased our knowledge on the abiotic regulation of yield and quality in many crop species, including V. vinifera. The integrated analysis of multiple 'omics' can give us the opportunity to better understand how plants modulate their response to different environments. However, 'omics' technologies provide a large amount of biological data and its interpretation is not always straightforward, especially when different 'omic' results are combined. Here we examine the current strategies used to integrate multi-omics, and how these have been used in V. vinifera. In addition, we also discuss the importance of including epigenomics data when integrating omics data as epigenetic mechanisms could play a major role as an intermediary between the environment and the genome.

  13. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin.

    Science.gov (United States)

    Cipriani, Guido; Spadotto, Alessandro; Jurman, Irena; Di Gaspero, Gabriele; Crespan, Manna; Meneghetti, Stefano; Frare, Enrica; Vignani, Rita; Cresti, Mauro; Morgante, Michele; Pezzotti, Mario; Pe, Enrico; Policriti, Alberto; Testolin, Raffaele

    2010-11-01

    A collection of 1005 grapevine accessions was genotyped at 34 microsatellite loci (SSR) with the aim of analysing genetic diversity and exploring parentages. The comparison of molecular profiles revealed 200 groups of synonymy. The removal of perfect synonyms reduced the database to 745 unique genotypes, on which population genetic parameters were calculated. The analysis of kinship uncovered 74 complete pedigrees, with both parents identified. Many of these parentages were not previously known and are of considerable historical interest, e.g. Chenin blanc (Sauvignon × Traminer rot), Covè (Harslevelu selfed), Incrocio Manzoni 2-14 and 2-15 (Cabernet franc × Prosecco), Lagrein (Schiava gentile × Teroldego), Malvasia nera of Bolzano (Perera × Schiava gentile), Manzoni moscato (Raboso veronese × Moscato d'Amburgo), Moscato violetto (Moscato bianco × Duraguzza), Muscat of Alexandria (Muscat blanc à petit grain × Axina de tres bias) and others. Statistical robustness of unexpected pedigrees was reinforced with the analysis of an additional 7-30 SSRs. Grouping the accessions by profile resulted in a weak correlation with their geographical origin and/or current area of cultivation, revealing a large admixture of local varieties with those most widely cultivated, as a result of ancient commerce and population flow. The SSRs with tri- to penta-nucleotide repeats adopted for the present study showed a great capacity for discriminating amongst accessions, with probabilities of identity by chance as low as 1.45 × 10(-27) and 9.35 × 10(-12) for unrelated and full sib individuals, respectively. A database of allele frequencies and SSR profiles of 32 reference cultivars are provided.

  14. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties.

    Directory of Open Access Journals (Sweden)

    Silvia Venuti

    Full Text Available The Amur grape (Vitis amurensis Rupr. thrives naturally in cool climates of Northeast Asia. Resistance against the introduced pathogen Plasmopara viticola is common among wild ecotypes that were propagated from Manchuria into Chinese vineyards or collected by Soviet botanists in Siberia, and used for the introgression of resistance into wine grapes (Vitis vinifera L.. A QTL analysis revealed a dominant gene Rpv12 that explained 79% of the phenotypic variance for downy mildew resistance and was inherited independently of other resistance genes. A Mendelian component of resistance-a hypersensitive response in leaves challenged with P. viticola-was mapped in an interval of 0.2 cM containing an array of coiled-coil NB-LRR genes on chromosome 14. We sequenced 10-kb genic regions in the Rpv12(+ haplotype and identified polymorphisms in 12 varieties of V. vinifera using next-generation sequencing. The combination of two SNPs in single-copy genes flanking the NB-LRR cluster distinguished the resistant haplotype from all others found in 200 accessions of V. vinifera, V. amurensis, and V. amurensis x V. vinifera crosses. The Rpv12(+ haplotype is shared by 15 varieties, the most ancestral of which are the century-old 'Zarja severa' and 'Michurinets'. Before this knowledge, the chromosome segment around Rpv12(+ became introgressed, shortened, and pyramided with another downy mildew resistance gene from North American grapevines (Rpv3 only by phenotypic selection. Rpv12(+ has an additive effect with Rpv3(+ to protect vines against natural infections, and confers foliar resistance to strains that are virulent on Rpv3(+ plants.

  15. Varietal Dependence of GLVs Accumulation and LOX-HPL Pathway Gene Expression in Four Vitis vinifera Wine Grapes.

    Science.gov (United States)

    Qian, Xu; Xu, Xiao-Qing; Yu, Ke-Ji; Zhu, Bao-Qing; Lan, Yi-Bin; Duan, Chang-Qing; Pan, Qiu-Hong

    2016-11-23

    Variety is one of the major factors influencing grape and wine aromatic characteristics. Green leaf volatiles (GLVs), derived from lipoxygenase-hydroperoxides lyase (LOX-HPL) pathway, are important components for the aromatic quality of grapes and wines. However, the varietal difference regarding GLVs accumulation and related gene expression are poorly studied. This work exhibited that the accumulation of various GLVs and the expression of LOX-HPL pathway genes in four Vitis vinifera wine grape cultivars: Syrah, Muscat Tchervine, Gewürztraminer and Chardonnay. The results showed a variety dependence of GLVs profile. Muscat Tchervine harvested grapes contained less C6 aldehydes and the most abundant esters, which corresponded to very low VvLOXA and VvHPL1 expression abundance as well as high VvAAT transcript in this variety. High expression level of both VvLOXA and VvHPL1 paralleled with higher level of C6 aldehydes together with higher alcohols in Syrah grape. Gewürztraminer and Chardonnay grapes had high aldehydes and alcohols as well as low esters, which were resulted from their higher expression level of VvLOXA or VvHPL1 and lower VvAAT. From these above corresponding relations, it is concluded that VvLOXA, VvHPL1 and VvAAT in the LOX-HPL pathway are targets for altering GLVs composition in the grape varieties.

  16. Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity

    Directory of Open Access Journals (Sweden)

    Vivier Melané A

    2008-07-01

    Full Text Available Abstract Background Latest research shows that small antimicrobial peptides play a role in the innate defense system of plants. These peptides typically contribute to preformed defense by developing protective barriers around germinating seeds or between different tissue layers within plant organs. The encoding genes could also be upregulated by abiotic and biotic stimuli during active defense processes. The peptides display a broad spectrum of antimicrobial activities. Their potent anti-pathogenic characteristics have ensured that they are promising targets in the medical and agricultural biotechnology sectors. Results A berry specific cDNA sequence designated Vv-AMP1, Vitis vinifera antimicrobial peptide 1, was isolated from Vitis vinifera. Vv-AMP1 encodes for a 77 amino acid peptide that shows sequence homology to the family of plant defensins. Vv-AMP1 is expressed in a tissue specific, developmentally regulated manner, being only expressed in berry tissue at the onset of berry ripening and onwards. Treatment of leaf and berry tissue with biotic or abiotic factors did not lead to increased expression of Vv-AMP1 under the conditions tested. The predicted signal peptide of Vv-AMP1, fused to the green fluorescent protein (GFP, showed that the signal peptide allowed accumulation of its product in the apoplast. Vv-AMP1 peptide, produced in Escherichia coli, had a molecular mass of 5.495 kDa as determined by mass spectrometry. Recombinant Vv-AMP1 was extremely heat-stable and showed strong antifungal activity against a broad spectrum of plant pathogenic fungi, with very high levels of activity against the wilting disease causing pathogens Fusarium oxysporum and Verticillium dahliae. The Vv-AMP1 peptide did not induce morphological changes on the treated fungal hyphae, but instead strongly inhibited hyphal elongation. A propidium iodide uptake assay suggested that the inhibitory activity of Vv-AMP1 might be associated with altering the membrane

  17. Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity

    Science.gov (United States)

    de Beer, Abré; Vivier, Melané A

    2008-01-01

    Background Latest research shows that small antimicrobial peptides play a role in the innate defense system of plants. These peptides typically contribute to preformed defense by developing protective barriers around germinating seeds or between different tissue layers within plant organs. The encoding genes could also be upregulated by abiotic and biotic stimuli during active defense processes. The peptides display a broad spectrum of antimicrobial activities. Their potent anti-pathogenic characteristics have ensured that they are promising targets in the medical and agricultural biotechnology sectors. Results A berry specific cDNA sequence designated Vv-AMP1, Vitis vinifera antimicrobial peptide 1, was isolated from Vitis vinifera. Vv-AMP1 encodes for a 77 amino acid peptide that shows sequence homology to the family of plant defensins. Vv-AMP1 is expressed in a tissue specific, developmentally regulated manner, being only expressed in berry tissue at the onset of berry ripening and onwards. Treatment of leaf and berry tissue with biotic or abiotic factors did not lead to increased expression of Vv-AMP1 under the conditions tested. The predicted signal peptide of Vv-AMP1, fused to the green fluorescent protein (GFP), showed that the signal peptide allowed accumulation of its product in the apoplast. Vv-AMP1 peptide, produced in Escherichia coli, had a molecular mass of 5.495 kDa as determined by mass spectrometry. Recombinant Vv-AMP1 was extremely heat-stable and showed strong antifungal activity against a broad spectrum of plant pathogenic fungi, with very high levels of activity against the wilting disease causing pathogens Fusarium oxysporum and Verticillium dahliae. The Vv-AMP1 peptide did not induce morphological changes on the treated fungal hyphae, but instead strongly inhibited hyphal elongation. A propidium iodide uptake assay suggested that the inhibitory activity of Vv-AMP1 might be associated with altering the membrane permeability of the fungal

  18. Using specific length amplified fragment sequencing to construct the high-density genetic map for Vitis ( Vitis vinifera L. × Vitis amurensis Rupr.

    Directory of Open Access Journals (Sweden)

    yinshan eGuo

    2015-06-01

    Full Text Available In this study, 149 F1 plants from the interspecific cross between ‘Red Globe’ (Vitis vinifera L. and ‘Shuangyou’ (Vitis amurensis Rupr. and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for ‘Red Globe,’ 63.65 for ‘Shuangyou,’ and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cM, with an average distance of 0.28 cM between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape.

  19. Vitis vinifera L. Single-Nucleotide Polymorphism Detection with High-Resolution Melting Analysis Based on the UDP-Glucose:Flavonoid 3-O-Glucosyltransferase Gene.

    Science.gov (United States)

    Pereira, Leonor; Martins-Lopes, Paula

    2015-10-21

    Vitis vinifera L. is a species with a large number of varieties, which differ in terms of anthocyanin content. The genes involved in the anthocyanin biosynthesis pathway have a direct effect in the anthocyanin profile of each variety, being potentially interesting for varietal identification. The current study aimed at the design of an assay suitable for the discrimination of the largest number of grapevine varieties. Two genes of the anthocyanin pathway, chalcone isomerase (CHI) and UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT), were sequenced in 22 grapevine varieties. The CHI gene presented 5 SNPs within the sequence. A total of 58 SNPs and 1 INDEL were found among the UFGT gene, allowing the discrimination of 18 different genotypes within the 22 grapevine varieties. A HRM assay designed for UFGT, containing 704 bp, produced differentiated melting curves for each of the 18 haplotypes. The developed HRM assay is efficient in grapevine varietal discrimination.

  20. Oxidative stress homeostasis in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Luisa C Carvalho

    2015-03-01

    Full Text Available Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light and to biotic stress (pathogens does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS. As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments.In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and to suitable viticulture

  1. Kinetics of Tyrosinase Inhibitory Activity Using Vitis vinifera Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    2017-01-01

    Full Text Available Natural medical plant is considered as a good source of tyrosinase inhibitors. Red vine leaf extract (RVLE can be applied to a wide variety of medical disciplines, such as treatments for chronic venous insufficiency over many decades. This study investigated the tyrosinase inhibitory activity of RVLE containing gallic acid, chlorogenic acid, epicatechin, rutin, and resveratrol which are effective for skin hyperpigmentation. The five components contents are 1.03, 0.2, 18.55, 6.45, and 0.48 mg/g for gallic acid, chlorogenic acid, epicatechin, rutin, and resveratrol. The kinetic study showed the tyrosinase inhibitory of RVLE via a competitive reaction mechanism. RVLE solution has an IC50 (the half inhibitory concentration value of 3.84 mg/mL for tyrosinase inhibition, that is, an effective tyrosinase inhibitory activity, and can be used as a whitening agent for cosmetic formulations in the future.

  2. Compositional investigation of phenolic polymers isolated from Vitis vinifera L. Cv. Pinot Noir during fermentation.

    Science.gov (United States)

    Aron, Patricia M; Kennedy, James A

    2007-07-11

    Phenolic polymer material extracted during commercial red wine fermentations (Vitis vinifera L. cv. Pinot noir) was isolated and analyzed to characterize its chemical composition. Phenolic polymer isolates were prepared from samples taken throughout fermentation and isolated by adsorption chromatography. Isolates were subjected to phloroglucinolysis to analyze the proanthocyanidin amount as well as the subunit composition. Results of phloroglucinolysis revealed that the proanthocyanidin content of individual phenolic polymer isolates varied from 27 to 54%. Subsequent analyses were done in an attempt to quantify materials other than known proanthocyanidin subunits. Results of all experiments indicate that up to 82% of the phenolic polymer isolates could be accounted for by mass. While this figure accounts for a significant portion of the polymeric phenolic material, further investigation will be needed to qualify the remaining 18%.

  3. Genetic transformation of major wine grape cultivars of Vitis vinifera L.

    Science.gov (United States)

    Iocco, P; Franks, T; Thomas, M R

    2001-04-01

    We have developed an Agrobacterium-mediated transformation system for a number of important grapevine cultivars used in wine production. Transgenic plants were obtained for the seven cultivars: Cabernet Sauvignon, Shiraz, Chardonnay, Riesling, Sauvignon Blanc, Chenin Blanc and Muscat Gordo Blanco. Embryogenic callus was initiated from anther filaments and genotypic differences were observed for initiation and subsequent proliferation with Chardonnay responding most favourably to culture conditions. The transformation system allowed the recovery of germinating transgenic embryos 10-12 weeks after Agrobacterium inoculation and plants within 18 weeks. Examination of the expression patterns of the green fluorescent protein gene under the control of the CAMV35S promoter in leaf tissue of transgenic plants showed that for up to 35% of plants the pattern was not uniform. The successful transformation of a genetically diverse group of wine grape cultivars indicates that the transformation system may have general application to an even wider range of Vitis vinifera cultivars.

  4. Enzymes of Krebs-Henseleit Cycle in Vitis vinifera L: II. Arginosuccinate Synthetase and Lyase.

    Science.gov (United States)

    Roubelakis, K A; Kliewer, W M

    1978-09-01

    Arginosuccinate (ASA) synthetase and lyase activities were detected in extracts from Vitis vinifera L. cv. Chenin blanc mature leaves and seedlings. Optimum reaction conditions for ASA synthetase were 10 millimolar l-citrulline, 7.5 millimolar l-aspartate, 3 to 4 millimolar ATP, 12 millimolar Mg(2+) (pH 7.5 to 8.0), enzyme extract up to equivalent of about 200 milligrams of fresh tissue, and incubation temperature of 38 to 40 C. Optimum reaction conditions for ASA lyase were 4 millimolar ASA-K salt (pH 7.3 to 7.8), amount of extract up to equivalent of about 180 milligrams of fresh tissue, and incubation temperature of 38 to 40 C.

  5. Quantitating Organoleptic Volatile Phenols in Smoke-Exposed Vitis vinifera Berries.

    Science.gov (United States)

    Noestheden, Matthew; Thiessen, Katelyn; Dennis, Eric G; Tiet, Ben; Zandberg, Wesley F

    2017-09-27

    Accurate methods for quantitating volatile phenols (i.e., guaiacol, syringol, 4-ethylphenol, etc.) in smoke-exposed Vitis vinifera berries prior to fermentation are needed to predict the likelihood of perceptible smoke taint following vinification. Reported here is a complete, cross-validated analytical workflow to accurately quantitate free and glycosidically bound volatile phenols in smoke-exposed berries using liquid-liquid extraction, acid-mediated hydrolysis, and gas chromatography-tandem mass spectrometry. The reported workflow addresses critical gaps in existing methods for volatile phenols that impact quantitative accuracy, most notably the effect of injection port temperature and the variability in acid-mediated hydrolytic procedures currently used. Addressing these deficiencies will help the wine industry make accurate, informed decisions when producing wines from smoke-exposed berries.

  6. Elicitation Phenolic Compounds in Cell Culture of Vitis vinifera L. by Phaeomoniella chlamydospora

    Directory of Open Access Journals (Sweden)

    Sák Martin

    2014-12-01

    Full Text Available The in vitro cell cultures of Vitis vinifera L. cv. St. Laurent were treated with two elicitors - synthetic methyl jasmonate and natural, prepared from grapevine plant infected with the Phaeomoniella chlamydospora, the agent causing the Esca disease of grapevine. Efficiency of phenolic compounds production after elicitation of cell culture was analysed immediately after treatment (15 min, 30 min, 60 min and later (after 24, 48, and 72 hours. The cell growth and content of phenolic compounds (+-catechin, (--epicatechin, p-coumaric acid, syringaldehyde, rutin, vanillic acid, and trans-resveratrol were analysed in cultivated cells as well as in cultivation medium. Pch-treatment increased production of total polyphenols the most significantly 15 min after the elicitation and in optimal time was 2.86 times higher than in nonelicited culture and 1.44 times higher than in MeJa induced cell culture.

  7. Overexpression of a thaumatin-like protein gene from Vitis amurensis improves downy mildew resistance in Vitis vinifera grapevine.

    Science.gov (United States)

    He, Rongrong; Wu, Jiao; Zhang, Yali; Agüero, Cecilia B; Li, Xinlong; Liu, Shaoli; Wang, Chaoxia; Walker, M Andrew; Lu, Jiang

    2017-07-01

    Downy mildew is a highly destructive disease in grapevine production. A gene encoding pathogenesis-related (PR) thaumatin-like protein was isolated from the downy mildew-resistant grapevine "Zuoshan-1," a clonal selection from wild Vitis amurensis Rupr. The predicted thaumatin-like protein (VaTLP) has 225 amino acids and it is acidic, with a calculated isoelectric point of 4.8. The full length of the VaTLP gene was transformed into somatic embryogenic calli of V. vinifera 'Thompson Seedless' via Agrobacterium tumefaciens. Real-time RT-PCR confirmed that the VaTLP gene was expressed at a high level in the transgenic grapevines. Improved resistance of the transgenic lines against downy mildew was evaluated using leaf disks and whole plants inoculated with Plasmopara viticola, the pathogen causing grapevine downy mildew disease. Bioassay of the pathogen showed that both hyphae growth and asexual reproduction were inhibited significantly among the transgenic plants. Histological analysis also confirmed this disease resistance by demonstrating the inhibition and malformation of hyphae development in leaf tissue of the transgenic plants. These results indicated that the accumulation of VaTLP could enhance resistance to P. viticola in transgenic 'Thompson Seedless' grapevines.

  8. Sequencing and assembly of highly heterozygous genome of Vitis vinifera L. cv Pinot Noir: problems and solutions.

    Science.gov (United States)

    Zharkikh, Andrey; Troggio, Michela; Pruss, Dmitry; Cestaro, Alessandro; Eldrdge, Glenn; Pindo, Massimo; Mitchell, Jeff T; Vezzulli, Silvia; Bhatnagar, Satish; Fontana, Paolo; Viola, Roberto; Gutin, Alexander; Salamini, Francesco; Skolnick, Mark; Velasco, Riccardo

    2008-08-31

    A new approach to sequencing and assembling a highly heterozygous genome, that of grape, species Vitis vinifera cv Pinot Noir, is described. The combining of genome shotgun of paired reads produced by Sanger sequencing and sequencing by synthesis of unpaired reads was shown to be an efficient procedure for decoding a complex genome. About 2 million SNPs and more than a million heterozygous gaps have been identified in the 500 Mb genome of grape. More than 91% of the sequence assembled into 58,611 contigs is now anchored to the 19 linkage groups of V. vinifera.

  9. Food coloring agents and plant food supplements derived from Vitis vinifera: a new source of human exposure to ochratoxin A.

    Science.gov (United States)

    Solfrizzo, Michele; Piemontese, Luca; Gambacorta, Lucia; Zivoli, Rosanna; Longobardi, Francesco

    2015-04-08

    Grape pomaces are increasingly being used as starting material in the industrial production of plant food supplements (PFS), food coloring, and tartrates, but they are at risk of ochratoxin A (OTA) contamination, a mycotoxin with nephrotoxic and carcinogenic effects. We analyzed 24 commercial PFS and 13 food coloring samples derived from Vitis vinifera, mainly pomaces, using a HPLC-FLD method for OTA determination. OTA was found in 75% of PFS samples and 69% of food coloring samples at levels of vinifera suggests that maximum permitted level(s) should be established for this mycotoxin in these products.

  10. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera

    Directory of Open Access Journals (Sweden)

    Pezzotti Mario

    2010-12-01

    Full Text Available Abstract Background The AP2/ERF protein family contains transcription factors that play a crucial role in plant growth and development and in response to biotic and abiotic stress conditions in plants. Grapevine (Vitis vinifera is the only woody crop whose genome has been fully sequenced. So far, no detailed expression profile of AP2/ERF-like genes is available for grapevine. Results An exhaustive search for AP2/ERF genes was carried out on the Vitis vinifera genome and their expression profile was analyzed by Real-Time quantitative PCR (qRT-PCR in different vegetative and reproductive tissues and under two different ripening stages. One hundred and forty nine sequences, containing at least one ERF domain, were identified. Specific clusters within the AP2 and ERF families showed conserved expression patterns reminiscent of other species and grapevine specific trends related to berry ripening. Moreover, putative targets of group IX ERFs were identified by co-expression and protein similarity comparisons. Conclusions The grapevine genome contains an amount of AP2/ERF genes comparable to that of other dicot species analyzed so far. We observed an increase in the size of specific groups within the ERF family, probably due to recent duplication events. Expression analyses in different aerial tissues display common features previously described in other plant systems and introduce possible new roles for members of some ERF groups during fruit ripening. The presented analysis of AP2/ERF genes in grapevine provides the bases for studying the molecular regulation of berry development and the ripening process.

  11. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera.

    Science.gov (United States)

    Licausi, Francesco; Giorgi, Federico M; Zenoni, Sara; Osti, Fabio; Pezzotti, Mario; Perata, Pierdomenico

    2010-12-20

    The AP2/ERF protein family contains transcription factors that play a crucial role in plant growth and development and in response to biotic and abiotic stress conditions in plants. Grapevine (Vitis vinifera) is the only woody crop whose genome has been fully sequenced. So far, no detailed expression profile of AP2/ERF-like genes is available for grapevine. An exhaustive search for AP2/ERF genes was carried out on the Vitis vinifera genome and their expression profile was analyzed by Real-Time quantitative PCR (qRT-PCR) in different vegetative and reproductive tissues and under two different ripening stages.One hundred and forty nine sequences, containing at least one ERF domain, were identified. Specific clusters within the AP2 and ERF families showed conserved expression patterns reminiscent of other species and grapevine specific trends related to berry ripening. Moreover, putative targets of group IX ERFs were identified by co-expression and protein similarity comparisons. The grapevine genome contains an amount of AP2/ERF genes comparable to that of other dicot species analyzed so far. We observed an increase in the size of specific groups within the ERF family, probably due to recent duplication events. Expression analyses in different aerial tissues display common features previously described in other plant systems and introduce possible new roles for members of some ERF groups during fruit ripening. The presented analysis of AP2/ERF genes in grapevine provides the bases for studying the molecular regulation of berry development and the ripening process.

  12. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera

    Science.gov (United States)

    2010-01-01

    Background The AP2/ERF protein family contains transcription factors that play a crucial role in plant growth and development and in response to biotic and abiotic stress conditions in plants. Grapevine (Vitis vinifera) is the only woody crop whose genome has been fully sequenced. So far, no detailed expression profile of AP2/ERF-like genes is available for grapevine. Results An exhaustive search for AP2/ERF genes was carried out on the Vitis vinifera genome and their expression profile was analyzed by Real-Time quantitative PCR (qRT-PCR) in different vegetative and reproductive tissues and under two different ripening stages. One hundred and forty nine sequences, containing at least one ERF domain, were identified. Specific clusters within the AP2 and ERF families showed conserved expression patterns reminiscent of other species and grapevine specific trends related to berry ripening. Moreover, putative targets of group IX ERFs were identified by co-expression and protein similarity comparisons. Conclusions The grapevine genome contains an amount of AP2/ERF genes comparable to that of other dicot species analyzed so far. We observed an increase in the size of specific groups within the ERF family, probably due to recent duplication events. Expression analyses in different aerial tissues display common features previously described in other plant systems and introduce possible new roles for members of some ERF groups during fruit ripening. The presented analysis of AP2/ERF genes in grapevine provides the bases for studying the molecular regulation of berry development and the ripening process. PMID:21171999

  13. Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions

    Science.gov (United States)

    2010-01-01

    Background Unlike in tomato, little is known about the genetic and molecular control of fleshy fruit development of perennial fruit trees like grapevine (Vitis vinifera L.). Here we present the study of the sequence polymorphism in a 1 Mb grapevine genome region at the top of chromosome 18 carrying the fleshless berry mutation (flb) in order, first to identify SNP markers closely linked to the gene and second to search for possible signatures of domestication. Results In total, 62 regions (17 SSR, 3 SNP, 1 CAPS and 41 re-sequenced gene fragments) were scanned for polymorphism along a 3.4 Mb interval (85,127-3,506,060 bp) at the top of the chromosome 18, in both V. vinifera cv. Chardonnay and a genotype carrying the flb mutation, V. vinifera cv. Ugni Blanc mutant. A nearly complete homozygosity in Ugni Blanc (wild and mutant forms) and an expected high level of heterozygosity in Chardonnay were revealed. Experiments using qPCR and BAC FISH confirmed the observed homozygosity. Under the assumption that flb could be one of the genes involved into the domestication syndrome of grapevine, we sequenced 69 gene fragments, spread over the flb region, representing 48,874 bp in a highly diverse set of cultivated and wild V. vinifera genotypes, to identify possible signatures of domestication in the cultivated V. vinifera compartment. We identified eight gene fragments presenting a significant deviation from neutrality of the Tajima's D parameter in the cultivated pool. One of these also showed higher nucleotide diversity in the wild compartments than in the cultivated compartments. In addition, SNPs significantly associated to berry weight variation were identified in the flb region. Conclusions We observed the occurrence of a large homozygous region in a non-repetitive region of the grapevine otherwise highly-heterozygous genome and propose a hypothesis for its formation. We demonstrated the feasibility to apply BAC FISH on the very small grapevine chromosomes and provided

  14. Stable MSAP markers for the distinction of Vitis vinifera cv Pinot noir clones.

    Science.gov (United States)

    Ocaña, Juan; Walter, Bernard; Schellenbaum, Paul

    2013-11-01

    Grapevine is one of the most economically important fruit crops. Molecular markers have been used to study grapevine diversity. For instance, simple sequence repeats are a powerful tool for identification of grapevine cultivars, while amplified fragment length polymorphisms have shown their usefulness in intra-varietal diversity studies. Other techniques such as sequence-specific amplified polymorphism are based on the presence of mobile elements in the genome, but their detection lies upon their activity. Relevant attention has been drawn toward epigenetic sources of variation. In this study, a set of Vitis vinifera cv Pinot noir clones were analyzed using the methylation-sensitive amplified polymorphism technique with isoschizomers MspI and HpaII. Nine out of fourteen selective primer combinations were informative and generated two types of polymorphic fragments which were categorized as "stable" and "unstable." In total, 23 stable fragments were detected and they discriminated 92.5 % of the studied clones. Detected stable polymorphisms were either common to several clones, restricted to a few clones or unique to a single clone. The identification of these stable epigenetic markers will be useful in clonal diversity studies. We highlight the relevance of stable epigenetic variation in V. vinifera clones and analyze at which level these markers could be applicable for the development of forthright techniques for clonal distinction.

  15. Core Microbiota and Metabolome of Vitis vinifera L. cv. Corvina Grapes and Musts.

    Science.gov (United States)

    Stefanini, Irene; Carlin, Silvia; Tocci, Noemi; Albanese, Davide; Donati, Claudio; Franceschi, Pietro; Paris, Michele; Zenato, Alberto; Tempesta, Silvano; Bronzato, Alberto; Vrhovsek, Urska; Mattivi, Fulvio; Cavalieri, Duccio

    2017-01-01

    The composition and changes of the fungal population and of the metabolites present in grapes and in ferments of Vitis vinifera L. cv. Corvina, one of the major components of the Amarone musts, were dissected aiming at the identification of constant characteristics possibly influenced by the productive process. The fungal populations and metabolomic profiles were analyzed in three different vintages. 454-pyrosequencing on the ribosomal ITS1 region has been used to identify the fungal population present in Corvina grapes and fresh must. Samples were also subjected to metabolomics analysis measuring both free volatile compounds and glycosylated aroma precursors through an untargeted approach with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Albeit strongly dependent on the climate, both the mycobiota and metabolome of Corvina grapes and fresh musts show some characteristics recursive in different vintages. Such persistent characteristics are likely determined by the method adopted to produce Amarone or other dry wines made from partially dried grapes. In particular, the harsh conditions imposed by the prolonged withering appear to contribute to the shaping of the fungal populations. The fungal genera and metabolites present in different vintages in V. vinifera L. cv. Corvina grapes and fresh musts represent core components of the peculiar technique of production of Amarone. Their identification allows the in-depth understanding and improved control of the process of production of this economically and culturally relevant wine.

  16. Spatial Distribution of Plant-Parasitic Nematodes in Semi-Arid Vitis vinifera Vineyards in Washington.

    Science.gov (United States)

    Howland, Amanda D; Schreiner, R Paul; Zasada, Inga A

    2014-12-01

    The most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards are Meloidogyne hapla, Mesocriconema xenoplax, Pratylenchus spp., Xiphinema americanum, and Paratylenchus sp.; however, little is known about their distribution in the soil profile. The vertical and horizontal spatial distribution of plant-parasitic nematodes was determined in two Washington V. vinifera vineyards. Others variables measured in these vineyards included soil moisture content, fine root biomass, and root colonization by arbuscular mycorhizal fungi (AMF). Meloidogyne hapla and M. xenoplax were aggregated under irrigation emitters within the vine row and decreased with soil depth. Conversely, Pratylenchus spp. populations were primarily concentrated in vineyard alleyways and decreased with depth. Paratylenchus sp. and X. americanum were randomly distributed within the vineyards. Soil water content played a dominant role in the distribution of fine roots and plant-parasitic nematodes. Colonization of fine roots by AMF decreased directly under irrigation emitters; in addition, galled roots had lower levels of AMF colonization compared with healthy roots. These findings will help facilitate sampling and management decisions for plant-parasitic nematodes in Washington semi-arid vineyards.

  17. Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Valletta, Alessio [“Sapienza” University of Rome, Department of Environmental Biology (Italy); Chronopoulou, Laura; Palocci, Cleofe, E-mail: cleofe.palocci@uniroma1.it [“Sapienza” University of Rome, Department of Chemistry (Italy); Baldan, Barbara [University of Padua, Department of Biology (Italy); Donati, Livia; Pasqua, Gabriella [“Sapienza” University of Rome, Department of Environmental Biology (Italy)

    2014-12-15

    Poly(lactic-co-glycolic) acid (PLGA)-based NPs are currently considered among the most promising drug carriers, nevertheless their use in plants has never been investigated. In this work, for the first time, we demonstrated the ability of PLGA NPs to cross the plant cell wall and membrane of Vitis vinifera cell cultures and grapevine-pathogenic fungi. By means of fluorescence microscopy, we established that PLGA NPs can enter in grapevine leaf tissues through stomata openings and that they can be absorbed by the roots and transported to the shoot through vascular tissues. TEM analysis on cultured cells showed that NPs ≤ 50 nm could enter cells, while bigger ones remained attached to the cell wall. Viability tests demonstrated that PLGA NPs were not cytotoxic for V. vinifera-cultured cells. The cellular uptake of PLGA NPs by some important grapevine-pathogenic fungi has also been observed, thus suggesting that PLGA NPs could be used to deliver antifungal compounds within fungal cells. Overall the results reported suggest that such NPs may play a key role in future developments of agrobiotechnologies, as it is currently happening in biomedicine.

  18. Steroid 5β-Reductase from Leaves of Vitis vinifera: Molecular Cloning, Expression, and Modeling.

    Science.gov (United States)

    Ernst, Mona; Munkert, Jennifer; Campa, Manuela; Malnoy, Mickael; Martens, Stefan; Müller-Uri, Frieder

    2015-11-25

    A steroid 5β-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5β-reductase activity when progesterone was used as a substrate. The reaction was stereoselective, producing only 5β-products such as 5β-pregnane-3,20-dione. Other small substrates (terpenoids and enones) were also accepted as substrates, indicating the highly promiscuous character of the enzyme class. Our results show that the steroid 5β-reductase gene, encoding an orthologous enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in leaves of the cardenolide-free plant V. vinifera. We emphasize the fact that, on some occasions, different reductases (e.g., progesterone 5β-reductase and monoterpenoid reductase) can also use molecules that are similar to the final products as a substrate. Therefore, in planta, the different reductases may contribute to the immense number of diverse small natural products finally leading to the flavor of wine.

  19. Genome-wide and molecular evolution analysis of the subtilase gene family in Vitis vinifera.

    Science.gov (United States)

    Cao, Jun; Han, Xi; Zhang, Ticao; Yang, Yongping; Huang, Jinling; Hu, Xiangyang

    2014-12-16

    Vitis vinifera (grape) is one of the most economically significant fruit crops in the world. The availability of the recently released grape genome sequence offers an opportunity to identify and analyze some important gene families in this species. Subtilases are a group of subtilisin-like serine proteases that are involved in many biological processes in plants. However, no comprehensive study incorporating phylogeny, chromosomal location and gene duplication, gene organization, functional divergence, selective pressure and expression profiling has been reported so far for the grape. In the present study, a comprehensive analysis of the subtilase gene family in V. vinifera was performed. Eighty subtilase genes were identified. Phylogenetic analyses indicated that these subtilase genes comprised eight groups. The gene organization is considerably conserved among the groups. Distribution of the subtilase genes is non-random across the chromosomes. A high proportion of these genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the subtilase gene family. Analyses of divergence and adaptive evolution show that while purifying selection may have been the main force driving the evolution of grape subtilases, some of the critical sites responsible for the divergence may have been under positive selection. Further analyses of real-time PCR data suggested that many subtilase genes might be important in the stress response and functional development of plants. Tandem duplications as well as purifying and positive selections have contributed to the functional divergence of subtilase genes in V. vinifera. The data may contribute to a better understanding of the grape subtilase gene family.

  20. Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinct defense strategies against powdery mildew.

    Science.gov (United States)

    Amrine, Katherine C H; Blanco-Ulate, Barbara; Riaz, Summaira; Pap, Dániel; Jones, Laura; Figueroa-Balderas, Rosa; Walker, M Andrew; Cantu, Dario

    2015-01-01

    Grape powdery mildew (PM), caused by the biotrophic ascomycete Erysiphe necator, is a devastating fungal disease that affects most Vitis vinifera cultivars. We have previously identified a panel of V. vinifera accessions from Central Asia with partial resistance to PM that possess a Ren1-like local haplotype. In this study, we show that in addition to the typical Ren1-associated late post-penetration resistance, these accessions display a range of different levels of disease development suggesting that alternative alleles or additional genes contribute to determining the outcome of the interaction with the pathogen. To identify potential Ren1-dependent transcriptional responses and functions associated with the different levels of resistance, we sequenced and analyzed the transcriptomes of these Central Asian accessions at two time points of PM infection. Transcriptomes were compared to identify constitutive differences and PM-inducible responses that may underlie their disease resistant phenotype. Responses to E. necator in all resistant accessions were characterized by an early up-regulation of 13 genes, most encoding putative defense functions, and a late down-regulation of 32 genes, enriched in transcriptional regulators and protein kinases. Potential Ren1-dependent responses included a hotspot of co-regulated genes on chromosome 18. We also identified 81 genes whose expression levels and dynamics correlated with the phenotypic differences between the most resistant accessions 'Karadzhandahal', DVIT3351.27, and O34-16 and the other genotypes. This study provides a first exploration of the functions associated with varying levels of partial resistance to PM in V. vinifera accessions that can be exploited as sources of genetic resistance in grape breeding programs.

  1. Leaf blade and petiole nutritional evolution and variability throughout the crop season for Vitis vinifera L. cv. Graciano

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, N.; García-Escudero, N.; Romero, I.; Benito, A.; Martín, I.

    2015-07-01

    An adequate nutritional state of a crop can be kept by means of a well-designed fertilization plan based on the assessment of the nutrient availability throughout the growing season. The objective of this study was to determine the reliability of leaf blade and petiole diagnosis and the period of validity of their references at both flowering and veraison by means of systematic monitoring throughout the complete growing season. The study was carried out in two plots planted with Vitis vinifera L. cv. Graciano within the AOC Rioja (Spain). Blades and petioles were collected throughout a growing season (2006) and total N, P, K, Ca, Mg, Fe, Mn, Zn, Cu and B concentrations were analyzed in both tissues. Results suggest, in general, that petioles have higher variability and lower analysis reproducibility than blades. Therefore, blade could be a more appropriate tissue to evaluate N, P, K, Ca, and Mg at both flowering and veraison in this variety. Micronutrients in blade and petiole showed different variability behaviour in each of the vineyards studied, therefore, based on our results, it was difficult to determine which one could be the best tissue for the nutritional diagnosis of the ‘Graciano’ variety. Seasonal changes of nutrient concentration in both tissues also confirmed the need for reference values for each tissue and each phenological stage. (Author)

  2. Spatio-temporal relief from hypoxia and production of reactive oxygen species during bud burst in grapevine (Vitis vinifera L.)

    OpenAIRE

    Meitha, K; Konnerup, D; Colmer, TD; Considine, JA; Foyer, CH; Considine, MJ

    2015-01-01

    Background and Aims: Plants regulate cellular oxygen partial pressures (pO2), together with reduction/ oxidation (redox) state to manage rapid developmental transitions such as bud burst after a period of quiescence. However, our understanding of pO2 regulation in complex meristematic organs such as buds is incomplete, and particularly lacks spatial resolution. Methods: The gradients in pO2 from the outer scales to the primary meristem complex were measured in grapevine (Vitis vinifera L.) bu...

  3. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways

    OpenAIRE

    Domingos, Sara; Scafidi, Pietro; Cardoso, Vania; Leitao, Antonio E.; Di Lorenzo, Rosario; Oliveira,Cristina M.; Goulao, Luis F.

    2015-01-01

    Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as sh...

  4. Shared and divergent pathways for flower abscission are triggered by gibberellic acid and carbon starvation in seedless Vitis vinifera L

    OpenAIRE

    Domingos, Sara; Fino, Joana; Cardoso, Vânia; Sánchez, Claudia; Ramalho, José C.; Larcher, Roberto; Paulo, Octávio S.; Oliveira,Cristina M.; Goulão, Luis F.

    2016-01-01

    Background Abscission is a highly coordinated developmental process by which plants control vegetative and reproductive organs load. Aiming at get new insights on flower abscission regulation, changes in the global transcriptome, metabolome and physiology were analyzed in ?Thompson Seedless? grapevine (Vitis vinifera L.) inflorescences, using gibberellic acid (GAc) spraying and shading as abscission stimuli, applied at bloom. Results Natural flower drop rates increased from 63.1?% in non-trea...

  5. Electronic Nose Analysis of Cabernet Sauvignon (Vitis vinifera L.) Grape and Wine Volatile Differences during Cold Soak and Postfermentation

    OpenAIRE

    Gardner, D. M.; Zoecklein, B. W.; Mallikarjunan, K.

    2011-01-01

    Cold soak is a prefermentation maceration process at cold temperatures, traditionally used to enhance red wine color. This study monitored changes in Vitis vinifera L. cv. Cabernet Sauvignon volatiles using a commercial conducting polymer electronic nose (ENose) during a five-day cold soak and postfermentation. Principal component analysis (PCA) of juice volatiles detected by the ENose during cold soak showed PCI accounted for 95.7% of the variation. Various volatile associations were made wi...

  6. Acclimatization of 'VR043-43' (Vitis vinifera x Vitis rotundifolia grapevine rootstock Aclimatização do porta-enxerto de videira 'VR043-43' (Vitis vinifera x Vitis rotundifolia

    Directory of Open Access Journals (Sweden)

    Marília Pereira Machado

    2010-08-01

    Full Text Available The pre-acclimatization stage can be used to improve micropropagation protocols and increase the yield of produced plants. The influence of sucrose and photon flux density (PFD levels on the acclimatization of in vitro-grown 'VR043-43' (Vitis vinifera x Vitis rotundifolia grapevine rootstocks was evaluated. Rooted shoots were obtained from 4-week-old in vitro shoots cultivated in QL (Quoirin and Lepoivre, 1977 culture medium supplemented with 15, 30 and 45 g L-1 of sucrose. The experiment was kept in a 25 ± 2ºC growth room, under 16-h photoperiod and PFD of 18 µmol m-2 s-1 or 43 µmol m-2 s-1. Plants were transferred to an intermittent misting system greenhouse for 10 d followed by 20 d of once-a-day watering routine using a handheld hose. Plant height was influenced by sucrose concentration, and shoots produced on media supplemented with 30 g L-1 sucrose were the tallest (5.0 cm. The largest leaf area was obtained with 31.3 g L-1 of sucrose, under the PFD of 43 µmol m-2 s-1 (13.3 cm². Absence of sucrose in the culture medium led to a significant reduction in leaf area at both PFDs. Shoot (aerial part dry matter was largest when 30 or 45 g L-1 of sucrose (17.5 and 16.7 mg per plant, respectively were used. Microcuttings rooted in all sucrose concentrations tested. The highest survival percentage (100% during ex vitro acclimatization was obtained for shoots cultured in media supplemented with 45 g L-1 of sucrose under both PFDs tested.A fase de pré-aclimatização pode ser utilizada para aperfeiçoar os protocolos de micropropagação e aumentar o rendimento na produção de mudas. Avaliou-se a influência da sacarose e níveis de densidade de fluxo de fóton (DFF in vitro, na sobrevivência das mudas do porta-enxerto de videira 'VR043-43'(Vitis vinifera x Vitis rotundifolia, na fase de aclimatização. Microestacas obtidas de brotações in vitro foram cultivadas em meio de cultura QL suplementado 15, 30 e 45 g L-1 de sacarose. O

  7. Effects of fludioxonil and pyrimethanil, two fungicides used against Botrytis cinerea, on carbohydrate physiology in Vitis vinifera L.

    Science.gov (United States)

    Saladin, Gaëlle; Magné, Christian; Clément, Christophe

    2003-10-01

    In Vitis vinifera L, photosynthesis and photosynthate partitioning are affected in the presence of fludioxonil and pyrimethanil, two fungicides commonly used in vineyards against Botrytis cinerea Pers. However, the effects were found to be different according to the model studied: plantlets (cv Chardonnay) grown in vitro, fruiting cuttings (cv Chardonnay) and plants grown in vineyards (cvs Chardonnay, Pinot noir and Pinot Meunier). In the plantlets grown in vitro, both fungicides decreased gas exchanges, photosynthetic pigment and starch concentrations in the leaves, whereas soluble carbohydrates transiently accumulated, suggesting that plantlets mobilised starch in response to photosynthesis inhibition caused by fungicides. In the fruiting cuttings, the fungicides did not affect photosynthesis, although fludioxonil caused starch decrease in parallel with sucrose accumulation, suggesting that the fungicide effects were of lower intensity than in vitro. Conversely, in vineyard, the two fungicides stimulated photosynthesis and increased pigment concentrations in the three vine cultivars tested. In the meantime, glucose, fructose and starch levels of the leaves declined after fungicide exposure, whereas sucrose accumulated, indicating that sucrose synthesis increased in the leaves following the fungicide treatment. Among the three varieties, Chardonnay was the most sensitive to the fungicides as revealed by the intensity of the responses and the longer period for recovery. In vineyard, the results suggested that the two fungicides, in addition to inhibiting B cinerea development, had a beneficial effect on vine physiology through the stimulation of leaf carbon nutrition, which may further enable the plant to rapidly make use of its defence reactions.

  8. NMR-based phytochemical analysis of Vitis vinifera cv Falanghina leaves. Characterization of a previously undescribed biflavonoid with antiproliferative activity.

    Science.gov (United States)

    Tartaglione, Luciana; Gambuti, Angelita; De Cicco, Paola; Ercolano, Giuseppe; Ianaro, Angela; Taglialatela-Scafati, Orazio; Moio, Luigi; Forino, Martino

    2018-03-01

    Vitis vinifera cv Falanghina is an ancient grape variety of Southern Italy. A thorough phytochemical analysis of the Falanghina leaves was conducted to investigate its specialised metabolite content. Along with already known molecules, such as caftaric acid, quercetin-3-O-β-d-glucopyranoside, quercetin-3-O-β-d-glucuronide, kaempferol-3-O-β-d-glucopyranoside and kaempferol-3-O-β-d-glucuronide, a previously undescribed biflavonoid was identified. For this last compound, a moderate bioactivity against metastatic melanoma cells proliferation was discovered. This datum can be of some interest to researchers studying human melanoma. The high content in antioxidant glycosylated flavonoids supports the exploitation of grape vine leaves as an inexpensive source of natural products for the food industry and for both pharmaceutical and nutraceutical companies. Additionally, this study offers important insights into the plant physiology, thus prompting possible technological researches of genetic selection based on the vine adaptation to specific pedo-climatic environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): effects on aroma evolution and wine sensory profile.

    Science.gov (United States)

    Alessandrini, Massimiliano; Gaiotti, Federica; Belfiore, Nicola; Matarese, Fabiola; D'Onofrio, Claudio; Tomasi, Diego

    2017-07-01

    Environmental factors have been acknowledged to greatly influence grape and wine aromas. Among them, the effect of altitude on grape aroma compounds has scarcely been debated in literature available to date. In the present study, we investigated the influence of altitude on grape composition and aroma evolution during ripening of Vitis vinifera L. cultivar Glera grown in Conegliano-Valdobbiadene DOCG area (Italy). The site at highest altitude (380 m above sea level) was warmer than the lowest site (200 m above sea level) and, even with differences in temperature in the range 1.5-2 °C, the impact of the cultivation site on grape ripening and aroma accumulation and preservation was significant. The lowest site demonstrated slower grape ripening, and grapes at harvest accumulated lower amounts of all of the main classes of aroma compounds typical of the Glera variety. Wines produced from the highest site were preferred in tasting trials for their more patent floral notes and elegance. Altitude strongly influences grape ripening evolution and flavour accumulation in the Glera grape, and this result accounts for the different styles in the sparkling wines subsequently produced. Moreover, the present study shows that aroma compound biosynthesis, particularly that of benzenoides, starts before véraison in Glera. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Vine vigor and cluster uniformity on Vitis vinifera L. seed procyanidin composition in a warm Mediterranean climate

    Directory of Open Access Journals (Sweden)

    Maite Edo-Roca

    2014-07-01

    Full Text Available Seed procyanidin composition of Vitis vinifera L. var. ˈCarignanˈ and ˈGrenacheˈ was analyzed to assess the impact of vintage climatology, plant vigor and bunch variability on the quality of grapes. This study was carried out over 2007 and 2008 vintages in Terra Alta denomination of origin (DO. This region is located in northeastern Spain and characterized by a Mediterranean climate with a continental tendency. Procyanidin composition of seeds from four vineyards was analyzed by rapid resolution liquid chromatography (RRLC-DAD-TOF/MS. Vintage, vigor and ripeness uniformity had an influence on the procyanidin concentration in seeds. Flavan-3-ol polymerization increased during the warm year, together with a notable dependence on the variety and vine vigor. In warmer years and low vigor, ˈGrenacheˈ seed composition is likely to be more vulnerable than ˈCarignanˈ. High levels of flavan-3-ol monomers and low polymerization characterized the seeds of the temperate year.

  11. The comparative analysis of the potential relationship between resveratrol and stilbene synthase gene family in the development stages of grapes (Vitis quinquangularis and Vitis vinifera).

    Science.gov (United States)

    Shi, Jiangli; He, Mingyang; Cao, Jiangling; Wang, Huan; Ding, Jiahua; Jiao, Yuntong; Li, Ruimin; He, Jing; Wang, Dan; Wang, Yuejin

    2014-01-01

    Resveratrol is positively correlated with grapevine disease resistance and its consumption is also highly beneficial to human health. HPLC analyses showed that resveratrol content was significantly higher in most wild Chinese grapevines than in most European Vitis vinifera grapevine cvs. Fruit of the wild Chinese genotype Vitis quinquangularis Danfeng-2 contains much higher levels of resveratrol than some others. Because stilbene synthase is responsible for resveratrol biosynthesis, 41 full-length stilbene synthase genes were isolated from Danfeng-2 using the RACE method. A neighbor-joining tree of the STS family displayed high similarity between Danfeng-2 and V. vinifera cv. Pinot Noir. The content of the endogenous stilbene synthase family in tissues and the expression levels induced by powdery mildew were both higher in Danfeng-2 than in Pinot Noir. Moreover, expression in the berry was significantly higher than in the leaves. Our results demonstrated that resveratrol accumulation was consistent with endogenous STS gene expressions, and that both were higher in Danfeng-2 than in Pinot Noir. Therefore, STS genes and producing resveratrol from V. quinquangularis played more important role in Vitis resistance. Otherwise, the gene VqSTS6 was markedly higher than the other VqSTS genes in the six tissues/organs assayed by Real-time PCR, which will offer a useful basis for commercial application of resveratrol from Chinese wild grapes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Study of genetic variability in Vitis vinifera L. germplasm by high-throughput Vitis18kSNP array: the case of Georgian genetic resources.

    Science.gov (United States)

    De Lorenzis, Gabriella; Chipashvili, Ramaz; Failla, Osvaldo; Maghradze, David

    2015-06-23

    Georgia, in the Caucasian region, is considered the first domestication centre of grapevine. This country is characterized by high morphological variability of cultivated (Vitis vinifera L. subsp. sativa (DC.) Hegi) and wild (Vitis vinifera L. subsp. sylvestris (Gmel.) Hegi) compartments. The main objective of this study was to investigate the level of genetic diversity obtained by the novel custom Vitis18kSNP array, in order to analyse 71 grapevine accessions representative of wild and cultivated Georgian germplasms. The number of loci successfully amplified was 15,317 out of 18,775 SNP and 79 % of loci resulted polymorphic. Sixty-eight unique profiles were identified, 42 for the sativa and 26 for the sylvestris compartment. Cluster analysis highlighted two main groups, one for cultivars and another for wild individuals, while a genetic structure according to accession taxonomic status and cultivar geographical origin was revealed by multivariate analysis, differentiating clearly the genotypes into 3 main groups, two groups including cultivars and one for wild individuals, even though a considerable overlapping area was observed. Pattern of genetic diversity structure presented an additional proof that grapevine domestication events took place in the Caucasian region contributing to the crop evolution. Our results demonstrated a moderate differentiation between sativa and sylvestris compartments, even though a connection between several samples of both subspecies may be assumed for the occurrence of cross hybridization events among native wild populations and the cultivated accessions. Nevertheless, first degree relationships have not been discovered between wild and cultivated individuals.

  13. A reference integrated map for cultivated grapevine (Vitis vinifera L.) from three crosses, based on 283 SSR and 501 SNP-based markers.

    Science.gov (United States)

    Vezzulli, Silvia; Troggio, Michela; Coppola, Giuseppina; Jermakow, Angelica; Cartwright, Dustin; Zharkikh, Andrey; Stefanini, Marco; Grando, M Stella; Viola, Roberto; Adam-Blondon, Anne-Françoise; Thomas, Mark; This, Patrice; Velasco, Riccardo

    2008-08-01

    We have developed an integrated map from five elite cultivars of Vitis vinifera L.; Syrah, Pinot Noir, Grenache, Cabernet Sauvignon and Riesling which are parents of three segregating populations. A new source of markers, SNPs, identified in ESTs and unique BAC-end sequences was added to the available IGGP reference set of SSRs. The complete integrated map comprises 1,134 markers (350 AFLP, 332 BESs, 169 ESTs, 283 SSRs) spanning 1,443 cM over 19 linkage groups and shows a mean distance between neighbouring loci of 1.27 cM. Marker order was mainly conserved between the integrated map and the highly dense SyrahxPinot Noir consensus map except for few inversions. Moreover, the marker order has been validated through the assembled genome sequence of Pinot Noir. We have also assessed the transferability of SNP-based markers among five V. vinifera varieties, enabling marker validation across different genotypes. This integrated map can serve as a fundamental tool for molecular breeding in V. vinifera and related species and provide a basis for studies of genome organization and evolution in grapevines.

  14. Immunolocalization of cell wall polymers in grapevine (Vitis vinifera) internodes under nitrogen, phosphorus or sulfur deficiency.

    Science.gov (United States)

    Fernandes, J C; Goulao, L F; Amâncio, S

    2016-11-01

    The impact on cell wall (CW) of the deficiency in nitrogen (-N), phosphorus (-P) or sulphur (-S), known to impair essential metabolic pathways, was investigated in the economically important fruit species Vitis vinifera L. Using cuttings as an experimental model a reduction in total internode number and altered xylem shape was observed. Under -N an increased internode length was also seen. CW composition, visualised after staining with calcofluor white, Toluidine blue and ruthenium red, showed decreased cellulose in all stresses and increased pectin content in recently formed internodes under -N compared to the control. Using CW-epitope specific monoclonal antibodies (mAbs), lower amounts of extensins incorporated in the wall were also observed under -N and -P conditions. Conversely, increased pectins with a low degree of methyl-esterification and richer in long linear 1,5-arabinan rhamnogalacturonan-I (RG-I) side chains were observed under -N and -P in mature internodes which, in the former condition, were able to form dimeric association through calcium ions. -N was the only condition in which 1,5-arabinan branched RG-I content was not altered, as -P and -S older internodes showed, respectively, lower and higher amounts of this polymer. Higher xyloglucan content in older internodes was also observed under -N. The results suggest that impairments of specific CW components led to changes in the deposition of other polymers to promote stiffening of the CW. The unchanged extensin amount observed under -S may contribute to attenuating the effects on the CW integrity caused by this stress. Our work showed that, in organized V. vinifera tissues, modifications in a given CW component can be compensated by synthesis of different polymers and/or alternative linking between polymers. The results also pinpoint different strategies at the CW level to overcome mineral stress depending on how essential they are to cell growth and plant development.

  15. How the Depletion in Mineral Major Elements Affects Grapevine (Vitis vinifera L. Primary Cell Wall

    Directory of Open Access Journals (Sweden)

    Luís F. Goulao

    2017-08-01

    Full Text Available The noteworthy fine remodeling that plant cell walls (CWs undergo to adapt to developmental, physiological and environmental cues and the observation that its composition and dynamics differ between species represents an opportunity to couple crop species agronomic studies with research on CW modifications. Vitis vinifera is one of the most important crops from an economic point-of-view due to the high value of the fruit, predominantly for winemaking. The availability of some information related to this species’ CWs allows researching its responses to imposed conditions that affect the plant’s development. Mineral deficiency, in particular nitrogen, phosphorus, potassium and sulfur, strongly affects plant metabolism, reducing both growth and crop yield. Despite the importance of mineral nutrition in development, its influence on CW synthesis and modifications is still insufficiently documented. Addressing this knowledge gap, V. vinifera experimental models were used to study CW responses to imposed mineral depletion in unorganized (callus and organized (shoots tissues. The discussion of the obtained results is the main focus of this review. Callus and shoots submitted to mineral restriction are impaired in specific CW components, predominantly cellulose. Reorganization on structure and deposition of several other polymers, in particular the degree and pattern of pectin methyl-esterification and the amount of xyloglucan (XyG, arabinan and extensin, is also observed. In view of recently proposed CW models that consider biomechanical hotspots and direct linkages between pectins and XyG/cellulose, the outcome of these modifications in explaining maintenance of CW integrity through compensatory stiffening can be debated. Nutrient stresses do not affect evenly all tissues with undifferentiated callus tissues showing more pronounced responses, followed by shoot mature internodes, and then newly formed internodes. The impact of nitrogen depletion

  16. How the Depletion in Mineral Major Elements Affects Grapevine (Vitis vinifera L.) Primary Cell Wall.

    Science.gov (United States)

    Goulao, Luís F; Fernandes, João C; Amâncio, Sara

    2017-01-01

    The noteworthy fine remodeling that plant cell walls (CWs) undergo to adapt to developmental, physiological and environmental cues and the observation that its composition and dynamics differ between species represents an opportunity to couple crop species agronomic studies with research on CW modifications. Vitis vinifera is one of the most important crops from an economic point-of-view due to the high value of the fruit, predominantly for winemaking. The availability of some information related to this species' CWs allows researching its responses to imposed conditions that affect the plant's development. Mineral deficiency, in particular nitrogen, phosphorus, potassium and sulfur, strongly affects plant metabolism, reducing both growth and crop yield. Despite the importance of mineral nutrition in development, its influence on CW synthesis and modifications is still insufficiently documented. Addressing this knowledge gap, V. vinifera experimental models were used to study CW responses to imposed mineral depletion in unorganized (callus) and organized (shoots) tissues. The discussion of the obtained results is the main focus of this review. Callus and shoots submitted to mineral restriction are impaired in specific CW components, predominantly cellulose. Reorganization on structure and deposition of several other polymers, in particular the degree and pattern of pectin methyl-esterification and the amount of xyloglucan (XyG), arabinan and extensin, is also observed. In view of recently proposed CW models that consider biomechanical hotspots and direct linkages between pectins and XyG/cellulose, the outcome of these modifications in explaining maintenance of CW integrity through compensatory stiffening can be debated. Nutrient stresses do not affect evenly all tissues with undifferentiated callus tissues showing more pronounced responses, followed by shoot mature internodes, and then newly formed internodes. The impact of nitrogen depletion leads to more

  17. Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection.

    Science.gov (United States)

    Dadakova, K; Havelkova, M; Kurkova, B; Tlolkova, I; Kasparovsky, T; Zdrahal, Z; Lochman, J

    2015-04-24

    Gray mold caused by Botrytis cinerea is one of the most important diseases of grapevine resulting in significant reductions in yield and fruit quality. In order to examine the molecular mechanisms that characterize the interaction between B. cinerea and the host plant, the grapevine cytoplasmic proteome was analyzed by two-dimensional polyacrylamide gel electrophoresis. The interaction between Vitis vinifera cv. Gamay cells and B. cinerea was characterized by the increase in spot abundance of 30 proteins, of which 21 were successfully identified. The majority of these proteins were related to defence and stress responses and to cell wall modifications. Some of the modulated proteins have been previously found to be affected by other pathogens when they infect V. vinifera but interestingly, the proteins related to cell wall modification that were influenced by B. cinerea have not been shown to be modulated by any other pathogen studied to date. Transcript analysis using the quantitative real time polymerase chain reaction additionally revealed the up-regulation of several acidic, probably extracellular, chitinases. The results indicate that cell wall strengthening, accumulation of PR proteins and excretion of lytic enzymes are likely to be important mechanisms in the defence of grapevine against B. cinerea. Although gray mold caused by Botrytis cinerea is one of the most important diseases of grapevine, little information is available about proteomic changes in this pathosystem. These results suggest that cell wall strengthening, accumulation of PR proteins and excretion of lytic enzymes are important molecular mechanisms in the defence of grapevine against B. cinerea. Surprisingly, the proteins related to cell wall modification that were modulated by B. cinerea have not been shown to be affected by any other pathogen studied to date. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Reference Gene Validation for Quantitative RT-PCR during Biotic and Abiotic Stresses in Vitis vinifera

    Science.gov (United States)

    Borges, Alexandre Filipe; Fonseca, Catarina; Ferreira, Ricardo Boavida; Lourenço, Ana Maria; Monteiro, Sara

    2014-01-01

    Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies. PMID:25340748

  19. How the Depletion in Mineral Major Elements Affects Grapevine (Vitis vinifera L.) Primary Cell Wall

    Science.gov (United States)

    Goulao, Luís F.; Fernandes, João C.; Amâncio, Sara

    2017-01-01

    The noteworthy fine remodeling that plant cell walls (CWs) undergo to adapt to developmental, physiological and environmental cues and the observation that its composition and dynamics differ between species represents an opportunity to couple crop species agronomic studies with research on CW modifications. Vitis vinifera is one of the most important crops from an economic point-of-view due to the high value of the fruit, predominantly for winemaking. The availability of some information related to this species’ CWs allows researching its responses to imposed conditions that affect the plant’s development. Mineral deficiency, in particular nitrogen, phosphorus, potassium and sulfur, strongly affects plant metabolism, reducing both growth and crop yield. Despite the importance of mineral nutrition in development, its influence on CW synthesis and modifications is still insufficiently documented. Addressing this knowledge gap, V. vinifera experimental models were used to study CW responses to imposed mineral depletion in unorganized (callus) and organized (shoots) tissues. The discussion of the obtained results is the main focus of this review. Callus and shoots submitted to mineral restriction are impaired in specific CW components, predominantly cellulose. Reorganization on structure and deposition of several other polymers, in particular the degree and pattern of pectin methyl-esterification and the amount of xyloglucan (XyG), arabinan and extensin, is also observed. In view of recently proposed CW models that consider biomechanical hotspots and direct linkages between pectins and XyG/cellulose, the outcome of these modifications in explaining maintenance of CW integrity through compensatory stiffening can be debated. Nutrient stresses do not affect evenly all tissues with undifferentiated callus tissues showing more pronounced responses, followed by shoot mature internodes, and then newly formed internodes. The impact of nitrogen depletion leads to more

  20. Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera.

    Directory of Open Access Journals (Sweden)

    Alexandre Filipe Borges

    Full Text Available Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood. The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies.

  1. Transcriptomic analysis of grape (Vitis vinifera L. leaves after exposure to ultraviolet C irradiation.

    Directory of Open Access Journals (Sweden)

    Huifen Xi

    Full Text Available BACKGROUND: Only a small amount of solar ultraviolet C (UV-C radiation reaches the Earth's surface. This is because of the filtering effects of the stratospheric ozone layer. Artificial UV-C irradiation is used on leaves and fruits to stimulate different biological processes in plants. Grapes are a major fruit crop and are grown in many parts of the world. Research has shown that UV-C irradiation induces the biosynthesis of phenols in grape leaves. However, few studies have analyzed the overall changes in gene expression in grape leaves exposed to UV-C. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, transcriptional responses were investigated in grape (Vitis vinifera L. leaves before and after exposure to UV-C irradiation (6 W·m-2 for 10 min using an Affymetrix Vitis vinifera (Grape Genome Array (15,700 transcripts. A total of 5274 differentially expressed probe sets were defined, including 3564 (67.58% probe sets that appeared at both 6 and 12 h after exposure to UV-C irradiation but not before exposure. A total of 468 (8.87% probe sets and 1242 (23.55% probe sets were specifically expressed at these times. The probe sets were associated with a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes, protein fate (i.e., HSPs, primary and secondary metabolism, and transcription factors. Interestingly, some of the genes involved in secondary metabolism, such as stilbene synthase, responded intensely to irradiation. Some of the MYB and WRKY family transcription factors, such as VvMYBPA1, VvMYB14, VvMYB4, WRKY57-like, and WRKY 65, were also strongly up-regulated (about 100 to 200 fold. CONCLUSIONS: UV-C irridiation has an important role in some biology processes, especially cell rescue, protein fate, secondary metabolism, and regulation of transcription.These results opened up ways of exploring the molecular mechanisms underlying the effects of UV-C irradiation on grape leaves and have

  2. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    Directory of Open Access Journals (Sweden)

    Atanassova Rossitza

    2010-11-01

    Full Text Available Abstract Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters, has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3, one polyol (VvPMT5 and one sucrose (VvSUC27 transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2 and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2 genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5, in roots (VvHT2 or in mature leaves (VvHT5. Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and

  3. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    Science.gov (United States)

    2010-01-01

    Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar

  4. Characterization of Vitis vinifera NPR1 homologs involved in the regulation of Pathogenesis-Related gene expression

    Science.gov (United States)

    Le Henanff, Gaëlle; Heitz, Thierry; Mestre, Pere; Mutterer, Jerôme; Walter, Bernard; Chong, Julie

    2009-01-01

    Background Grapevine protection against diseases needs alternative strategies to the use of phytochemicals, implying a thorough knowledge of innate defense mechanisms. However, signalling pathways and regulatory elements leading to induction of defense responses have yet to be characterized in this species. In order to study defense response signalling to pathogens in Vitis vinifera, we took advantage of its recently completed genome sequence to characterize two putative orthologs of NPR1, a key player in salicylic acid (SA)-mediated resistance to biotrophic pathogens in Arabidopsis thaliana. Results Two cDNAs named VvNPR1.1 and VvNPR1.2 were isolated from Vitis vinifera cv Chardonnay, encoding proteins showing 55% and 40% identity to Arabidopsis NPR1 respectively. Constitutive expression of VvNPR1.1 and VvNPR1.2 monitored in leaves of V. vinifera cv Chardonnay was found to be enhanced by treatment with benzothiadiazole, a SA analog. In contrast, VvNPR1.1 and VvNPR1.2 transcript levels were not affected during infection of resistant Vitis riparia or susceptible V. vinifera with Plasmopara viticola, the causal agent of downy mildew, suggesting regulation of VvNPR1 activity at the protein level. VvNPR1.1-GFP and VvNPR1.2-GFP fusion proteins were transiently expressed by agroinfiltration in Nicotiana benthamiana leaves, where they localized predominantly to the nucleus. In this system, VvNPR1.1 and VvNPR1.2 expression was sufficient to trigger the accumulation of acidic SA-dependent Pathogenesis-Related proteins PR1 and PR2, but not of basic chitinases (PR3) in the absence of pathogen infection. Interestingly, when VvNPR1.1 or AtNPR1 were transiently overexpressed in Vitis vinifera leaves, the induction of grapevine PR1 was significantly enhanced in response to P. viticola. Conclusion In conclusion, our data identified grapevine homologs of NPR1, and their functional analysis showed that VvNPR1.1 and VvNPR1.2 likely control the expression of SA-dependent defense genes

  5. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard

    Directory of Open Access Journals (Sweden)

    Giorgia Novello

    2017-08-01

    Full Text Available Microorganisms associated with Vitis vinifera (grapevine can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  6. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard.

    Science.gov (United States)

    Novello, Giorgia; Gamalero, Elisa; Bona, Elisa; Boatti, Lara; Mignone, Flavio; Massa, Nadia; Cesaro, Patrizia; Lingua, Guido; Berta, Graziella

    2017-01-01

    Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  7. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) and wine proanthocyanidins.

    Science.gov (United States)

    Cortell, Jessica M; Halbleib, Michael; Gallagher, Andrew V; Righetti, Timothy L; Kennedy, James A

    2005-07-13

    The relationships between variations in grapevine (Vitis vinifera L. cv. Pinot noir) growth and resulting fruit and wine phenolic composition were investigated. The study was conducted in a commercial vineyard consisting of the same clone, rootstock, age, and vineyard management practices. The experimental design involved monitoring soil, vine growth, yield components, and fruit composition (soluble solids, flavan-3-ol monomers, proanthocyanidins, and pigmented polymers) on a georeferenced grid pattern to assess patterns in growth and development. Vine vigor parameters (trunk cross-sectional area, average shoot length, and leaf chlorophyll) were used to delineate zones within both blocks to produce research wines to investigate the vine-fruit-wine continuum. There was no significant influence of vine vigor on the amount of proanthocyanidin per seed and only minimal differences in seed proanthocyanidin composition. However, significant increases were found in skin proanthocyanidin (mg/berry), proportion of (-)-epigallocatechin, average molecular mass of proanthocyanidins, and pigmented polymer content in fruit from zones with a reduction in vine vigor. In the wines produced from low-vigor zones, there was a large increase in the proportion of skin tannin extracted into the wine, whereas little change occurred in seed proanthocyanidin extraction. The level of pigmented polymers and proanthocyanidin molecular mass were higher in wines made from low-vigor fruit compared to wines made from high-vigor fruit, whereas the flavan-3-ol monomer concentration was lower.

  8. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family.

    Science.gov (United States)

    Guo, Chunlei; Guo, Rongrong; Xu, Xiaozhao; Gao, Min; Li, Xiaoqin; Song, Junyang; Zheng, Yi; Wang, Xiping

    2014-04-01

    WRKY proteins comprise a large family of transcription factors that play important roles in plant defence regulatory networks, including responses to various biotic and abiotic stresses. To date, no large-scale study of WRKY genes has been undertaken in grape (Vitis vinifera L.). In this study, a total of 59 putative grape WRKY genes (VvWRKY) were identified and renamed on the basis of their respective chromosome distribution. A multiple sequence alignment analysis using all predicted grape WRKY genes coding sequences, together with those from Arabidopsis thaliana and tomato (Solanum lycopersicum), indicated that the 59 VvWRKY genes can be classified into three main groups (I-III). An evaluation of the duplication events suggested that several WRKY genes arose before the divergence of the grape and Arabidopsis lineages. Moreover, expression profiles derived from semiquantitative PCR and real-time quantitative PCR analyses showed distinct expression patterns in various tissues and in response to different treatments. Four VvWRKY genes showed a significantly higher expression in roots or leaves, 55 responded to varying degrees to at least one abiotic stress treatment, and the expression of 38 were altered following powdery mildew (Erysiphe necator) infection. Most VvWRKY genes were downregulated in response to abscisic acid or salicylic acid treatments, while the expression of a subset was upregulated by methyl jasmonate or ethylene treatments.

  9. The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening.

    Science.gov (United States)

    Greer, Dennis H; Weedon, Mark M

    2013-01-01

    The heat event that occurred in many parts of Australia in 2009 was the worst on record for the past decade, with air temperatures exceeding 40(°)C for 14 days. Our aim was to assess the impacts of this heat event on vine performance, including ripening, yield, and gas exchange of Vitis vinifera cv. Semillon grown in a Riverina vineyard. To assess the affect of high temperatures on Semillon grapevines, the vines were covered with a protective layer to reduce radiant heating and were compared with vines exposed to ambient conditions. The heat event had major effects on ripening; reducing the rate of ripening by 50% and delaying harvest ripeness and causing a high incidence of berry shrivel and sunburn. Yield was not affected. Photosynthesis was reduced 35% by the heat event while transpiration increased nearly threefold and was accounted for by increased stomatal conductance. The conclusion of this study was that heat events delayed ripening in Semillon berries and caused a significant reduction in berry quality. Strategies to minimize the radiant load during heat events are required and this study has confirmed a protective layer can reduce canopy temperatures and enhance berry quality.

  10. The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening

    Directory of Open Access Journals (Sweden)

    Dennis H Greer

    2013-12-01

    Full Text Available The heat event that occurred in many parts of Australia in 2009 was the worst on record for the past decade, with air temperatures exceeding 40oC for 14 days. Our aim was to assess the impacts of this heat event on vine performance, including ripening, yield and gas exchange of Vitis vinifera cv. Semillon grown in a Riverina vineyard. To assess the affect of high temperatures on Semillon grapevines, the vines were covered with a protective layer to reduce radiant heating and were compared with vines exposed to ambient conditions. The heat event had major effects on ripening; reducing the rate by 50% and delaying harvest ripeness and causing a high incidence of berry shrivel and sunburn. Yield was not affected. Photosynthesis was reduced 35% by the heat event while transpiration increased nearly 3-fold and was accounted for by increased stomatal conductance. The conclusion of this study was that heat events delayed ripening in Semillon berries and caused a significant reduction in berry quality. Strategies to minimise the radiant load during heat events are required and this study has confirmed a protective layer can reduce canopy temperatures and enhance berry quality.

  11. Stress reactions in Vitis vinifera L. following soil application of the herbicide flumioxazin.

    Science.gov (United States)

    Saladin, Gaëlle; Magné, Christian; Clément, Christophe

    2003-10-01

    In order to evaluate the stress effects of flumioxazin (fmx) on grapevine, a non-target plant (Vitis vinifera L.), physiological parameters such as carbohydrate content, water status or nitrogenous metabolites were investigated on fruiting cuttings and plants grown in vineyard. In the leaves of cuttings, the soil-applied herbicide induced stress manifestations including a decrease of the dry weight percentage and the soluble carbohydrate content during the first week after treatment. Thereafter, a decrease of the osmotic potential was observed, as well as a decrease of total protein content and a parallel accumulation of free amino acids, including proline. Altogether, these results suggest that soil-applied fmx induced a stress in grapevines, leading to leaf proteolysis. However, this stress was partially recovered 3 weeks after herbicide application, suggesting that the cuttings were capable to adapt to the fmx exposure. In the vineyard, the flumioxazin effects were still significant 5 months after the treatment, particularly in the CH cv. They included a decrease of the leaf dry weight percentage and soluble carbohydrate content, as well as an increase of the osmotic potential. The decrease of leaf soluble carbohydrates may have dramatic consequences for the berry growth and the reserve constitution. Moreover, treated plants were characterized by a decrease of the free amino acid content and an accumulation of ammonium, while the protein level did not significantly increase, suggesting a degradation of amino acids. The alteration of carbon and nitrogen status after herbicide treatment may affect the grapevine vigour in a long term.

  12. The herbicide flumioxazin stimulates pathogenesis-related gene expression and enzyme activities in Vitis vinifera.

    Science.gov (United States)

    Castro, Antonio Jesús; Saladin, Gäelle; Bézier, Annie; Mazeyrat-Gourbeyre, Florence; Baillieul, Fabienne; Clément, Christophe

    2008-11-01

    In this work, the capacity of the soil-applied herbicide flumioxazin (fmx) to trigger defence mechanisms was assessed using 6-week-old in vitro grown Vitis vinifera L. plantlets. Time-course studies demonstrated that the herbicide induced the expression of basic beta-1,3-glucanase (Vvglu), basic chitinase (Vvchit1b) and PR10 (VvPR10.3) genes encoding three pathogenesis-related (PR) proteins involved in grapevine defence against pathogens. Thus, all transcripts accumulated in grapevine tissues to reach maximum values after 24-72 h of herbicide exposure, except for VvPR10.3 gene expression, which was induced in roots and stems but not in leaves. Induction of PR genes was observed to a greater extent in roots and leaves, and its intensity diminished in the stems although still remained noteworthy. The activities of beta-1,3-glucanase and chitinase enzymes significantly increased in the whole plant after herbicide exposure and were still stimulated 21 days after the beginning of treatments. Similarly, the most remarkable effect occurred in roots. However, all enzyme activities tested were stimulated in the upper aerial tissues as well, indicating that fmx or a derived product acts systemically, likely via root uptake.

  13. Geochemical characterization of elements in Vitis vinifera cv. Negroamaro grape berries grown under different soil managements.

    Science.gov (United States)

    Pepi, Salvatore; Coletta, Antonio; Crupi, Pasquale; Leis, Marilena; Russo, Sabrina; Sansone, Luigi; Tassinari, Renzo; Chicca, Milvia; Vaccaro, Carmela

    2016-04-01

    The present geochemical study concerns the impact of viticultural practices in the chemical composition of the grape cultivar "Negroamaro" in Apulia, a southern Italian region renowned for its quality wine. Three types of soil management (SM), two cover cropping with different mixtures, and a soil tillage were considered. For each SM, the vines were irrigated according to two irrigation levels. Chemical composition of soil and of berries of Vitis vinifera cultivar "Negroamaro" were analyzed by X-ray fluorescence, inductively coupled plasma-mass spectrometry and multivariate statistics (linear discrimination analysis). In detail, we investigated major and trace elements behavior in the soil according to irrigation levels, the related index of bioaccumulation (BA) and the relationship between trace element concentration and soil management in "Negroamaro" grapes. The results indicate that soil management affects the mobility of major and trace elements. A specific assimilation of these elements in grapes from vines grown under different soil management was confirmed by BA. Multivariate statistics allowed to associate the vines to the type of soil management. This geochemical characterization of elements could be useful to develop fingerprints of vines of the cultivar "Negroamaro" according to soil management and geographical origin.

  14. Transcriptional Analysis of Tendril and Inflorescence Development in Grapevine (Vitis vinifera L.)

    Science.gov (United States)

    Díaz-Riquelme, José; Martínez-Zapater, José M.; Carmona, María J.

    2014-01-01

    In grapevine (Vitis vinifera L.), the lateral meristem can give rise to either tendrils or inflorescences which are determined organs. To get insights into the processes of tendril and inflorescence development, we characterized the transcriptional variation taking place in both organs. The results of the global transcriptional analyses along tendril and inflorescence development suggested that these two homologous organs initially share a common transcriptional program related to cell proliferation and growth functions. In later developmental stages they showed organ specific gene expression programs related to the particular differentiation processes taking place in each organ. In this way, tendrils showed higher transcription of genes related to photosynthesis, hormone signaling and secondary metabolism than inflorescences, while inflorescences displayed higher transcriptional activity for genes encoding transcription factors, mainly those belonging to the MADS-box gene family. The expression profiles of selected transcription factors related with inflorescence and flower meristem identity and with flower organogenesis were generally conserved with respect to their homologs in model species. Regarding tendrils, it was interesting to find that genes related with reproductive development in other species were also recruited for grapevine tendril development. These results suggest a role for those genes in the regulation of basic cellular mechanisms common to both developmental processes. PMID:24637773

  15. CLAVATA3-like genes are differentially expressed in grape vine (Vitis vinifera) tissues.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Nukumizu, Yuka; Wada, Takuji; Sawa, Shinichiro; Tetsumura, Takuya

    2013-10-15

    The CLAVATA3 (CLV3)/endosperm surrounding region [(ESR) CLE] peptides function as intercellular signaling molecules that regulate various physiological and developmental processes in diverse plant species. We identified five CLV3-like genes from grape vine (Vitis vinifera var. Pinot Noir): VvCLE 6, VvCLE 25-1, VvCLE 25-2, VvCLE 43 and VvCLE TDIF. These CLV3-like genes encode short proteins containing 43-128 amino acids. Except VvCLE TDIF, grape vine CLV3-like proteins possess a consensus amino acid sequence known as the CLE domain. Phylogenic analysis suggests that the VvCLE 6, VvCLE25-1, VvCLE25-2 and VvCLE43 genes have evolved from a single common ancestor to the Arabidopsis CLV3 gene. Expression analyses showed that the five grape CLV3-like genes are expressed in leaves, stems, roots and axillary buds with significant differences in their levels of expression. For example, while all of them were strongly expressed in axillary buds, VvCLE6 and VvCLE43 expression prevailed in roots, and VvCLE25-1, VvCLE25-2 and VvCLE TDIF expression in stems. The differential expression of the five grape CLV3-like peptides suggests that they play different roles in different organs and developmental stages. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Esterase isozymes patterns of grape vine (Vitis vinifera L. are altered in response to fungicide exposure

    Directory of Open Access Journals (Sweden)

    Gleice Ribeiro Orasmo

    2015-10-01

    Full Text Available Current analysis characterizes the effect of different fungicides often applied for pest control on a-and b-esterase patterns of four economically important table-wine grape cultivars (Italia, Rubi, Benitaka and Brasil of Vitis vinifera. The a- and b-esterase patterns in bud leaves of the cultivars were assessed by native PAGE analysis. Cabrio Top® compound inhibited Est-2, Est-5, Est-6, Est-7, Est-8, Est-9 and Est-10 carboxylesterases, whereas Est-4, Est-11, Est-12, Est-13, Est-14 acetylesterases and Est-16 carboxylesterase were detected as weakly stained bands. Carboxylesterases and acetylesterases were also detected as weakly stained bands when exposed to fungicides Orthocide 500®, Positron Duo® and Folicur PM®. No changes in a- and b-esterase patterns were reported when the vines were exposed to the fungicides Rovral SC®, Kumulus DF®, Curzate M®, Score® or Cuprogarb 500®. The evidence of functional changes in carboxylesterase and acetylesterase levels in current study is a warning to grape producers on the dangers inherent in the indiscriminate use of potent and modern fungicides extensively used in agriculture. The inhibition effect of fungicides on esterase isozyme molecules seems to be independent of the fungicide chemical.

  17. Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.

    Science.gov (United States)

    Lin, Li-Xin; Wang, Peng; Wang, Yu-Ting; Huang, Yong; Jiang, Lei; Wang, Xue-Ming

    2016-02-01

    Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing.

  18. Grapes (Vitis vinifera) drying by semitransparent photovoltaic module (SPVM) integrated solar dryer: an experimental study

    Science.gov (United States)

    Tiwari, Sumit; Tiwari, G. N.

    2017-12-01

    In present research paper, semi-transparent photovoltaic module (SPVM) integrated greenhouse solar drying system has been used for grapes (Vitis vinifera) drying. Based on hourly experimental information namely solar intensity, moisture evaporated, ambient air temperature, grape surface temperatures, relative humidity and greenhouse air temperature etc. heat and mass transfer coefficient for the SPVM drying system have been evaluated. It has been seen that the convective heat transfer coefficients for grapes found between 3.1-0.84 W/m2 K. Also, there is a fair agreement between theoretical and practical mass transfer (moisture evaporated) during drying of grapes with a correlation coefficient (r) and root mean square percentage deviation (e) of 0.88 and 11.56 respectively. Further, nonlinear regression procedure has been used to fit various drying models namely Henderson and Pabis model, Newton's model, and Page's model. From the analysis, it was found that Page's model is best fitted for grapes drying in SPV greenhouse as well as open sun drying. Further, net electrical energy, thermal energy and equivalent thermal energy were found to be 3.61, 17.66 and 27.15 kWh during six days of drying respectively.

  19. In vivo visualization of the final stages of xylem vessel refilling in grapevine (Vitis vinifera) stems.

    Science.gov (United States)

    Brodersen, Craig R; Knipfer, Thorsten; McElrone, Andrew J

    2018-01-01

    Embolism removal is critical for restoring hydraulic pathways in some plants, as residual gas bubbles should expand when vessels are reconnected to the transpiration stream. Much of our understanding of embolism removal remains theoretical as a consequence of the lack of in vivo images of the process at high magnification. Here, we used in vivo X-ray micro-computed tomography (microCT) to visualize the final stages of xylem refilling in grapevine (Vitis vinifera) paired with scanning electron microscopy. Before refilling, vessel walls were covered with a surface film, but vessel perforation plate openings and intervessel pits were filled with air. Bubbles were removed from intervessel pits first, followed by bubbles within perforation plates, which hold the last volumes of air which eventually dissolve. Perforation plates were dimorphic, with more steeply angled scalariform plates in narrow diameter vessels, compared with the simple perforation plates in older secondary xylem, which may favor rapid refilling and compartmentalization of embolisms that occur in small vessels, while promoting high hydraulic conductivity in large vessels. Our study provides direct visual evidence of the spatial and temporal dynamics of the final stages of embolism removal. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Sequence Polymorphisms and Structural Variations among Four Grapevine (Vitis vinifera L.) Cultivars Representing Sardinian Agriculture.

    Science.gov (United States)

    Mercenaro, Luca; Nieddu, Giovanni; Porceddu, Andrea; Pezzotti, Mario; Camiolo, Salvatore

    2017-01-01

    The genetic diversity among grapevine (Vitis vinifera L.) cultivars that underlies differences in agronomic performance and wine quality reflects the accumulation of single nucleotide polymorphisms (SNPs) and small indels as well as larger genomic variations. A combination of high throughput sequencing and mapping against the grapevine reference genome allows the creation of comprehensive sequence variation maps. We used next generation sequencing and bioinformatics to generate an inventory of SNPs and small indels in four widely cultivated Sardinian grape cultivars (Bovale sardo, Cannonau, Carignano and Vermentino). More than 3,200,000 SNPs were identified with high statistical confidence. Some of the SNPs caused the appearance of premature stop codons and thus identified putative pseudogenes. The analysis of SNP distribution along chromosomes led to the identification of large genomic regions with uninterrupted series of homozygous SNPs. We used a digital comparative genomic hybridization approach to identify 6526 genomic regions with significant differences in copy number among the four cultivars compared to the reference sequence, including 81 regions shared between all four cultivars and 4953 specific to single cultivars (representing 1.2 and 75.9% of total copy number variation, respectively). Reads mapping at a distance that was not compatible with the insert size were used to identify a dataset of putative large deletions with cultivar Cannonau revealing the highest number. The analysis of genes mapping to these regions provided a list of candidates that may explain some of the phenotypic differences among the Bovale sardo, Cannonau, Carignano and Vermentino cultivars.

  1. Treatment strategies for high resveratrol induction in Vitis vinifera L. cell suspension culture

    Directory of Open Access Journals (Sweden)

    Thu V. Vuong

    2014-06-01

    Full Text Available Bioprocesses capable of producing large scales of resveratrol at nutraceutical grade are in demand. This study herein investigated treatment strategies to induce the production of resveratrol in Vitis vinifera L. cell suspension cultures. Among seven investigated elicitors, jasmonic acid (JA, salicylic acid, β-glucan (GLU, and chitosan enhanced the production of intracellular resveratrol manyfold. The combined treatment of JA and GLU increased extracellular resveratrol production by up to tenfold. The application of Amberlite XAD-7 resin for in situ removal and artificial storage of secreted resveratrol further increased resveratrol production by up to four orders of magnitude. The level of resveratrol produced in response to the combined treatment with 200 g/L XAD-7, 10 μM JA and 1 mg/mL GLU was approximately 2400 mg/L, allowing the production of resveratrol at an industrial scale. The high yield of resveratrol is due to the involvement of a number of mechanisms working in concert.

  2. Nutraceutical properties and polyphenolic profile of berry skin and wine of Vitis vinifera L. (cv. Aglianico).

    Science.gov (United States)

    De Nisco, Mauro; Manfra, Michele; Bolognese, Adele; Sofo, Adriano; Scopa, Antonio; Tenore, Gian Carlo; Pagano, Francesco; Milite, Ciro; Russo, Maria Teresa

    2013-10-15

    Red grapes are rich in phenolics, flavonoids, anthocyanins and resveratrol, all substances which have been suggested as having nutraceutical and health benefits. The berry skin and wine of grape cultivar Vitis vinifera L. (cv. Aglianico), grown in Basilicata (Southern Italy) were examined to determinate the presence of the above mentioned compounds as well as to establish the inorganic cation profile. HPLC analysis coupled with LC-ESI/MS/MS detected high contents of total flavonols and anthocyanins in berry skin and wine. The wine made with the same grape used for berry skin assays showed a notable presence of quercetin-3-O-glucoside (39.4% of total flavonols), and malvidin and petunidin derivatives (63.9% and 10.8% of total anthocyanins, respectively). The strong antioxidant ROS-scavenging activity, determined by both DPPH and FRAP assays, and the high resveratrol content confer high sensory characteristics resulted to be associated with positive nutraceutical properties of these grapes and wine. The level of cis-resveratrol was lower than trans-resveratrol in both berry skin and wine reaching 44.1mg/kg and 0.3mg/l, respectively. The cation profile presents low levels of Ca, Cu, K, Fe, Zn and Cd compared to numerous, important red wines, such as Monastrell and Tempranillo. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Metabolic changes of Vitis vinifera berries and leaves exposed to Bordeaux mixture.

    Science.gov (United States)

    Martins, Viviana; Teixeira, António; Bassil, Elias; Blumwald, Eduardo; Gerós, Hernâni

    2014-09-01

    Since the development of Bordeaux mixture in the late 1800's, copper-based fungicides have been widely used against grapevine (Vitis vinifera L.) diseases, mainly in organic but also in conventional viticulture; however their intensive use has raised phytotoxicity concerns. In this study, the composition of grape berries and leaves upon Bordeaux mixture treatment was investigated during the fructification season by a metabolomic approach. Four applications of Bordeaux mixture till 3 weeks before harvest were performed following the regular management practices of organic viticulture. Results showed that the copper-based treatment affected the content in sugars, organic acids, lipids and flavan-3-ols of grapes and leaves at specific developmental stages. Nonetheless, the levels of sucrose, glucose and fructose, and of tartaric and malic acids were not significantly affected in mature grapes. In contrast, a sharp decrease in free natural amino acids was observed, together with a reduction in protein content and in mineral nitrogen forms. The treatment with Bordeaux mixture increased by 7-fold the copper levels in tissue extracts from surface-washed mature berries. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Grapes (Vitis vinifera) as a Potential Candidate for the Therapy of the Metabolic Syndrome.

    Science.gov (United States)

    Akaberi, Maryam; Hosseinzadeh, Hosein

    2016-04-01

    Metabolic syndrome is associated with several disorders, including hypertension, diabetes, hyperlipidemia as well as cardiovascular diseases and stroke. Plant-derived polyphenols, compounds found in numerous plant species, play an important role as potential treatments for components of metabolic syndrome. Studies have provided evidence for protective effects of various polyphenol-rich foods against metabolic syndrome. Fruits, vegetables, cereals, nuts, and berries are rich in polyphenolic compounds. Grapes (Vitis vinifera), especially grape seeds, stand out as rich sources of polyphenol potent antioxidants and have been reported helpful for inhibiting the risk factors involved in the metabolic syndrome such as hyperlipidemia, hyperglycemia, and hypertension. There are also many studies about gastroprotective, hepatoprotective, and anti-obesity effects of grape polyphenolic compounds especially proanthocyanidins in the literature. The present study investigates the protective effects of grape seeds in metabolic syndrome. The results of this study show that grape polyphenols have significant effects on the level of blood glucose, lipid profile, blood pressure, as well as beneficial activities in liver and heart with various mechanisms. In addition, the pharmacokinetics of grape polyphenols is discussed. More detailed mechanistic investigations and phytochemical studies for finding the exact bioactive component(s) and molecular signaling pathways are suggested. Copyright © 2016 John Wiley & Sons, Ltd.

  5. The composition of cell walls from grape skin in Vitis vinifera intraspecific hybrids.

    Science.gov (United States)

    Apolinar-Valiente, Rafael; Gómez-Plaza, Encarna; Terrier, Nancy; Doco, Thierry; Ros-García, José María

    2017-09-01

    Monastrell is a red grape cultivar adapted to the dry environmental conditions of Murcia, SE Spain. Its berries seem to be characterized by a rigid cell wall structure, which could make difficult the winemaking process. Cabernet Sauvignon cultivar is used to complement Monastrell wines in this region owing to its high phenolic content with high extractability. This study explores the skin cell wall composition of grapes from plants resulting from intraspecific crosses of Vitis vinifera cultivars Monastrell × Cabernet Sauvignon. Moreover, the morphology of the cell wall material (CWM) from some representative samples was visualized by transmission optical microscopy. The total sugar content of CWM from nine out of ten genotypes of the progeny was lower than that from Monastrell. Seven out of ten genotypes showed lower phenolic content than Cabernet Sauvignon. The CWM from nine out of ten hybrids presented lower protein content than that from Monastrell. This study confirms that skin cell walls from Monastrell × Cabernet Sauvignon hybrid grapes presented major differences in composition compared with their parents. These data could help in the development of new cultivars adapted to the dry conditions of SE Spain and with a cell wall composition favouring extractability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. The accumulation and localization of chalcone synthase in grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Wang, Huiling; Wang, Wei; Zhan, JiCheng; Yan, Ailing; Sun, Lei; Zhang, Guojun; Wang, Xiaoyue; Ren, Jiancheng; Huang, Weidong; Xu, Haiying

    2016-09-01

    Chalcone synthase (CHS, E.C.2.3.1.74) is the first committed enzyme in the flavonoid pathway. Previous studies have primarily focused on the cloning, expression and regulation of the gene at the transcriptional level. Little is yet known about the enzyme accumulation, regulation at protein level, as well as its localization in grapevine. In present study, the accumulation, tissue and subcellular localization of CHS in different grapevine tissues (Vitis vinifera L. Cabernet Sauvignon) were investigated via the techniques of Western blotting, immunohistochemical localization, immunoelectron microscopy and confocal microscopy. The results showed that CHS were mainly accumulated in the grape berry skin, leaves, stem tips and stem phloem, correlated with flavonoids accumulation. The accumulation of CHS is developmental dependent in grape berry skin and flesh. Immunohistochemical analysis revealed that CHS were primarily localized in the exocarp and vascular bundles of the fruits during berry development; in palisade, spongy tissues and vascular bundles of the leaves; in the primary phloem and pith ray in the stems; in the growth point, leaf primordium, and young leaves of leaf buds; and in the endoderm and primary phloem of grapevine roots. Furthermore, at the subcellular level, the cell wall, cytoplasm and nucleus localized patterns of CHS were observed in the grapevine vegetative tissue cells. Results above indicated that distribution of CHS in grapevine was organ-specific and tissue-specific. This work will provide new insight for the biosynthesis and regulation of diverse flavonoid compounds in grapevine. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Vitis vinifera L. cv Pinot noir pomace and lees as potential sources of bioactive compounds.

    Science.gov (United States)

    Reis, Gabriel M; Faccin, Henrique; Viana, Carine; Rosa, Marcelo Barcellos da; de Carvalho, Leandro M

    2016-11-01

    Food and agricultural industries generate substantial quantities of phenolic-rich by-products that could be valuable natural sources of antioxidants. The aim of this study was to identify and quantify the phenolic compounds and radical scavenging activities of two by-products (pomace and lees) from Vitis vinifera L. cv Pinot noir. We found a different distribution of phenolic classes (flavanols, flavonols, phenolic acids and stilbenes) and singular scavenging activity against free radicals (hydroxyl, superoxide and peroxyl radicals). The major class of phenolics in pomace was flavanols and in lees was flavonols, with catechin (117.9 ± 2.5 μg g(-1)) and quercetin (42.4 ± 1.2 μg g(-1)) being the most abundant individual compounds. We also found high potential on scavenging activity against superoxide radicals in pomace (80% of scavenging activity) and radical peroxyl (67% scavenging activity). These results show the possibility of using Pinot noir by-products as promising additives or as a source for the development of new products in different segments of the food and cosmetic industries.

  8. Performance of several models for predicting budburst date of grapevine ( Vitis vinifera L.)

    Science.gov (United States)

    García de Cortázar-Atauri, Iñaki; Brisson, Nadine; Gaudillere, Jean Pierre

    2009-07-01

    The budburst stage is a key phenological stage for grapevine ( Vitis vinifera L.), with large site and cultivar variability. The objective of the present work was to provide a reliable agro-meteorological model for simulating grapevine budburst occurrence all over France. The study was conducted using data from ten cultivars of grapevine (Cabernet Sauvignon, Chasselas, Chardonnay, Grenache, Merlot, Pinot Noir, Riesling, Sauvignon, Syrah, Ugni Blanc) and five locations (Bordeaux, Colmar, Angers, Montpellier, Epernay). First, we tested two commonly used models that do not take into account dormancy: growing degree days with a base temperature of 10°C (GDD10), and Riou’s model (RIOU). The errors of predictions of these models ranged between 9 and 21 days. Second, a new model (BRIN) was studied relying on well-known formalisms for orchard trees and taking into account the dormancy period. The BRIN model showed better performance in predicting budburst date than previous grapevine models. Analysis of the components of BRIN formalisms (calculation of dormancy, use of hourly temperatures, base temperature) explained the better performances obtained with the BRIN model. Base temperature was the main driver, while dormancy period was not significant in simulating budburst date. For each cultivar, we provide the parameter estimates that showed the best performance for both the BRIN model and the GDD model with a base temperature of 5°C.

  9. Changes in the proteome of grapevine leaves (Vitis vinifera L.) during long-term drought stress.

    Science.gov (United States)

    Król, Angelika; Weidner, Stanisław

    2017-04-01

    The essence of exploring and understanding mechanisms of plant adaptation to environmental stresses lies in the determination of patterns of the expression of proteins, identification of stress proteins and their association with the specific functions in metabolic pathways. To date, little information has been provided about the proteomic response of grapevine to the persistent influence of adverse environmental conditions. This article describes changes in the profile of protein accumulation in leaves of common grapevine (Vitis vinifera L.) seedlings in response to prolonged drought. Isolated proteins were separated by two-dimensional electrophoresis (2 DE), and the proteins whose level of accumulation changed significantly due to the applied stress factors were identified with tandem mass spectrometry MALDI TOF/TOF type. Analysis of the proteome of grapevine leaves led to the detection of many proteins whose synthesis changed in response to the applied stressor. Drought caused the most numerous changes in the accumulation of proteins associated with carbohydrate and energy metabolism, mostly connected with the pathways of glycolysis and photosystem II protein components. The biological function of the identified proteins is discussed with reference to the stress of drought. Some of the identified proteins, especially the ones whose accumulation increased during drought stress, may be responsible for the adaptation of grapevine to drought. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Postharvest treatments with ethylene on Vitis vinifera (cv Sangiovese) grapes affect berry metabolism and wine composition.

    Science.gov (United States)

    Becatti, Elisa; Genova, Giuseppe; Ranieri, Annamaria; Tonutti, Pietro

    2014-09-15

    Grapes (Vitis vinifera, cv Sangiovese), harvested at standard commercial maturity, were treated for 36 h with ethylene (ET, 1000 ppm) or air (control, CT) before vinification. The composition of the grapes, must and wine was different in the CT and ET samples. In the ET wine, higher concentrations of specific phenol compounds, belonging to the classes of flavonols, anthocyanins, flavan-3-ols, and stilbenes, were detected. ET induced a significant change in the wine aroma profile by increasing free volatile categories such as phenols and fatty acids, and reducing the content of carbonyl compounds and, in particular, of esters. Less pronounced differences between CT and ET wines were observed in terms of glycosidically-bound volatile compounds. The activity of pectin methyl esterase and β-glucosidase was enhanced in ET-treated berry skins, suggesting that cell wall properties and changes in the hydrolytic activity are effective in modulating the composition of CT and ET wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Chemical and spectroscopic characteristics of the wood of Vitis vinifera cv. Sangiovese affected by esca disease.

    Science.gov (United States)

    Agrelli, Diana; Amalfitano, Carmine; Conte, Pellegrino; Mugnai, Laura

    2009-12-23

    Chemical and spectroscopic analyses ((13)C cross-polarization-magic angle spinning NMR and attenuated total reflection Fourier transform infrared spectroscopies) were carried out on the wood of Vitis vinifera cv. Sangiovese with brown-red discoloration and black streaks caused by esca disease. The analyses of the brown-red wood revealed the destruction of hemicelluloses and noncrystalline cellulose as well as modifications in the pectic and ligninic wood fractions. The pectic fraction consisted of carbohydrates associated with polyphenols. The lignin fraction exhibited only a few changes in the aromatic systems and a partial demethylation, and it appeared to be associated with condensed phenolic components probably arising from response polyphenols. The degradation of hemicelluloses and noncrystalline cellulose in brown-red wood, where the pathogens Phaeoacremonium aleophilum and Phaeomoniella chlamydospora prevail with respect to the other fungus Fomitiporia mediterranea, was consistent with reports on the degradative activity of such fungi in vitro carried out on model substrates. The observed alterations could also be attributed to the radical oxidation process caused by the oxidative response of defense itself triggered by infection, as suggested by the accumulation of postinfectional compounds. The analyses of wood tissue with black streaks showed less marked deterioration; here, an increase in pectic and phenolic substances, which probably accumulate in the xylem vessels as a response to the infection, was observed.

  12. Stilbene polyphenols in the brown red wood of Vitis vinifera cv. Sangiovese affected by "esca proper"*

    Directory of Open Access Journals (Sweden)

    Carmine AMALFITANO

    2011-12-01

    Full Text Available A number of stilbene polyphenols, dimers, trimers and tetramers of resveratrol (viniferins, which are typical Vitaceae metabolites, were extracted from asymptomatic wood (AW and symptomatic brown-reddiscoloured wood (BRW of Vitis vinifera cv. Sangiovese affected by “esca proper”, the trunk disease caused by the fungal complex Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and Fomitiporia mediterranea. Resveratrol and the same types of viniferins were found in both AW and BRW, with the exception of α-viniferin, which was only detected in AW, and ampelopsin B, only in BRW. The total concentration of stilbene polyphenols was higher in symptomatic wood (3.7% in BRW vs 1.2% in AW. The absolute variationsin molar concentrations of each stilbene polyphenol (i between BRW and AW (Δi = CiBRW - CiAW, were higherfor ε-viniferin and resveratrol than the other compounds, while the relative variations (Δi/CiAW, were lower for ampelopsin H and isohopeaphenol, and higher for ampelopsin B, hopeaphenol, ampelopsin A, leachianol F and G, pallidol and ε-viniferin (in descending order, than the relative variation for resveratrol. Aspects relating to the biosynthesis of stilbene polyphenols and their role in the host-esca pathogen interaction are discussed.

  13. The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening

    Science.gov (United States)

    Greer, Dennis H.; Weedon, Mark M.

    2013-01-01

    The heat event that occurred in many parts of Australia in 2009 was the worst on record for the past decade, with air temperatures exceeding 40°C for 14 days. Our aim was to assess the impacts of this heat event on vine performance, including ripening, yield, and gas exchange of Vitis vinifera cv. Semillon grown in a Riverina vineyard. To assess the affect of high temperatures on Semillon grapevines, the vines were covered with a protective layer to reduce radiant heating and were compared with vines exposed to ambient conditions. The heat event had major effects on ripening; reducing the rate of ripening by 50% and delaying harvest ripeness and causing a high incidence of berry shrivel and sunburn. Yield was not affected. Photosynthesis was reduced 35% by the heat event while transpiration increased nearly threefold and was accounted for by increased stomatal conductance. The conclusion of this study was that heat events delayed ripening in Semillon berries and caused a significant reduction in berry quality. Strategies to minimize the radiant load during heat events are required and this study has confirmed a protective layer can reduce canopy temperatures and enhance berry quality. PMID:24348494

  14. Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. "Glera".

    Science.gov (United States)

    Pepi, Salvatore; Sansone, Luigi; Chicca, Milvia; Marrocchino, Elena; Vaccaro, Carmela

    2016-08-01

    The renowned Vitis vinifera L. cultivar "Glera" (Magnoliopsida Vitaceae) has been grown for hundreds of years in the Italian regions of Veneto and Friuli to produce the sparkling Prosecco wine, with controlled designation of origin (DOC). We evaluated the relationship among the concentrations of rare earth elements (REE) in soil and in "Glera" grape berries in vineyards belonging to five different localities in the Veneto alluvial plain, all included in the DOC area of Prosecco. The concentration of REE in samples of soil and juice or solid residues of grape berries was determined by inductively coupled plasma mass spectrometry (ICP-MS), and the index of bioaccumulation was calculated to define the specific assimilation of these elements from soil to grape berries. The concentration of REE in soil samples allowed an identification of each locality examined, and REE were mostly detected in solid grape berry residues in comparison to juice. These data may be useful to associate REE distribution in soil and grape berries to a specific geographical origin, in order to prevent fraudulent use of wine denomination labels.

  15. Chlorophyll Fluorescence in Partially Defoliated Grape Plants (Vitis vinifera L. cv. Chardonnay / Fluorescencia de la Clorofila en Plantas de Uva (Vitis vinifera L. cv. Chardonnay Defoliadas Parcialmente

    Directory of Open Access Journals (Sweden)

    Peña Olmos Jaime Ernesto

    2013-08-01

    Full Text Available The chlorophyll content and fluorescence weredetermined in five-year-old grape plants (Vitis vinifera L. cv.Chardonnay that were subjected to early partial defoliation,in Villa de Leyva, Colombia. The experimental design wascompletely randomized, consisting of two treatments (50%defoliation and control, each with four replications of 35 plants. Every two weeks, one of every two recently-emerged leaves was removed from the non-control plants. The determination of total chlorophyll content was carried out on six leaves per plant using a CCM-200 Plus chlorophyll meter, while chlorophyll fluorescence measurements were taken with one darkadapted leaf per plant using a Junior-PAM fluorometer. Initial fluorescence (Fo, maximum fluorescence (Fm, terminal fluorescence (Ft, variable fluorescence (Fv, electron transport rate (ETR, maximum photochemical quantum yield of PSII (Fv/ Fm, effective photochemical quantum yield of photosystem II (Y(II, photochemical fluorescence quenching coefficient (qP, two non-photochemical quenching coefficients (qN and NPQ,quantum yield of light-induced non-photochemical fluorescence quenching (Y(NPQ, and quantum yield of non-light-induced non-photochemical quenching (Y(NO were measured. The chlorophyll concentration index showed higher values in the defoliated plants. There were no significant differences for the values of Fm, Ft and Fv. Fo was higher in the defoliated plants, while ETR, Fv/Fm and Y(II showed higher values in the control plants. It is evident that a reduction in leaf area modifies thepartitioning of excitation energy destined for photochemicaland non-photochemical processes, thus directly influencing the photosynthetic process of the plants evaluated. / Utilizando un diseño completamente aleatorizado,con dos tratamientos (defoliación al 50% y control y cuatrorepeticiones de 35 plantas cada una, se determinó el contenido y la fluorescencia de la clorofila en plantas de uva, sometidas a defoliación parcial

  16. Investigation of anti-asthmatic potential of dried fruits of Vitis vinifera L. in animal model of bronchial asthma.

    Science.gov (United States)

    Arora, Poonam; Ansari, S H; Najmi, Abul Kalam; Anjum, Varisha; Ahmad, Sayeed

    2016-01-01

    Fruits of Vitis vinifera L., commonly known as grapes, are largely consumed worldwide because of their high nutritional and medicinal benefits. The present study investigated effects of V. vinifera fruits in ovalbumin-induced animal model of bronchial asthma. Male wistar rats (except group 1) were sensitized with allergen (ovalbumin, 40 mg/rat + aluminum hydroxide, 2 mg/rat). Groups of sensitized animals were treated orally with either vehicle (0.4 mL/kg), standard dexamethasone (2.5 mg/kg) or alcoholic extract of V. vinifera dried fruits (31 and 42.5 mg/kg) from day 1 to 28 (n = 6 for all groups). Inflammatory markers including cell counts, cytokines such as interleukin (IL)-4, IL-5, IL-1β, tumor necrosis factor, immunoglobulin E (IgE), leukotrienes and nitrite levels in both blood/serum and bronchoalveolar fluid were analysed. Breathing rate and tidal volume as lung function parameters were examined by spirometer. Lung tissues were studied for histamine content and histopathology. Treatment of sensitized animals with dexamethasone or two doses of V. vinifera fruits extract inhibited recruitment of inflammatory cytokines, IgE, nitrites and circulating cells particularly eosinophils in blood/serum and bronchoalveolar fluid (p vinifera fruits extract treatment also normalized lung functions and histamine levels compared to ovalbumin-sensitized controls (p vinifera fruits in allergic asthma possibly related to its ability to inhibit cellular response and subsequent production of inflammatory cytokines.

  17. Neuroprotective role of hydroalcoholic extract of Vitis vinifera against aluminium-induced oxidative stress in rat brain.

    Science.gov (United States)

    Lakshmi, B V S; Sudhakar, M; Anisha, M

    2014-03-01

    The present study was designed to examine the protective potential of hydroalcoholic extract of Vitis vinifera in ameliorating the alterations induced by aluminium (Al) on behavioural and neurochemical indices. Al was given orally (100mg/kg b.wt./day) whereas V. vinifera extract was administered through diet (400mg/kg, p.o.) to rats for a total duration of 45 days. Passive avoidance and open field tests revealed significant alterations in the short-term memory and cognitive behaviour in rats treated with Al. Further, locomotor as well as muscular activities were also found to be significantly affected. Co-administration of V. vinifera extract with Al caused significant improvement in the short-term memory, cognition, anxiety, locomotion and muscular activity. Al exposure led to a significant decrease in the acetylcholinesterase activity in the brain, increase in serum glucose, TG, TC, ALP and ALT. Anti-oxidant parameters-reduced glutathione, catalase and glutathione reductase levels were also found to be significantly decreased but the levels of lipid peroxidation was significantly increased in brain following Al treatment. V. vinifera extract supplementation to Al treated animals caused a significant improvement in the activity of enzyme acetylcholinesterase which was altered by Al. Serum glucose, TG, TC, ALP and ALT were brought back to normal levels. Further, V. vinifera extract when given along with Al was also able to regulate the levels of Anti-oxidant parameters in brain and the values were found close to the normal controls. Histopathological studies revealed neurodegeneration and vacuolated cytoplasm after Al treatment. Therefore, the study strengthens the hypothesis that V. vinifera extract can be used as a neuroprotectant during Al induced neurotoxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Hybridization of cultivated Vitis vinifera with wild V. californica and V. girdiana in California.

    Science.gov (United States)

    Dangl, Gerald S; Mendum, Mary Lou; Yang, Judy; Walker, M Andrew; Preece, John E

    2015-12-01

    Hybridization of introduced domesticates and closely related natives is well documented in annual crops. The widespread introduction of the domesticated grapevine, Vitis vinifera, into California where it overlaps with two native congenerics, with which it is interfertile, provides opportunity to investigate hybridization between woody perennials. Although geographically widespread, the introduction over the past two centuries has been limited to a few elite clonal cultivars, providing a unique opportunity to study the effects of hybridization on the native species. The amount of hybridization with V. vinifera and the genetic diversity of wild-growing Vitis californica and Vitis girdiana were examined using nineteen microsatellite markers. STRUCTURE analysis was used to define hybrid and introgressed individuals and to analyze genetic structure of the native species. FAMOZ software was used to identify which V. vinifera cultivars served as parents of F 1 hybrids. The three species were clearly distinguished by STRUCTURE analysis. Thirty percent of 119 V. californica vines were hybrids. The domesticated parent was identified for 16 F 1 hybrid vines; the original California cultivar, 'Mission', was the parent of eight. Backcrosses were also found, showing introgression into subsequent generations. Similar results were obtained for a small sample of V. girdiana. Removing hybrids greatly reduced the genetic variation of the presumed pure species, among which there was essentially no genetic structure. Limited genetic variability indicates the California natives may be threatened by genetic erosion. The discovery of F 1 hybrids of 'Mission', a cultivar not grown in the areas for ~100 years, suggests long generation times for wild vines that, often, grow into expansive liana and propagate by layering, all factors that limit recruitment in populations already disjunct by habitat lose. Hermaphroditic flowers and fruit that is more attractive to birds may favor the

  19. Berry and phenology-related traits in grapevine (Vitis vinifera L.: From Quantitative Trait Loci to underlying genes

    Directory of Open Access Journals (Sweden)

    Fanizza Girolamo

    2008-04-01

    Full Text Available Abstract Background The timing of grape ripening initiation, length of maturation period, berry size and seed content are target traits in viticulture. The availability of early and late ripening varieties is desirable for staggering harvest along growing season, expanding production towards periods when the fruit gets a higher value in the market and ensuring an optimal plant adaptation to climatic and geographic conditions. Berry size determines grape productivity; seedlessness is especially demanded in the table grape market and is negatively correlated to fruit size. These traits result from complex developmental processes modified by genetic, physiological and environmental factors. In order to elucidate their genetic determinism we carried out a quantitative analysis in a 163 individuals-F1 segregating progeny obtained by crossing two table grape cultivars. Results Molecular linkage maps covering most of the genome (2n = 38 for Vitis vinifera were generated for each parent. Eighteen pairs of homologous groups were integrated into a consensus map spanning over 1426 cM with 341 markers (mainly microsatellite, AFLP and EST-derived markers and an average map distance between loci of 4.2 cM. Segregating traits were evaluated in three growing seasons by recording flowering, veraison and ripening dates and by measuring berry size, seed number and weight. QTL (Quantitative Trait Loci analysis was carried out based on single marker and interval mapping methods. QTLs were identified for all but one of the studied traits, a number of them steadily over more than one year. Clusters of QTLs for different characters were detected, suggesting linkage or pleiotropic effects of loci, as well as regions affecting specific traits. The most interesting QTLs were investigated at the gene level through a bioinformatic analysis of the underlying Pinot noir genomic sequence. Conclusion Our results revealed novel insights into the genetic control of relevant

  20. Transcriptome changes in grapevine (Vitis vinifera L. cv. Malbec leaves induced by ultraviolet-B radiation

    Directory of Open Access Journals (Sweden)

    Martinez-Zapater Jose M

    2010-10-01

    Full Text Available Abstract Background Ultraviolet-B radiation (UV-B, 280-315 nm is a natural component of sunlight, which has numerous regulatory effects on plant physiology. The nature of the response to UV-B is dependent on fluence rate, dose, duration and wavelength of the UV-B treatment. Some reports have analyzed the changes in gene expression caused by UV-B light on several plant species using microarray technology. However, there is no information on the transcriptome response triggered by UV-B in grapevine. In this paper we investigate the gene expression responses of leaves from in vitro cultured Vitis vinifera cv. Malbec plants subjected to the same dose of biologically effective UV-B radiation (4.75 kJ m-2 d-1 administered at two different fluence rates (16 h at ≅ 8.25 μW cm-2, 4 h at ≅ 33 μW cm-2 using a new custom made GrapeGen Affymetrix GeneChip®. Results The number of genes modulated by high fluence rate UV-B doubled the number of genes modulated by low fluence UV-B. Their functional analyses revealed several functional categories commonly regulated by both UV-B treatments as well as categories more specifically modulated depending on UV-B fluence rate. General protective responses, namely the induction of pathways regulating synthesis of UV-B absorbing compounds such as the Phenylpropanoid pathway, the induction of different antioxidant defense systems and the activation of pathways commonly associated with pathogen defense and abiotic stress responses seem to play critical roles in grapevine responses against UV-B radiation. Furthermore, high fluence rate UV-B seemed to specifically modulate additional pathways and processes in order to protect grapevine plantlets against UV-B-induced oxidative stress, stop the cell cycle progression, and control protein degradation. On the other hand, low fluence rate UV-B regulated the expression of specific responses in the metabolism of auxin and abscisic acid as well as in the modification of cell

  1. A candidate-gene association study for berry colour and anthocyanin content in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Silvana Cardoso

    Full Text Available Anthocyanin content is a trait of major interest in Vitis vinifera L. These compounds affect grape and wine quality, and have beneficial effects on human health. A candidate-gene approach was used to identify genetic variants associated with anthocyanin content in grape berries. A total of 445 polymorphisms were identified in 5 genes encoding transcription factors and 10 genes involved in either the biosynthetic pathway or transport of anthocyanins. A total of 124 SNPs were selected to examine association with a wide range of phenotypes based on RP-HPLC analysis and visual characterization. The phenotypes were total skin anthocyanin (TSA concentration but also specific types of anthocyanins and relative abundance. The visual assessment was based on OIV (Organisation Internationale de la Vigne et du Vin descriptors for berry and skin colour. The genes encoding the transcription factors MYB11, MYBCC and MYC(B were significantly associated with TSA concentration. UFGT and MRP were associated with several different types of anthocyanins. Skin and pulp colour were associated with nine genes (MYB11, MYBCC, MYC(B, UFGT, MRP, DFR, LDOX, CHI and GST. Pulp colour was associated with a similar group of 11 genes (MYB11, MYBCC, MYC(B, MYC(A, UFGT, MRP, GST, DFR, LDOX, CHI and CHS(A. Statistical interactions were observed between SNPs within the transcription factors MYB11, MYBCC and MYC(B. SNPs within LDOX interacted with MYB11 and MYC(B, while SNPs within CHI interacted with MYB11 only. Together, these findings suggest the involvement of these genes in anthocyanin content and on the regulation of anthocyanin biosynthesis. This work forms a benchmark for replication and functional studies.

  2. Cloning, Sequencing, Purification, and Crystal Structure of Grenache (Vitis vinifera) Polyphenol Oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Virador, V.; Reyes Grajeda, J; Blanco-Labra, A; Mendiola-Olaya, E; Smith, G; Moreno, A; Whitaker, J

    2010-01-01

    The full-length cDNA sequence (P93622{_}VITVI) of polyphenol oxidase (PPO) cDNA from grape Vitis vinifera L., cv Grenache, was found to encode a translated protein of 607 amino acids with an expected molecular weight of ca. 67 kDa and a predicted pI of 6.83. The translated amino acid sequence was 99%, identical to that of a white grape berry PPO (1) (5 out of 607 amino acid potential sequence differences). The protein was purified from Grenache grape berries by using traditional methods, and it was crystallized with ammonium acetate by the hanging-drop vapor diffusion method. The crystals were orthorhombic, space group C2221. The structure was obtained at 2.2 {angstrom} resolution using synchrotron radiation using the 39 kDa isozyme of sweet potato PPO (PDB code: 1BT1) as a phase donor. The basic symmetry of the cell parameters (a, b, and c and {alpha}, {beta}, and {gamma}) as well as in the number of asymmetric units in the unit cell of the crystals of PPO, differed between the two proteins. The structures of the two enzymes are quite similar in overall fold, the location of the helix bundles at the core, and the active site in which three histidines bind each of the two catalytic copper ions, and one of the histidines is engaged in a thioether linkage with a cysteine residue. The possibility that the formation of the Cys-His thioether linkage constitutes the activation step is proposed. No evidence of phosphorylation or glycoslyation was found in the electron density map. The mass of the crystallized protein appears to be only 38.4 kDa, and the processing that occurs in the grape berry that leads to this smaller size is discussed.

  3. Enhanced Stilbene Production and Excretion in Vitis vinifera cv Pinot Noir Hairy Root Cultures

    Directory of Open Access Journals (Sweden)

    Leo-Paul Tisserant

    2016-12-01

    Full Text Available Stilbenes are defense molecules produced by grapevine in response to stresses including various elicitors and signal molecules. Together with their prominent role in planta, stilbenes have been the center of much attention in recent decades due to their pharmaceutical properties. With the aim of setting up a cost-effective and high purity production of resveratrol derivatives, hairy root lines were established from Vitis vinifera cv Pinot Noir 40024 to study the organ-specific production of various stilbenes. Biomass increase and stilbene production by roots were monitored during flask experiments. Although there was a constitutive production of stilbenes in roots, an induction of stilbene synthesis by methyl jasmonate (MeJA after 18 days of growth led to further accumulation of ε-viniferin, δ-viniferin, resveratrol and piceid. The use of 100 µM MeJA after 18 days of culture in the presence of methyl-β-cyclodextrins (MCDs improved production levels, which reached 1034µg/g fresh weight (FW in roots and 165 mg/L in the extracellular medium, corresponding to five-and 570-foldincrease in comparison to control. Whereas a low level of stilbene excretion was measured in controls, addition of MeJA induced excretion of up to 37% of total stilbenes. The use of MCDs increased the excretion phenomenon even more, reaching up to 98%. Our results demonstrate the ability of grapevine hairy roots to produce various stilbenes. This production was significantly improved in response to elicitation by methyl jasmonate and/or MCDs. This supports the interest of using hairy roots as a potentially valuable system for producing resveratrol derivatives.

  4. Insight in the phenolic composition and antioxidative properties of Vitis vinifera leaves extracts

    Directory of Open Access Journals (Sweden)

    Ivana Generalić

    2009-01-01

    Full Text Available In the present investigation, leaf ethanolic extracts of Vitis vinifera were assayed for their polyphenolic composition and antioxidative properties. The leaves were collected during lush vegetation period (May leaves and after the harvest (September leaves. Air dried plant material was homogenized and the polyphenolic constituents were extracted using conventional solvent extraction procedure. Total phenolics, flavonoids, non-flavonoids, catechins and flavanols were determined using spectrophotometric methods. Both extracts were very rich in phenolic compounds. The concentration of total phenols in September leaves extract was about 30 % higher compared to May leaves extract, due to the increase of flavonoid (catechin fraction. Non-flavonoid compound content was almost equal in both extracts. The amount of flavanols, determined with p-dimethylaminocinnamaldehyde method, was taken as indicator of flavan-3-ol monomers, while high catechin content determined by vanillin method, indicated the presence of polymeric fraction. The total catechin content in September leaves extract was more than 3 folds higher in comparison to May leaves extract. Principal phenolic compounds were separated by high pressure liquid chromatography on reverse phase. Antioxidant properties, determined as: 2,2-diphenyl-1-picrylhydrazyl radical and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate radical cation scavenging ability, ferric reducing/antioxidant power, Fe2+ chelating activity, and using β-carotene bleaching assay, were total phenol concentration dependent. September leaves extract had better free radical scavenging capacity, higher reducing power, and was more efficient in protecting the oxidation of emulsified linoleic acid, in comparison with May leaves extract which showed better chelating ability. The presence of active phenolic compounds: phenolic acids (3-hydroxybenzoic acid, caffeic acid, gallic acid, vanillin acid, flavonoids ((+-catechin, (--epicatechin

  5. Epiphytic fungal community in Vitis vinifera of the Portuguese wine regions.

    Science.gov (United States)

    Oliveira, M; Arenas, M; Lage, O; Cunha, M; Amorim, M I

    2017-11-14

    In this work, fungi present in the grapevine's phyllosphere collected from the main demarcated wine regions of Portugal were identified, and their phylogenetic relationships were analysed. A total of 46 vine samples (leaves and berries) were collected from different parts of the country, being isolated a total of 117 fungal colonies that were identified to the genus level and sequenced in the following genetic regions: internal transcribed spacer region and 18S rRNA and β-tubulin gene. Next, a phylogenetic tree reconstruction for each genetic region was built. The isolates retrieved from environmental samples belonged to the genera Alternaria (31%), Cladosporium (21%), Penicillium (19%), Aspergillus (7%) and Epicoccum (3%). No genetic signatures of exchange of genetic material were detected, and consequently, the reconstructed phylogenetic trees allowed to distinguish between these different species/genera. In the fungal composition of the Vitis vinifera phyllosphere, several potential pathogens were identified that can be associated with decreases in crop productivity. Knowledge of fungi identification and genetic diversity is pivotal for the development of more adequate crop management strategies. Furthermore, this information will provide guidelines for a more specific and wiser use of fungicides. The knowledge on the composition of the phyllosphere microbial community is still limited, especially when fungi are concerned. These micro-organisms not only play a crucial role in crop health and productivity but also interact with the winemaking process, determining the safety and quality of grape and grape-derived products. The elucidation of the micro-organisms present in the phyllosphere will have a notorious impact on plant breeding and protection programmes and disease management strategies, allowing a better control of pesticide applications. © 2017 The Society for Applied Microbiology.

  6. Hairy root culture optimization and resveratrol production from Vitis vinifera subsp. sylvesteris.

    Science.gov (United States)

    Hosseini, Sayed Mehdi; Bahramnejad, Bahman; Douleti Baneh, Hamed; Emamifar, Aryo; Goodwin, Paul H

    2017-04-01

    Resveratrol is a polyphenolic compound produced in very low levels in grapes. To achieve high yield of resveratrol in wild grape, three Agrobacterium rhizogenes strains, Ar318, ArA4 and LBA9402, were used to induce hairy roots following infection of internodes, nodes or petioles of in vitro grown Vitis vinifera subsp. sylvesteris accessions W2 and W16, and cultivar Rasha. The effects of inoculation time, age of explants, bacterial concentration and co-cultivation times were examined on the efficiency of the production of hairy roots. Strains Ar318, ArA4 and LBA9402 all induced hairy roots in the tested genotypes, but the efficiency of ArA4 strain was higher than the other strains. The highest hairy root production was with using internodes as explants. The transformation of hairy roots lines was confirmed by PCR detection of rolB gene. Half Murashige and Skoog (MS) medium was better for biomass production compared with MS medium. HPLC analysis of resveratrol production in the hairy root cultures showed that all the genotypes produced higher amounts of resveratrol than control roots. The highest amount of resveratrol was produced from W16 internode cultures, which was 31-fold higher than that of control root. Furthermore, TLC analysis showed that treatments of hairy roots with sodium acetate and jasmonate elevated resveratrol levels both in hairy root tissue and excreted into the half MS medium. These results demonstrate that endogenous and exogenous factors can affect resveratrol production in hairy root culture of grape, and this strategy could be used to increase low resveratrol production in grapes.

  7. Functional characterization and developmental expression profiling of gibberellin signalling components in Vitis vinifera.

    Science.gov (United States)

    Acheampong, Atiako Kwame; Hu, Jianhong; Rotman, Ariel; Zheng, Chuanlin; Halaly, Tamar; Takebayashi, Yumiko; Jikumaru, Yusuke; Kamiya, Yuji; Lichter, Amnon; Sun, Tai-Ping; Or, Etti

    2015-03-01

    Gibberellins (GAs) regulate numerous developmental processes in grapevine (Vitis vinifera) such as rachis elongation, fruit set, and fruitlet abscission. The ability of GA to promote berry enlargement has led to its indispensable use in the sternospermocarpic ('seedless') table grape industry worldwide. However, apart from VvGAI1 (VvDELLA1), which regulates internode elongation and fruitfulness, but not berry size of seeded cultivars, little was known about GA signalling in grapevine. We have identified and characterized two additional DELLAs (VvDELLA2 and VvDELLA3), two GA receptors (VvGID1a and VvGID1b), and two GA-specific F-box proteins (VvSLY1a and VvSLY1b), in cv. Thompson seedless. With the exception of VvDELLA3-VvGID1b, all VvDELLAs interacted with the VvGID1s in a GA-dependent manner in yeast two-hybrid assays. Additionally, expression of these grape genes in corresponding Arabidopsis mutants confirmed their functions in planta. Spatiotemporal analysis of VvDELLAs showed that both VvDELLA1 and VvDELLA2 are abundant in most tissues, except in developing fruit where VvDELLA2 is uniquely expressed at high levels, suggesting a key role in fruit development. Our results further suggest that differential organ responses to exogenous GA depend on the levels of VvDELLA proteins and endogenous bioactive GAs. Understanding this interaction will allow better manipulation of GA signalling in grapevine. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Enhanced Stilbene Production and Excretion in Vitis vinifera cv Pinot Noir Hairy Root Cultures.

    Science.gov (United States)

    Tisserant, Leo-Paul; Aziz, Aziz; Jullian, Nathalie; Jeandet, Philippe; Clément, Christophe; Courot, Eric; Boitel-Conti, Michèle

    2016-12-10

    Stilbenes are defense molecules produced by grapevine in response to stresses including various elicitors and signal molecules. Together with their prominent role in planta, stilbenes have been the center of much attention in recent decades due to their pharmaceutical properties. With the aim of setting up a cost-effective and high purity production of resveratrol derivatives, hairy root lines were established from Vitis vinifera cv Pinot Noir 40024 to study the organ-specific production of various stilbenes. Biomass increase and stilbene production by roots were monitored during flask experiments. Although there was a constitutive production of stilbenes in roots, an induction of stilbene synthesis by methyl jasmonate (MeJA) after 18 days of growth led to further accumulation of ε-viniferin, δ-viniferin, resveratrol and piceid. The use of 100 µM MeJA after 18 days of culture in the presence of methyl-β-cyclodextrins (MCDs) improved production levels, which reached 1034µg/g fresh weight (FW) in roots and 165 mg/L in the extracellular medium, corresponding to five-and 570-foldincrease in comparison to control. Whereas a low level of stilbene excretion was measured in controls, addition of MeJA induced excretion of up to 37% of total stilbenes. The use of MCDs increased the excretion phenomenon even more, reaching up to 98%. Our results demonstrate the ability of grapevine hairy roots to produce various stilbenes. This production was significantly improved in response to elicitation by methyl jasmonate and/or MCDs. This supports the interest of using hairy roots as a potentially valuable system for producing resveratrol derivatives.

  9. Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera.

    Science.gov (United States)

    Cao, Hui; Liu, Cai-Yun; Liu, Chun-Xiang; Zhao, Yue-Ling; Xu, Rui-Rui

    2016-09-01

    In plants, the transcription factor families have been implicated in many important biological processes. These processes include morphogenesis, signal transduction and environmental stress responses. Proteins containing the lateral organ boundaries domain (LBD), which encodes a zinc finger-like domain are only found in plants. This finding indicates that this unique gene family regulates only plant-specific biological processes. LBD genes play crucial roles in the growth and development of plants such as Arabidopsis, Oryza sativa, Zea mays, poplar, apple and tomato. However, relatively little is known about the LBD genes in grape (Vitis vinifera). In this study, we identified 40 LBD genes in the grape genome. A complete overview of the chromosomal locations, phylogenetic relationships, structures and expression profiles of this gene family during development in grape is presented here. Phylogenetic analysis showed that the LBD genes could be divided into classes I and II, together with LBDs from Arabidopsis. We mapped the 40 LBD genes on the grape chromosomes (chr1-chr19) and found that 37 of the predicted grape LBD genes were distributed in different densities across 12 chromosomes. Grape LBDs were found to share a similar intron/exon structure and gene length within the same class. The expression profiles of grape LBD genes at different developmental stages were analysed using microarray data. Results showed that 21 grape LBD genes may be involved in grape developmental processes, including preveraison, veraison and ripening. Finally, we analysed the expression patterns of six LBD genes through quantitative real-time polymerase chain reation analysis. The six LBD genes showed differential expression patterns among the three representative grape tissues, and five of these genes were found to be involved in responses to mannitol, sodium chloride, heat stress and low temperature treatments. To our knowledge, this is the first study to analyse the LBD gene family in

  10. Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family.

    Science.gov (United States)

    Wang, Min; Vannozzi, Alessandro; Wang, Gang; Liang, Ying-Hai; Tornielli, Giovanni Battista; Zenoni, Sara; Cavallini, Erika; Pezzotti, Mario; Cheng, Zong-Ming Max

    2014-01-01

    The plant WRKY gene family represents an ancient and complex class of zinc-finger transcription factors (TFs) that are involved in the regulation of various physiological processes, such as development and senescence, and in plant response to many biotic and abiotic stresses. Despite the growing number of studies on the genomic organisation of WRKY gene family in different species, little information is available about this family in grapevine (Vitis vinifera L.). In the present study, a total number of 59 putative grapevine WRKY transcription factors (VvWRKYs) were identified based on the analysis of various genomic and proteomic grapevine databases. According to their structural and phylogentic features, the identified grapevine WRKY transcription factors were classified into three main groups. In order to shed light into their regulatory roles in growth and development as well as in response to biotic and abiotic stress in grapevine, the VvWRKYs expression profiles were examined in publicly available microarray data. Bioinformatics analysis of these data revealed distinct temporal and spatial expression patterns of VvWRKYs in various tissues, organs and developmental stages, as well as in response to biotic and abiotic stresses. To also extend our analysis to situations not covered by the arrays and to validate our results, the expression profiles of selected VvWRKYs in response to drought stress, Erysiphe necator (powdery mildew) infection, and hormone treatments (salicilic acid and ethylene), were investigated by quantitative real-time reverse transcription PCR (qRT-PCR). The present study provides a foundation for further comparative genomics and functional studies of this important class of transcriptional regulators in grapevine.

  11. Effect of salicylic acid and aloe vera gel on postharvest quality of table grapes ( Vitis Vinifera

    Directory of Open Access Journals (Sweden)

    H. Peyro

    2017-06-01

    Full Text Available To investigate the effects of salicylic acid dipping and Aloe vera gel coating on shelf life and post harvest quality of table grapes (Vitis vinifera of the cultivar Shahroudi, a factorial experiment was conducted on the basis of randomized complete blocks design with three factors and three replicates in agricultural faculty of Islamic Azad University in 2014. The treatments were dipping in Salicylic acid (three levels of 0, 1 and 2 mmmol-1 for 15 minutes and coating with Aloe vera gel (four levels of 0, 10%, 15% and 20% w/v and measurement of traits in 1st day, 30th day and 60th day after treatment of berries. The results showed that the interaction effect of salicylic acid and Aloe vera gel application was significant on all of traits except for pH value in a way that the best and the minimum weight loss (0.09g was obtained by application of 2 mmol-1 Salicylic acid and 20% Aloe vera gel in 1st day after treatment. The greatest amount of total soluble solids (428.43 g.100g-1 fruit juice was found in 2 mmol-1 Salicylic acid and 15% Aloe vera gel in 60th day. The highest Catalase enzyme activity (0.0013 Ua.mg-1Pro was attained in 2 mmol-1 Salicylic acid and 15% Aloe vera gel in 30th day. These results demonstrated that treatment of grape berries by salicylic acid and Aloe vera gel had positive effect on shelf life of table grapes and their postharvest quality

  12. Morphology and Hydraulic Architecture of Vitis vinifera L. cv. Syrah and Torrontés Riojano Plants Are Unaffected by Variations in Red to Far-Red Ratio

    Science.gov (United States)

    González, Carina Verónica; Jofré, María Florencia; Vila, Hernán F.; Stoffel, Markus; Bottini, Rubén; Giordano, Carla Valeria

    2016-01-01

    Plants have evolved an array of specific photoreceptors to acclimate to the light environment. By sensing light signals, photoreceptors modulate plant morphology, carbon- and water-physiology, crop yield and quality of harvestable organs, among other responses. Many cultural practices and crop management decisions alter light quantity and quality perceived by plants cultivated in the field. Under full sunlight, phytochromes perceive high red to far red ratios (R:FR; 1.1), whereas overhead or lateral low R:FR (below 1.1) are sensed in the presence of plant shade or neighboring plants, respectively. Grapevine is one of the most important fruit crops in the world. To date, studies on grapevine response to light focused on different Photosynthetic Active Radiation (PAR) levels; however, limited data exist about its response to light quality. In this study we aimed to investigate morphological, biochemical, and hydraulic responses of Vitis vinifera to variations in R:FR. Therefore, we irradiated Syrah and Torrontés Riojano plants, grown in a glasshouse, with lateral FR light (low lateral R:FR treatment), while others, that were kept as controls, were not irradiated (ambient lateral R:FR treatment). In response to the low lateral R:FR treatment, grapevine plants did not display any of the SAS morphological markers (i.e. stem length, petiole length and angle, number of lateral shoots) in any of the cultivars assessed, despite an increase in gibberelins and auxin concentrations in leaf tissues. Low lateral R:FR did not affect dry matter partitioning, water-related traits (stomata density and index, wood anatomy), or water-related physiology (plant conductance, transpiration rate, stem hydraulic conductivity, stomatal conductance). None of the Vitis vinifera varieties assessed displayed the classical morphological and hydraulic responses associated to SAS induced by phytochromes. We discuss these results in the context of natural grapevine environment and agronomical

  13. Morphology and Hydraulic Architecture of Vitis vinifera L. cv. Syrah and Torrontés Riojano Plants Are Unaffected by Variations in Red to Far-Red Ratio.

    Directory of Open Access Journals (Sweden)

    Carina Verónica González

    Full Text Available Plants have evolved an array of specific photoreceptors to acclimate to the light environment. By sensing light signals, photoreceptors modulate plant morphology, carbon- and water-physiology, crop yield and quality of harvestable organs, among other responses. Many cultural practices and crop management decisions alter light quantity and quality perceived by plants cultivated in the field. Under full sunlight, phytochromes perceive high red to far red ratios (R:FR; 1.1, whereas overhead or lateral low R:FR (below 1.1 are sensed in the presence of plant shade or neighboring plants, respectively. Grapevine is one of the most important fruit crops in the world. To date, studies on grapevine response to light focused on different Photosynthetic Active Radiation (PAR levels; however, limited data exist about its response to light quality. In this study we aimed to investigate morphological, biochemical, and hydraulic responses of Vitis vinifera to variations in R:FR. Therefore, we irradiated Syrah and Torrontés Riojano plants, grown in a glasshouse, with lateral FR light (low lateral R:FR treatment, while others, that were kept as controls, were not irradiated (ambient lateral R:FR treatment. In response to the low lateral R:FR treatment, grapevine plants did not display any of the SAS morphological markers (i.e. stem length, petiole length and angle, number of lateral shoots in any of the cultivars assessed, despite an increase in gibberelins and auxin concentrations in leaf tissues. Low lateral R:FR did not affect dry matter partitioning, water-related traits (stomata density and index, wood anatomy, or water-related physiology (plant conductance, transpiration rate, stem hydraulic conductivity, stomatal conductance. None of the Vitis vinifera varieties assessed displayed the classical morphological and hydraulic responses associated to SAS induced by phytochromes. We discuss these results in the context of natural grapevine environment and

  14. Morphology and Hydraulic Architecture of Vitis vinifera L. cv. Syrah and Torrontés Riojano Plants Are Unaffected by Variations in Red to Far-Red Ratio.

    Science.gov (United States)

    González, Carina Verónica; Jofré, María Florencia; Vila, Hernán F; Stoffel, Markus; Bottini, Rubén; Giordano, Carla Valeria

    2016-01-01

    Plants have evolved an array of specific photoreceptors to acclimate to the light environment. By sensing light signals, photoreceptors modulate plant morphology, carbon- and water-physiology, crop yield and quality of harvestable organs, among other responses. Many cultural practices and crop management decisions alter light quantity and quality perceived by plants cultivated in the field. Under full sunlight, phytochromes perceive high red to far red ratios (R:FR; 1.1), whereas overhead or lateral low R:FR (below 1.1) are sensed in the presence of plant shade or neighboring plants, respectively. Grapevine is one of the most important fruit crops in the world. To date, studies on grapevine response to light focused on different Photosynthetic Active Radiation (PAR) levels; however, limited data exist about its response to light quality. In this study we aimed to investigate morphological, biochemical, and hydraulic responses of Vitis vinifera to variations in R:FR. Therefore, we irradiated Syrah and Torrontés Riojano plants, grown in a glasshouse, with lateral FR light (low lateral R:FR treatment), while others, that were kept as controls, were not irradiated (ambient lateral R:FR treatment). In response to the low lateral R:FR treatment, grapevine plants did not display any of the SAS morphological markers (i.e. stem length, petiole length and angle, number of lateral shoots) in any of the cultivars assessed, despite an increase in gibberelins and auxin concentrations in leaf tissues. Low lateral R:FR did not affect dry matter partitioning, water-related traits (stomata density and index, wood anatomy), or water-related physiology (plant conductance, transpiration rate, stem hydraulic conductivity, stomatal conductance). None of the Vitis vinifera varieties assessed displayed the classical morphological and hydraulic responses associated to SAS induced by phytochromes. We discuss these results in the context of natural grapevine environment and agronomical

  15. Chemical Characterization, Free Radical Scavenging, and Cellular Antioxidant and Anti-Inflammatory Properties of a Stilbenoid-Rich Root Extract of Vitis vinifera.

    Science.gov (United States)

    Esatbeyoglu, Tuba; Ewald, Philipp; Yasui, Yoshiaki; Yokokawa, Haruka; Wagner, Anika E; Matsugo, Seiichi; Winterhalter, Peter; Rimbach, Gerald

    2016-01-01

    Dietary stilbenoids are receiving increasing attention due to their potential health benefits. However, most studies concerning the bioactivity of stilbenoids were conducted with pure compounds, for example, resveratrol. The aim of this study was to characterize a complex root extract of Vitis vinifera in terms of its free radical scavenging and cellular antioxidant and anti-inflammatory properties. HPLC-ESI-MS/MS analyses of the root extract of Vitis vinifera identified seven stilbenoids including two monomeric (resveratrol and piceatannol), two dimeric (trans-ɛ-viniferin and ampelopsin A), one trimeric (miyabenol C), and two tetrameric (r-2-viniferin = vitisin A and r-viniferin = vitisin B) compounds which may mediate its biological activity. Electron spin resonance and spin trapping experiments indicate that the root extract scavenged 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, galvinoxyl, and superoxide free radicals. On a cellular level it was observed that the root extract of Vitis vinifera protects against hydrogen peroxide-induced DNA damage and induces Nrf2 and its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. Furthermore, the root extract could induce the antiatherogenic hepatic enzyme paraoxonase 1 and downregulate proinflammatory gene expression (interleukin 1β, inducible nitric oxide synthase) in macrophages. Collectively our data suggest that the root extract of Vitis vinifera exhibits free radical scavenging as well as cellular antioxidant and anti-inflammatory properties.

  16. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response

    Science.gov (United States)

    The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...

  17. Yeast biodiversity from Vitis vinifera L., subsp. sylvestris (Gmelin Hegi to face up the oenological consequences of climate change

    Directory of Open Access Journals (Sweden)

    Puig-Pujol Anna

    2016-01-01

    Full Text Available The impact of climate change in the viticulture is affecting the quality of grapes and their wines. As consequence, climatic variations are producing a mismatch between technological and phenolic maturity and are affecting the microbiota's ecology, biodiversity and their metabolism in vineyard, grape, must and wine. However, there are natural resources that can help to mitigate the effects of global warming. It has been noticed that grapes from female plants of wild vines (Vitis vinifera subsp. sylvestris have very appropriate characteristics to face up this problem: later maturing, high acidity, high polyphenol content,…A molecular study of 819 strains isolated at the end of spontaneous fermentations of grapes of Vitis vinifera subsp. sylvestris grapevines from 30 locations in northern of Spain revealed 8 different genera and 18 different species. 71,5% of the yeasts were classified as non-Saccharomycesand 28,5% were identified as Saccharomyces cerevisiae. This latter specie was characterized at strain level, classifying 30 different groups, 6 of which as the majority from 2 up to 4 different locations. These findings demonstrate a wide diversity of yeast microbiota in wild grapes that will allow a yeast selection for the wine industry in a scenario of climate change.

  18. Comparative expression profiling in grape (Vitis vinifera) berries derived from frequency analysis of ESTs and MPSS signatures.

    Science.gov (United States)

    Iandolino, Alberto; Nobuta, Kan; da Silva, Francisco Goes; Cook, Douglas R; Meyers, Blake C

    2008-05-12

    Vitis vinifera (V. vinifera) is the primary grape species cultivated for wine production, with an industry valued annually in the billions of dollars worldwide. In order to sustain and increase grape production, it is necessary to understand the genetic makeup of grape species. Here we performed mRNA profiling using Massively Parallel Signature Sequencing (MPSS) and combined it with available Expressed Sequence Tag (EST) data. These tag-based technologies, which do not require a priori knowledge of genomic sequence, are well-suited for transcriptional profiling. The sequence depth of MPSS allowed us to capture and quantify almost all the transcripts at a specific stage in the development of the grape berry. The number and relative abundance of transcripts from stage II grape berries was defined using Massively Parallel Signature Sequencing (MPSS). A total of 2,635,293 17-base and 2,259,286 20-base signatures were obtained, representing at least 30,737 and 26,878 distinct sequences. The average normalized abundance per signature was approximately 49 TPM (Transcripts Per Million). Comparisons of the MPSS signatures with available Vitis species' ESTs and a unigene set demonstrated that 6,430 distinct contigs and 2,190 singletons have a perfect match to at least one MPSS signature. Among the matched sequences, ESTs were identified from tissues other than berries or from berries at different developmental stages. Additional MPSS signatures not matching to known grape ESTs can extend our knowledge of the V. vinifera transcriptome, particularly when these data are used to assist in annotation of whole genome sequences from Vitis vinifera. The MPSS data presented here not only achieved a higher level of saturation than previous EST based analyses, but in doing so, expand the known set of transcripts of grape berries during the unique stage in development that immediately precedes the onset of ripening. The MPSS dataset also revealed evidence of antisense expression not

  19. Comparative expression profiling in grape (Vitis vinifera berries derived from frequency analysis of ESTs and MPSS signatures

    Directory of Open Access Journals (Sweden)

    Cook Douglas R

    2008-05-01

    Full Text Available Abstract Background Vitis vinifera (V. vinifera is the primary grape species cultivated for wine production, with an industry valued annually in the billions of dollars worldwide. In order to sustain and increase grape production, it is necessary to understand the genetic makeup of grape species. Here we performed mRNA profiling using Massively Parallel Signature Sequencing (MPSS and combined it with available Expressed Sequence Tag (EST data. These tag-based technologies, which do not require a priori knowledge of genomic sequence, are well-suited for transcriptional profiling. The sequence depth of MPSS allowed us to capture and quantify almost all the transcripts at a specific stage in the development of the grape berry. Results The number and relative abundance of transcripts from stage II grape berries was defined using Massively Parallel Signature Sequencing (MPSS. A total of 2,635,293 17-base and 2,259,286 20-base signatures were obtained, representing at least 30,737 and 26,878 distinct sequences. The average normalized abundance per signature was ~49 TPM (Transcripts Per Million. Comparisons of the MPSS signatures with available Vitis species' ESTs and a unigene set demonstrated that 6,430 distinct contigs and 2,190 singletons have a perfect match to at least one MPSS signature. Among the matched sequences, ESTs were identified from tissues other than berries or from berries at different developmental stages. Additional MPSS signatures not matching to known grape ESTs can extend our knowledge of the V. vinifera transcriptome, particularly when these data are used to assist in annotation of whole genome sequences from Vitis vinifera. Conclusion The MPSS data presented here not only achieved a higher level of saturation than previous EST based analyses, but in doing so, expand the known set of transcripts of grape berries during the unique stage in development that immediately precedes the onset of ripening. The MPSS dataset also revealed

  20. Temperature dependence of refractive index and of electrical impedance of grape seed (Vitis vinifera, Vitis labrusca oils extracted by Soxhlet and mechanical pressing

    Directory of Open Access Journals (Sweden)

    Vieira, D. S.

    2015-09-01

    Full Text Available In this report, the temperature dependence of the refractive index and electric impedance of vegetable oil grape seeds extracted from Vitis vinifera (v. Cabernet and Vitis labrusca (v. Bordo are investigated by means of experimental techniques. The seeds were collected from wineries located in two cities in the south of Brazil. In both extraction methods, the seeds were dried at 40.0 °C and at 80.0 °C, respectively, before the oil extraction. From optical microscopy and refractometry results, one can see that the grape seed oil extracted by mechanical pressing shows a linear dependence between the refractive index and temperature and has no birefringent residues. From the fitting of the EIS (Electrical Impedance Spectroscopy data, an equivalent electric circuit composed of a parallel RC in series with a resistor is proposed. The circuit model is in good agreement with the experimental data and provides the electrical permittivity of the vegetable oils investigated.Se investiga mediante técnicas experimentales la dependencia del índice de refracción y la impedancia eléctrica de aceites vegetales extraídos de semillas de uva Vitis vinifera (v. Cabernet y Vitis labrusca (v. Bordo. Las semillas fueron recolectadas de bodegas situadas en dos ciudades al sur de Brasil. Antes de la extracción del aceite, mediante dos métodos de extracción, las semillas fueron secadas a 40,0 °C y 80,0 °C. De los resultados de refractometria y microscopía óptica, se comprueba que el aceite de semilla de uva extraída por prensado mecánico obedece a una relación lineal del índice de refracción con la temperatura y no presentan resíduos birrefringentes. Con los datos de impedancia eléctrica, se propone un circuito eléctrico equivalente formado por una resistencia y un condensador en paralelo, a su vez ligado a otra resistencia en serie. El modelo de circuito tiene una alta correlación con los datos experimentales y permite obtener la constante diel

  1. Geochemical behaviour of rare earths in Vitis vinifera grafted onto different rootstocks and growing on several soils

    Energy Technology Data Exchange (ETDEWEB)

    Censi, P., E-mail: paolo.censi@unipa.it [DISTEM, University of Palermo, Via Archirafi, 22-90123 Palermo (Italy); Saiano, F.; Pisciotta, A. [SAF Department, University of Palermo, Viale delle Scienze, 13-90128 Palermo (Italy); Tuzzolino, N. [DISTEM, University of Palermo, Via Archirafi, 22-90123 Palermo (Italy)

    2014-03-01

    The geochemical behaviour of lanthanides and yttrium (Rare Earth Elements, REEs) has been investigated mainly in geological systems where these elements represent the best proxies of processes involving the occurrence of an interface between different media. This behaviour is assessed according to features recorded in sequences of REE concentrations along the REE series normalised with respect to a reference material. In this study, the geochemical behaviour of REE was investigated in different parts of Vitis vinifera specimens grown off-soil, on soils of different nature and grafted onto several rootstocks in order to evaluate effects induced by these changes. The results indicated that roots are the plant organs where REEs are preferentially concentrated, in particular elements from Sm to Ho (middle REE, MREE) whereas Eu enrichments occur in aerial parts. The geochemical behaviour of REE suggests that MREE enrichments in roots are due to preferential MREE interactions with biological membranes or to surface complexation with newly formed phosphates. Eu-positive anomalies suggest that Eu{sup 3+} can form stable organic complexes in place of Ca{sup 2+} in several biological processes in xylem fluids. The possibility that Eu mobility in these fluids can be enhanced by its reductive speciation as Eu{sup 2+} cannot be ruled out. The assessment of the geochemical behaviour of REE according to the theory of the Tetrad Effect carried out confirms that REEs coming from soil are scavenged onto root tissues or mineral surfaces whereas their behaviour in aerial parts of V. vinifera is driven by dissolved complexation. - Highlights: • REE behaviour is driven by scavenging onto authigenic solids or membranes in roots. • REE behaviour is driven by dissolved complexation in aerial plant parts. • Positive Eu anomalies are a consequence of the REE translocation by xylem fluids. • Significant REE tetrad effects are observed in Vitis vinifera plants.

  2. Recombinant expression, purification, and characterization of polyphenol oxidase 2 (VvPPO2) from "Shine Muscat" (Vitis labruscana Bailey × Vitis vinifera L.).

    Science.gov (United States)

    Katayama-Ikegami, Ayako; Suehiro, Yuka; Katayama, Takane; Jindo, Kazushi; Itamura, Hiroyuki; Esumi, Tomoya

    2017-12-01

    Polyphenol oxidases (PPOs) catalyze browning reactions in various plant organs, therefore controlling the reactions is important for the food industry. PPOs have been assumed to be involved in skin browning of white grape cultivars; however, the molecular mechanism underlying PPO-mediated browning process remains elusive. We have recently identified a new PPO gene named VvPPO2 from "Shine Muscat" (Vitis labruscana Bailey × V. vinifera L.), and have shown that the gene is transcribed at a higher level than the previously identified VvPPO1 in browning, physiologically disordered berry skins at the maturation stage. In this study, we expressed VvPPO2 in Escherichia coli and, using the purified preparation, revealed unique physicochemical characteristics of the enzyme. Our study opens up a way to not only understand the berry skin browning process but also to elucidate the enzymatic maturation process of grape PPOs.

  3. The novel gene VpPR4-1 from Vitis pseudoreticulata increases powdery mildew resistance in transgenic Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Lingmin eDai

    2016-05-01

    Full Text Available Pathogenesis-related proteins (PRs can lead to increased resistance of the whole plant to pathogen attack. Here, we isolate and characterize a PR-4 protein from a wild Chinese grape Vitis pseudoreticulata which shows greatly elevated transcription following powdery mildew infection. Its expression profiles under a number of abiotic stresses were also investigated. The PR-4 gene was overexpressed in regenerated V. vinifera cv. Red Globe via Agrobacterium tumefaciens-mediated transformation and verified by the Western blot. The transgenic grapevines exhibited higher expression levels of PR-4 protein content than wild-type vines and also repressed the growth of powdery mildew. The PR gene responds differently to different stresses in the PR-4 transformants. This study demonstrates that PR-4 protein in grapes plays a vital role in defense against powdery mildew invasion.

  4. Performance of a New Model for Predicting End of Flowering Date (bbch 69) of Grapevine (Vitis Vinifera L.)

    Science.gov (United States)

    Gentilucci, Matteo

    2017-04-01

    The end of flowering date (BBCH 69) is an important phenological stage for grapevine (Vitis Vinifera L.), in fact up to this date the growth is focused on the plant and gradually passes on the berries through fruit set. The aim of this study is to perform a model to predict the date of the end of flowering (BBCH69) for some grapevine varieties. This research carried out using three cultivars of grapevine (Maceratino, Montepulciano, Sangiovese) in three different locations (Macerata, Morrovalle and Potenza Picena), places of an equal number of wine farms for the time interval between 2006 and 2013. In order to have reliable temperatures for each location, the data of 6 weather stations near these farms have been interpolated using cokriging methods with elevation as independent variable. The procedure to predict the end of flowering date starts with an investigation of cardinal temperatures typical of each grapevine cultivar. In fact the analysis is characterized by four temperature thresholds (cardinals): minimum activity temperature (TCmin = below this temperature there is no growth for the plant), lower optimal temperature (TLopt = above this temperature there is maximum growth), upper optimal temperature (TUopt = below this temperature there is maximum growth) and maximum activity temperature (TC max = above this temperature there is no growth). Thus this model take into consideration maximum, mean and minimum daily temperatures of each location, relating them with the four above mentioned cultivar temperature thresholds. In this way it has been obtained some possible cases (32) corresponding to as many equations, depending on the position of temperatures compared with the thresholds, in order to calculate the amount of growing degree units (GDU) for each day. Several iterative tests (about 1000 for each cultivar) have been performed, changing the values of temperature thresholds and GDU in order to find the best possible combination which minimizes error

  5. MINERAIS DE VITIS VINIFERA CULTIVADAS NA FRONTEIRA DO RIO GRANDE DO SUL

    Directory of Open Access Journals (Sweden)

    Neidi Garcia Penna

    1993-04-01

    Full Text Available Vitis vinifera Cabernet Sauvignon, Pinot Chardonnay e Sauvignon Blanc foram analizadas durante oito (8 anos, com o objetivo de quantificar Nitrogênio(N, Fósforo(P, Potássio (K, Cálcio (Ca, Magnésio (Mg, Ferro (Fe, Cobre (Cu, Sódio (Na, Manganês (Mn, Boro (Bo e Zinco(Zn nos pecíolos. As amostras peciolares foram secas numa estufa com circulação de ar a aproximadamente 70°C e moídas. Nitrogênio foi determinado pelo método microkjeldahl, Fósforo por colorimetria, Potássio e Sódio por emissão de chama, Cálcio, Magnésio, Ferro, Cobre, Manganês e Zinco por espectrometria de absorção atômica e Boro por colorimetria usando curcumina como derivatizante. Valores médios dos oito (8 anos encontrados na matéria seca (MS foram para Cabernet Sauvignon (g/100g: 1,59N, 0,76P, 3,28K, 0,93Ca, 0,28Mg e em mg/100g: 11,52Fe, 4,18Cu, 85,08Na, 70,17Mn, 2.07B e 13,97Zn; para Pinot Chardonnay (g/100g: 1,26N, 0,47P, 3,20K, 0,82Ca, 0,31 Mg e em mg/100g: 15,25Fe, 3,25Cu, 63,73Na, 42,91Mn, 2,08B e 11,13Zn; para Sauvignon Blanc (g/100g: 1,51 N, 0,49P, 2.29K, 0,79Ca, 0,32Mg e em mg/100g: 16,01 Fe, 5,91 Cu, 76,02Na, 70,61 Mn, 1,91 B e 11,9Zn.

  6. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    Science.gov (United States)

    2012-01-01

    Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries. Conclusions The

  7. Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot).

    Science.gov (United States)

    Buffetto, F; Ropartz, D; Zhang, X J; Gilbert, H J; Guillon, F; Ralet, M-C

    2014-10-01

    Rhamnogalacturonan II (RGII) is a structurally complex pectic sub-domain composed of more than 12 different sugars and 20 different linkages distributed in five side chains along a homogalacturonan backbone. Although RGII has long been described as highly conserved over plant evolution, recent studies have revealed variations in the structure of the polysaccharide. This study examines the fine structure variability of RGII in wine, focusing on the side chains A and B obtained after sequential mild acid hydrolysis. Specifically, this study aims to differentiate intrinsic structural variations in these RGII side chains from structural variations due to acid hydrolysis. RGII from wine (Vitis vinifera Merlot) was sequentially hydrolysed with trifluoroacetic acid (TFA) and the hydrolysis products were separated by anion-exchange chromatography (AEC). AEC fractions or total hydrolysates were analysed by MALDI-TOF mass spectrometry. The optimal conditions to recover non-degraded side chain B, side chain A and RGII backbone were 0·1 m TFA at 40 °C for 16 h, 0·48 m TFA at 40 °C for 16 h (or 0·1 m TFA at 60 °C for 8 h) and 0·1 m TFA at 60 °C for 16 h, respectively. Side chain B was particularly prone to acid degradation. Side chain A and the RGII GalA backbone were partly degraded by 0·1 m TFA at 80 °C for 1-4 h. AEC allowed separation of side chain B, methyl-esterified side chain A and non-methyl-esterified side chain A. The structure of side chain A and the GalA backbone were highly variable. Several modifications to the RGII structure of wine were identified. The observed dearabinosylation and deacetylation were primarily the consequence of acidic treatment, while variation in methyl-esterification, methyl-ether linkages and oxidation reflect natural diversity. The physiological significance of this variability, however, remains to be determined. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights

  8. Transcriptomic analysis of grape (Vitis vinifera L. leaves during and after recovery from heat stress

    Directory of Open Access Journals (Sweden)

    Liu Guo-Tian

    2012-09-01

    Full Text Available Abstract Background Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L. leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts, followed by quantitative Real-Time PCR validation for some transcript profiles. Results We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes, protein fate (i.e., HSPs, primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery. Conclusion The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery

  9. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.

    Science.gov (United States)

    De Angeli, Alexis; Baetz, Ulrike; Francisco, Rita; Zhang, Jingbo; Chaves, Maria Manuela; Regalado, Ana

    2013-08-01

    Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.

  10. A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot Noir bacterial artificial chromosome contigs.

    Science.gov (United States)

    Troggio, Michela; Malacarne, Giulia; Coppola, Giuseppina; Segala, Cinzia; Cartwright, Dustin A; Pindo, Massimo; Stefanini, Marco; Mank, Rolf; Moroldo, Marco; Morgante, Michele; Grando, M Stella; Velasco, Riccardo

    2007-08-01

    The construction of a dense genetic map for Vitis vinifera and its anchoring to a BAC-based physical map is described: it includes 994 loci mapped onto 19 linkage groups, corresponding to the basic chromosome number of Vitis. Spanning 1245 cM with an average distance of 1.3 cM between adjacent markers, the map was generated from the segregation of 483 single-nucleotide polymorphism (SNP)-based genetic markers, 132 simple sequence repeats (SSRs), and 379 AFLP markers in a mapping population of 94 F(1) individuals derived from a V. vinifera cross of the cultivars Syrah and Pinot Noir. Of these markers, 623 were anchored to 367 contigs that are included in a physical map produced from the same clone of Pinot Noir and covering 352 Mbp. On the basis of contigs containing two or more genetically mapped markers, region-dependent estimations of physical and recombinational distances are presented. The markers used in this study include 118 SSRs common to an integrated map derived from five segregating populations of V. vinifera. The positions of these SSR markers in the two maps are conserved across all Vitis linkage groups. The addition of SNP-based markers introduces polymorphisms that are easy to database, are useful for evolutionary studies, and significantly increase the density of the map. The map provides the most comprehensive view of the Vitis genome reported to date and will be relevant for future studies on structural and functional genomics and genetic improvement.

  11. Stilbene production in cell cultures of Vitis vinifera L. cvs Red Globe and Michele Palieri elicited by methyl jasmonate.

    Science.gov (United States)

    Santamaria, A R; Antonacci, D; Caruso, G; Cavaliere, C; Gubbiotti, R; Lagana, A; Valletta, A; Pasqua, G

    2010-09-01

    Cell cultures obtained from Vitis vinifera cvs Michele Palieri and Red Globe were cultured in order to stimulate stilbene production. In the calli, stilbene production peaked at day 22 of culture for both cultivars; the main compound was trans-piceid, followed by cis-piceid. Methyl jasmonate, which was added to cell suspensions in the first half of the exponential growth phase, enhanced stilbene accumulation, producing mainly trans-piceid and epsilon-viniferin. Other stilbenoids, though in lower quantities, were identified by liquid chromatography/positive electrospray mass spectrometry. epsilon-Viniferin and trans-resveratrol were the main compounds released into the culture medium. The total quantity of stilbenes was genotype dependent, with a better response found for the cv Red Globe.

  12. Effect of Milk thistle plant, Vitis vinifera extract on immune system of rainbow trout (Oncorhynchus mykiss challenge by diazinon

    Directory of Open Access Journals (Sweden)

    Mina Rabie

    2016-09-01

    Full Text Available The pollutants due to effect on the immune system of fish increase fish sensitivity to pathogens. Diazinon is one of the most used organophosphates pesticide in many agricultural areas. This study aimed to evaluate the effect of diazinon on the immune system of rainbow trout (Oncorhynchus mykiss and application of Milk thistle plant, Vitis vinifera extract to reduce the adverse effects of this pesticide on its immune system. The reduction in the level of plasma peroxides, IgM, total complement and lysozyme were observed in fish exposed to diazinon showing its effect on the fish’s immune system. No significant difference between control group and fish fed by Milk thistle plant extract and exposed to diazinon can reflect protective impact of Milk thistle plant extract on the immune system of rainbow trout by eliminating the free radicals and boosting the immune system.

  13. Infestation of grape Vitis vinifera by Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) in sub-medium Sao Francisco valley, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Habibe, Tuffi C.; Viana, Rodrigo E.; Damasceno, Itala Cruz; Malavasi, Aldo [Biofabrica Moscamed Brasil, Juazeiro, BA (Brazil). Distrito Industrial do Sao Francisco; Nascimento, Antonio S., E-mail: antnasc@cnpmf.embrapa.b [EMBRAPA Mandioca e Fruticultura Tropical, Cruz das Almas, BA (Brazil); Paranhos, Beatriz A.J.; Haji, Francisca Nemaura P., E-mail: bjodao@cpatsa.embrapa.b [EMBRAPA Semi-Arido, Petrolina, PE (Brazil); Carvalho, Raimundo S. [Agencia de Defesa Agropecuaria da Bahia (ADAB), Salvador, BA (Brazil)

    2006-07-01

    The objective of this study was to assess the infestation level in grapes, Vitis vinifera, by the medfly,Ceratitis capitata in the Sao Francisco River Valley. The adult population was monitored with Jackson trap baited with trimedlure. Samples of grapes for larval infestation assessment were taken along three months, with a total of 116 kg. The average FTD (flies/trap/day) for medfly males was 0.26. The number of pupae obtained from the fruit samples was 471; 287 adults emerged (60.4%), all Ceratitis capitata. The infestation level was 4.0 pupa/kg of fresh fruit. We conclude that grape is a medfly host in SFV, occasionally causing high damage to production. (author)

  14. Anti-oxidant properties and polyphenolic profile screening of Vitis vinifera stems and leaves crude extracts grown in Perlis, Malaysia

    Science.gov (United States)

    Zakaria, Nursyahda; Zulkifli, Razauden Mohamed; Akhir, Fazrena Nadia Md; Basar, Norazah

    2014-03-01

    Grape has become a fast growing agricultural sector in Malaysia producing between 0.62 kg to 2.03 kg waste per vinestock. This study aims to generate useful information on anti-oxidative properties as well as polyphenolic composition of grapevine waste. Stems and leaves of Vitis vinifera cultivated in Perlis, Malaysia were extracted using methanol, ethyl acetate and petroleum ether. Ethyl acetate stems extract exhibited highest total phenolic content. While in DPPH assay, methanolic stems extract show the highest antioxidant activities. This result indicates that total phenolic content in the extracts may not contribute directly to the antioxidant activities. Thin Layer Chromatograms of all crude extracts exhibited good separation under solvent system petroleum ether-ethyl acetate (2:3) resulted in detection of resveratrol in ethyl acetate stems crude extract.

  15. Relationship between Agronomic Parameters, Phenolic Composition of Grape Skin, and Texture Properties of Vitis vinifera L. cv. Tempranillo.

    Science.gov (United States)

    García-Estévez, Ignacio; Andrés-García, Paula; Alcalde-Eon, Cristina; Giacosa, Simone; Rolle, Luca; Rivas-Gonzalo, Julián C; Quijada-Morín, Natalia; Escribano-Bailón, M Teresa

    2015-09-09

    The relationship between the agronomic parameters of grapevine and the phenolic composition of skin of Vitis vinifera L. cv. Tempranillo grapes was assessed. The physical and mechanical properties of berries and their skins were also determined and correlated to the chemical composition. Results showed a significant negative correlation between grapevine vigor-related parameters (such as leaf area and bunch weight) and anthocyanin composition, whereas the percentage (w/w) of seeds was negatively correlated with the amount of flavanols of grape skins. Texture properties of grape skins also showed an important relationship with chemical composition. Berry hardness showed a negative correlation with the coumaroyl-anthocyanin derivatives, but it was positively correlated to skin flavanic composition. Moreover, significant regressions with high coefficients of determination were found between phenolic composition and grapevine vigor-related and texture variables, thus pointing out that these parameters might be useful for estimating the phenolic composition of grape skins.

  16. The effect of in vitro gastrointestinal digestion on the anti-inflammatory activity of Vitis vinifera L. leaves.

    Science.gov (United States)

    Sangiovanni, E; Di Lorenzo, C; Colombo, E; Colombo, F; Fumagalli, M; Frigerio, G; Restani, P; Dell'Agli, M

    2015-08-01

    Botanicals are widely consumed all over the world for health purposes, with increased usage in the general population, in many different types of products, including foods and plant food supplements. Several reports support for the beneficial effects of botanicals against gastrointestinal inflammation. However, no studies regarding the anti-inflammatory activity in the gastrointestinal tract of red vine leaves have been reported so far. The present work investigates the biological activity of Vitis vinifera L. water extract (VVWE) from dried leaves in two in vitro models of gastric and intestinal inflammation. The extract was characterized by a validated HPLC-DAD method, and tested on human epithelial gastric (AGS) and intestinal (Caco-2) cells with the aim to investigate the inhibitory effect on IL-8 secretion and promoter activity, before and after in vitro gastric or gastrointestinal digestion. Our results show that the water extract from red vine leaves inhibits TNFα-induced IL-8 secretion and expression in human gastric epithelial cells; the effect should be maintained, although to a lesser extent, after gastric digestion. In contrast, the effect after intestinal digestion is dramatically decreased since degradation of the active components in the gut does not allow the extract to efficiently counteract TNFα or IL-1β induced IL-8 expression and the NF-κB pathway. The main molecular target of VVWE at the gastric level includes TNFα-induced activation of NF-κB and occurs at concentrations easily reachable after PFS consumption based on red vine leaf water extract as the ingredient. Our findings suggest that PFS containing water extracts from Vitis vinifera L. leaves could be useful to inhibit/attenuate gastric inflammation inhibiting IL-8 secretion and expression through impairment of the NF-κB pathway.

  17. Various Extraction Methods for Obtaining Stilbenes from Grape Cane of Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Ivo Soural

    2015-04-01

    Full Text Available Grape cane, leaves and grape marc are waste products from viticulture, which can be used to obtain secondary stilbene derivatives with high antioxidant value. The presented work compares several extraction methods: maceration at laboratory temperature, extraction at elevated temperature, fluidized-bed extraction, Soxhlet extraction, microwave-assisted extraction, and accelerated solvent extraction. To obtain trans-resveratrol, trans-ε-viniferin and r2-viniferin from grape cane of the V. vinifera variety Cabernet Moravia, various conditions were studied: different solvents, using powdered versus cut cane material, different extraction times, and one-step or multiple extractions. The largest concentrations found were 6030 ± 680 µg/g dry weight (d.w. for trans-resveratrol, 2260 ± 90 µg/g d.w. for trans-ε-viniferin, and 510 ± 40 µg/g d.w. for r2-viniferin. The highest amounts of stilbenes (8500 ± 1100 µg/g d.w. were obtained using accelerated solvent extraction in methanol.

  18. Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from Igdir province of Eastern Turkey.

    Science.gov (United States)

    Eyduran, Sadiye Peral; Akin, Meleksen; Ercisli, Sezai; Eyduran, Ecevit; Maghradze, David

    2015-01-13

    The Eurasian grapevine (Vitis vinifera L.) is the most widely cultivated and economically important horticultural crop in the world. As a one of the origin area, Anatolia played an important role in the diversification and spread of the cultivated form V. vinifera ssp. vinifera cultivars and also the wild form V. vinifera ssp. sylvestris ecotypes. Although several biodiversity studies have been conducted with local cultivars in different regions of Anatolia, no information has been reported so far on the biochemical (organic acids, sugars, phenolic acids, vitamin C) and antioxidant diversity of local historical table V. vinifera cultivars grown in Igdir province. In this work, we studied these traits in nine local table grape cultivars viz. 'Beyaz Kismis' (synonym name of Sultanina or Thompson seedless), 'Askeri', 'El Hakki', 'Kirmizi Kismis', 'Inek Emcegi', 'Hacabas', 'Kerim Gandi', 'Yazen Dayi', and 'Miskali' spread in the Igdir province of Eastern part of Turkey. Variability of all studied parameters is strongly influenced by cultivars (P < 0.01). Among the cultivars investigated, 'Miskali' showed the highest citric acid content (0.959 g/l) while 'Kirmizi Kismis' produced predominant contents in tartaric acid (12.71 g/l). The highest glucose (16.47 g/100 g) and fructose (15.55 g/100 g) contents were provided with 'Beyaz Kismis'. 'Kirmizi Kismis' cultivar had also the highest quercetin (0.55 mg/l), o-coumaric acid (1.90 mg/l), and caffeic acid (2.73 mg/l) content. The highest ferulic acid (0.94 mg/l), and syringic acid (2.00 mg/l) contents were observed with 'Beyaz Kismis' cultivar. The highest antioxidant capacity was obtained as 9.09 μmol TE g(-1) from 'Inek Emcegi' in TEAC (Trolox equivalent Antioxidant Capacity) assay. 'Hacabas' cultivar had the highest vitamin C content of 35.74 mg/100 g. Present results illustrated that the historical table grape cultivars grown in Igdir province of Eastern part of Turkey contained diverse

  19. Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests.

    Science.gov (United States)

    Fauconneau, B; Waffo-Teguo, P; Huguet, F; Barrier, L; Decendit, A; Merillon, J M

    1997-01-01

    Vitis vinifera cell suspensions were used to isolate and characterize the flavonoids (anthocyanins, catechins) and non-flavonoids (stilbenes) found in red wine. Furthermore, we showed that astringin is produced although this stilbene has not previously been reported to be a constituent of V. vinifera or wine. The ability of these compounds to act as radical scavengers was investigated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH), a stable free radical. Antioxidant activities were assessed by their capacity to prevent Fe2+-induced lipid peroxidation in microsomes and their action on Cu2+-induced lipid peroxidation in low-density lipoproteins. The results showed that astringin has an important antioxidant effect similar to that of trans-resveratrol, and a higher radical scavenger activity than the latter. Astringinin appeared to be more active. These data indicate that phenolic compounds (stilbenes, catechins, anthocyanins) exhibit interesting properties which may account in part for the so-called "French paradox," i.e. that moderate drinking of red wine over a long period of time can protect against coronary heart disease.

  20. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress.

    Science.gov (United States)

    Pantaleo, Vitantonio; Vitali, Marco; Boccacci, Paolo; Miozzi, Laura; Cuozzo, Danila; Chitarra, Walter; Mannini, Franco; Lovisolo, Claudio; Gambino, Giorgio

    2016-02-02

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post-transcriptional control of several pathway intermediates, thus playing pivotal roles in plant growth, development and response to biotic and abiotic stresses. In recent years, the grapevine genome release, small(s)-RNAseq and degradome-RNAseq together has allowed the discovery and characterisation of many miRNA species, thus rendering the discovery of additional miRNAs difficult and uncertain. Taking advantage of the miRNA responsiveness to stresses and the availability of virus-free Vitis vinifera plants and those infected only by a latent virus, we have analysed grapevines subjected to drought in greenhouse conditions. The sRNA-seq and other sequence-specific molecular analyses have allowed us to characterise conserved miRNA expression profiles in association with specific eco-physiological parameters. In addition, we here report 12 novel grapevine-specific miRNA candidates and describe their expression profile. We show that latent viral infection can influence the miRNA profiles of V. vinifera in response to drought. Moreover, study of eco-physiological parameters showed that photosynthetic rate, stomatal conductance and hydraulic resistance to water transport were significantly influenced by drought and viral infection. Although no unequivocal cause-effect explanation could be attributed to each miRNA target, their contribution to the drought response is discussed.

  1. Poly(lactic- co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi

    Science.gov (United States)

    Valletta, Alessio; Chronopoulou, Laura; Palocci, Cleofe; Baldan, Barbara; Donati, Livia; Pasqua, Gabriella

    2014-12-01

    Poly(lactic- co-glycolic) acid (PLGA)-based NPs are currently considered among the most promising drug carriers, nevertheless their use in plants has never been investigated. In this work, for the first time, we demonstrated the ability of PLGA NPs to cross the plant cell wall and membrane of Vitis vinifera cell cultures and grapevine-pathogenic fungi. By means of fluorescence microscopy, we established that PLGA NPs can enter in grapevine leaf tissues through stomata openings and that they can be absorbed by the roots and transported to the shoot through vascular tissues. TEM analysis on cultured cells showed that NPs ≤ 50 nm could enter cells, while bigger ones remained attached to the cell wall. Viability tests demonstrated that PLGA NPs were not cytotoxic for V. vinifera-cultured cells. The cellular uptake of PLGA NPs by some important grapevine-pathogenic fungi has also been observed, thus suggesting that PLGA NPs could be used to deliver antifungal compounds within fungal cells. Overall the results reported suggest that such NPs may play a key role in future developments of agrobiotechnologies, as it is currently happening in biomedicine.

  2. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera.

    Science.gov (United States)

    Tombesi, Sergio; Nardini, Andrea; Farinelli, Daniela; Palliotti, Alberto

    2014-11-01

    Current understanding of physiological mechanisms governing stomatal behavior under water stress conditions is still incomplete and controversial. It has been proposed that coordination of stomatal kinetics with xylem vulnerability to cavitation [vulnerability curve (VC)] leads to different levels of isohydry/anisohydry in different plant species/cultivars. In this study, this hypothesis is tested in Vitis vinifera cultivars displaying contrasting stomatal behavior under drought stress. The cv Montepulciano (MP, near-isohydric) and Sangiovese (SG, anisohydric) were compared in terms of stomatal response to leaf and stem water potential, as possibly correlated to different petiole hydraulic conductivity (k(petiole)) and VC, as well as to leaf water relations parameters. MP leaves showed almost complete stomatal closure at higher leaf and stem water potentials than SG leaves. Moreover, MP petioles had higher maximum k(petiole) and were more vulnerable to cavitation than SG. Water potential at the turgor loss point was higher in MP than in SG. In SG, the percentage reduction of stomatal conductance (PLg(s)) under water stress was almost linearly correlated with corresponding percentage loss of k(petiole) (PLC), while in MP PLg(s) was less influenced by PLC. Our results suggest that V. vinifera near-isohydric and anisohydric genotypes differ in terms of xylem vulnerability to cavitation as well as in terms of k(petiole) and that the coordination of these traits leads to their different stomatal responses under water stress conditions. © 2014 Scandinavian Plant Physiology Society.

  3. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera

    Science.gov (United States)

    2014-01-01

    Background WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by stressful climate conditions such as cold stress and the role of WRKY genes in the survival of grapevine under these conditions remains unknown. Results We identified a total of 59 VvWRKYs from the V. vinifera genome, belonging to four subgroups according to conserved WRKY domains and zinc-finger structure. The majority of VvWRKYs were expressed in more than one tissue among the 7 tissues examined which included young leaves, mature leaves, tendril, stem apex, root, young fruits and ripe fruits. Publicly available microarray data suggested that a subset of VvWRKYs was activated in response to diverse stresses. Quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 36 VvWRKYs are changed following cold exposure. Comparative analysis was performed on data from publicly available microarray experiments, previous global transcriptome analysis studies, and qRT-PCR. We identified 15 VvWRKYs in at least two of these databases which may relate to cold stress. Among them, the transcription of three genes can be induced by exogenous ABA application, suggesting that they can be involved in an ABA-dependent signaling pathway in response to cold stress. Conclusions We identified 59 VvWRKYs from the V. vinifera genome and 15 of them showed cold stress-induced expression patterns. These genes represented candidate genes for future functional analysis of VvWRKYs involved in the low temperature-related signal pathways in grape. PMID:24755338

  4. Identification of a Vitis vinifera endo-β-1,3-glucanase with antimicrobial activity against Plasmopara viticola.

    Science.gov (United States)

    Mestre, Pere; Arista, Gautier; Piron, Marie-Christine; Rustenholz, Camille; Ritzenthaler, Christophe; Merdinoglu, Didier; Chich, Jean-François

    2017-06-01

    Inducible plant defences against pathogens are stimulated by infections and comprise several classes of pathogenesis-related (PR) proteins. Endo-β-1,3-glucanases (EGases) belong to the PR-2 class and their expression is induced by many pathogenic fungi and oomycetes, suggesting that EGases play a role in the hydrolysis of pathogen cell walls. However, reports of a direct effect of EGases on cell walls of plant pathogens are scarce. Here, we characterized three EGases from Vitis vinifera whose expression is induced during infection by Plasmopara viticola, the causal agent of downy mildew. Recombinant proteins were expressed in Escherichia coli. The enzymatic characteristics of these three enzymes were measured in vitro and in planta. A functional assay performed in vitro on germinated P. viticola spores revealed a strong anti-P. viticola activity for EGase3, which strikingly was that with the lowest in vitro catalytic efficiency. To our knowledge, this work shows, for the first time, the direct effect against downy mildew of EGases of the PR-2 family from Vitis. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  5. The synthesis and accumulation of resveratrol are associated with veraison and abscisic acid concentration in Beihong (Vitis vinifera × Vitis amurensis berry skin

    Directory of Open Access Journals (Sweden)

    Junfang Wang

    2016-11-01

    Full Text Available Resveratrols are polyphenolic secondary metabolites that can benefit human health, and only occur in a few plant families including Vitaceae. It has been reported that abscisic acid (ABA can induce veraison (the onset of grape berry ripening and may induce the accumulation of resveratrol in berry skin. However, the relationships between ABA, veraison, the accumulation of anthocyanins and the accumulation of resveratrol in the berry are poorly understood. This study attempted to answer this question through an investigation of the effect of applied ABA and fluridone (a synthetic inhibitor of ABA on the biosynthesis and accumulation of ABA, anthocyanin and resveratrol in Beihong (Vitis vinifera × Vitis amurensis berry skin. Under natural conditions, resveratrol concentration was very low before 91 DAA (days after anthesis, i.e. 2 weeks after veraison, however, it increased sharply from this point to 126 DAA (maturity. Exogenous ABA applications all resulted in an increase in berry skin ABA and anthocyanin concentration, irrespective of the developmental stage at which the treatment occurred (20 and 10 d pre-veraison,veraison or 7 d post-veraison, thereby advancing veraison. In contrast, resveratrol concentration increased only when ABA was applied at 10 d pre-veraison or at veraison. As a result, the accumulation of resveratrol was associated with veraison in grape berry skin and this accumulation, together with that of anthocyanins, was associated with ABA concentration. The response of resveratrol biosynthesis in the berry skin to manipulation of ABA varied during berry development and was less sensitive to ABA than the response of anthocyanin biosynthesis.

  6. Influence of Different Maceration Techniques and Ageing on Proanthocyanidins and Anthocyanins of Red Wine cv. Babić (Vitis vinifera, L.)

    OpenAIRE

    Irena Budić-Leto; Tomislav Lovrić; Urška Vrhovšek

    2003-01-01

    Effects of winemaking techniques on the polyphenolic composition of specific Croatian wines made from Babić (Vitis vinifera, L.), from the Primošten vine-growing region, were subjected to examination. Winemaking processes and reactions that take place during maturation significantly influence the content of anthocyanins and proanthocyanidins in wine. Prolonged maceration duration caused an increase in the content of total phenols, vanillin index and proanthocyanidins, as well as a decrease in...

  7. Conversion of Indole-3-butyric Acid to Indole-3-acetic Acid by Cuttings of Grapevine (Vitis vinifera) and Olive (Olea europea)

    OpenAIRE

    E., Epstein; S., Lavee; Institute of Horticulture, Agricultural Research Organization,Volcani Center

    1984-01-01

    The metabolism of indolebutyric acid (IBA) in hardwood cuttings of grapevine (Vitis vinifera cv. Perlette) and green cuttings of olive (Olea europea cvs. Manzanillo, Kalamata and Koroneiki) was investigated. Radioactive IBA which was synthesized in our laboratory was used in these studies. Cuttings of both olive and grapevine converted IBA to IAA. The identity of IAA was confirmed by high performance liquid chromatography and gas-liquid chromatography. The stability of IBA, its slow transport...

  8. Biological effects of pollution and problems of the environment in the region of Birsesti (Town of Jiu), Romania. [Triticum vulgare; Zea mays; Brassica oleracea; Vitis vinifera

    Energy Technology Data Exchange (ETDEWEB)

    Ionescu, A.; Neamu, G.

    1973-01-01

    The vegetation around Birsesti showed diminished chlorophyll pigment by as much as 20% below control plants. In Triticum vulgare, Zea mays and Brassica oleracea there was a reduction in functioning stomata. The mechanical blockage by cement dust induced changes in the leaf veins. Plant productivity and dry weight were reduced. A reduction of 250% in Vitis vinifera cultivation was reduced to about 1/3 that of unaffected areas. 16 references, 7 figures, 1 table.

  9. Aroma Compounds Prevision using Artificial Neural Networks Influence of Newly Indigenous Saccharomyces SPP in White Wine Produced with Vitis Vinifera Cv Siria

    OpenAIRE

    Caldeira, A. Teresa; Martins, M. Rosário; Cabrita, Maria João; Ambrósio, Cristina; Arteiro, José; Neves, José; Vicente, Henrique

    2010-01-01

    Commercial yeasts strains of Saccharomyces cerevisae are frequently used in white wine production as starters in fermentation process, however, these strains can affect the wine characteristics. The aim of this study was to evaluate the effect of three strains of Saccharomyces spp. (var. 1, 2 and 3) on wine aroma compounds produced in microvinification assays. Microvinification assays were carried out with Vitis vinifera cv Síria grapes using the strains in study as starters. Aroma compounds ...

  10. Examination of Correlation between Histidine and Cadmium Absorption by Eleagnus angustifolia L., Vitis vinifera L. and Nerium oleander L. Using HPLC-MS and ICP-MS.

    Science.gov (United States)

    Ozen, Sukran Akkus; Yaman, Mehmet

    2016-02-01

    In this study, HPLC-MS and ICP-MS methods wereused for the determination of histidine and cadmium in Eleagnus angustifolia L., Vitis vinifera L. and Nerium oleander L. leaves taken from industrial area including Gaziantep and Bursa cities. To histidine determination by HPLC-MS, flow rate of mobile phase, fragmentor potential, injection volume and column temperature were optimized as 0.2 mL · min⁻¹, 70 V, 15 µL and 20 °C, respectively. For extraction of histidine from plants, distilled water was used by applying on 90 °C and 30 min. The concentrations (as mg · kg⁻¹) of histidine were found to be in range of 8~22 for Eleagnus angustifolia L., 10~33 for Vitis vinifera L. and 6~11 for Nerium oleander L. The concentrations of cadmium were found to be in ranges of 6~21 µg · kg⁻¹ for Vitis vinifera L. 15~110 µg · kg⁻¹ for Eleagnus angustifolia L. and 63~218 µg · kg⁻¹ for Nerium oleander L.

  11. The Novel Gene VpPR4-1 from Vitis pseudoreticulata Increases Powdery Mildew Resistance in Transgenic Vitis vinifera L.

    Science.gov (United States)

    Dai, Lingmin; Wang, Dan; Xie, Xiaoqing; Zhang, Chaohong; Wang, Xiping; Xu, Yan; Wang, Yuejin; Zhang, Jianxia

    2016-01-01

    Pathogenesis-related proteins (PRs) can lead to increased resistance of the whole plant to pathogen attack. Here, we isolate and characterize a PR-4 protein (VpPR4-1) from a wild Chinese grape Vitis pseudoreticulata which shows greatly elevated transcription following powdery mildew infection. Its expression profiles under a number of abiotic stresses were also investigated. Powdery mildew, salicylic acid, and jasmonic acid methyl ester significantly increased the VpPR4-1 induction while NaCl and heat treatments just slightly induced VpPR4-1 expression. Abscisic acid and cold treatment slightly affected the expression level of VpPR4-1. The VpPR4-1 gene was overexpressed in 30 regenerated V. vinifera cv. Red Globe via Agrobacterium tumefaciens-mediated transformation and verified by the Western blot. The 26 transgenic grapevines exhibited higher expression levels of PR-4 protein content than wild-type vines and six of them were inoculated with powdery mildew which showed that the growth of powdery mildew was repressed. The powdery mildew-resistance of Red Globe transformed with VpPR4-1 was enhanced inoculated with powdery mildew. Moreover, other powdery mildew resistant genes were associated with feedback regulation since VpPR4-1 is in abundance. This study demonstrates that PR-4 protein in grapes plays a vital role in defense against powdery mildew invasion. PMID:27303413

  12. Berry ripening, pre-processing and thermal treatments affect the phenolic composition and antioxidant capacity of grape (Vitis vinifera L.) juice.

    Science.gov (United States)

    Genova, Giuseppe; Tosetti, Roberta; Tonutti, Pietro

    2016-01-30

    Grape juice is an important dietary source of health-promoting antioxidant molecules. Different factors may affect juice composition and nutraceutical properties. The effects of some of these factors (harvest time, pre-processing ethylene treatment of grapes and juice thermal pasteurization) were here evaluated, considering in particular the phenolic composition and antioxidant capacity. Grapes (Vitis vinifera L., red-skinned variety Sangiovese) were collected twice in relation to the technological harvest (TH) and 12 days before TH (early harvest, EH) and treated with gaseous ethylene (1000 ppm) or air for 48 h. Fresh and pasteurized (78 °C for 30 min) juices were produced using a water bath. Three-way analysis of variance showed that the harvest date had the strongest impact on total polyphenols, hydroxycinnamates, flavonols, and especially on total flavonoids. Pre-processing ethylene treatment significantly increased the proanthocyanidin, anthocyanin and flavan-3-ol content in the juices. Pasteurization induced a significant increase in anthocyanin concentration. Antioxidant capacity was enhanced by ethylene treatment and pasteurization in juices from both TH and EH grapes. These results suggest that an appropriate management of grape harvesting date, postharvest and processing may lead to an improvement in nutraceutical quality of juices. Further research is needed to study the effect of the investigated factors on juice organoleptic properties. © 2015 Society of Chemical Industry.

  13. Mesocarp cell turgor in Vitis vinifera L. berries throughout development and its relation to firmness, growth, and the onset of ripening.

    Science.gov (United States)

    Thomas, Tyler R; Shackel, Ken A; Matthews, Mark A

    2008-11-01

    Vitis vinifera L. berries are non-climacteric fruit that exhibit a double sigmoid growth pattern and dynamic changes in gene expression, cell metabolism, and water relations at the onset of ripening. The cell-pressure probe was utilized to examine the relationships of turgor pressure (P) in mesocarp cells to growth, sugar accumulation, and fruit softening during development. In replications utilizing three different varieties, mesocarp cell P demonstrated a consistent pattern of a relative mid-range P early in development, followed by an increase to a maximum of about 0.35 MPa, and a subsequent rapid decline before ripening to less than 0.1 MPa. Fruit "apparent elastic modulus" (E, units of MPa), was introduced as a standard measure to describe ripening-related softening. E changed dynamically and synchronously with P during development and in response to water deficits for fruit grown in greenhouse and field conditions. Thus, E and P were positively and linearly related. Sugar accumulation did not increase significantly until P had declined to less than 0.1 MPa. The results suggest that P is an important determinant of fruit softening and that P decreases in conjunction with many of the physiological and gene expression changes that are known to occur at the onset of ripening.

  14. Oviposition preference and larval performance of Epiphyas postvittana (Lepidoptera: Tortricidae) on Botrytis cinerea (Helotiales: Sclerotiniaceae) infected berries of Vitis vinifera (Vitales: Vitaceae).

    Science.gov (United States)

    Rizvi, Syed Z M; Raman, Anantanarayanan; Wheatley, Warwick M; Cook, Geoffrey

    2016-04-01

    In this paper we tested the behavior of gravid Epiphyas postvittana in selecting the most-appropriate site for oviposition thus benefitting offspring performance. Our hypothesis was built on Jaenike's preference-performance hypothesis (also referred to as the "mother-knows-the-best" hypothesis). To test this, we used the interacting Epiphyas postvittana, its host Vitis vinifera, and the pathogenic microbe Botrytis cinerea system. Populations of E. postvittana and B. cinerea often exist concurrently on V. vinifera in Australasia and their interaction and mutual influence are currently being explored, although the suggestion presently is that the relationship between E. postvittana and B. cinerea is mutualistic. We tested the effect of volatiles from B. cinerea-infected berries and uninfected (control) berries of V. vinifera on the oviposition behavior of E. postvittana. We also characterized the effects of B. cinerea infection on the berries of V. vinifera on the growth and development of E. postvittana. Contrary to the preference-performance hypothesis, oviposition choices made by gravid E. postvittana did not result in the best offspring survival, development, and performance. The preference for oviposition by E. postvittana was strongly influenced by the olfactory and tactile cues. She laid fewer eggs on B. cinerea-infected berries compared to uninfected berries of V. vinifera. The larvae of E. postvittana showed no preference to uninfected berries of V. vinifera. The larvae fed on B. cinerea-infected berries of V. vinifera showing greater survival rate, shorter time to pupation, greater pupal mass, and on becoming adults they laid more numbers of eggs than the larvae that were enabled to feed on uninfected berries. The larvae of E. postvittana transport the conidia of B. cinerea and transmit grey-mould disease to uninfected berries of V. vinifera. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  15. Ocorrência de patulina em uva fina (Vitis vinifera L. cv. "Rubi" com sinais de podridão ácida Occurrence of patulin in grape (Vitis vinifera L. cv. 'Rubi' with indication of the sour rout

    Directory of Open Access Journals (Sweden)

    Glória Maria Menezes Caldas

    2008-02-01

    Full Text Available A podridão ácida é uma patologia das videiras, de alta freqüência nos períodos quentes e chuvosos, em conseqüência do desenvolvimento de fungos e bactérias em seus frutos. Um dos gêneros de fungos responsáveis por esta doença é o Penicillium spp., que poderá levar à produção de micotoxinas, como a patulina. Neste trabalho, foi realizada uma investigação sobre a podridão ácida e a ocorrência de patulina em uvas Itália (Vitis vinifera L. cv. Rubi cultivadas no município de Marialva, Brasil. Foram avaliados os seguintes tratamentos: (I testemunha sem sintomas de podridão ácida; (II amostras com sintomas, sem a remoção das bagas infectadas; (III amostras com sintomas, com a remoção das bagas infectadas, (IV amostras com sintomas da doença, com a remoção das bagas infectadas e desinfecção com hipoclorito. A cromatografia em camada delgada foi utilizada para a determinação de patulina. Nas amostras analisadas, não foi detectada contaminação por esta micotoxina.Sour rout is a pathology of bunch grapes occurring in hot and rainy periods. Several fungi and bacteria are associated with this disease, including Penicilium spp. In the present study it was carried out an investigation to determine the incidence of sour rout and patulin in grapes (Vitis vinifera L. cv. Rubi cultivated in Marialva, Brazil. The treatments studied were the following: (I samples without symptoms of sour rout, (II samples with symptoms and without cleaning stage, (III samples with symptoms and with cleaning stage and (IV samples with symptoms, cleaning stage and washing with hypochlorite. The thin-layer chromatography was utilized to determine the presence and quantification of patulin. Patulin was not detected in any samples.

  16. In vivo analgesic activity and safety assessment of Vitis vinifera L ...

    African Journals Online (AJOL)

    grape) and Punica granatum (pomegranate) in Albino mal mice. Methods: The analgesic activity of fruit extracts of V. vinifera and P. granatum were examined in vivo using thermal stimulus assays (i.e., tail immersion and hot plate) and acetic ...

  17. Genome-Wide Analysis of the Sucrose Synthase Gene Family in Grape (Vitis vinifera): Structure, Evolution, and Expression Profiles

    Science.gov (United States)

    Zhu, Xudong; Wang, Mengqi; Li, Xiaopeng; Jiu, Songtao; Wang, Chen; Fang, Jinggui

    2017-01-01

    Sucrose synthase (SS) is widely considered as the key enzyme involved in the plant sugar metabolism that is critical to plant growth and development, especially quality of the fruit. The members of SS gene family have been identified and characterized in multiple plant genomes. However, detailed information about this gene family is lacking in grapevine (Vitis vinifera L.). In this study, we performed a systematic analysis of the grape (V. vinifera) genome and reported that there are five SS genes (VvSS1–5) in the grape genome. Comparison of the structures of grape SS genes showed high structural conservation of grape SS genes, resulting from the selection pressures during the evolutionary process. The segmental duplication of grape SS genes contributed to this gene family expansion. The syntenic analyses between grape and soybean (Glycine max) demonstrated that these genes located in corresponding syntenic blocks arose before the divergence of grape and soybean. Phylogenetic analysis revealed distinct evolutionary paths for the grape SS genes. VvSS1/VvSS5, VvSS2/VvSS3 and VvSS4 originated from three ancient SS genes, which were generated by duplication events before the split of monocots and eudicots. Bioinformatics analysis of publicly available microarray data, which was validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct temporal and spatial expression patterns of VvSS genes in various tissues, organs and developmental stages, as well as in response to biotic and abiotic stresses. Taken together, our results will be beneficial for further investigations into the functions of SS gene in the processes of grape resistance to environmental stresses. PMID:28350372

  18. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera Stressed by In Vitro Cultivation and Thermotherapy.

    Directory of Open Access Journals (Sweden)

    Miroslav Baránek

    Full Text Available There is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions. However, once stress conditions were discontinued, many methylation changes gradually reverted and plants returned to epigenetic states similar to those of maternal plants. In fact, in the period of one to three years after in vitro cultivation it was difficult to distinguish the epigenetic states of somaclones and maternal plants. Forty percent of the observed epigenetic changes disappeared within a year subsequent to termination of stress conditions ending and these probably reflect changes caused by transient and reversible stress-responsive acclimation mechanisms. However, sixty percent of DNA methylation diversity remained after 1 year and probably represents mitotically-inherited epimutations. Sequencing of regions remaining variable between maternal and regenerant plants revealed that 29.3% of sequences corresponded to non-coding regions of grapevine genome. Eight sequences (19.5% corresponded to previously identified genes and the remaining ones (51.2% were annotated as "hypothetical proteins" based on their similarity to genes described in other species, including genes likely to undergo methylation changes following exposure to stress (V. vinifera gypsy-type retrotransposon Gret1, auxin-responsive transcription factor 6-like, SAM-dependent carboxyl methyltransferase.

  19. Genome-wide identification and characterization of the NF-Y gene family in grape (vitis vinifera L.).

    Science.gov (United States)

    Ren, Chong; Zhang, Zhan; Wang, Yi; Li, Shaohua; Liang, Zhenchang

    2016-08-11

    Nuclear factor Y (NF-Y) transcription factor is composed of three distinct subunits: NF-YA, NF-YB and NF-YC. Many members of NF-Y family have been reported to be key regulators in plant development, phytohormone signaling and drought tolerance. However, the function of the NF-Y family is less known in grape (Vitis vinifera L.). A total of 34 grape NF-Y genes that distributed unevenly on grape (V. vinifera) chromosomes were identified in this study. Phylogenetic analysis was performed to predict functional similarities between Arabidopsis thaliana and grape NF-Y genes. Comparison of the structures of grape NF-Y genes (VvNF-Ys) revealed their functional conservation and alteration. Furthermore, we investigated the expression profiles of VvNF-Ys in response to various stresses, phytohormone treatments, and in leaves and grape berries with various sugar contents at different developmental stages. The relationship between VvNF-Y transcript levels and sugar content was examined to select candidates for exogenous sugar treatments. Quantitative real-time PCR (qPCR) indicated that many VvNF-Ys responded to different sugar stimuli with variations in transcript abundance. qPCR and publicly available microarray data suggest that VvNF-Ys exhibit distinct expression patterns in different grape organs and developmental stages, and a number of VvNF-Ys may participate in responses to multiple abiotic and biotic stresses, phytohormone treatments and sugar accumulation or metabolism. In this study, we characterized 34 VvNF-Ys based on their distributions on chromosomes, gene structures, phylogenetic relationship with Arabidopsis NF-Y genes, and their expression patterns. The potential roles of VvNF-Ys in sugar accumulation or metabolism were also investigated. Altogether, the data provide significant insights on VvNF-Ys, and lay foundations for further functional studies of NF-Y genes in grape.

  20. Assessment of the potential health benefits of certain total extracts from Vitis vinifera, Aesculus hyppocastanum and Curcuma longa

    Science.gov (United States)

    MARGINĂ, DENISA; OLARU, OCTAVIAN TUDOREL; ILIE, MIHAELA; GRĂDINARU, DANIELA; GUȚU, CLAUDIA; VOICU, SORINA; DINISCHIOTU, ANCA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2015-01-01

    A number of recent studies have illustrated the active role of food/natural components in the prevention of chronic diseases and in the improvement of the quality of life. In the present study, we aimed to obtain and characterize certain extracts from Vitis vinifera L., Aesculus hippocastanum L. and Curcuma longa L., focusing on their antioxidant effects in vitro. Three vegetal extracts were obtained for each plant: in water, 50% water-alcohol and in 96% ethanol. These extracts were then analyzed for their qualitative composition by high performance thin layer chromatography (HPTLC) and total phenolic content by ultraviolet-visible spectrophotometry (UV-VIS). The antioxidant activity of the extracts was assessed in vitro by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay; the effects of lipid peroxidation on the cell membrane were evaluated using Jurkat cells in two experimental models: normoglycemic and hyperglycemic medium, in order for the results to be able to be translated into clinical practice. In addition, the resistance of the extracts to acid and alkaline hydrolysis was investigated. The obtained extracts had 0.4–39 µg phenolics/mg total extract. The largest amount of phenolics was found in the Cucurma longa extracts, while the lowest was found in the Aesculus hippocastanum extacts. HPTLC analysis identified the main phenolic compounds in the extracts which were ferulic acid, gallic acid, caffeic acid and coumaric acid, as well as quercetin, kaempferol, apigenin, curcumin, luteolin and esculetin. The Aesculus hippocastanum extracts had a low antioxidant efficacy, while both the Curcuma longa and Vitis vinifera extracts had a high antioxidant activity; the products resulting from alkaline hydrolisis were significantly more efficient in scavenging DPPH radicals compared to the products resulting from acid hydrolisis. The antioxidant effects of the Curcuma longa extracts exerted on the membranes of Jurkat cells were the most prominent under both normal and

  1. Compost and humic substance effects on soil parameters of Vitis vinifera L cv Thompson seedless

    Directory of Open Access Journals (Sweden)

    Paola Fincheira-Robles

    2016-01-01

    Full Text Available The use of organic amendments is common under the concept of integrated nutrient management (INM in Vi tis vinifera (Table grape to improve plant and soil quality. The objective of this study was to evaluate compost (C and humic substances (HS mixed with mineral fertilizer (MF in an INM program of V. vinifera cv Thompson seedless. The chemical, biochemi cal and microbiological parameters were evaluated in soil on 1 - year - old V. vinifera plants growing on Alfisol soil. Five treatments and control were evaluated: (T 1 C+MF, (T 2 HS+MF, (T 3 C, (T 4 HS, (T 5 MF and (T 6 absolute control. The results indicate d that the application of C and HS, increased β glucosidase and dehydrogenase activities, reaching values of 90.2 μg p - nitrophenol g - 1 h - 1 and 9.1 μg de TFP g - 1 24h - 1 , respectively . In addition, pH was similar in all treatments while electrical conductivity increased with application of mineral and orga nic amendments, reaching 0.41dS m - 1 in T 2 (HS+MF . Furthermore, yeast concentration increased with organic amendments or mineral. Correlation analysis indicated significant and positive relationships between PO 4 - P concentration with MF (0.579 and C (0.431 and nitrogen with MF (0.868. These results support that INM, which combines mineral fertilization and organic amendments, improve positive changes in chemical soil properties and C cycling measured in terms of enzymatic activity in V. vinifera .

  2. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 1. Anthocyanin concentration and composition in fruit.

    Science.gov (United States)

    Cortell, Jessica M; Halbleib, Michael; Gallagher, Andrew V; Righetti, Timothy L; Kennedy, James A

    2007-08-08

    The relationships between grapevine (Vitis vinifera) vigor variation and resulting fruit anthocyanin accumulation and composition were investigated. The study was conducted in a commercial vineyard consisting of the same clone, rootstock, age, and vineyard management practices. The experimental design involved assigning vigor zones in two vineyard sites based upon differences in vine growth. Fruits and wines were analyzed by HPLC from designated vigor zones in 2003 and 2004. Average berry weight (grams), average dry skin weight (milligrams), degrees Brix, and pH were higher and titratable acidity (grams per liter) was lower in 2003 compared to 2004. In 2003, only the highest and lowest vigor zones had differences in berry weight, whereas there were no differences in 2004. In both years, high vigor zones had lower degrees Brix and higher titratable acidity (milligrams per liter). Accumulation of anthocyanins (milligrams per berry) was greater in 2003 compared to 2004. There was a trend for lower anthocyanin concentration (milligrams per berry) in high vigor zones in both years. In 2004 compared to 2003, there was a higher proportion of malvidin-3-O-glucoside and lower proportions of the other four anthocyanins (delphinidin-, cyanidin-, petunidin-, and peonidin-3-O-glucosides) found in Pinot Noir. In both years, site A had proportionally higher peonidin-3-O-glucoside and lower malvidin-3-O-glucoside than site B. Some of these differences may be related to the higher exposure and temperatures found in site B compared to site A and also in the low vigor zones.

  3. The role of light in the regulation of ascorbate metabolism during berry development in the cultivated grapevine Vitis vinifera L.

    Science.gov (United States)

    Melino, Vanessa J; Hayes, Matthew A; Soole, Kathleen L; Ford, Christopher M

    2011-07-01

    The accumulation of L-ascorbate (Asc) in fruits is influenced by environmental factors including light quantity. Fruit exposure to ambient light is often reduced by the surrounding leaf canopy, and can be altered by cultivation practices. The influence of reduced sunlight exposure on the accumulation of Asc and its catabolites was investigated in field-grown berries of the cultivated grapevine Vitis vinifera L. cv. Shiraz. Growth under sunlight-eliminated conditions resulted in reduced berry fresh weight, chlorosis and a reduced total L-ascorbate pool size. The concentration of the Asc catabolite L-tartaric acid (TA) was reduced in berries grown without light. Conversely, concentrations of oxalic acid (OA), an alternative catabolite of Asc, and malic acid (MA), were unaffected by shading the berries during development. Brief and significant reductions in transcription of the Asc metabolic genes were observed in shade-grown berries after 4 weeks of dark acclimatisation whilst a key TA biosynthetic gene was not regulated by light. The results demonstrate that light-regulation of Asc and TA occurs only at brief stages of development and that OA and MA accumulation is light independent. Additionally, the comparable ratios of TA product to Asc precursor under both light regimes suggest that the diversion of Asc to TA is driven by factors that are not responsive to light. These findings suggest that an altered light regime is not the key to manipulating TA or MA levels in the harvested berry. Copyright © 2011 Society of Chemical Industry.

  4. The effect of methyl jasmonate and light irradiation treatments on the stilbenoid biosynthetic pathway in Vitis vinifera cell suspension cultures.

    Science.gov (United States)

    Andi, Seyed Ali; Gholami, Mansour; Ford, Christopher M

    2017-08-29

    Grape stilbenes are a well-known family of plant polyphenolics that have been confirmed to have many biological activities in relation to health benefits. In the present study, we investigated the effect of methyl jasmonate (MeJA) elicitor at four different concentrations (25, 50, 100 and 200 μM) in combination or not with high-level light irradiation (10,000 LUX) on a cell line obtained from the pulp of Vitis vinifera cv. Shahani. Our results showed that the stilbene synthesis pathway is inhibited by high-light conditions. A concentration of 50 μM MeJA was optimum for efficient production and high accumulation of total phenolics and total flavonoids as well as total stilbenoids. Furthermore, we showed that there is a significant negative correlation between the production of these metabolites and cell growth. These data provide valuable information for the future scale-up of cell cultures for the production of these very high value compounds in bioreactor system.

  5. Chemical elements as fingerprints of geographical origin in cultivars of Vitis vinifera L. raised on the same SO4 rootstock.

    Science.gov (United States)

    Pepi, Salvatore; Grisenti, Pietro; Sansone, Luigi; Chicca, Milvia; Vaccaro, Carmela

    2017-10-18

    The uptake of major and trace elements in grapevine (Vitis vinifera L.) can be influenced by soil, climate, geographic origin, and rootstock type. Rootstocks were mainly selected to resist phylloxera and for specific tolerance to lime, mineral uptake, drought, and salinity. The relationship among concentrations of major, trace, and rare earth elements was studied in soil and leaves from two Italian grapevine cultivars, "Cabernet Sauvignon" and "Corvina," employed to produce renowned controlled designation of origin (DOC) wines. The cultivars were raised on the same rootstock SO4 in two different areas of the Veneto Region (Northern Italy). The elements were studied by X-ray fluorescence and inductively coupled plasma mass spectrometry, and data were elaborated by non-parametric tests and multivariate linear discrimination analysis. The related index of bioaccumulation was calculated to define the specific assimilation of the elements from soil to leaves. A statistically significant correspondence between soil and leaf samples was observed for Mg, Sm, V, and Zr. The results allowed to discriminate soil and leaf samples of the two cultivars according to geographical provenance, possibly providing geochemical markers (fingerprints) useful against fraudulent use of DOC wine labels.

  6. Bioarchaeological Insights into the Process of Domestication of Grapevine (Vitis vinifera L.) during Roman Times in Southern France

    Science.gov (United States)

    Bouby, Laurent; Figueiral, Isabel; Bouchette, Anne; Rovira, Nuria; Ivorra, Sarah; Lacombe, Thierry; Pastor, Thierry; Picq, Sandrine; Marinval, Philippe; Terral, Jean-Frédéric

    2013-01-01

    Grapevine (Vitis vinifera), one of the most important fruit species in the Classical Mediterranean world, is thought to have been domesticated first in South-Western Asia, during the Neolithic. However, the domestication process remains largely unknown. Crucial unanswered questions concern the duration of the process (rapid or slow?) and the related geographical area (single or multiple-origins?). Seeds from domesticated grapevine and from its wild ancestor are reported to differ according to shape. Our work aims, first, to confirm this difference and secondly to identify the extent of domestication in the grapes cultivated by Romans in Southern France during the period 50 BCE–500 CE. We had the opportunity to analyze uncharred waterlogged grape pips from 17 archaeological sites. Based on an extended reference sample of modern wild grapevines and cultivars our work shows that both subspecies can be discriminated using simple measurements. The elongation gradient of the pip’s body and stalk may be regarded as an indicator of the strength of the selection pressures undergone by domesticated grapes. Grapevines cultivated during the Roman period included a mix of morphotypes comprising wild, intermediate and moderately selected domesticated forms. Our data point to a relative shift towards more selected types during the Roman period. Domestication of the grapevine appears to have been a slow process. This could result from the recurrent incorporation into cultivation of plants originating from sexual reproduction, when grape cultivation essentially relies on vegetative propagation. PMID:23690998

  7. Aplikasi Ekstrak Hasil Fermentasi Biji Jagung dan Rebung untuk Meningkatkan Mutu Buah Anggur Bali (Vitis vinifera L. var. Alphonso Lavallee

    Directory of Open Access Journals (Sweden)

    I NYOMAN GEDE ASTAWA

    2016-11-01

    Full Text Available Applications of Extracts of Fermented Immature Corn Seed and BambooSprout For Improvement of Table grape Quality of Vitis vinifera L. var.Alphonso Lavallee. The objective of the research was to determine the effect ofapplication of extracts of fermented immature corn seed and bamboo sprout for improvementof table grape quality. The research was designed as Completely Randomized Block Design,with five treatments and ten replications. The treatments were K0 (control, J50 (extract offermented immature seed of corn with concentration of 50%, J100 (extract of fermentedimmature seed of corn with concentration of 100%, R50 (extract of fermented bamboo sproutwith concentration of 50% and R100 (extract of fermented bamboo sprout with concentrationof 100%. The results showed that all of the treatments improved sugar content of the fruit.However, the treatment of J100 resulted in the greatest increase of berry number per-bunchand the lowest number of seed per-berry. In conclusion, for improvement of the table grapequality, the treatment of J100 was the most appropriate among other treatments used in thecurrent research.

  8. The Influence of Skin Maceration Time on the Phenolic Composition and Antioxidant Activity of Red Wine Teran (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Nina Jurinjak

    2012-01-01

    Full Text Available The effect of four different maceration times (5, 10, 15 and 20 days on anthocyanins, phenolic acids (hydroxybenzoic, gallic, protocatechuic, vanillic, syringic, caffeic and p-coumaric acids, flavan-3-ol composition, vanillin index and antioxidant activity of Teran red wine (Vitis vinifera L. has been investigated. Phenolics were determined by HPLC with UV-diode array detection. Vanillin index was determined by UV-VIS spectrophotometry. The total antioxidant capacity of wine was measured with three different methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH radical and 2,2’-azinobis(3-ethylbenzothialozine-6-sulphonic acid radical cation (ABTS+ scavenging methods and ferric reducing antioxidant power (FRAP. Sensory evaluation of wine samples was performed. The obtained results show positive correlation between phenolic acids, flavan-3-ols [(+-catechin and (–-epicatechin] and vanillin index and the duration of maceration. Anthocyanin content increased to the maximum within 10 days of skin maceration. The major anthocyanins in Teran wine were malvidin-3-O-glucoside, malvidin-3-glucoside acetate and petunidin-3-O-glucoside. Antioxidant activity of Teran wines significantly increased with prolonged skin contact as well as total phenolic content (p<0.001. Wine produced with maceration time of 10 days had the best sensory properties.

  9. The characterisation of Vitis vinifera ’Refošk’ with AFLP and SSR molecular markers and ampelographic traits

    Directory of Open Access Journals (Sweden)

    Matjaž HLADNIK

    2015-12-01

    Full Text Available The genetic diversity and ampelographic variability of autochthonous red wine cultivar ‘Refošk’ (Vitis vinifera L. grown in Slovenia were evaluated with AFLP molecular markers and OIV descriptors, respectively. SSR molecular markers were employed to confirm cultivar identity of analysed samples. Eight AFLP primer combinations, one was monomorphic, produced 16 polymorphic markers in 41 out of 113 samples, what classified samples into monomorphic and polymorphic group. Dendrogram constructed with simple matching coefficient and unweighted pair-group method analysis presented genetic diversity within polymorphic group. Refošk biotypes from monomorphic and polymorphic groups were evaluated with 22 OIV descriptors related to bunch, berry and must, but on the basis of ampelographic characterization samples were not differentiated among two major groups obtained with AFLP analysis. Results of genetic analysis indicated that ‘Refošk’ originated from closely related plants that are phenotypically very similar. With regard to low observed genetic diversity more attention should be dedicated to the selection in order to conserve remaining genetic diversity.

  10. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases.

    Science.gov (United States)

    Giacomelli, Lisa; Rota-Stabelli, Omar; Masuero, Domenico; Acheampong, Atiako Kwame; Moretto, Marco; Caputi, Lorenzo; Vrhovsek, Urska; Moser, Claudio

    2013-11-01

    Gibberellins (GAs) are involved in the regulation of flowering and fruit-set in grapes (Vitis vinifera L.), but the molecular mechanisms behind this process are mostly unknown. In this work, the family of grapevine GA oxidases involved in the biosynthesis and deactivation of GAs was characterized. Six putative GA 20-oxidase (GA20ox), three GA 3-oxidase (GA3ox), and eight GA 2-oxidase (GA2ox) proteins, the latter further divided into five C19-GA 2ox and three C20-GA2ox proteins, were identified. Phylogenetic analyses suggest a common origin of the GA3ox and C19-GA2ox groups and challenge previous evolutionary models. In vitro analysis revealed that all GA3ox and GA20ox enzymes prefer substrates of the non-13-hydroxylation pathway. In addition, ectopic expression of GA2ox genes in Arabidopsis thaliana confirmed the activity of their encoded proteins in vivo. The results show that bioactive GA1 accumulates in opening grapevine flowers, whereas at later developmental stages only GA4 is detected in the setting fruit. By studying the expression pattern of the grapevine GA oxidase genes in different organs, and at different stages of flowering and fruit-set, it is proposed that the pool of bioactive GAs is controlled by a fine regulation of the abundance and localization of GA oxidase transcripts.

  11. Evaluation of five protocols for DNA extraction from leaves of Malus sieversii, Vitis vinifera, and Armeniaca vulgaris.

    Science.gov (United States)

    Aubakirova, K; Omasheva, M; Ryabushkina, N; Tazhibaev, T; Kampitova, G; Galiakparov, N

    2014-02-27

    Leaves of Malus sieversii, Vitis vinifera, and Armeniaca vulgaris contain substantial amounts of secondary metabolites, which limit the high-quality DNA extraction performance. In this study, five extraction protocols were compared for their ability to produce good quality DNA from fresh and dried (with silica gel) leaves of these species. The modified protocol of Dellaporta et al., using polyvinylpyrrolidone to bind the phenolic compounds and a high molar concentration of potassium acetate to inhibit co-precipitation of polysaccharides with DNA, produced the best DNA quality for all species tested. DNA extracted by this method had a 1.77-1.96 A260/280 nm ratio and successful amplification of the 18S ribosomal DNA gene. DNA concentrations of dried leaves were lower than those obtained from fresh leaves, which was likely due to aspects of the drying procedure. All five methods for grapevine produced DNA of obvious better quality from green canes compared to leaves, due to the relatively low content of secondary metabolites in the former. For grapevine and apricot, three methods can be equally used to obtain DNA of good quality: the Doyle and Doyle modified method using CTAB and high concentration of NaCl, the Jobes et al. modified method, and the sodium dodecyl sulfate mini preparation method of Edwards et al. The protocol of Jobes et al. using LiCl for RNA removal showed the best results for most of the M. sieversii samples examined.

  12. In vitro cultures of Vitis vinifera L. cv. Chardonnay synthesize the phytoalexin nerolidol upon infection by Phaeoacremonium parasiticum

    Directory of Open Access Journals (Sweden)

    Georgina ESCORIAZA

    2013-09-01

    Full Text Available This study investigated terpene synthase (TPS activity and terpene antifungal metabolites in calluses and cell suspension cultures of Vitis vinifera cv. Chardonnay infected with Phaecremonium parasiticum, one of the fungi associated with the grapevine diseases known as “hoja de malvón” and young vine decline. The highest TPS activity, assessed as tritiated farnesyl pyrophosphate ([1-3H]-FPP transformed into hexane-soluble radioactive products, was observed in both inoculated calluses and cell suspension cultures (CSC. When tested in inoculated cell suspension cultures the TPS activity was maximal at 8 h after [1-3H]-FPP application and then declined; this was associated with a temporary increase of the sesquiterpene nerolidol. Grape calluses produced: α-pinene, nerolidol and squalene whether or not they were inoculated with Pm. parasiticum. As fungal amount raised the relative concentration of α-pinene and nerolidol increased in respect to squalene in calluses. The TPS activity and nerolidol and α-pinene accumulation was correlated with the increase in the amount of inoculated fungus. Of the mentioned metabolites mainly squalene was identified from extracts of fungal cultures. The results suggest that the response of grapevine tissues to Pm. parasiticum is dependent on the pathogen concentration and is characterized by increasing TPS activity through de novo synthesis.

  13. Monitoring melatonin and its isomer in Vitis vinifera cv. Malbec by UHPLC-MS/MS from grape to bottle.

    Science.gov (United States)

    Gomez, Federico José Vicente; Raba, Julio; Cerutti, Soledad; Silva, María Fernanda

    2012-04-01

    Several studies have shown the presence of melatonin and related compounds in grapes and wines. The latter provides evidence of the possibility to enhance the nutraceutical properties of premium wines. However, there are many external factors that can influence the levels of this indolamine in grape and wines. In this study, the monitoring of melatonin and its tentatively identified isomer was carried out during the entire winemaking process in Vitis vinifera cv. Malbec by ultra high-performance liquid chromatography-tandem mass spectrometry. Laboratory and pilot studies were carried out to elucidate the role of grape, yeasts, and tryptophan in the evolution of the indolamines during the fermentation process. Melatonin was detected in grape extract within the range 120-160 ng/g while its isomer was found in musts and finished wines. Our results demonstrate that Saccaromyces cervisiae plays a decisive role in contributing to the content of melatonin and its isomer in wine. © 2011 John Wiley & Sons A/S.

  14. Evaluation of Anti-Candida Activity of Vitis vinifera L. Seed Extracts Obtained from Wine and Table Cultivars

    Directory of Open Access Journals (Sweden)

    Giovanna Simonetti

    2014-01-01

    Full Text Available For the first time, grape seed extracts (GSEs, obtained from wine and table cultivars of Vitis vinifera L., cultured in experimental fields of Lazio and Puglia regions of Italy and grown in different agronomic conditions, have been tested on 43 Candida species strains. We demonstrated a significant correlation between the content of the flavan-3-ols in GSEs extracts, with a polymerization degree ≥4, and anti-Candida activity. Moreover, we demonstrated that GSEs, obtained from plants cultured with reduced irrigation, showed a content of polymeric flavan-3-ols >250 mg/g with geometric mean MIC values between 5.7 and 20.2 mg/L against Candida albicans reference strains. GSE, showing 573 mg/g of polymeric flavan-3-ols, has been tested in an experimental murine model of vaginal candidiasis by using noninvasive in vivo imaging technique. The results pointed out a significant inhibition of Candida albicans load 5 days after challenge. These findings indicate that GSEs with high content of polymeric flavan-3-ols can be used in mucosal infection as vaginal candidiasis.

  15. Effect of γ-radiation on the production of aflatoxin B1 by Aspergillus parasiticus in raisins (Vitis vinifera L.)

    Science.gov (United States)

    Kanapitsas, Alexandros; Batrinou, Anthimia; Aravantinos, Athanasios; Markaki, Panagiota

    2015-01-01

    Aflatoxin B1 (AFB1) mostly produced by Aspergillus flavus and Aspergillus parasiticus, is an extremely toxic and carcinogenic metabolite. The effect of gamma irradiation at dose of 10 kGy on the production of aflatoxin B1 (AFB1) inoculated by Aspergillus parasiticus in raisins (Vitis vinifera L.) and on AFB1 in contaminated samples, was investigated. Values of the amount of aflatoxin B1 produced on the 12th day of incubation, after irradiation, showed that gamma radiation exposure at 10 kGy decreased AFB1 production at 65% compared with the non-irradiated sample, on the same day. The application of 10 kGy gamma radiation directly on 100 ng of AFB1 which were spiked in raisins resulted in ~29% reduction of AFB1. According to the risk assessment analysis the Provisional Maximum Tolerable Daily Intake (PMTDI) of 1.0 ng AFB1 kg-1bw, indicates that consumers are less exposed to AFB1 from the irradiated raisins.

  16. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine.

    Science.gov (United States)

    Almagro, Lorena; Belchí-Navarro, Sarai; Martínez-Márquez, Ascensión; Bru, Roque; Pedreño, María A

    2015-12-01

    In the present work the effect of cyclodextrin and coronatine on both trans-resveratrol production and the expression of stilbene biosynthetic genes in Vitis vinifera L. cv Monastrell suspension cultured cells were evaluated. The results showed the maximum level of trans-resveratrol produced by cells and secreted to the culture medium with 50 mM cyclodextrins and 1 μM coronatine. Since the levels of trans-resveratrol produced in the combined treatment were higher than the sum of the individual treatments, a synergistic effect between both elicitors was assumed. In addition, all the analysed genes were induced by cyclodextrins and/or coronatine. The expression of the phenylalanine ammonia lyase and stilbene synthase genes was greatly enhanced by coronatine although an increase in the amount of trans-resveratrol in the spent medium was not detected. Therefore, despite the fact that trans-resveratrol production is related with the expression of genes involved in the biosynthetic process, other factors may be involved, such as post-transcriptional and post-traductional regulation. The expression maximal levels of cinnamate 4-hydroxylase and 4-coumarate-CoA ligase genes were found with cyclodextrins alone or in combination with coronatine suggesting that the activity of these enzymes could be not only important for the formation of intermediates of trans-R biosynthesis but also for those intermediates involved in the biosynthesis of lignins and/or flavonoids. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening

    Science.gov (United States)

    2011-01-01

    Background Cluster thinning is an agronomic practice in which a proportion of berry clusters are removed from the vine to increase the source/sink ratio and improve the quality of the remaining berries. Until now no transcriptomic data have been reported describing the mechanisms that underlie the agronomic and biochemical effects of thinning. Results We profiled the transcriptome of Vitis vinifera cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction. Thinning increased the source/sink ratio from 0.6 to 1.2 m2 leaf area per kg of berries and boosted the sugar and anthocyanin content at harvest. Extensive transcriptome remodeling was observed in thinned vines 2 weeks after thinning and at ripening. This included the enhanced modulation of genes that are normally regulated during berry development and the induction of a large set of genes that are not usually expressed. Conclusion Cluster thinning has a profound effect on several important cellular processes and metabolic pathways including carbohydrate metabolism and the synthesis and transport of secondary products. The integrated agronomic, biochemical and transcriptomic data revealed that the positive impact of cluster thinning on final berry composition reflects a much more complex outcome than simply enhancing the normal ripening process. PMID:22192855

  18. Phenological behavior of the grapevine (vitis vinifera l., cv cabernet sauvignon in Sutamarchán - Boyacá.

    Directory of Open Access Journals (Sweden)

    Diana Carolina Vargas Herrera

    2013-12-01

    Full Text Available In tropical cold weather, the grapevine presents phenological disorders, difficult agronomic disfavoring vintage quality. With the purpose of establishing phenological cycles determined the duration of the different phases of the development cycle of the grapevine, cv "Cabernet Sauvignon" (Vitis vinifera L. in the vineyard Ain-Karim (5º39` N, 73º95' W, 2110 masl. We determined the average duration of sprouting (SP, flowering (FL, veraison (VE and vintage (VI periods from pruning, and the total cycle of growth, according to the phenological scale Biologische Bundesanstalt Bundessortenamt Chemise (BBCH. To set the average of the process was considered when the plants reached 50% of each event. Determining growing degree days (GDD support the temperature record by a datalogger. Phenological data were subjected to a descriptive analysis as means and standard deviation. The duration of the period between pruning (PR and vintage (VI, with average temperature of 17.87 ° C, had a duration of 183 days after pruning (DAP, accumulating growing degree days 1458.1 (GDD. Flowering occurred at 50 days after pruning (DAP, accumulating 397.7 GDD. Veraison 122 was presented to the accumulation of 578.2 DAP with GDD. While from veraison to maturity 478.9 GDD accumulated in 62 days. Under Sutamarchán agro-climatic conditions, during the investigation, collects, on average, 7.98 degrees daily growth, which implies that for the Cabernet Sauvignon, the total duration of the phenological cycle is 184 days, accumulating 1458.1 GDD.

  19. Influence of berry ripeness on accumulation, composition and extractability of skin and seed flavonoids in cv. Sangiovese (Vitis vinifera L.).

    Science.gov (United States)

    Allegro, Gianluca; Pastore, Chiara; Valentini, Gabriele; Muzzi, Enrico; Filippetti, Ilaria

    2016-10-01

    The anthocyanin and tannin concentration and composition of Vitis vinifera L. cv. Sangiovese berries were investigated from post-veraison to harvest. Exhaustive extraction with methanol and acetone was performed to determine the total flavonoid concentration, while a model hydroalcoholic solution was used to prepare extracts representing the winemaking process. The aim of this study was to improve the knowledge of the phenolic maturity of Sangiovese grape. The total anthocyanin concentration increased during ripening, but the quantity of extractable anthocyanins increased more rapidly than the total. The total skin tannin concentration declined from post-veraison to harvest, whereas the extractable portion increased, with little difference in the composition of the fractions. Both the total and extractable seed tannin concentration diminished rapidly just after veraison, and only small fluctuations were detected until harvest. These results indicate that the extractability of anthocyanins and skin tannins increases during ripening, whereas there is no clear trend for seed tannins during the same period. This is the first survey to study the behavior of phenolic compounds during different steps of ripening of Sangiovese grape. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Glucosylation of Smoke-Derived Volatiles in Grapevine (Vitis vinifera) is Catalyzed by a Promiscuous Resveratrol/Guaiacol Glucosyltransferase.

    Science.gov (United States)

    Härtl, Katja; Huang, Fong-Chin; Giri, Ashok P; Franz-Oberdorf, Katrin; Frotscher, Johanna; Shao, Yang; Hoffmann, Thomas; Schwab, Wilfried

    2017-07-19

    Vinification of grapes (Vitis vinifera) exposed to forest fire smoke can yield unpalatable wine due to the presence of taint compounds from smoke and the release of smoke derived volatiles from their respective glycosides during the fermentation process or in-mouth during consumption. To identify glycosyltransferases (GTs) involved in the formation of glycosidically bound smoke-derived volatiles we performed gene expression analysis of candidate GTs in different grapevine tissues. Second, substrates derived from bushfire smoke or naturally occurring in grapes were screened with the candidate recombinant GTs. A resveratrol GT (UGT72B27) gene, highly expressed in grapevine leaves and berries was identified to be responsible for the production of the phenolic glucosides. UGT72B27 converted the stilbene trans-resveratrol mainly to the 3-O-glucoside. Kinetic analyses yielded specificity constants (kcat/KM) of 114, 17, 9, 8, and 2 mM-1 s-1 for guaiacol, trans-resveratrol, syringol, methylsyringol, and methylguaiacol, respectively. This knowledge will help to design strategies for managing the risk of producing smoke-affected wines.

  1. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways

    Directory of Open Access Journals (Sweden)

    Sara eDomingos

    2015-06-01

    Full Text Available Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc sprays was monitored in grapevine (Vitis vinifera L. growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid (TCA metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways.

  2. Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening.

    Science.gov (United States)

    Pastore, Chiara; Zenoni, Sara; Tornielli, Giovanni Battista; Allegro, Gianluca; Dal Santo, Silvia; Valentini, Gabriele; Intrieri, Cesare; Pezzotti, Mario; Filippetti, Ilaria

    2011-12-23

    Cluster thinning is an agronomic practice in which a proportion of berry clusters are removed from the vine to increase the source/sink ratio and improve the quality of the remaining berries. Until now no transcriptomic data have been reported describing the mechanisms that underlie the agronomic and biochemical effects of thinning. We profiled the transcriptome of Vitis vinifera cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction. Thinning increased the source/sink ratio from 0.6 to 1.2 m2 leaf area per kg of berries and boosted the sugar and anthocyanin content at harvest. Extensive transcriptome remodeling was observed in thinned vines 2 weeks after thinning and at ripening. This included the enhanced modulation of genes that are normally regulated during berry development and the induction of a large set of genes that are not usually expressed. Cluster thinning has a profound effect on several important cellular processes and metabolic pathways including carbohydrate metabolism and the synthesis and transport of secondary products. The integrated agronomic, biochemical and transcriptomic data revealed that the positive impact of cluster thinning on final berry composition reflects a much more complex outcome than simply enhancing the normal ripening process.

  3. 3Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese induces extensive transcriptome reprogramming and modifies berry ripening

    Directory of Open Access Journals (Sweden)

    Pastore Chiara

    2011-12-01

    Full Text Available Abstract Background Cluster thinning is an agronomic practice in which a proportion of berry clusters are removed from the vine to increase the source/sink ratio and improve the quality of the remaining berries. Until now no transcriptomic data have been reported describing the mechanisms that underlie the agronomic and biochemical effects of thinning. Results We profiled the transcriptome of Vitis vinifera cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction. Thinning increased the source/sink ratio from 0.6 to 1.2 m2 leaf area per kg of berries and boosted the sugar and anthocyanin content at harvest. Extensive transcriptome remodeling was observed in thinned vines 2 weeks after thinning and at ripening. This included the enhanced modulation of genes that are normally regulated during berry development and the induction of a large set of genes that are not usually expressed. Conclusion Cluster thinning has a profound effect on several important cellular processes and metabolic pathways including carbohydrate metabolism and the synthesis and transport of secondary products. The integrated agronomic, biochemical and transcriptomic data revealed that the positive impact of cluster thinning on final berry composition reflects a much more complex outcome than simply enhancing the normal ripening process.

  4. Effects of severity of post-flowering leaf removal on berry growth and composition of three red Vitis vinifera L. cultivars grown under semiarid conditions.

    Science.gov (United States)

    Kotseridis, Yorgos; Georgiadou, Afroditi; Tikos, Panagiotis; Kallithraka, Stamatina; Koundouras, Stefanos

    2012-06-13

    The effects of the severity of post-flowering leaf removal on the growth and phenolic composition of berry skin and seeds were studied in three Vitis vinifera L. genotypes over two consecutive seasons, 2007 and 2008. The study was conducted in a commercial vertical shoot positioned (VSP)-trained nonirrigated vineyard of northern Greece, planted with cultivars Merlot, Cabernet Sauvignon, and Sangiovese. Three different severities of leaf removal in the fruit zone were applied manually at berry set: nondefoliated (ND), removal of the lateral shoots of the first six basal nodes (LR), and full removal of the total leaf area (main leaves and lateral shoots) of the first six basal nodes (FR). Grape samples were obtained at commercial harvest. Leaf removal decreased yield per vine and cluster weight in Merlot and Sangiovese. Cluster compactness was reduced with the severity of defoliation only in Merlot, due to a decrease in berry number per cluster; berry fresh weight was unaffected in both cultivars. On the contrary, in Cabernet Sauvignon, yield was unaffected but berry size was restrained by leaf removal. Skin and seed mass followed variations in berry mass (except for seed mass in Sangiovese). Fruit zone leaf removal did not affect must soluble solids and increased titratable acidity only in Merlot. Defoliation increased skin anthocyanins in Merlot and Cabernet Sauvignon in the order FR > LR > ND but significantly reduced seed flavan-3-ols mainly as a result of the reduction in catechin and epicatechin amount. For these varieties, FR had lower seed flavan-3-ols than ND in both varieties, whereas LR had intermediate values. However, in Sangiovese, the highest seed phenolic content was recorded in LR. The results showed that post-flowering leaf removal improved the overall berry composition in Merlot and Cabernet Sauvignon but had limited effect in Sangiovese.

  5. Differential phenolic production in leaves of Vitis vinifera cv. Alvarinho affected with esca disease.

    Science.gov (United States)

    Lima, Marta R M; Felgueiras, Mafalda L; Cunha, Ana; Chicau, Gisela; Ferreres, Federico; Dias, Alberto C P

    2017-03-01

    Esca is a destructive disease of complex etiology affecting grapevines worldwide. A major constraint to the study and control of esca is that the disease is not diagnosed until external leaf and/or fruit symptoms are visible; however external symptoms usually appear several years after infection onset. We studied the phenolic content of V. vinifera cv. Alvarinho leaves using high performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS)/LC-MS. Leaves from affected cordons with and without visible symptoms (diseased and apparently healthy leaves, respectively) and leaves from asymptomatic cordons (healthy leaves) were analyzed. Application of principal components analysis (PCA) to HPLC data showed a clear separation between diseased, apparently healthy, and healthy leaves, with the apparently healthy leaves clustered in a medial position. Several compounds were highly correlated with diseased leaves indicating a differential phenolic production due to esca disease in V. vinifera cv. Alvarinho leaves. Total phenolic production was shown to significantly increase in diseased leaves, compared to healthy leaves, with apparently healthy leaves containing a medial amount. Trans-caffeoyltartaric acid, trans-coumaroyl-tartaric acid, quercetin-3-O-glucoside, quercetin-3-O-galactoside, kaempferol-3-glucoside and myricetin were identified among the compounds associated with disease and their content shown to change similarly to total phenolic production. This study shows that it is possible to discriminate between diseased, healthy and apparently healthy leaves by applying PCA to HPLC data. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L

    Directory of Open Access Journals (Sweden)

    Gainza-Cortés Felipe

    2012-07-01

    Full Text Available Abstract Background Zinc (Zn deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. Results We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Conclusions Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient

  7. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L

    Science.gov (United States)

    2012-01-01

    Background Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. Results We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Conclusions Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for

  8. Contact dermatitis as an adverse reaction to some topically used European herbal medicinal products - part 4: Solidago virgaurea-Vitis vinifera.

    Science.gov (United States)

    Minciullo, Paola L; Calapai, Gioacchino; Miroddi, Marco; Mannucci, Carmen; Chinou, Ioanna; Gangemi, Sebastiano; Schmidt, Richard J

    2017-08-01

    This review focuses on contact dermatitis as an adverse effect of a selection of topically used herbal medicinal products for which the European Medicines Agency has completed an evaluation up to the end of November 2013 and for which a Community herbal monograph - now (since 2014) called a 'European Union herbal monograph' - has been produced. The present part 4 addresses species from Solidago virgaurea L. to Vitis vinifera L. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The metacaspase gene family of Vitis vinifera L.: characterization and differential expression during ovule abortion in stenospermocarpic seedless grapes.

    Science.gov (United States)

    Zhang, Chaohong; Gong, Peijie; Wei, Rong; Li, Shuxiu; Zhang, Xutong; Yu, Yihe; Wang, Yuejin

    2013-10-10

    In both plants and animals, programmed cell death (PCD) is an indispensable process that removes redundant cells. In seedless grapes (Vitis vinifera), abnormal PCD in ovule cells and subsequent ovule abortion play key roles in stenospermocarpy. Metacaspase, a type of cysteine-dependent protease, plays an essential role in PCD. To reveal the characteristics of the metacaspase (MC) gene family and the relationship between metacaspases and the seedless trait, we identified the 6 V. vinifera metacaspases VvMC1-VvMC6, from the grape genome, using BLASTN against the 9 known Arabidopsis metacaspases. We also obtained full-length cDNAs by RT-PCR. Each of the 6 grape metacaspases contains small (p10-like) and a large (p20-like) conserved structural domains. Phylogenetic analysis of 6 grape and 9 Arabidopsis metacaspases showed that all metacaspases could be grouped into two classes: Type I and Type II. Each phylogenetic branch shares a similar exon/intron structure. Furthermore, the putative promoters of the grape metacaspases contained cis-elements that are involved in grape endosperm development. Moreover, expression analysis of metacaspases using real-time quantitative PCR demonstrated that VvMC1 and VvMC2 were able to be detected in any tissue, and VvMC3, VvMC4, VvMC5 and VvMC6 exhibited tissue-specific expression. Lastly, in cv. Thompson seedless grapes VvMC1, VvMC3, and VvMC4 were significantly up-regulated at the 35 DAF during ovule development, roughly same stage as endosperm abortion. In addition, the expression trend of VvMC2 and VvMC5 was similar between cv. Pinot Noir and cv. Thompson grape ovule development and that of VvMC6 was sustained in a relatively low level except the expression of cv. Pinot Noir significantly up-regulated in 25 DAF. Our data provided new insights into PCD by identifying the grape metacaspase gene family and provide a useful reference for further functional analysis of metacaspases in grape. © 2013.

  10. Comprehensive and comparative lipidome analysis of Vitis vinifera L. cv. Pinot Noir and Japanese indigenous V. vinifera L. cv. Koshu grape berries.

    Directory of Open Access Journals (Sweden)

    Kayo Arita

    Full Text Available Vitis vinifera cv. Koshu is an indigenous grape cultivar that has been cultivated for more than a thousand years in Japan and one of the most important cultivars in white winemaking. To improve Koshu wine quality, it is necessary to identify the metabolites in Koshu berry. We conducted a comprehensive and comparative lipidome analysis of Koshu and Pinot Noir berries cultivated in the same location in Japan using GC-MS/MS for fatty acids and LC-MS for glycerolipids and glycerophospholipids. Koshu skins and juices contained 22 and 19 fatty acids, respectively, whereas 23 and 20 fatty acids were detected in Pinot Noir skins and juices. C22:6n3 and C24:0 contents in Koshu skins were two and three times higher than those in Pinot Noir skins. C24:0 content in Koshu juices was also higher than that in Pinot Noir juices. Forty-nine lipid components (six digalactosyldiacylglycerols, one monogalactosyldiacylglycerol, 10 phosphatidylcholines, 12 phosphatidylethanolamines, and 20 triglycerides were detected in Pinot Noir and Koshu skins. Strong peaks were observed for MGDG 36:6, DGDG 36:6, PC 34:2, PC 36:5, TG 54:6, TG 54:7, and TG 54:8 in Koshu skins. The contents of 36 of the 49 lipid components were significantly higher in Pinot Noir skins than Koshu skins. Pinot Noir skins contained more lipids whose alkyl chains have more than 18 carbons than Koshu skins. Further analysis of both lipid profiles revealed that the number of double bonds in a fatty acid molecule in Pinot Noir skins and juices was significantly larger than that in Koshu skins and juices. A strong relationship exists between the heat requirement of grapevine cultivars and the level of fatty acid desaturation. C18-fatty acids were the major components in Koshu and Pinot Noir berries. The expression levels of C18-fatty acid desaturases regulated the accumulation of C18-unsaturated fatty acids in berry skins. The loss of C18:3 in Koshu berries at the end of ripening was observed. Koshu might

  11. Comprehensive and comparative lipidome analysis of Vitis vinifera L. cv. Pinot Noir and Japanese indigenous V. vinifera L. cv. Koshu grape berries.

    Science.gov (United States)

    Arita, Kayo; Honma, Taro; Suzuki, Shunji

    2017-01-01

    Vitis vinifera cv. Koshu is an indigenous grape cultivar that has been cultivated for more than a thousand years in Japan and one of the most important cultivars in white winemaking. To improve Koshu wine quality, it is necessary to identify the metabolites in Koshu berry. We conducted a comprehensive and comparative lipidome analysis of Koshu and Pinot Noir berries cultivated in the same location in Japan using GC-MS/MS for fatty acids and LC-MS for glycerolipids and glycerophospholipids. Koshu skins and juices contained 22 and 19 fatty acids, respectively, whereas 23 and 20 fatty acids were detected in Pinot Noir skins and juices. C22:6n3 and C24:0 contents in Koshu skins were two and three times higher than those in Pinot Noir skins. C24:0 content in Koshu juices was also higher than that in Pinot Noir juices. Forty-nine lipid components (six digalactosyldiacylglycerols, one monogalactosyldiacylglycerol, 10 phosphatidylcholines, 12 phosphatidylethanolamines, and 20 triglycerides) were detected in Pinot Noir and Koshu skins. Strong peaks were observed for MGDG 36:6, DGDG 36:6, PC 34:2, PC 36:5, TG 54:6, TG 54:7, and TG 54:8 in Koshu skins. The contents of 36 of the 49 lipid components were significantly higher in Pinot Noir skins than Koshu skins. Pinot Noir skins contained more lipids whose alkyl chains have more than 18 carbons than Koshu skins. Further analysis of both lipid profiles revealed that the number of double bonds in a fatty acid molecule in Pinot Noir skins and juices was significantly larger than that in Koshu skins and juices. A strong relationship exists between the heat requirement of grapevine cultivars and the level of fatty acid desaturation. C18-fatty acids were the major components in Koshu and Pinot Noir berries. The expression levels of C18-fatty acid desaturases regulated the accumulation of C18-unsaturated fatty acids in berry skins. The loss of C18:3 in Koshu berries at the end of ripening was observed. Koshu might effectively convert

  12. Impact of post-harvest ozone treatments on the skin phenolic extractability of red winegrapes cv Barbera and Nebbiolo (Vitis vinifera L.).

    Science.gov (United States)

    Paissoni, Maria Alessandra; Río Segade, Susana; Giacosa, Simone; Torchio, Fabrizio; Cravero, Francesco; Englezos, Vasileios; Rantsiou, Kalliopi; Carboni, Cristian; Gerbi, Vincenzo; Teissedre, Pierre-Louis; Rolle, Luca

    2017-08-01

    Recently the use of ozone as sanitizing agent has been proposed on winegrapes in order to control mycobiota after harvest. The aim of this work was to investigate possible indirect physico-chemical effects of ozone treatment on berry skin phenolic composition and extractability. Vitis vinifera L. cv Nebbiolo and Barbera, chosen for their different anthocyanin profiles, were post-harvest treated for 24 and 72h with gaseous ozone (30μL/L). Skin anthocyanin and flavanol extractability was assessed during maceration (6, 24, 48, 96, 168 and 240h) using a wine-like solution. In our experimental conditions, ozone did not affect significantly the final extraction yield of anthocyanins (TA), proanthocyanidins (PRO), and flavanols reactive to vanillin (FRV) in Barbera, although TA and FRV extractabilities were higher in control samples than in ozone-treated samples during the first stages of maceration. In Nebbiolo, the final TA extraction yield was positively influenced by the ozone treatment (68.6, 64.2, and 59.9% for 24h ozone-treated berries, 72h ozone-treated berries and control samples, respectively). Final PRO and FRV extractability also increased in both ozone-treated samples compared to the control (+8.6-9.1% for PRO and +7.3-11.7% for FRV). No significant differences were found among treatments for individual anthocyanins in both cultivars at the end of maceration. Therefore, the use of ozone as sanitizing agent in red varieties prior to winemaking process can be considered because it did not negatively affect the extractability of skin anthocyanins and flavanols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts.

    Science.gov (United States)

    Apostolou, Anna; Stagos, Dimitrios; Galitsiou, Elissavet; Spyrou, Argiris; Haroutounian, Serko; Portesis, Nikolaos; Trizoglou, Ioanna; Wallace Hayes, A; Tsatsakis, Aristides M; Kouretas, Dimitrios

    2013-11-01

    Grape extracts and wine have been studied widely due to their beneficial effects on human health. However, there are only few studies from grape stems extracts. Therefore, the main objective of the present study was the assessment in stem extracts from Greek Vitis vinifera varieties of the total polyphenolic content (TPC), the identification of the polyphenols present in them, and the evaluation of their antioxidant activity, protection against ROS-induced DNA damage and inhibition of liver (HepG2) and cervical (HeLa) cancer cell growth. The range of the TPC in grape stem extracts was from 345 to 584 mg GAE/g dry weight. Moreover, stem extracts contained different classes of polyphenols as flavonols, flavanols, procyanidins, phenolic acids and stilbenes. In DPPH and ABTS assays, the IC50 values of the stem extracts had an average of 7.8 ± 2.8 and 5.4 ± 2.6 μg/mL respectively. Also, all stem extracts inhibited OH- and ROO-induced DNA damage dose dependent with average IC50 values of 478 ± 217 and 1.15 ± 0.85 μg/mL respectively. Furthermore, stem extracts inhibited at low concentrations the growth of HepG2 and HeLa cancer cells with average IC50 values of 50 ± 12 and 32 ± 16 μg/mL respectively. The above activities of grape stem extracts were comparable to those of seed extracts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The coding region of the UFGT gene is a source of diagnostic SNP markers that allow single-locus DNA genotyping for the assessment of cultivar identity and ancestry in grapevine (Vitis vinifera L.)

    Science.gov (United States)

    2013-01-01

    Background Vitis vinifera L. is one of society’s most important agricultural crops with a broad genetic variability. The difficulty in recognizing grapevine genotypes based on ampelographic traits and secondary metabolites prompted the development of molecular markers suitable for achieving variety genetic identification. Findings Here, we propose a comparison between a multi-locus barcoding approach based on six chloroplast markers and a single-copy nuclear gene sequencing method using five coding regions combined with a character-based system with the aim of reconstructing cultivar-specific haplotypes and genotypes to be exploited for the molecular characterization of 157 V. vinifera accessions. The analysis of the chloroplast target regions proved the inadequacy of the DNA barcoding approach at the subspecies level, and hence further DNA genotyping analyses were targeted on the sequences of five nuclear single-copy genes amplified across all of the accessions. The sequencing of the coding region of the UFGT nuclear gene (UDP-glucose: flavonoid 3-0-glucosyltransferase, the key enzyme for the accumulation of anthocyanins in berry skins) enabled the discovery of discriminant SNPs (1/34 bp) and the reconstruction of 130 V. vinifera distinct genotypes. Most of the genotypes proved to be cultivar-specific, and only few genotypes were shared by more, although strictly related, cultivars. Conclusion On the whole, this technique was successful for inferring SNP-based genotypes of grapevine accessions suitable for assessing the genetic identity and ancestry of international cultivars and also useful for corroborating some hypotheses regarding the origin of local varieties, suggesting several issues of misidentification (synonymy/homonymy). PMID:24298902

  15. Hepatoprotección antioxidante de la cáscara y semilla de Vitis vinifera L. (uva

    Directory of Open Access Journals (Sweden)

    Miguel Sandoval

    2008-12-01

    Full Text Available Objetivo: Determinar la capacidad hepatoprotectora antioxidante, inducida por las semillas y cáscaras de la uva Vitis vinifera L., en animales de experimentación con agresión alcohólica, mediante la prueba del TBARS (sustancias reactivas al ácido tiobarbitúrico. Diseño: Estudio experimental. Institución: Centro de Investigación de Bioquímica y Nutrición Alberto Guzmán Barrón, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú. Material biológico: Ratones albinos, machos, adultos y cáscaras y semillas de Vitis vinifera L. (uva. Métodos: Las cáscaras y semillas de uva fueron del valle de Cañete; se las separó manualmente, se las exprimió en gasa y fueron desecadas con aire circulante, a 40º C, por 24 horas; luego, fueron trituradas, y la mezcla de cáscaras y semillas (cas-sem fue administrada ad libitum en la dieta. Se utilizó 104 ratones albinos machos adultos, separados en grupos, a los que se administró: (A cas-sem al 20%; (B alcohol al 5%; (C cas-sem con alcohol; (D silimarina 50 mg/100 g de alimento; (E silimarina con alcohol; y, (F grupo control. Bajo anestesia con éter y mediante laparotomía, se extrajo los hígados, fueron pesados y analizados por lipoperoxidación, mediante TBARS, y se evaluó la hepatomegalia, por peso a las 24, 48 y 72 horas, y a los 4, 5 y 7 días de tratamiento. Principales medidas de resultados: Lipoperoxidación hepática y hepatomegalia. Resultados: La hepatomegalia se presentó desde las 24 horas (36,68% de incremento de masa hepática, en el grupo alcohol, y fue menor en el grupo cas-sem. La prueba TBARS fue mayor en el grupo alcohol (63,91 a 67,07 nmol/g-tejido y fue menor en el grupo cas-sem (40,85 a 47,46 nmol/g-tejido; en el grupo cas-sem con alcohol, fue 43 a 63 nmol/g-tejido y la protección se observó hasta el quinto día (44 nmol/g-tejido. Conclusiones: El cas-sem administrado en la dieta, al 20% en peso, protege al tejido hepático, hasta el quinto d

  16. Modeling cold curing of Pierce's disease in Vitis vinifera 'Pinot Noir' and 'Cabernet Sauvignon' grapevines in California.

    Science.gov (United States)

    Lieth, J H; Meyer, M M; Yeo, K-H; Kirkpatrick, B C

    2011-12-01

    Pierce's disease (PD) of Vitis vinifera grapevines is caused by the bacterium Xylella fastidiosa, a pathogen with a wide plant host range. Exposure of X. fastidiosa-infected plant tissue to cold temperatures has been shown to be effective at eliminating the pathogen from some plant hosts such as grapevines. This "cold curing" phenomenon suggests itself as a potential method for disease management and perhaps control. We investigated cold therapy of PD-affected 'Pinot Noir' and 'Cabernet Sauvignon' grapevine. In the fall, inoculated plants and controls of each cultivar were transported to each of four field sites in California (Foresthill, McLaughlin, Hopland, and Davis) that differed in the magnitude of cold winter temperatures. A model for progression of the elimination of plant disease in relation to temperature was conceptualized to be a temperature-duration effect, where temperatures below a particular threshold kill X. fastidiosa with increasing efficacy as the temperature decreases to some value Pinot Noir and T(0) = 6°C, N(100) = 302 h, N(10) = 170 h, and K(x) = 0.41 for Cabernet Sauvignon. With the parameter estimates optimized by model calibration, the simulation model was effective at predicting cold curing in four locations during the experiment, although there were some differences between Hopland for Pinot Noir and Davis for Cabernet Sauvignon. Using historical temperature data, the model accurately predicted the known severity of PD in other grape-growing regions of California, suggesting that it may have utility in assessing the relative risk of developing PD in proposed new vineyard sites.

  17. Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter.

    Science.gov (United States)

    Fagbayigbo, Bamidele Oladapo; Opeolu, Beatrice Olutoyin; Fatoki, Olalekan Siyanbola; Akenga, Terresa Ayuko; Olatunji, Olatunde Stephen

    2017-05-01

    The removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solutions using agro-waste biomass of Vitis vinifera (grape) leaf litter was studied. Activated carbons were produced from the biomass and chemical activation achieved by using phosphoric acid (H 3 PO 4 ) and potassium hydroxide (KOH) for the modification of the carbons' surface morphology. Activated carbons were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett-Teller (BET) in order to understand removal mechanisms of the contaminants by activated carbons. The effect of solution concentration, pH, adsorbent dosage, contact time and temperature was evaluated to optimize the removal efficiency of activated carbons. Adsorption isotherm models were used to analyse the equilibrium data obtained, and kinetic models were applied to study sorption mechanisms. The results fitted well into Freundlich isotherm with both AC-KOH and AC-H 3 PO 4 having high K f values. Maximum adsorption capacities for AC-H 3 PO 4 were 78.90 and 75.13 mg/g for PFOA and PFOS, respectively. Equilibrium was reached before 60 min on both adsorbents, and thermodynamic studies indicated that the process was exothermic and spontaneous. Surface morphology showed the abundance of microspores (>60%) with BET total surface area of 295.488 and 158.67 m 2 /g for AC-H 3 PO 4 and AC-KOH activated carbons, respectively. Removal efficiencies were 95 and 90% for PFOA using AC-H 3 PO 4 and AC-KOH, respectively; corresponding values for PFOS were 94 and 88%. Adsorbents' removal capacities depended on the physicochemical characteristics of adsorbents.

  18. Shared and divergent pathways for flower abscission are triggered by gibberellic acid and carbon starvation in seedless Vitis vinifera L.

    Science.gov (United States)

    Domingos, Sara; Fino, Joana; Cardoso, Vânia; Sánchez, Claudia; Ramalho, José C; Larcher, Roberto; Paulo, Octávio S; Oliveira, Cristina M; Goulao, Luis F

    2016-02-01

    Abscission is a highly coordinated developmental process by which plants control vegetative and reproductive organs load. Aiming at get new insights on flower abscission regulation, changes in the global transcriptome, metabolome and physiology were analyzed in 'Thompson Seedless' grapevine (Vitis vinifera L.) inflorescences, using gibberellic acid (GAc) spraying and shading as abscission stimuli, applied at bloom. Natural flower drop rates increased from 63.1% in non-treated vines to 83% and 99% in response to GAc and shade treatments, respectively. Both treatments had a broad effect on inflorescences metabolism. Specific impacts from shade included photosynthesis inhibition, associated nutritional stress, carbon/nitrogen imbalance and cell division repression, whereas GAc spraying induced energetic metabolism simultaneously with induction of nucleotide biosynthesis and carbon metabolism, therefore, disclosing alternative mechanisms to regulate abscission. Regarding secondary metabolism, changes in flavonoid metabolism were the most represented metabolic pathways in the samples collected following GAc treatment while phenylpropanoid and stilbenoid related pathways were predominantly affected in the inflorescences by the shade treatment. However, both GAc and shade treated inflorescences revealed also shared pathways, that involved the regulation of putrescine catabolism, the repression of gibberellin biosynthesis, the induction of auxin biosynthesis and the activation of ethylene signaling pathways and antioxidant mechanisms, although often the quantitative changes occurred on specific transcripts and metabolites of the pathways. Globally, the results suggest that chemical and environmental cues induced contrasting effects on inflorescence metabolism, triggering flower abscission by different mechanisms and pinpointing the participation of novel abscission regulators. Grapevine showed to be considered a valid model to study molecular pathways of flower abscission

  19. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development.

    Science.gov (United States)

    Krasnow, Mark; Matthews, Mark; Shackel, Ken

    2008-01-01

    Fluorescein diacetate (FDA) was used as a vital stain to assay membrane integrity (cell viability) in mesocarp tissue of the developing grape (Vitis vinifera L.) berry in order to test the hypothesis that there is a substantial loss of compartmentation in these cells during ripening. This technique was also used to determine whether loss of viability was associated with symptoms of a ripening disorder known as berry shrivel. FDA fluorescence of berry cells was rapid, bright, and stable for over 1 h at room temperature. Confocal microscopy detected FDA staining through two to three intact surface cell layers (300-400 mum) of bisected berries, and showed that the fluorescence was confined to the cytoplasm, indicating the maintenance of integrity in both cytoplasmic as well as vacuolar membranes, and the presence of active cytoplasmic esterases. FDA clearly discriminated between living cells and freeze-killed cells, and exhibited little, if any, non-specific staining. Propidium iodide and DAPI, both widely used to assess cell viability, were unable to discriminate between living and freeze-killed cells, and did not specifically stain the nuclei of dead cells. For normally developing berries under field conditions there was no evidence of viability loss until about 40 d after veraison, and the majority (80%) of mesocarp cells remained viable past commercial harvest (26 degrees Brix). These results are inconsistent with current models of grape berry development which hypothesize that veraison is associated with a general loss of compartmentation in mesocarp cells. The observed viability loss was primarily in the locule area around the seeds, suggesting that a localized loss of viability and compartmentation may occur as part of normal fruit development. The cell viability of berry shrivel-affected berries was similar to that of normally developing berries until the onset of visible symptoms (i.e. shrivelling), at which time viability declined in visibly shrivelled

  20. Reduction of Platelet Aggregation From Ingestion of Oleic and Linoleic Acids Found in Vitis vinifera and Arachis hypogaea Oils.

    Science.gov (United States)

    Bazán-Salinas, Irma Leticia; Matías-Pérez, Diana; Pérez-Campos, Eduardo; Pérez-Campos Mayoral, Laura; García-Montalvo, Iván Antonio

    The purpose of this study was to evaluate the effect of the consumption of seed oils from Vitis vinifera and Arachis hypogaea in platelet aggregation. The initial hypothesis suggested that subjects who have consumed these seed oils undergo modified platelet aggregation. This study was performed using a pre-post test design, with a control group, and double blind. The effects of the consumption of grape seed and peanut oils were measured for platelet aggregation in clinical and laboratory tests in 30 healthy subjects. In addition to this group, a control group of 4 health subjects received no treatment with oils, just 500 mg oral administration acetylsalicylic acid for 7 days. Platelet aggregation was assessed by the Born turbidimetric method, using 3 different concentrations of adenosine diphosphate as agonists (2, 54; 1, 17; and 0, 58 μM). The study subjects had very similar results; both oils were shown to have a significant reduction in platelet aggregation. Grape seed oil showed a decrease of 8.4 ± 1% in aggregation, compared with peanut oil, which decreased aggregation by 10.4 ± 1%. The control group, taking 500 mg OD aspirin for 7 days, showed a significant decrease in platelet aggregation, similar to that of oil ingestion. Each of the oils was analyzed for fatty acids, to determine which particular acids were presents in greater levels, which could explain the reduction in platelet aggregation. The oil found to be most abundant in grape seeds was linoleic acid (omega-6), and in peanuts, it was oleic acid (omega-9). However, in fact, both acids reduced platelet aggregation. Consumption of plant oils from grape seeds and peanuts had a lowering effect on platelet aggregation, in addition to containing a high content of unsaturated fatty acids. However, omega-3, omega-6, and omega-9 fatty acids were not specifically responsible for the reductions mentioned above.

  1. Rain-Shelter Cultivation Modifies Carbon Allocation in the Polyphenolic and Volatile Metabolism of Vitis vinifera L. Chardonnay Grapes.

    Science.gov (United States)

    Gao, Yuan; Li, Xiao-Xi; Han, Mei-Mei; Yang, Xiao-Fan; Li, Zheng; Wang, Jun; Pan, Qiu-Hong

    2016-01-01

    This study investigated the effect of rain-shelter cultivation on the biosynthesis of flavonoids and volatiles in grapes, with an aim of determining whether rain-shelter application could help to improve the sensory attributes and quality of grapes. Vitis vinifera L. Chardonnay grapes, grown in the Huaizhuo basin region of northern China, were selected within two consecutive years. A rain-shelter roof was constructed using a colorless polyethylene (PE) film with a light transmittance of 80%. Results showed that rain-shelter treatment did not affect the accumulation of soluble solids during grape maturation. However, the allocation of assimilated carbon in phenolic and volatile biosynthetic pathways varied significantly, leading to alterations in polyphenolic and volatile profiles. The rain-shelter cultivation enhanced the concentration of flavan-3-ols via the flavonoid-3'5'-hydroxylase (F3'5'H) pathway, but reduced the level of flavonols and flavan-3-ols via the flavonoid-3'-hydroxylase (F3'H) pathway. In addition, the rain-shelter cultivation significantly enhanced the synthesis of fatty acid-derived volatiles, isoprene-derived terpenoids and amino acid-derived branched-chain aliphatics, but led to a decrease in the accumulation of isoprene-derived norisoprenoids and amino acid-derived benzenoids. Principal component analysis revealed some key compounds that differentiated the grapes cultivated under open-field and rain-shelter conditions. Moreover, the effect of the rain-shelter application on the accumulation of these compounds appeared to be vintage dependent. The alteration of their profiles caused by the rain-shelter treatment was significant in the vintage that received higher rainfall, which usually took place in the first rapid growth and veraison phases.

  2. Spatio-temporal relief from hypoxia and production of reactive oxygen species during bud burst in grapevine (Vitis vinifera).

    Science.gov (United States)

    Meitha, Karlia; Konnerup, Dennis; Colmer, Timothy D; Considine, John A; Foyer, Christine H; Considine, Michael J

    2015-09-01

    Plants regulate cellular oxygen partial pressures (pO2), together with reduction/oxidation (redox) state in order to manage rapid developmental transitions such as bud burst after a period of quiescence. However, our understanding of pO2 regulation in complex meristematic organs such as buds is incomplete and, in particular, lacks spatial resolution. The gradients in pO2 from the outer scales to the primary meristem complex were measured in grapevine (Vitis vinifera) buds, together with respiratory CO2 production rates and the accumulation of superoxide and hydrogen peroxide, from ecodormancy through the first 72 h preceding bud burst, triggered by the transition from low to ambient temperatures. Steep internal pO2 gradients were measured in dormant buds with values as low as 2·5 kPa found in the core of the bud prior to bud burst. Respiratory CO2 production rates increased soon after the transition from low to ambient temperatures and the bud tissues gradually became oxygenated in a patterned process. Within 3 h of the transition to ambient temperatures, superoxide accumulation was observed in the cambial meristem, co-localizing with lignified cellulose associated with pro-vascular tissues. Thereafter, superoxide accumulated in other areas subtending the apical meristem complex, in the absence of significant hydrogen peroxide accumulation, except in the cambial meristem. By 72 h, the internal pO2 gradient showed a biphasic profile, where the minimum pO2 was external to the core of the bud complex. Spatial and temporal control of the tissue oxygen environment occurs within quiescent buds, and the transition from quiescence to bud burst is accompanied by a regulated relaxation of the hypoxic state and accumulation of reactive oxygen species within the developing cambium and vascular tissues of the heterotrophic grapevine buds. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; di Rienzo, Valentina; Boss, Paul K; Davies, Christopher

    2015-07-01

    The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleucine is a crucial step in the JA signaling pathway since only JA-Ile is recognized by the jasmonate receptor. The conjugation reaction is catalyzed by JA-amido synthetases, belonging to the family of Gretchen Hagen3 (GH3) proteins. Here, in vitro studies of two grapevine (Vitis vinifera L. cv Shiraz) GH3 enzymes, VvGH3-7 and VvGH3-9, demonstrated JA-conjugating activities with an overlapping range of amino acid substrates, including isoleucine. Expression studies of the corresponding genes in grape berries combined with JA and JA-Ile measurements suggested a primary role for JA signaling in fruit set and cell division and did not support an involvement of JA in the ripening process. In response to methyl JA (MeJA) treatment, and in wounded and unwounded (distal) leaves, VvGH3-9 transcripts accumulated, indicating a participation in the JA response. In contrast, VvGH3-7 was unresponsive to MeJA and local wounding, demonstrating a differential transcriptional regulation of VvGH3-7 and VvGH3-9. The transient induction of VvGH3-7 in unwounded, distal leaves was suggestive of the involvement of an unknown mobile wound signal. © 2014 Institute of Botany, Chinese Academy of Sciences.

  4. Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (-)-rotundone.

    Science.gov (United States)

    Takase, Hideki; Sasaki, Kanako; Shinmori, Hideyuki; Shinohara, Akira; Mochizuki, Chihiro; Kobayashi, Hironori; Ikoma, Gen; Saito, Hiroshi; Matsuo, Hironori; Suzuki, Shunji; Takata, Ryoji

    2016-02-01

    (-)-Rotundone is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapevines (Vitis vinifera). It is considered to be a significant compound in wines and grapes because of its low sensory threshold and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah and here we report the identification of VvSTO2 as a α-guaiene 2-oxidase which can transform α-guaiene to (-)-rotundone in the grape cultivar Syrah. It is a cytochrome P450 (CYP) enzyme belonging to the CYP 71BE subfamily, which overlaps with the very large CYP71D family and, to the best of our knowledge, this is the first functional characterization of an enzyme from this family. VvSTO2 was expressed at a higher level in the Syrah grape exocarp (skin) in accord with the localization of (-)-rotundone accumulation in grape berries. α-Guaiene was also detected in the Syrah grape exocarp at an extremely high concentration. These findings suggest that (-)-rotundone accumulation is regulated by the VvSTO2 expression along with the availability of α-guaiene as a precursor. VvSTO2 expression during grape maturation was considerably higher in Syrah grape exocarp compared to Merlot grape exocarp, consistent with the patterns of α-guaiene and (-)-rotundone accumulation. On the basis of these findings, we propose that VvSTO2 may be a key enzyme in the biosynthesis of (-)-rotundone in grapevines by acting as a α-guaiene 2-oxidase. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera).

    Science.gov (United States)

    Liu, Jinyi; Chen, Nana; Chen, Fei; Cai, Bin; Dal Santo, Silvia; Tornielli, Giovanni Battista; Pezzotti, Mario; Cheng, Zong-Ming Max

    2014-04-13

    Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited. We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms. The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions.

  6. Vitis vinifera peel and seed gold nanoparticles exhibit chemopreventive potential, antioxidant activity and induce apoptosis through mutant p53, Bcl-2 and pan cytokeratin down-regulation in experimental animals.

    Science.gov (United States)

    Nirmala, J Grace; Narendhirakannan, R T

    2017-05-01

    Several studies suggest surface modifications of gold nanoparticles (AuNPs) by capping agents or surface coatings could play an important role in biological systems, and site directed delivery. The present study was carried out to assess the antioxidant and apoptotic activities of the Vitis vinifera peel and seed gold nanoparticles in experimentally induced cancer in Swiss albino mice. 12-dimethylbenz [a] anthracene (DMBA) (single application) and 12-O-tetradecanoylphorbol 13-acetate (TPA) (thrice a week) were applied on the dorsal area of the skin to induce skin papillomagenesis in Swiss albino mice for 16 weeks. Gold nanoparticles were synthesized using Vitis vinifera peel and seed aqueous extracts and characterized by Transmission electron microscopic (TEM) analyses. On topical application, peel and seed gold nanoparticles demonstrated chemopreventive potential by significantly (pgold nanoparticles treated mice. The down-regulated expression of mutant p53, Bcl-2 and the levels of pan-cytokeratins might have facilitated the process of apoptosis in the chemical carcinogenesis process. The results were supported by the histopathological evaluation which exhibited mild dysplasia and acanthosis in the skin tissues of Vitis vinifera peel and seed AuNPs treated mice. Based on the present study, the chemopreventive action of Vitis vinifera peel and seed AuNPs is probably due to its ability to stimulate the antioxidant enzymes within the cells and suppressed abnormal skin cell proliferation that occurred during DMBA-induced skin papillomagenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France

    Energy Technology Data Exchange (ETDEWEB)

    Chopin, E.I.B. [GEGENA EA 3795, University of Reims Champagne-Ardenne, 2 esplanade Roland Garros, 51100 Reims (France)], E-mail: edithchopin@softhome.net; Marin, B.; Mkoungafoko, R.; Rigaux, A. [GEGENA EA 3795, University of Reims Champagne-Ardenne, 2 esplanade Roland Garros, 51100 Reims (France); Hopgood, M.J. [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, RG6 6DW (United Kingdom); Delannoy, E.; Cances, B.; Laurain, M. [GEGENA EA 3795, University of Reims Champagne-Ardenne, 2 esplanade Roland Garros, 51100 Reims (France)

    2008-12-15

    Soil and Vitis vinifera L. (coarse and fine roots, leaves, berries) concentration and geochemical partitioning of Cu, Pb and Zn were determined in a contaminated calcareous Champagne plot to assess their mobility and transfer. Accumulation ratios in roots remained low (0.1-0.4 for Cu and Zn, <0.05 for Pb). Differences between elements resulted from vegetation uptake strategy and soil partitioning. Copper, significantly associated with the oxidisable fraction (27.8%), and Zn with the acid soluble fraction (33.3%), could be mobilised by rhizosphere acidification and oxidisation, unlike Pb, essentially contained in the reducible fraction (72.4%). Roots should not be considered as a whole since the more reactive fine roots showed higher accumulation ratios than coarse ones. More sensitive response of fine roots, lack of correlation between chemical extraction results and vegetation concentrations, and very limited translocation to aerial parts showed that fine root concentrations should be used when assessing bioavailability. - Soil Cu, Pb and Zn concentration and partitioning were combined to accumulation ratio to study the transfer of trace element from soil to Vitis vinifera L. roots and aerial parts in a contaminated vineyard plot.

  8. UJI AKTIVITAS ANTIOKSIDAN MENGGUNAKAN RADIKAL 1,1-DIFENIL-2- PIKRILHIDRAZIL DAN PENETAPAN KANDUNGAN FENOLIK TOTAL FRAKSI ETIL ASETAT EKSTRAK ETANOL BUAH ANGGUR BALI (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Mikhael Gustandy

    2016-04-01

    Full Text Available Abstract: This research was conducted to determine the antioxidant activity of ethyl acetat fraction of extract of Balinesse grape (Vitis vinifera L. using free radical and determine the total phenolic content. Balinesse grape was extracted with ethanol and then fractionated using ethyl acetate. Free radical scavenging activity was tested by measuring the DPPH radical scavenging activity. Total phenolic content was determined using the Folin-Ciocalteau method measured the concentration of phenolic content in gallic acid total equivalents using unit's mg/g. The mean IC50 value for DPPH radical scavenging activity of the ethyl acetat fraction of ethanolic extract of Balinesse grape was found to be 36.55 ± 0.09 µg/mL. The phenolic content was ranging from 3.23 ± 0.02 mg gallic acid equivalents per gram of ethyl acetat fraction of ethanolic extract of Balinesse grape. Keywords: antioxidants, Balinesse grape (Vitis vinifera L., fraction of ethyl acetat, DPPH, total phenolic content.

  9. Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds.

    Science.gov (United States)

    Lazo-Javalera, M F; Troncoso-Rojas, R; Tiznado-Hernández, M E; Martínez-Tellez, M A; Vargas-Arispuro, I; Islas-Osuna, M A; Rivera-Domínguez, M

    2016-01-01

    Establishment of an efficient explants surface disinfection protocol is essential for in vitro cell and tissue culture as well as germplasm conservation, such as the case of Grapevine (Vitis spp.) culture. In this research, different procedures for disinfection and regeneration of field-grown grapevine cv. 'Flame seedless' axillary buds were evaluated. The buds were disinfected using either NaOCl or allyl, benzyl, phenyl and 2-phenylethyl isothiocyanates. Two different media for shooting and four media for rooting were tested. Shoot and root development per buds were registered. The best disinfection procedure with 90 % of tissue survival involved shaking for 60 min in a solution containing 20 % Clorox with 50 drops/L Triton(®) X-100. These tissues showed the potential to regenerate a complete plant. Plant regeneration was conducted using full strength Murashigue and Skoog (MS) medium supplemented with 8 µM benzyl aminopurine for shoot induction and multiplication, whereas rooting was obtained on half strength MS supplemented with 2 mg L(-1) of indole-3-butyric acid and 200 mg L(-1) of activated charcoal. In this work, it was designed the protocols for obtaining sterile field-grown grapevine buds and in vitro plant development. This methodology showed potential to produce vigorous and healthy plants in 5 weeks for clonal grapevine propagation. Regenerated plants were successfully established in soil.

  10. A new strategy to enhance the biosynthesis of trans-resveratrol by overexpressing stilbene synthase gene in elicited Vitis vinifera cell cultures.

    Science.gov (United States)

    Chu, Mingyu; Pedreño, M A; Alburquerque, Nuria; Faize, Lydia; Burgos, Lorenzo; Almagro, Lorena

    2017-04-01

    In this work, transgenic lines of suspension cultured cells of Vitis vinifera cv. Monastrell containing the plasmid pMOG800-sts have been obtained. The cell growth of these transgenic cell lines decreased slightly as compared to non-transgenic suspension cultured cells, while cell viability was not affected. In addition, the elicitation with cyclodextrins and methyl jasmonate enhanced the production of trans-resveratrol, observing the highest levels of this compound in sts-expressing transgenic Vitis suspension cultured cells with the sts expression cassette in the forwards orientation. Moreover, the forwards 2 (F2) transgenic cell line produced the greater levels of trans-resveratrol in comparison with the non-transgenic cell line. In fact, when suspension cultured cells were treated with both elicitors, the accumulation of trans-resveratrol outside the cells in the F2 transgenic suspension cultured cells increased twice (1458 mg.L-1) as compared to non-transgenic cell lines (724 mg.L-1). In both cases, the levels of trans-resveratrol detected in the treatment with cyclodextrins and methyl jasmonate were greater than the sum of the individual treatments, and therefore we observed a synergistic effect in the presence of both elicitors. Moreover, the expression profile of sts gene in transgenic V. vinifera cell lines was similar to the expression profile detected for the endogenous sts gene in non-transgenic V. vinifera cell lines, being the expression levels greater in the treatment with methyl jasmonate and cyclodextrins, which was related to the high levels of trans-resveratrol found in the presence of both elicitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Induction of trans-resveratrol and extracellular pathogenesis-related proteins in elicited suspension cultured cells of Vitis vinifera cv Monastrell.

    Science.gov (United States)

    Belchí-Navarro, Sarai; Almagro, Lorena; Sabater-Jara, Ana Belén; Fernández-Pérez, Francisco; Bru, Roque; Pedreño, Maria Angeles

    2013-02-15

    Suspension-cultured cells of Vitis vinifera cv Monastrell were used to investigate the effects of methyljasmonate, ethylene and salicylic acid separately or in combination with cyclodextrins on both trans-resveratrol production and the induction of defense responses. The results showed that the addition of methyljasmonate or ethylene to suspension-cultured cells jointly treated with cyclodextrins and salicylic acid provoked a decrease of trans-resveratrol levels suggesting that salicylic acid has a negative and antagonistic effect with methyljasmonate or ethylene on trans-resveratrol production. Likewise, the exogenous application of these compounds induced the accumulation of pathogenesis-related proteins. Analysis of the extracellular proteome showed the presence of amino acid sequences homologous to an specific β-1,3-glucanase, class III peroxidases and a β-1,4-mannanase, which suggests that these signal molecules could play a role in mediating defense-related gene product expression in V. vinifera cv Monastrell. Apart from these inducible proteins, other proteins were found in both the control and elicited cell cultures of V. vinifera. These included class IV chitinase, polygalacturonase inhibitor protein and reticuline oxidase-like protein, suggesting that their expression is constitutive being involved in the modification of the cell wall architecture during cell culture growth and in the prevention of pathogen attack. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Genomic variability in Vitis vinifera L. "Sangiovese" assessed by microsatellite and non-radioactive AFLP test

    OpenAIRE

    Vignani,Rita; Scali,Monica; Masi, Elisa; Cresti, Mauro

    2002-01-01

    Microsatellite polymorphism analysis on 25 different "Sangiovese" accessions was carried out at eight microsatellite loci (VVS2, VVS4, VVS29, VVMD3, VVMD6, VVMD7, VVMD17 and VVMD21). In order to evaluate variability within the "Sangiovese" variety and to confirm variety identification, genotype analysis, allele distribution and pedigree information were processed with a DNA-automated sequencer running AlleleLinks software. DNA typing revealed three cases of genetic dissimilarity compared to r...

  13. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine.

    Science.gov (United States)

    Cortell, Jessica M; Halbleib, Michael; Gallagher, Andrew V; Righetti, Timothy L; Kennedy, James A

    2007-08-08

    The relationships between grapevine (Vitis vinifera) vigor variation and resulting wine anthocyanin concentration and composition and pigmented polymer formation were investigated. The study was conducted in a commercial vineyard consisting of the same clone, rootstock, age, and vineyard management practices. Vine vigor parameters were used to designate vigor zones within two vineyard sites (A and B) to produce research wines (2003 and 2004) and conduct a model extraction experiment (2004 only) to investigate the vine-fruit-wine continuum. Wines and model extracts were analyzed by HPLC and UV-vis spectrophotometry. For the model extractions, there were no differences between sites for pomace weight, whereas juice volume was higher for site A. This was not related to a larger berry size. Site A had a higher anthocyanin concentration (milligrams per liter) in the model extracts than site B specifically for the medium- and low-vigor zones. For anthocyanin composition in the model extraction, site B had a greater proportion of malvidin-3-O-glucoside and less of the remaining anthocyanin glucosides (delphinidin, cyanidin, petunidin, and peonidin) compared to site A. In the wines, there was a vintage effect, with the 2003 wines having a higher anthocyanin concentration (milligrams per liter) than the 2004 wines. This appears to have been primarily due to a greater accumulation of anthocyanins in the fruit. In general, the medium-vigor zone wines had higher anthocyanin concentrations than either the high- or low-vigor zone wines. There was also vintage variation related to anthocyanin composition, with the 2003 wines having a higher proportion of delphinidin and petunidin glucosides and lower malvidin-3-O-glucoside compared to 2004. In both years, there were higher proportions of delphinidin and petunidin glucosides in wines made from low-vigor-zone fruit. Wines made from low-vigor zones showed a greater propensity to form vitisin A as well as pigmented polymers. Low

  14. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    Science.gov (United States)

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  15. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome.

    Science.gov (United States)

    Wang, Yi; Liu, Xianju; Ren, Chong; Zhong, Gan-Yuan; Yang, Long; Li, Shaohua; Liang, Zhenchang

    2016-04-21

    CRISPR/Cas9 has been recently demonstrated as an effective and popular genome editing tool for modifying genomes of humans, animals, microorganisms, and plants. Success of such genome editing is highly dependent on the availability of suitable target sites in the genomes to be edited. Many specific target sites for CRISPR/Cas9 have been computationally identified for several annual model and crop species, but such sites have not been reported for perennial, woody fruit species. In this study, we identified and characterized five types of CRISPR/Cas9 target sites in the widely cultivated grape species Vitis vinifera and developed a user-friendly database for editing grape genomes in the future. A total of 35,767,960 potential CRISPR/Cas9 target sites were identified from grape genomes in this study. Among them, 22,597,817 target sites were mapped to specific genomic locations and 7,269,788 were found to be highly specific. Protospacers and PAMs were found to distribute uniformly and abundantly in the grape genomes. They were present in all the structural elements of genes with the coding region having the highest abundance. Five PAM types, TGG, AGG, GGG, CGG and NGG, were observed. With the exception of the NGG type, they were abundantly present in the grape genomes. Synteny analysis of similar genes revealed that the synteny of protospacers matched the synteny of homologous genes. A user-friendly database containing protospacers and detailed information of the sites was developed and is available for public use at the Grape-CRISPR website ( http://biodb.sdau.edu.cn/gc/index.html ). Grape genomes harbour millions of potential CRISPR/Cas9 target sites. These sites are widely distributed among and within chromosomes with predominant abundance in the coding regions of genes. We developed a publicly-accessible Grape-CRISPR database for facilitating the use of the CRISPR/Cas9 system as a genome editing tool for functional studies and molecular breeding of grapes. Among

  16. Maturation curves of ‘Tannat’ grape (Vitis vinifera L. for red winemaking/ Curvas de maturação da uva ‘Tannat’ (Vitis vinifera L. para a elaboração de vinho tinto

    Directory of Open Access Journals (Sweden)

    Werner Genta

    2004-05-01

    Full Text Available The objetive of this research was to characterize the maturation of ‘Tannat’ grape (Vitis vinifera L. produced in the northwest of Parana state, for red winemaking. The experimental area was established in a commercial vineyard of Vinícola Intervin®, Maringá, PR. The vineyard was planted in August of 2000 and the vines were trained in a pergola system, in a 4.0 x 1.0 m spacing, budded on ‘IAC 766 Campinas’ rootstock. The evaluations started from the winter pruning of 2003. The random design was used as the statistical model with 20 replications and each plot was composed by one tree. The maturation curves of ‘Tannat’ grape were determined through chemical characteristic analysis of berries, such as total soluble solids (TSS, titratable acidity (TA and maturation index (TSS/TA, which were evaluated weekly from early ripening to 7 days after harvest, processing 300 berries per sampling. Through regression analysis, the performance of these chemical characteristics was evaluated over time. It was possible to conclude that: the curves of TSS, TA and TSS/TA were well-fitted to the cubic model and; the ‘Tannat’ grape reached 21.20 oBrix, 1.04% of tartaric acid and 20.38 of maturation index during harvest, what indicates a good performance of this cultivar for red winemaking at the local condition.O trabalho teve como objetivo caracterizar a maturação da videira ‘Tannat’ (Vitis vinifera L. cultivada no norte do Estado do Paraná para a elaboração de vinho tinto. A área experimental foi instalada em uma propriedade comercial pertencente à Vinícola Intervin®, no município de Maringá, PR. O vinhedo foi estabelecido em agosto de 2000 e as plantas foram conduzidas no sistema latada no espaçamento de 4,0 m x 1,5 m, enxertadas sobre o porta-enxerto ‘IAC 766 Campinas’. As avaliações tiveram início a partir da poda de produção, realizada no fim do inverno de 2003. O delineamento experimental foi o inteiramente

  17. Differences between sympatric populations of Eotetranychus carpini collected from Vitis vinifera and Carpinus betulus: insights from host-switch experiments and molecular data.

    Science.gov (United States)

    Malagnini, Valeria; Navajas, Maria; Migeon, Alain; Duso, Carlo

    2012-03-01

    Eotetranychus carpini (Oudemans) is an important pest of grapevine (Vitis vinifera L.) in southern Europe. This mite is also found on a number of different plants, including Carpinus betulus L., which commonly occurs in stands and hedgerows bordering vineyards, where it may serve as a potential mite reservoir. The economic importance of this pest has motivated a number of studies aimed at investigating whether the mites found on V. vinifera and C. betulus are conspecific. The results obtained to date have been inconclusive. In this study, we used biological and molecular approaches to investigate this issue. First, we conducted host-switch experiments to test the ability of E. carpini to develop on an alternative host plant, using mite populations originally collected on either C. betulus or V. vinifera plants from the same area. Second, we investigated DNA-based differentiation using nucleotide sequences of the ITS1-5.8S-ITS2 region of the ribosomal DNA of individual E. carpini from the populations examined in our host-plant experiments. We also analyzed sequences of individuals collected in other regions (Italy and Slovenia) to estimate species variation. The results from our host-switch experiments suggest the differentiation of mites collected on the two hosts. Mites collected from C. betulus did not survive and reproduce on V. vinifera and vice versa. Our molecular work revealed significant genetic differentiation between the mites collected from the two hosts, but no evidence of genetic variation among specimens collected from the same host species. Our results indicate the existence of host races of E. carpini.

  18. Impact of different vinification techniques on the formation of reductive notes in Vitis vinifera cv. Vernatsch

    Directory of Open Access Journals (Sweden)

    Pixner Konrad

    2015-01-01

    Full Text Available The grape variety Vernatsch is prone to the formation of severe reductive notes during alcoholic fermentation (AF, spoiling the fruity aroma characteristic for this variety. We investigated the impact of eight different vinification treatments on the formation of volatile sulfur compounds (VSCs and their impact on the sensorial quality of the wines in this susceptible grape variety. Without the addition of sulfur under the form of potassium metabisulfite (K2S2O5 to the crushed grapes, wines were significant less reductive. The clarification treatment showed promising results for the diminution of reductive notes, but might not be a feasible strategy for commercial wineries. Changing fermentation temperature, adding air, bentonite or copper to fermenting wines increased the appearance of reductive notes. The addition sulfur prior AF increased reductive notes in Vernatsch wines and needs to be considered as a crucial factor for the formation of reductive notes.

  19. Conserving and utilizing intra-varietal variation in grapevines (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Ruehl Ernst

    2015-01-01

    Full Text Available Climate change poses a major challenge to grapevine growing and breeding. Higher temperatures and altered rain patterns will result in a shift of varieties to other areas or require the adaptation of varieties in their traditional growing regions. A large intra-varietal variation is a prerequisite for this task. Clonal selection is an important part of genetic improvement in grapevines. In contrast to cross breeding, it depends on the already existing genetic diversity within a variety. Due to their age, genetic diversity in traditional varieties can be quite large, providing the basis for new clones, better suited to altered climatic conditions and industry demands. In Germany clonal selection commenced already at the end of the 19th century, presumably due to the fact that under its cool climatic conditions virus infection, in particular fanleaf reduces crop dramatically. These first attempts were so successful that they were copied by numerous private and public breeders, and since the mid-1950 s virtually only clonal material is being planted.

  20. Effect of gamma irradiation on storability of two cultivars of Syrian grapes ( Vitis vinifera)

    Science.gov (United States)

    Al-Bachir, M.

    1999-06-01

    This study was initiated to investigate the effect of gamma irradiation on storability of two local table grape varieties: Baladi and Helwani. The experiments were performed in 1995 and 1996, when both varieties were treated with 0, 0.5, 1.0 and 1.5 kGy in the first year. In the second year two additional doses were used 0.1 and 0.25 kGy for Helwani and 2.0 and 2.5 kGy for Baladi. Irradiated and unirradiated fruits were stored in a refrigerated room (temperature, 1-2°C). Weight loss, spoilage and total loss were evaluated every 2 and 4 weeks of storage for Baladi and Helwani, respectively. The results have shown that gamma irradiation improved the storability of both varieties. In addition, irradiation prevented molding and prolonged the storage time. The optimum doses for improving the storability were 0.5-1.0 kGy for Helwani and 1.5-2.0 kGy for Baladi, and the storage periods can be extended by 50% using these optimal doses for both varieties.

  1. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz provides insights into regulated and coordinated gene expression

    Directory of Open Access Journals (Sweden)

    Sweetman Crystal

    2012-12-01

    Full Text Available Abstract Background Vitis vinifera berry development is characterised by an initial phase where the fruit is small, hard and acidic, followed by a lag phase known as veraison. In the final phase, berries become larger, softer and sweeter and accumulate an array of organoleptic compounds. Since the physiological and biochemical makeup of grape berries at harvest has a profound impact on the characteristics of wine, there is great interest in characterising the molecular and biophysical changes that occur from flowering through veraison and ripening, including the coordination and temporal regulation of metabolic gene pathways. Advances in deep-sequencing technologies, combined with the availability of increasingly accurate V. vinifera genomic and transcriptomic data, have enabled us to carry out RNA-transcript expression analysis on a global scale at key points during berry development. Results A total of 162 million 100-base pair reads were generated from pooled Vitis vinifera (cv. Shiraz berries sampled at 3-weeks post-anthesis, 10- and 11-weeks post-anthesis (corresponding to early and late veraison and at 17-weeks post-anthesis (harvest. Mapping reads from each developmental stage (36-45 million onto the NCBI RefSeq transcriptome of 23,720 V. vinifera mRNAs revealed that at least 75% of these transcripts were detected in each sample. RNA-Seq analysis uncovered 4,185 transcripts that were significantly upregulated at a single developmental stage, including 161 transcription factors. Clustering transcripts according to distinct patterns of transcription revealed coordination in metabolic pathways such as organic acid, stilbene and terpenoid metabolism. From the phenylpropanoid/stilbene biosynthetic pathway at least 46 transcripts were upregulated in ripe berries when compared to veraison and immature berries, and 12 terpene synthases were predominantly detected only in a single sample. Quantitative real-time PCR was used to validate the

  2. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression.

    Science.gov (United States)

    Sweetman, Crystal; Wong, Darren Cj; Ford, Christopher M; Drew, Damian P

    2012-12-11

    Vitis vinifera berry development is characterised by an initial phase where the fruit is small, hard and acidic, followed by a lag phase known as veraison. In the final phase, berries become larger, softer and sweeter and accumulate an array of organoleptic compounds. Since the physiological and biochemical makeup of grape berries at harvest has a profound impact on the characteristics of wine, there is great interest in characterising the molecular and biophysical changes that occur from flowering through veraison and ripening, including the coordination and temporal regulation of metabolic gene pathways. Advances in deep-sequencing technologies, combined with the availability of increasingly accurate V. vinifera genomic and transcriptomic data, have enabled us to carry out RNA-transcript expression analysis on a global scale at key points during berry development. A total of 162 million 100-base pair reads were generated from pooled Vitis vinifera (cv. Shiraz) berries sampled at 3-weeks post-anthesis, 10- and 11-weeks post-anthesis (corresponding to early and late veraison) and at 17-weeks post-anthesis (harvest). Mapping reads from each developmental stage (36-45 million) onto the NCBI RefSeq transcriptome of 23,720 V. vinifera mRNAs revealed that at least 75% of these transcripts were detected in each sample. RNA-Seq analysis uncovered 4,185 transcripts that were significantly upregulated at a single developmental stage, including 161 transcription factors. Clustering transcripts according to distinct patterns of transcription revealed coordination in metabolic pathways such as organic acid, stilbene and terpenoid metabolism. From the phenylpropanoid/stilbene biosynthetic pathway at least 46 transcripts were upregulated in ripe berries when compared to veraison and immature berries, and 12 terpene synthases were predominantly detected only in a single sample. Quantitative real-time PCR was used to validate the expression pattern of 12 differentially expressed

  3. Clonal selection of vitis vinifera cv. malbec: Confluence of science and nature

    Directory of Open Access Journals (Sweden)

    Aldo Biondolillo

    2014-01-01

    Full Text Available It is not overstated that Argentinean viticulture identifies with Malbec, the vine which long ago was introduced in the country from France and which has marvelously naturalized here. However, the variety Malbec has many different expressions, depending very much on environmental and cultivating conditions and on natural mutations occurred over time. A modern viticulture cannot do without the capability of exactly identifying and differentiating clones of the same variety and from the ability to do that over contingency. This work on clonal selection, conceived and developed by a very polyvalent team, focuses exactly on defining instruments to unequivocally distinguish and select different clones and using these instruments to analyze, classify and select all different clones representing the highest variability of Malbec in Argentina ever sampled. The work bases on traditional instruments – phenotypic and enological analysis – and on a molecular marker selection program. Through the synergy of all these methods the team has come to the selection of 16 superior clones of Malbec and will proceed by sharing and mapping three of those clones on the country different micro-environments for grapevine growing regions, giving Argentinean viticulture a key instrument to identify its most valuable grape wine variety.

  4. Effects of elevated CO2 on grapevine (Vitis vinifera L.): volatile composition, phenolic content, and in vitro antioxidant activity of red wine.

    Science.gov (United States)

    Gonçalves, Berta; Falco, Virgílio; Moutinho-Pereira, José; Bacelar, Eunice; Peixoto, Francisco; Correia, Carlos

    2009-01-14

    The impact of elevated carbon dioxide concentration ([CO2]) on the quality of berries, must, and red wine (with special reference to volatile composition, phenolic content, and antioxidant activity) made from Touriga Franca, a native grape variety of Vitis vinifera L. for Port and Douro wine manufacturing grown in the Demarcated Region of Douro, was investigated during 2005 and 2006. Grapevines were grown either in open-top chambers (OTC) with ambient (365 +/- 10 ppm) or elevated (500 +/-16 ppm) [CO2] or in an outside plot. In general, the increase of [CO2] did not affect berry characteristics, especially the total anthocyan and tannin concentrations. However, the total anthocyan and polyphenol concentrations of the red wine were inhibited under elevated [CO2]. The antioxidant capacity of the wines was determined by DPPH, ABTS, and TBARS assays and, despite the low concentrations of phenolics, the elevated [CO2] did not significantly change the total antioxidant capacity of the red wines. Thirty-five volatile compounds belonging to seven chemical groups were identified: C6 alcohols, higher alcohols, esters, terpenols, carbonyl compounds, acids, volatile phenols, and C13 norisoprenoids. Generally, the same volatile compounds were present in all of the wines, but the relative levels varied among the treatments. The effect of elevated [CO2] was significant because it was detected as an increase in ethyl 2-methylbutyrate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, butyric acid, and isovaleric acid concentrations and a decrease in ethyl acetate concentration when compared to wines produced in ambient [CO2] in 2005. In elevated [CO2], wines from 2006 had lower methionol, 1-octanol, and 4-ethylguaiacol and higher ethyl lactate and linalool concentrations. The increase in [CO2] did not significantly affect C6 alcohols, citronellol, carbonyl compounds, and beta-damascenone concentrations. This study showed that the predicted rise in [CO2] did not produce negative

  5. Effect of Three Training Systems on Grapes in a Wet Region of China: Yield, Incidence of Disease and Anthocyanin Compositions of Vitis vinifera cv. Cabernet Sauvignon

    Directory of Open Access Journals (Sweden)

    Mei-Ying Liu

    2015-10-01

    Full Text Available Grapevine training systems determine the suitability for grape varieties in a specific growing region. We evaluated the influence of three training systems, Single Guyot (SG, Spur-pruned Vertical Shoot-Positioned (VSP, and Four-Arm Kniffin (4AK, on the performance of grapes and vines of Vitis vinifera L. cv. Cabernet Sauvignon in the 2012 and 2013 growing seasons in a wet region of central China. 4AK was the most productive system in comparison to SG and VSP. SG and VSP had lower disease infections of leaves and berries, especially in the mid- and final stage of berry ripening. Three training systems had no impact on berry maturity. PLS-DA (Partial Least Squares-Discriminant analysis showed that the relatively dry vintage could well discriminate three training systems, but the wet vintage was not. A wet vintage of 2013 had more accumulation of 3′5′-substituted and acylated anthocyanins, including malvidin-3-O-(6-O-acetyl-glucoside, malvidin-3-O-glucoside, and petunidin-3-O-(cis-6-O-coumaryl-glucoside, etc. With regard to the effect of training systems, 4AK grapes had the lowest concentrations of total anthocyanins and individual anthocyanins, SG and VSP differed according to the different vintages, and showed highest concentration of total individual anthocyanins in 2012 and 2013, respectively. Generally, VSP benefited the most, contributing to significantly highest levels of total individual anthocyanins, and major anthocyanin, including malvidin-3-O-glucoside and malvidin-3-O-(6-O-acetyl-glucoside, and the grapes obtained from VSP presented significantly highest proportion of 3′5′-substituted anthocyanins. With regard to the ratios of 3′5′/3′-substituted, methoxylated/non-methoxylated and acylated/non-acylated anthocyanins, the significantly higher levels were also shown in VSP system. In summary, VSP was the best training system for Cabernet Sauvignon to accumulate relatively stable individual anthocyanins in this wet region of

  6. Assessing prediction quality of several phenological process based models using various types of databases. A case study using Vitis vinifera data.

    Science.gov (United States)

    Garcia de Cortazar-Atauri, Inaki; Neethling, Etienne; De Rességuier, Laure; Parker, Amber K.; Barbeau, Gérard; Quenol, Hervé; Sturman, Andrew; Trought, Mike; Van Leeuwen, Cornelis

    2014-05-01

    Modeling phenology has become a major issue in the context of studies on the impact of climate change. Phenology is the first biological indicator of this change and consequently, accurate simulations are essential to correctly predict the timing of development in the future. In recent years several models have been developed and tested to simulate phenology for various species, with many studies focused on perennial species (forest trees, orchards and grapevine). Furthermore, the development of databases and networks of observations have been used to test models under a wide range of climate conditions. In this study we examined the impact of databases and their origin on the accuracy of simulation of flowering and veraison for the grapevine (Vitis vinifera L.) We compared the results of calibration and cross- validation of several classic phenological models (Growing Degrees Days, Chuine, Sigmoid, Beta function - Wang and Engel and Richardson) for two different varieties (Cabernet Franc and Merlot), at two different locations (Middle Loire Valley and Bordeaux vineyards) using different datasets : 1) Dataset1: a dataset from a network of temperature sensors at a fine scale where phenology was also observed at each of the locations of the temperature sensors (11 to 60 different points); 2) Dataset2: an historical dataset (at least 20 years) from a plot located in the same area as the network , 3) Dataset3: a dataset obtained from other locations in France (Phenoclim database). Cross tests of the best model calibrated with each dataset on the other sites were conducted to assess the effect of the choice of database on the model output for each of these stages (flowering and veraison) at different scales. Initial results showed that the database used to calibrate different models could influence model parameters. This methodology will help to improve the quantification of uncertainties of each model and check the stability of the model parameters over different

  7. Application of statistical downscaling technique for the production of wine grapes (Vitis vinifera L.) in Spain

    Science.gov (United States)

    Gaitán Fernández, E.; García Moreno, R.; Pino Otín, M. R.; Ribalaygua Batalla, J.

    2012-04-01

    Climate and soil are two of the most important limiting factors for agricultural production. Nowadays climate change has been documented in many geographical locations affecting different cropping systems. The General Circulation Models (GCM) has become important tools to simulate the more relevant aspects of the climate expected for the XXI century in the frame of climatic change. These models are able to reproduce the general features of the atmospheric dynamic but their low resolution (about 200 Km) avoids a proper simulation of lower scale meteorological effects. Downscaling techniques allow overcoming this problem by adapting the model outcomes to local scale. In this context, FIC (Fundación para la Investigación del Clima) has developed a statistical downscaling technique based on a two step analogue methods. This methodology has been broadly tested on national and international environments leading to excellent results on future climate models. In a collaboration project, this statistical downscaling technique was applied to predict future scenarios for the grape growing systems in Spain. The application of such model is very important to predict expected climate for the different growing crops, mainly for grape, where the success of different varieties are highly related to climate and soil. The model allowed the implementation of agricultural conservation practices in the crop production, detecting highly sensible areas to negative impacts produced by any modification of climate in the different regions, mainly those protected with protected designation of origin, and the definition of new production areas with optimal edaphoclimatic conditions for the different varieties.

  8. Cultivation of Vitis vinifera L. in the light of former publications and today in Poland

    Directory of Open Access Journals (Sweden)

    Krystyna Pudelska

    2014-09-01

    Full Text Available In the countries of the Mediterranean Basin viticulture has been dealt with for centuries. It was known to the ancient civilizations of the Middle East and grapevines were widely planted in Greece and Rome. The vineyard was part of the utility garden, usually occupying large areas and at the same time being a connection with the landscape. Creeper vine was also used in decorative gardens as an ornamental plant for various types of buildings and garden structures. The Polish tradition of planting vineyards dates back to the Middle Ages and is mainly associated with the activities of monks, although it was not as common as in the countries of southern Europe. However, in Polish gardening literature and in the literature that describes the development of the art of gardening, you can find lots of tips on how to grow grapevines, their varieties and the descriptions of the vineyards.

  9. Preliminary results on the effects of grape (Vitis vinifera) seed condensed tannins on in vitro intestinal digestibility of the lupin (Lupinus angustifolius) seed protein fraction in small ruminants.

    Science.gov (United States)

    Bruno-Soares, A M; Soares-Pereira, A L; Matos, T J S; Ricardo-da-Silva, J M

    2011-08-01

    Condensed tannins (CT) from grape seeds (Vitis vinifera L.) were added to complex the protein fraction of Lupinus angustifolius seeds. Three CT/protein ratios were used: 96 mg/g (T(1)), 180 mg/g (T(2)) and 0 mg/g (T(0)). The CP losses in the rumen were assessed by the nylon-bag technique and CP intestinal digestibility (CPID) was estimated using an in vitro assay applying a three-step procedure: samples were subject to rumen degradation (in situ, 16 h) and the remaining residues were subject to the digestive enzymes of the abomasum and pancreas in vitro. A positive effect (p 0.05) by the presence of CT. These findings suggest that the use of grape seed CT might have the potential to improve the efficiency of utilisation of the protein fraction from lupin seeds. © 2010 Blackwell Verlag GmbH.

  10. Histopathological study of response of Vitis vinifera cv. Cabernet Sauvignon to bark and wood injury with and without inoculation by Phaeomoniella chlamydospora

    Directory of Open Access Journals (Sweden)

    Jérôme POUZOULET

    2013-09-01

    Full Text Available Summary. Phaeomoniella chlamydospora (Pch is one of the main causal agents of tracheomycosis in grapevine. We characterize how this fungus affects the response of Vitis vinifera cv. Cabernet Sauvignon to bark and xylem-tissue wounding after six weeks post-treatment. A histological investigation shows that, in xylem tissue, cell-wall modifications in response to wounding are related to suberin deposits rather than to lignin-induced wall thickening. The xylem response does not appear to be disturbed by Pch infection. Therefore, cell-wall modification strongly inhibits the development of wound-closure tissue (WCT but does not prevent the differentiation of the necro-phylactic periderm. Hyphae localization in tissue surrounding the wound or inoculation sites indicates that Pch colonizes all cell types, such as vascular tissues, paratracheal parenchyma cells, fibers and rays. The results also suggest that efficient compartmentalization separating fascicular xylem portions is assured by thick suberized cell walls bordering the ray parenchyma.

  11. The antimicrobial effects of three phenolic extracts from Rosmarinus officinalis L., Vitis vinifera L. and Polygonum cuspidatum L. on food pathogens.

    Science.gov (United States)

    Santomauro, Francesca; Sacco, Cristiana; Donato, Rosa; Bellumori, Maria; Innocenti, Marzia; Mulinacci, Nadia

    2017-09-15

    In this study three phenolic extracts were examined, without volatile fraction, against common food pathogens. The samples, all suitable for food application, were from the leaves of Rosmarinus officinalis L., Vitis vinifera L., and the root of Polygonum cuspidatum L. The microorganisms tested were Escherichia coli O157:H7, Salmonella Enteritidis, Salmonella Typhi, Yersinia enterocolitica and Listeria monocytogenes, well-known as important food pathogens. The results demonstrated a microbicidal activity of all the tested compounds at different concentrations; the rosemary extract showed greater efficacy than the other compounds against the tested microorganisms. In particular, the best results were obtained with rosemary extract against E. coli O157:H7 and L. monocytogenes with values of 200 and 270 μg/mL, respectively. Our results show that rosemary extract, often present as a natural antioxidant in food, can also be proposed as a natural disinfectant in the food field.

  12. The relationships between consumer liking, sensory and chemical attributes of Vitis vinifera L. cv. Pinotage wines elaborated with different Oenococcus oeni starter cultures

    DEFF Research Database (Denmark)

    Malherbe, Sulette; Menichelli, Elena; du Toit, Maret

    2013-01-01

    BackgroundMalolactic fermentation (MLF) mediated by lactic acid bacteria (LAB) has been shown to modulate chemical and sensory attributes of wine. This study investigated the relation between consumer liking, chemical and sensory attributes of Vitis vinifera L. cv. Pinotage wines that were made....... These effects on the wines were not the same for the two vintages tested. Preference mapping results showed that the sensory attributes influenced the average consumer liking. The main chemical and sensory correlations found for MLF-treated wines were related to 2,3-butanedione (diacetyl) with the buttery...... character and various esters with fruity aromas. ConclusionAlthough the direct effect of the bacterial starter cultures on wine sensory attributes is difficult to establish, and subject to variation over vintage, the present work suggests that the contribution of LAB starter cultures to wine sensory...

  13. Influence of Different Maceration Techniques and Ageing on Proanthocyanidins and Anthocyanins of Red Wine cv. Babić (Vitis vinifera, L.

    Directory of Open Access Journals (Sweden)

    Irena Budić-Leto

    2003-01-01

    Full Text Available Effects of winemaking techniques on the polyphenolic composition of specific Croatian wines made from Babić (Vitis vinifera, L., from the Primošten vine-growing region, were subjected to examination. Winemaking processes and reactions that take place during maturation significantly influence the content of anthocyanins and proanthocyanidins in wine. Prolonged maceration duration caused an increase in the content of total phenols, vanillin index and proanthocyanidins, as well as a decrease in the content of anthocyanins in young wine. Cold maceration brought about a decrease in anthocyanins, total phenols and proanthocyanidins in Babić wine. The effects of winemaking techniques on the index of vanillin and proanthocyanidins in wines maturated for 6 and 14 months were significant.

  14. Influence of maceration temperature in red wine vinification on extraction of phenolics from berry skins and seeds of grape (Vitis vinifera).

    Science.gov (United States)

    Koyama, Kazuya; Goto-Yamamoto, Nami; Hashizume, Katsumi

    2007-04-01

    The extraction of phenolics from berry skins and seeds of the grape, Vitis vinifera cv. Cabernet Sauvignon, during red wine maceration and the influence of different temperature conditions (cold soak and/or heating at the end of maceration) were examined. Phenolics contained mainly in berry skins, viz., anthocyanin, flavonol, and epigallocatechin units within proanthocyanidins, were extracted during the early stage of maceration, whereas those in seeds, viz., gallic acid, flavan-3-ol monomers, and epicatechin-gallate units within proanthocyanidins, were gradually extracted. In addition to their localization, the molecular size and composition of the proanthocyanidins possibly influenced the kinetics of their extraction. Cold soak reduced the extraction of phenolics from the seeds. Heating at the end of maceration decreased the concentration of proanthocyanidins. Thus, modification of the temperature condition during maceration affected the progress of the concentration of phenolics, resulting in an alteration of their make-up in the finished wine.

  15. Flavanol Quantification of Grapes via Multiple Reaction Monitoring Mass Spectrometry. Application to Differentiation among Clones of Vitis vinifera L. cv. Rufete Grapes.

    Science.gov (United States)

    García-Estévez, Ignacio; Alcalde-Eon, Cristina; Escribano-Bailón, M Teresa

    2017-08-09

    The determination of the detailed flavanol composition in food matrices is not a simple task because of the structural similarities of monomers and, consequently, oligomers and polymers. The aim of this study was the development and validation of an HPLC-MS/MS-multiple reaction monitoring (MRM) method that would allow the accurate and precise quantification of catechins, gallocatechins, and oligomeric proanthocyanidins. The high correlation coefficients of the calibration curves (>0.993), the recoveries not statistically different from 100%, the good intra- and interday precisions (Vitis vinifera L. cv. Rufete grapes. Seventy-two (38 nongalloylated and 34 galloylated) and 53 (24 procyanidins and 29 prodelphinidins) flavanols have been identified and quantified in grape seed and grape skin, respectively. The use of HCA and PCA on the detailed flavanol composition has allowed differentiation among Rufete clones.

  16. Modulation of protein phosphorylation, N-glycosylation and Lys-acetylation in grape (Vitis vinifera) mesocarp and exocarp owing to Lobesia botrana infection

    DEFF Research Database (Denmark)

    Melo-Braga, Marcella N; Verano-Braga, Thiago; León, Ileana R

    2012-01-01

    Grapevine (Vitis vinifera) is an economically important fruit crop that is subject to many types of insect and pathogen attack. To better elucidate the plant response to Lobesia botrana pathogen infection, we initiated a global comparative proteomic study monitoring steady-state protein expression...... led to the identification of a total of 3059 proteins, 1135 phosphorylation sites, 323 N-linked glycosylation sites and 138 Lys-acetylation sites. Of these, we could identify changes in abundance of 899 proteins. The occupancy of 110 phosphorylation sites, 10 N-glycosylation sites and 20 Lys......-acetylation analysis confirmed the consensus X-K-Y-X motif previously detected in mammals and revealed the importance of this modification in plant defense. The importance of N-linked protein glycosylation in plant response to biotic stimulus was evident by an up-regulated glycopeptide belonging to the disease...

  17. Pruning affects the vegetative balance of the wine grape (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Pedro José Almanza-Merchán

    2014-08-01

    Full Text Available Grape cultivation for wine production at altitudes between 2,200 and 2,600 m a.s.l. started in the department of Boyaca in 1982. Quality wines are produced by the AinKarim Vineyard in Ricaurte High. Wine grapes have to possess suitable organoleptic compounds at harvest in order to guarantee quality grape must that can be converted into wine. Therefore, it is necessary to maintain a suitable ratio the sources and the sinks and to guarantee production, quality and vegetative sustainability over time, conserving the equilibrium and benefiting the productive potential of the vineyard. The aim of this study was to evaluate the productive and vegetative balance effect in the wine grape varieties Cabernet Sauvignon and Sauvignon Blanc in Sutamarchan-Boyaca, considering different pruning types (short, long, and mixed. A bifactorial, completely random statistical design was used. At the time of harvest, the fruit production and pruned wood were evaluated. The long-pruned vines showed the best behavior and the most balanced source/sink relationship,, while Sauvignon Blanc demonstrated a better productive yield. Meanwhile, the short and mixed prunings had the better values for the Ravaz index (balance between fruit production and vegetative growth, indicating that they are more suitable for the conditions of the region, allowing for sustainability during the productive cycles of the wine grapes.

  18. Mass spectrometric and enzymatic evidence confirm the existence of anthocyanidin 3,5-O-diglucosides in cabernet sauvignon (Vitis vinifera L.) grape berries.

    Science.gov (United States)

    Xing, Ran-Ran; Li, Si-Yu; He, Fei; Yang, Zhe; Duan, Chang-Qing; Li, Zheng; Wang, Jun; Pan, Qiu-Hong

    2015-04-01

    It has been widely accepted that anthocyanidin 3,5-O-diglucosides do not exist in Vitis vinifera L. Cabernet Sauvignon (CS) berries. However, our anthocyanin analyses using HPLC-ESI-MS/MS detected the existence of a low level of anthocyanidin 3,5-O-diglucosides in the Cabernet Sauvignon grape berries grown in China. The authenticity of these samples was confirmed with microsatellite markers. The existence of anthocyanidin 3,5-O-diglucoside was further verified by the enzymatic evidence for the first time. Four putative 5-O-glucosyltransferase (5GT) genes were isolated from the Cabernet Sauvignon berries. The enzymatic analysis showed that a recombinant protein (designated as Vv5GT3) glucosylated the 3-O- and 5-O-positions of anthocyanidins and flavonols. A phylogenetic analysis revealed that this bifunctional enzyme belongs to the 5GT subfamily of UDP-glycosyltransferases. This finding brought a new understanding of the anthocyanins' profile and their biosynthesis in V. vinifera and would be helpful for further investigations of the mechanism of accumulation of anthocyanidin diglucosides in Cabernet Sauvignon berries in China's wine-producing regions.

  19. The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola.

    Science.gov (United States)

    Merz, Patrick R; Moser, Tina; Höll, Janine; Kortekamp, Andreas; Buchholz, Günther; Zyprian, Eva; Bogs, Jochen

    2015-03-01

    Grapevine (Vitis vinifera ssp. vinifera) is one of the most important fruit species; however, it is highly susceptible to various pathogens, which can cause severe crop losses in viticulture. It has been shown that several WRKY class transcription factors (TFs) are part of the signal transduction cascade, which leads to the activation of plant defense reactions against various pathogens. In the present investigation, a full-length cDNA was isolated from V. vinifera leaf tissue encoding a predicted protein, designated VvWRKY33, which shows the characteristics of group I WRKY protein family. VvWRKY33 induction correlates with the expression of VvPR10.1 (pathogenesis-related 10.1) gene in the leaves of the resistant cultivar 'Regent' after infection with Plasmopara viticola, whereas in the susceptible cultivar 'Lemberger' VvWRKY33 and VvPR10.1 are not induced. Corresponding expression of the TF and VvPR10.1 was even obtained in uninfected ripening berries. In planta, analysis of VvWRKY33 has been performed by ectopic expression of VvWRKY33 in grapevine leaves of greenhouse plants mediated via Agrobacterium tumefaciens transformation. In consequence, VvWRKY33 strongly increases resistance to P. viticola in the susceptible cultivar 'Shiraz' and reduces pathogen sporulation of about 50-70%, indicating a functional role for resistance in grapevine. Complementation of the resistance-deficient Arabidopsis thaliana Columbia-0 (Col-0) mutant line wrky33-1 by constitutive expression of VvWRKY33 restores resistance against Botrytis cinerea to wild-type level and in some complemented mutant lines even exceeds the resistance level of the parental line Col-0. Our results support the involvement of VvWRKY33 in the defense reaction of grapevine against different pathogens. © 2014 Scandinavian Plant Physiology Society.

  20. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species

    Science.gov (United States)

    2010-01-01

    Background Downy mildew is a destructive grapevine disease caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, which can only be controlled by intensive fungicide treatments. Natural sources of resistance from wild grapevine (Vitis) species are used in conventional breeding approaches, but the signals and effectors involved in resistance in this important crop species are not well understood. Results Early transcriptional changes associated with P. viticola infection in susceptible V. vinifera and resistant V. riparia plants were analyzed using the Combimatrix microarray platform. Transcript levels were measured 12 and 24 h post-inoculation, reflecting the time points immediately preceding the onset of resistance in V. riparia, as determined by microscopic analysis. Our data indicate that resistance in V. riparia is induced after infection, and is not based on differences in basal gene expression between the two species. The strong and rapid transcriptional reprogramming involves the induction of pathogenesis-related proteins and enzymes required for the synthesis of phenylpropanoid-derived compounds, many of which are also induced, albeit to a lesser extent, in V. vinifera. More interestingly, resistance in V. riparia also involves the specific modulation of numerous transcripts encoding components of signal transduction cascades, hypersensitive reaction markers and genes involved in jasmonate biosynthesis. The limited transcriptional modulation in V. vinifera represents a weak attempted defense response rather than the activation of compatibility-specific pathways. Conclusions Several candidate resistance genes were identified that could be exploited in future biotechnological approaches to increase disease resistance in susceptible grapevine species. Measurements of jasmonic acid and methyl jasmonate in infected leaves suggest that this hormone may also be involved in V. riparia resistance to P. viticola. PMID:20167053

  1. Characterization of triterpenoid profiles and triterpene synthase expression in the leaves of eight Vitis vinifera cultivars grown in the Upper Rhine Valley.

    Science.gov (United States)

    Pensec, Flora; Szakiel, Anna; Pączkowski, Cezary; Woźniak, Agnieszka; Grabarczyk, Marta; Bertsch, Christophe; Fischer, Marc J C; Chong, Julie

    2016-05-01

    Plant triterpenoids are a diverse group of secondary metabolites with wide distribution, high chemical diversity and interesting pharmacological and antimicrobial properties. The first step in the biosynthesis of all triterpenoids is the cyclization of the 2,3-oxidosqualene precursor, catalyzed by oxidosqualene cyclases (OSCs), which have characteristic product specificities. Biosynthesis and functions of pentacyclic triterpenes have been poorly studied in grapevine. In this study, we first investigated the profile of triterpenoids present in leaf cuticular waxes from eight Vitis vinifera cultivars cultivated in the Upper Rhine Valley. Further quantification of triterpenoids showed that these cultivars can be divided into two groups, characterized by high levels of lupeol (e.g., Pinot noir) or taraxerol (e.g., Gewurztraminer) respectively. We further analyzed the OSC family involved in the synthesis of pentacyclic triterpenes (called VvTTPSs) in the sequenced V. vinifera 40024 genome and found nine genes with similarity to previously characterized triterpene synthases. Phylogenetic analysis further showed that VvTTPS1-VvTTPS3 and VvTTPS5-VvTTPS9 belong to the β-amyrin synthase and multifunctional triterpene synthase clade, whereas VvTTPS10 belongs to the lupeol synthase clade. We studied the expression of several members of the VvTTPS family following biotic and abiotic stresses in V. vinifera 40024 as well as in the eight healthy cultivars. This study further revealed that one candidate gene, VvTTPS5, which does not belong to the lupeol synthase clade, is highly expressed in lupeol-rich cultivars. VvTTPS3, VvTTPS5, VvTTPS6, VvTTPS7 and VvTTPS10 were highly upregulated by UV stress, but only VvTTPS3, VvTTPS5, VvTTPS6 and VvTTPS10 were upregulated following downy mildew and gray mold infections respectively. These results suggest differential roles of VvTTPS against environmental stresses in grape leaves.

  2. Vitis International Variety Catalogue (VIVC: A cultivar database referenced by genetic profiles and morphology

    Directory of Open Access Journals (Sweden)

    Maul Erika

    2015-01-01

    Full Text Available The establishment of the Vitis International Variety Catalogue (VIVC dates back to 1984. The idea was to virtually assemble all accessions maintained in the worldwide existing collections to face genetic erosion. In many cases synonymy, homonymy and misnaming hampered the clear assignment of cultivars/accessions to prime names. In the past 15 years nuclear microsatellites, in particular the nine SSR-markers VVS2, VVMD5, VVMD7, VVMD25, VVMD27, VVMD28, VVMD32, VrZAG62 and VrZAG79 were extensively applied for cultivar recognition in combination with ampelography. Genetic fin- gerprints of more than 15,000 cultivars/accessions were collected. They were taken from more than 300 articles and from microsatellite databases on the web. Allele sizes were adapted according to own internal reference varieties. Comparison of profiles revealed new identities like: “Corbeau” = “Sevilhao”, “Gragnelut” = “Fer”, “Beretinjak” = “Bianco d’Alessano”. The activities aim to equip the prime names of VIVC with reliable genetic profiles combined with the validation of their identity by ampelography. Fingerprints from 1,500 cultivars were already uploaded in VIVC. Two distinct search modules were imple- mented: “Microsatellites by varieties” and “Microsatellites by profiles”. The implementation assists the management of grape- vine genetic resources, e.g. trueness to type assessment in grapevine collections and serves research and breeding.

  3. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L. based on curation and mining of large-scale EST data sets

    Directory of Open Access Journals (Sweden)

    Cramer Grant R

    2011-05-01

    Full Text Available Abstract Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression

  4. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets

    Science.gov (United States)

    2011-01-01

    Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously

  5. Molecular characterization and technological properties of wine yeasts isolated during spontaneous fermentation of Vitis vinifera L.cv. Narince grape must grown in ancient wine making area Tokat, Anatolia

    Directory of Open Access Journals (Sweden)

    Çelik Zeynep Dilan

    2017-01-01

    Full Text Available Narince is a native white grape variety of Vitis vinifera L grown in Tokat and produces rich and balanced wines often with a greenish yellow tint and delicate fruity flavour. Fermentation by indigenous yeasts may produce wines with complex oenological properties that are unique to specific region. In this study yeast population during alcoholic fermentation of Narince was investigated. Yeasts were identified by PCR-RFLP analysis of the 5.8 ITS rRNA region and sequence information for the D1/D2 domains of the 26S gene. Eight different species belonging to nine genera were identified as: Hanseniaspora uvarum, Hansenispora guilliermondii, Pichia kluyveri, Metschnikowiaspp., Pichia occidentalis, Torulaspora delbrueckii, Candida zemplinina, Lachancea thermotolerance and Saccharomyces cerevisiae. Hanseniaspora guilliermondii, Metschnikowiaspp., Pichia occidentalis and Pichia kluyveri were identified only in the early stage of fermentation. Selected yeasts tested for their physiological traits, ethanol, SO2, temperature, pH tolerance, H2S production, killer and enzymatic activity, fermentation rate, flocculation characteristic, foam, volatile acid and volatile compounds production. Among the yeasts, one,Lachancea thermotolerance and four Saccharomyces cerevisiae strain showed remarkable technological properties and results were compared with those obtained by using commercial starter culture.

  6. Caracterização fenológica e produtiva das videiras 'Cabernet Sauvignon' e 'Alicante' (Vitis vinifera L. produzidas fora de época, no norte do Paraná Phenological and productive characterization out of season of 'Cabernet Sauvignon' and 'Alicante' (Vitis vinifera L. grapevines in the north of Paraná

    Directory of Open Access Journals (Sweden)

    Bruno da Silva Jubileu

    2010-06-01

    Full Text Available Este trabalho objetivou caracterizar a fenologia e a produção das videiras 'Cabernet Sauvignon' e 'Alicante' (Vitis vinifera L. produzidas fora de época, no norte do Paraná, para a elaboração de vinho tinto. A área experimental foi instalada em uma propriedade comercial pertencente à Vinícola Intervin®, em Maringá-PR. As videiras foram conduzidas em latada sobre o 'IAC 766 Campinas'. As avaliações tiveram início a partir das podas de frutificação para a produção fora de época, durante dois anos consecutivos, realizadas no fim de janeiro de 2007 e 2008, onde foram utilizadas 20 plantas representativas de cada variedade. Avaliou-se a duração, em dias, das principais fases fenológicas das videiras, bem como estimadas a produção por planta e a produtividade de cada variedade. A evolução de maturação das uvas foi determinada pela análise semanal do teor de sólidos solúveis totais (SST, acidez titulável (AT e índice de maturação (SST/AT. A duração média do ciclo da videira 'Cabernet Sauvignon' foi de 128 dias, enquanto da 'Alicante' foi de 131 dias, sendo consideradas tardias ambas as variedades para a região norte do Paraná. As estimativas da produção por planta e produtividade foram de 12,4 kg e 22,3 t.ha-1 para a uva 'Cabernet Sauvignon' e 11,9 kg e 19,8 t.ha-1 para a 'Alicante'. Os teores médios de SST, AT e SST/AT foram de 19,2 °Brix, 1,8% de ácido tartárico e 11,6 para a uva 'Cabernet Sauvignon', e 19,1 °Brix, 1,3% de ácido tartárico e 14,1, para a 'Alicante'. Ambas as variedades apresentam elevadas produtividades e matéria-prima adequada para processamento quando produzidas fora de época no norte do Paraná.This study aimed to characterize the phenology and the production of 'Cabernet Sauvignon' and 'Alicante' (Vitis vinifera L. grapes produced out of season in the north of Paraná State for red wine elaboration. The experimental area was located in a commercial property belonging to the

  7. Tracing phenolic biosynthesis in Vitis vinifera via in situ C-13 labeling and liquid chromatography-diode-array detector-mass spectrometer/mass spectrometer detection

    Energy Technology Data Exchange (ETDEWEB)

    Chassy, Alexander W.; Adams, Douglas O. [Department of Viticulture and Enology, One Shields Avenue, University of California, Davis, CA (United States); Laurie, V. Felipe [School of Agricultural Sciences, Universidad de Talca, Talca (Chile); Waterhouse, Andrew L., E-mail: alwaterhouse@ucdavis.edu [Department of Viticulture and Enology, One Shields Avenue, University of California, Davis, CA (United States)

    2012-10-17

    Highlights: Black-Right-Pointing-Pointer L-Phenyl-{sup 13}C{sub 6}-alanine was incorporated into grape berries, intact on the vine, at two stages of maturity. Black-Right-Pointing-Pointer Labeled anthocyanins were synthesized by the berry and quantified by LC-UV/Vis-MS/MS. Black-Right-Pointing-Pointer Extremely tight regulation of phenylpropanoid pathways was observed. - Abstract: Phenolic compounds in Vitis vinifera contribute important flavor, functionality, and health qualities to both table and wine grapes. The plant phenolic metabolic pathway has been well characterized, however many important questions remain regarding the influence of environmental conditions on pathway regulation. As a diagnostic for this pathway's regulation, we present a technique to incorporate a stable-isotopic tracer, L-phenyl-{sup 13}C{sub 6}-alanine (Phe{sup 13}), into grape berries in situ and the accompanying high throughput analytical method based on LC-DAD-MS/MS to quantify and track the label into phenylalanine metabolites. Clusters of V. vinifera cv. Cabernet Sauvignon, either near the onset of ripening or 4 weeks later, were exposed to Phe{sup 13} in the vineyard. Phe{sup 13} was present in berries 9 days afterwards as well as labeled flavonols and anthocyanins, all of which possessed a molecular ion shift of 6 amu. However, nearly all the label was found in anthocyanins, indicating tight regulation of phenolic biosynthesis at this stage of maturity. This method provides a framework for examining the regulation of phenolic metabolism at different stages of maturity or under different environmental conditions. Additionally, this technique could serve as a tool to further probe the metabolism/catabolism of grape phenolics.

  8. Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling.

    Science.gov (United States)

    Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha

    2015-03-01

    The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in

  9. Different exogenous sugars affect the hormone signal pathway and sugar metabolism in "Red Globe" (Vitis vinifera L.) plantlets grown in vitro as shown by transcriptomic analysis.

    Science.gov (United States)

    Mao, Juan; Li, Wenfang; Mi, Baoqin; Dawuda, Mohammed Mujitaba; Calderón-Urrea, Alejandro; Ma, Zonghuan; Zhang, Yongmei; Chen, Baihong

    2017-05-26

    Exogenously applied 2% fructose is the most appropriate carbon source that enhances photosynthesis and growth of grape plantlets compared with the same concentrations of sucrose and glucose. The role of the sugars was regulated by the expression of key candidate genes related to hormones, key metabolic enzymes, and sugar metabolism of grape plantlets ( Vitis vinifera L.) grown in vitro. The addition of sugars including sucrose, glucose, and fructose is known to be very helpful for the development of grape (V. vinifera L.) plantlets in vitro. However, the mechanisms by which these sugars regulate plant development and sugar metabolism are poorly understood. In grape plantlets, sugar metabolism and hormone synthesis undergo special regulation. In the present study, transcriptomic analyses were performed on grape (V. vinifera L., cv. Red Globe) plantlets in an in vitro system, in which the plantlets were grown in 2% each of sucrose (S20), glucose (G20), and fructose (F20). The sugar metabolism and hormone synthesis of the plantlets were analyzed. In addition, 95.72-97.29% high-quality 125 bp reads were further analyzed out of which 52.65-60.80% were mapped to exonic regions, 13.13-28.38% to intronic regions, and 11.59-28.99% to intergenic regions. The F20, G20, and S20 displayed elevated sucrose synthase (SS) activities; relative chlorophyll contents; Rubisco activity; and IAA and zeatin (ZT) contents. We found F20 improved the growth and development of the plantlets better than G20 and S20. Sugar metabolism was a complex process, which depended on the balanced expression of key potential candidate genes related to hormones (TCP15, LOG3, IPT3, ETR1, HK2, HK3, CKX7, SPY, GH3s, MYBH, AGB1, MKK2, PP2C, PYL, ABF, SnRK, etc.), key metabolic enzymes (SUS, SPS, A/V-INV, and G6PDH), and sugar metabolism (BETAFRUCT4 and AMY). Moreover, sugar and starch metabolism controls the generation of plant hormone transduction pathway signaling molecules. Our dataset advances our

  10. Effects of distillation system and yeast strain on the aroma profile of Albariño (Vitis vinifera L.) grape pomace spirits.

    Science.gov (United States)

    Arrieta-Garay, Y; Blanco, P; López-Vázquez, C; Rodríguez-Bencomo, J J; Pérez-Correa, J R; López, F; Orriols, I

    2014-10-29

    Orujo is a traditional alcoholic beverage produced in Galicia (northwest Spain) from distillation of grape pomace, a byproduct of the winemaking industry. In this study, the effect of the distillation system (copper charentais alembic versus packed column) and the yeast strain (native yeast L1 versus commercial yeast L2) on the chemical and sensory characteristics of orujo obtained from Albariño (Vitis vinifera L.) grape pomace has been analyzed. Principal component analysis, with two components explaining 74% of the variance, is able to clearly differentiate the distillates according to distillation system and yeast strain. Principal component 1, mainly defined by C6-C12 esters, isoamyl octanoate, and methanol, differentiates L1 from L2 distillates. In turn, principal component 2, mainly defined by linear alcohols, linalool, and 1-hexenol, differentiates alembic from packed column distillates. In addition, an aroma descriptive test reveals that the distillate obtained with a packed column from a pomace fermented with L1 presented the highest positive general impression, which is associated with the highest fruity and smallest solvent aroma scores. Moreover, chemical analysis shows that use of a packed column increases average ethanol recovery by 12%, increases the concentration of C6-C12 esters by 25%, and reduces the concentration of higher alcohols by 21%. In turn, L2 yeast obtained lower scores in the alembic distillates aroma profile. In addition, with L1, 9% higher ethanol yields were achieved, and L2 distillates contained 34%-40% more methanol than L1 distillates.

  11. GRAPE’S LEATHER AND SEED EXTRACT (VITIS VINIFERA IMPROVING THE FUNCTION OF WISTAR RATS’ MOTOR (RATTUS NORVEGICUS ISCHEMIC STROKE MODEL

    Directory of Open Access Journals (Sweden)

    M. Rasjad Indra

    2017-01-01

    Full Text Available Background. Grape peel and seed extract (Vitis vinifera, that has resveratrol, is one of many antioxidants that can pass through blood brain barrier and can induce release neurotrophic factor that contribute in ERK 1/2 pathway mechanism in post stroke. Objective. To prove that grape peel and seed extract can regenerate neuron in brain functional Methods. True experimental design with five groups in this research. The five groups are negative control, positive control, grape peel and seed extract 50mg/KgBW, 100mg/KgBW, and 200mg/KgBW. rats are given grape peel and seed extract in variable dose to know how extract’s effect in neuron repairment. The repairment is monitored from ladder rung walking test score. Results. Range average score ladder rung walking test post stroke dan post treatment group N, K, Ra, Rb, dan Rc, were 0 ± 0, 0.001028933 ± 0.011664445, 0.123214286 ± 0.019834983, 0.064744427 ± 0.024296721, 0.03781401 ± 0.006888803. Statistical test used Annova significantly p;0,001.Dose 50mg/KgBW is effective in repairing neuron. Conclusion. Grape’s leather and Seed extract 50 mg/kgBW can improve neuron regeneration on animal model.

  12. Influence of Berry Heterogeneity on Phenolics and Antioxidant Activity of Grapes and Wines: A Primary Study of the New Winegrape Cultivar Meili (Vitis vinifera L..

    Directory of Open Access Journals (Sweden)

    Xu Liu

    Full Text Available Wine grapes are usually harvested in vineyards when they ripen. However, not all of the berries in a vineyard ripen homogeneously because of different microclimates around the clusters and berries. In this study, the influence of berry heterogeneity on the phenolic content and antioxidant capacity of grapes and wines under a continental monsoon climate was evaluated for a new wine grape cultivar Meili (Vitis vinifera L.. The total phenolic, flavonoid, flavanol, and monomeric anthocyanin contents in the skin and wine significantly increased with grape density; however, there was no significant difference in the seeds between the two lower densities. The highest values of DPPH free radical-scavenging activity, cupric-reducing antioxidant capacity, and hydroxyl radical-scavenging activity in the skin, seed and wine were detected for the densest berries. The sum of individual phenolic compounds in skin, seed and wine increased with berry density, though no significant difference for skin was observed between the two higher density classes. Hence, the chemical components of Meili grapes and wines were positively associated with the berry density at harvest under the continental monsoon climate.

  13. Influence of Berry Heterogeneity on Phenolics and Antioxidant Activity of Grapes and Wines: A Primary Study of the New Winegrape Cultivar Meili (Vitis vinifera L.)

    Science.gov (United States)

    Liu, Xu; Li, Jinlu; Tian, Yuping; Liao, Mingan; Zhang, Zhenwen

    2016-01-01

    Wine grapes are usually harvested in vineyards when they ripen. However, not all of the berries in a vineyard ripen homogeneously because of different microclimates around the clusters and berries. In this study, the influence of berry heterogeneity on the phenolic content and antioxidant capacity of grapes and wines under a continental monsoon climate was evaluated for a new wine grape cultivar Meili (Vitis vinifera L.). The total phenolic, flavonoid, flavanol, and monomeric anthocyanin contents in the skin and wine significantly increased with grape density; however, there was no significant difference in the seeds between the two lower densities. The highest values of DPPH free radical-scavenging activity, cupric-reducing antioxidant capacity, and hydroxyl radical-scavenging activity in the skin, seed and wine were detected for the densest berries. The sum of individual phenolic compounds in skin, seed and wine increased with berry density, though no significant difference for skin was observed between the two higher density classes. Hence, the chemical components of Meili grapes and wines were positively associated with the berry density at harvest under the continental monsoon climate. PMID:26974974

  14. Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L.) Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators.

    Science.gov (United States)

    Sun, Run-Ze; Cheng, Guo; Li, Qiang; He, Yan-Nan; Wang, Yu; Lan, Yi-Bin; Li, Si-Yu; Zhu, Yan-Rong; Song, Wen-Feng; Zhang, Xue; Cui, Xiao-Di; Chen, Wu; Wang, Jun

    2017-01-01

    Light environments have long been known to influence grape (Vitis vinifera L.) berry development and biosynthesis of phenolic compounds, and ultimately affect wine quality. Here, the accumulation and compositional changes of hydroxycinnamic acids (HCAs) and flavonoids, as well as global gene expression were analyzed in Cabernet Sauvignon grape berries under sunlight exposure treatments at different phenological stages. Sunlight exposure did not consistently affect the accumulation of berry skin flavan-3-ol or anthocyanin among different seasons due to climatic variations, but increased HCA content significantly at véraison and harvest, and enhanced flavonol accumulation dramatically with its timing and severity degree trend. As in sunlight exposed berries, a highly significant correlation was observed between the expression of genes coding phenylalanine ammonia-lyase, 4-coumarate: CoA ligase, flavanone 3-hydroxylase and flavonol synthase family members and corresponding metabolite accumulation in the phenolic biosynthesis pathway, which may positively or negatively be regulated by MYB, bHLH, WRKY, AP2/EREBP, C2C2, NAC, and C2H2 transcription factors (TFs). Furthermore, some candidate genes required for auxin, ethylene and abscisic acid signal transductions were also identified which are probably involved in berry development and flavonoid biosynthesis in response to enhanced sunlight irradiation. Taken together, this study provides a valuable overview of the light-induced phenolic metabolism and transcriptome changes, especially the dynamic responses of TFs and signaling components of phytohormones, and contributes to the further understanding of sunlight-responsive phenolic biosynthesis regulation in grape berries.

  15. Chemical composition and sensory properties of non-wooded and wooded Shiraz (Vitis vinifera L.) wine as affected by vineyard row orientation and grape ripeness level.

    Science.gov (United States)

    Hunter, Jacobus J; Volschenk, Cornelis G

    2017-10-27

    The study aimed to unravel vineyard row orientation (NS, EW, NE-SW, NW-SE) and grape ripeness level (23, 25, 27 °Balling) implications for grape and wine composition and sensory properties/style (non-wooded/wooded wines) of Vitis vinifera L. cv. Shiraz (rootstock 101-14 Mgt). Soluble solid/titratable acidity ratios were lowest for EW, whereas warmer canopy sides (NW, N, NE) advanced grape ripening. Skin anthocyanins and phenolics generally decreased with ripening. NW-SE rows and S, SE, E and NE canopy sides showed highest skin total anthocyanins and phenolics. Wine total anthocyanins and phenolics increased with grape ripening; EW had lower values. Wine phenolic contents differed between canopy sides; N, NE, E and SE tended higher. Wine sensory profiles increased with grape ripening. For non-wooded wines, NW-SE and NE-SW row orientations generally resulted in highest scores, followed by NS. For EW rows, the N side presented better wines. Wood addition enhanced specific sensory descriptor perceptions. A large collection of wine styles surfaced in the same vineyard and terroir, increasing options to contribute positively to sustainable products. The study generated globally applicable, novel information vital for unlocking and valorising terroir/site potential for grape and wine chemical composition and wine sensory/style properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Characterization of a bifunctional O- and N-glucosyltransferase from Vitis vinifera in glucosylating phenolic compounds and 3,4-dichloroaniline in Pichia pastoris and Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zhi-Sheng Xu

    Full Text Available 2,4,5-Trichlorophenol, 2,6-dimethylphenol, 3-methylcatechol, phenol, hydroquinone, catechol, and 3,4-dichloroaniline are present in the environment and are risky to humans and animals because of their wide applications in many industries. In this study, a putative uridine diphosphate glucose-dependent glycosyltransferase from Vitis vinifera (VvUGT72B1 displayed high O-glucosyltransferase or N-glucosyltransferase activity toward all these xenbiotics and was able to enhance the resistance of P. pastoris to them. Compared with wild-type Arabidopsis plants, VvUGT72B1-transgenic Arabidopsis plants showed higher resistance to all the xenobiotics except for phenol and exhibited higher removal efficiencies against all xenobiotics. Glucosides of 3-methylcatechol, 2,6-dimethylphenol, phenol, and 3,4-dichloroaniline were exported to the surrounding media by Arabidopsis plants while transgenic Arabidopsis plants exported more glucosides than wild-type Arabidopsis plants. Our findings have the potential to provide a broader spectrum remediation strategy for the phytoremoval and degradation of phenolic compounds and 3,4-dichloroaniline than previous works.

  17. Fruit sphere microenvironments and berry phenolic content of Cabernet Sauvignon (Vitis vinifera L. cultivated under rain-shelter systems with coloured plastic film

    Directory of Open Access Journals (Sweden)

    Jiang-Fei MENG

    Full Text Available Abstract Rain-shelter cultivation has been proven an important cultivation method for grape-plantings in continental monsoon climate zones, of which white plastic films are the most common shelter material. However, while this method and material reduces the occurrence of the disease, it can also decrease the grape berry quality. Five colours (including red, yellow, blue, purple, and white of plastic films were covered above Cabernet Sauvignon (Vitis vinifera L. grapevine rows before veraison. Rain-shelter cultivation reduced air temperature, wind speed, and total solar radiation and enhanced relative humidity in the fruit sphere of grapevines. For each particular colour plastic film, the irradiance of its corresponding spectrum band in the canopy of vines was higher than with other colour plastic films. Meanwhile, the blue plastic film treatment significantly promoted the accumulation of total phenolics, anthocyanins, flavonoids, tannins, and phenolic acids more than the other colours of plastic films. Blue plastic films are more beneficial for berry quality promotion of wine grapes, especially Cabernet Sauvignon, under rain-shelter cultivation in continental monsoon climate zones.

  18. Functionalization of a nanostructured hydroxyapatite with copper(II) compounds as pesticide: in situ TEM and ESEM observations of treated Vitis vinifera L. leaves.

    Science.gov (United States)

    Battiston, Enrico; Salvatici, Maria C; Lavacchi, Alessandro; Gatti, Antonietta; Di Marco, Stefano; Mugnai, Laura

    2018-02-19

    The present study evaluates a biocompatible material for plant protection to reduce the amount of active substance applied. We used a synthetic hydroxyapatite (HA) that has been studied extensively due its bioactivity and biocompatibility. Aggregation between HA nanoparticles and four copper(II) compounds applied in Vitis vinifera L. leaves as pesticide was studied. Formulations were characterised by XRD, DLS, electron microscopy and applied in planta to verify the particle aggregation and efficiency in controlling the pathogen, Plasmopara viticola. XRD showed a different interaction between HA and the copper(II) compounds, DLS showed a granular distribution ranging out of the nanometer range and in all formulations, TEM and ESEM microscopy showed large aggregates which were partially nanostructured and were recognised as stable in their micrometric dimension. Such particles did not show phytotoxic effects after their application in planta. A formulation based on HA and the soluble copper(II) compound showed promising results in the control of the fungal pathogen, confirming the potential role of HA an as innovative delivery system of Cu(II) ions. The present work indicates the possibility to improve the biological activity of a bioactive substance by modifying its structure through an achievable formulation with a biocompatible material. This article is protected by copyright. All rights reserved.

  19. The Induction of Noble Rot (Botrytis cinerea Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega

    Directory of Open Access Journals (Sweden)

    Stefano Negri

    2017-06-01

    Full Text Available The natural or induced development of noble rot caused by the fungus Botrytis cinerea during the late stages of grapevine (Vitis vinifera L. berry ripening is used in some traditional viticulture areas to produce high-quality wines such as Sauternes and Tokaji. In this research, we wanted to verify if by changing the environmental conditions during post-harvest withering we could induce the noble rot development on harvested berries in order to positively change the wine produced from withered Garganega berries. Therefore, we exposed the berries to postharvest withering under normal or artificially humid conditions, the latter to induce noble rot. The presence of noble rot symptoms was associated with the development of B. cinerea in the berries maintained under humid conditions. The composition of infected and non-infected berries was investigated by untargeted metabolomics using liquid chromatography/mass spectrometry. We also explored the effects of the two withering methods on the abundance of volatile organic compounds in wine by yeast-inoculated micro-fermentation followed by targeted gas chromatography/mass spectrometry. These experiments revealed significant metabolic differences between berries withered under normal and humid conditions, indicating that noble rot affects berry metabolism and composition. As well as well-known botrytization markers, we detected two novel lipids that have not been observed before in berries infected with noble rot. Unraveling the specific metabolic profile of berries infected with noble rot may help to determine the compounds responsible for the organoleptic quality traits of botrytized Garganega wines.

  20. Effect of Rain-Shelter Cultivation of Vitis vinifera cv. Cabernet Gernischet on the Phenolic Profile of Berry Skins and the Incidence of Grape Diseases

    Directory of Open Access Journals (Sweden)

    Teng-Fei Xu

    2012-12-01

    Full Text Available Rain-shelter cultivation is an effective cultural method to prevent rainfall damage during grape harvest and widely applied in the Chinese rainy regions. In this study we investigated the effect of rain-shelter cultivation on grape diseases and phenolic composition in the skins of Vitis vinifera cv. Cabernet Gernischet grape berries through the comparison with open-field cultivation at two vintages (2010 and 2011. The results showed that rain-shelter cultivation reduced the incidence of grape diseases significantly and delayed the maturation of Cabernet Gernischet fruits. With regards to most of the phenolic compounds identified in this study, their content in grape samples under rain-shelter cultivation was decreased compared to those under open-field cultivation. However, rain-shelter cultivation stimulated the accumulation of dihydroquercetin-3-O-rhamnoside in grape skins during grape maturation. These were related with micrometeorological alterations in vineyards by using plastic covering under rain-shelter cultivation. It suggests the rain-shelter cultivation makes possible the cultivation of “Cabernet Gernischet” grapes in an organic production system, for providing a decrease in the incidence of diseases and the dependence on chemical pesticides in the grape and wine industry.

  1. Physiological Response of Field Grown Grapevine (Vitis vinifera L. cv. Marzemino to Grapevine Leafroll-Associated Virus (GLRaV-1

    Directory of Open Access Journals (Sweden)

    M. Bertamini

    2005-12-01

    Full Text Available The physiological response of field grown grapevine (Vitis vinifera L. cv. Marzemino plants to grapevine leafroll-associated virus (GLRaV-1 was studied. Changes in photosynthetic pigments and in photosynthetic activity were investigated. GLRaV-1 considerably decreased the leaf net photosynthetic rate (Pn, stomatal conductance (gs and the transpiration rate (E in grapevine leaves, and also strongly reduced pigments, soluble proteins, ribulose-1,5- bisphosphate carboxylase (RuBPC and nitrate reductase activity. In isolated thylakoids, the virus strongly inhibited whole-chain and photosystem (PS II activity, while PSI activity was only marginally inhibited. The artificial exogenous electron donors diphenyl carbazide, manganese chloride (MnCl2 and hydroxylamine (NH2OH did not restore lost PSII activity to virus-infected leaves. Chlorophyll fluorescence suggested that the inhibition of primary light reactions was a major effect of virus infection. Immunological studies showed that D1 protein levels of the PSII reaction centre were significantly lower in virus-infected leaves. It is concluded that the decreases in photosynthetic pigments and photosynthetic activities caused by the virus strongly impair photosynthesis in Marzemino grapevine plants.

  2. The Application of Leaf Ultrasonic Resonance to Vitis vinifera L. Suggests the Existence of a Diurnal Osmotic Adjustment Subjected to Photosynthesis

    Science.gov (United States)

    Sancho-Knapik, Domingo; Medrano, Hipólito; Peguero-Pina, José J.; Mencuccini, Maurizio; Fariñas, Maria D.; Álvarez-Arenas, Tomás G.; Gil-Pelegrín, Eustaquio

    2016-01-01

    The main objective of this study was to apply the air-coupled broad-band ultrasonic spectroscopy in attached transpiring leaves of Vitis vinifera L. to monitor changes in leaf water potential (Ψ) through the measurements of the standardized value of the resonant frequency associated with the maximum transmitance (f/fo). With this purpose, the response of grapevine to a drought stress period was investigated in terms of leaf water status, ultrasounds, gas exchange and sugar accumulation. Two strong correlations were obtained between f/fo and Ψ measured at predawn (pd) and at midday (md) with different slopes. This fact implied the existence of two values of Ψ for a given value of f/fo, which was taken as a sign that the ultrasonic technique was not directly related to the overall Ψ, but only to one of its components: the turgor pressure (P). The difference in Ψ at constant f/fo (δ) was found to be dependent on net CO2 assimilation (A) and might be used as a rough estimator of photosynthetic activity. It was then, the other main component of Ψ, osmotic potential (π), the one that may have lowered the values of md Ψ with respect to pd Ψ by the accumulation of sugars associated to net CO2 assimilation. This phenomenon suggests the existence of a diurnal osmotic adjustment in this species associated to sugars production in well-watered plants. PMID:27833626

  3. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Prieto, Jorge A; Louarn, Gaëtan; Perez Peña, Jorge; Ojeda, Hernán; Simonneau, Thierry; Lebon, Eric

    2012-07-01

    Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season. © 2012 Blackwell Publishing Ltd.

  4. Effect of maceration duration on physicochemical characteristics, organic acid, phenolic compounds and antioxidant activity of red wine from Vitis vinifera L. Karaoglan.

    Science.gov (United States)

    Kocabey, N; Yilmaztekin, M; Hayaloglu, A A

    2016-09-01

    Effects of different maceration times (5, 10 and 15 days) on composition, phenolic compounds and antioxidant activities of red wines made from the Vitis vinifera L. Karaoglan grown in Malatya were investigated. Maceration duration changed some chemical constituents and color of Karaoglan red wines. A linear relationship was observed between antioxidant activity of wine and maceration duration. Major organic acid was tartaric acid which was at the highest concentration in wine macerated for 10 days. A total of 25 phenolic compounds was determined in wine samples. Within these phenolics; procyanidin B2, trans-caftaric acid, gallic acid, trans-caffeic acid, (+) catechin, (-) epicatechin and quercetin-3-O-glucoside were the most abundant phenolics regardless of maceration duration. In general, extended maceration duration resulted in increase in the concentration of phenolic compounds, reflecting the antioxidant activities of wine. In conclusion, the highest concentrations of total and individual phenolic compounds as well as antioxidant activities were found in wines macerated for 15 days.

  5. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape

    Science.gov (United States)

    Tillett, Richard L.; Wheatley, Matthew D.; Tattersall, Elizabeth A.R.; Schlauch, Karen A.; Cramer, Grant R.; Cushman, John C.

    2014-01-01

    Summary Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. “Freedom” and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2°C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9–12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a greater than 1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation, and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. PMID:21914113

  6. A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    Science.gov (United States)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B.; Anitha, K.; Jyothi, N. V. V.

    2015-01-01

    We described a novel and eco-friendly method for preparing Fe3O4-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe3O4-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV-vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe3O4-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe3O4-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe3O4-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe3O4-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  7. A novel green synthesis of Fe{sub 3}O{sub 4}-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B. [Analytical and inorganic Division of Chemistry, S.V. University, Tirupati-517502, Andhra Pradesh (India); Anitha, K. [Department of Chemistry, S.K. University, Anantapur-515003, Andhra Pradesh (India); Jyothi, N.V.V., E-mail: nvvjyothi01@gmail.com [Analytical and inorganic Division of Chemistry, S.V. University, Tirupati-517502, Andhra Pradesh (India)

    2015-01-15

    We described a novel and eco-friendly method for preparing Fe{sub 3}O{sub 4}-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe{sub 3}O{sub 4}-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV–vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe{sub 3}O{sub 4}-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe{sub 3}O{sub 4}-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe{sub 3}O{sub 4}-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe{sub 3}O{sub 4}-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  8. Parámetros biológicos y poblacionales de Planococcus ficus (Hemiptera: Pseudococcidae sobre dos cultivares de Vitis vinifera

    Directory of Open Access Journals (Sweden)

    MARCELA. F. GONZALEZ LUNA

    2016-01-01

    Full Text Available La cochinilla harinosa Planococcus ficus Signoret causa severos da- ños en viñedos argentinos. El objetivo de este trabajo es comparar los parámetros biológicos y poblacionales de P. ficus sobre los cultivares de Vitis vinifera Chardon- nay y Malbec, así como evaluar el efecto de las temperatura sobre tales parámet- ros y obtener las respectivas curvas estimadas de crecimiento poblacional. Con temperaturas constantes de 15, 25 y 37 °C, 46 % de H.R. y fotoperíodo de 16:8 h (Luz: Oscuridad, diariamente se registraron el número de individuos de cada estadio, la ecdisis y la descendencia. A 25 °C, el período ninfal fue similar en am- bos cultivares. La fecundidad, la tasa intrínseca de incremento natural ( r m , la tasa finita de incremento ( λ y la tasa neta de reproducción ( R 0 sobre Malbec fueron superiores a Chardonnay. El tiempo generacional ( T y el tiempo de duplicación ( D fueron menores en Malbec. A 15 °C las cochinillas criadas sobre Malbec lograron reproducirse, no se obtuvieron diferencias significativas en los cultivares ensaya- dos. No se verificó el cumplimiento del ciclo completo a 37 °C. Se demostró que la capacidad reproductiva de P. ficus fue mayor sobre Malbec.

  9. Ectopic expression of a Ve homolog VvVe gene from Vitis vinifera enhances defense response to Verticillium dahliae infection in tobacco.

    Science.gov (United States)

    Tang, Juan; Lin, Jing; Yang, Yuwen; Chen, Tianzi; Ling, Xitie; Zhang, Baolong; Chang, Youhong

    2016-01-15

    Verticillium wilt is a soil borne disease that can cause devastating losses to the production of many economically important crops. A Ve1 homologous gene responding to Verticillium dahliae infection was identified in Vitis vinifera cv. "HeiFeng" by semi-quantitative reverse transcription polymerase chain reaction and was designated as VvVe. The overexpression of VvVe in transgenic Nicotiana benthamiana plants significantly enhanced the resistance to isolate V991 of V. dahliae when compared with the wild type plants. The expressions of defense-related genes including the salicylic acid regulated gene pathogen-related 1 (PR1) but not PR2, the ethylene- and jasmonic acid-regulated genes ethylene response factor 1 (ERF1) and lipoxygenase (LOX) were significantly increased due to over expression of VvVe. And greater accumulation of active oxygen, callose and phenylalanine-ammonia lyase were observed in the leaves of transgenic VvVe tobacco plants than the wild type when under infection by V. dahliae. Moreover, the hypersensitive response mimicking cell death was exclusively occurred in the transgenic VvVe tobacco plants but not in the wild type. Taken together, the VvVe gene is a Ve1 like gene which involves in the signal cascade of salicylic acid, jasmonate, and ethylene defense pathways and enhances defense response to V. dahliae infection in the transgenic tobacco. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Leaf blade and petiole nutritional diagnosis for Vitis vinifera L. cv. 'Tempranillo' by deviation from optimum percentage method

    Energy Technology Data Exchange (ETDEWEB)

    Romero, I.; Benito, A.; Dominguez, N.; Garcia-Escudero, E.

    2014-06-01

    Deviation from optimum percentage (DOP) is a diagnosis methodology for leaf analyses which expresses the deviation for each element with respect to its optimal concentration. This deviation is an individual index for each nutrient and allows the sorting of all the analyzed nutrients according to their limitations. A nutritional survey was undertaken over eleven years in La Rioja (Spain), to establish reference concentrations for the nutritional diagnosis of Vitis vinifera L., cv. 'Tempranillo' grafted on Richter-110. Reference concentrations for DOP methodology are proposed, and sensibility for the nutritional diagnosis was evaluated for blade and petiole analysis of N, P, K, Ca, Mg, Fe, Mn, Zn, Cu, and B at flowering and veraison phenological stages by comparison between DOP and sufficiency ranges (SR) methods. Results suggest that petiole has lower sensibility than blade to detect deficiencies or excesses of N, P, K, Ca, Mg, Zn, and Mn at veraison. In addition, petiole is a better tissue than blade to detect Fe and B deficiencies or excesses. Therefore, our results make possible the right choice between tissues, leaf blade or petiole, for a general nutritional diagnosis of 'Tempranillo' grapevines. On the other hand, it is possible to evaluate the status of each nutrient in each phonological stage analyzing both tissues and comparing the nutrient status to its references, DOP or SR, in the most adequate tissue. (Author)

  11. Diadenosine triphosphate is a novel factor which in combination with cyclodextrins synergistically enhances the biosynthesis of trans-resveratrol in Vitis vinifera cv. Monastrell suspension cultured cells.

    Science.gov (United States)

    Pietrowska-Borek, Małgorzata; Czekała, Łukasz; Belchí-Navarro, Sarai; Pedreño, María Angeles; Guranowski, Andrzej

    2014-11-01

    Dinucleoside polyphosphates are considered as signal molecules that may evoke response of plant cells to stress. Other compounds whose biological effects have been recognized are cyclodextrins. They are cyclic oligosaccharides that chemically resemble the alkyl-derived pectic oligosaccharides naturally released from the cell walls during fungal attack, and they act as true elicitors, since, when added to plant cell culture, they induce the expression of genes involved in some secondary metabolism pathways. Previously, we demonstrated that some dinucleoside polyphosphates triggered the biosynthesis of enzymes involved in the phenylpropanoid pathway in Arabidopsis thaliana. In Vitis vinifera suspension cultured cells, cyclodextrins were shown to enhance the accumulation of trans-resveratrol, one of the basic units of the stilbenes derived from the phenylpropanoid pathway. Here, we show that diadenosine triphosphate, applied alone or in combination with cyclodextrins to the grapevine suspension-cultured cells, increased the transcript level of genes encoding key phenylpropanoid-pathway enzymes as well as the trans-resveratrol production inside cells and its secretion into the extracellular medium. In the latter case, these two compounds acted synergistically. However, the accumulation of trans-resveratrol and its glucoside trans-piceid inside cells were stimulated much better by diadenosine triphosphate than by cyclodextrins. Copyright © 2014. Published by Elsevier Masson SAS.

  12. Functional Differentiation of the Glycosyltransferases That Contribute to the Chemical Diversity of Bioactive Flavonol Glycosides in Grapevines (Vitis vinifera)[W][OA

    Science.gov (United States)

    Ono, Eiichiro; Homma, Yu; Horikawa, Manabu; Kunikane-Doi, Satoshi; Imai, Haruna; Takahashi, Seiji; Kawai, Yosuke; Ishiguro, Masaji; Fukui, Yuko; Nakayama, Toru

    2010-01-01

    We identified two glycosyltransferases that contribute to the structural diversification of flavonol glycosides in grapevine (Vitis vinifera): glycosyltransferase 5 (Vv GT5) and Vv GT6. Biochemical analyses showed that Vv GT5 is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (GAT), and Vv GT6 is a bifunctional UDP-glucose/UDP-galactose:flavonol-3-O-glucosyltransferase/galactosyltransferase. The Vv GT5 and Vv GT6 genes have very high sequence similarity (91%) and are located in tandem on chromosome 11, suggesting that one of these genes arose from the other by gene duplication. Both of these enzymes were expressed in accordance with flavonol synthase gene expression and flavonoid distribution patterns in this plant, corroborating their significance in flavonol glycoside biosynthesis. The determinant of the specificity of Vv GT5 for UDP-glucuronic acid was found to be Arg-140, which corresponded to none of the determinants previously identified for other plant GATs in primary structures, providing another example of convergent evolution of plant GAT. We also analyzed the determinants of the sugar donor specificity of Vv GT6. Gln-373 and Pro-19 were found to play important roles in the bifunctional specificity of the enzyme. The results presented here suggest that the sugar donor specificities of these Vv GTs could be determined by a limited number of amino acid substitutions in the primary structures of protein duplicates, illustrating the plasticity of plant glycosyltransferases in acquiring new sugar donor specificities. PMID:20693356

  13. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control.

    Science.gov (United States)

    Andreolli, Marco; Lampis, Silvia; Zapparoli, Giacomo; Angelini, Elisa; Vallini, Giovanni

    2016-02-01

    This study represents the first investigation on ecology of endophytic bacteria isolated from 3 and 15 year-old vine stems of Vitis vinifera cv. Corvina. The analysis was performed by means of culture-dependent techniques. The obtained results showed that new grapevine endophytic genera are being discovered. Moreover, Bacilli and Actinobacteria are frequently isolated from 3 year-old plants, whereas Alpha- and Gamma- Proteobacteria classes are more prevalent in the 15 year-old plants. Shannon-Wiener (H) index and analysis of rarefaction curves revealed greater genus richness in young grapevine plants. Furthermore, results evidenced an increase of genotypic group number within specific genera (e.g., Rhizobium and Pantoea). Among isolated strains from 3 and 15 year-old stems, respectively, 34 and 39% produce siderophores; 22 and 15% secrete ammonia; 22 and 21% produce indole-3-acetic acid; 8.7 and 41% solubilize phosphate. Besides, two strains isolated from 15 year-old grapevines showed 1-aminocyclopropane-1-carboxylate deaminase activity. Antifungal activity analysis evidenced that two Bacillus strains possess growth antagonistic effect toward all the tested fungal strains. Therefore, the present study extends our knowledge of the diversity of the endophytic bacteria by providing new insights into the complexity of the grapevine microbiome. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Abiotic stresses differentially affect the expression of O-methyltransferase genes related to methoxypyrazine biosynthesis in seeded and parthenocarpic fruits of Vitis vinifera (L.).

    Science.gov (United States)

    Vallarino, José G; Gainza-Cortés, Felipe; Verdugo-Alegría, Claudio; González, Enrique; Moreno, Yerko M

    2014-07-01

    MPs (3-alkyl-2-methoxypyrazines) are grape-derived aroma compounds that are associated with detrimental herbaceous flavours in some wines. It is well known that several viticultural and environmental parameters can modulate MP concentrations in grapes, although comprehensive molecular studies have not been conducted in this field. Although the biosynthesis pathway of MPs has not been fully elucidated, four Vitis vinifera O-methyltransferase genes (VvOMT1-4) have been related to be involved in MP biosynthesis. We assessed whether different abiotic stresses induction have an impact on MP levels in grapes and wines from seeded and parthenocarpic fruits. Our results show that the timing of VvOMT3 expression is associated with the period of MPs accumulation in seeded fruits during both abiotic stresses, whereas no association was found in parthenocarpic fruits. These results are discussed in the context of how different viticultural practices can modulate VvOMT gene expression, which has a direct impact on MPs levels in wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid.

    Science.gov (United States)

    Alonso, Rodrigo; Berli, Federico J; Fontana, Ariel; Piccoli, Patricia; Bottini, Rubén

    2016-12-01

    High-altitude vineyards receive elevated solar ultraviolet-B (UV-B) levels so producing high quality berries for winemaking because of induction in the synthesis of phenolic compounds. Water deficit (D) after veraison, is a commonly used tool to regulate berry polyphenols concentration in red wine cultivars. Abscisic acid (ABA) plays a crucial role in the acclimation to environmental factors/signals (including UV-B and D). The aim of the present study was to evaluate independent and interactive effects of high-altitude solar UV-B, moderate water deficit and ABA applications on Vitis vinifera cv. Malbec berries. The experiment was conducted during two growing seasons with two treatments of UV-B (+UV-B and -UV-B), watering (+D and -D) and ABA (+ABA and -ABA), in a factorial design. Berry fresh weight, sugar content, fruit yield, phenolic compounds profile and antioxidant capacity (ORAC) were analyzed at harvest. Previous incidence of high UV-B prevented deleterious effects of water deficit, i.e. berry weight reduction and diminution of sugar accumulation. High UV-B increased total phenols (mainly astilbin, quercetin and kaempferol) and ORAC, irrespectively of the combination with other factors. Fruit yield was reduced by combining water deficit and high UV-B or water deficit and ABA. Two applications of ABA were enough to induced biochemical changes increasing total anthocyanins, especially those with higher antioxidant capacity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Preparation and textural characterisation of activated carbon from vine shoots ( Vitis vinifera) by H 3PO 4—Chemical activation

    Science.gov (United States)

    Corcho-Corral, B.; Olivares-Marín, M.; Fernández-González, C.; Gómez-Serrano, V.; Macías-García, A.

    2006-06-01

    An abundant and low-cost agricultural waste as vine shoots ( Vitis vinifera) (VS), which is generated by the annual pruning of vineyards, has been used as raw material in the preparation of powder activated carbon (AC) by the method of chemical activation with phosphoric acid. After size reduction, VS were impregnated for 2 h with 60 wt.% H 3PO 4 solution at room temperature, 50 and 85 °C. The three impregnated products were carbonised at 400 °C. The product impregnated at 50 °C was heated either first at 150-250 °C and then at 400 °C or simply at 350-550 °C in N 2 atmosphere. The time of isothermal treatment after each dynamic heating was 2 h. The carbons were texturally characterised by gas adsorption (N 2, -196 °C), mercury porosimetry, and density measurements. FT-IR spectroscopy was also applied. Better developments of surface area and microporosity are obtained when the impregnation of VS with the H 3PO 4 solution is effected at 50 °C and for the products heated isothermally at 200 and 450 °C. The mesopore volume is also usually higher for the products impregnated and heated at intermediate temperatures.

  17. Effects of Leaf Removal and Applied Water on Flavonoid Accumulation in Grapevine (Vitis vinifera L. cv. Merlot) Berry in a Hot Climate.

    Science.gov (United States)

    Yu, Runze; Cook, Michael G; Yacco, Ralph S; Watrelot, Aude A; Gambetta, Gregory; Kennedy, James A; Kurtural, S Kaan

    2016-11-02

    The relationships between variations in grapevine (Vitis vinifera L. cv. Merlot) fruit zone light exposure and water deficits and the resulting berry flavonoid composition were investigated in a hot climate. The experimental design involved application of mechanical leaf removal (control, pre-bloom, post-fruit set) and differing water deficits (sustained deficit irrigation and regulated deficit irrigation). Flavonol and anthocyanin concentrations were measured by C18 reversed-phased HPLC and increased with pre-bloom leaf removal in 2013, but with post-fruit set leaf removal in 2014. Proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Post-fruit set leaf removal increased total proanthocyanidin concentration in both years, whereas no effect was observed with applied water amounts. Mean degree of polymerization of skin proanthocyanidins increased with post-fruit set leaf removal compared to pre-bloom, whereas water deficit had no effect. Conversion yield was greater with post-fruit set leaf removal. Seed proanthocyanidin concentration was rarely affected by applied treatments. The application of post-fruit set leaf removal, regardless of water deficit. increased the proportion of proanthocyanidins derived from the skin, whereas no leaf removal or pre-bloom leaf removal regardless of water deficit increased the proportion of seed-derived proanthocyanidins. The study provides fundamental information to viticulturists and winemakers on how to manage red wine grape low molecular weight phenolics and polymeric proanthocyanidin composition in a hot climate.

  18. Effects of ambient and acute partial pressures of ozone on leaf net CO sub 2 assimilation of field-grown Vitis vinifera L

    Energy Technology Data Exchange (ETDEWEB)

    Roper, T.R.; Williams, L.E. (Univ. of California, Davis (USA) Kearney Agricultural Center, Parlier, CA (USA))

    1989-12-01

    Mature, field-grown Vitis vinifera L. grapevines grown in open-top chambers were exposed to either charcoal-filtered air or ambient ozone partial pressures throughout the growing season. Individual leaves also were exposed to ozone partial pressures of 0.2, 0.4, or 0.6 micropascals per pascal for 5 hours. No visual ozone damage was found on leaves exposed to any of the treatments. Chronic exposure to ambient O{sub 3} partial pressures reduced net CO{sub 2} assimilation rate (A) between 5 and 13% at various times throughout the season when compared to the filtered treatment. Exposure of leaves to 0.2 micropascals per pascal O{sub 3} for 5 hours had no significant effect on A; however, A was reduced 84% for leaves exposed to 0.6 micropascals per pascal O{sub 3} when compared to the controls after 5 hours. Intercellular CO{sub 2} partial pressure (c{sub i}) was lower for leaves exposed to 0.2 micropascals per pascal O{sub 3} when compared to the controls, while c{sub i} of the leaves treated with 0.6 micropascals per pascal of O{sub 3} increased during the fumigation. The long-term effects of ambient O{sub 3} and short-term exposure to acute levels of O{sub 3} reduced grape leaf photosynthesis due to a reduction in both stomatal and mesophyll conductances.

  19. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil.

    Science.gov (United States)

    Song, Chang-Zheng; Liu, Mei-Ying; Meng, Jiang-Fei; Chi, Ming; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2015-02-02

    The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas.

  20. RUN1 and REN1 Pyramiding in Grapevine (Vitis vinifera cv. Crimson Seedless) Displays an Improved Defense Response Leading to Enhanced Resistance to Powdery Mildew (Erysiphe necator).

    Science.gov (United States)

    Agurto, Mario; Schlechter, Rudolf O; Armijo, Grace; Solano, Esteban; Serrano, Carolina; Contreras, Rodrigo A; Zúñiga, Gustavo E; Arce-Johnson, Patricio

    2017-01-01

    Fungal pathogens are the cause of the most common diseases in grapevine and among them powdery mildew represents a major focus for disease management. Different strategies for introgression of resistance in grapevine are currently undertaken in breeding programs. For example, introgression of several resistance genes (R) from different sources for making it more durable and also strengthening the plant defense response. Taking this into account, we cross-pollinated P09-105/34, a grapevine plant carrying both RUN1 and REN1 pyramided loci of resistance to Erysiphe necator inherited from a pseudo-backcrossing scheme with Muscadinia rotundifolia and Vitis vinifera 'Dzhandzhal Kara,' respectively, with the susceptible commercial table grape cv. 'Crimson Seedless.' We developed RUN1REN1 resistant genotypes through conventional breeding and identified them by marker assisted selection. The characterization of defense response showed a highly effective defense mechanism against powdery mildew in these plants. Our results reveal that RUN1REN1 grapevine plants display a robust defense response against E. necator, leading to unsuccessful fungal establishment with low penetration rate and poor hypha development. This resistance mechanism includes reactive oxygen species production, callose accumulation, programmed cell death induction and mainly VvSTS36 and VvPEN1 gene activation. RUN1REN1 plants have a great potential as new table grape cultivars with durable complete resistance to E. necator, and are valuable germplasm to be included in grape breeding programs to continue pyramiding with other sources of resistance to grapevine diseases.

  1. Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white Vitis vinifera wine grapes.

    Science.gov (United States)

    Agati, Giovanni; D'Onofrio, Claudio; Ducci, Eleonora; Cuzzola, Angela; Remorini, Damiano; Tuccio, Lorenza; Lazzini, Francesca; Mattii, Giovanni

    2013-12-18

    A nondestructive fluorescence-based technique for evaluating Vitis vinifera L. grape maturity using a portable sensor (Multiplex) is presented. It provides indices of anthocyanins and chlorophyll in Cabernet Sauvignon, Merlot, and Sangiovese red grapes and of flavonols and chlorophyll in Vermentino white grapes. The good exponential relationship between the anthocyanin index and the actual anthocyanin content determined by wet chemistry was used to estimate grape anthocyanins from in field sensor data during ripening. Marked differences were found in the kinetics and the amount of anthocyanins between cultivars and between seasons. A sensor-driven mapping of the anthocyanin content in the grapes, expressed as g·kg(-1) fresh weight, was performed on a 7-ha vineyard planted with Sangiovese. In the Vermentino, the flavonol index was favorably correlated to the actual content of berry skin flavonols determined by means of HPLC analysis of skin extracts. It was used to make a nondestructive estimate of the evolution in the flavonol concentration in grape berry samplings. The chlorophyll index was inversely correlated in a linear manner to the total soluble solids (°Brix): it could, therefore, be used as a new index of technological maturity. The fluorescence sensor (Multiplex) possesses a high potential for representing an important innovative tool for controlling grape maturity in precision viticulture.

  2. Stilbenes and tyrosol as target compounds in the assessment of antioxidant and hypolipidemic activity of Vitis vinifera red wines from southern Brazil.

    Science.gov (United States)

    Gris, Eliana Fortes; Mattivi, Fulvio; Ferreira, Eduardo Antonio; Vrhovsek, Urska; Filho, Danilo Wilhelm; Pedrosa, Rozangela Curi; Bordignon-Luiz, Marilde T

    2011-07-27

    The contents of stilbene monomers, cis-resveratrol, trans-resveratrol, cis-piceid, trans-piceid, and tyrosol, were quantified in Vitis vinifera red wines, cvs. Cabernet Franc, Merlot, Sangiovese, and Syrah, 2006 and 2007 vintages, from the São Joaquim region, a new grape-growing region at southern Brazil. Moreover, the effect of chronic consumption of these wines on the antioxidant and hypolipidemic activities was monitored in C57BL6 LDL receptor knockout mice and treated with a hypercholesterolemic diet. Red wines from this region had substantial levels of resveratrols (the predominant forms were glycoside and trans) and tyrosol. Biomonitoring of antioxidant and hypolipidemic activities in vivo revealed that consumption of these wines increased the antioxidant capacity and reduced the hypercholesterolemia and hypertriglyceridemia promoted by the hypercholesterolemic diet. Significant correlations were found between the increase of antioxidant capacity markers, the decrease of lipid levels promoted by wine consumption, and the contents of stilbenes and tyrosol, supporting the important biological activity of these compounds.

  3. Physiological parameters and protective energy dissipation mechanisms expressed in the leaves of two Vitis vinifera L. genotypes under multiple summer stresses.

    Science.gov (United States)

    Palliotti, Alberto; Tombesi, Sergio; Frioni, Tommaso; Silvestroni, Oriana; Lanari, Vania; D'Onofrio, Claudio; Matarese, Fabiola; Bellincontro, Andrea; Poni, Stefano

    2015-08-01

    Photosynthetic performances and energy dissipation mechanisms were evaluated on the anisohydric cv. Sangiovese and on the isohydric cv. Montepulciano (Vitis vinifera L.) under conditions of multiple summer stresses. Potted vines of both cultivars were maintained at 90% and 40% of maximum water availability from fruit-set to veraison. One week before veraison, at predawn and midday, main gas-exchange and chlorophyll fluorescence parameters, chlorophyll content, xanthophyll pool and cycle and catalase activity were evaluated. Under water deficit and elevated irradiance and temperature, contrary to cv. Montepulciano and despite a significant leaf water potential decrease, Sangiovese's leaves kept their stomata more open and continued to assimilate CO2 while also showing higher water use efficiency. Under these environmental conditions, in comparison with the isohydric cv. Montepulciano, the protective mechanisms of energy dissipation exerted by the anisohydric cv. Sangiovese were: (i) higher stomatal conductance and thermoregulation linked to higher transpiration rate; (ii) greater ability at dissipating more efficiently the excess energy via the xanthophylls cycle activity (thermal dissipation) due to higher VAZ pool and greater increase of de-epoxidation activity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. The Application of Leaf Ultrasonic Resonance to Vitis vinifera L. Suggests the Existence of a Diurnal Osmotic Adjustment Subjected to Photosynthesis.

    Science.gov (United States)

    Sancho-Knapik, Domingo; Medrano, Hipólito; Peguero-Pina, José J; Mencuccini, Maurizio; Fariñas, Maria D; Álvarez-Arenas, Tomás G; Gil-Pelegrín, Eustaquio

    2016-01-01

    The main objective of this study was to apply the air-coupled broad-band ultrasonic spectroscopy in attached transpiring leaves of Vitis vinifera L. to monitor changes in leaf water potential (Ψ) through the measurements of the standardized value of the resonant frequency associated with the maximum transmitance (f/fo). With this purpose, the response of grapevine to a drought stress period was investigated in terms of leaf water status, ultrasounds, gas exchange and sugar accumulation. Two strong correlations were obtained between f/fo and Ψ measured at predawn (pd) and at midday (md) with different slopes. This fact implied the existence of two values of Ψ for a given value of f/fo, which was taken as a sign that the ultrasonic technique was not directly related to the overall Ψ, but only to one of its components: the turgor pressure (P). The difference in Ψ at constant f/fo (δ) was found to be dependent on net CO2 assimilation (A) and might be used as a rough estimator of photosynthetic activity. It was then, the other main component of Ψ, osmotic potential (π), the one that may have lowered the values of md Ψ with respect to pd Ψ by the accumulation of sugars associated to net CO2 assimilation. This phenomenon suggests the existence of a diurnal osmotic adjustment in this species associated to sugars production in well-watered plants.

  5. THE APPLICATION OF LEAF ULTRASONIC RESONANCE TO VITIS VINIFERA L. SUGGESTS THE EXISTENCE OF A DIURNAL OSMOTIC ADJUSTMENT SUBJECTED TO PHOTOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    Domingo Sancho-Knapik

    2016-10-01

    Full Text Available The main objective of this study was to apply the air-coupled broad-band ultrasonic spectroscopy in attached transpiring leaves of Vitis vinifera L. to monitor changes in leaf water potential (Y through the measurements of the standardized value of the resonant frequency associated with the maximum transmitance (f/fo. With this purpose, the response of grapevine to a drought stress period was investigated in terms of leaf water status, ultrasounds, gas exchange and sugar accumulation. Two strong correlations were obtained between f/fo and Y measured at predawn (pd and at midday (md with different slopes. This fact implied the existence of two values of Y for a given value of f/fo, which was taken as a sign that the ultrasonic technique was not directly related to the overall Y, but only to one of its components: the turgor pressure (P. The difference in Y at constant f/fo (d was found to be dependent on net CO2 assimilation (A and might be used as a rough estimator of photosynthetic activity. It was then, the other main component of Y, osmotic potential (π, the one that may have lowered the values of midday Y with respect to predawn Y by the accumulation of sugars associated to net CO2 assimilation. This phenomenon suggests the existence of a diurnal osmotic adjustment in this species associated to sugars production in well-watered plants.

  6. Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster.

    Science.gov (United States)

    Lund, Steven T; Peng, Fred Y; Nayar, Tarun; Reid, Karen E; Schlosser, James

    2008-10-01

    Asynchronous ripening of individual grape berries within clusters can lead to inconsistent organoleptic characteristics for wine making. Ripening initiation in grape berries is non-climacteric and not well understood at the molecular level. Evidence is lacking for a single master switch controlling this process, such as the established role for ethylene in climacteric fruit ripening. We used Affymetrix microarray analyses of 32 individual Vitis vinifera cv. Cabernet Sauvignon berries sampled from two clusters at 50% ripening initiation. By delineating four developmental stages of ripening initiation, we demonstrate that pigmentation is a statistically significant indicator of transcriptional state during ripening initiation. We report on clustered gene expression patterns which were mined for genes annotated with signal transduction functions in order to advance regulatory network modeling of ripening initiation in grape berries. Abscisic acid has previously been demonstrated to be an important signaling component regulating ripening initiation in grapevine. We demonstrate via real-time RT-PCR analyses that up-regulation of a 9-cis-epoxycarotenoid gene family member, VvNCED2, in grape seed and pericarp and a putative ortholog to a reported abscisic acid receptor, VvGCR2, are correlated with ripening initiation. Our results suggest a role for these genes in abscisic acid signaling during ripening initiation.

  7. FSA Panel on Di etetic Products, Nutrition and Allergie s (NDA); Scientific Opinion on the substantiation of a health claim related to Vitis vinifera L. seeds extract and “helps to drain the body in case of water accumulation” pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to Vitis vinifera L. seeds extract and “helps to drain the body in case of water accumulation”. The Panel considers that the food constituent which is the subject of the health claim is sufficiently characterised. The claimed effect proposed by the applicant is “helps to drain the body in case......” was a beneficial physiological effect in the context of “a normal venous circulation in the legs”. The applicant acknowledged that this claim referred to the same physiological function of the body as another health claim application on Vitis vinifera L. seeds extract and maintenance of normal venous blood flow....... The Panel considers that maintenance of normal venous blood flow is a beneficial physiological effect. A claim on Vitis vinifera L. seeds extract and maintenance of normal venous blood flow has already been assessed by the Panel with an unfavourable outcome. The reference provided by the applicant...

  8. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to Vitis vinifera L. seeds extract and maintenance of normal venous blood flow pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to Vitis vinifera L. seeds extract and maintenance of normal venous blood flow. The Panel considers that the food constituent, which is the subject of the health claim, is sufficiently characterised. The claimed effect, maintenance of normal venous blood flow, is a beneficial physiological effect...... and did not measure venous blood flow, the Panel considers that no conclusions can be drawn from these studies for the scientific substantiation of the claim. The Panel concludes that a cause and effect relationship has not been established between the consumption of Vitis vinifera L. seeds extract...

  9. A Randomized, Double-Blinded, Clinical Trial on Effects of a Vitis vinifera Extract on Cognitive Function in Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Gioacchino Calapai

    2017-10-01

    Full Text Available Introduction: Gradual population aging is creating a new set of needs in the general population. Memory capacity decreases with age, and memory deficits are considered an early symptom of Alzheimer’s Disease (AD, one of the most prevalent cognitive disorders in older people. Numerous studies have shown that grape polyphenolic compounds (GPs are able to attenuate cognitive impairment and reduce brain lesions in experimental AD animal models. These GP effects are associated with improvement in brain antioxidant status and prevention of free radical-induced neuronal damage. We designed a randomized, double-blind, placebo-controlled clinical trial to investigate the potential beneficial effects of a Vitis vinifera-based dietary supplement on cognitive function and neuropsychological status in healthy older adults.Methods: One-hundred eleven subjects were recruited and randomly divided in two groups: one group received the V. vinifera-based dietary supplement Cognigrape® for 12 weeks (250 mg/day and the second group received placebo over the same period of time. Before and after the end of the supplementation period, cognitive function and neuropsychological status were evaluated using the Mini-Mental State Examination (MMSE, Beck Depression Inventory (BDI, Hamilton Anxiety Rating Scale (HARS, and Repeatable Battery for the Assessment of Neuropsychological Status (RBANS evaluations.Results: MMSE scores were significantly improved after supplementation with Cognigrape® in comparison with baseline levels (p < 0.0001 and placebo (r = 0.59, 0.95% CI 0.11, 1.22; p < 0.0001. Cognigrape® supplementation produced a significant reduction in BDI (-15.8% and HARS (-24.9% scores with respect to baseline levels (p < 0.0001 and placebo (p < 0.0001 for BDI and p < 0.05 for HARS. RBANS total score was significantly improved by Cognigrape® with respect to baseline levels and placebo (r = 0.55, 0.95% CI 0.48, 6.07; p < 0.0001. The comparison with the placebo

  10. A Randomized, Double-Blinded, Clinical Trial on Effects of a Vitis vinifera Extract on Cognitive Function in Healthy Older Adults.

    Science.gov (United States)

    Calapai, Gioacchino; Bonina, Francesco; Bonina, Andrea; Rizza, Luisa; Mannucci, Carmen; Arcoraci, Vincenzo; Laganà, Germana; Alibrandi, Angela; Pollicino, Concetta; Inferrera, Santi; Alecci, Umberto

    2017-01-01

    Introduction: Gradual population aging is creating a new set of needs in the general population. Memory capacity decreases with age, and memory deficits are considered an early symptom of Alzheimer's Disease (AD), one of the most prevalent cognitive disorders in older people. Numerous studies have shown that grape polyphenolic compounds (GPs) are able to attenuate cognitive impairment and reduce brain lesions in experimental AD animal models. These GP effects are associated with improvement in brain antioxidant status and prevention of free radical-induced neuronal damage. We designed a randomized, double-blind, placebo-controlled clinical trial to investigate the potential beneficial effects of a Vitis vinifera-based dietary supplement on cognitive function and neuropsychological status in healthy older adults. Methods: One-hundred eleven subjects were recruited and randomly divided in two groups: one group received the V. vinifera-based dietary supplement Cognigrape® for 12 weeks (250 mg/day) and the second group received placebo over the same period of time. Before and after the end of the supplementation period, cognitive function and neuropsychological status were evaluated using the Mini-Mental State Examination (MMSE), Beck Depression Inventory (BDI), Hamilton Anxiety Rating Scale (HARS), and Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) evaluations. Results: MMSE scores were significantly improved after supplementation with Cognigrape® in comparison with baseline levels (p < 0.0001) and placebo (r = 0.59, 0.95% CI 0.11, 1.22; p < 0.0001). Cognigrape® supplementation produced a significant reduction in BDI (-15.8%) and HARS (-24.9%) scores with respect to baseline levels (p < 0.0001) and placebo (p < 0.0001 for BDI and p < 0.05 for HARS). RBANS total score was significantly improved by Cognigrape® with respect to baseline levels and placebo (r = 0.55, 0.95% CI 0.48, 6.07; p < 0.0001). The comparison with the placebo revealed

  11. Expression Profiles and DNA-Binding Affinity of Five ERF Genes in Bunches of Vitis vinifera cv. Cardinal Treated with High Levels of CO2 at Low Temperature.

    Science.gov (United States)

    Romero, Irene; Vazquez-Hernandez, Maria; Escribano, M I; Merodio, Carmen; Sanchez-Ballesta, M T

    2016-01-01

    Ethylene response factors (ERFs) play an important role in plants by regulating defense response through interaction with various stress pathways. After harvest, table grapes (Vitis vinifera L.) are subject to a range of problems associated with postharvest storage at 0°C, such as fungal attack, water loss and rachis browning. The application of a 3-day high CO2 treatment maintained fruit quality and activated the induction of transcription factors belonging to different families such as ERF. In this paper, we have isolated five VviERFs from table grapes cv. Cardinal, whose deduced amino acid sequence contained the conserved apetalous (AP2)/ERF domain. The phylogeny and putative conserved motifs in VviERFs were analyzed and compared with those previously reported in Vitis. VviERFs-c gene expression was studied by quantitative real-time RT-PCR in the different tissues of bunches stored at low temperature and treated with high levels of CO2. The results showed that in most of the tissues analyzed, VviERFs-c gene expression was induced by the storage under normal atmosphere although the application of high levels of CO2 caused a greater increase in the VviERFs-c transcript accumulation. The promoter regions of two PRs (pathogenesis related proteins), Vcchit1b and Vcgns1, were obtained and the in silico analysis revealed the presence of a cis-acting ethylene response element (GCC box). In addition, expression of these two PR genes was analyzed in the pulp and rachis of CO2-treated and non-treated table grapes stored at 0°C and results showed significant correlations with VviERF2-c and VviERF6L7-c gene expression in rachis, and between VviERF11-c and Vcchit1b in pulp. Finally by using electro mobility shift assays, we denoted differences in binding of VviERFs to the GCC sequences present in the promoters of both PRs, with VviERF6L7-c being the only member which did not bind to any tested probe. Overall, our results suggest that the beneficial effect of high CO2

  12. Expression Profiles and DNA-Binding Affinity of Five ERF Genes in Bunches of Vitis vinifera cv. Cardinal Treated with High Levels of CO2 at Low Temperature

    Science.gov (United States)

    Romero, Irene; Vazquez-Hernandez, Maria; Escribano, M. I.; Merodio, Carmen; Sanchez-Ballesta, M. T.

    2016-01-01

    Ethylene response factors (ERFs) play an important role in plants by regulating defense response through interaction with various stress pathways. After harvest, table grapes (Vitis vinifera L.) are subject to a range of problems associated with postharvest storage at 0°C, such as fungal attack, water loss and rachis browning. The application of a 3-day high CO2 treatment maintained fruit quality and activated the induction of transcription factors belonging to different families such as ERF. In this paper, we have isolated five VviERFs from table grapes cv. Cardinal, whose deduced amino acid sequence contained the conserved apetalous (AP2)/ERF domain. The phylogeny and putative conserved motifs in VviERFs were analyzed and compared with those previously reported in Vitis. VviERFs-c gene expression was studied by quantitative real-time RT-PCR in the different tissues of bunches stored at low temperature and treated with high levels of CO2. The results showed that in most of the tissues analyzed, VviERFs-c gene expression was induced by the storage under normal atmosphere although the application of high levels of CO2 caused a greater increase in the VviERFs-c transcript accumulation. The promoter regions of two PRs (pathogenesis related proteins), Vcchit1b and Vcgns1, were obtained and the in silico analysis revealed the presence of a cis-acting ethylene response element (GCC box). In addition, expression of these two PR genes was analyzed in the pulp and rachis of CO2-treated and non-treated table grapes stored at 0°C and results showed significant correlations with VviERF2-c and VviERF6L7-c gene expression in rachis, and between VviERF11-c and Vcchit1b in pulp. Finally by using electro mobility shift assays, we denoted differences in binding of VviERFs to the GCC sequences present in the promoters of both PRs, with VviERF6L7-c being the only member which did not bind to any tested probe. Overall, our results suggest that the beneficial effect of high CO2

  13. Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv. Cabernet Sauvignon berries at ripening initiation

    Directory of Open Access Journals (Sweden)

    Smith Derek

    2009-01-01

    Full Text Available Abstract Background iTRAQ is a proteomics technique that uses isobaric tags for relative and absolute quantitation of tryptic peptides. In proteomics experiments, the detection and high confidence annotation of proteins and the significance of corresponding expression differences can depend on the quality and the species specificity of the tryptic peptide map database used for analysis of the data. For species for which finished genome sequence data are not available, identification of proteins relies on similarity to proteins from other species using comprehensive peptide map databases such as the MSDB. Results We were interested in characterizing ripening initiation ('veraison' in grape berries at the protein level in order to better define the molecular control of this important process for grape growers and wine makers. We developed a bioinformatic pipeline for processing EST data in order to produce a predicted tryptic peptide database specifically targeted to the wine grape cultivar, Vitis vinifera cv. Cabernet Sauvignon, and lacking truncated N- and C-terminal fragments. By searching iTRAQ MS/MS data generated from berry exocarp and mesocarp samples at ripening initiation, we determined that implementation of the custom database afforded a large improvement in high confidence peptide annotation in comparison to the MSDB. We used iTRAQ MS/MS in conjunction with custom peptide db searches to quantitatively characterize several important pathway components for berry ripening previously described at the transcriptional level and confirmed expression patterns for these at the protein level. Conclusion We determined that a predicted peptide database for MS/MS applications can be derived from EST data using advanced clustering and trimming approaches and successfully implemented for quantitative proteome profiling. Quantitative shotgun proteome profiling holds great promise for characterizing biological processes such as fruit ripening

  14. The contribution of flowering time and seed content to uneven ripening initiation among fruits within Vitis vinifera L. cv. Pinot noir clusters.

    Science.gov (United States)

    Vondras, Amanda M; Gouthu, Satyanarayana; Schmidt, Joseph A; Petersen, Anna-Rose; Deluc, Laurent G

    2016-05-01

    Ripening initiation-associated hormonal changes and sugar accumulation for individual fruits differed by seed content and did not depend heavily on flowering time or duration from anthesis to clusters' onset of ripening. For Vitis vinifera, the ripening initiation of individual fruits in a cluster occurs unevenly. This developmental period is called véraison. Why individual fruits initiate ripening at different times is not well studied, though differences in seed content and unequal developmental durations that arise from asynchronous flowering within a cluster have been proposed. This study examined how much both variables contribute to individual fruits' ripening progress by mid-véraison, when half of berries in a cluster have initiated ripening, and whether either or both factors affect the timing of characteristic, ripening-initiation associated changes in abscisic acid and auxin before, at, and after véraison. Overall, developmental duration and flowering time did not sufficiently explain how far berries had progressed into the ripening stage because fruits did not require a fixed amount of time to initiate ripening. Fruits from early and late flowers but of similar seed content were able to initiate ripening at the same time despite differences in chronological age. This suggests either an early developmental enhancement occurred for late-initiated fruits or that flowering time is an inappropriate "day zero". Ultimately, only seed content was linked to the timing and magnitude of ripening-related hormone changes, supporting that seeds have a comparatively larger influence than flowering time on the ripening initiation of individual berries. More specifically, if the fraction of berry weight occupied by seed was high, then the initiation of ripening for that berry and its associated hormone changes were delayed relative to berries with less seed weight versus total berry weight.

  15. Ontology-oriented retrieval of putative microRNAs in Vitis vinifera via GrapeMiRNA: a web database of de novo predicted grape microRNAs

    Directory of Open Access Journals (Sweden)

    Fontana Paolo

    2009-06-01

    Full Text Available Abstract Background Two complete genome sequences are available for Vitis vinifera Pinot noir. Based on the sequence and gene predictions produced by the IASMA, we performed an in silico detection of putative microRNA genes and of their targets, and collected the most reliable microRNA predictions in a web database. The application is available at http://www.itb.cnr.it/ptp/grapemirna/. Description The program FindMiRNA was used to detect putative microRNA genes in the grape genome. A very high number of predictions was retrieved, calling for validation. Nine parameters were calculated and, based on the grape microRNAs dataset available at miRBase, thresholds were defined and applied to FindMiRNA predictions having targets in gene exons. In the resulting subset, predictions were ranked according to precursor positions and sequence similarity, and to target identity. To further validate FindMiRNA predictions, comparisons to the Arabidopsis genome, to the grape Genoscope genome, and to the grape EST collection were performed. Results were stored in a MySQL database and a web interface was prepared to query the database and retrieve predictions of interest. Conclusion The GrapeMiRNA database encompasses 5,778 microRNA predictions spanning the whole grape genome. Predictions are integrated with information that can be of use in selection procedures. Tools added in the web interface also allow to inspect predictions according to gene ontology classes and metabolic pathways of targets. The GrapeMiRNA database can be of help in selecting candidate microRNA genes to be validated.

  16. Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) pinot noir fruit and extraction in a model system.

    Science.gov (United States)

    Cortell, Jessica M; Kennedy, James A

    2006-11-01

    Accumulation and compositional changes of flavonols, proanthocyanidins, and anthocyanins were measured in Vitis vinifera L. cv. Pinot noir in shaded and exposed treatments. In addition, extraction of these compounds into a model wine solution was measured. The study was conducted in a commercial vineyard within a uniform zone of relatively low vigor vines. Light exclusion boxes were installed on pairs of clusters on the same shoot (shaded treatment), and a second set of clusters on an adjacent shoot were labeled as the exposed treatment. Fruit samples were harvested at the onset of ripening (véraison) and at commercial harvest. Cluster shading resulted in a substantial decrease in mg/berry accumulation of flavonols and skin proanthocyanidins and minimal differences in anthocyanins. In analyzing seed proanthocyanidins by phloroglucinolysis, shaded and exposed treatments were similar at véraison; however, by harvest, the shaded treatment had higher extension and terminal subunits (nmol/seed) as compared to the exposed treatment. For skin proanthocyanidins, shaded fruit was lower for all subunits (nmol/berry) at both véraison and harvest. Shading caused an increase in the proportion of (-)-epicatechin and a decrease in (-)-epigallocatechin at harvest in skin extension subunits. Seed proanthocyanidins in shaded fruit contained a lower proportion of (+)-catechin and a higher proportion of (-)-epicatechin-3-O-gallate in extension subunits and a lower proportion of (+)-catechin and (-)-epicatechin-3-O-gallate and a higher proportion of (-)-epicatechin in terminal subunits. For anthocyanins, the shaded treatment had a proportional reduction in delphinidin, cyanidin, petunidin, and malvidin and a large increase in peonidin glucosides. The model extractions from the two treatments paralleled differences in the fruit with a lower concentration of flavonols, anthocyanins, and proanthocyanidins in the shaded treatment. The skin proanthocyanidin percent extraction was found

  17. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L. Cultivar.

    Directory of Open Access Journals (Sweden)

    Olufemi J Alabi

    Full Text Available Grapevine leafroll disease (GLD is an economically important virus disease affecting wine grapes (Vitis vinifera L., but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease.

  18. Responses of In vitro-Grown Plantlets (Vitis vinifera) to Grapevine leafroll-Associated Virus-3 and PEG-Induced Drought Stress.

    Science.gov (United States)

    Cui, Zhen-Hua; Bi, Wen-Lu; Hao, Xin-Yi; Xu, Yan; Li, Peng-Min; Walker, M Andrew; Wang, Qiao-Chun

    2016-01-01

    Stresses caused by viral diseases and drought have long threatened sustainable production of grapevine. These two stresses frequently occur simultaneously in many of grapevine growing regions of the world. We studied responses of in vitro-grown plantlets (Vitis vinifera) to Grapevine leafroll associated virus-3 (GLRaV-3) and PEG-induced drought stress. Results showed that stress induced by either virus infection or drought had negative effects on vegetative growth, caused significant decreases and increases in total soluble protein and free proline, respectively, induced obvious cell membrane damage and cell death, and markedly increased accumulations of [Formula: see text] and H2O2. Co-stress by virus and drought had much severer effects than single stress on the said parameters. Virus infection alone did not cause significant alternations in activities of POD, ROS, and SOD, and contents of MDA, which, however, markedly increased in the plantlets when grown under single drought stress and co-stress by the virus and drought. Levels of ABA increased, while those of IAA decreased in the plantlets stressed by virus infection or drought. Simultaneous stresses by the virus and drought had co-effects on the levels of ABA and IAA. Up-regulation of expressions of ABA biosynthesis genes and down-regulation of expressions of IAA biosynthesis genes were responsible for the alternations of ABA and IAA levels induced by either the virus infection or drought stress and co-stress by them. Experimental strategies established in the present study using in vitro system facilitate investigations on 'pure' biotic and abiotic stress on plants. The results obtained here provide new insights into adverse effects of stress induced by virus and drought, in single and particularly their combination, on plants, and allow us to re-orientate agricultural managements toward sustainable development of the agriculture.

  19. Evolution and expression analysis reveal the potential role of the HD-Zip gene family in regulation of embryo abortion in grapes (Vitis vinifera L.).

    Science.gov (United States)

    Li, Zhiqian; Zhang, Chen; Guo, Yurui; Niu, Weili; Wang, Yuejin; Xu, Yan

    2017-09-21

    The HD-Zip family has a diversity of functions during plant development. In this study, we identify 33 HD-Zip transcription factors in grape and detect their expressions in ovules and somatic embryos, as well as in various vegetative organs. A genome-wide survey for HD-Zip transcription factors in Vitis was conducted based on the 12 X grape genome (V. vinifera L.). A total of 33 members were identified and classified into four subfamilies (I-IV) based on phylogeny analysis with Arabidopsis, rice and maize. VvHDZs in the same subfamily have similar protein motifs and intron/exon structures. An evaluation of duplication events suggests several HD-Zip genes arose before the divergence of the grape and Arabidopsis lineages. The 33 members of HD-Zip were differentially expressed in ovules of the stenospermic grape, Thompson Seedless and of the seeded grape, Pinot noir. Most have higher expressions during ovule abortion in Thompson Seedless. In addition, transcripts of the HD-Zip family were also detected in somatic embryogenesis of Thompson Seedless and in different vegetative organs of Thompson Seedless at varying levels. Additionally, VvHDZ28 is located in the nucleus and had transcriptional activity consistent with the typical features of the HD-Zip family. Our results provide a foundation for future grape HD-Zip gene function research. The identification and expression profiles of the HD-Zip transcription factors in grape, reveal their diverse roles during ovule abortion and organ development. Our results lay a foundation for functional analysis of grape HDZ genes.

  20. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades.

    Science.gov (United States)

    Guyot, Romain; Lefebvre-Pautigny, Florent; Tranchant-Dubreuil, Christine; Rigoreau, Michel; Hamon, Perla; Leroy, Thierry; Hamon, Serge; Poncet, Valérie; Crouzillat, Dominique; de Kochko, Alexandre

    2012-03-20

    Coffee trees (Rubiaceae) and tomato (Solanaceae) belong to the Asterid clade, while grapevine (Vitaceae) belongs to the Rosid clade. Coffee and tomato separated from grapevine 125 million years ago, while coffee and tomato diverged 83-89 million years ago. These long periods of divergent evolution should have permitted the genomes to reorganize significantly. So far, very few comparative mappings have been performed between very distantly related species belonging to different clades. We report the first multiple comparison between species from Asterid and Rosid clades, to examine both macro-and microsynteny relationships. Thanks to a set of 867 COSII markers, macrosynteny was detected between coffee, tomato and grapevine. While coffee and tomato genomes share 318 orthologous markers and 27 conserved syntenic segments (CSSs), coffee and grapevine also share a similar number of syntenic markers and CSSs: 299 and 29 respectively. Despite large genome macrostructure reorganization, several large chromosome segments showed outstanding macrosynteny shedding new insights into chromosome evolution between Asterids and Rosids. We also analyzed a sequence of 174 kb containing the ovate gene, conserved in a syntenic block between coffee, tomato and grapevine that showed a high-level of microstructure conservation. A higher level of conservation was observed between coffee and grapevine, both woody and long life-cycle plants, than between coffee and tomato. Out of 16 coffee genes of this syntenic segment, 7 and 14 showed complete synteny between coffee and tomato or grapevine, respectively. These results show that significant conservation is found between distantly related species from the Asterid (Coffea canephora and Solanum sp.) and Rosid (Vitis vinifera) clades, at the genome macrostructure and microstructure levels. At the ovate locus, conservation did not decline in relation to increasing phylogenetic distance, suggesting that the time factor alone does not explain

  1. Impact of water stress and nutrition on Vitis vinifera cv. ‘Albariño’: Soil-plant water relationships, cumulative effects and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, E.M.; Rey, B.J.; Fandiño, M.; Cancela, J.J.

    2016-11-01

    The objective of the present study is to apply different systems of fertigation (rainfed, R; surface drip irrigation, DI, and subsurface drip irrigation, SDI) in Vitis vinifera (L.) cv. ‘Albariño’ to evaluate the cumulative effect of water stress (water stress integral) on yield parameters and to establish the relationship between indices and production. The study was conducted over four years (2010-2013) in a commercial vineyard (Galicia, NW Spain). The volumetric soil water content (θ) (with TDR) and predawn (ψp), midday (ψm) and stem (ψstem) leaf-water potential were determined with a water activity meter during the growing stages (flowering-harvest) from 2010-2013. The number of clusters, their weight and yield/vine were determined at harvest. Must composition was studied to evaluate nutrition treatments. Ψp is presented as the best indicator of the water status of the plant, and the sole use of θ is not recommended as a reference. The soil-plant water status variables were strongly correlated, especially between foliar variables (0.91

  2. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension

    Directory of Open Access Journals (Sweden)

    Neta eManela

    2015-07-01

    Full Text Available Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG* of the shikimate pathway under a constitutive promoter. The presence of AroG* protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG* transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids and phenylpropanoid pathways showed that transcription was not affected by AroG*. This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG* cells, and the relative frequencies of the different anthocyanins changed as

  3. Are Epiphytic Microbial Communities in the Carposphere of Ripening Grape Clusters (Vitis vinifera L.) Different between Conventional, Organic, and Biodynamic Grapes?

    Science.gov (United States)

    Kecskeméti, Elizabeth; Berkelmann-Löhnertz, Beate; Reineke, Annette

    2016-01-01

    Using barcoded pyrosequencing fungal and bacterial communities associated with grape berry clusters (Vitis vinifera L.) obtained from conventional, organic and biodynamic vineyard plots were investigated in two subsequent years at different stages during berry ripening. The four most abundant operational taxonomic units (OTUs) based on fungal ITS data were Botrytis cinerea, Cladosporium spp., Aureobasidium pullulans and Alternaria alternata which represented 57% and 47% of the total reads in 2010 and 2011, respectively. Members of the genera Sphingomonas, Gluconobacter, Pseudomonas, Erwinia, and Massilia constituted 67% of the total number of bacterial 16S DNA reads in 2010 samples and 78% in 2011 samples. Viticultural management system had no significant effect on abundance of fungi or bacteria in both years and at all three sampling dates. Exceptions were A. alternata and Pseudomonas spp. which were more abundant in the carposphere of conventional compared to biodynamic berries, as well as Sphingomonas spp. which was significantly less abundant on conventional compared to organic berries at an early ripening stage in 2011. In general, there were no significant differences in fungal and bacterial diversity indices or richness evident between management systems. No distinct fungal or bacterial communities were associated with the different maturation stages or management systems, respectively. An exception was the last stage of berry maturation in 2011, where the Simpson diversity index was significantly higher for fungal communities on biodynamic compared to conventional grapes. Our study highlights the existence of complex and dynamic microbial communities in the grape cluster carposphere including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on grape production. Such knowledge is particularly relevant for development, selection and application of effective control measures against economically important

  4. Effects of chilling and ABA on (/sup 3/H)gibberellin A/sub 4/ metabolism in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele)

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, D.; Pharis, R.P.; Rajasekaran, K.; Mullins, M.G.

    1987-06-01

    Previous work has indicated that changes in gibberellin (GA) metabolism may be involved in chilling-induced release from dormancy in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele). The authors have chilled somatic embryos of grape for 2, 4, or 8 weeks, then incubated them with (/sup 3/H)GA/sub 4/ (of high specific activity, 4.81 x 10/sup 19/ becquerel per millimole) for 48 hours at 26/sup 0/C. Chilling had little effect on the total amount of free (/sup 3/H)GA-like metabolites formed during incubation at 26/sup 0/C, but did change the relative proportions of individual metabolites. The amount of highly water-soluble (/sup 3/H) metabolites formed at 26/sup 0/C decreased in embryos chilled for 4 or 8 weeks. The concentration of endogeneous GA precursors (e.g., GA/sub 12/ aldehyde-, kaurene, and kaurenoic acid-like substances) increased in embryos chilled for 4 or 8 weeks. Treatment with abscisic acid (ABA) (known to inhibit germination in grape embryos) concurrent with (/sup 3/H)GA/sub 4/ treatment at 26/sup 0/C, reduced the uptake of (/sup 3/H) GA/sub 4/ but had little effect on the qualitative spectrum of metabolites. However, in the embryos chilled for 8 weeks and then treated with ABA for 48 hours at 26/sup 0/C, there was a higher concentration of GA precursors than in untreated control embryos. Chilled embryos thus have an enhanced potential for an increase in free GAs through synthesis from increased amounts of GA precursors, or through a reduced ability to form highly water-soluble GA metabolites (i.e., GA conjugates or polyhydroxylated free GAs).

  5. Overexpression of a stress-responsive U-box protein gene VaPUB affects the accumulation of resistance related proteins in Vitis vinifera 'Thompson Seedless'.

    Science.gov (United States)

    Jiao, Li; Zhang, Yali; Lu, Jiang

    2017-03-01

    Many U-box proteins have been identified and characterized as important factors against environmental stresses such as chilling, heat, salinity and pathogen attack in plant. Our previous research reported the cloning of a novel U-box protein gene VaPUB from Vitis amurensis 'Zuoshanyi' grape and suggested a function of it in related to cold stress in the model plant Arabidopsis system. In this study, the role of VaPUB in response to biotic and abiotic stress was further analyzed in the homologous grapevine system by studying the transcript regulation and the protein accumulation in VaPUB transgenic vines. The expression analysis assay shown that VaPUB was significantly up-regulated 6 h after cold treatment and as early as 2 h post inoculation with Plasmopara viticola, a pathogen causing downy mildew disease in grapevine. Over-expressing VaPUB in V. Vinifera 'Thompson Seedless' affected the microstructure of leaves. The proteome assay shown that the accumulation of pathogenesis-related protein PR10 and many proteins involved in carbon and energy metabolism, oxidation reaction and protein metabolism were significantly altered in transgenic vines. In comparison with wild type plants, the expression level of PR10 family genes was significantly decreased in VaPUB transgenic vines under P. viticola treatment or cold stress. Results from this study showed that the U-box protein gene PUB quickly responded to both biotic stress and abiotic stress and significantly influenced the accumulation of resistance related proteins in grapevine. Copyright © 2016. Published by Elsevier Masson SAS.

  6. Regulation of polar auxin transport in grapevine fruitlets (Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission.

    Science.gov (United States)

    Kühn, Nathalie; Serrano, Alejandra; Abello, Carlos; Arce, Aníbal; Espinoza, Carmen; Gouthu, Satyanarayana; Deluc, Laurent; Arce-Johnson, Patricio

    2016-10-28

    Indole-3-acetic acid (IAA), the most abundant auxin, is a growth promoter hormone involved in several developmental processes. Auxin homeostasis is very important to its function and this is achieved through the regulation of IAA biosynthesis, conjugation, degradation and transport. In grapevine, IAA plays an essential role during initial stages of berry development, since it delays fruitlet abscission by reducing the ethylene sensitivity in the abscission zone. For this reason, Continuous polar IAA transport to the pedicel is required. This kind of transport is controlled by IAA, which regulates its own movement by modifying the expression and localization of PIN-FORMED (PIN) auxin efflux facilitators that localize asymmetrically within the cell. On the other hand, the hormone gibberellin (GA) also activates the polar auxin transport by increasing PIN stability. In Vitis vinifera, fruitlet abscission occurs during the first two to three weeks after flowering. During this time, IAA and GA are present, however the role of these hormones in the control of polar auxin transport is unknown. In this work, the use of radiolabeled IAA showed that auxin is basipetally transported during grapevine fruitlet abscission. This observation was further supported by immunolocalization of putative VvPIN proteins that display a basipetal distribution in pericarp cells. Polar auxin transport and transcripts of four putative VvPIN genes decreased in conjunction with increased abscission, and the inhibition of polar auxin transport resulted in fruit drop. GA3 and IAA treatments reduced polar auxin transport, but only GA3 treatment decreased VvPIN transcript abundance. When GA biosynthesis was blocked, IAA was capable to increase polar auxin transport, suggesting that its effect depends on GA content. Finally, we observed significant changes in the content of several IAA-related compounds during the abscission period. These results provide evidence that auxin homeostasis plays a central

  7. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades

    Science.gov (United States)

    2012-01-01

    Background Coffee trees (Rubiaceae) and tomato (Solanaceae) belong to the Asterid clade, while grapevine (Vitaceae) belongs to the Rosid clade. Coffee and tomato separated from grapevine 125 million years ago, while coffee and tomato diverged 83-89 million years ago. These long periods of divergent evolution should have permitted the genomes to reorganize significantly. So far, very few comparative mappings have been performed between very distantly related species belonging to different clades. We report the first multiple comparison between species from Asterid and Rosid clades, to examine both macro-and microsynteny relationships. Results Thanks to a set of 867 COSII markers, macrosynteny was detected between coffee, tomato and grapevine. While coffee and tomato genomes share 318 orthologous markers and 27 conserved syntenic segments (CSSs), coffee and grapevine also share a similar number of syntenic markers and CSSs: 299 and 29 respectively. Despite large genome macrostructure reorganization, several large chromosome segments showed outstanding macrosynteny shedding new insights into chromosome evolution between Asterids and Rosids. We also analyzed a sequence of 174 kb containing the ovate gene, conserved in a syntenic block between coffee, tomato and grapevine that showed a high-level of microstructure conservation. A higher level of conservation was observed between coffee and grapevine, both woody and long life-cycle plants, than between coffee and tomato. Out of 16 coffee genes of this syntenic segment, 7 and 14 showed complete synteny between coffee and tomato or grapevine, respectively. Conclusions These results show that significant conservation is found between distantly related species from the Asterid (Coffea canephora and Solanum sp.) and Rosid (Vitis vinifera) clades, at the genome macrostructure and microstructure levels. At the ovate locus, conservation did not decline in relation to increasing phylogenetic distance, suggesting that the time

  8. Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: expression of defence-related genes and phenotypes.

    Science.gov (United States)

    Mutawila, C; Stander, C; Halleen, F; Vivier, M A; Mostert, L

    2017-03-01

    Cell suspension cultures of Vitis vinifera cv. Dauphine berries were used to study the response to the vascular pathogen, Eutypa lata, in comparison with a biological control agent, Trichoderma atroviride, that was previously shown to be effective in pruning wound protection. The expression of genes coding for enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins was profiled over a 48-h period using quantitative reverse transcriptase PCR. The cell cultures responded to elicitors of both fungi with a hypersensitive-like response that lead to a decrease in cell viability. Similar genes were triggered by both the pathogen and biocontrol agent, but the timing patterns and magnitude of expression was dependent on the specific fungal elicitor. Culture filtrates of both fungi caused upregulation of phenylalanine ammonia-lyase (PAL), 4-coumaroyl Co-A ligase (CCo-A) and stilbene synthase (STS), and a downregulation of chalcone synthase (CHS) genes. The pathogen filtrate caused a biphasic pattern in the upregulation of PAL and STS genes which was not observed in cells treated with filtrates of the biocontrol agent. Analytical assays showed significantly higher total phenolic content and chitinolytic enzyme activity in the cell cultures treated with the T. atroviride filtrate compared to the pathogen filtrate. These results corresponded well to the higher expression of PAL and chitinase class IV genes. The response of the cell cultures to T. atroviride filtrate provides support for the notion that the wound protection by the biocontrol agent at least partially relies on the induction of grapevine resistance mechanisms.

  9. Rhizosphere associated bacteria trigger accumulation of terpenes in leaves of Vitis vinifera L. cv. Malbec that protect cells against reactive oxygen species.

    Science.gov (United States)

    Salomon, María Victoria; Purpora, Rebeca; Bottini, Rubén; Piccoli, Patricia

    2016-09-01

    It has been proposed that plant growth promoting rhizobacteria (PGPR) stimulate plant growth and development by inducing the biosynthesis of secondary metabolites, like terpenes, which reduce stress incidence. Three bacteria previously isolated from grapevine roots and adjacent soil (Microbacterium imperiale Rz19M10, Kocuria erythromyxa Rt5M10 and Terribacillus saccharophilus Rt17M10) were tested as PGPR. After 30 days since root inoculation of in vitro grown Vitis vinifera cv. Malbec plants, the monoterpenes α-pinene, terpinolene and 4-carene, and the sesquiterpene nerolidol were detected only in bacterized-plant leaves. Also, the concentrations of the diterpenes α and γ-tocopherol, and the sterols sitosterol and lupeol were significantly enhanced compared to controls. The leaf extracts of bacterized plants showed photoprotective properties since they decreased the oxygen consumption (that is photo-oxidation) of the amino acid tryptophan in a sensitized solution, thus indicating an increment of the antioxidant capacity of the tissues. In addition, experiments with α-pinene and nerolidol standards showed the capability to intercept reactive oxygen species in the sensitized solution. Moreover, bacterized plants infected with the pathogen Botrytis cinerea showed a reduction in the lesion diameter compared with non-bacterized plants. The results suggest that M. imperiale, K. erythromyxa and mainly T. saccharophilus are able to induce a systemic response that trigger increases on monoterpenes, sesquiterpenes, tocopherols and membrane sterols. These compounds enhance the antioxidant capacity in leaf tissues that may help grapevine to cope with stresses. Copyright © 2016. Published by Elsevier Masson SAS.

  10. Temperature and CO2 dependency of the photosynthetic photon flux density responses of leaves of Vitis vinifera cvs. Chardonnay and Merlot grown in a hot climate.

    Science.gov (United States)

    Greer, Dennis H

    2017-02-01

    Comparisons of the photosynthetic responses to light and temperature between related cultivars are important to understand how well matched they are to the climate where they are grown. Photosynthetic light responses at a range of leaf temperatures and two CO2 concentrations were measured on leaves of two grapevine cultivars (Vitis vinifera L.) Chardonnay and Merlot vines growing in field conditions. The objective was to assess the interaction between photon flux density (PFD), leaf temperature and CO2 on photosynthesis and to compare the two cultivars. Merlot leaves maintained higher light-saturated rates of photosynthesis at all leaf temperatures compared with the Chardonnay leaves. At low temperatures, a reduced photon yield offset with a high stomatal conductance accounted for the low rates of the Chardonnay leaves. At moderate to high temperatures, photon yields, PFDs at light saturation and stomatal conductances did not account for differences between Merlot and Chardonnay leaves. At elevated CO2 (800 μmol mol-1) concentrations, the differences in photosynthetic performance between the cultivars were enhanced, with 30% higher light saturated rates for Merlot compared with Chardonnay leaves. Merlot berries accumulated more sugar, consistent with published data. These results demonstrate Chardonnay, unlike Merlot, appeared to be poorly matched to the hot climate. However, considering the current market and political trends, low alcoholic wines (and, thus, low sugar grapes) should be preferred. Especially in hot climates, it is always hard to obtain such kind of wines and, thus, the most interesting agronomical challenge, especially for Chardonnay vines could be interpreted in an opposite way. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (−)-rotundone

    Science.gov (United States)

    Takase, Hideki; Sasaki, Kanako; Shinmori, Hideyuki; Shinohara, Akira; Mochizuki, Chihiro; Kobayashi, Hironori; Ikoma, Gen; Saito, Hiroshi; Matsuo, Hironori; Suzuki, Shunji; Takata, Ryoji

    2016-01-01

    (−)-Rotundone is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapevines (Vitis vinifera). It is considered to be a significant compound in wines and grapes because of its low sensory threshold and aroma properties. (−)-Rotundone was first identified in red wine made from the grape cultivar Syrah and here we report the identification of VvSTO2 as a α-guaiene 2-oxidase which can transform α-guaiene to (−)-rotundone in the grape cultivar Syrah. It is a cytochrome P450 (CYP) enzyme belonging to the CYP 71BE subfamily, which overlaps with the very large CYP71D family and, to the best of our knowledge, this is the first functional characterization of an enzyme from this family. VvSTO2 was expressed at a higher level in the Syrah grape exocarp (skin) in accord with the localization of (−)-rotundone accumulation in grape berries. α-Guaiene was also detected in the Syrah grape exocarp at an extremely high concentration. These findings suggest that (−)-rotundone accumulation is regulated by the VvSTO2 expression along with the availability of α-guaiene as a precursor. VvSTO2 expression during grape maturation was considerably higher in Syrah grape exocarp compared to Merlot grape exocarp, consistent with the patterns of α-guaiene and (−)-rotundone accumulation. On the basis of these findings, we propose that VvSTO2 may be a key enzyme in the biosynthesis of (−)-rotundone in grapevines by acting as a α-guaiene 2-oxidase. PMID:26590863

  12. Protective effect of aqueous seed extract of Vitis Vinifera against oxidative stress, inflammation and apoptosis in the pancreas of adult male rats with diabetes mellitus.

    Science.gov (United States)

    Adam, Siti Hajar; Giribabu, Nelli; Kassim, Normadiah; Kumar, Kilari Eswar; Brahmayya, Manuri; Arya, Aditya; Salleh, Naguib

    2016-07-01

    Protective effects of Vitis Vinifera seed aqueous extract (VVSAE) against pancreatic dysfunctions and elevation of oxidative stress, inflammation and apoptosis in the pancreas in diabetes were investigated. Histopathological changes in the pancreas were examined under light microscope. Blood and pancreas were collected from adult male diabetic rats receiving 28days treatment with VVSAE orally. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and lipid profile levels and activity levels of anti-oxidative enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx) in the pancreas were determined by biochemical assays. Histopathological changes in the pancreas were examined under light microscopy and levels of insulin, glucose transporter (GLUT)-2, tumor necrosis factor (TNF)-α, Ikkβ and caspase-3 mRNA and protein were analyzed by real-time PCR (qPCR) and immunohistochemistry respectively. Radical scavenging activity of VVSAE was evaluated by in-vitro anti-oxidant assay while gas chromatography-mass spectrometry (GC-MS) was used to identify the major compounds in the extract. GC-MS analyses indicated the presence of compounds that might exert anti-oxidative, anti-inflammatory and anti-apoptosis effects. Near normal FBG, HbAIc, lipid profile and serum insulin levels with lesser signs of pancreatic destruction were observed following administration of VVSAE to diabetic rats. Higher insulin, GLUT-2, SOD, CAT and GPx levels but lower TNF-α, Ikkβ and caspase-3 levels were also observed in the pancreas of VVSAE-treated diabetic rats (pdiabetic rats). The extract possesses high in-vitro radical scavenging activities. In conclusions, administration of VVSAE to diabetic rats could help to protect the pancreas against oxidative stress, inflammation and apoptosis-induced damage while preserving pancreatic function near normal in diabetes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L. Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2017-04-01

    Full Text Available Light environments have long been known to influence grape (Vitis vinifera L. berry development and biosynthesis of phenolic compounds, and ultimately affect wine quality. Here, the accumulation and compositional changes of hydroxycinnamic acids (HCAs and flavonoids, as well as global gene expression were analyzed in Cabernet Sauvignon grape berries under sunlight exposure treatments at different phenological stages. Sunlight exposure did not consistently affect the accumulation of berry skin flavan-3-ol or anthocyanin among different seasons due to climatic variations, but increased HCA content significantly at véraison and harvest, and enhanced flavonol accumulation dramatically with its timing and severity degree trend. As in sunlight exposed berries, a highly significant correlation was observed between the expression of genes coding phenylalanine ammonia-lyase, 4-coumarate: CoA ligase, flavanone 3-hydroxylase and flavonol synthase family members and corresponding metabolite accumulation in the phenolic biosynthesis pathway, which may positively or negatively be regulated by MYB, bHLH, WRKY, AP2/EREBP, C2C2, NAC, and C2H2 transcription factors (TFs. Furthermore, some candidate genes required for auxin, ethylene and abscisic acid signal transductions were also identified which are probably involved in berry development and flavonoid biosynthesis in response to enhanced sunlight irradiation. Taken together, this study provides a valuable overview of the light-induced phenolic metabolism and transcriptome changes, especially the dynamic responses of TFs and signaling components of phytohormones, and contributes to the further understanding of sunlight-responsive phenolic biosynthesis regulation in grape berries.

  14. Bacteria and smoke-water extract improve growth and induce the synthesis of volatile defense mechanisms in Vitis vinifera L.

    Science.gov (United States)

    Salomon, María Victoria; Piccoli, Patricia; Funes Pinter, Iván; Stirk, Wendy Ann; Kulkarni, Manoj; van Staden, Johannes; Bottini, Rubén

    2017-11-01

    Sustainable agricultural practices have been developed as alternative to the use of agrochemicals, and viticulture is not exempt of that. Plant growth promoting rhizobacteria (PGPR) and smoke water extracts (SW) are environmentally-friendly alternative to those agrochemicals. The aim of this study was to investigate the single or combined effects of SW and the PGPR Pseudomonas fluorescens (Pf) and Bacillus licheniformis (Bl) on the physiology and biochemistry of grapevines plants. After 38 days, single applications of SW solutions and bacterial suspensions increase rooting and root length. Combined treatments had a slight positive effect compared to the water control. At the end of 60-days pot trial, grapevine treated with 1:1000 SW and Pf applied alone showed increases in stem length, leaf area and fresh weight of the roots, shoot and leaves, although not significantly differences from the water control were found. In addition, Pf augmented chlorophyll relative content, all treatments decreased the stomatal conductance (mainly 1:500 SW, Pf and 1:1000 SW + Bl), as well as lipid peroxidation in roots (mainly in bacterial treatments), and induced the synthesis of mono and sesquiterpenes in leaves, where the effect was enhanced in combined treatments. In conclusion, PGPR and SW are effective to improve growth of V. vinifera cuttings as well as to increase the plants defense mechanisms that may help them to cope with biotic and abiotic stresses. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Efecto de la concentración de sacarosa en la producción de antocianinas a partir de cultivos celulares de Vitis vinifera L. var. red globe

    Directory of Open Access Journals (Sweden)

    Antonieta Miñano

    2013-06-01

    Full Text Available El cultivo de Vitis vinifera «vid» constituye una de las actividades agrícolas de mayor importancia en nuestra alimentación y en la medicina por presentar unos compuestos bioactivos llamados antocianinas conocidas por tener propiedades antioxidantes, anticancerígenas y cardiotónicas. Con la finalidad de aportar con una alternativa diferente a su extracción tradicional se estableció un sistema de cultivos celulares en suspensión con el propósito de determinar la concentración óptima de sacarosa para obtener mayor producción de antocianinas a partir de cultivos celulares de Vitis vinifera «vid» var. red globe. Se adicionaron diferentes concentraciones de sacarosa (0 mM, 58 mM, 132 mM y 175 mM al medio de cultivo basal (MB suplementado con concentraciones separadas de ácido naftalenacético y kinetina como medio inductor (MI. El contenido de antocianinas aumentó a medida que se incrementó la concentración de sacarosa (132 mM en el medio de cultivo, encontrándose diferencias significativas entre los tratamientos.

  16. Anti-oxidant, anti-inflammatory, analgesic and antipyretic activities of grapevine leaf extract (Vitis vinifera) in mice and identification of its active constituents by LC-MS/MS analyses.

    Science.gov (United States)

    Aouey, Bakhta; Samet, Amira Mahjoubi; Fetoui, Hamadi; Simmonds, Monique S J; Bouaziz, Mohamed

    2016-12-01

    The leaves of Vitis vinifera is used in traditional medicine for diarrhea, hepatitis and stomachaches. The objective of this study was to investigate the anti-oxidant, anti-inflammatory, analgesic and antipyretic properties of the hydroalcoholic leaf extract of Vitis vinifera (EVV) on experimental models to provide scientific basis for its use. The EVV was chemically characterized by LC-MS/MS analyses. The in vitro antioxidant activities of the EVV extract were measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Ferric reducing antioxidant power assay (FRAP). Analgesic activity using acetic acid induced writhing and formalin test in mice, anti-inflammatory activity using carrageenan induced paw oedema and acetic acid-induced vascular permeability in mice, and antipyretic activity using Brewer's yeast induced pyrexia in rats were evaluated at 100mg/kg, 200mg/kg, and 400mg/kg doses of the extract. The extract (EVV) was found to contain resveratrol, quercetin, catechin, flavone, flavonols, anthocyanin, gallic acid and epicatechin. EVV produced significant dose-response anti-inflammatory activity against carrageenan-induced paw edema. EVV at dosages of 100, 200 and 400mg/kgbw significantly reduced carrageenan-induced paw edema by 34.48% (Pvinifera observed at doses tested which support the claim for the traditional use of the plant in the treatment of various inflammatory and pain diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. High-throughput sequence analysis of small RNAs in grapevine (Vitis vinifera L.) affected by grapevine leafroll disease.

    Science.gov (United States)

    Alabi, Olufemi J; Zheng, Yun; Jagadeeswaran, Guru; Sunkar, Ramanjulu; Naidu, Rayapati A

    2012-12-01

    Grapevine leafroll disease (GLRD) is one of the most economically important virus diseases of grapevine (Vitis spp.) worldwide. In this study, we used high-throughput sequencing of cDNA libraries made from small RNAs (sRNAs) to compare profiles of sRNA populations recovered from own-rooted Merlot grapevines with and without GLRD symptoms. The data revealed the presence of sRNAs specific to Grapevine leafroll-associated virus 3, Hop stunt viroid (HpSVd), Grapevine yellow speckle viroid 1 (GYSVd-1) and Grapevine yellow speckle viroid 2 (GYSVd-2) in symptomatic grapevines and sRNAs specific only to HpSVd, GYSVd-1 and GYSVd-2 in nonsymptomatic grapevines. In addition to 135 previously identified conserved microRNAs in grapevine (Vvi-miRs), we identified 10 novel and several candidate Vvi-miRs in both symptomatic and nonsymptomatic grapevine leaves based on the cloning of miRNA star sequences. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected conserved Vvi-miRs indicated that individual members of an miRNA family are differentially expressed in symptomatic and nonsymptomatic leaves. The high-resolution mapping of sRNAs specific to an ampelovirus and three viroids in mixed infections, the identification of novel Vvi-miRs and the modulation of certain conserved Vvi-miRs offers resources for the further elucidation of compatible host-pathogen interactions and for the provision of ecologically relevant information to better understand host-pathogen-environment interactions in a perennial fruit crop. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  18. The importance of pruning to the quality of wine grape fruits (Vitis vinifera L. cultivated under high-altitude tropical conditions

    Directory of Open Access Journals (Sweden)

    Pedro José Almanza-Merchán

    2014-12-01

    Full Text Available Since 1998, the Ain-Karim Vineyard has been growing different grape varieties for the production of high-altitude tropical wines in the municipality of Sutamarchan, located in the Alto Ricaurte region of Boyaca (Colombia. Pruning is used to limit the number and length of branches, generating a suitable balance between plant vigor and production; thereby, regulating fruit quantity and quality and ensuring reserves for the subsequent production. This study aimed to evaluate the effect of three pruning types (short = two buds on two spurs; long = five buds on three spurs and mixed = combination of short and long pruning types on the fruit quality of V. vinifera, Cabernet Sauvignon and Sauvignon Blanc varieties. To accomplish this, a completely randomized two-factor design was used. Physicochemical variables of fruit quality (fresh cluster weight, water content, total soluble solids (TSS, total titratable acidity (TTA, technical maturity index (TMI, and pH were determined at harvest. The long pruning type presented the highest values for the fresh cluster weight and TSS of the fruits from both varieties and a higher TMI in the Cabernet Sauvignon variety. These results indicate that, under the conditions of the vineyard, long pruning is the most suitable.

  19. [Biology, thermal requirements and fertility life table of the broad mite Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) in grape (Vitis vinifera L.) cv. Italia].

    Science.gov (United States)

    Ferreira, Rodrigo C F; de Oliveira, José V; Haji, Francisca N P; Gondim, Manoel G C

    2006-01-01

    The mite Polyphagotarsonemus latus (Banks) constitutes one of the main pest of grape crop at the Submédio São Francisco Valley. The objective of this work was to study the biology of the broad mite Polyphagotarsonemus latus (Banks), to determine its thermal requirements and its fertility life table in grape (Vitis vinifera L.) cv. Italy. Acclimatized chambers (BOD) were used, adjusted to the temperatures of 18, 22, 25, 28 and 32 degrees C, relative humidity of 65 +/- 10% and alternated light of 12h. Egg-adult period was 3.4 and 6.8 days for males and 3.5 and 7.4 days for females, respectively at 32 degrees C and 18 degrees C. At the temperatures of 18, 25 and 32 degrees C, each female deposited, respectively, 16.5, 44.3 and 13.3 eggs. The stages of egg, larva and pupa and egg-adult period presented, respectively, thermal thresholds of 11.23, 9.45, 12.19, and 9.71 degrees C and thermal constant of 28.51, 14.59, 8.33, and 62.73 degrees-day. The mean duration of one generation (T) was 25.6, 10.8 and 8.2 days, respectively, at the temperatures of 18, 25 and 32 degrees C. The net reproductive rate (R0) at the temperature of 25 degrees C was the highest, corresponding to an increase of 30.12 times at each generation. The intrinsic rate of population increase (rm) was 0.10 (18 degrees C), 0.31 (25 degrees C) and 0.12 (32 degrees C) and the finite ratio of population increase (lambda) was 1.10 (18 degrees C), 1.36 (25 degrees C) and 1.13 (32 degrees C). According to the mean temperature values, P. latus can have 95 and 99 generations/year, respectively, for the municipal districts of Petrolina, PE and Juazeiro, BA.

  20. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    Full Text Available Abstract Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS were predicted by in silico analysis of the grapevine (Vitis vinifera genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information

  1. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Science.gov (United States)

    2010-01-01

    Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and

  2. Synthesis of an artificial Vitis vinifera miRNA 319e using overlapping long primers and its application for gene silencing.

    Science.gov (United States)

    Castro, Álvaro; Quiroz, Daniela; Sánchez, Evelyn; Miccono, María de Los Ángeles; Aguirre, Carlos; Ramírez, Alejandra; Montes, Christian; Prieto, Humberto

    2016-09-10

    The conserved mechanism of action of micro-RNAs (miRNAs) as regulators of gene expression has allowed the use of artificial miRNAs (amiRNAs) as a powerful tool for candidate gene evaluation in plants. Based on the use of a Vitis vinifera miRNA molecule (i.e., vvi-miR319e), the present work presents a new methodology for designing artificial miR319e precursors (pre-amiR319e). As a proof of concept, we silenced the green fluorescent protein (GFP) gene in transgenic Nicotiana benthamiana plants. This methodology includes a two-step PCR reaction in which overlapping long primers allow for the complete generation of pre-amiR319e-GFP molecules that are adequate for recombination into Gateway vectors with no further requirements. The seed region in amiRNA was directed against the 3'-end portion of the GFP gene. Three groups of transformed N. benthamiana plants were generated: GFP-, amiR319e-GFP-, and GFP plus miR319e-GFP-expressing vectors. A similar group of wild-type plants was included. Confocal microscopy evaluation of these groups revealed strong silencing of the GFP phenotype in the double GFP plus amiR319e-GFP group. The molecular characterization of silenced plants was achieved via modified 5'RACE of the GFP mRNA and revealed the occurrence of a partial, 3'-end GFP mRNA molecule that was generated in planta. In addition, large-scale small RNA sequencing confirmed the occurrence of the expected 21-nt miR319e-GFP species and other 22- and 24-nt species that exhibited sequence relationships with the expected amiRNA. These results highlight the possibility of using vvi-MIR319 as a template for the generation of single amiRNAs as a tool for gene silencing in plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2015-09-16

    Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of

  4. Epiphyas postvittana (Lepidoptera: Tortricidae)-Botrytis cinerea (Helotiales: Sclerotiniaceae)-Vitis vinifera (Vitales: Vitaceae) Interaction: The Role of B. cinerea on the Development of E. postvittana in Synthetic Nutritional Media.

    Science.gov (United States)

    Rizvi, S Z M; Raman, A

    2015-08-01

    Epiphyas postvittana (Walker) (light-brown apple moth) is a polyphagous herbivore of economic significance, which also feeds on Vitis vinifera L. The E. postvittana-V. vinifera interacting system also involves the participation of the fungus Botrytis cinerea Persoon ex Fries. We have been exploring the relationship among E. postvittana-V. vinifera-B. cinerea over the past two years. In this article, we report the preference and performance of the larvae of E. postvittana raised solely on a synthetic diet incorporated with the mycelial material of B. cinerea (Diet B). To characterize the effect of fungus on the development of E. postvittana, another synthetic diet was prepared that included the lyophilized leaf material of V. vinifera (Diet C). When raised on Diets B and C, a decrease in the duration of larval development and an increase in the survival and fecundity rate of E. postvittana occurred. Diet B influenced the pupal mass, but a significant increase occurred when the larvae were fed on Diet C. The larval emergence rate was the greatest in E. postvittana raised on Diet B, followed by those on Diet C. The F(2) generation of the larvae reared on Diet B showed similar effects as F(1) on the life-history performance of the larvae. Diet B enhanced the life-history performance of E. postvittana, although the larvae of E. postvittana showed little preference to Diet B. The greater fertility rate of E. postvittana reared on Diet B suggests the importance of sterols as shown in Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae) and in a few Myrmicinae (Hymenoptera: Formicidae), which serve as precursors to different ecdysteroids that regulate many critical processes through embryonic development. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Characterization of some Italian V. vinifera L. grape varieties on the basis of their flavonol profile

    Directory of Open Access Journals (Sweden)

    Bavaresco Luigi

    2014-01-01

    Full Text Available “Suspect screening metabolomics” is a mid-way approach between “targeted” and “untargeted” analysis. For this aim, a new database of putative grape and wine metabolites (GrapeMetabolomics was expressly constructed. Currently, this database contains around 1,100 compounds. By performing UHPLC/QTOF mass spectrometry analysis in both positive and negative ionization mode, in a grape extract averaging 320–450 putative compounds are identified. Most of these compounds are important grape metabolites, including flavonols, anthocyanins, and stilbene derivatives. In the present study, this approach was focalized on the characterization of flavonols of 18 important Italian red and white grape varieties and the method provided the identification of 15 flavonols. By performing statistical analysis (Principal Component Analysis and Cluster Analysis, the effect of the variety on the flavonol composition of the grapes was studied. Both the red and white samples fell into three different groups, respectively, on the basis of their flavonol profiles. Because the samples were cultivated in the same vineyard, their profile potentially was not affected by cultural or environmental factors. Anyway, these preliminary results will have to be confirmed by the study of grape samples collected in different years and from different vineyards.

  6. The effect of arbuscular mycorrhizal fungi on the content of macro and micro elements in grapevine (Vitis vinifera, L. leaves

    Directory of Open Access Journals (Sweden)

    Martin Sedláček

    2013-01-01

    Full Text Available In a two-year field experiment we used leaf analysis to evaluate the effect of arbuscular mycorrhizal (AM fungi on the content of some macro elements (N, P, K, Ca, Mg and micro elements (Zn, Mn, Fe in grapevine leaves at the beginning of softening/veraison of grape berries. The contents of the individual elements differed which was caused both by the different varieties of Rulandské modré (Pinot Noir and Frankovka (Blaufränkisch, and by the effect of the conditions of the year (2010, 2011, and by the actual treatment of the experiment (untreated control, mycorrhizal /AM/ plants. In 2010 the contents of all the nutrients in leaves of the variety Rulandské modré (Pinot Noir were optimal with the exception of the contents of Ca and Mg in 2011 and content of K in 2010. In the mycorrhizal plants in both years only calcium increased significantly (3.50 % as against 3.29 % and 1.54 % as against 1.31 %, respectively. The contents of micro elements in the variety Rulandské modré (Pinot Noir fluctuated irregularly; only the content of Mn was higher in the control treatment in both years. The variety Frankovka (Blaufränkisch showed a small to great Ca deficit in the leaves in both years; in 2010 also a K deficit and in 2011 a deficit in Mg. The contents of N, K and Mn increased significantly in the mycorrhizal treated plants both in 2010 and in 2011.

  7. Commercial Digital Camera to Estimate Postharvest Leaf Area Index in Vitis vinifera L. cv. Cabernet Sauvignon on a Vertical Trellis Uso de una Cámara Digital Comercial para Estimar el Índice de Área Foliar en Vitis vinifera L. cv. Cabernet Sauvignon en Poscosecha Conducida en Espaldera Vertical

    Directory of Open Access Journals (Sweden)

    Miguel Espinosa L.

    2010-06-01

    Full Text Available The leaf area index (LAI of a vineyard (Vitis vinifera L. cv. Cabernet Sauvignon located in the commune of Cauquenes, Maule Region in Chile, was estimated from digital images obtained with a commercial camera using two indirect methods: Leaf Area Gap and Brightness (LAGB and -Photogrammetric Leaf Area Quantification System (PLAQS. The latter requires deleafing of the grapevine. In a normalized difference vegetation index (NDVI map, three points of vine vigor were selected: high, medium, and low for which horizontal and vertical images were obtained. Images were filtered with the Arc View GIS 3.1 program to provide only leaf images and corresponding pixel numbers. Image area and square meters per linear meter were calculated. The best models were selected from  three linear regression adjustments: i LAI of LAGB vertical images of with LAI of PLAQS, ii LAI of PLAQS horizontal images with and, iii LAI of both types of images with PLAQS. The parameters in all models were significant. Adjustment between the LAGB and PLAQS vertical images provides greater simplicity and easy calculation since it requires only a vertical image to estimate LAI. Images thus obtained can accurately estimate LAI in this type of cultivar.En un viñedo (Vitis vinifera L. cv. Cabernet Sauvignon ubicado en la comuna de Cauquenes, Región del Maule, se estimó el índice de área foliar (LAI mediante imagen digital obtenida de una cámara fotográfica comercial, a partir de dos métodos indirectos: Espacio y Brillo Área Foliar (LAGB y Sistema Cuantificador de Área Foliar por Fotogrametría (PLAQS. Este último, requiere el deshoje de la parra. En un mapa de índice vegetativo diferencial normalizado (NDVI, se seleccionaron tres puntos de vigor de las vides: alto, medio y bajo, en cada uno de los cuales se obtuvo una imagen horizontal y vertical. Las imágenes se filtraron con el programa Arc View GIS 3.1, dejando sólo las hojas y el número de píxeles correspondientes. Se

  8. Drawing Links from Transcriptome to Metabolites: The Evolution of Aroma in the Ripening Berry of Moscato Bianco (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Laura Costantini

    2017-05-01

    Full Text Available Monoterpenes confer typical floral notes to “Muscat” grapevine varieties and, to a lesser extent, to other aromatic non-Muscat varieties. Previous studies have led to the identification and functional characterization of some enzymes and genes in this pathway. However, the underlying genetic map is still far from being complete. For example, the specific steps of monoterpene metabolism and its regulation are largely unknown. With the aim of identifying new candidates for the missing links, we applied an integrative functional genomics approach based on the targeted metabolic and genome-wide transcript profiling of Moscato Bianco ripening berries. In particular, gas chromatography-mass spectrometry analysis of free and bound terpenoid compounds was combined with microarray analysis in the skins of berries collected at five developmental stages from pre-veraison to over-ripening. Differentially expressed metabolites and probes were identified in the pairwise comparison between time points by using the early stage as a reference. Metabolic and transcriptomic data were integrated through pairwise correlation and clustering approaches to discover genes linked with particular metabolites or groups of metabolites. These candidate transcripts were further checked for co-localization with quantitative trait loci (QTLs affecting aromatic compounds. Our findings provide insights into the biological networks of grapevine secondary metabolism, both at the catalytic and regulatory levels. Examples include a nudix hydrolase as component of a terpene synthase-independent pathway for monoterpene biosynthesis, genes potentially involved in monoterpene metabolism (cytochrome P450 hydroxylases, epoxide hydrolases, glucosyltransferases, transport (vesicle-associated proteins, ABCG transporters, glutathione S-transferases, amino acid permeases, and transcriptional control (transcription factors of the ERF, MYB and NAC families, intermediates in light- and

  9. Drawing Links from Transcriptome to Metabolites: The Evolution of Aroma in the Ripening Berry of Moscato Bianco (Vitis vinifera L.).

    Science.gov (United States)

    Costantini, Laura; Kappel, Christian D; Trenti, Massimiliano; Battilana, Juri; Emanuelli, Francesco; Sordo, Maddalena; Moretto, Marco; Camps, Céline; Larcher, Roberto; Delrot, Serge; Grando, Maria S

    2017-01-01

    Monoterpenes confer typical floral notes to "Muscat" grapevine varieties and, to a lesser extent, to other aromatic non-Muscat varieties. Previous studies have led to the identification and functional characterization of some enzymes and genes in this pathway. However, the underlying genetic map is still far from being complete. For example, the specific steps of monoterpene metabolism and its regulation are largely unknown. With the aim of identifying new candidates for the missing links, we applied an integrative functional genomics approach based on the targeted metabolic and genome-wide transcript profiling of Moscato Bianco ripening berries. In particular, gas chromatography-mass spectrometry analysis of free and bound terpenoid compounds was combined with microarray analysis in the skins of berries collected at five developmental stages from pre-veraison to over-ripening. Differentially expressed metabolites and probes were identified in the pairwise comparison between time points by using the early stage as a reference. Metabolic and transcriptomic data were integrated through pairwise correlation and clustering approaches to discover genes linked with particular metabolites or groups of metabolites. These candidate transcripts were further checked for co-localization with quantitative trait loci (QTLs) affecting aromatic compounds. Our findings provide insights into the biological networks of grapevine secondary metabolism, both at the catalytic and regulatory levels. Examples include a nudix hydrolase as component of a terpene synthase-independent pathway for monoterpene biosynthesis, genes potentially involved in monoterpene metabolism (cytochrome P450 hydroxylases, epoxide hydrolases, glucosyltransferases), transport (vesicle-associated proteins, ABCG transporters, glutathione S-transferases, amino acid permeases), and transcriptional control (transcription factors of the ERF, MYB and NAC families, intermediates in light- and circadian cycle

  10. Distribution of YLOID in soil-grapevine system (Vitis vinifera L.) as tool for geographical characterization of agro-food products. A two years case study on different grafting combinations.

    Science.gov (United States)

    Pisciotta, Antonino; Tutone, Livia; Saiano, Filippo

    2017-04-15

    The knowledge of a chemistry relationship between the soil and the agricultural products is an important tool for the quality assessment of food. We studied YLOID (Y, La and lanthanoids), recognized as very useful tracers due their coherent and predictable behavior, to trace and evaluate their distribution from soil to the grape in Vitis vinifera L. Because much of the world's viticulture is based on grafting, and rootstocks have proved affect vine growth, yield, fruit and wine quality, we carried out experimental trials to analyse the YLOID distribution of two different red cultivars, grafted onto six different rootstocks, on the same soil. The YLOID amounts, the relationship Heavy vs Light YLOID and the pattern of YLOID were calculated. The results showed that the different grafting combinations were not able to induce significant differences in YLOID uptake from the soil maintaining the same fingerprint (with the exception of Eu). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Effects of Hot Water Treatment, Hydration and Order of Nursery Operations on Cuttings of Vitis vinifera Cultivars

    Directory of Open Access Journals (Sweden)

    H. Waite

    2005-08-01

    Full Text Available Hot water treatment (HWT is an effective control for endogenous pathogens, including Phaeomoniella chlamydospora, in grapevine propagating material. However sporadic unexplained failures of HWT material do occur. In order to determine the most reliable HWT protocols the effects of HWT at 50°C for 30 min., order of HWT and storage (store/HWT and HWT/store, and 3 hydration times (0, 4 and 6 h on root and shoot development and final condition in dormant cuttings of Cabernet Sauvignon and Chardonnay were evaluated. After incubation callus, root and shoot development were assessed. Cuttings were potted into cardboard plant bands, grown to marketable size in a protected environment, and assessed as “A” grade, “B” grade or dead. Callus development in Chardonnay was affected by an interaction between HWT protocols and hydration times. Callus was least developed in cuttings hydrated for 15 h and stored before HWT. Callus development in all other treatments was greater (P<0.05 regardless of HWT or hydration. By contrast, callus development in Cabernet Sauvignon was greater (P<0.05 in HWT than in non-HWT cuttings regardless of the duration of hydration or the order of operations. Root development in Chardonnay was furthest advanced in cuttings hydrated for 15 h. (regardless of HWT and in HWT cuttings not hydrated. HWT was the only factor that affected root development in Cabernet Sauvignon. Root development was greatest in non-HWT cuttings. There were no differences between any of the treatments in either variety at final assessment. On this evidence nurseries could apply any of the above protocols successfully. However the benign conditions of the protected environment may have enabled the cuttings to recover from the stresses imposed by the various treatments. Had the cuttings been grown in a field nursery there might have been differences between treatments at final assessment.

  12. The effect of soil and foliar applications of magnesium fertilisers on yields and quality of vine (Vitis vinifera, L. grapes

    Directory of Open Access Journals (Sweden)

    Andrea Zatloukalová

    2011-01-01

    Full Text Available A one-year field trial was established with the vine variety Ryzlink vlašský (Riesling italico to evaluate the effect of spring soil applications and 5x repeated foliar application of magnesium fertilisers on yields and quality of grapes. On light soil of the experimental locality Žabčice (ca 25 km south of Brno visual symptoms of Mg deficiency on vine leaves had been monitored in the past. The experiment involved 4 treatments: 1 unfertilised control; 2 spring soil application of Kieserite – 20 kg Mg.ha−1; 3 5x foliar application of a 5% solution of Epso Combitop – Mg, S, Mn, Zn; 11.8 kg Mg.ha−1; 4 5x foliar applications of a 5% solution of Epso Top – Mg, S; 14.8 kg Mg.ha−1.No significant differences among the treatments were detected in the contents of K (1.40–1.67% and Ca (1.63–1.91% in leaves sampled after the applications. After foliar applications the contents of Mg and S significantly increased in treatments 3–4 to 0.42–0.49% and 0.34–0.40 %, respectively compared to treatments 1–2 (0.29–0.30% and 0.22%, respectively. The content of Zn (173–380 mg.kg−1 and Mn (90–551 mg.kg−1 increased significantly in treatment 3 compared to the other treatments. The chlorophyll index did not differ among the treatments. Grape yields (t.ha−1 in treatments 1–4 were the following: 7.04–8.16–7.51–7.26 t.ha−1, respectively. Only the soil-applied treatment 2 differed significantly from the other treatments. The content of sugar (16.5–17.9 °NM, titratable acids (12.78–13.25 g.l−1 and the pH of must (3.02–3.11 did not differ among the treatments.

  13. Genome analysis methods: Vitis vinifera [PGDBj Registered plant list, Marker list, QTL list, Plant DB link and Genome analysis methods[Archive

    Lifescience Database Archive (English)

    Full Text Available e ... 19,577 Exofish, Genewise, Geneid and SNAP 26,346 (Mar2010) Genoscope; http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/ Nov2010 Mar2010 10.1038/nature06148 17721507 ...

  14. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to oligomeric procyanidins (OPCs) from grape (Vitis vinifera L.) seeds and improvement of visual adaptation to the dark (ID 680) pursuant to Article 13(1) of Regulation

    DEFF Research Database (Denmark)

    Tetens, Inge

    conclusions could be drawn for the scientific substantiation of the claim. On the basis of the data presented, the Panel concludes that a cause and effect relationship has not been established between the consumption of OPCs from grape (Vitis vinifera L.) seeds and improvement of visual adaptation to the dark....... claims in relation to oligomeric procyanidins (OPCs) from grape (Vitis vinifera L.) seeds and improvement of visual adaptation to the dark. The scientific substantiation is based on the information provided by the Member States in the consolidated list of Article 13 health claims and references that EFSA......, clarifications from Member States and the references provided, the Panel assumes that the claimed effect refers to the improvement of visual adaptation to the dark. The Panel considers that improvement of visual adaptation to the dark is a beneficial physiological effect. No references were provided from which...

  15. Exploración del efecto protector frente a radicales libres de derivados de la uva (Vitis vinifera L. Cv. Tannat en Saccharomyces cerevisiae Analysis of a putative protection against free radicals by grape derivatives (Vitis vinifera L. Cv. Tannat in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    N. Bracesco

    2007-03-01

    Full Text Available Se exploró un posible efecto protector del genoma por parte de un derivado de la uva (vino Tannat. Se utilizaron poblaciones celulares haploides y diploides de Saccharomyces cerevisiae como modelo eucariota. Muestras celulares se expusieron a H2O2 en medio nutriente. El ADN se analizó por densitometría láser, luego de su aislamiento y separación por electroforesis con campos pulsados. Se aplicó la distribución de Poisson para la determinación de roturas dobles. El número de roturas dobles del ADN y la frecuencia mutagénica aumentaron en función de la dosis de H2O2, disminuyendo la probabilidad de sobrevida. La combinación de H2O2 con vino Tannat aumentó significa-tivamente la probabilidad de sobrevida y disminuyó el número de roturas dobles. No se observó efecto mutagénico por el vino Tannat. Estos efectos pudieron simularse utilizando altas concentraciones de α-tocoferol. Los resultados indican que un derivado de Vitis vinifera puede, en ciertas condiciones, disminuir las dobles roturas de ADN producidas por el H2O2 e incrementar las probabilidades de sobrevida celular. Los blancos involucrados podrían ser, entre otros, componentes intracelulares de las cascadas redox y/o enzimas de reparación del ADN.The aim of this work was to analyse a possible genome protection provided by a grape derivative (Tannat wine in yeast cell populations exposed to H2O2. Haploid and diploid strains of Saccharomyces cerevisiae were used as eukaryotic model. Cell samples were exposed to H2O2 in a nutrient medium. Chromosomal DNA was analysed after isolation and separation by pulsed field electrophoresis. Double strand breaks were determined by laser densitometry and application of Poisson distribution. Both haploid and diploid cells showed H2O2 dose dependent DNA fractionation, as well as an increase of lethal -and mutation- events. Upon combination of the Tannat wine and H2O2 a significant decrease of double strand breaks was observed, in

  16. A Dense Single-Nucleotide Polymorphism-Based Genetic Linkage Map of Grapevine (Vitis vinifera L.) Anchoring Pinot Noir Bacterial Artificial Chromosome Contigs

    National Research Council Canada - National Science Library

    Troggio, Michela; Malacarne, Giulia; Coppola, Giuseppina; Segala, Cinzia; Cartwright, Dustin A; Pindo, Massimo; Stefanini, Marco; Mank, Rolf; Moroldo, Marco; Morgante, Michele; Grando, M. Stella; Velasco, Riccardo

    2007-01-01

    ...) individuals derived from a V. vinifera cross of the cultivars Syrah and Pinot Noir. Of these markers, 623 were anchored to 367 contigs that are included in a physical map produced from the same clone of Pinot Noir and covering 352 Mbp...

  17. Anti-Inflammatory, Anti-Apoptotic and Pro-Proliferative Effects of Vitis Vinifera Seed Ethanolic Extract in the Liver of Streptozotocin-Nicotinamide-Induced Diabetes in Male Rats.

    Science.gov (United States)

    Giribabu, Nelli; Karim, Kamarulzaman; Kilari, Eswar Kumar; Kassim, Normadiah M; Salleh, Naguib

    2017-06-30

    Consumption of Vitis vinifera seed has been reported to ameliorate liver pathology in diabetes mellitus; however, the mechanisms underlying its effects remain unknown. In this study, the anti-inflammatory, anti-apoptotic and pro-proliferative effects of the ethanolic seed extract of V. vinifera (VVSEE) in the liver in cases of diabetes were identified. Adult male rats with streptozotocin-nicotinamide-induced diabetes were given 50, 100 or 200 mg/kg body weight VVSEE orally for 28 days. At the end of the treatment, body weights were determined, and the blood was collected for analyses of fasting blood glucose, insulin and liver enzyme levels. Following sacrifice, livers were harvested and their wet weights and glycogen contents were measured. Histologic appearances of the livers were observed under light microscopy, and the expression and distribution of inflammatory, apoptosis and proliferative markers in the livers were identified by molecular biologic techniques. Treatment of rats with diabetes by VVSEE attenuates decreased body weight, liver weight and liver glycogen content. Additionally, increases in fasting blood glucose levels and liver enzyme levels and decreases in serum insulin levels were ameliorated. Lesser histopathologic changes were also observed: decreased inflammation and apoptosis, as indicated by decreased levels of inflammatory markers (TNF-α, NF-Kβ, IKK-β, IL-6, IL-1β) and apoptosis markers (caspase-3, caspase-9 and Bax). VVSEE treatment induces increase in hepatocyte regeneration, as indicated by increased PCNA and Ki-67 distribution in the livers of rats with diabetes. Several molecules identified in VVSEE via gas chromatography mass spectrometry might contribute to these effects. The anti-inflammatory, anti-apoptotic and pro-proliferative effects of VVSEE could account for its hepatoprotective actions in diabetes. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  18. Optimization, in-house validation, and application of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the quantification of selected polyphenolic compounds in leaves of grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Schoedl, Katharina; Forneck, Astrid; Sulyok, Michael; Schuhmacher, Rainer

    2011-10-26

    Polyphenols in grapevine can be constitutive or induced, depending upon cultivar, plant organ, and environmental influences. The aim of the presented work was to develop and optimize a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to study the pattern and amount of selected polyphenols in leaves of Vitis vinifera L. The method is simple and does not require any sample cleanup. It covers representative metabolites of the structure classes cinnamic acids, flavonoids, and stilbenes and enables the simultaneous separation and quantification of 13 polyphenols within 9 min at concentration levels between 0.1 and 3 μg/g. We present the method performance characteristics and its application to the quantification of polyphenols in grapevine leaves of the cultivars Riesling and Pinot noir. A total of 7 of 13 target polyphenols were detected at concentrations above the limits of quantification. Interestingly, instead of the expected trans-resveratrol, the investigated leaf samples of both cultivars contained cis-resveratrol-3-O-glucoside. The measurements also showed that Riesling leaves tended to contain higher concentrations of the selected polyphenols than Pinot noir. In view of its intended future use, the developed method has been shown to be a powerful and fast tool to study polyphenols in grapevine leaves subjected to environmental stress conditions.

  19. The Evolution of Total Phenolic Compounds and Antioxidant Activities during Ripening of Grapes (Vitis vinifera L., cv. Tempranillo Grown in Semiarid Region: Effects of Cluster Thinning and Water Deficit

    Directory of Open Access Journals (Sweden)

    Inmaculada Garrido

    2016-11-01

    Full Text Available A study was made of how water status (rainfed vs. irrigated and crop load (no cluster thinning vs. cluster thinning can together affect the grapes of Vitis vinifera cv. Tempranillo vines growing in a semiarid zone of Extremadura (Spain. The grapes were monitored at different stages of ripening, measuring the peroxidase (POX and superoxide dismutase (SOD antioxidant activities and the phenolic content (flavonoids and phenylpropanoids, together with other parameters. The irrigation regime was adjusted to provide 100% of crop evapotranspiration (ETc. The findings confirmed previous results that both thinning and water deficit advance ripening, while irrigation and high crop load (no thinning lengthen the growth cycle. The SOD activity remained practically constant throughout ripening in the thinned treatments and was always lower than in the unthinned treatments, an aspect which could have been the cause of the observed greater level of lipid peroxidation in the water deficit, thinned treatment. The nonspecific peroxidase activity was very low, especially in the thinned treatments. The effect of thinning was enhanced when combined with water deficit, inducing increases in phenylpropanoids and, above all, flavonoids at the harvest stage of ripening, while leaving the polyphenol oxidase activity (PPO unaffected.

  20. The Evolution of Total Phenolic Compounds and Antioxidant Activities during Ripening of Grapes (Vitis vinifera L., cv. Tempranillo) Grown in Semiarid Region: Effects of Cluster Thinning and Water Deficit.

    Science.gov (United States)

    Garrido, Inmaculada; Uriarte, David; Hernández, Marcos; Llerena, José Luis; Valdés, María Esperanza; Espinosa, Francisco

    2016-11-17

    A study was made of how water status (rainfed vs. irrigated) and crop load (no cluster thinning vs. cluster thinning) can together affect the grapes of Vitis vinifera cv. Tempranillo vines growing in a semiarid zone of Extremadura (Spain). The grapes were monitored at different stages of ripening, measuring the peroxidase (POX) and superoxide dismutase (SOD) antioxidant activities and the phenolic content (flavonoids and phenylpropanoids), together with other parameters. The irrigation regime was adjusted to provide 100% of crop evapotranspiration (ETc). The find