WorldWideScience

Sample records for visually evoked potential

  1. Visual Evoked Potentials in Rett Syndrome

    Directory of Open Access Journals (Sweden)

    J. Gordon Millichap

    2015-11-01

    Full Text Available Investigators from the Boston Children's Hospital recorded pattern-reversal visual evoked potentials (VEPs in Mecp2 heterozygous female mice and in 34 girls with Rett syndrome (RTT.

  2. Visual evoked potential study in slow learners.

    Science.gov (United States)

    Khaliq, Farah; Anjana, Yumnam; Vaney, Neelam

    2009-01-01

    Slow learners are individuals with low achievement and comparably low IQ scores. It may be a symptom reflecting a larger underlying problem in them. Sensory neural processing of visual information can be one of the contributory factors for their underachievement. The present study was undertaken to examine the integrity and function of visual pathway by means of Visual Evoked Potential (VEP). Pattern reversal VEP was performed on seventeen slow learners. Fifteen age and sex matched children with good school performance and normal IQ were taken as controls. There was significant prolongation of N75 component of VEP in slow learners. The latencies of P100 and N145 were also increased but could not reach the level of significance. Our findings are suggestive of the presence of a weaker VEP response in slow learners indicative of a deficit early in the visual processing. There is some abnormality in the geniculate afferents to V1 which is consistent with a defect in the magnocellular pathway at the level of Visual Area 1 or earlier.

  3. Visual evoked potentials in rubber factory workers.

    Science.gov (United States)

    Tandon, O P; Kumar, V

    1997-01-01

    Pattern reversal visual evoked potentials (pVEP) were studied in 39 male rubber factory workers in the age range of 18-55 years and 20 control subjects (aged 18-46 years) not exposed to the rubber factory environment. Results revealed that 20 (51%) rubber factory workers had abnormal latencies of wave P1 (dominant component of pVEP) as per accepted criteria of 99% tolerance limit set for the control group (i.e. any value above mean +3 SD of control was considered abnormal). The section-wise per cent distribution of abnormalities was vulcanization (83%), tubing (75%), calendering (60%), loading (38%) and mixing (14%). This study provides electrophysiological evidence that rubber factory environments affect the conduction processes in optical pathways from their origin in the retina to striate cortex. However, this study has its limitations in not identifying the specific chemical(s) causing these changes in VEP.

  4. Assessment of visual disability using visual evoked potentials.

    Science.gov (United States)

    Jeon, Jihoon; Oh, Seiyul; Kyung, Sungeun

    2012-08-06

    The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9-42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19-36 years), 19 optic neuritis patients (19 eyes: ages 9-71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = -0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = -0.072x + 1.22 (-0.072). This resulted in a prediction reference of visual acuity associated with malingering vs. real

  5. Assessment of visual disability using visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Jeon Jihoon

    2012-08-01

    Full Text Available Abstract Background The purpose of this study is to validate the use of visual evoked potential (VEP to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. Methods A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9–42 years, 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19–36 years, 19 optic neuritis patients (19 eyes: ages 9–71 years, and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Results Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR of 38 eyes from normal (right eyes and amblyopic (amblyopic eyes subjects were significant [y = −0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = −0.072x + 1.22 (−0.072. This resulted in a prediction

  6. Flash visual evoked potentials in preterm infants.

    Science.gov (United States)

    Feng, Jing-Jing; Wang, Wei-Ping; Guo, Shu-Juan; Liu, Zhi-Wei; Xu, Xiu

    2013-03-01

    To describe the development of flash visual evoked potentials (FVEPs) in preterm infants from 1 to 18 months and to determine if the maturation of FVEPs is similar to that of term infants. Longitudinal follow-up study. Twenty very low birth weight (VLBW) preterm infants, 42 low birth weight (LBW) preterm infants, and 41 term infants underwent FVEP recordings and neurodevelopmental examinations at 1, 3, 6, 9, 12, and 18 months of corrected and chronological ages. The FVEP recordings were carried out with the VikingQuest-IV neuroelectrophysiological device (VikingQuest, Nicolet, WI), and neurodevelopmental assessments were made by the Development Screen Test and Bayley Scales of Infant Development, Second Edition. At 1, 3, 6, and 9 months of age, neurodevelopment was measured with the Mental Index and Developmental Quotient. At 12 and 18 months, neurodevelopment was assessed using the Mental Developmental Index and Psychomotor Developmental Index. Two FVEP values were analyzed: the P2 amplitude (peak to peak from the preceding N2 wave) and the latency of the P2 wave. There was no significant difference for age-dependent decreased pattern of FVEP P2 latency between preterm infants and the control group. This pattern consisted of a rapid decrease in the first 6 months of life, a gradual decline from 6 to 12 months of age, and a steady reduction from 12 to 18 months of age. The P2 latencies were prolonged significantly at all 6 recorded times in the VLBW group compared with the controls and showed a delay in the LBW group at 1 and 3 months of corrected age. The maturation of P2 latency in LBW infants is similar to that of the controls at 3 months of corrected age, but the maturation of P2 latency in VLBW children remained delayed when compared with the controls until 18 months of corrected age. Although the FVEP development pattern of preterm infants was similar to that of healthy full-term infants, the former had deficits in visual electrophysiologic maturation

  7. Influence of visual angle on pattern reversal visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Ruchi Kothari

    2014-01-01

    Full Text Available Purpose: The aim of this study was to find whether the visual evoked potential (VEP latencies and amplitude are altered with different visual angles in healthy adult volunteers or not and to determine the visual angle which is the optimum and most appropriate among a wide range of check sizes for the reliable interpretation of pattern reversal VEPs (PRVEPs. Materials and Methods: The present study was conducted on 40 healthy volunteers. The subjects were divided into two groups. One group consisted of 20 individuals (nine males and 11 females in the age range of 25-57 years and they were exposed to checks subtending a visual angle of 90, 120, and 180 minutes of arc. Another group comprised of 20 individuals (10 males and 10 females in the age range of 36-60 years and they were subjected to checks subtending a visual angle of 15, 30, and 120 minutes of arc. The stimulus configuration comprised of the transient pattern reversal method in which a black and white checker board is generated (full field on a VEP Monitor by an Evoked Potential Recorder (RMS EMG. EPMARK II. The statistical analysis was done by One Way Analysis of Variance (ANOVA using EPI INFO 6. Results: In Group I, the maximum (max. P100 latency of 98.8 ± 4.7 and the max. P100 amplitude of 10.05 ± 3.1 μV was obtained with checks of 90 minutes. In Group II, the max. P100 latency of 105.19 ± 4.75 msec as well as the max. P100 amplitude of 8.23 ± 3.30 μV was obtained with 15 minutes. The min. P100 latency in both the groups was obtained with checks of 120 minutes while the min. P100 amplitude was obtained with 180 minutes. A statistically significant difference was derived between means of P100 latency for 15 and 30 minutes with reference to its value for 120 minutes and between the mean value of P100 amplitude for 120 minutes and that of 90 and 180 minutes. Conclusion: Altering the size of stimulus (visual angle has an effect on the PRVEP parameters. Our study found that the 120

  8. Visual evoked potentials in workers with chronic solvent encephalopathy

    NARCIS (Netherlands)

    Verberk, Maarten M.; Brons, Joke T.; Sallé, Herman J. A.

    2004-01-01

    Objectives. Two promising variations of visual evoked potentials (VEPs) were studied in solvent-exposed workers: the effect of a low-contrast stimulus in comparison with the usually applied high contrast, and the ability of pattern-onset VEP to reveal damage to specific visual cortical areas. In

  9. Automatic classification of visual evoked potentials based on wavelet decomposition

    Science.gov (United States)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  10. Binocular interactions in the guinea pig's visual-evoked potentials.

    Science.gov (United States)

    Ates, Kahraman; Demirtas, Serdar; Goksoy, Cuneyt

    2006-12-13

    In this study, binocular interaction in guinea pigs is evaluated using bioelectrical activities. A difference potential, as evidence of an interaction, is calculated by subtracting the sum of visual-evoked potentials recorded by left and right monocular visual stimulations from the potential recorded by binocular stimulation. A negative monophasic wave with an average amplitude of 15.1 microV and an average latency of 106 ms is observed in the difference potential. This finding implies that the P100 is the main guinea pig visual-evoked potential wave that is affected by binocular interaction. Binocular interaction is also observed in the waves N75 and N140, although with a smaller amplitude. No interaction is observed in the segments of P55 and P200 waves.

  11. Visual evoked potentials in patients after methanol poisoning.

    Science.gov (United States)

    Urban, Pavel; Zakharov, Sergey; Diblík, Pavel; Pelclová, Daniela; Ridzoň, Petr

    2016-01-01

    We report the results of the visual evoked potentials (VEP) examination in patients after severe poisoning by methanol. The group of 47 patients (38 males and 9 females) was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012-2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test) were used to analyze factors influencing the VEP abnormality. The visual evoked potential was abnormal in 20 patients (43%), 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04). The abnormality was not related to chronic alcohol abuse. The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1-9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. The neonatal development of the light flash visual evoked potential.

    Science.gov (United States)

    Kraemer, M; Abrahamsson, M; Sjöström, A

    1999-01-01

    To follow visual development longitudinally in the normal neonate using the flash visual evoked potential (VEP) and to find indications for a relationship between potential development and visual development. Twenty healthy infants, born at term, were included in the study. Flash and patterned flash VEPs were used. The first VEP was recorded the day of birth or just postnatally, and succeeding recordings were performed the following weeks and months. The data revealed different types of VEP in the neonatal period suggesting great variability in visual function on the day of birth. In the early development a potential of long latency and duration preceded the development of a more compound potential of shorter latency. The two types of responses seemed to coalesce during early development; the first late response was attenuated and was eventually integrated in the more mature VEP. At approximately five weeks of age changes in the VEP were simultaneous with the development of responsive smiling and another visual behaviour of the infants. The results showed many similarities between the VEP development in infants and in immature animals. In developing animals geniculo-cortical and extra-geniculate visual afferent pathways evoke two types of VEPs similar to those recorded in the present study. The early responses were also similar to previous recordings from children with lesions in the geniculo-striatal pathway or primary cortex. Our interpretation of the results was that the human VEP also consists of responses evoked by afferents running both in geniculo-cortical and extra-geniculate pathways and that the two types of responses could be separated in the VEP in the neonatal period. These findings are important for our understanding of conditions with a delay in visual maturation, for example intracranial haemorrhages, hydrocephalus, pre/dys-maturity and 'idiopathic' delayed visual maturation.

  13. Visual evoked potentials, reaction times and eye dominance in cricketers.

    Science.gov (United States)

    Thomas, N G; Harden, L M; Rogers, G G

    2005-09-01

    Few studies have examined the physiology of cricket, including the difference in ability between batsmen to make controlled contact with a ball bowled at high speed. We therefore measured visual evoked potentials and choice reaction times with dominant eyes, non-dominant eyes, and both eyes together, in 15 elite batsmen and 10 elite bowlers (aged 20.9 SD 1.9 years) and 9 control subjects (aged 20.2 SD 1.5 years). The latency and amplitude of waves N70, P100 and N145 were determined for each visual evoked potential (VEP). In addition interpeak latencies and peak to peak amplitudes were measured. The subjects also completed a choice reaction test to a visual stimulus. We found that cricketers were not more likely to have crossed dominance (dominant eye contralateral to dominant hand) than controls. Cricketers had a faster latency for VEP wave N70 than controls (p=0.03). However reaction time was not different between cricketers and the control group. Across all subjects, in comparison to monocular testing, binocular testing led to a faster choice reaction time (p=0.02) and larger amplitudes of VEP wave N70 (p=0.01). Visual processing during the first 100(-1)50 ms of the balls flight together with binocular vision facilitates retinal activation in talented cricketers.

  14. Clinical application of visual evoked potential in orbital cellulitis of infants

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Jing

    2014-07-01

    Full Text Available AIM: To explore the visual evoked potential in infantile orbital cellulitis' clinical applications by monitoring the visual evoked potential changes in infantile orbital cellulitis before, during and after treatment.METHODS: Twenty-three cases of CT diagnosed single orbital cellulitis were examined by the visual evoked potentials. The affected eyes as observation group, and healthy eyes as control group. Comparative observation of visual evoked potential changes in amplitude and incubation period before, during and after the treatment. RESULTS: Compared with the control group, the observation group's visual evoked potential changes included reduced amplitude, extended incubation period. With the treatment progress, the observation group had gradual increase in amplitude, gradual reduction in incubation period. CONCLUSION: In infantile orbital cellulitis, the use of visual evoked potentials is a simple, feasible and effective method to monitoring the visual function during the treatment.

  15. Long-term visuo-gustatory appetitive and aversive conditioning potentiate human visual evoked potentials

    DEFF Research Database (Denmark)

    Christoffersen, Gert R.J.; Laugesen, Jakob L.; Møller, Per

    2017-01-01

    and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared...

  16. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials

    DEFF Research Database (Denmark)

    Christoffersen, Gert Rene Juul; Laugesen, Jakob Lund; Møller, Per

    2017-01-01

    and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared...

  17. Influence of rotating shift work on visual reaction time and visual evoked potential.

    Science.gov (United States)

    R V, Hemamalini; N, Krishnamurthy; A, Saravanan

    2014-10-01

    The present day life style is changing the circadian rhythm of the body especially in rotating night shift workers. The impact of this prolongs their reaction time. Night shift also interferes with the circadian variation of pupil size which may affect the visual evoked potential. To compare the visual reaction time, visual evoked potential (VEP) in rotating night shift workers & day workers and also to correlate the changes in visual reaction time with visual evoked potential. Forty healthy male security guards & staff (25 - 35 y) who did rotating night shifts at least for six months & 40 d workers (25 - 35 y) who did not do night shift in last two years were involved in the study. Visual reaction time and the latency & amplitude of VEP were recorded. Kolmogorov- Smirnov test for normalcy showed the latencies & amplitude of VEP to be normally distributed. Student's unpaired t test showed significant difference (ptime and in the latencies of VEP between night shift & day workers. There was no significant difference in the amplitude of VEP. Night shift workers who are prone to circadian rhythm alteration will have prolonged visual reaction time & visual evoked potential abnormalities. Implementation of Bright Light Therapy would be beneficial to the night shift worker.

  18. Effect of pupil size on multifocal pattern visual evoked potentials.

    Science.gov (United States)

    Martins, Alessandra; Balachandran, Chandra; Klistorner, Alexander I; Graham, Stuart L; Billson, Francis A

    2003-08-01

    The purpose of this study was to investigate the influence of pupil diameter on the amplitude and latency of multifocal visual evoked potentials (mfVEP). The multifocal objective perimeter (Accumap; Objectivision) was used to stimulate the visual field at 56 sites extending to 32 degrees using a pseudo-random pattern stimulus. The mfVEP were recorded using bipolar occipital electrodes, 7 min/eye. Ten normal subjects were recruited from the community and one eye was randomly selected for testing. The mfVEP were recorded at four different pupil diameters (2 mm, 4 mm, 6 mm, 8 mm), obtained by applying tropicamide (0.5%) or pilocarpine (2%) in different dilutions. Appropriate refractive correction was provided to overcome cycloplegia and achieve a visual acuity of 6/7.5 or better. Analysis revealed that at most pupil diameters the normalized full field amplitude did not show significant variation, except at the most miotic pupil diameter (2 mm), where the amplitude became reduced, based on 2-way anova and Tukey's T method. There was, however, significant correlation between latency and pupil area (correlation coefficient: upper field -0.63, lower field -0.76). The results suggest that even in the presence of mydriatics or miotics, the mfVEP test can be used to assess diseases that affect amplitude, provided near correction is used. The interpretation of latency, however, must be made with caution, as a borderline conduction defect with a dilated pupil may appear normal.

  19. Pattern Visual Evoked Potentials Elicited by Organic Electroluminescence Screen

    Directory of Open Access Journals (Sweden)

    Celso Soiti Matsumoto

    2014-01-01

    Full Text Available Purpose. To determine whether organic electroluminescence (OLED screens can be used as visual stimulators to elicit pattern-reversal visual evoked potentials (p-VEPs. Method. Checkerboard patterns were generated on a conventional cathode-ray tube (S710, Compaq Computer Co., USA screen and on an OLED (17 inches, 320 × 230 mm, PVM-1741, Sony, Tokyo, Japan screen. The time course of the luminance changes of each monitor was measured with a photodiode. The p-VEPs elicited by these two screens were recorded from 15 eyes of 9 healthy volunteers (22.0 ± 0.8 years. Results. The OLED screen had a constant time delay from the onset of the trigger signal to the start of the luminescence change. The delay during the reversal phase from black to white for the pattern was 1.0 msec on the cathode-ray tube (CRT screen and 0.5 msec on the OLED screen. No significant differences in the amplitudes of P100 and the implicit times of N75 and P100 were observed in the p-VEPs elicited by the CRT and the OLED screens. Conclusion. The OLED screen can be used as a visual stimulator to elicit p-VEPs; however the time delay and the specific properties in the luminance change must be taken into account.

  20. Flash visual evoked potentials in diurnal birds of prey.

    Science.gov (United States)

    Dondi, Maurizio; Biaggi, Fabio; Di Ianni, Francesco; Dodi, Pier Luigi; Quintavalla, Fausto

    2016-01-01

    The objective of this pilot study was to evaluate the feasibility of Flash Visual Evoked Potentials (FVEPs) testing in birds of prey in a clinical setting and to describe the protocol and the baseline data for normal vision in this species. FVEP recordings were obtained from 6 normal adult birds of prey: n. 2 Harris's Hawks (Parabuteo unicinctus), n. 1 Lanner Falcon (Falco biarmicus), n. 2 Gyrfalcons (Falco rusticolus) and n. 1 Saker Falcon (Falco cherrug). Before carrying out VEP tests, all animals underwent neurologic and ophthalmic routine examination. Waveforms were analysed to identify reproducible peaks from random variation of baseline. At least three positive and negative peaks were highlighted in all tracks with elevated repeatability. Measurements consisted of the absolute and relative latencies of these peaks (P1, N1, P2, N2, P3, and N3) and their peak-to-peak amplitudes. Both the peak latency and wave morphology achieved from normal animals were similar to those obtained previously in other animal species. This test can be easily and safely performed in a clinical setting in birds of prey and could be useful for an objective assessment of visual function.

  1. Flash visual evoked potentials in diurnal birds of prey

    Directory of Open Access Journals (Sweden)

    Maurizio Dondi

    2016-07-01

    Full Text Available The objective of this pilot study was to evaluate the feasibility of Flash Visual Evoked Potentials (FVEPs testing in birds of prey in a clinical setting and to describe the protocol and the baseline data for normal vision in this species. FVEP recordings were obtained from 6 normal adult birds of prey: n. 2 Harris’s Hawks (Parabuteo unicinctus, n. 1 Lanner Falcon (Falco biarmicus, n. 2 Gyrfalcons (Falco rusticolus and n. 1 Saker Falcon (Falco cherrug. Before carrying out VEP tests, all animals underwent neurologic and ophthalmic routine examination. Waveforms were analysed to identify reproducible peaks from random variation of baseline. At least three positive and negative peaks were highlighted in all tracks with elevated repeatability. Measurements consisted of the absolute and relative latencies of these peaks (P1, N1, P2, N2, P3, and N3 and their peak-to-peak amplitudes. Both the peak latency and wave morphology achieved from normal animals were similar to those obtained previously in other animal species. This test can be easily and safely performed in a clinical setting in birds of prey and could be useful for an objective assessment of visual function.

  2. Influence of Rotating Shift Work on Visual Reaction Time and Visual Evoked Potential

    OpenAIRE

    R.V., Hemamalini; N, Krishnamurthy; A, Saravanan

    2014-01-01

    Background: The present day life style is changing the circadian rhythm of the body especially in rotating night shift workers. The impact of this prolongs their reaction time. Night shift also interferes with the circadian variation of pupil size which may affect the visual evoked potential.

  3. Visual Evoked Potential to Assess Retinopathy in Gestational Diabetes Mellitus.

    Science.gov (United States)

    Hari Kumar, K V S; Ahmad, F M H; Sood, Sandeep; Mansingh, Sudhir

    2016-04-01

    We evaluated for early retinopathy using the visual evoked potential (VEP) in patients with gestational diabetes mellitus (GDM) and type 2 diabetes mellitus during pregnancy. All patients with GDM and type 2 diabetes seen between June and October of 2014 were included in this cross-sectional, observational study. Patients with secondary diabetes, ocular or major illness were excluded from the study. VEP was recorded in both eyes to derive prominent positive peak latency (P100), amplitude and initial negative deflection (N75) latency. The data were compared with 10 gestational age-matched controls with normal glucose tolerance. Appropriate statistical methods were used for comparison among the 3 groups. The study participants (40 with GDM, 10 with type 2 diabetes, 10 with normal glucose tolerance) had a median (25th to 75th interquartile range) age of 26 (24.3, 30) years, a gestational age of 24.5 (21, 27) weeks and weights of 66.8 (63.4, 71.5) kg. The P100 latencies were comparable among the 3 groups (p=0.0577). However, patients with any diabetes (GDM and type 2 diabetes) had prolonged P100 latencies (p=0.0139) and low P100 amplitudes (p=0.0391) in comparison to controls. P100 latency showed a direct correlation with hyperglycemia (p=0.0118). Our data showed that VEP abnormalities are detectable even in the short-term hyperglycemia of GDM and type 2 diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  4. The Nature and Process of Development in Averaged Visually Evoked Potentials: Discussion on Pattern Structure.

    Science.gov (United States)

    Izawa, Shuji; Mizutani, Tohru

    This paper examines the development of visually evoked EEG patterns in retarded and normal subjects. The paper focuses on the averaged visually evoked potentials (AVEP) in the central and occipital regions of the brain in eyes closed and eyes open conditions. Wave pattern, amplitude, and latency are examined. The first section of the paper reviews…

  5. Visual evoked potentials in Negro carriers of the gene for tyrosinase positive oculocutaneous albinism.

    Science.gov (United States)

    Castle, D; Kromberg, J; Kowalsky, R; Moosa, R; Gillman, N; Zwane, E; Fritz, V

    1988-01-01

    Visual evoked potential testing was performed on 15 Negro carriers of the gene for tyrosinase positive oculocutaneous albinism in order to detect whether they have the same visual pathway decussation anomalies as do homozygotes. No subject showed 01-02 asymmetry on monocular testing, indicating that decussation follows the normal pattern. It is concluded that visual evoked potential testing is probably not useful in the detection of Negroes heterozygous for the gene for tyrosinase positive oculocutaneous albinism. PMID:3148727

  6. Pattern-reversal visual evoked potentials as a diagnostic tool for ocular malingering

    Directory of Open Access Journals (Sweden)

    Tarciana de Souza Soares

    Full Text Available ABSTRACT Purpose: To investigate the contributions of transient pattern-reversal visual evoked potentials in the diagnosis of ocular malingering at a Brazilian university hospital. Methods: Adult patients with suspected malingering in one or both eyes were referred for visual evoked potential testing. Data from patients' medical records were reviewed and analyzed retrospectively. Data analysis included the distance optotype visual acuity based on a ETDRS retro-illuminated chart and the transient pattern-reversal visual evoked potential parameters of latency (milliseconds and amplitude (microvolts for the P100 component, using checkerboards with visual subtenses of 15' and 60'. Motivations for malingering were noted. Results: The 20 subjects included 11 (55% women. Patient ages ranged from 21 to 61 years (mean= 45.05 ± 11.76 years; median= 49 years. In 8 patients (6 women, both eyes exhibited reduced visual acuity with normal pattern-reversal visually evoked potential parameters (pure malingerers. The remaining 12 patients (7 men exhibited reduced vision in only 1 eye, with simulated reduced vision in the contralateral eye (exaggerators. Financial motivation was noted in 18 patients (9 men. Conclusion: Normal pattern-reversal visually evoked potential parameters with suspected ocular malingering were observed in a 20 patient cohort. This electrophysiological technique appeared to be useful as a measure of visual pathway integrity in this specific population.

  7. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials.

    Science.gov (United States)

    Christoffersen, Gert R J; Laugesen, Jakob L; Møller, Per; Bredie, Wender L P; Schachtman, Todd R; Liljendahl, Christina; Viemose, Ida

    2017-01-01

    Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject's evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions-from primary visual areas and into the inferior temporal gyrus (ITG). These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US.

  8. Exploring the methods of data analysis in multifocal visual evoked potentials

    DEFF Research Database (Denmark)

    Malmqvist, Lasse; Santiago de Abreu, Lucimar; Fraser, C.

    2016-01-01

    Purpose: The multifocal visual evoked potential (mfVEP) provides a topographical assessment of visual function, which has already shown potential for use in patients with glaucoma and multiple sclerosis. However, the variability in mfVEP measurements has limited its broader application. The purpose...

  9. Cholinergic pairing with visual activation results in long-term enhancement of visual evoked potentials.

    Directory of Open Access Journals (Sweden)

    Jun Il Kang

    Full Text Available Acetylcholine (ACh contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1 that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs in V1 of rats during a 4-8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine, nicotinic (mecamylamine, alpha7 (methyllycaconitine, and NMDA (CPP receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56% during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while alpha7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.

  10. Visual Acuity and Contrast Sensitivity Development in Children: Sweep Visually Evoked Potential and Psychophysics.

    Science.gov (United States)

    Almoqbel, Fahad M; Irving, Elizabeth L; Leat, Susan J

    2017-08-01

    The purpose of this study was to investigate the development of visual acuity (VA) and contrast sensitivity in children as measured with objective (sweep visually evoked potential) and subjective, psychophysical techniques, including signal detection theory (SDT), which attempts to control for differences in criterion or behavior between adults and children. Furthermore, this study examines the possibility of applying SDT methods with children. Visual acuity and contrast thresholds were measured in 12 children 6 to 7 years old, 10 children 8 to 9 years old, 10 children 10 to 12 years old, and 16 adults. For sweep visually evoked potential measurements, spatial frequency was swept from 1 to 40 cpd to measure VA, and contrast of sine-wave gratings (1 or 8 cpd) was swept from 0.33 to 30% to measure contrast thresholds. For psychophysical measurements, VA and contrast thresholds (1 or 8 cpd) were measured using a temporal two-alternative forced-choice staircase procedure and also with a yes-no SDT procedure. Optotype (logMAR [log of the minimum angle of resolution]) VA was also measured. The results of the various procedures were in agreement showing that there are age-related changes in threshold values and logMAR VA after the age of 6 years and that these visual functions do not become adult-like until the age of 8 to 9 years at the earliest. It was also found that children can participate in SDT procedures and do show differences in criterion compared with adults in psychophysical testing. These findings confirm a slightly later development of VA and contrast sensitivity (8 years or older) and indicate the importance of using SDT or forced-choice procedures in any developmental study to attempt to overcome the effect of criterion in children.

  11. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.

    Science.gov (United States)

    Ellingson, Roger M; Oken, Barry

    2010-01-01

    Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.

  12. Early clinical and subclinical visual evoked potential and Humphrey's visual field defects in cryptococcal meningitis.

    Directory of Open Access Journals (Sweden)

    Anand Moodley

    Full Text Available Cryptococcal induced visual loss is a devastating complication in survivors of cryptococcal meningitis (CM. Early detection is paramount in prevention and treatment. Subclinical optic nerve dysfunction in CM has not hitherto been investigated by electrophysiological means. We undertook a prospective study on 90 HIV sero-positive patients with culture confirmed CM. Seventy-four patients underwent visual evoked potential (VEP testing and 47 patients underwent Humphrey's visual field (HVF testing. Decreased best corrected visual acuity (BCVA was detected in 46.5% of patients. VEP was abnormal in 51/74 (68.9% right eyes and 50/74 (67.6% left eyes. VEP P100 latency was the main abnormality with mean latency values of 118.9 (±16.5 ms and 119.8 (±15.7 ms for the right and left eyes respectively, mildly prolonged when compared to our laboratory references of 104 (±10 ms (p<0.001. Subclinical VEP abnormality was detected in 56.5% of normal eyes and constituted mostly latency abnormality. VEP amplitude was also significantly reduced in this cohort but minimally so in the visually unimpaired. HVF was abnormal in 36/47 (76.6% right eyes and 32/45 (71.1% left eyes. The predominant field defect was peripheral constriction with an enlarged blind spot suggesting the greater impact by raised intracranial pressure over that of optic neuritis. Whether this was due to papilloedema or a compartment syndrome is open to further investigation. Subclinical HVF abnormalities were minimal and therefore a poor screening test for early optic nerve dysfunction. However, early optic nerve dysfunction can be detected by testing of VEP P100 latency, which may precede the onset of visual loss in CM.

  13. Visual evoked potentials in children prenatally exposed to methylmercury

    DEFF Research Database (Denmark)

    Yorifuji, Takashi; Murata, Katsuyuki; Bjerve, Kristian S

    2013-01-01

    with delayed latencies for VEP peak N145. After covariate adjustment, a delay of 2.22ms (p=0.02) was seen for each doubling of the mercury concentration in maternal hair. In agreement with neuropsychological findings, the present study suggests that prenatal methylmercury exposure may have an adverse effect...... on VEP findings despite the absence of clinical toxicity to the visual system. However, this association was apparent only after adjustment for n-3 PUFA status....

  14. Evaluation of Visual Evoked Potentials in Patient with Angelmans Syndrome - Case Report

    Directory of Open Access Journals (Sweden)

    Tatjana Knezevic

    2013-06-01

    Full Text Available Background: Angelman syndrome (AS is a genetic disorder with varying degrees of neurological impairment. It is often associated with ocular involvement. Case Report: We present a child diagnosed with AS who had a deletion on the short arm of chromosome 15. The child seemed to be happy, with developmental delay, speech problem, and altering strabismus. To assess the potential presence and degree of damage in the visual pathway, we recorded monocular flash visual evoked potentials (VEPs. Our results revealed the presence of severe central afferent dysfunction in both optical pathways. Conclusion: VEPs can be used in patients with AS and visual disturbances to assess the integrity of the visual system.

  15. A Steady State Visually Evoked Potential Investigation of Memory and Ageing

    Science.gov (United States)

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-01-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…

  16. Comparison of retinal nerve fibre layer thickness with visual evoked potential and visual field in patients with multiple sclerosis.

    Science.gov (United States)

    Alpay, Atilla; Guney, Tuncer; Unal, Aysun; Ugurbas, Suat H

    2012-01-01

    To evaluate retinal nerve fibre layer thickness and to compare results with visual evoked potentials and visual field in patients with multiple sclerosis. A prospective, case-control study, university hospital setting. Seventy-three eyes of 37 multiple sclerosis patients and 74 eyes of 37 healthy subjects. All patients underwent a complete neurological and ophthalmological examination and peri-papillary retinal nerve fibre layer thickness was evaluated using scanning laser polarimetry (GDx). Furthermore, visual evoked potential and visual field testing were performed. The χ(2) test, Student's t-test, Mann-Whitney U-test and Pearson's correlation coefficient analysis of the GDx, visual evoked potential and visual field testing parameters. GDx measurements showed significantly more retinal nerve fibre layer damage in the patients than in the control groups. Comparison of the GDx parameters between patients with optic neuritis and non-optic neuritis demonstrated a statistically significant difference in symmetry (P = 0.046) and superior/nasal parameters (P = 0.009). A correlation was found between the number, superior and inferior ratio parameters, and P100 amplitude obtained with visual evoked potential in patients with non-optic neuritis. Additionally, there was a correlation between the number, inferior ratio and superior/nasal parameters, and the mean deviation of visual field in the non-optic neuritis group. For retinal nerve fibre layer thickness measurements in multiple sclerosis patients, the GDx, along with other techniques, such as visual evoked potential, can be used as a diagnostic and follow-up criterion, particularly in patients without optic neuritis. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  17. Transient brain activity explains the spectral content of steady-state visual evoked potentials.

    Science.gov (United States)

    Gaume, Antoine; Vialatte, François; Dreyfus, Gérard

    2014-01-01

    Steady-state visual evoked potentials (SSVEPs) are widely used in the design of brain-computer interfaces (BCIs). A lot of effort has therefore been devoted to find a fast and reliable way to detect SSVEPs. We study the link between transient and steady-state VEPs and show that it is possible to predict the spectral content of a subject's SSVEPs by simulating trains of transient VEPs. This could lead to a better understanding of evoked potentials as well as to better performances of SSVEP-based BCIs, by providing a tool to improve SSVEP detection algorithms.

  18. Flash visual evoked potential monitoring of optic tract function during macroelectrode-based pallidotomy.

    Science.gov (United States)

    Bonaroti, E A; Rose, R D; Kondziolka, D; Baser, S; Lunsford, L D

    1997-03-15

    Posteroventral pallidotomy (PVP) has received renewed interest as an ablative procedure for the symptomatic treatment of Parkinson's disease. In previous reports, the proximity of the optic tract to the lesion target in the globus pallidus internus has resulted in the occurrence of visual field deficits in as much as 14% of patients. The authors have used intraoperative visual evoked potentials (VEPs) during PVP to reduce this risk. All procedures were performed in awake patients. Flash stimuli were delivered to each eye via fiberoptic sources. Baseline flash VEPs were recorded at O1/Cz (left visual cortex to vertex), Oz/Cz (midline visual cortex to vertex), and O2/Cz (right visual cortex to vertex) for OS, OU, and OD stimulation. Epochs were acquired before and after localization, after macroelectrode stimulation, after temporary thermal lesioning, and after permanent thermal lesioning. Forty-seven patients underwent a total of 59 procedures. Visual evoked potentials were recorded reproducibly in all patients. In 11 procedures, VEP changes were reported, including six amplitude changes (10-80%), six latency shifts (3-10 msec), and one report of "variability." In four procedures, VEP changes prompted a change in target coordinates. One false-positive and one false-negative VEP change were encountered. The only confirmed visual deficit was a superior quadrantanopsia, present on formal fields, but clinically asymptomatic. The authors conclude that VEPs may be useful for procedures performed in the awake patient because of the lack of anesthetic-induced variability. The 1.7% visual morbidity reported here (one in 59 patients) compares favorably with other series using microelectrodes. Visual evoked potentials may be a useful monitoring technique to reduce the incidence of clinically significant visual morbidity during pallidotomy, especially during formal lesioning of the ventral pallidum adjacent to the optic tract.

  19. Visual acuity of the midland banded water snake estimated from evoked telencephalic potentials.

    Science.gov (United States)

    Baker, Robert A; Gawne, Timothy J; Loop, Michael S; Pullman, Sheena

    2007-08-01

    The visual acuity of seven midland banded water snakes was measured by recording evoked responses from telencephalon to temporally modulated square wave grating patterns. Using conventional electrophysiological techniques and signal averaging, high contrast square wave gratings of different spatial frequencies were presented. Acuity was estimated by extrapolating relative response amplitude/log(10) spatial frequency functions which yielded an average acuity of 4.25 cycles/degree. Refractive state was also estimated by recording evoked potentials to intermediate spatial frequencies with different lenses in front of the eye. Polynomial fits indicated that under the experimental conditions the snakes were around 6.4 diopters hyperopic suggesting a corrected acuity of 4.89 cycles/degree. Reduction of grating luminance resulted in a reduction in evoked potential acuity measurements. These results indicate that the spatial resolution of midland banded water snakes is the equal of cat; about 20/120 in human clinical terms.

  20. Assessment of visual evoked potentials in stable COPD patients with no visual impairment

    Directory of Open Access Journals (Sweden)

    Gupta Prem

    2010-01-01

    Full Text Available Objective : To assess whether patients having stable chronic obstructive pulmonary disease (COPD with no clinical evidence of visual impairment or peripheral neuropathy have visual evoked potentials (VEP abnormalities on electrophysiologic evaluation. Methods : In the present study, 80 male subjects with no clinical neuropathy or visual impairment were included; 40 COPD patients and 40 age-matched healthy volunteers. The characteristics of subjects including age, quantum of smoking, duration of illness (in COPD patients only, and spirometric indices {forced expiratory volume in first second (FEV 1 , FEV 1 /forced vital capacity (FVC %, and peak expiratory flow rate (PEFR} were assessed. The mental status was assessed using a questionnaire Mini-Mental State Examination (MMSE Questionnaire. Electrophysiologic studies for the evaluation of VEP were carried out on computerized equipment. Latency and amplitude of P100 wave were analyzed from the VEP wave patterns obtained through a standardized protocol in both the groups to detect abnormalities in the COPD group. For the COPD group, correlations of P100 parameters with patient characteristics, spirometric indices, and MMSE scores were assessed. Significant abnormality was defined as a variation beyond healthy volunteer mean ΁ 3 standard deviation. Results : We observed significantly prolonged latency and decreased amplitude of P100 in both eyes of the patients in COPD group compared with healthy volunteers. Twenty-two of the 40 COPD patients (55% had significant abnormalities in P100 latency, and three COPD patients (7.5% had abnormalities in P100 amplitude. The latency of P100 on the right side had statistically significant inverse correlation with FEV 1 /FVC% and MMSE score. Conclusions : Twenty-three of the 40 stable COPD patients (compared with healthy volunteers were observed to have significant VEP abnormality detected on electrophysiologic evaluation: 21/40 having prolonged P100 latency and

  1. Visual evoked potentials in examining the visual analyzer in patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    S. M. Karpov

    2014-01-01

    Full Text Available Objective: to study the neurophysiological features of the visual analyzer in patients with multiple sclerosis (MS to optimize the early diagnosis of the disease.Patients and methods. Seventy-nine patients (57 women and 22 men, mean age 34.31±4.7 years diagnosed as having MS were examined. The mean duration of the disease with consideration for its clinical form was 3.3±2.2 years in relapsing-remitting MS (RRMS, 9.1±4.2 years in secondary progressive MS (SPMS, and 2.7±1.9 years in primary progressive MS (PPMS.Results and discussion. The neurophysiological examination indicated that demyelination processes in MS proceeded differently in response to dissimilar lights in the structures of the visual analyzer. The most marked significant (p<0.01 deviations in the values of visual evoked potentials (VEPs to the black-white tessellated pattern (TP were observed in the patients with SPMS and in those with PPMS. The latency of the P100 wave increased dramatically and differed significantly (p<0.001 from those in the control group (127.09 msec for RRMS, 128.3 msec for SPMS, 124.5 msec for PPMS, and 106.1 msec in the control. Amplitude analysis could reveal a significant decrease in the force of a N75–N100 wave response to the black-white stimulus in all the clinical groups, averaging 3.3 μW (8.5 μW in the control. The latency of the P100 wave to the red-yellow TP increased considerably and differed significantly (p<0.001 from that in the control group, by comprising147.29±1.19 msec for RRMS, 150.23±1.49 msec for SPMS, and 144.38±2.11 msec for PPMS. There were the same changes that to the greenblack TP. Examination of 25 patients with MS established higher levels of IgG antibodies against myelin basic protein. The most significant latency increase occurs in response to the color spectrum of visible light against the black-white background, which may serve as an early diagnostic criterion for MS. These changes lead to a sharp

  2. Lack of habituation of evoked visual potentials in analytic information processing style: evidence in healthy subjects.

    Science.gov (United States)

    Buonfiglio, Marzia; Toscano, M; Puledda, F; Avanzini, G; Di Clemente, L; Di Sabato, F; Di Piero, V

    2015-03-01

    Habituation is considered one of the most basic mechanisms of learning. Habituation deficit to several sensory stimulations has been defined as a trait of migraine brain and also observed in other disorders. On the other hand, analytic information processing style is characterized by the habit of continually evaluating stimuli and it has been associated with migraine. We investigated a possible correlation between lack of habituation of evoked visual potentials and analytic cognitive style in healthy subjects. According to Sternberg-Wagner self-assessment inventory, 15 healthy volunteers (HV) with high analytic score and 15 HV with high global score were recruited. Both groups underwent visual evoked potentials recordings after psychological evaluation. We observed significant lack of habituation in analytical individuals compared to global group. In conclusion, a reduced habituation of visual evoked potentials has been observed in analytic subjects. Our results suggest that further research should be undertaken regarding the relationship between analytic cognitive style and lack of habituation in both physiological and pathophysiological conditions.

  3. Analytical approaches to estimation of temporal frequency preference from visual evoked potentials

    Science.gov (United States)

    Wierzbicka, Agnieszka; Kordecka, Katarzyna; Żygierewicz, Jarosław; Waleszczyk, Wioletta

    2017-08-01

    There are various ways to study neuronal processing of information about temporal frequency content of visual stimuli. The two most fundamental methods are 1) direct measurement of response amplitude, e.g. an amplitude of averaged visual evoked potential, and 2) assessment of response magnitude after transformation of electrophysiological signal from time to frequency domain. In our study we found it impossible to use the same paradigm to analyze the whole spectrum of temporal frequencies in local field potentials recorded during visual electrophysiology experiments performed on anesthetized rats. Visual responses were recorded from all layers of primary visual cortex in response to flashing light with temporal frequency in the range of 0.5 - 15 Hz. We found that for frequencies lower than 2 Hz it is difficult to draw conclusions based on power spectrum alone, while for high frequencies (> 2 Hz) the evoked potential in time domain could not be observed. We discuss possible physiological reasons of these difficulties and the advantages of the Welch method instead of the periodogram to analyze signals in the frequency domain.

  4. Does athletic training in volleyball modulate the components of visual evoked potentials? A preliminary investigation.

    Science.gov (United States)

    Zwierko, Teresa; Lubiński, Wojciech; Lesiakowski, Piotr; Steciuk, Hanna; Piasecki, Leszek; Krzepota, Justyna

    2014-01-01

    This longitudinal study investigated visual evoked potentials (VEPs) in 11 young female volleyball players who participated in extensive training for 2 years. The control group consisted of 7 age-matched female students who were not involved in any regular sports activity. Recordings of VEPs were performed twice: baseline recording (i.e., before training began) and after 2 years of systematic, volleyball-specific athletic training. The effect of athletic training on visual signal conductivity was assessed by recording the latency of N75, P100 and N135 components of the VEPs waveform. Extensive experience with volleyball training reduced signal conductivity time through visual pathway. Specifically, the latency of P100 was reduced on average by 2.2 ms during binocular viewing. Moreover, athletes had reduced N75 latency (difference of 3.3 ms) for visual stimuli that generated greater response from peripheral retina. These results indicate that sport training can affect very early sensory processing in athletes.

  5. Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.

    Science.gov (United States)

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2015-01-01

    Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Thirty-one adolescents (aged 13-18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue-yellow, red-green) and achromatic stimuli. No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Larger amplitude in the P1 component for blue-yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue-yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  6. Visual evoked potentials in diagnostics of optic neuropathy associated with renal failure

    Directory of Open Access Journals (Sweden)

    Małgorzata Jurys

    2017-01-01

    Full Text Available Chronic renal failure is associated with many neurological complications. Due to accumulation of uremic neurotoxins axonal degeneration with its secondary demyelination occurs, which results in development of polineuropathy in 60-100% of patients with chronic renal failure. One of the most severe peripheral neuropathy is optic neuropathy. It is associated with visual deterioration and reduction in quality of life. Symptoms of the optic neuropathy may appear either before or after dialysis therapy. They often worsen after renal transplant, probably due to immunosuppressive regimen. Early diagnostics of the optic neuropathy became possible by using visual evoked potentials (VEP. This reliable, sensitive and noninvasive technique provides a direct measure of subclinical impairment of visual pathways. Among hemodialysed or immunosupressed patients one can observe abnormal VEP parameters – especially prolonged latency of the P100 component, less often fluctuation of its amplitude. These alterations are pronounced even if clinical examination reveals no abnormalities. This review presents a summary of current use of visual evoked potentials in monitoring of patients with chronic renal failure.

  7. Hemispheric asymmetries for visual and auditory temporal processing: an evoked potential study.

    Science.gov (United States)

    Nicholls, Michael E R; Gora, John; Stough, Con K K

    2002-04-01

    Lateralization for temporal processing was investigated using evoked potentials to an auditory and visual gap detection task in 12 dextral adults. The auditory stimuli consisted of 300-ms bursts of white noise, half of which contained an interruption lasting 4 or 6 ms. The visual stimuli consisted of 130-ms flashes of light, half of which contained a gap lasting 6 or 8 ms. The stimuli were presented bilaterally to both ears or both visual fields. Participants made a forced two-choice discrimination using a bimanual response. Manipulations of the task had no effect on the early evoked components. However, an effect was observed for a late positive component, which occurred approximately 300-400 ms following gap presentation. This component tended to be later and lower in amplitude for the more difficult stimulus conditions. An index of the capacity to discriminate gap from no-gap stimuli was gained by calculating the difference waveform between these conditions. The peak of the difference waveform was delayed for the short-gap stimuli relative to the long-gap stimuli, reflecting decreased levels of difficulty associated with the latter stimuli. Topographic maps of the difference waveforms revealed a prominence over the left hemisphere. The visual stimuli had an occipital parietal focus whereas the auditory stimuli were parietally centered. These results confirm the importance of the left hemisphere for temporal processing and demonstrate that it is not the result of a hemispatial attentional bias or a peripheral sensory asymmetry.

  8. Postoperative changes in visual evoked potentials and cognitive function tests following sevoflurane anaesthesia.

    LENUS (Irish Health Repository)

    Iohom, G

    2012-02-03

    We tested the hypothesis that minor disturbance of the visual pathway persists following general anaesthesia even when clinical discharge criteria are met. To test this, we measured visual evoked potentials (VEPs) in 13 ASA I or II patients who did not receive any pre-anaesthetic medication and underwent sevoflurane anaesthesia. VEPs were recorded on four occasions, before anaesthesia and at 30, 60, and 90 min after emergence from anaesthesia. Patients completed visual analogue scales (VAS) for sedation and anxiety, a Trieger Dot Test (TDT) and a Digit Symbol Substitution Test (DSST) immediately before each VEP recording. These results were compared using Student\\'s t-test. P<0.05 was considered significant. VEP latency was prolonged (P<0.001) and amplitude diminished (P<0.05) at 30, 60, and 90 min after emergence from anaesthesia, when VAS scores for sedation and anxiety, TDT, and DSST had returned to pre-anaesthetic levels.

  9. Visually Evoked Potentials in a Patient with a Fyodorov-Zuev Keratoprosthesis

    Directory of Open Access Journals (Sweden)

    Roy Schwartz

    2015-01-01

    Full Text Available Purpose: To describe a visually evoked potential (VEP examination performed on a patient with a keratoprosthesis. Methods: We report the case of a 60-year-old patient with a Fyodorov-Zuev keratoprosthesis in the right eye complained of gradual visual deterioration in that eye. His past medical history consisted of failed corneal graft procedures due to corneal dystrophy and an Ahmed valve implantation due to secondary glaucoma. A clinical examination and an ultrasound demonstrated vitreal opacities. In order to assess the visual status, a flash VEP test was conducted. Results: VEP recorded from the right eye consisted of a broadened and poorly formed positive P1 wave, with a subnormal amplitude, but a normal latency. Consequently, the patient underwent a pars plana vitrectomy. Conclusion: This case demonstrates the viability of VEP exams in patients with keratoprostheses.

  10. Visually evoked potentials in a patient with a fyodorov-zuev keratoprosthesis.

    Science.gov (United States)

    Schwartz, Roy; Barak, Adiel; Newman, Hadas

    2015-01-01

    To describe a visually evoked potential (VEP) examination performed on a patient with a keratoprosthesis. We report the case of a 60-year-old patient with a Fyodorov-Zuev keratoprosthesis in the right eye complained of gradual visual deterioration in that eye. His past medical history consisted of failed corneal graft procedures due to corneal dystrophy and an Ahmed valve implantation due to secondary glaucoma. A clinical examination and an ultrasound demonstrated vitreal opacities. In order to assess the visual status, a flash VEP test was conducted. VEP recorded from the right eye consisted of a broadened and poorly formed positive P1 wave, with a subnormal amplitude, but a normal latency. Consequently, the patient underwent a pars plana vitrectomy. This case demonstrates the viability of VEP exams in patients with keratoprostheses.

  11. Low luminance/eyes closed and monochromatic stimulations reduce variability of flash visual evoked potential latency.

    Science.gov (United States)

    Subramanian, Senthil Kumar; Gaur, Giriwar Singh; Narayan, Sunil K

    2013-10-01

    Visual evoked potentials are useful in investigating the physiology and pathophysiology of the human visual system. Flash visual evoked potential (FVEP), though technically easier, has less clinical utility because it shows great variations in both latency and amplitude for normal subjects. To study the effect of eye closure, low luminance, and monochromatic stimulation on the variability of FVEPs. Subjects in self-reported good health in the age group of 18-30 years were divided into three groups. All participants underwent FVEP recording with eyes open and with white light at 0.6 J luminance (standard technique). Next recording was done in group 1 with closed eyes, group 2 with 1.2 and 20 J luminance, and group 3 with red and blue lights, while keeping all the other parameters constant. Two trials were given for each eye, for each technique. The same procedure was repeated at the same clock time on the following day. Variation in FVEP latencies between the individuals (interindividual variability) and the variations within the same individual for four trials (intraindividual variability) were assessed using coefficient of variance (COV). The technique with lower COV was considered the better method. Recording done with closed eyes, 0.6 J luminance, and monochromatic light (blue > red) showed lower interindividual and intraindividual variability in P2 and N2 as compared to standard techniques. Low luminance flash stimulations and monochromatic light will reduce FVEP latency variability and may be clinically useful modifications of FVEP recording technique.

  12. MRI of optic nerve and postchiasmal visual pathways and visual evoked potentials in secondary progressive multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.B.; Hawkins, C.P. [School of Postgraduate Medicine, Keele Univ. (United Kingdom)]|[Department of Neurology and Neurophysiology, Royal Infirmary, Stoke-on-Trent (United Kingdom); Williams, R. [MRI Unit Cornwall House, Stoke-on-Trent (United Kingdom); Haq, N. [Department of Neurology, North Staffordshire Hospital, Stoke-on-Trent (United Kingdom); Pelosi, L. [Department of Neurology and Neurophysiology, Royal Infirmary, Stoke-on-Trent (United Kingdom)

    1998-12-01

    We studied the relationship between abnormalities shown by MRI and functional disturbances in the visual pathway as assessed by the visual evoked potential (VEP) in 25 patients with established multiple sclerosis (MS); only 4 of whom had a history of acute optic neuritis. Optic nerve MRI was abnormal in 19 (76 %) and is thus useful in detecting subclinical disease. Optic nerve total lesion length and area on the STIR sequence was found to correlate significantly with prolongation of the VEP latency. This may reflect a predominantly demyelinating rather than inflammatory origin for the signal change in the optic nerve. (orig.) With 5 figs., 1 tab., 25 refs.

  13. Visual evoked potentials with CRT and LCD monitors: when newer is not better.

    Science.gov (United States)

    Husain, Aatif M; Hayes, Susan; Young, Margaret; Shah, Dharmen

    2009-01-13

    The stimulus for pattern reversal visual evoked potentials (PRVEP) has traditionally been delivered by a cathode ray tube (CRT) monitor. Liquid crystal display (LCD) monitors have become more affordable and are being used instead of CRT monitors for many applications. We tested the hypothesis that LCD monitors were equivalent to CRT monitors when used for PRVEP. Monocular, full field PRVEP with a 32' check size were obtained in six normal subjects with a CRT monitor and LCD monitors having 2 msec, 8 msec, and 30 msec response times. The average P100 latency with the CRT screen was compared to the latencies with the LCD screens. The mean P100 latency of the CRT monitor was 107.7 (+/-6.6) ms, for the LCD 2 msec monitor was 115.7 (+/-6.9; p LCD 8 msec monitor was 118.5 (+/-6.5; p LCD 30 msec monitor was 156.8 (+/-6.8; p LCD) monitors do not provide data comparable to cathode ray tube (CRT) monitors. LCD monitors cannot replace CRT monitors for pattern reversal visual evoked potentials unless new normative data are obtained.

  14. Effect of color of flash stimulus on variability of flash visual evoked potential latencies.

    Science.gov (United States)

    Subramanian, Senthil Kumar; Gaur, Giriwar Singh; Narayan, Sunil K

    2012-01-01

    Visual Evoked Potentials (VEPs) are evoked potentials generated in response to visual stimuli. The flash VEP (FVEP) is used less frequently than pattern-reversal VEP (PR-VEP) because; it shows great variations in both latency and amplitude in normal subjects. The advantage of FVEP is its feasibility in non-cooperative subjects, which circumvents the major limitation of PR-VEP. The present study was undertaken to assess the effect of change of color of flashlight on variability of FVEP latencies. Healthy subjects in the age group of 18-30 years underwent the standard stimulus using white light, followed by altered stimuli done with red and blue light. 2 trials were given for each eye, for each type of stimulus. The same set of studies was repeated at the same clock time the following day. The inter-individual and intra-individual variability in the peak latency of P2 and N2 waveforms was assessed using coefficient of variation (COV). Both inter-individual and intra-individual variability was less when monochromatic light was used. Between red and blue FVEP, inter-individual variability was less in blue FVEP and the results of intra-individual variability was inconclusive. Monochromatic stimulation preferably with blue light reduced both inter-individual and intra-individual variability seen in latency of P2 and N2 waveforms in FVEP and hence recommended in preference to standard white stimulus for FVEP recording.

  15. Changes in visual-evoked potential habituation induced by hyperventilation in migraine.

    Science.gov (United States)

    Coppola, Gianluca; Currà, Antonio; Sava, Simona Liliana; Alibardi, Alessia; Parisi, Vincenzo; Pierelli, Francesco; Schoenen, Jean

    2010-12-01

    Hyperventilation is often associated with stress, an established trigger factor for migraine. Between attacks, migraine is associated with a deficit in habituation to visual-evoked potentials (VEP) that worsens just before the attack. Hyperventilation slows electroencephalographic (EEG) activity and decreases the functional response in the occipital cortex during visual stimulation. The neural mechanisms underlying deficient-evoked potential habituation in migraineurs remain unclear. To find out whether hyperventilation alters VEP habituation, we recorded VEPs before and after experimentally induced hyperventilation lasting 3 min in 18 healthy subjects and 18 migraine patients between attacks. We measured VEP P100 amplitudes in six sequential blocks of 100 sweeps and habituation as the change in amplitude over the six blocks. In healthy subjects, hyperventilation decreased VEP amplitude in block 1 and abolished the normal VEP habituation. In migraine patients, hyperventilation further decreased the already low block 1 amplitude and worsened the interictal habituation deficit. Hyperventilation worsens the habituation deficit in migraineurs possibly by increasing dysrhythmia in the brainstem-thalamo-cortical network.

  16. Normal visual evoked potentials in preschool children born small for gestational age.

    Science.gov (United States)

    Nilsson, Josefin; Dahlgren, Jovanna; Karlsson, Ann-Katrine; Grönlund, Marita Andersson

    2011-08-01

    Previous studies have shown visual evoked potential (VEP) abnormalities in infants and animals born small for gestational age (SGA) compared with controls. The current exploratory study aims to investigate whether VEP abnormalities persist in older ages. Pattern VEP latencies were obtained in 21 children (11 girls, 10 boys), born SGA and moderately preterm, at an average age of 5 years and 8 months. Fifty-one children (24 girls, 27 boys, mean age of 5 years and 7 months), also born moderately preterm but with normal height and weight at birth, served as controls Visual evoked potential results showed no significant differences in latency between children born SGA and controls born appropriate for gestational age (AGA) for either binocular stimulation, right eye or left eye stimulation. Our findings do not indicate any differences in VEP latency at preschool age for children born SGA compared with children born AGA. The results may support previous studies, suggesting that children born SGA show accelerated neurophysiologic maturation during their first year of life and that previously delayed VEP latencies after catch-up stay unchanged compared with controls. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  17. Control of humanoid robot via motion-onset visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Wei eLi

    2015-01-01

    Full Text Available This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP to code people’s mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task.

  18. Normal Amplitude of Electroretinography and Visual Evoked Potential Responses in AβPP/PS1 Mice.

    Science.gov (United States)

    Leinonen, Henri; Lipponen, Arto; Gurevicius, Kestutis; Tanila, Heikki

    2016-01-01

    Alzheimer's disease has been shown to affect vision in human patients and animal models. This may pose the risk of bias in behavior studies and therefore requires comprehensive investigation. We recorded electroretinography (ERG) under isoflurane anesthesia and visual evoked potentials (VEP) in awake amyloid expressing AβPPswe/PS1dE9 (AβPP/PS1) and wild-type littermate mice at a symptomatic age. The VEPs in response to patterned stimuli were normal in AβPP/PS1 mice. They also showed normal ERG amplitude but slightly shortened ERG latency in dark-adapted conditions. Our results indicate subtle changes in visual processing in aged male AβPP/PS1 mice specifically at a retinal level.

  19. Broad-Band Visually Evoked Potentials: Re(convolution in Brain-Computer Interfacing.

    Directory of Open Access Journals (Sweden)

    Jordy Thielen

    Full Text Available Brain-Computer Interfaces (BCIs allow users to control devices and communicate by using brain activity only. BCIs based on broad-band visual stimulation can outperform BCIs using other stimulation paradigms. Visual stimulation with pseudo-random bit-sequences evokes specific Broad-Band Visually Evoked Potentials (BBVEPs that can be reliably used in BCI for high-speed communication in speller applications. In this study, we report a novel paradigm for a BBVEP-based BCI that utilizes a generative framework to predict responses to broad-band stimulation sequences. In this study we designed a BBVEP-based BCI using modulated Gold codes to mark cells in a visual speller BCI. We defined a linear generative model that decomposes full responses into overlapping single-flash responses. These single-flash responses are used to predict responses to novel stimulation sequences, which in turn serve as templates for classification. The linear generative model explains on average 50% and up to 66% of the variance of responses to both seen and unseen sequences. In an online experiment, 12 participants tested a 6 × 6 matrix speller BCI. On average, an online accuracy of 86% was reached with trial lengths of 3.21 seconds. This corresponds to an Information Transfer Rate of 48 bits per minute (approximately 9 symbols per minute. This study indicates the potential to model and predict responses to broad-band stimulation. These predicted responses are proven to be well-suited as templates for a BBVEP-based BCI, thereby enabling communication and control by brain activity only.

  20. A pilot study to record visual evoked potentials during prone spine surgery using the SightSaver™ photic visual stimulator.

    Science.gov (United States)

    Soffin, E M; Emerson, R G; Cheng, J; Mercado, K; Smith, K; Beckman, J D

    2017-12-20

    This is a pilot study to assess the clinical safety and efficacy of recording real-time flash visual evoked potentials (VEPs) using the SightSaver TM Visual Stimulator mask during prone spine surgery. A prospective, observational pilot study. Twenty patients presenting for spine surgery (microdiscectomy, 1-2 level lumbar fusion, or > 2 levels thoraco-lumbar fusion) were enrolled. The SightSaver™ Visual Stimulator™ was used to elicit VEPs throughout surgery. Somatosensory evoked potentials (SSEPs) were simultaneously recorded. All patients underwent general anesthesia with a combination of intravenous and inhaled agents. The presence, absence, and changes in VEP were qualitatively analyzed. Reproducible VEPs were elicited in 18/20 patients (36/40 eyes). VEPs were exquisitely sensitive to changes in anesthesia and decayed with rising MAC of isoflurane and/or N 2 O. Decrements in VEPs were observed without concomitant changes in SSEPs. The mask was simple to apply and use and was not associated with adverse effects. The SightSaver™ mask represents an emerging technology for monitoring developing visual insults during surgery. The definitive applications remain to be determined, but likely include use in select patients and/or surgeries. Here, we have validated the device as safe and effective, and show that VEPs can be recorded in real time under general anesthesia in the prone position. Future studies should be directed towards understanding the ideal anesthetic regimen to facilitate stable VEP recording during prone spine surgery.

  1. [Pattern visual evoked potentials in normal-vision eyes of post-therapy amblyopia].

    Science.gov (United States)

    Xiao, Manyi; Wei, Xin; Li, Yunping; Xiong, Wei; Xu, Shuxian

    2013-07-01

    To evaluate the clinical significance of pattern visual evoked potential (P-VEP) parameters on amblyopic patients with normal-vision after pleoptic therapy. We investigated 60 amblyopic children (8-12 years old) who gained normal-vision after pleoptic therapy. These patients were assigned to a unilateral amblyopia group (40 patients) and a bilateral amblyopia group (20 patients). Another 20 healthy children served as a control group. All patients underwent a full initial ophthalmologic and orthoptic evaluation. P-VEP test was performed in all. Amplitude and latencies were analyzed and compared among groups. The latencies of P100 waves in the amblyopic eyes were used to generate a multiple linear regression formula from sex, first treatment age, baseline visual acuity, and cycloplegic refraction. There was no significant difference in the mean levels of best-corrected visual acuity among groups (P>0.05). A significant prolongation of the latency and a decrease of amplitude of P100 waves were observed in the unilateral amblyopia group and the bilateral amblyopia group compared with the healthy control group (Pamblyopia group were abnormal compared with the healthy control group (Ptreatment age, baseline visual acuity, and cycloplegic refraction (R(2)= 0.52, Ptreatment age, baseline visual acuity, and cycloplegic refraction. Traditional amblyopic therapy may be not enough for vision function recovery.

  2. Early visual evoked potentials are modulated by eye position in humans induced by whole body rotations

    Directory of Open Access Journals (Sweden)

    Petit Laurent

    2004-09-01

    Full Text Available Abstract Background To reach and grasp an object in space on the basis of its image cast on the retina requires different coordinate transformations that take into account gaze and limb positioning. Eye position in the orbit influences the image's conversion from retinotopic (eye-centered coordinates to an egocentric frame necessary for guiding action. Neuroimaging studies have revealed eye position-dependent activity in extrastriate visual, parietal and frontal areas that is along the visuo-motor pathway. At the earliest vision stage, the role of the primary visual area (V1 in this process remains unclear. We used an experimental design based on pattern-onset visual evoked potentials (VEP recordings to study the effect of eye position on V1 activity in humans. Results We showed that the amplitude of the initial C1 component of VEP, acknowledged to originate in V1, was modulated by the eye position. We also established that putative spontaneous small saccades related to eccentric fixation, as well as retinal disparity cannot explain the effects of changing C1 amplitude of VEP in the present study. Conclusions The present modulation of the early component of VEP suggests an eye position-dependent activity of the human primary visual area. Our findings also evidence that cortical processes combine information about the position of the stimulus on the retinae with information about the location of the eyes in their orbit as early as the stage of primary visual area.

  3. Comparison of the pattern reversal visual evoked potential mediated by separate cone systems

    DEFF Research Database (Denmark)

    Johnsen, B; Frederiksen, J.L.; Larsson, H.B.

    1995-01-01

    With the purpose of recording responses mediated by the 3 cone systems visual evoked potentials (VEPs) were elicited by the reversal of monochromatic checkerboards superimposed upon strong monochromatic backgrounds (yellow, purple and blue-green). The sensitivity to light of various wave lengths...... were measured as the reciprocal of the intensity necessary to elicit a VEP amplitude of 3 microV. The spectral sensitivity curves based on this VEP amplitude criterion in the presence of blue-green, purple and yellow adaptation showed peak sensitivities in the red, the green and the blue part...... of the spectrum, respectively. This indicates that the responses reflect separate modulation of the 3 different cone mechanisms. The potentials obtained with yellow adaptation differed from those obtained with purple and blue-green adaptation. The amplitude versus log intensity function was flatter...

  4. Low luminance/eyes closed and monochromatic stimulations reduce variability of flash visual evoked potential latency

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Subramanian

    2013-01-01

    Full Text Available Context: Visual evoked potentials are useful in investigating the physiology and pathophysiology of the human visual system. Flash visual evoked potential (FVEP, though technically easier, has less clinical utility because it shows great variations in both latency and amplitude for normal subjects. Aim: To study the effect of eye closure, low luminance, and monochromatic stimulation on the variability of FVEPs. Subjects and Methods: Subjects in self-reported good health in the age group of 18-30 years were divided into three groups. All participants underwent FVEP recording with eyes open and with white light at 0.6 J luminance (standard technique. Next recording was done in group 1 with closed eyes, group 2 with 1.2 and 20 J luminance, and group 3 with red and blue lights, while keeping all the other parameters constant. Two trials were given for each eye, for each technique. The same procedure was repeated at the same clock time on the following day. Statistical Analysis: Variation in FVEP latencies between the individuals (interindividual variability and the variations within the same individual for four trials (intraindividual variability were assessed using coefficient of variance (COV. The technique with lower COV was considered the better method. Results: Recording done with closed eyes, 0.6 J luminance, and monochromatic light (blue > red showed lower interindividual and intraindividual variability in P2 and N2 as compared to standard techniques. Conclusions: Low luminance flash stimulations and monochromatic light will reduce FVEP latency variability and may be clinically useful modifications of FVEP recording technique.

  5. Steady-state visual evoked potentials as a research tool in social affective neuroscience.

    Science.gov (United States)

    Wieser, Matthias J; Miskovic, Vladimir; Keil, Andreas

    2016-12-01

    Like many other primates, humans place a high premium on social information transmission and processing. One important aspect of this information concerns the emotional state of other individuals, conveyed by distinct visual cues such as facial expressions, overt actions, or by cues extracted from the situational context. A rich body of theoretical and empirical work has demonstrated that these socioemotional cues are processed by the human visual system in a prioritized fashion, in the service of optimizing social behavior. Furthermore, socioemotional perception is highly dependent on situational contexts and previous experience. Here, we review current issues in this area of research and discuss the utility of the steady-state visual evoked potential (ssVEP) technique for addressing key empirical questions. Methodological advantages and caveats are discussed with particular regard to quantifying time-varying competition among multiple perceptual objects, trial-by-trial analysis of visual cortical activation, functional connectivity, and the control of low-level stimulus features. Studies on facial expression and emotional scene processing are summarized, with an emphasis on viewing faces and other social cues in emotional contexts, or when competing with each other. Further, because the ssVEP technique can be readily accommodated to studying the viewing of complex scenes with multiple elements, it enables researchers to advance theoretical models of socioemotional perception, based on complex, quasinaturalistic viewing situations. © 2016 Society for Psychophysiological Research.

  6. VISUAL EVOKED POTENTIALS AND „PATTERN” ELECTRORETINOGRAM IN HIGH MYOPIA

    Directory of Open Access Journals (Sweden)

    Stojanka Djurić

    2004-12-01

    Full Text Available In patients with high myopia one can notice characteristic degenerative changes of eye base that affect, in the initial phase, the posterior side of the eye, and in the developed form, the peripheral parts of retina. This paper points to the potential of application of electrophysiological methods, visual evoked potentials and PERG in assessment of the degree of the degenerative disease and following of its progression.n 15 eyes with high myopia we performed testing by means of visual evoked potentials and „pattern” electroretinogram and compared the received results with the values obtained from the controls. Structured VEP and „pattern” electroretinogram (PERG was performed on Mistral-Medelec computerized machine; with angle of stimulation CHESS of 30 minutes, screen angle of 15–19 degrees and maximal CHESS contrast. We performed a total of 128 stimulations with use of surface skin electrodes and stimulus frequency of 2 Hz.In patients with high myopia, visual acuity was between 1.0 and 0.1. The average latency value of P-100 waves of PVEP in patients with high myopia was 119.4 msec and was in correlation with the reduction of visual acuity of the researched eye (p<0.05.The average values of P-100 waves amplitudes were statistically significantly lower compared to the control group (3.9 msec.The amplitude values P1 and N2 of PERG were significantly lower compared to the values from the control group (p<0.01. The decrease in amplitude value was in correlation with the decline of visual acuity and the degree of degenerative changes at eye base. Latency values of P1and N2 waves of PERG were slightly prolonged without any statistical significance.Considering that „pattern” electroretinogram maintains electrical activity of inner layers of retina, most of all of ganglion cells, and PVEP records the electrical response of ganglion cells which mostly originate from macula, these methods can, therefore, give us an insight as to the degree

  7. The timing of visual evoked potential activity in human area V4.

    Science.gov (United States)

    Buchner, H; Weyen, U; Frackowiak, R S; Romaya, J; Zeki, S

    1994-07-22

    Studies of human occipital visual cortex have demonstrated functional specializations for colour and for motion, with a pivotal area for colour processing (area V4) being located in the fusiform gyrus. To study the timing of arrival of signals in area V4 we have recorded multi-channel visual evoked potentials (VEPS) to colour and grey 'Mondrian' stimuli, spatio-temporal dipole source analysis being computed on two independent group averages of five and six subjects respectively. Three active brain regions were identified, which we interpret to correspond to areas V1, V2 and V4; they showed sequential but overlapping activity in time with no difference in magnitude between colour and grey stimulated VEPs. Source analysis of the difference potentials, colour minus grey, isolated source activity resulting from colour stimulation and located it in the region of area V4. Activity in area V4 started at 100 ms and peaked at 135 ms after the onset of the visual stimulus.

  8. Visual evoked potential estimation by adaptive noise cancellation with neural-network-based fuzzy inference system.

    Science.gov (United States)

    Zeng, Y; Zhang, J; Yin, H; Pan, Y

    2007-01-01

    Visual evoked potentials (VEPs) are time-varying signals typically buried in relatively large background noise known as the electroencephalogram (EEG). In this paper, an adaptive noise cancellation with neural network-based fuzzy inference system (NNFIS) was used and the NNFIS was carefully designed to model the VEP signal. It is assumed that VEP responses can be modelled by NNFIS with the centres of its membership functions evenly distributed over time. The weights of NNFIS are adaptively determined by minimizing the variance of the error signal using the least mean squares (LMS) algorithm. As the NNFIS is dynamic to any change of VEP, the non-stationary characteristics of VEP can be tracked. Thus, this method should be able to track the VEP. Four sets of simulated data indicate that the proposed method is appropriate to estimate VEP. A total of 150 trials are processed to demonstrate the superior performance of the proposed method.

  9. Visual evoked potentials show strong positive association with intracranial pressure in patients with cryptococcal meningitis

    Directory of Open Access Journals (Sweden)

    Marcelo Adriano da Cunha Silva Vieira

    2015-04-01

    Full Text Available Objective : To verify the relationship between intracranial pressure and flash visual evoked potentials (F-VEP in patients with cryptococcal meningitis. Method The sample included adults diagnosed with cryptococcal meningitis admitted at a reference hospital for infectious diseases. The patients were subjected to F-VEP tests shortly before lumbar puncture. The Pearson’s linear correlation coefficient was calculated and the linear regression analysis was performed. Results : Eighteen individuals were subjected to a total of 69 lumbar punctures preceded by F-VEP tests. At the first lumbar puncture performed in each patient, N2 latency exhibited a strong positive correlation with intracranial pressure (r = 0.83; CI = 0.60 - 0.94; p < 0.0001. The direction of this relationship was maintained in subsequent punctures. Conclusion : The intracranial pressure measured by spinal tap manometry showed strong positive association with the N2 latency F-VEP in patients with cryptococcal meningitis.

  10. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain-computer...... interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...... subjects achieved an information transfer rate (ITR) of 14:64 bits/min ± 7:63 bits=min and a subject test performance of 47:22% ± 34:10%. This study suggests that BCI may be applicable in practice as a computerized cognitive assessment tool. However, many improvements are required for the system...

  11. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.

    Science.gov (United States)

    Kajikawa, Yoshinao; Smiley, John F; Schroeder, Charles E

    2017-10-18

    Prior studies have reported "local" field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be "contaminated" by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such "far-field" activity, in addition to, or in absence of, local synaptic responses.SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the

  12. Face-evoked steady-state visual potentials: effects of presentation rate and face inversion.

    Science.gov (United States)

    Gruss, L Forest; Wieser, Matthias J; Schweinberger, Stefan R; Keil, Andreas

    2012-01-01

    Face processing can be explored using electrophysiological methods. Research with event-related potentials has demonstrated the so-called face inversion effect, in which the N170 component is enhanced in amplitude and latency to inverted, compared to upright, faces. The present study explored the extent to which repetitive lower-level visual cortical engagement, reflected in flicker steady-state visual evoked potentials (ssVEPs), shows similar amplitude enhancement to face inversion. We also asked if inversion-related ssVEP modulation would be dependent on the stimulation rate at which upright and inverted faces were flickered. To this end, multiple tagging frequencies were used (5, 10, 15, and 20 Hz) across two studies (n = 21, n = 18). Results showed that amplitude enhancement of the ssVEP for inverted faces was found solely at higher stimulation frequencies (15 and 20 Hz). By contrast, lower frequency ssVEPs did not show this inversion effect. These findings suggest that stimulation frequency affects the sensitivity of ssVEPs to face inversion.

  13. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    Science.gov (United States)

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. © 2016 Elsevier B.V. All rights reserved.

  14. Objective assessment of visual attention in mild traumatic brain injury (mTBI) using visual-evoked potentials (VEP).

    Science.gov (United States)

    Yadav, Naveen K; Ciuffreda, Kenneth J

    2015-01-01

    To quantify visual attention objectively using the visual-evoked potential (VEP) in those having mild traumatic brain injury (mTBI) with and without a self-reported attentional deficit. Subjects were comprised of 16 adults with mTBI: 11 with an attentional deficit and five without. Three test conditions were used to assess the visual attentional state to quantify objectively the VEP alpha band attenuation ratio (AR) related to attention: (1) pattern VEP; (2) eyes-closed; and (3) eyes-closed number counting. The AR was calculated for both the individual and combined alpha frequencies (8-13 Hz). The objective results were compared to two subjective tests of visual and general attention (i.e. the VSAT and ASRS, respectively). The AR for both the individual and combined alpha frequencies was found to be abnormal in those with mTBI having an attentional deficit. In contrast, the AR was normal in those with mTBI but without an attentional deficit. The AR correlated with the ASRS, but not with the VSAT, test scores. The objective and subjective tests were able to differentiate between those having mTBI with and without an attentional deficit. The proposed VEP protocol can be used in the clinic to detect and assess objectively and reliably a visual attentional deficit in the mTBI population.

  15. Effect of oculomotor vision rehabilitation on the visual-evoked potential and visual attention in mild traumatic brain injury.

    Science.gov (United States)

    Yadav, Naveen K; Thiagarajan, Preethi; Ciuffreda, Kenneth J

    2014-01-01

    The purpose of the experiment was to investigate the effect of oculomotor vision rehabilitation (OVR) on the visual-evoked potential (VEP) and visual attention in the mTBI population. Subjects (n = 7) were adults with a history of mild traumatic brain injury (mTBI). Each received 9 hours of OVR over a 6-week period. The effects of OVR on VEP amplitude and latency, the attention-related alpha band (8-13 Hz) power (µV(2)) and the clinical Visual Search and Attention Test (VSAT) were assessed before and after the OVR. After the OVR, the VEP amplitude increased and its variability decreased. There was no change in VEP latency, which was normal. Alpha band power increased, as did the VSAT score, following the OVR. The significant changes in most test parameters suggest that OVR affects the visual system at early visuo-cortical levels, as well as other pathways which are involved in visual attention.

  16. Steady-state sweep visual evoked potential processing denoised by wavelet transform

    Science.gov (United States)

    Weiderpass, Heinar A.; Yamamoto, Jorge F.; Salomão, Solange R.; Berezovsky, Adriana; Pereira, Josenilson M.; Sacai, Paula Y.; de Oliveira, José P.; Costa, Marcio A.; Burattini, Marcelo N.

    2008-03-01

    Visually evoked potential (VEP) is a very small electrical signal originated in the visual cortex in response to periodic visual stimulation. Sweep-VEP is a modified VEP procedure used to measure grating visual acuity in non-verbal and preverbal patients. This biopotential is buried in a large amount of electroencephalographic (EEG) noise and movement related artifact. The signal-to-noise ratio (SNR) plays a dominant role in determining both systematic and statistic errors. The purpose of this study is to present a method based on wavelet transform technique for filtering and extracting steady-state sweep-VEP. Counter-phase sine-wave luminance gratings modulated at 6 Hz were used as stimuli to determine sweep-VEP grating acuity thresholds. The amplitude and phase of the second-harmonic (12 Hz) pattern reversal response were analyzed using the fast Fourier transform after the wavelet filtering. The wavelet transform method was used to decompose the VEP signal into wavelet coefficients by a discrete wavelet analysis to determine which coefficients yield significant activity at the corresponding frequency. In a subsequent step only significant coefficients were considered and the remaining was set to zero allowing a reconstruction of the VEP signal. This procedure resulted in filtering out other frequencies that were considered noise. Numerical simulations and analyses of human VEP data showed that this method has provided higher SNR when compared with the classical recursive least squares (RLS) method. An additional advantage was a more appropriate phase analysis showing more realistic second-harmonic amplitude value during phase brake.

  17. Steady-state visually evoked potential correlates of human body perception.

    Science.gov (United States)

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  18. Steady state visually evoked potential (SSVEP) topography changes associated with cocoa flavanol consumption.

    Science.gov (United States)

    Camfield, D A; Scholey, A; Pipingas, A; Silberstein, R; Kras, M; Nolidin, K; Wesnes, K; Pase, M; Stough, C

    2012-02-28

    In a randomized, double-blind placebo controlled trial, 63 middle-aged volunteers aged between 40 and 65 years were administered a daily chocolate drink containing 250 mg or 500 mg cocoa flavanols versus a low cocoa flavanol (placebo) drink over a 30-day period. Participants were tested at baseline as well as at the end of the treatment period on a test of Spatial Working Memory. Steady State Probe Topography (SST) was used to assess neurocognitive changes associated with cocoa flavanol supplementation during the completion of the Spatial Working Memory task. SST is an electrophysiological technique which utilizes a 13 Hz diffuse visual flicker in order to generate a steady state visually evoked potential (SSVEP). Changes in the amplitude and phase of the SSVEP response after 30 days were compared between treatment groups. Behavioral measures of accuracy and reaction time were not found to be significantly different between treatment groups, while average SSVEP amplitude and phase differences at a number of posterior parietal and centro-frontal sites were found to be significantly different between groups during memory encoding, the working memory hold period and retrieval. In the absence of significant behavioral effects, these differences in brain activation can be interpreted as evidence of increased neural efficiency in spatial working memory function associated with chronic cocoa flavanol consumption. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics.

    Science.gov (United States)

    Barboni, M T S; Gomes, B D; Souza, G S; Rodrigues, A R; Ventura, D F; Silveira, L C L

    2013-02-01

    The purpose of the present study was to measure contrast sensitivity to equiluminant gratings using steady-state visual evoked cortical potential (ssVECP) and psychophysics. Six healthy volunteers were evaluated with ssVECPs and psychophysics. The visual stimuli were red-green or blue-yellow horizontal sinusoidal gratings, 5° × 5°, 34.3 cd/m2 mean luminance, presented at 6 Hz. Eight spatial frequencies from 0.2 to 8 cpd were used, each presented at 8 contrast levels. Contrast threshold was obtained by extrapolating second harmonic amplitude values to zero. Psychophysical contrast thresholds were measured using stimuli at 6 Hz and static presentation. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. ssVECP and both psychophysical contrast sensitivity functions (CSFs) were low-pass functions for red-green gratings. For electrophysiology, the highest contrast sensitivity values were found at 0.4 cpd (1.95 ± 0.15). ssVECP CSF was similar to dynamic psychophysical CSF, while static CSF had higher values ranging from 0.4 to 6 cpd (P psychophysical methods (P psychophysical thresholds, mainly if the same temporal properties are applied to the stimulus. For blue-yellow CSF, correlation between electrophysiology and psychophysics was poor at high spatial frequency, possibly due to a greater effect of chromatic aberration on this kind of stimulus.

  20. A lower limb exoskeleton control system based on steady state visual evoked potentials

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2015-10-01

    Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

  1. Color vision and color pattern visual evoked cortical potentials in a patient with acquired cerebral dyschromatopsia.

    Science.gov (United States)

    Adachi-Usami, E; Tsukamoto, M; Shimada, Y

    1995-01-01

    We examined a 74-year-old man because of difficulty seeing green and the presence of prosopagnosia. His visual acuity was 0.8 in both eyes. He was not congenitally color blind, and there was no family history of color blindness. A left superior homonymous quadrantanopsia was found. The dyschromatopsia ws identical in both eyes. The patient showed red-green deficiency on testing with Ishihara plates a deutan defect with Tokyo Medical College plates, strong blue-yellow defects and medium red-green defects with Standard Pseudochromatic Plates II and a tritan defect with the Panel D-15. He failed the New Color separation test with scores of 160 and could not carry out the Farnsworth-Munsell 100-hue test, but his color naming test results were normal. Visual evoked cortical potentials to black-and-white checkerboard and color pattern reversal (Red and Blue-Green, Green and Red-Purple, Purple and Yellow-Green: isochromatic paired checks) stimuli were normal. Bilateral inferior occipital lesions were found by computed tomography and T2-weighted magnetic resonance imaging. Our findings suggested that luminance and color channels up to area 17 in our patient were intact. We believe that our patient's acquired cerebral dyschromatopsia is rare.

  2. Dysfunction in the fellow eyes of strabismic and anisometropic amblyopic children assessed by visually evoked potentials

    Directory of Open Access Journals (Sweden)

    Eric Pinheiro Andrade

    Full Text Available ABSTRACT Purpose: To evaluate visual acuity and transient pattern reversal (PR visual evoked potentials (VEPs in the fellow eyes of children with strabismic and/or anisometropic amblyopia. Methods: Children diagnosed with strabismic and/or anisometropic amblyopia were recruited for electrophysiological assessment by VEPs. Monocular grating and optotype acuity were measured using sweep-VEPs and an Early Treatment Diabetic Retinopathy Study chart, respectively. During the same visit, transient PR-VEPs of each eye were recorded using stimuli subtending with a visual angle of 60', 15', and 7.5'. Parameters of amplitude (in μV and latency (in ms were determined from VEP recordings. Results: A group of 40 strabismic and/or anisometropic amblyopic children (22 females: 55%, mean age= 8.7 ± 2.2 years, median= 8 years was examined. A control group of 19 healthy children (13 females: 68.4%, mean age= 8.2 ± 2.6 years, median= 8 years was also included. The fellow eyes of all amblyopes had significantly worse optotype acuity (p=0.021 than the control group, regardless of whether they were strabismic (p=0.040 or anisometropic (p=0.048. Overall, grating acuity was significantly worse in the fellow eyes of amblyopes (p=0.016 than in healthy controls. Statistically prolonged latency for visual angles of 15' and 7.5' (p=0.018 and 0.002, respectively was found in the strabismic group when compared with the control group. For the smaller visual stimulus (7.5', statistically prolonged latency was found among all fellow eyes of amblyopic children (p<0.001. Conclusions: The fellow eyes of amblyopic children showed worse optotype and grating acuity, with subtle abnormalities in the PR-VEP detected as prolonged latencies for smaller size stimuli when compared with eyes of healthy children. These findings show the deleterious effects of amblyopia in several distinct visual functions, mainly those related to spatial vision.

  3. Fractal Dimension Analysis of Transient Visual Evoked Potentials: Optimisation and Applications.

    Science.gov (United States)

    Boon, Mei Ying; Henry, Bruce Ian; Chu, Byoung Sun; Basahi, Nour; Suttle, Catherine May; Luu, Chi; Leung, Harry; Hing, Stephen

    2016-01-01

    The visual evoked potential (VEP) provides a time series signal response to an external visual stimulus at the location of the visual cortex. The major VEP signal components, peak latency and amplitude, may be affected by disease processes. Additionally, the VEP contains fine detailed and non-periodic structure, of presently unclear relevance to normal function, which may be quantified using the fractal dimension. The purpose of this study is to provide a systematic investigation of the key parameters in the measurement of the fractal dimension of VEPs, to develop an optimal analysis protocol for application. VEP time series were mathematically transformed using delay time, τ, and embedding dimension, m, parameters. The fractal dimension of the transformed data was obtained from a scaling analysis based on straight line fits to the numbers of pairs of points with separation less than r versus log(r) in the transformed space. Optimal τ, m, and scaling analysis were obtained by comparing the consistency of results using different sampling frequencies. The optimised method was then piloted on samples of normal and abnormal VEPs. Consistent fractal dimension estimates were obtained using τ = 4 ms, designating the fractal dimension = D2 of the time series based on embedding dimension m = 7 (for 3606 Hz and 5000 Hz), m = 6 (for 1803 Hz) and m = 5 (for 1000Hz), and estimating D2 for each embedding dimension as the steepest slope of the linear scaling region in the plot of log(C(r)) vs log(r) provided the scaling region occurred within the middle third of the plot. Piloting revealed that fractal dimensions were higher from the sampled abnormal than normal achromatic VEPs in adults (p = 0.02). Variances of fractal dimension were higher from the abnormal than normal chromatic VEPs in children (p = 0.01). A useful analysis protocol to assess the fractal dimension of transformed VEPs has been developed.

  4. Differences in early sensory-perceptual processing in synesthesia: a visual evoked potential study.

    Science.gov (United States)

    Barnett, Kylie J; Foxe, John J; Molholm, Sophie; Kelly, Simon P; Shalgi, Shani; Mitchell, Kevin J; Newell, Fiona N

    2008-11-15

    Synesthesia is a condition where stimulation of a single sensory modality or processing stream elicits an idiosyncratic, yet reliable perception in one or more other modalities or streams. Various models have been proposed to explain synesthesia, which have in common aberrant cross-activation of one cortical area by another. This has been observed directly in cases of linguistic-color synesthesia as cross-activation of the 'color area', V4, by stimulation of the grapheme area. The underlying neural substrates that mediate cross-activations in synesthesia are not well understood, however. In addition, the overall integrity of the visual system has never been assessed and it is not known whether wider differences in sensory-perceptual processing are associated with the condition. To assess whether fundamental differences in perceptual processing exist in synesthesia, we utilised high-density 128-channel electroencephalography (EEG) to measure sensory-perceptual processing using stimuli that differentially bias activation of the magnocellular and parvocellular pathways of the visual system. High and low spatial frequency gratings and luminance-contrast squares were presented to 15 synesthetes and 15 controls. We report, for the first time, early sensory-perceptual differences in synesthetes relative to non-synesthete controls in response to simple stimuli that do not elicit synesthetic color experiences. The differences are manifested in the early sensory components of the visual evoked potential (VEP) to stimuli that bias both magnocellular and parvocellular responses, but are opposite in direction, suggesting a differential effect on these two pathways. We discuss our results with reference to widespread connectivity differences as a broader phenotype of synesthesia.

  5. Research on steady-state visual evoked potentials in 3D displays

    Science.gov (United States)

    Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.

    2015-05-01

    Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-valuefuture.

  6. [Reaction times (RTS) and cognitive visual evoked potentials during reading--a compared study].

    Science.gov (United States)

    Dionisie, B; Luca, Veronica

    2011-01-01

    The main aim of the experiment is to prove the Paivio's theory about the concrete-abstract effect. A psychoverbal stimulation interface, created by us, was experimented as an IT extension of an EEG/EMG device dedicated for the human brain Evoked Potentials acquisitions (EPs) and reaction times techniques in reading mechanisms assessment. The shortest reaction time was achieved in tests at which the reading has no access to the meaning of words, for concrete word, in both hemisphere. But, in left hemisphere the reaction times for abstract words was shorter than for the abstract word in right hemisphere. EPs acquisition exhibits more negativity of N400 for concrete word and more reverberation of P650-N750 for abstract words. The difference in mean reaction times sustain the Paivio's theory and the difference in amplitude of N400, P650-N750 for concrete and abstract nouns show that the electric activities of brain are correlated in time and in amplitude with the same effort of processing the words. The psycho-verbal stimulation interface can be used as a medical research tool for studying and assessment the cognitive processes of reading, memory or learning using the endogenous visual event related potentials and the psychometric reaction times.

  7. The locus of color sensation: cortical color loss and the chromatic visual evoked potential.

    Science.gov (United States)

    Crognale, Michael A; Duncan, Chad S; Shoenhard, Hannah; Peterson, Dwight J; Berryhill, Marian E

    2013-08-28

    Color losses of central origin (cerebral achromatopsia and dyschromatopsia) can result from cortical damage and are most commonly associated with stroke. Such cases have the potential to provide useful information regarding the loci of the generation of the percept of color. One available tool to examine this issue is the chromatic visual evoked potential (cVEP). The cVEP has been used successfully to objectively quantify losses in color vision capacity in both congenital and acquired deficiencies of retinal origin but has not yet been applied to cases of color losses of cortical origin. In addition, it is not known with certainty which cortical sites are responsible for the generation of the cVEP waveform components. Here we report psychophysical and electrophysiological examination of a patient with color deficits resulting from a bilateral cerebral infarct in the ventral occipitotemporal region. Although this patient demonstrated pronounced color losses of a general nature, the waveform of the cVEP remains unaffected. Contrast response functions of the cVEP are also normal for this patient. The results suggest that the percept of color arises after the origin of the cVEP and that normal activity in those areas that give rise to the characteristic negative wave of the cVEP are not sufficient to provide for the normal sensation of color.

  8. Correlation of pattern reversal visual evoked potential parameters with the pattern standard deviation in primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Ruchi Kothari

    2014-04-01

    Full Text Available AIM:To evaluate whether glaucomatous visual field defect particularly the pattern standard deviation (PSD of Humphrey visual field could be associated with visual evoked potential (VEP parameters of patients having primary open angle glaucoma (POAG.METHODS:Visual field by Humphrey perimetry and simultaneous recordings of pattern reversal visual evoked potential (PRVEP were assessed in 100 patients with POAG. The stimulus configuration for VEP recordings consisted of the transient pattern reversal method in which a black and white checker board pattern was generated (full field and displayed on VEP monitor (colour 14” by an electronic pattern regenerator inbuilt in an evoked potential recorder (RMS EMG EP MARK II.RESULTS:The results of our study indicate that there is a highly significant (P<0.001 negative correlation of P100 amplitude and a statistically significant (P<0.05 positive correlation of N70 latency, P100 latency and N155 latency with the PSD of Humphrey visual field in the subjects of POAG in various age groups as evaluated by Student’s t-test.CONCLUSION:Prolongation of VEP latencies were mirrored by a corresponding increase of PSD values. Conversely, as PSD increases the magnitude of VEP excursions were found to be diminished.

  9. [Relationship between magnocellular function and reading skills in children: a study using visual evoked potentials].

    Science.gov (United States)

    Kobayashi, Tomoka; Inagaki, Masumi; Yamazaki, Hiroko; Kita, Yosuke; Kaga, Makiko; Oka, Akira

    2014-11-01

    Developmental dyslexia (DD) is a neurodevelopmental disorder that is characterized by difficulties with accurate and/or fluent word recognition and by poor spelling and decoding abilities. The magnocellular deficit theory is one of several hypotheses that have been proposed to explain the pathophysiology of DD. In this study, we investigated magnocellular system dysfunction in Japanese dyslexic children. Subjects were 19 dyslexic children (DD group) and 19 aged-matched healthy children (TD group). They were aged between 7 and 16 years. Reversed patterns of black and white sinusoidal gratings generated at a low spatial frequency, high reversal frequency of 7.5 Hz, and low contrasts were used specifically to stimulate the magnocellular system. We recorded visual evoked potentials (VEP) from the occipital area and examined their relationship with reading and naming tasks, such as the time to read hiragana characters, rapid automatized naming of pictured objects, and phonological manipulation. Compared to the TD group, the DD group showed a significantly lower peak amplitude of VEPs through the complex demodulation method. Structural equation modeling showed that VEP peak amplitudes were related to the rapid automatized naming of pictured objects, and better rapid automatized naming resulted in higher reading skills. There was no correlation between VEP findings and the capacity for phonological manipulation. VEPs in response to the magnocellular system are useful for understanding the pathophysiology of DD. Single phonological deficit may not be sufficient to cause DD.

  10. Combined visual and motor evoked potentials predict multiple sclerosis disability after 20 years.

    Science.gov (United States)

    Schlaeger, Regina; Schindler, Christian; Grize, Leticia; Dellas, Sophie; Radue, Ernst W; Kappos, Ludwig; Fuhr, Peter

    2014-09-01

    The development of predictors of multiple sclerosis (MS) disability is difficult due to the complex interplay of pathophysiological and adaptive processes. The purpose of this study was to investigate whether combined evoked potential (EP)-measures allow prediction of MS disability after 20 years. We examined 28 patients with clinically definite MS according to Poser's criteria with Expanded Disability Status Scale (EDSS) scores, combined visual and motor EPs at entry (T0), 6 (T1), 12 (T2) and 24 (T3) months, and a cranial magnetic resonance imaging (MRI) scan at T0 and T2. EDSS testing was repeated at year 14 (T4) and year 20 (T5). Spearman rank correlation was used. We performed a multivariable regression analysis to examine predictive relationships of the sum of z-transformed EP latencies (s-EPT0) and other baseline variables with EDSST5. We found that s-EPT0 correlated with EDSST5 (rho=0.72, pdisability in MS. © The Author(s) 2014.

  11. Dominant Eye and Visual Evoked Potential of Patients with Myopic Anisometropia.

    Science.gov (United States)

    Wang, Qing; Wu, Yili; Liu, Wenwen; Gao, Lin

    2016-01-01

    A prospective nonrandomized controlled study was conducted to explore the association between ocular dominance and degree of myopia in patients with anisometropia and to investigate the character of visual evoked potential (VEP) in high anisometropias. 1771 young myopia cases including 790 anisometropias were recruited. We found no significant relation between ocular dominance and spherical equivalent (SE) refraction in all subjects. On average for subjects with anisometropia 1.0-1.75 D, there was no significant difference in SE power between dominant and nondominant eyes, while, in SE anisometropia ≥1.75 D group, the degree of myopia was significantly higher in nondominant eyes than in dominant eyes. The trend was more significant in SE anisometropia ≥2.5 D group. There was no significant difference in higher-order aberrations between dominant eye and nondominant eye either in the whole study candidates or in any anisometropia groups. In anisometropias >2.0 D, the N75 latency of nondominant eye was longer than that of dominant eye. Our results suggested that, with the increase of anisometropia, nondominant eye had a tendency of higher refraction and N75 wave latency of nondominant eye was longer than that of dominant eye in high anisometropias.

  12. Dominant Eye and Visual Evoked Potential of Patients with Myopic Anisometropia

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2016-01-01

    Full Text Available A prospective nonrandomized controlled study was conducted to explore the association between ocular dominance and degree of myopia in patients with anisometropia and to investigate the character of visual evoked potential (VEP in high anisometropias. 1771 young myopia cases including 790 anisometropias were recruited. We found no significant relation between ocular dominance and spherical equivalent (SE refraction in all subjects. On average for subjects with anisometropia 1.0–1.75 D, there was no significant difference in SE power between dominant and nondominant eyes, while, in SE anisometropia ≥1.75 D group, the degree of myopia was significantly higher in nondominant eyes than in dominant eyes. The trend was more significant in SE anisometropia ≥2.5 D group. There was no significant difference in higher-order aberrations between dominant eye and nondominant eye either in the whole study candidates or in any anisometropia groups. In anisometropias >2.0 D, the N75 latency of nondominant eye was longer than that of dominant eye. Our results suggested that, with the increase of anisometropia, nondominant eye had a tendency of higher refraction and N75 wave latency of nondominant eye was longer than that of dominant eye in high anisometropias.

  13. The reproducibility of binocular pattern reversal visual evoked potentials: a single subject design.

    Science.gov (United States)

    Mellow, Tessa B; Liasis, Alki; Lyons, Ruth; Thompson, Dorothy A

    2011-06-01

    This study aimed to investigate the within-participant variability over time of both amplitude and peak latency measures of pattern reversal visual evoked potentials (pVEPs). As a large number of factors are known to contribute to the variability of the pVEPs (such as fixation instability and drowsiness), testing was conducted in controlled conditions with two co-operative participants. PVEPs were recorded during 24 sessions, over an eight-week period using the same equipment and recording settings. The participants viewed a plasma monitor binocularly from a distance of 1 meter. High contrast (97%), black and white checks of side subtense 50', 25', and 12.5' pattern reversed 3/s in a 28 degree test field. The different sized checks were presented in a pseudo-random order. Three runs, each of 100 trials, were acquired to each stimulus from an active electrode placed at Oz referred to aFz. The amplitude of N80-P100 and the latency of P100 were measured. P100 amplitude and latency were stable across sessions and did not depend upon the order of check size presentation. As expected, variation in amplitude was greater than peak latency. The coefficients of variation for different check sizes and participants were 9-14% for pVEP amplitude, but only 1-2% for P100 latency.

  14. Pattern visual evoked potential in varying degrees hyperopic refractive amblyopic children

    Directory of Open Access Journals (Sweden)

    Liang Qi

    2013-09-01

    Full Text Available AIM: To observe pattern visual evoked potential(P-VEPof varying degrees hyperopic refractive amblyopic children. METHODS: We did P-VEP examination for the hyperopic refractive children from May 2011 to August 2012. We divided these children into three groups according to different best corrected vision(BCV: better than 0.5 amblyopic group, 0.3-0.5 amblyopic group and lower than 0.3 amblyopic group. Their P100 latency and amplitude were measured and compared with normal children group. RESULTS: The healthy eye's P100 latency was 101.43±6.82ms, P100 amplitude was 11.27±5.38μV. P100 latency delay and P100 amplitude decline in amblyopic group. Better than 0.5 amblyopic group, 110.54±8.47ms, 9.94±5.28μV; 0.3-0.5 amblyopic group 118.76±6.21ms, 8.57±7.21μV; and lower than 0.3 amblyopic group 124.54±7.36ms, 7.49±5.07μV. P100 latency and amplitude have significant different between groups(PCONCLUSION: P100 latency delay and P100 amplitude decline in hyperopic refractive amblyopia and the changes are associated with degree of amblyopia.

  15. Relationship between vitamin D deficiency and visually evoked potentials in multiple sclerosis.

    Science.gov (United States)

    López-Méndez, P; Sosa-Henríquez, M; Ruiz-Pérez, Á

    2016-05-01

    To evaluate the possible relationship between serum 25-OH vitamin D levels and visually evoked potentials (VEP) in patients with multiple sclerosis (MS), residents in the south zone of Gran Canaria. The study included 49 patients with MS, on whom 25-OH-vitamin D was determined, along with VEP, and a neurological examination to determine incapacity. Clinical variables, such as a history of optic neuritis were recorded. The mean value of 25-OH-vitamin D of the patients was 28.1±9.5ng/ml. The VEP latency was 119.1±23.2ms and the amplitude, 8.5±4.4 μV. Patients with a higher 25-OH-vitamin D had a greater number of outbreaks in the year prior to the study (P=.049), and those with vitamin D deficiency and previous optic neuritis showed no reduction in the amplitude of the VEP (P=.006). Patients with vitamin D deficiency have lower clinical activity of the MS and show no axonal involvement in VEP after having suffered optic neuritis. These relationships, although statistically significant, do not seem clinically plausible, thus new studies are needed to try and confirm this possible relationship. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  16. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert

    2017-01-01

    The robust analysis of neural signals is a challenging problem. Here, we contribute a convolutional neural network (CNN) for the robust classification of a steady-state visual evoked potentials (SSVEPs) paradigm. We measure electroencephalogram (EEG)-based SSVEPs for a brain-controlled exoskeleton under ambulatory conditions in which numerous artifacts may deteriorate decoding. The proposed CNN is shown to achieve reliable performance under these challenging conditions. To validate the proposed method, we have acquired an SSVEP dataset under two conditions: 1) a static environment, in a standing position while fixated into a lower-limb exoskeleton and 2) an ambulatory environment, walking along a test course wearing the exoskeleton (here, artifacts are most challenging). The proposed CNN is compared to a standard neural network and other state-of-the-art methods for SSVEP decoding (i.e., a canonical correlation analysis (CCA)-based classifier, a multivariate synchronization index (MSI), a CCA combined with k-nearest neighbors (CCA-KNN) classifier) in an offline analysis. We found highly encouraging SSVEP decoding results for the CNN architecture, surpassing those of other methods with classification rates of 99.28% and 94.03% in the static and ambulatory conditions, respectively. A subsequent analysis inspects the representation found by the CNN at each layer and can thus contribute to a better understanding of the CNN’s robust, accurate decoding abilities. PMID:28225827

  17. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment.

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2017-01-01

    The robust analysis of neural signals is a challenging problem. Here, we contribute a convolutional neural network (CNN) for the robust classification of a steady-state visual evoked potentials (SSVEPs) paradigm. We measure electroencephalogram (EEG)-based SSVEPs for a brain-controlled exoskeleton under ambulatory conditions in which numerous artifacts may deteriorate decoding. The proposed CNN is shown to achieve reliable performance under these challenging conditions. To validate the proposed method, we have acquired an SSVEP dataset under two conditions: 1) a static environment, in a standing position while fixated into a lower-limb exoskeleton and 2) an ambulatory environment, walking along a test course wearing the exoskeleton (here, artifacts are most challenging). The proposed CNN is compared to a standard neural network and other state-of-the-art methods for SSVEP decoding (i.e., a canonical correlation analysis (CCA)-based classifier, a multivariate synchronization index (MSI), a CCA combined with k-nearest neighbors (CCA-KNN) classifier) in an offline analysis. We found highly encouraging SSVEP decoding results for the CNN architecture, surpassing those of other methods with classification rates of 99.28% and 94.03% in the static and ambulatory conditions, respectively. A subsequent analysis inspects the representation found by the CNN at each layer and can thus contribute to a better understanding of the CNN's robust, accurate decoding abilities.

  18. EEG-based classification of video quality perception using steady state visual evoked potentials (SSVEPs)

    Science.gov (United States)

    Acqualagna, Laura; Bosse, Sebastian; Porbadnigk, Anne K.; Curio, Gabriel; Müller, Klaus-Robert; Wiegand, Thomas; Blankertz, Benjamin

    2015-04-01

    Objective. Recent studies exploit the neural signal recorded via electroencephalography (EEG) to get a more objective measurement of perceived video quality. Most of these studies capitalize on the event-related potential component P3. We follow an alternative approach to the measurement problem investigating steady state visual evoked potentials (SSVEPs) as EEG correlates of quality changes. Unlike the P3, SSVEPs are directly linked to the sensory processing of the stimuli and do not require long experimental sessions to get a sufficient signal-to-noise ratio. Furthermore, we investigate the correlation of the EEG-based measures with the outcome of the standard behavioral assessment. Approach. As stimulus material, we used six gray-level natural images in six levels of degradation that were created by coding the images with the HM10.0 test model of the high efficiency video coding (H.265/MPEG-HEVC) using six different compression rates. The degraded images were presented in rapid alternation with the original images. In this setting, the presence of SSVEPs is a neural marker that objectively indicates the neural processing of the quality changes that are induced by the video coding. We tested two different machine learning methods to classify such potentials based on the modulation of the brain rhythm and on time-locked components, respectively. Main results. Results show high accuracies in classification of the neural signal over the threshold of the perception of the quality changes. Accuracies significantly correlate with the mean opinion scores given by the participants in the standardized degradation category rating quality assessment of the same group of images. Significance. The results show that neural assessment of video quality based on SSVEPs is a viable complement of the behavioral one and a significantly fast alternative to methods based on the P3 component.

  19. Color Doppler imaging and pattern visual evoked potential in normal tension glaucoma and hypertension glaucoma.

    Science.gov (United States)

    Zhong, Yisheng; Min, Yingjun; Jiang, Ying; Cheng, Yu; Qin, Jiao; Shen, Xi

    2009-12-01

    To compare the differences in color Doppler imaging (CDI) and pattern visual evoked potential (P-VEP) examinations between normal tension glaucoma (NTG) and hypertension primary open angle glaucoma (HTG) patients, and investigate the relation between flow velocities measured by CDI and P-VEP examination in NTG and HTG patients. Sixty NTG patients, 66 HTG patients and 44 control subjects underwent CDI evaluation of the ophthalmic artery (OA), short posterior ciliary artery (SPCA) and central retinal arteries (CRA). The peak systolic velocities (PSV) and end-diastolic velocities (EDV) and resistive index (RI) of all retrobulbar vessels were measured. The latency and amplitude of P100 in P-VEP were recorded from the three groups. The differences of CDI and P-VEP parameters among NTG group, HTG group and control group were compared by one-way analysis of variance. The correlations between CDI parameters and visual field indices, P-VEP and visual field indices, P-VEP and CDI parameters in NTG and HTG patients were evaluated by Pearson's correlation analysis. NTG and HTG patients had the lower EDV and higher RI in the OA, CRA and SPCA comparing with that of control subjects. NTG and HTG patients also had lower PSV in OA and CRA comparing with that of control subjects. There was no significant difference in the blood flow velocities and RI of all retrobulbar vessels between NTG and HTG patients. The latency of P100 in VEP delayed and the amplitude of P100 decreased in the NTG and HTG patients comparing with that of the control group. There was no significant difference in the latency and amplitude of P100 between the NTG and HTG patients. The RI of OA and SPCA were negatively correlated with the mean deviation (MD) values in the NTG and HTG patients. The RI of OA was positively correlated with the PSD value in the NTG and HTG patients. The MD values in the NTG and HTG patients were negatively correlated with the latency time of P100. The RI of OA was positively correlated

  20. Case of acute zonal occult outer retinopathy with abnormal pattern visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Chai Y

    2011-09-01

    Full Text Available Yuzhu Chai1, Hiroko Yamazaki1, Kaoru Fujinami2, Kazushige Tsunoda2, Shuichi Yamamoto31Department of Ophthalmology, Kohnodai Hospital, National Center for Global Health and Medicine, Chiba, Japan; 2National Institute of Sensory Organs, Tokyo, Japan; 3Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, JapanAbstract: Electrophysiological and morphological findings were studied in a case of acute zonal occult outer retinopathy (AZOOR showing abnormal pattern visual evoked potentials (VEPs at the onset and significant functional recovery in the natural course.  A 21-year-old woman presented with acute onset of photopsia and a large scotoma in the right eye of 2 weeks duration. Her visual acuity was 20/20 in both eyes with no ophthalmoscopic and fluorescein angiographic abnormalities. However, a relative afferent pupillary defect and an enlarged blind spot were found in the right eye. The pattern VEPs were severely reduced when the right eye was stimulated. The amplitudes of both rod and cone full-field electroretinographics (ERGs were reduced in the right eye. The amplitudes of the multifocal ERGs were reduced in the area of the enlarged blind spot. Irregularities in the inner segment/outer segment (IS/OS line of the photoreceptors were observed over the nasal fovea by optical coherence tomography (OCT. The patient was followed without treatment. The enlarged blind spot disappeared in 3 months after the onset. At 5 months, reappearance of the IS/OS line was detected by OCT. At 6 months, the P100 recovered to normal values. At 1 year, the reduced full-field ERGs were almost normal size and the multifocal ERGs in the area corresponding to the enlarged blind spot were also improved. ERG findings are crucial for differentiating AZOOR from retrobulbar neuritis, especially in patients with abnormal pattern VEPs. The pattern VEPs, full-field ERGs, multifocal ERGs, and OCT images can be abnormal in the early

  1. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces

    Science.gov (United States)

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.

  2. Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) performance under different perturbations.

    Science.gov (United States)

    İşcan, Zafer; Nikulin, Vadim V

    2018-01-01

    Brain-computer interface (BCI) paradigms are usually tested when environmental and biological artifacts are intentionally avoided. In this study, we deliberately introduced different perturbations in order to test the robustness of a steady state visual evoked potential (SSVEP) based BCI. Specifically we investigated to what extent a drop in performance is related to the degraded quality of EEG signals or rather due to increased cognitive load. In the online tasks, subjects focused on one of the four circles and gave feedback on the correctness of the classification under four conditions randomized across subjects: Control (no perturbation), Speaking (counting loudly and repeatedly from one to ten), Thinking (mentally counting repeatedly from one to ten), and Listening (listening to verbal counting from one to ten). Decision tree, Naïve Bayes and K-Nearest Neighbor classifiers were used to evaluate the classification performance using features generated by canonical correlation analysis. During the online condition, Speaking and Thinking decreased moderately the mean classification accuracy compared to Control condition whereas there was no significant difference between Listening and Control conditions across subjects. The performances were sensitive to the classification method and to the perturbation conditions. We have not observed significant artifacts in EEG during perturbations in the frequency range of interest except in theta band. Therefore we concluded that the drop in the performance is likely to have a cognitive origin. During the Listening condition relative alpha power in a broad area including central and temporal regions primarily over the left hemisphere correlated negatively with the performance thus most likely indicating active suppression of the distracting presentation of the playback. This is the first study that systematically evaluates the effects of natural artifacts (i.e. mental, verbal and audio perturbations) on SSVEP-based BCIs. The

  3. Color vision versus pattern visual evoked potentials in the assessment of subclinical optic pathway involvement in multiple sclerosis

    OpenAIRE

    Gundogan, Fatih C.; Ahmet Tas; Salih Altun; Oguzhan Oz; Uzeyir Erdem; Gungor Sobaci

    2013-01-01

    Background: Optic pathway involvement in multiple sclerosis is frequently the initial sign in the disease process. In most clinical applications, pattern visual evoked potential (PVEP) is used in the assessment of optic pathway involvement. Objective: To question the value of PVEP against color vision assessment in the diagnosis of subclinical optic pathway involvement. Materials and Methods: This prospective, cross-sectional study included 20 multiple sclerosis patients without a history of ...

  4. [Visual evoked potentials produced by monocular flash stimuli in the cerebral cortex of the rabbit. I. Typography].

    Science.gov (United States)

    Pérez-Cobo, J C; Ruiz-Beramendi, M; Pérez-Arroyo, M

    1990-12-01

    The visually evoked potentials in the hemisphere contralateral to the stimulated eye in rabbit, can be described topographically as follows. While a positive wave (P1) begins forming in the anterior zones and in the V I binocular zone, the N0 wave, at times very large, is produced in a more occipital zone, which corresponds to the visual streak. Immediately afterwards, the positivity, P1, practically invades the whole of the hemisphere. After this, the N1 wave which is produced in the most posterior parts of the V I, begins forming. The whole phenomenon comes to an end when the P2 wave is generated in the most occipital zones.

  5. [Manifestations of the genotypic causality of human evoked potentials during perception of various visual stimuli].

    Science.gov (United States)

    Mariutina, T M; Ivoshina, T G

    1984-01-01

    Intrapair resemblance of the wave form and amplitude-temporal parameters of evoked potentials (EPs) to flashes, chess field, house image, the word "house" and a series of other stimuli was evaluated in 20 pairs of monozygotic and 20 pairs of homosexual dizygotic adult twins. In the occipital area the maximum of genetic dependence was characteristic of EPs to flashes, the minimum--of EPs--to the word "house". In vertex EPs parameters genotypic effects were manifest irrespectively of the stimulus type. Genotypic dependence differed for the amplitudes and latencies of separate EP components.

  6. Visual Evoked Potentials to Light Flashes in Captive Rhesus Monkeys: A Study Reflecting Cerebral Cortical Activity and Brain Maturation

    Directory of Open Access Journals (Sweden)

    S.A. Solís-Chávez

    2014-01-01

    Full Text Available Visual evoked potentials (VEPs are useful electrophysiological diagnostic tools for evaluating retinal response of the visual cortex and detecting its functional integrity in humans and animals. To analyze the VEPs and physiologic response of the visual pathway of a random population of captive-bred monkeys of the Macaca mulatta species throughout different physiologic stages after stimulation with stroboscopic light flashes. In this study we used 20 non-human primates (M. mulatta, 10 males and 10 females, divided into five age-dependant cohorts of 2 males and 2 females. Two replicable negative waveforms and one positive were recorded, as reliable indicators of electrical conductivity at specific anatomical nuclei of the visual pathways. Statistically significant differences were primarily observed in group 1 when compared against the remaining groups for the three evaluated waveforms. Waveform morphology characteristically presented steady deviations related to ontogenetic development of the studied population.

  7. Paired-pulse behavior of visually evoked potentials recorded in human visual cortex using patterned paired-pulse stimulation.

    Science.gov (United States)

    Höffken, Oliver; Grehl, Torsten; Dinse, Hubert R; Tegenthoff, Martin; Bach, Michael

    2008-07-01

    Paired-pulse stimulation techniques are used as common tools to investigate cortical excitability and cortical plastic changes. Similar to investigations in the somatosensory and motor system here we applied a new paired-pulse paradigm to study the paired-pulse behavior of visually evoked potentials (VEPs) in 25 healthy subjects. VEPs were recorded and the responses to the first and the second P100 peak were analyzed at different SOAs [stimulus onset asynchrony (SOA) = interstimulus interval (ISI) + pulse duration (13 ms)]. Two measures describe the paired pulse interaction: the "amplitude ratio", the ratio of the second to the first amplitude, and the "latency shift", the difference of the inter-peak interval between the P100 peaks and the respective SOA. To separate alterations in the amplitude of the second VEP response due to changes in paired-pulse inhibition from those originating from superposition of the two waveforms, particularly at short SOAs, we created a waveform template from recordings made at SOAs of 1 s, where interaction can be assumed to be negligible. Superposed traces of VEP recordings were then created by adding two templates at delays corresponding to the SOAs used. The original recordings were then digitally subtracted from the traces obtained by superposition. Analysis of the subtracted traces revealed evidence that at short SOAs the second VEP response is substantially suppressed, a finding comparable to the paired-pulse inhibition described for motor and somatosensory cortex following paired-pulse stimulation. However, paired-pulse inhibition seen in V1 varied considerably from subject to subject, both in respect to amplitude, and to time of maximal inhibition. We found paired-pulse inhibition ranging from 12 to 76% (mean 34%) at SOAs between 80 (shortest discriminable SOA) and 320 ms (mean 128 ms). At intermediate SOAs between 80 and 720 ms (mean 215 ms) the amplitude ratios were between 94 and 145% (mean 116%) indicative of slight

  8. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    Science.gov (United States)

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  9. The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia

    Science.gov (United States)

    Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P.; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2016-01-01

    Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia. PMID:26763954

  10. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.

    Science.gov (United States)

    Xie, Jun; Xu, Guanghua; Luo, Ailing; Li, Min; Zhang, Sicong; Han, Chengcheng; Yan, Wenqiang

    2017-08-14

    As a spatial selective attention-based brain-computer interface (BCI) paradigm, steady-state visual evoked potential (SSVEP) BCI has the advantages of high information transfer rate, high tolerance to artifacts, and robust performance across users. However, its benefits come at the cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a ubiquitous random perturbation with the power of randomness, may be exploited by the human visual system to enhance higher-level brain functions. In this study, a novel steady-state motion visual evoked potential (SSMVEP, i.e., one kind of SSVEP)-based BCI paradigm with spatiotemporal visual noise was used to investigate the influence of noise on the compensation of mental load and fatigue deterioration during prolonged attention tasks. Changes in α, θ, θ + α powers, θ/α ratio, and electroencephalography (EEG) properties of amplitude, signal-to-noise ratio (SNR), and online accuracy, were used to evaluate mental load and fatigue. We showed that presenting a moderate visual noise to participants could reliably alleviate the mental load and fatigue during online operation of visual BCI that places demands on the attentional processes. This demonstrated that noise could provide a superior solution to the implementation of visual attention controlling-based BCI applications.

  11. Effects of continuous conditioning noise and light on the auditory- and visual-evoked potentials of the guinea pig.

    Science.gov (United States)

    Goksoy, Cuneyt; Demirtas, Serdar; Ates, Kahraman

    2005-11-02

    Neurophysiological studies aiming to explore how the brain integrates information from different brain regions are increasing in the literature. The aim of the present study is to explore intramodal (binaural, binocular) and intermodal (audio-visual) interactions in the guinea pig brain through the observation of changes in evoked potentials by generalized continuous background activity. Seven chronically prepared animals were used in the study and the recordings were made as they were awake. Epidural electrodes were implanted to the skulls by using stereotaxic methods. Continuous light for retinal or continuous white noise for cochlear receptors were used as continuous conditioning stimuli for generalized stimulation. To evoke auditory or visual potentials, click or flash were used as transient imperative stimuli. The study data suggest that (a) white noise applied to one ear modifies the response to click in the contralateral ear which is a binaural interaction; (b) continuous light applied to one eye modifies the response to flash applied to the contralateral eye which is interpreted as a binocular interaction; (c) regardless of the application side, white noise similarly modified the response to flash applied to the either eye connoting a nonspecific effect of white noise on vision, independent from spatial hearing mechanisms; (d) on the other hand, continuous light, in either eye, did not affect the response to click applied to any ear, reminding a 'one-way' interaction that continuous aural stimulation affects visual response.

  12. Visual Perception and Frontal Lobe in Intellectual Disabilities: A Study with Evoked Potentials and Neuropsychology

    Science.gov (United States)

    Munoz-Ruata, J.; Caro-Martinez, E.; Perez, L. Martinez; Borja, M.

    2010-01-01

    Background: Perception disorders are frequently observed in persons with intellectual disability (ID) and their influence on cognition has been discussed. The objective of this study is to clarify the mechanisms behind these alterations by analysing the visual event related potentials early component, the N1 wave, which is related to perception…

  13. Simultaneous detection of P300 and steady-state visually evoked potentials for hybrid brain-computer interface.

    Science.gov (United States)

    Combaz, Adrien; Van Hulle, Marc M

    2015-01-01

    We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.

  14. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Guang-Hua [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054 (China)

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.

  15. International Evoked Potentials Symposium

    CERN Document Server

    1980-01-01

    The past decade has seen great progress in the measurement of evoked potentials in man; a steady increase in our understanding of their charac­ teristics, their origins and their usefulness; and a growing application in the field of clinical diagnosis. The topic is a truly multidisciplinary one. Important research contributions have been made by workers of many different backgrounds and clinical applications span the specialities. This book represents a revised and updated version of the work originally presented at the international evoked potential symposium held in Nottingham 4-6 1978. The Nottingham Symposium provided a forum for a state-of-the-art discussion amongst workers from many different disciplines and from many different countries. For each major topic in the field an expert review set the scene for discussion of current research presentations. This format is retained in the book: the chapters in Part A provide the context in which the research presented in Part B is set. The task of selecting m...

  16. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.

    Science.gov (United States)

    Wilaiprasitporn, Theerawit; Yagi, Tohru

    2015-01-01

    This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.

  17. Cross-modal plasticity in Cuban visually-impaired child cochlear implant candidates: topography of somatosensory evoked potentials.

    Science.gov (United States)

    Charroó-Ruíz, Lidia E; Pérez-Abalo, María C; Hernández, María C; Alvarez, Beatriz; Bermejo, Beatriz; Bermejo, Sandra; Galán, Lídice; Díaz-Comas, Lourdes

    2012-04-01

    Studies of neuroplasticity have shown that the brain's neural networks change in the absence of sensory input such as hearing or vision. However, little is known about what happens when both sensory modalities are lost (deaf-blindness). Hence, this study of cortical reorganization in visually-impaired child cochlear implant (CI) candidates. Assess cross-modal plasticity, specifically cortical reorganization for tactile representation in visually-impaired child CI candidates, through study of topography of somatosensory evoked potentials (SEP). From April through September 2005, SEP from median and tibial nerve electrical stimulation were studied in 12 visually-impaired child CI candidates aged 3-15 years and 23 healthy controls. Following placement of 19 recording electrodes using the International 10-20 System , SEP were recorded and then processed. Topographic maps were obtained for SEP N20 (median nerve) and SEP P40 (tibial nerve), permitting assessment of cortical reorganization by comparing visually-impaired, deaf children's maps with those of healthy children by means of visual inspection and statistical comparison using a permutation test. SEP N20 topography was significantly more extensive in visually-impaired child CI candidates than in healthy children. An asymmetrical pattern occurred from the expansion of hand tactile activation into the temporal and occipital regions in the left hemisphere on right median nerve stimulation. This did not occur for SEP P40 on tibial nerve stimulation (right and left). Magnitude of expanded SEP N20 response was related to severity of visual impairment and longer duration of dual sensory loss. Changes in SEP N20 topography are evidence of cross-modal plasticity in visually-impaired child CI candidates, appearing to result from a complex interaction between severity of visual impairment and duration of multisensory deprivation.

  18. Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG-fMRI.

    Science.gov (United States)

    Porcaro, Camillo; Ostwald, Dirk; Bagshaw, Andrew P

    2010-03-01

    EEG quality is a crucial issue when acquiring combined EEG-fMRI data, particularly when the focus is on using single trial (ST) variability to integrate the data sets. The most common method for improving EEG data quality following removal of gross MRI artefacts is independent component analysis (ICA), a completely blind source separation technique. In the current study, a different approach is proposed based on the functional source separation (FSS) algorithm. FSS is an extension of ICA that incorporates prior knowledge about the signal of interest into the data decomposition. Since in general the part of the EEG signal that will contain the most relevant information is known beforehand (i.e. evoked potential peaks, spectral bands), FSS separates the signal of interest by exploiting this prior knowledge without renouncing the advantages of using only information contained in the original signal waveforms. A reversing checkerboard stimulus was used to generate visual evoked potentials (VEPs) in healthy control subjects. Gradient and ballistocardiogram artefacts were removed with template subtraction techniques to form the raw data, which were then subjected to ICA denoising and FSS. The resulting EEG data sets were compared using several metrics derived from average and ST data and correlated with fMRI data. In all cases, ICA was an improvement on the raw data, but the most obvious improvement was provided by FSS, which consistently outperformed ICA. The results show the benefit of FSS for the recovery of good quality single trial evoked potentials during concurrent EEG-fMRI recordings. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  19. Vestibular evoked myogenic potential

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2012-01-01

    Full Text Available Introduction: The Vestibular Evoked Myogenic Potential (VEMP is a promising test for the evaluation of the cholic descending vestibular system. This reflex depends of the integrity from the saccular macula, from the inferior vestibular nerve, the vestibular nuclei, the vestibule-spinal tract and effectors muscles. Objective: Perform a systematic review of the pertinent literature by means of database (COCHRANE, MEDLINE, LILACS, CAPES. Conclusion: The clinical application of the VEMP has expanded in the last years, as goal that this exam is used as complementary in the otoneurological evaluation currently used. But, methodological issues must be clarified. This way, this method when combined with the standard protocol, can provide a more widely evaluation from the vestibular system. The standardization of the methodology is fundamental criterion for the replicability and sensibility of the exam.

  20. Flash visual evoked potentials in patients with periventricular leucomalacia in children less than 1 year of age

    Directory of Open Access Journals (Sweden)

    Jitendra Jethani

    2013-01-01

    Full Text Available Background and Aim: Children with periventricular leucomalacia (PVL are known to have visual impairment of various forms starting from reduced vision, field defects, congnitive problems, and problems with hand eye coordination. There is very scant data/literature on the visual evoked potentials (VEPs at an early age in children with PVL. We did a study to evaluate the flash visual evoked potentials (fVEPs in children with PVL less than 1 year of age. Materials and Methods: A total of nine children diagnosed as having PVL on magnetic resonance imaging were included in the study. The mean age was 9.7μ 3.5 months. All children underwent handheld fVEPs under sedation at two different flash frequencies 1.4 and 8 Hz. Results: The mean latency of N1 and P1 on stimulation with 1.4 Hz was 47.9μ 15.2 and 77.7μ 26.0 ms, respectively. However, on stimulation with 8 Hz the mean latency of N1 and P1 was 189.8μ 25.6 and 238.4μ 33.6 ms, respectively. The mean amplitude with 1.4 Hz and 8 stimulation frequency was 5.6μ 4.5 and 5.59μ 3 mV, respectively. Conclusion: We have found for the first time that there is a change in the latency and the delay occurs at 8 Hz frequency but not at 1.4 Hz. We also conclude that amplitudes by fVEPs may be normal even in presence of periventricular changes. The amplitudes of fVEPs are not reliable in children with PVL.

  1. Effect of Sahaja yoga meditation on auditory evoked potentials (AEP) and visual contrast sensitivity (VCS) in epileptics.

    Science.gov (United States)

    Panjwani, U; Selvamurthy, W; Singh, S H; Gupta, H L; Mukhopadhyay, S; Thakur, L

    2000-03-01

    The effect of Sahaja yoga meditation on 32 patients with primary idiopathic epilepsy on regular and maintained antiepileptic medication was studied. The patients were randomly divided into 3 groups: group I practiced Sahaja Yoga meditation twice daily for 6 months under proper guidance; group II practiced postural exercises mimicking the meditation for the same duration; and group III was the control group. Visual Contrast Sensitivity (VCS), Auditory Evoked Potentials (AEP), Brainstem Auditory Evoked Potentials (BAEP), and Mid Latency Responses (MLR) were recorded initially (0 month) and at 3 and 6 months for each group. There was a significant improvement in VCS following meditation practice in group I participants. Na, the first prominent negative peak of MLR and Pa, the positive peak following Na did not register changes in latency. The Na-Pa amplitude of MLR also showed a significant increase. There were no significant changes in the absolute and interpeak latencies of BAEP. The reduced level of stress following meditation practice may make patients more responsive to specific stimuli. Sahaja Yoga meditation appears to bring about changes in some of the electrophysiological responses studied in epileptic patients.

  2. Athletic training in badminton players modulates the early C1 component of visual evoked potentials: a preliminary investigation.

    Science.gov (United States)

    Jin, Hua; Xu, Guiping; Zhang, John X; Ye, Zuoer; Wang, Shufang; Zhao, Lun; Lin, Chong-De; Mo, Lei

    2010-12-01

    One basic question in brain plasticity research is whether individual life experience in the normal population can affect very early sensory-perceptual processing. Athletes provide a possible model to explore plasticity of the visual cortex as athletic training in confrontational ball games is quite often accompanied by training of the visual system. We asked professional badminton players to watch video clips related to their training experience and predict where the ball would land and examined whether they differed from non-player controls in the elicited C1, a visual evoked potential indexing V1 activity. Compared with controls, the players made judgments significantly more accurately, albeit not faster. An early ERP component peaking around 65 ms post-stimulus with a scalp topography centering at the occipital pole (electrode Oz) was observed in both groups and interpreted as the C1 component. With comparable latency, amplitudes of this component were significantly enhanced for the players than for the non-players, suggesting that it can be modulated by long-term physical training. The results present a clear case of experience-induced brain plasticity in primary visual cortex for very early sensory processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. The detection of infant cortical auditory evoked potentials (CAEPs) using statistical and visual detection techniques.

    Science.gov (United States)

    Carter, Lyndal; Golding, Maryanne; Dillon, Harvey; Seymour, John

    2010-05-01

    With the advent of newborn hearing screening programs, the need to verify the fit of hearing aids in young infants has increased. The recording of cortical auditory evoked potentials (CAEPs) for this purpose is quite feasible, but rapid developmental changes that affect response morphology and the presence of electrophysiological noise can make subjective response detection challenging. The purpose of this study was to investigate the effectiveness of an automated statistic versus experienced examiners in detecting the presence of infant CAEPs when stimuli were present and reporting the absence of CAEPs when no stimuli were present. A repeated-measures design was used where infant-generated CAEPs were interpreted by examiners and an automated statistic. There were nine male and five female infants (mean age, 12 mo; SD, 3.4) who completed behavioral and electrophysiological testing using speech-based stimuli. In total, 87 infant CAEPs were recorded to three sensation levels, 10, 20 and 30 dB relative to the behavioral thresholds and to nonstimulus trials. Three examiners were presented with these responses: (1) "in series," where waveforms were presented in order of decreasing stimulus presentation levels, and (2) "nonseries," where waveforms were randomized completely and presented as independent waveforms. The examiners were given no information about the stimulus levels and were asked to determine whether responses to auditory stimulation could be observed and their degree of certainty in making their decision. Data from the CAEP responses were also converted to multiple dependent variables and analyzed using Hotelling's T(2). Results from both methods of response detection were analyzed using a repeated measures ANOVA (analysis of variance) and parameters of signal detection theory known as d-prime (d') and the area under the receiver operating characteristic (ROC) curve. Results showed that as the stimulus level increased, the sensitivity index, d', increased

  4. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons.

    Directory of Open Access Journals (Sweden)

    Gytis Svirskis

    Full Text Available The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum.

  5. The origin of pattern reversal short latency visual evoked potential as determined by dynamic topography and the dipole tracing method.

    Science.gov (United States)

    Kawashima, S; Kobayashi, Y; Nishikiori, O; Tabuchi, A

    1996-01-01

    The generator sites of the parietal P59 and occipital N26 components elicited by hemi-field pattern reversal stimuli were investigated. The topographic distribution of the occipital N26 component showed a paradoxical lateralization, whereas that of the parietal P59 component exhibited an anatomical lateralization. The equivalent dipoles of both occipital N26 and parietal P59 components were situated on the deep mesial surface of the functioning occipital lobe. The differences in these locations were not statistically significant, but the vector moment of the parietal P59 component projected toward the functioning parieto-occipital region and one of the occipital N26 components projected away from the functioning occipital region. The generator sites of the short latency component were considered to differ from those of the middle latency visual evoked potential. Therefore both the occipital pole and the deep cerebral structure, i.e., the lateral geniculate nucleus, may play a role in the generation of equivalent dipoles.

  6. Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials.

    Science.gov (United States)

    Dreyer, Alexander M; Herrmann, Christoph S; Rieger, Jochem W

    2017-01-01

    Steady-state visual evoked potentials (SSVEPs) have been widely employed for the control of brain-computer interfaces (BCIs) because they are very robust, lead to high performance, and allow for a high number of commands. However, such flickering stimuli often also cause user discomfort and fatigue, especially when several light sources are used simultaneously. Different variations of SSVEP driving signals have been proposed to increase user comfort. Here, we investigate the suitability of frequency modulation of a high frequency carrier for SSVEP-BCIs. We compared BCI performance and user experience between frequency modulated (FM) and traditional sinusoidal (SIN) SSVEPs in an offline classification paradigm with four independently flickering light-emitting diodes which were overtly attended (fixated). While classification performance was slightly reduced with the FM stimuli, the user comfort was significantly increased. Comparing the SSVEPs for covert attention to the stimuli (without fixation) was not possible, as no reliable SSVEPs were evoked. Our results reveal that several, simultaneously flickering, light emitting diodes can be used to generate FM-SSVEPs with different frequencies and the resulting occipital electroencephalography (EEG) signals can be classified with high accuracy. While the performance we report could be further improved with adjusted stimuli and algorithms, we argue that the increased comfort is an important result and suggest the use of FM stimuli for future SSVEP-BCI applications.

  7. The effects of neck flexion on cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in related sensory cortices.

    Science.gov (United States)

    Fujiwara, Katsuo; Kunita, Kenji; Kiyota, Naoe; Mammadova, Aida; Irei, Mariko

    2012-12-03

    A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10-20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections.

  8. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo

    2014-12-01

    This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Color vision in Attention-Deficit/ Hyperactivity Disorder: A pilot visual evoked potential study

    OpenAIRE

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2014-01-01

    Background: Individuals with Attention-Deficit/Hyperactivity Disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception problems, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using VEP. Method: Participants were 31 adolescents (aged 13-18); 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gen...

  10. [Visual evoked potentials, contrast sensitivity and color perception in patients with optic nerve neuritis and multiple sclerosis].

    Science.gov (United States)

    Bürki, E

    1981-09-01

    Forty-nine patients with acute optic neuritis (in 21 cases associated with MS) and 26 patients known to have MS but with no history of optic nerve disease underwent visual evoked potential, contrast sensitivity and color vision tests. In patients with optic neuritis the contrast sensitivity was shown to detect optic nerve lesions better than the VEP an often permitted a distinction between acute and past optic neuritis. Combined testing with contrast sensitivity and VEP was superior to the single tests and detected 100% of the acute optic nerve lesions, although in many cases damage was selective and only involved some of the information channels. Desaturated color tests were abnormal in 3/4 of the patients, disturbances of blue-yellow discrimination being commoner than those of red-green. In cases with clinically unilateral optic neuritis the apparently normal partner eye was affected in 61% of the patients; complete recovery of optic nerve function without some residual deficit is rare. Approximately 3/4 of the eyes of patients known to have MS but with no history of past visual disturbances showed bilateral optic nerve involvement. The frequency of subclinical optic nerve lesions rose to 91% at a follow-up examination one year later. the literature is reviewed and our results are compared with the previously published data.

  11. Color vision versus pattern visual evoked potentials in the assessment of subclinical optic pathway involvement in multiple sclerosis.

    Science.gov (United States)

    Gundogan, Fatih C; Tas, Ahmet; Altun, Salih; Oz, Oguzhan; Erdem, Uzeyir; Sobaci, Gungor

    2013-03-01

    Optic pathway involvement in multiple sclerosis is frequently the initial sign in the disease process. In most clinical applications, pattern visual evoked potential (PVEP) is used in the assessment of optic pathway involvement. To question the value of PVEP against color vision assessment in the diagnosis of subclinical optic pathway involvement. This prospective, cross-sectional study included 20 multiple sclerosis patients without a history of optic neuritis, and 20 healthy control subjects. Farnsworth-Munsell (FM) 100-Hue testing and PVEPs to 60-min arc and 15-min arc checks by using Roland-Consult RetiScan® system were performed. P 100 amplitude, P 100 latency in PVEP and total error scores (TES) in FM 100-Hue test were assessed. Expanded Disability Status Scale score and the time from diagnosis were 2.21 ± 2.53 (ranging from 0 to 7) and 4.1 ± 4.4 years. MS group showed significantly delayed P 100 latency for both checks (P 0.05 for all). 14 MS patients (70%) had an increased TESs in FM-100 Hue, 11 (55%) MS patients had delayed P 100 latency and 9 (45%) had reduced P 100 amplitude. The areas under the ROC curves were 0.944 for FM-100 Hue test, 0.753 for P 100 latency, and 0.173 for P 100 amplitude. Color vision testing seems to be more sensitive than PVEP in detecting subclinical visual pathway involvement in MS.

  12. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.

    Science.gov (United States)

    Diez, Pablo F; Torres Müller, Sandra M; Mut, Vicente A; Laciar, Eric; Avila, Enrique; Bastos-Filho, Teodiano Freire; Sarcinelli-Filho, Mário

    2013-08-01

    This work presents a brain-computer interface (BCI) used to operate a robotic wheelchair. The experiments were performed on 15 subjects (13 of them healthy). The BCI is based on steady-state visual-evoked potentials (SSVEP) and the stimuli flickering are performed at high frequency (37, 38, 39 and 40 Hz). This high frequency stimulation scheme can reduce or even eliminate visual fatigue, allowing the user to achieve a stable performance for long term BCI operation. The BCI system uses power-spectral density analysis associated to three bipolar electroencephalographic channels. As the results show, 2 subjects were reported as SSVEP-BCI illiterates (not able to use the BCI), and, consequently, 13 subjects (12 of them healthy) could navigate the wheelchair in a room with obstacles arranged in four distinct configurations. Volunteers expressed neither discomfort nor fatigue due to flickering stimulation. A transmission rate of up to 72.5 bits/min was obtained, with an average of 44.6 bits/min in four trials. These results show that people could effectively navigate a robotic wheelchair using a SSVEP-based BCI with high frequency flickering stimulation. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. [A wireless smart home system based on brain-computer interface of steady state visual evoked potential].

    Science.gov (United States)

    Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang

    2014-10-01

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

  14. Chiasmal coefficient of flash and pattern visual evoked potentials for detection of chiasmal misrouting in albinism

    NARCIS (Netherlands)

    Pott, JWR; Jansonius, NM; Kooijman, AC

    The diagnosis of albinism can be confirmed by electrophysiological examination, when chiasmal misrouting can be demonstrated. The present study describes a quantitative analysis method for this purpose. A chiasmal coefficient (CC) was calculated by correlating the differential potential over left

  15. Cortical visual evoked potentials recorded after optic tract near field stimulation during GPi-DBS in non-cooperative patients.

    Science.gov (United States)

    Landi, Andrea; Pirillo, David; Cilia, Roberto; Antonini, Angelo; Sganzerla, Erik P

    2011-02-01

    Neurophysiologic monitoring during deep brain stimulation (DBS) interventions in the globus pallidus internum (Gpi) for the treatment of Parkinson's disease or primary dystonia is generally based upon microelectrode recordings (MER); moreover, MER request sophisticated technology and high level trained personnel for a reliable monitoring. Recordings of cortical visual evoked potentials (CVEPs) obtained after stimulation of the optic tract may be a potential option to MER; since optic tract lies just beneath the best target for Gpi DBS, changes in CVEPs during intraoperative exploration may drive a correct electrode positioning. Cortical VEPs from optic tract stimulation (OT C-CEPs) have been recorded in seven patients during GPi-DBS for the treatment of Parkinson's disease and primary dystonia under general sedation. OT C-VEPs were obtained after near-field monopolar stimulation of the optic tract; recording electrodes were at the scalp. Cortical responses after optic tract versus standard visual stimulation were compared. After intraoperative near-field OT stimulation a biphasic wave, named N40-P70, was detected in all cases. N40-P70 neither change in morphology nor in latency at different depths, but increased in amplitude approaching the optic tract. The electrode tip was positioned just 1mm above the point where OT-CVEPs showed the larger amplitude. No MERs were obtained in these patients; OT CVEPs were the only method to detect the Gpi before positioning the electrodes. OT CVEPs seem to be as reliable as MER to detail the optimal target in Gpi surgery: in addition they are less expensive, faster to perform and easier to decode. Copyright © 2010. Published by Elsevier B.V.

  16. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.

    Science.gov (United States)

    Cao, Lei; Ju, Zhengyu; Li, Jie; Jian, Rongjun; Jiang, Changjun

    2015-09-30

    Steady-state visual evoked potential (SSVEP) has been widely applied to develop brain computer interface (BCI) systems. The essence of SSVEP recognition is to recognize the frequency component of target stimulus focused by a subject significantly present in EEG spectrum. In this paper, a novel statistical approach based on sequence detection (SD) is proposed for improving the performance of SSVEP recognition. This method uses canonical correlation analysis (CCA) coefficients to observe SSVEP signal sequence. And then, a threshold strategy is utilized for SSVEP recognition. The result showed the classification performance with the longer duration of time window achieved the higher accuracy for most subjects. And the average time costing per trial was lower than the predefined recognition time. It was implicated that our approach could improve the speed of BCI system in contrast to other methods. Comparison with existing method(s): In comparison with other resultful algorithms, experimental accuracy of SD approach was better than those using a widely used CCA-based method and two newly proposed algorithms, least absolute shrinkage and selection operator (LASSO) recognition model as well as multivariate synchronization index (MSI) method. Furthermore, the information transfer rate (ITR) obtained by SD approach was higher than those using other three methods for most participants. These conclusions demonstrated that our proposed method was promising for a high-speed online BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Comparative analysis of binocular summation of pattern visual evoked potential before and after the surgery of concomitant strabismus

    Directory of Open Access Journals (Sweden)

    Miao-Yun Liao

    2014-07-01

    Full Text Available AIM: To investigate the opportunity of the concomitant strabismus operation and the function in the treatment of strabismic amblyopia through analyzing the changes of binocular summation of pattern visual evoked potential(P-VEPbefore and after the surgery of concomitant strabismus. METHODS: In this retrospective study we investigated 67 cases admitted in our hospital. All patients were less than 18a and the postoperation squint angle was less than ±10△. Patients were divided into three groups according to the strabismus type, age, and amblyopia degree. P-VEP binocular summation response was recorded in all cases, to observe the changes of the binocular summation response of P-VEP before strabismus surgery and 1mo, 3mo after surgery. The P-VEP response of binocular /monocular(B/Mratio was taken as an evaluation index. RESULTS: B/M value of three groups all improved obviously 1mo after surgery, which the difference showed statistical significant(PP12a group(PPPCONCLUSION: Concomitant strabismus surgery is suggested to be performed before 6 years old when the patients are difficult to improve the vision after amblyopia treatment, especially with the severe amblyopia and esotropia(accommodative esotropia must be excluded. The early operation is better to amblyopia treatment and binocular vision recovery.

  18. Visual evoked potentials in infants of diabetic mothers: relations to clinical and metabolic status during pregnancy and delivery.

    Science.gov (United States)

    Brinciotti, M; Matricardi, M; Colatrella, A; Torcia, F; Fallucca, F; Napoli, A

    2009-03-01

    To evaluate Visual Evoked Potentials (VEPs) and psychomotor development of infants of diabetic mothers (IDMs) in relation to clinical and metabolic data during pregnancy and delivery. VEPs and psychomotor development (Brunet-Lézine) were analysed in 40 two-month-old IDMs (21 males, 19 females), 24 from mothers with type-1 diabetes, 13 gestational diabetes, and 3 type-2 diabetes. Normative VEP data were obtained from 63 age matched controls. VEP latencies were significantly longer in IDMs than in controls (O1 wave IV=197.9+/-35.5 vs 155.3+/-30.3; PIDMs with type-1 diabetes delayed VEPs were related to increased weight during pregnancy (r 0.516; P 0.009), 1st trimester fasting blood glucose (r 0.458; P 0.037), insulin requirement during the 2nd (r 0.441; P 0.035) and 3rd trimester (r 0.422; P 0.039); in IDMs with gestational diabetes, VEP latency showed negative relation to Apgar scores (r -0.748; P 0.008). IDMs have delayed VEPs, which may possibly be related to poor metabolic control in pre-gestational diabetes, and to delivery complications in gestational diabetes. IDMs show subtle neurophysiologic changes detectable by VEPs.

  19. Frequency-doubling technology perimetry and multifocal visual evoked potential in glaucoma, suspected glaucoma, and control patients

    Directory of Open Access Journals (Sweden)

    Kanadani FN

    2014-07-01

    Full Text Available Fabio N Kanadani,1 Paulo AA Mello,1 Syril K Dorairaj,2 Tereza CM Kanadani31Federal University of Sao Paulo, Sao Paulo, Brazil; 2Mayo Clinic, Department of Ophthalmology, Jacksonville, Florida, USA; 3Sao Jose University Hospital, Belo Horizonte, BrazilIntroduction: The gold standard in functional glaucoma evaluation is standard automated perimetry (SAP. However, SAP depends on the reliability of the patients’ responses and other external factors; therefore, other technologies have been developed for earlier detection of visual field changes in glaucoma patients. The frequency-doubling perimetry (FDT is believed to detect glaucoma earlier than SAP. The multifocal visual evoked potential (mfVEP is an objective test for functional evaluation.Objective: To evaluate the sensitivity and specificity of FDT and mfVEP tests in normal, suspect, and glaucomatous eyes and compare the monocular and interocuar mf VEP.Methods: Ninety-five eyes from 95 individuals (23 controls, 33 glaucoma suspects, 39 glaucomatous were enrolled. All participants underwent a full ophthalmic examination, followed by SAP, FDT, and mfVEP tests. Results: The area under the curve for mean deviation and pattern standard deviation were 0.756 and 0.761, respectively, for FDT, 0.564 and 0.512 for signal and alpha for interocular mfVEP, and 0.568 and 0.538 for signal and alpha for monocular mfVEP. This difference between monocular and interocular mfVEP was not significant. Conclusion: The FDT matrix was superior to mfVEP in glaucoma detection. The difference between monocular and interocular mfVEP in the diagnosis of glaucoma was not significant. Keywords: standard automated perimetry, electrophysiology, glaucomatous eyes

  20. Assessing the Quality of Steady-state Visual-evoked Potentials for Moving Humans Using a Mobile Electroencephalogram Headset

    Directory of Open Access Journals (Sweden)

    Yuan-Pin eLin

    2014-03-01

    Full Text Available Recent advances in mobile electroencephalogram (EEG systems, featuring non-prep dry electrodes and wireless telemetry, have urged the needs of mobile brain-computer interfaces (BCIs for applications in our daily life. Since the brain may behave differently while people are actively situated in ecologically-valid environments versus highly-controlled laboratory environments, it remains unclear how well the current laboratory-oriented BCI demonstrations can be translated into operational BCIs for users with naturalistic movements. Understanding inherent links between natural human behaviors and brain activities is the key to ensuring the applicability and stability of mobile BCIs. This study aims to assess the quality of steady-state visual-evoked potentials (SSVEPs, which is one of promising channels for functioning BCI systems, recorded using a mobile EEG system under challenging recording conditions, e.g., walking. To systemati-cally explore the effects of walking locomotion on the SSVEPs, this study instructed subjects to stand or walk on a treadmill running at speeds of 1, 2, and 3 mile (s per hour (MPH while con-currently perceiving visual flickers (11 and 12 Hz. Empirical results of this study showed that the SSVEP amplitude tended to deteriorate when subjects switched from standing to walking. Such SSVEP suppression could be attributed to the walking locomotion, leading to distinctly deteriorated SSVEP detectability from standing (84.87±13.55% to walking (1 MPH: 83.03±13.24%, 2 MPH: 79.47±13.53%, and 3 MPH: 75.26±17.89%. These findings not only demonstrated the applicability and limitations of SSVEPs recorded from freely behaving humans in realistic environments, but also provide useful methods and techniques for boosting the translation of the BCI technology from laboratory demonstrations to practical applications.

  1. Pattern Visual Evoked Potential, Pattern Electroretinogram, and Retinal Nerve Fiber Layer Thickness in Patients with Migraine during and after Aura.

    Science.gov (United States)

    El-Shazly, Amany Abd El-Fattah; Farweez, Yousra Ahmed; Hamdi, Momen Mahmoud; El-Sherbiny, Noha Ezzat

    2017-09-01

    To study pattern visual evoked potential (PVEP), pattern electroretinogram (PERG), and retinal nerve fiber layer (RNFL) thickness in patients with migraine during and after aura. We included 60 eyes of 60 patients with migraine (Group 1) and 30 healthy volunteers (30 eyes) as controls (Group 2). Group 1 was studied twice, during a visual aura (1-a) and in between attacks (1-b). All participants underwent full ophthalmological examination, PVEP, PERG, and optical coherence tomographyOCT imaging of the RNFL thickness for each patient. RNFL thickness was found to be thinner in patients during the aura compared to controls. It increased significantly post-aura but remained lower than the controls. Prolonged P100 latency and decreased amplitude were found in patients during aura compared to controls with significant change in between attacks to values comparable to the controls. We found prolonged N95 latency and decreased amplitude in patients during aura compared to controls with significant change post-aura to values comparable to the controls. There was positive correlation between average RNFL thicknesses and VA and spherical equivalent; but it showed negative correlation with duration of migraine, attack duration, and aura duration. Multiple regression analysis showed that the most important determinants of average RNFL thickness in patients of migraine were attack and aura duration (beta = -0.21 and -0.26 and p = 0.03 and 0.04, respectively). Migraine attacks impose both functional and structural retinal changes. The functional changes are fully reversible after the aura but not the structural ones. So, vigorous prevention of migraine attacks would be protective for retina.

  2. Color vision versus pattern visual evoked potentials in the assessment of subclinical optic pathway involvement in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Fatih C Gundogan

    2013-01-01

    Full Text Available Background: Optic pathway involvement in multiple sclerosis is frequently the initial sign in the disease process. In most clinical applications, pattern visual evoked potential (PVEP is used in the assessment of optic pathway involvement. Objective: To question the value of PVEP against color vision assessment in the diagnosis of subclinical optic pathway involvement. Materials and Methods: This prospective, cross-sectional study included 20 multiple sclerosis patients without a history of optic neuritis, and 20 healthy control subjects. Farnsworth-Munsell (FM 100-Hue testing and PVEPs to 60-min arc and 15-min arc checks by using Roland-Consult RetiScan® system were performed. P 100 amplitude, P 100 latency in PVEP and total error scores (TES in FM 100-Hue test were assessed. Results: Expanded Disability Status Scale score and the time from diagnosis were 2.21 ± 2.53 (ranging from 0 to 7 and 4.1 ± 4.4 years. MS group showed significantly delayed P 100 latency for both checks (P 0.05 for all. 14 MS patients (70% had an increased TESs in FM-100 Hue, 11 (55% MS patients had delayed P 100 latency and 9 (45% had reduced P 100 amplitude. The areas under the ROC curves were 0.944 for FM-100 Hue test, 0.753 for P 100 latency, and 0.173 for P 100 amplitude. Conclusions: Color vision testing seems to be more sensitive than PVEP in detecting subclinical visual pathway involvement in MS.

  3. Auditory and visual P300 evoked potentials do not predict response to valproate treatment of aggression in patients with borderline and antisocial personality disorders.

    Science.gov (United States)

    Reeves, Roy R; Struve, Frederick A; Patrick, Gloria

    2005-01-01

    In this study of patients with borderline personality disorder (BPD) or antisocial personality disorder (ASPD) hospitalized because of aggressive behavior, auditory and visual P300 evoked potentials were obtained prior to treatment with valproate. Eight ASPD patients (8 males, 0 females) and 11 BPD patients (2 males, 9 females) showed improvement, while in 7 patients with ASPD (7 males, 0 females) and 10 patients with BPD (2 males, 8 females), aggression was not improved. Differences in auditory and visual P300 latencies and amplitudes were not significant for either diagnosis, or for both diagnoses combined. These findings suggest that auditory or visual P300 evoked potentials may not be useful for predicting response of aggressive behavior to valproate treatment in patients with BPD or ASPD.

  4. Interpretation of the causes of instability of flash visual evoked potentials in intraoperative monitoring and proposal of a recording method for reliable functional monitoring of visual evoked potentials using a light-emitting device.

    Science.gov (United States)

    Sato, Atsushi

    2016-10-01

    OBJECTIVE Effective monitoring and application of visual evoked potentials (VEPs) during neurosurgery is a major challenge. While many monitoring methods have been effectively used, the use of VEPs as an objective determination method has not been established. The purpose of this report was to present a method for overcoming this limitation according to the use of a specific stimulus. METHODS Data analysis was performed in 26 cases of brain surgery. Observation was carried out for 2 groups of responses: the response derived from the start of light emission, described as the on response, and the response derived from the end of light emission, described as the off response. These reactions were separated by extending the light emission time. The waves from the visual cortex were selected from each reaction following the start and the end of light emission with consideration for the characteristics of the potential distribution. The waves were observed to characterize changes resulting from variations in duration and quantity of light emission. The results of the analysis were used to determine the optimal emission time and amount of light for effective use of wave components during VEP monitoring. RESULTS Stable and recordable waves were observed by monitoring the off response, consisting of the P1-N1-P2 component, with a wave latency of approximately 100 msec. Since the off response was correlated with the input, the stable wave derived from the off response could be adjusted by changing the light emission time and intensity. Individual differences in the latency of the off response were decreased by extending the light emission time and reducing the quantity of light. However, it was difficult to achieve stability by adjusting the light intensity and emission time using the on response. The off response was confirmed to be sufficiently stable for intraoperative monitoring. Moreover, during 1 case in which manipulation of the optic nerve was necessary, reduction in

  5. Visual evoked potentials (VEP and visual acuity improvement after cytidine 52 -diphosphocholine (CDP-Choline therapy in amblyopic patient

    Directory of Open Access Journals (Sweden)

    Regina Halfeld Furtado de Mendonça

    2012-10-01

    Full Text Available Citicoline may be used in many neurological disorders. Combined treatment of citicoline with patching in amblyopia has previously been researched. The purpose of this paper is to illustrate the effect of citicoline in non-patching amblyopic patient. A 11-year-old amblyopic boy underwent complete ophthalmological examinations, including VEP with flash and pattern stimulus. Two averages of 100 sweep were performed for flash stimulus. Pattern reversal stimulus obtained with high contrast was performed with 60', 30' and 15' checks stimuli. The VEP was repeated 90 days later after a therapy with citicoline and vitamin and the results compared with the responses of the previous recording session. The visual acuity (VA was 0,7 in the RE and 1,0 in the LE. The VEP pattern amplitude was normal in both eyes. Delayed in latency was detected for all spatial frequency stimulus (SFS in the RE. Delay in latency was detected only for high SFS in the LE. After the treatment, the VA was 1,0 in both eyes. The latency was normalized with low SFS on the RE and with high SFS on the LE. The flash VEP was normal before and after the therapy. In conclusion, the citicoline demonstrated that it was effective in the treatment of amblyopic eye without patching. The VA and the VEP latency improvement demonstrated that the citicoline enhance the transmission of the electric impulse from retina to visual cortex. Further research is required to understand the immediate and long-term effect of coline treatment in amblyopic patients.

  6. A fast visual evoked potential method for functional assessment and follow-up of childhood optic gliomas.

    Science.gov (United States)

    Trisciuzzi, Maria Teresa S; Riccardi, Riccardo; Piccardi, Marco; Iarossi, Giancarlo; Buzzonetti, Luca; Dickmann, Anna; Colosimo, Cesare; Ruggiero, Antonio; Di Rocco, Concezio; Falsini, Benedetto

    2004-01-01

    To evaluate a fast technique of visual evoked potentials (VEPs) recording, in response to steady-state luminance stimuli (SS-LVEPs), for functional assessment and follow-up of childhood optic gliomas (OGs). Eighteen OG patients (age range: 3.5-18 years), with different degrees of optic pathway damage severity, were examined. Sixteen age-matched normal subjects served as controls. Ten of the 18 OG patients were re-tested 1-3 months after the first examination. SS-LVEPs were elicited by a sinusoidally-modulated flickering (8 Hz) uniform field, generated by a light emitting diode (LED)-array and presented monocularly in a mini-ganzfeld. Amplitude and phase of the Fourier-analyzed response fundamental (1F) and second harmonic (2F) were measured. The full VEP protocol had a median duration of 6 min (range: 4-12). When compared to normal control values, median 1F and 2F SS-LVEP amplitudes of OG patients were reduced (P<0.01), with a borderline increase in 2F phase lag (P<0.05). In 11 OG patients with asymmetric optic pathway damage in between-eye comparisons, median 1F amplitude losses were greater (P<0.01) in fellow eyes with more severe damage. No significant interocular difference was observed in control subjects. Median test-retest changes of 1F and 2F component were <20% and 30 degrees for amplitude and phase, respectively. In individual OG patients, 1F and 2F amplitudes were positively correlated (P<0.01) with visual acuity. 1F amplitude losses were correlated (P=0.01) with the severity of optic disc atrophy. Considering both 1F and 2F abnormalities, diagnostic sensitivity of SS-LVEP in detecting OG-induced optic pathways damage was 83.3%. The present findings support the use of this technique, as an alternative to pattern VEPs, for functional assessment and follow-up of OG in uncooperative children.

  7. Functional assessment of the visual pathway with multifocal visual evoked potentials, and their relationship with disability in patients with multiple sclerosis.

    Science.gov (United States)

    Blanco, Román; Pérez-Rico, Consuelo; Puertas-Muñoz, Inmaculada; Ayuso-Peralta, Lucía; Boquete, Luciano; Arévalo-Serrano, Juan

    2014-02-01

    To objectively evaluate the visual function, and the relationship between disability and optic nerve dysfunction, in patients with multiple sclerosis (MS) and optic neuritis (ON), using multifocal visual evoked potentials (mfVEP). This observational, cross-sectional study assessed 28 consecutive patients with clinically definite MS, according to the McDonald criteria, and 19 age-matched healthy subjects. Disability was recorded using the Expanded Disability Status Scale (EDSS) score. The patients' mfVEP were compared to their clinical, psychophysical (Humphrey perimetry) and structural (optic coherence tomography (OCT)) diagnostic test data. We observed a significant agreement between mfVEP amplitude and Humphrey perimetry/OCT in MS-ON eyes, and between mfVEP amplitude and OCT in MS but non-ON eyes. We found significant differences in EDSS score between patients with abnormal and normal mfVEP amplitudes. Abnormal mfVEP amplitude defects (from interocular and monocular probability analysis) were found in 67.9% and 73.7% of the MS-ON and MS-non-ON group eyes, respectively. Delayed mfVEP latencies (interocular and monocular probability analysis) were seen in 70.3% and 73.7% of the MS-ON and MS-non-ON groups, respectively. We found a significant relationship between mfVEP amplitude and disease severity, as measured by EDSS score, that suggested there is a role for mfVEP amplitude as a functional biomarker of axonal loss in MS.

  8. Rhesus macaque model of chronic opiate dependence and neuro-AIDS: longitudinal assessment of auditory brainstem responses and visual evoked potentials.

    Science.gov (United States)

    Riazi, Mariam; Marcario, Joanne K; Samson, Frank K; Kenjale, Himanshu; Adany, Istvan; Staggs, Vincent; Ledford, Emily; Marquis, Janet; Narayan, Opendra; Cheney, Paul D

    2009-06-01

    Our work characterizes the effects of opiate (morphine) dependence on auditory brainstem and visual evoked responses in a rhesus macaque model of neuro-AIDS utilizing a chronic continuous drug delivery paradigm. The goal of this study was to clarify whether morphine is protective, or if it exacerbates simian immunodeficiency virus (SIV)-related systemic and neurological disease. Our model employs a macrophage tropic CD4/CCR5 coreceptor virus, SIV(mac)239 (R71/E17), which crosses the blood-brain barrier shortly after inoculation and closely mimics the natural disease course of human immunodeficiency virus infection. The cohort was divided into three groups: morphine only, SIV only, and SIV + morphine. Evoked potential (EP) abnormalities in subclinically infected macaques were evident as early as 8 weeks postinoculation. Prolongations in EP latencies were observed in SIV-infected macaques across all modalities. Animals with the highest cerebrospinal fluid viral loads and clinical disease showed more abnormalities than those with subclinical disease, confirming our previous work (Raymond et al., J Neurovirol 4:512-520, 1998; J Neurovirol 5:217-231, 1999; AIDS Res Hum Retroviruses 16:1163-1173, 2000). Although some differences were observed in auditory and visual evoked potentials in morphine-treated compared to morphine-untreated SIV-infected animals, the effects were relatively small and not consistent across evoked potential type. However, morphine-treated animals with subclinical disease had a clear tendency toward higher virus loads in peripheral and central nervous system tissues (Marcario et al., J Neuroimmune Pharmacol 3:12-25, 2008) suggesting that if had been possible to follow all animals to end-stage disease, a clearer pattern of evoked potential abnormality might have emerged.

  9. Steady-state multifocal visual evoked potential (ssmfVEP) using dartboard stimulation as a possible tool for objective visual field assessment.

    Science.gov (United States)

    Horn, Folkert K; Selle, Franziska; Hohberger, Bettina; Kremers, Jan

    2016-02-01

    To investigate whether a conventional, monitor-based multifocal visual evoked potential (mfVEP) system can be used to record steady-state mfVEP (ssmfVEP) in healthy subjects and to study the effects of temporal frequency, electrode configuration and alpha waves. Multifocal pattern reversal VEP measurements were performed at 58 dartboard fields using VEP recording equipment. The responses were measured using m-sequences with four pattern reversals per m-step. Temporal frequencies were varied between 6 and 15 Hz. Recordings were obtained from nine normal subjects with a cross-shaped, four-electrode device (two additional channels were derived). Spectral analyses were performed on the responses at all locations. The signal to noise ratio (SNR) was computed for each response using the signal amplitude at the reversal frequency and the noise at the neighbouring frequencies. Most responses in the ssmfVEP were significantly above noise. The SNR was largest for an 8.6-Hz reversal frequency. The individual alpha electroencephalogram (EEG) did not strongly influence the results. The percentage of the records in which each of the 6 channels had the largest SNR was between 10.0 and 25.2 %. Our results in normal subjects indicate that reliable mfVEP responses can be achieved by steady-state stimulation using a conventional dartboard stimulator and multi-channel electrode device. The ssmfVEP may be useful for objective visual field assessment as spectrum analysis can be used for automated evaluation of responses. The optimal reversal frequency is 8.6 Hz. Alpha waves have only a minor influence on the analysis. Future studies must include comparisons with conventional mfVEP and psychophysical visual field tests.

  10. Combining canonical correlation analysis and infinite reference for frequency recognition of steady-state visual evoked potential recordings: a comparison with periodogram method.

    Science.gov (United States)

    Tian, Yin; Li, Fali; Xu, Peng; Yuan, Zhen; Zhao, Dechun; Zhang, Haiyong

    2014-01-01

    Steady-state visual evoked potentials (SSVEP) are the visual system responses to a repetitive visual stimulus flickering with the constant frequency and of great importance in the study of brain activity using scalp electroencephalography (EEG) recordings. However, the reference influence for the investigation of SSVEP is generally not considered in previous work. In this study a new approach that combined the canonical correlation analysis with infinite reference (ICCA) was proposed to enhance the accuracy of frequency recognition of SSVEP recordings. Compared with the widely used periodogram method (PM), ICCA is able to achieve higher recognition accuracy when extracts frequency within a short span. Further, the recognition results suggested that ICCA is a very robust tool to study the brain computer interface (BCI) based on SSVEP.

  11. A novel approach for automatic visualization and activation detection of evoked potentials induced by epidural spinal cord stimulation in individuals with spinal cord injury.

    Science.gov (United States)

    Mesbah, Samineh; Angeli, Claudia A; Keynton, Robert S; El-Baz, Ayman; Harkema, Susan J

    2017-01-01

    Voluntary movements and the standing of spinal cord injured patients have been facilitated using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimulation parameters (intensity, frequency and anode/cathode assignment) is an arduous task and requires extensive mapping of the spinal cord using evoked potentials. Effective visualization and detection of muscle evoked potentials induced by scES from the recorded electromyography (EMG) signals is critical to identify the optimal configurations and the effects of specific scES parameters on muscle activation. The purpose of this work was to develop a novel approach to automatically detect the occurrence of evoked potentials, quantify the attributes of the signal and visualize the effects across a high number of scES parameters. This new method is designed to automate the current process for performing this task, which has been accomplished manually by data analysts through observation of raw EMG signals, a process that is laborious and time-consuming as well as prone to human errors. The proposed method provides a fast and accurate five-step algorithms framework for activation detection and visualization of the results including: conversion of the EMG signal into its 2-D representation by overlaying the located signal building blocks; de-noising the 2-D image by applying the Generalized Gaussian Markov Random Field technique; detection of the occurrence of evoked potentials using a statistically optimal decision method through the comparison of the probability density functions of each segment to the background noise utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-to-peak amplitude, latency, integrated EMG and Min-max time intervals; and finally visualization of the outputs as Colormap images. In comparing the automatic method vs. manual detection on 700 EMG signals from five individuals, the new approach decreased the processing time from several

  12. Combination of blood oxygen level–dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia

    Science.gov (United States)

    Wang, Xinmei; Cui, Dongmei; Zheng, Ling; Yang, Xiao; Yang, Hui

    2012-01-01

    Purpose To elucidate the different neuromechanisms of subjects with strabismic and anisometropic amblyopia compared with normal vision subjects using blood oxygen level–dependent functional magnetic resonance imaging (BOLD-fMRI) and pattern-reversal visual evoked potential (PR-VEP). Methods Fifty-three subjects, age range seven to 12 years, diagnosed with strabismic amblyopia (17 cases), anisometropic amblyopia (20 cases), and normal vision (16 cases), were examined using the BOLD-fMRI and PR-VEP of UTAS-E3000 techniques. Cortical activation by binocular viewing of reversal checkerboard patterns was examined in terms of the calcarine region of interest (ROI)-based and spatial frequency–dependent analysis. The correlation of cortical activation in fMRI and the P100 amplitude in VEP were analyzed using the SPSS 12.0 software package. Results In the BOLD-fMRI procedure, reduced areas and decreased activation levels were found in Brodmann area (BA) 17 and other extrastriate areas in subjects with amblyopia compared with the normal vision group. In general, the reduced areas mainly resided in the striate visual cortex in subjects with anisometropic amblyopia. In subjects with strabismic amblyopia, a more significant cortical impairment was found in bilateral BA 18 and BA 19 than that in subjects with anisometropic amblyopia. The activation by high-spatial-frequency stimuli was reduced in bilateral BA 18 and 19 as well as BA 17 in subjects with anisometropic amblyopia, whereas the activation was mainly reduced in BA 18 and BA 19 in subjects with strabismic amblyopia. These findings were further confirmed by the ROI-based analysis of BA 17. During spatial frequency–dependent VEP detection, subjects with anisometropic amblyopia had reduced sensitivity for high spatial frequency compared to subjects with strabismic amblyopia. The cortical activation in fMRI with the calcarine ROI-based analysis of BA 17 was significantly correlated with the P100 amplitude in VEP

  13. A different view on the checkerboard? Alterations in early and late visually evoked EEG potentials in Asperger observers.

    Science.gov (United States)

    Kornmeier, Juergen; Wörner, Rike; Riedel, Andreas; Bach, Michael; Tebartz van Elst, Ludger

    2014-01-01

    Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG) between Asperger observers and matched controls while they observed simple checkerboard stimuli. In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2°) were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. We found an early (100-200 ms after stimulus onset) occipital ERP effect of checkerboard size (dominant spatial frequency). This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis.

  14. A different view on the checkerboard? Alterations in early and late visually evoked EEG potentials in Asperger observers.

    Directory of Open Access Journals (Sweden)

    Juergen Kornmeier

    Full Text Available BACKGROUND: Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG between Asperger observers and matched controls while they observed simple checkerboard stimuli. METHODS: In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2° were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. RESULTS: We found an early (100-200 ms after stimulus onset occipital ERP effect of checkerboard size (dominant spatial frequency. This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. DISCUSSION: The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis.

  15. The role of Magnetic Resonance Imaging and Visual Evoked ...

    African Journals Online (AJOL)

    Introduction: To report our experience in management of patients with optic neuritis. The effects of brain magnetic resonance imaging and visual evoked potential on management were investigated. Methods: This is a four years clinical trial that included patients presenting with first attack of optic neuritis older than 16 years ...

  16. Caracterización de los potenciales evocados visuales en la retinopatía diabética Characterization of the visual evoked potentials in the diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Zaida Rosa Delgado Rizo

    2009-12-01

    Full Text Available INTRODUCCIÓN: El registro de los potenciales evocados visuales es muy útil para determinar lesiones en la vía visual, que en la diabetes mellitus se expresan mediante la retinopatía diabética y el daño del nervio óptico. OBJETIVOS: Caracterizar el compromiso del analizador visual en la diabetes mellitus mediante la determinación del daño de la vía visual a través de los potenciales evocados visuales; correlacionar el estado clínico de la vía visual, el control metabólico y el tiempo de la enfermedad con la alteración electrofisiológica de la diabetes mellitus. MÉTODOS: Se realizó un estudio acerca de los potenciales evocados visuales en diabetes mellitus tipos I y II INTRODUCTION: The recording of visual evoked potentials is very useful to determine visual lesions that in diabetes mellitus are expressed as diabetic retinopathy and damage of the optic nerve. OBJECTIVES: To characterize the involvement of the visual analyzer in diabetes mellitus through determining the damage to the visual path on the basis of visual evoked potentials; and also to correlate the clinical state of the visual path, the metabolic control and the length of the disease with the electrophysiological alteration of diabetes mellitus. METHODS: A study on the visual evoked potentials in type I and II diabetes mellitus under 15 years of evolution was conducted together with a cross-sectional analytical research of cases (n = 32 and healthy controls (n = 16.Latency and P100 amplitude of VEP in both eyes were ascertained and the retina was clinically studied to determine related diseases. RESULTS: Latency P100 104,68 ± 4,28 in GE y 97,5 ± 3,71 in GC (p = 0,089, amplitude P100 10,84 ± 2,45 in GE and 8,02 ±1,70 in GC (p = 0,673

  17. Brainstem auditory evoked potential, visual evoked potential and nerve conduction velocity and their relation with HbA1c and beta 2 microglobulin in children with insulin dependent diabetes mellitus.

    Science.gov (United States)

    Akinci, A; Deda, G; Karagöl, U; Teziç, T

    1994-01-01

    Brain stem auditory evoked response (BAER), visual evoked response (VER) and nerve conduction velocities (NCV) were studied in 18 insulin-dependent diabetic children between the ages of 3.5 and 16 years (mean 9.0 +/- 3.2 years). The results were compared with those of age-matched controls. The VER latencies of the diabetic children in the right eye and left eye were significantly prolonged when compared with the control group. NCV of n. peroneus and the latency of sensorial n. medianus were significantly impaired when compared with the control group. Although the latencies of waves III, IV and V of the right ear and the interpeak latencies of I-III, I-V, III-V of both ears were prolonged, the comparison with the control group was not significant. The beta 2 microglobulin levels of the diabetic patients were significantly higher than those of the control group. There was a positive correlation between the beta 2 microglobulin and the BAER interpeak latencies of wave III-V in both ears (r: 0.51 p sensorial) with beta 2 microglobulin (r: 0.52 p eyes separately. In our study the prolonged latencies of VER and BAER were detected in the absence of clinical abnormalities in visual and hearing systems.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Bayesian analysis of MEG visual evoked responses

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D.M.; George, J.S.; Wood, C.C.

    1999-04-01

    The authors developed a method for analyzing neural electromagnetic data that allows probabilistic inferences to be drawn about regions of activation. The method involves the generation of a large number of possible solutions which both fir the data and prior expectations about the nature of probable solutions made explicit by a Bayesian formalism. In addition, they have introduced a model for the current distributions that produce MEG and (EEG) data that allows extended regions of activity, and can easily incorporate prior information such as anatomical constraints from MRI. To evaluate the feasibility and utility of the Bayesian approach with actual data, they analyzed MEG data from a visual evoked response experiment. They compared Bayesian analyses of MEG responses to visual stimuli in the left and right visual fields, in order to examine the sensitivity of the method to detect known features of human visual cortex organization. They also examined the changing pattern of cortical activation as a function of time.

  19. Ocular Vestibular Evoked Myogenic Potentials

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2014-01-01

    Full Text Available Introduction Diagnostic testing of the vestibular system is an essential component of treating patients with balance dysfunction. Until recently, testing methods primarily evaluated the integrity of the horizontal semicircular canal, which is only a portion of the vestibular system. Recent advances in technology have afforded clinicians the ability to assess otolith function through vestibular evoked myogenic potential (VEMP testing. VEMP testing from the inferior extraocular muscles of the eye has been the subject of interest of recent research. Objective To summarize recent developments in ocular VEMP testing. Results Recent studies suggest that the ocular VEMP is produced by otolith afferents in the superior division of the vestibular nerve. The ocular VEMP is a short latency potential, composed of extraocular myogenic responses activated by sound stimulation and registered by surface electromyography via ipsilateral otolithic and contralateral extraocular muscle activation. The inferior oblique muscle is the most superficial of the six extraocular muscles responsible for eye movement. Therefore, measurement of ocular VEMPs can be performed easily by using surface electrodes on the skin below the eyes contralateral to the stimulated side. Conclusion This new variation of the VEMP procedure may supplement conventional testing in difficult to test populations. It may also be possible to use this technique to evaluate previously inaccessible information on the vestibular system.

  20. Castration attenuates myelin repair following lysolecithin induced demyelination in rat optic chiasm: an evaluation using visual evoked potential, marker genes expression and myelin staining.

    Science.gov (United States)

    Sherafat, Mohammad Amin; Javan, Mohammad; Mozafari, Sabah; Mirnajafi-Zadeh, Javad; Motamedi, Fereshteh

    2011-10-01

    Multiple sclerosis (MS) is a demyelinating disease that affects the central nervous system. MS is the most common neurological disorder in young adults with a greater incidence among females. Male gonadal hormones have a protective effect on neural system development and myelin maturation. In this study, we investigate the effect of castration on lysolecithin-induced demyelination and remyelination processes using visual evoked potentials, in addition to measuring the expressions of Olig2, MBP, Nogo-A and GFAP mRNAs as oligodendrocyte or astrocyte markers; and histological assessments by myelin-specific staining. We observed more expanded demyelination with delayed repair process in castrated rats. Expression levels of the aforementioned marker genes confirmed histological and electrophysiological observations. Our results showed a pivotal role for endogenous male hormones in the context of demyelinating insults. It may also account for the different prognosis of MS between male and female genders and provide new insights for therapeutic treatments.

  1. Steady-state visual evoked potentials can be explained by temporal superposition of transient event-related responses.

    Directory of Open Access Journals (Sweden)

    Almudena Capilla

    Full Text Available BACKGROUND: One common criterion for classifying electrophysiological brain responses is based on the distinction between transient (i.e. event-related potentials, ERPs and steady-state responses (SSRs. The generation of SSRs is usually attributed to the entrainment of a neural rhythm driven by the stimulus train. However, a more parsimonious account suggests that SSRs might result from the linear addition of the transient responses elicited by each stimulus. This study aimed to investigate this possibility. METHODOLOGY/PRINCIPAL FINDINGS: We recorded brain potentials elicited by a checkerboard stimulus reversing at different rates. We modeled SSRs by sequentially shifting and linearly adding rate-specific ERPs. Our results show a strong resemblance between recorded and synthetic SSRs, supporting the superposition hypothesis. Furthermore, we did not find evidence of entrainment of a neural oscillation at the stimulation frequency. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that visual SSRs can be explained as a superposition of transient ERPs. These findings have critical implications in our current understanding of brain oscillations. Contrary to the idea that neural networks can be tuned to a wide range of frequencies, our findings rather suggest that the oscillatory response of a given neural network is constrained within its natural frequency range.

  2. Evaluation of hemifield sector analysis protocol in multifocal visual evoked potential objective perimetry for the diagnosis and early detection of glaucomatous field defects.

    Science.gov (United States)

    Mousa, Mohammad F; Cubbidge, Robert P; Al-Mansouri, Fatima; Bener, Abdulbari

    2014-02-01

    Multifocal visual evoked potential (mfVEP) is a newly introduced method used for objective visual field assessment. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard automated perimetry (SAP) visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey field analyzer (HFA) test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the hemifield sector analysis (HSA) protocol. Analysis of the HFA was done using the standard grading system. Analysis of mfVEP results showed that there was a statistically significant difference between the three groups in the mean signal to noise ratio (ANOVA test, p field defects in both glaucoma and glaucoma suspect patients. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss.

  3. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    DEFF Research Database (Denmark)

    Huys, Raoul; Jirsa, Viktor K; Darokhan, Ziauddin

    2016-01-01

    attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization...

  4. [Personality dimensions and cerebral evoked potential].

    Science.gov (United States)

    Camposano, S; Alvarez, C; Lolas, F

    1994-12-01

    Eysenck's personality theory postulates 3 orthogonal dimensions of personality: extraversion (E), neuroticism (N) and psychoticism (P), predicting conductual and physiological predispositions to suffer mental illness. Biological bases of Eysenck's personality traits have been documented electrophysiologically. Psychoticism, the latest described dimension, is controverted, since there is some evidence of common factors with the other two. In order to assess the relation between Eysenck's dimensions and sensorial reactivity and information encoding processes we studied 20 healthy young subjects (mean age 28.5 years) with flash visual cortical evoked potentials (VEP, 3 intensities, peak to peak amplitude of III, IV-V-VI, VII components), and auditory cognitive evoked potentials (odd ball paradigm, P300 latency). There was a positive correlation between N and P dimensions (Spearman, r = 0.52), between N and VEP amplitude at high intensity (r = 0.58) and a negative correlation between E and P300 latency (r = 0.58). In short we found that P is not an independent dimension, but is related to sensorial reactivity. E dimension was related to encoding processes supporting Eysenck's observations about memory and learning differences.

  5. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.

    Science.gov (United States)

    Brunner, C; Allison, B Z; Altstätter, C; Neuper, C

    2011-04-01

    Brain-computer interface (BCI) systems rely on the direct measurement of brain signals, such as event-related desynchronization (ERD), steady state visual evoked potentials (SSVEPs), P300s, or slow cortical potentials. Unfortunately, none of these BCI approaches work for all users. This study compares two conventional BCI approaches (ERD and SSVEP) within subjects, and also evaluates a novel hybrid BCI based on a combination of these signals. We recorded EEG data from 12 subjects across three conditions. In the first condition, subjects imagined moving both hands or both feet (ERD). In the second condition, subjects focused on one of the two oscillating visual stimuli (SSVEP). In the third condition, subjects simultaneously performed both tasks. We used logarithmic band power features at sites and frequencies consistent with ERD and SSVEP activity, and subjects received real-time feedback based on their performance. Subjects also completed brief questionnaires. All subjects could simultaneously perform the movement and visual task in the hybrid condition even though most subjects had little or no training. All subjects showed both SSVEP and ERD activity during the hybrid task, consistent with the activity in both single tasks. Subjects generally considered the hybrid condition moderately more difficult, but all of them were able to complete the hybrid task. Results support the hypothesis that subjects who do not have strong ERD activity might be more effective with an SSVEP BCI, and suggest that SSVEP BCIs work for more subjects. A simultaneous hybrid BCI is feasible, although the current hybrid approach, which involves combining ERD and SSVEP in a two-choice task to improve accuracy, is not significantly better than a comparable SSVEP BCI. Switching to an SSVEP BCI could increase reliability in subjects who have trouble producing the EEG activity necessary to use an ERD BCI. Subjects who are proficient in both BCI approaches might be able to combine these

  6. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings

    Directory of Open Access Journals (Sweden)

    Donghyeon Kim

    2017-02-01

    Full Text Available In this paper, we introduce a dry non-invasive multi-channel sensor for measuring brainwaves on the scalps of mice. The research on laboratory animals provide insights to various practical applications involving human beings and other animals such as working animals, pets, and livestock. An experimental framework targeting the laboratory animals has the potential to lead to successful translational research when it closely resembles the environment of real applications. To serve scalp electroencephalography (EEG research environments for the laboratory mice, the dry non-invasive scalp EEG sensor with sixteen electrodes is proposed to measure brainwaves over the entire brain area without any surgical procedures. We validated the proposed sensor system with visual evoked potential (VEP experiments elicited by flash stimulations. The VEP responses obtained from experiments are compared with the existing literature, and analyzed in temporal and spatial perspectives. We further interpret the experimental results using time-frequency distribution (TFD and distance measurements. The developed sensor guarantees stable operations for in vivo experiments in a non-invasive manner without surgical procedures, therefore exhibiting a high potential to strengthen longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms.

  7. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings.

    Science.gov (United States)

    Kim, Donghyeon; Yeon, Chanmi; Kim, Kiseon

    2017-02-09

    In this paper, we introduce a dry non-invasive multi-channel sensor for measuring brainwaves on the scalps of mice. The research on laboratory animals provide insights to various practical applications involving human beings and other animals such as working animals, pets, and livestock. An experimental framework targeting the laboratory animals has the potential to lead to successful translational research when it closely resembles the environment of real applications. To serve scalp electroencephalography (EEG) research environments for the laboratory mice, the dry non-invasive scalp EEG sensor with sixteen electrodes is proposed to measure brainwaves over the entire brain area without any surgical procedures. We validated the proposed sensor system with visual evoked potential (VEP) experiments elicited by flash stimulations. The VEP responses obtained from experiments are compared with the existing literature, and analyzed in temporal and spatial perspectives. We further interpret the experimental results using time-frequency distribution (TFD) and distance measurements. The developed sensor guarantees stable operations for in vivo experiments in a non-invasive manner without surgical procedures, therefore exhibiting a high potential to strengthen longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms.

  8. Visual evoked potential and magnetic resonance imaging are more effective markers of multiple sclerosis progression than laser polarimetry with variable corneal compensation

    Directory of Open Access Journals (Sweden)

    Ema eKantorová

    2014-01-01

    Full Text Available Backround: The aim of our study was to assess the role of laser polarimetry and visual evoked potentials as potential biomarkers of disease progression in multiple sclerosis (MS. Participants: A total of 41 patients with MS (82 eyes and 22 age-related healthy volunteers (44 eyes completed the study. MS patients were divided into two groups, one (ON with a history of optic neuritis (17 patients, 34 eyes and another group (NON without it (24 patients, 48 eyes. The MS patients and controls underwent laser polarimetry (GDx examination of the retinal nerve fibre layer (RNFL. In the MS group we also examined: Kurtzke Expanded disability status scale (EDSS, the duration of the disorder, visual evoked potentials (VEP – latency and amplitude – and conventional brain MRI. Results: In the MS group, brain atrophy and new T2 brain lesions in MRI correlated with both VEP latencies and amplitudes. Separate comparisons revealed VEP latency testing to be less sensitive in ON than in NON patients. In ON patients, VEP amplitudes correlated mildly with brain atrophy (r =-0.15 and strongly with brain new MRI lesions (r = -0.8. In NON patients, highly significant correlation of new MRI brain lesions with VEP latencies (r = 0.63, r = 0.6, and amplitudes ( r = -0.3, r = -4.2 was found. EDSS also correlated with brain atrophy in this group (r = 0.5. Our study did not find a correlation of GDx measures with MRI tests. The GDx method was not able to detect whole brain demyelinisation and the degeneration process, but was only able to reveal the involvement of optic nerves in ON and NON patients.Conclusions: In our study, we found that both methods (VEP and GDx can be used for detection of optic nerve damage, but VEP was found to be superior in evaluating whole brain demyelinisation and axonal degeneration. Both VEP and MRI, but not GDx, have an important role in monitoring disease progression in MS patients, independent of the ON history.

  9. New perspectives on vestibular evoked myogenic potentials.

    Science.gov (United States)

    Rosengren, Sally M; Kingma, Herman

    2013-02-01

    Although the vestibular evoked myogenic potential (VEMP) measured from the cervical muscles (cVEMP, cervical VEMP) is well described and has documented clinical utility, its analogue recorded from the extraocular muscles (oVEMP, ocular VEMP) has been described only recently and is currently emerging as an additional test of otolith function. This review will, therefore, summarize recent developments in VEMP research with a focus on the oVEMP. Recent studies suggest that the oVEMP is produced by otolith afferents in the superior vestibular nerve division, whereas the cVEMP evoked by sound is thought to be an inferior vestibular nerve reflex. Correspondingly, the oVEMP correlates better with caloric and subjective visual vertical tests than sound-cVEMPs. cVEMPs are more complicated than often thought, as shown by the presence of crossed responses and conflicting results of recent vibration studies. Altered inner ear mechanics produced by the vestibular diseases superior semicircular canal dehiscence and Ménière's disease lead to changes in the preferred frequency of the oVEMP and cVEMP. The oVEMP provides complementary diagnostic information to the cVEMP and is likely to be a useful addition to the diagnostic test battery in neuro-otology.

  10. Orientation-reversal and phase-reversal visual evoked potentials in full-term infants with brain lesions: a longitudinal study.

    Science.gov (United States)

    Mercuri, E; Braddick, O; Atkinson, J; Cowan, F; Anker, S; Andrew, R; Wattam-Bell, J; Rutherford, M; Counsell, S; Dubowitz, L

    1998-08-01

    The onset and maturation of visual cortical mechanisms can be recorded by using steady-state visual evoked potentials. The aim of this study was to evaluate and compare orientation-reversal (OR) and phase-reversal (PH) VEP as indicators of the maturation of cortical function in a population of fullterm infants with brain lesions on neonatal MRI. Forty-six infants with brain lesions on neonatal MRI were tested on both PH and OR VEP at 8 reversals/second at the age of 5 months and, if the responses were not significant, at a lower temporal frequency (4 reversals/second). Children whose VEPs were not significant at 5 months were tested longitudinally at 6, 9, 12 and 18 months. The results showed that 23 of the 46 infants (50%) did not show significant responses at 5 months and that while in 7 of the 23 (14% of the whole cohort) the responses became significant between 5 and 12 months, in the other 16 infants (34%) the VEP responses were persistently abnormal. Children with focal lesions, such as focal infarction or haemorrhages, tended to show normal or only mildly delayed VEP while more generalised lesions, such as the ones seen in infants with hypoxic-ischaemic encephalopathy grade 2 and 3, tended to be associated with abnormal VEP responses. The involvement of the optic radiations and occipital cortex was not always associated with abnormal VEP responses but the concomitant involvement of the basal ganglia was always associated with abnormal VEP. We were also able to demonstrate that VEP can be also used as a prognostic indicator: while normal OR VEP are reliably associated with a normal visual and neurodevelopmental outcome, abnormal 4 OR or 8 PH at 5 months are consistently associated with abnormal outcome.

  11. Evoked potentials in neuroinfections in children

    Directory of Open Access Journals (Sweden)

    V. N. Komantsev

    2013-01-01

    Full Text Available We present the results of the neurophysiological study in which 95 children with viral encephalitis and 30 children with meningitis (age from 2 up to 17 years undergo evoked potentials investigation. Some specific features of evoked potentials in neuroinfections have been shown to correlate with the course of disease and the age of the patients. We give a description of a logistic model of predicting outcomes in such patients by complex diagnostic method. We have found that evoked potentials may be successfully implemented in correcting the therapeutic strategies. Study of evoked potentials in neuroinfections in children can define the severity and extent of lesions and help to identify subclinical dysfunction and monitor the recovery processes under the therapy.

  12. Evoked potentials and head injury. 1. Rating of evoked potential abnormality.

    Science.gov (United States)

    Rappaport, M; Hall, K; Hopkins, H K; Belleza, T

    1981-10-01

    This paper describes a method for rating the degree of abnormality of auditory, visual and somatosensory evoked potential patterns in head injury (HI) patients. Criteria for judging degree of EP abnormality are presented that allow assessment of the extent and severity of subcortical and cortical dysfunction associated with traumatic brain damage. Interrater reliability data based upon blind ratings of normal and HI patients are presented and shown to be highly significant. Tables of normative values of peak latencies and amplitudes are given and illustrations of EP patterns of different degrees of abnormality are presented.

  13. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.

    Science.gov (United States)

    Hwang, Han-Jeong; Han, Chang-Hee; Lim, Jeong-Hwan; Kim, Yong-Wook; Choi, Soo-In; An, Kwang-Ok; Lee, Jun-Hak; Cha, Ho-Seung; Hyun Kim, Seung; Im, Chang-Hwan

    2017-03-01

    Although the feasibility of brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) has been extensively investigated, only a few studies have evaluated its clinical feasibility in patients with locked-in syndrome (LIS), who are the main targets of BCI technology. The main objective of this case report was to share our experiences of SSVEP-based BCI experiments involving five patients with LIS, thereby providing researchers with useful information that can potentially help them to design BCI experiments for patients with LIS. In our experiments, a four-class online SSVEP-based BCI system was implemented and applied to four of five patients repeatedly on multiple days to investigate its test-retest reliability. In the last experiments with two of the four patients, the practical usability of our BCI system was tested using a questionnaire survey. All five patients showed clear and distinct SSVEP responses at all four fundamental stimulation frequencies (6, 6.66, 7.5, 10 Hz), and responses at harmonic frequencies were also observed in three patients. Mean classification accuracy was 76.99% (chance level = 25%). The test-retest reliability experiments demonstrated stable performance of our BCI system over different days even when the initial experimental settings (e.g., electrode configuration, fixation time, visual angle) used in the first experiment were used without significant modifications. Our results suggest that SSVEP-based BCI paradigms might be successfully used to implement clinically feasible BCI systems for severely paralyzed patients. © 2016 Society for Psychophysiological Research.

  14. Adaptive estimation of contrast thresholds using the visual evoked potential (VEP); Die adaptive Bestimmung von Kontrastschwellen mit dem visuell evozierten Potenzial (VEP)

    Energy Technology Data Exchange (ETDEWEB)

    Meigen, T.; Kley, F. [Elektrophysiologisches Lab., Universitaets-Augenklinik Wuerzburg (Germany)

    2007-07-01

    The visual evoked potential (VEP) can be used to objectively estimate sensory thresholds. Recently, we developed an adaptive procedure for this threshold estimation based on a Fourier analysis of steady-state responses during the recording. In this study we quantified the reduction in recording time of this adaptive procedure. Steady-state VEPs to pattern reversal (f=8.3 Hz) of checkerboards with 8 contrast values between 0.64% and 82% were recorded monocularly. Adaptive and non-adaptive recordings were performed for full correction (fc) and for blurred stimulus patterns (+1.5 D and +3.0 D). VEP contrast thresholds were defined by the lowest contrast condition that showed a significant response. An ANOVA of the VEP thresholds showed significant effects (p<0.0001) of the factors 'procedure' (psychophysics, adaptive VEP, non-adaptive VEP) and 'correction' (fc, fc+1.5D, fc+3.0D). Compared to non-adaptive recordings, adaptive recordings showed thresholds that were significantly reduced and closer to psychophysical contrast thresholds. By applying the adaptive procedure the recording time can be reduced by a factor of about 2 when compared to the non-adaptive procedure. The new adaptive VEP procedure may help to improve the correlation of electrophysiological and psychophysical estimates of sensory thresholds and may accelerate functional testing in the clinical routine. (orig.)

  15. Two Sides of the Same Coin: ERP and Wavelet Analyses of Visual Potentials Evoked and Induced by Task-Relevant Faces

    Science.gov (United States)

    Van der Lubbe, Rob H. J.; Szumska, Izabela; Fajkowska, Małgorzata

    2016-01-01

    New analysis techniques of the electroencephalogram (EEG) such as wavelet analysis open the possibility to address questions that may largely improve our understanding of the EEG and clarify its relation with related potentials (ER Ps). Three issues were addressed. 1) To what extent can early ERERP components be described as transient evoked oscillations in specific frequency bands? 2) Total EEG power (TP) after a stimulus consists of pre-stimulus baseline power (BP), evoked power (EP), and induced power (IP), but what are their respective contributions? 3) The Phase Reset model proposes that BP predicts EP, while the evoked model holds that BP is unrelated to EP; which model is the most valid one? EEG results on NoGo trials for 123 individuals that took part in an experiment with emotional facial expressions were examined by computing ERPs and by performing wavelet analyses on the raw EEG and on ER Ps. After performing several multiple regression analyses, we obtained the following answers. First, the P1, N1, and P2 components can by and large be described as transient oscillations in the α and θ bands. Secondly, it appears possible to estimate the separate contributions of EP, BP, and IP to TP, and importantly, the contribution of IP is mostly larger than that of EP. Finally, no strong support was obtained for either the Phase Reset or the Evoked model. Recent models are discussed that may better explain the relation between raw EEG and ERPs. PMID:28154612

  16. Visually evoked spiking evolves while spontaneous ongoing dynamics persist

    Directory of Open Access Journals (Sweden)

    Raoul eHuys

    2016-01-01

    Full Text Available Neurons in the primary visual cortex spontaneously spike even when there are no visual stimuli. It is unknown whether the spiking evoked by visual stimuli is just a modification of the spontaneous ongoing cortical spiking dynamics or whether the spontaneous spiking state disappears and is replaced by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix. The functional advantage of this organization is that it avoids the need for a system reorganization following visual stimulation, and impedes the transition of spontaneous spiking to evoked spiking and the propagation of spontaneous spiking from layer 4 to layers 2-3.

  17. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis.

    Science.gov (United States)

    Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh

    2017-01-01

    Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12-18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central

  18. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Yi-Tzu Chang

    2017-06-01

    Full Text Available Subjective visual vertical (SVV judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS. Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs, the present study examined the effect of postural control demands (PDs on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group and 13 age-matched adolescents (control group aged 12–18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion, SVV (accuracy and reaction time, and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1 during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2 the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for

  19. The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects.

    Science.gov (United States)

    Mousa, Mohammad F; Cubbidge, Robert P; Al-Mansouri, Fatima; Bener, Abdulbari

    2013-01-01

    The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique. Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes), and glaucoma suspect patients (38 eyes). All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis protocol: the hemifield sector analysis protocol. Analysis of the mfVEP showed that the signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P field defects detected by standard perimetry, was able to differentiate between the three study groups with a clear distinction between normal patients and those with suspected glaucoma, and was able to detect early visual field changes not detected by standard perimetry. In addition, the distinction between normal and glaucoma patients was especially clear and significant using this analysis. The new hemifield sector analysis protocol used in mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol, it can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. The sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucomatous visual field loss. The intersector analysis protocol can detect early field changes not detected by the standard Humphrey Field Analyzer test.

  20. Multimodality evoked potentials in HTLV-I associated myelopathy.

    OpenAIRE

    Kakigi, R; Shibasaki, H; Kuroda, Y; Endo, C; Oda, K; Ikeda, A; Hashimoto, K

    1988-01-01

    Multimodality evoked potentials (EPs) consisting of somatosensory EPs (SEPs), visual EPs (VEPs) and brainstem auditory EPs (BAEPs) were studied in 16 cases with HTLV-I associated myelopathy (HAM). Median nerve SEPs were normal in all cases. In posterior tibial nerve SEPs, the potential recorded at the 12th thoracic spinal process was normal in every case but cortical components were significantly prolonged in 10 cases, although five of these showed no sensory impairment. BAEPs were normal in ...

  1. Visual Evoked Potential and Magnetic Resonance Imaging are More Effective Markers of Multiple Sclerosis Progression than Laser Polarimetry with Variable Corneal Compensation.

    Science.gov (United States)

    Kantorová, Ema; Ziak, Peter; Kurča, Egon; Koyšová, Mária; Hladká, Mária; Zeleňák, Kamil; Michalik, Jozef

    2014-01-01

    The aim of our study was to assess the role of laser polarimetry and visual evoked potentials (VEP) as potential biomarkers of disease progression in multiple sclerosis (MS). A total of 41 patients with MS (82 eyes) and 22 age-related healthy volunteers (44 eyes) completed the study. MS patients were divided into two groups, one (ON) with a history of optic neuritis (17 patients, 34 eyes) and another group (NON) without it (24 patients, 48 eyes). The MS patients and controls underwent laser polarimetry (GDx) examination of the retinal nerve fiber layer (RNFL). In the MS group, we also examined: Kurtzke "expanded disability status scale" (EDSS), the duration of the disorder, VEP - latency and amplitude, and conventional brain magnetic resonance imaging (MRI). Our results were statistically analyzed using ANOVA, Mann-Whitney, and Spearman correlation analyses. In the MS group, brain atrophy and new T2 brain lesions in MRI correlated with both VEP latencies and amplitudes. Separate comparisons revealed VEP latency testing to be less sensitive in ON than in NON-patients. In ON patients, VEP amplitudes correlated mildly with brain atrophy (r = -0.15) and strongly with brain new MRI lesions (r = -0.8). In NON-patients, highly significant correlation of new MRI brain lesions with VEP latencies (r = 0.63, r = 0.6) and amplitudes (r = -0.3, r = -4.2) was found. EDSS also correlated with brain atrophy in this group (r = 0.5). Our study did not find a correlation of GDx measures with MRI tests. The GDx method was not able to detect whole brain demyelinization and the degeneration process, but was only able to reveal the involvement of optic nerves in ON and NON-patients. In our study, we found that both methods (VEP and GDx) can be used for the detection of optic nerve damage, but VEP was found to be superior in evaluating whole brain demyelinization and axonal degeneration. Both VEP and MRI, but not GDx, have an important role in monitoring

  2. The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects

    Directory of Open Access Journals (Sweden)

    Mousa MF

    2013-05-01

    Full Text Available Mohammad F Mousa,1 Robert P Cubbidge,2 Fatima Al-Mansouri,1 Abdulbari Bener3,41Department of Ophthalmology, Hamad Medical Corporation, Doha, Qatar; 2School of Life and Health Sciences, Aston University, Birmingham, UK; 3Department of Medical Statistics and Epidemiology, Hamad Medical Corporation, Department of Public Health, Weill Cornell Medical College, Doha, Qatar; 4Department Evidence for Population Health Unit, School of Epidemiology and Health Sciences, University of Manchester, Manchester, UKObjective: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique.Methods and patients: Three groups were tested in this study; normal controls (38 eyes, glaucoma patients (36 eyes, and glaucoma suspect patients (38 eyes. All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis ­protocol: the hemifield sector analysis protocol.Results: Analysis of the mfVEP showed that the signal to noise ratio (SNR difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P < 0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group. The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P < 0.001, statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P < 0.01, and only 1/11 pair was statistically significant (t-test P < 0.9. The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86

  3. Spared cognitive processing of visual oddballs despite delayed visual evoked potentials in patient with partial recovery of vision after 53 years of blindness

    Czech Academy of Sciences Publication Activity Database

    Kremláček, J.; Šikl, Radovan; Kuba, M.; Szanyi, J.; Kubová, Z.; Langrová, J.; Vít, F.; Šimeček, Michal; Stodůlka, P.

    2013-01-01

    Roč. 81, April (2013), s. 1-5 ISSN 0042-6989 R&D Projects: GA ČR(CZ) GAP407/12/2528 Institutional support: RVO:68081740 Keywords : visual deprivation * recovery from blindness * motion-onset VEPs * pattern-reversal VEPs * oddball ERPs * P3b Subject RIV: FH - Neurology Impact factor: 2.381, year: 2013 http://www.sciencedirect.com/science/article/pii/S0042698913000151

  4. Anormalidades do potencial evocado visual por padrão reverso em pacientes com esclerose múltipla definida Pattern reversal visual evoked potential abnormalities in patients with defined multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Vítor Tumas

    1995-12-01

    Full Text Available O potencial evocado visual por padrão reverso, obtido por padrões de 14' e 28', foi analisado retrospectivamente em 28 pacientes com diagnóstico de esclerose múltipla definida. Observamos respostas anormais em 27/28 (96,4% pacientes, em 31/36 (86% dos olhos considerados sintomáticos e em 16/20 (80% dos ollhos assintomáticos. Classificando os achados em cada olho segundo as respostas obtidas aos dois estímulos, observamos uma possível relação entre essa classificação e a gravidade de comprometimento visual pela doença. Detectamos em alguns olhos anormalidades isoladas do N75 e também de P100 apenas à estimulação de 28'. Dessa forma, a técnica empregada foi considerada sensível e pôde definir inclusive comprometimento visual subclínico. Entretanto, não teve sensibilidade absoluta para detectar anormalidades em alguns olhos sintomáticos. O tipo de resposta aos estímulos empregados pode sugerir o grau de extensão de envolvimento do sistema visual pela doença. Os achados mostram ainda o envolvimento irregular e predominante das fibras mais centrais da visão pela esclerose múltipla, e sugerem processadores neurais distintos e paralelos para as respostas aos dois padrões utilizados.The pattern reversal visual evoked potential with checks of 14' and 28' was restropectivelly studied in 28 patients with definite multiple sclerosis. We observed abnormal responses in 27/28 (96.4% patients, in 31/36 (86% of symptomatic eyes, and in 16/20 (80% of asymptomatic eyes. When we classified the abnormalities in each eye according to the findings obtained with each check, there was a correlation between the pattern of abnormalities and the severity of visual involvement. Occasionally there were isolated abnormalities of N75 or only in P100 obtained with 28' checks. In conclusion the methodology applied was very sensible in detecting abnormalities in visual pathway. We could classify the findings in each eye and correlate them with the

  5. Brain-Computer Interfaces for 1-D and 2-D Cursor Control: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual Evoked Potentials

    Science.gov (United States)

    Trejo, Leonard J.; Matthews, Bryan; Rosipal, Roman

    2005-01-01

    We have developed and tested two EEG-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KF LS classifier to map power spectra of 30-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject s average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: a) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal EOG signals, b) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from eight electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle

  6. Multimodality evoked potentials in occupational exposure to metallic mercury vapour.

    Science.gov (United States)

    Langauer-Lewowicka, H; Kazibutowska, Z

    1989-01-01

    Central nervous system dysfunction among workers exposed to metallic mercury was studied by measuring somatosensory evoked potentials (SSEPs) and visual evoked potentials (VEPs). The examinations were conducted in 28 workers suspected of chronic mercury intoxication. They were exposed to Hg for a period ranging from 4-34 years (mean 22.1) in an acetic aldehyde and chlorine manufacturing plant. The increase of amplitude of N20 SSEP (13 cases) and elongation of its latency were frequent abnormalities in the examined group. The latency of N20 was significantly longer in the exposed group in comparison with the control one, the amplitude of N20 was also significantly higher. Significantly prolonged latency of P100 VEP was found in the group exposed to Hg. These findings suggest the possibility of an adverse effect due to Hg on the central part of the somatosensory and visual pathway.

  7. Establishing an evoked-potential vision-tracking system

    Science.gov (United States)

    Skidmore, Trent A.

    1991-01-01

    This paper presents experimental evidence to support the feasibility of an evoked-potential vision-tracking system. The topics discussed are stimulator construction, verification of the photic driving response in the electroencephalogram, a method for performing frequency separation, and a transient-analysis example. The final issue considered is that of object multiplicity (concurrent visual stimuli with different flashing rates). The paper concludes by discussing several applications currently under investigation.

  8. Visual evoked responses during standing and walking

    Directory of Open Access Journals (Sweden)

    Klaus Gramann

    2010-10-01

    Full Text Available Human cognition has been shaped both by our body structure and by its complex interactionswith its environment. Our cognition is thus inextricably linked to our own and others’ motorbehavior. To model brain activity associated with natural cognition, we propose recording theconcurrent brain dynamics and body movements of human subjects performing normal actions.Here we tested the feasibility of such a mobile brain/body (MoBI imaging approach byrecording high-density electroencephalographic (EEG activity and body movements of subjectsstanding or walking on a treadmill while performing a visual oddball response task. Independentcomponent analysis (ICA of the EEG data revealed visual event-related potentials (ERPs thatduring standing, slow walking, and fast walking did not differ across movement conditions,demonstrating the viability of recording brain activity accompanying cognitive processes duringwhole body movement. Non-invasive and relatively low-cost MoBI studies of normal, motivatedactions might improve understanding of interactions between brain and body dynamics leadingto more complete biological models of cognition.

  9. Evoked brain potentials and disability in brain-damaged patients.

    Science.gov (United States)

    Rappaport, M; Hall, K; Hopkins, K; Belleza, T; Berrol, S; Reynolds, G

    1977-08-01

    Various measures of evoked brain potential abnormality (EPA) were correlated with disability ratings (DR) for 35 brain-damaged patients. EPA data consisted of judgements of abnormality of ipsilateral, contralateral and bilateral responses to auditory and visual stimuli reflecting activity in the brain stem, subcortex and cortex. DR data were obtained from a scale developed for this study to quantize and categorize patients with a wide range of disabilities from coma to normal functioning. EPA scores based on visual and auditory cortical responses showed significantly positive correlations with degree of disability. Visual response correlation was .49, auditory .38 and combined visual and auditory .51. It was concluded that EPA measures can reflect disability independently of clinical information. They are useful in assessing brain function in general and, specifically, in assessing impairment of sensory function. The evoked potential technique was particularly useful in patients who were not able to participate fully in their own examination. There were indications that the technique may also be valuable in monitoring progress and in predicting clinical outcome in brain-damaged patients.

  10. Multimodality evoked potentials in HTLV-I associated myelopathy.

    Science.gov (United States)

    Kakigi, R; Shibasaki, H; Kuroda, Y; Endo, C; Oda, K; Ikeda, A; Hashimoto, K

    1988-08-01

    Multimodality evoked potentials (EPs) consisting of somatosensory EPs (SEPs), visual EPs (VEPs) and brainstem auditory EPs (BAEPs) were studied in 16 cases with HTLV-I associated myelopathy (HAM). Median nerve SEPs were normal in all cases. In posterior tibial nerve SEPs, the potential recorded at the 12th thoracic spinal process was normal in every case but cortical components were significantly prolonged in 10 cases, although five of these showed no sensory impairment. BAEPs were normal in every case whose hearing was intact, but VEPs were abnormal in two cases whose visual acuities were normal. The present results in HAM indicate predominant lesion in the thoracic cord, and might also suggest some subclinical lesion in the visual pathway.

  11. Evoked potentials in pediatric cerebral malaria

    Directory of Open Access Journals (Sweden)

    Minal Bhanushali

    2011-08-01

    Full Text Available Cortical evoked potentials (EP provide localized data regarding brain function and may offer prognostic information and insights into the pathologic mechanisms of malariamediated cerebral injury. As part of a prospective cohort study, we obtained somatosensory evoked potentials (SSEPs and brainstem auditory EPs (AEPs within 24 hours of admission on 27 consecutive children admitted with cerebral malaria (CM. Children underwent follow-up for 12 months to determine if they had any long term neurologic sequelae. EPs were obtained in 27 pediatric CM admissions. Two children died. Among survivors followed an average of 514 days, 7/25 (28.0% had at least one adverse neurologic outcome. Only a single subject had absent cortical EPs on admission and this child had a good neurologic outcome. Among pediatric CM survivors, cortical EPs are generally intact and do not predict adverse neurologic outcomes. Further study is needed to determine if alterations in cortical EPs can be used to predict a fatal outcome in CM.

  12. Long Latency Auditory Evoked Potentials during Meditation.

    Science.gov (United States)

    Telles, Shirley; Deepeshwar, Singh; Naveen, Kalkuni Visweswaraiah; Pailoor, Subramanya

    2015-10-01

    The auditory sensory pathway has been studied in meditators, using midlatency and short latency auditory evoked potentials. The present study evaluated long latency auditory evoked potentials (LLAEPs) during meditation. Sixty male participants, aged between 18 and 31 years (group mean±SD, 20.5±3.8 years), were assessed in 4 mental states based on descriptions in the traditional texts. They were (a) random thinking, (b) nonmeditative focusing, (c) meditative focusing, and (d) meditation. The order of the sessions was randomly assigned. The LLAEP components studied were P1 (40-60 ms), N1 (75-115 ms), P2 (120-180 ms), and N2 (180-280 ms). For each component, the peak amplitude and peak latency were measured from the prestimulus baseline. There was significant decrease in the peak latency of the P2 component during and after meditation (Pmeditation facilitates the processing of information in the auditory association cortex, whereas the number of neurons recruited was smaller in random thinking and non-meditative focused thinking, at the level of the secondary auditory cortex, auditory association cortex and anterior cingulate cortex. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  13. RECORDING OF VESTIBULAR EVOKED MYOGENIC POTENTIALS

    Directory of Open Access Journals (Sweden)

    A. A. Sazgar

    2006-05-01

    Full Text Available It has been shown recently that loud clicks evoke myogenic potentials in the tonically contracting sternocleidomastoid muscles. Studies have suggested that these potentials are of vestibular origin, especially of the saccule and inferior vestibular nerve. A pilot study was undertaken in our hospital to record vestibular evoked myogenic potentials (VEMP for the first time in Iran. Eighteen healthy volunteers (32 ears without history of otologic or vestibular disorders were subjected to the VEMP test. Twenty-one patients (26 ears with unilateral (6 patients and bilateral (5 patients high frequency sensorineural hearing loss with unknown etiology, acoustic neuroma (1 patient, Meniere’s disease (4 patients and unilateral low frequency sensorineural hearing loss without vestibular complaint (5 patients were also enrolled in this study. VEMP response to clicks was obtained from 84.4% of ears of healthy subjects. These subjects demonstrated short latency waves to click stimuli during tonic neck flexor activation. Mean latencies of first positive (p13 and first negative (n23 potentials in healthy subjects were 12.45 ± 1.9 ms and 20.8 ± 3.5 ms, respectively. Median latencies of these two potentials were 12.1 and 19.3 ms, respectively. We could record VEMP in 5 patients with unilateral and all patients with high and low frequency sensorineural hearing loss without vestibular complaint. In the patient with acoustic neuroma VEMP was absent on the affected side. This technique may offer a new method to evaluate otolith and sacculocollic pathways in human.

  14. Pattern visual evoked responses in hereditary spastic paraplegia

    Science.gov (United States)

    Livingstone, I R; Mastaglia, F L; Edis, R; Howe, J W

    1981-01-01

    Pattern visual evoked responses were studied in 13 patients from nine families with dominant herditary spastic paraplegia and in seven sporadic cases. The responses were normal in all the dominantly inherited cases but abnormal in three of the seven sporadic cases. PMID:7217977

  15. Index finger somatosensory evoked potentials in blind Braille readers.

    Science.gov (United States)

    Giriyappa, Dayananda; Subrahmanyam, Roopakala Mysore; Rangashetty, Srinivasa; Sharma, Rajeev

    2009-01-01

    Traditionally, vision has been considered the dominant modality in our multi-sensory perception of the surrounding world. Sensory input via non-visual tracts becomes of greater behavioural relevance in totally blind individuals to enable effective interaction with the world around them. These include audition and tactile perceptions, leading to an augmentation in these perceptions when compared with normal sighted individuals. The objective of the present work was to study the index finger somatosensory evoked potentials (SEPs) in totally blind and normal sighted individuals. SEPs were recorded in 15 Braille reading totally blind females and compared with 15 age-matched normal sighted females. Latency and amplitudes of somatosensory evoked potential waveforms (N9, N13, and N20) were measured. Amplitude of N20 SEP (a cortical somatosensory evoked potential) was significantly larger in the totally blind than in normal sighted individuals (p Braille reading right index finger. Totally blind Braille readers have larger N20 amplitude, suggestive of greater somatosensory cortical representation of the Braille reading index finger.

  16. Estimation of evoked potentials using total least squares prony technique.

    Science.gov (United States)

    Akkin, T; Saliu, S

    1998-09-01

    The authors investigate the applicability of Prony modelling to the estimation of evoked potentials. Four types of total least squares (TLS) model are considered and their optimal parameters are defined based on ten visual averaged EPs. Simulations with various signal and noise characteristics show that the TLS-Prony estimation is superior to averaging for two of the models, namely the unconstrained and the stable models. Application of the TLS-Prony estimator as a post-processor to moderate averaging allows a reduction in the number of responses averaged, or equivalently of recording time, by a factor of two.

  17. Resting Heart Rate and Auditory Evoked Potential

    Directory of Open Access Journals (Sweden)

    Simone Fiuza Regaçone

    2015-01-01

    Full Text Available The objective of this study was to evaluate the association between rest heart rate (HR and the components of the auditory evoked-related potentials (ERPs at rest in women. We investigated 21 healthy female university students between 18 and 24 years old. We performed complete audiological evaluation and measurement of heart rate for 10 minutes at rest (heart rate monitor Polar RS800CX and performed ERPs analysis (discrepancy in frequency and duration. There was a moderate negative correlation of the N1 and P3a with rest HR and a strong positive correlation of the P2 and N2 components with rest HR. Larger components of the ERP are associated with higher rest HR.

  18. Suppressive interactions underlying visually evoked fixational saccades.

    Science.gov (United States)

    Wang, Helena X; Yuval-Greenberg, Shlomit; Heeger, David J

    2016-01-01

    Small saccades occur frequently during fixation, and are coupled to changes in visual stimulation and cognitive state. Neurophysiologically, fixational saccades reflect neural activity near the foveal region of a continuous visuomotor map. It is well known that competitive interactions between neurons within visuomotor maps contribute to target selection for large saccades. Here we asked how such interactions in visuomotor maps shape the rate and direction of small fixational saccades. We measured fixational saccades during periods of prolonged fixation while presenting pairs of visual stimuli (parafoveal: 0.8° eccentricity; peripheral: 5° eccentricity) of various contrasts. Fixational saccade direction was biased toward locations of parafoveal stimuli but not peripheral stimuli, ∼100-250ms following stimulus onset. The rate of fixational saccades toward parafoveal stimuli (congruent saccades) increased systematically with parafoveal stimulus contrast, and was suppressed by the simultaneous presentation of a peripheral stimulus. The suppression was best characterized as a combination of two processes: a subtractive suppression of the overall fixational saccade rate and a divisive suppression of the direction bias. These results reveal the nature of suppressive interactions within visuomotor maps and constrain models of the population code for fixational saccades. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Optic nerve axonal pathology is related to abnormal visual evoked responses in AIDS.

    Science.gov (United States)

    Mahadevan, Anita; Satishchandra, Parthasarathy; Prachet, Krishnamurthy Kulkarni; Sidappa, Nagadenahalli Byrareddy; Ranga, Udaykumar; Santosh, Vani; Yasha, Thagadur Chickabasavaiah; Desai, Anita; Ravi, Vasanthapuram; Shankar, Susarla Krishna

    2006-10-01

    Electrophysiological studies in subjects with HIV/AIDS demonstrate subtle changes in the visual pathway even in the absence of visual symptoms. But the pathological correlate of the electrophysiological abnormalities is largely unknown. This study attempts to correlate pathological changes in the retina and intraorbital portion of optic nerve in four drug naïve patients of AIDS caused by HIV-1 clade C, who had abnormalities in the visual evoked potentials recorded antemortem. Three had no visual complaints and one patient had sudden loss of vision in the right eye. In all four patients, the visual evoked potentials disclosed variable prolongation of P100 latencies. Histologically axonal cytoskeletal breakdown and depletion in the optic nerves was the cardinal finding with variable myelin loss, even in the absence of overt visual dysfunction, or infective retinitis. The axonal loss was maximal in the symptomatic case. Retinal ganglion cell depletion was seen in only two patients. Sectoral infiltration of the optic nerve by cryptococci and Cryptococcal choroiditis was the only opportunistic infection to involve the eye. Axonal pathology in the optic nerve appears to be related to the abnormalities recorded in visual evoked potentials even in the absence of overt clinical symptoms. Opportunistic infections could be contributing to the axonal pathology in the optic nerve in patients with AIDS.

  20. Early event related fields during visually evoked pain anticipation.

    Science.gov (United States)

    Gopalakrishnan, Raghavan; Burgess, Richard C; Plow, Ela B; Floden, Darlene P; Machado, Andre G

    2016-03-01

    Pain experience is not only a function of somatosensory inputs. Rather, it is strongly influenced by cognitive and affective pathways. Pain anticipatory phenomena, an important limitation to rehabilitative efforts in the chronic state, are processed by associative and limbic networks, along with primary sensory cortices. Characterization of neurophysiological correlates of pain anticipation, particularly during very early stages of neural processing is critical for development of therapeutic interventions. Here, we utilized magnetoencephalography to study early event-related fields (ERFs) in healthy subjects exposed to a 3 s visual countdown task that preceded a painful stimulus, a non-painful stimulus or no stimulus. We found that the first countdown cue, but not the last cue, evoked critical ERFs signaling anticipation, attention and alertness to the noxious stimuli. Further, we found that P2 and N2 components were significantly different in response to first-cues that signaled incoming painful stimuli when compared to non-painful or no stimuli. The findings indicate that early ERFs are relevant neural substrates of pain anticipatory phenomena and could be potentially serve as biomarkers. These measures could assist in the development of neurostimulation approaches aimed at curbing the negative effects of pain anticipation during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Sex differences in pudendal somatosensory evoked potentials.

    Science.gov (United States)

    Pelliccioni, G; Piloni, V; Sabbatini, D; Fioravanti, P; Scarpino, O

    2014-06-01

    Somatosensory evoked potentials (SEPs) of the pudendal nerve are a well-established diagnostic tool for the evaluation of pelvic floor disorders. However, the possible influence of sex differences on response latencies has not been established yet. The aim of this study was to standardize the procedures and to evaluate possible effects of gender differences on anal and penile/clitoral SEPs. The anal and dorsal penile/clitoral SEPs were recorded in 84 healthy subjects (40 males and 44 females; mean age 47.9 ± 16.6 years, range 16-81 years; mean height 168.3 ± 20.3 cm, range 155-187 cm). Pudendal SEPs were evoked with a bipolar surface electrode stimulating the clitoris or the base of the penis and the anal orifice and recorded using scalp electrodes. The latency of the first positive component (P1) was measured. The effect and possible interaction of (a) stimulation site and (b) gender on the two variables was explored by multivariate analysis of variance (MANOVA). The examination was well tolerated and a reproducible waveform of sufficient quality was obtained in all the subjects examined. In the female subjects, a mean cortical P1 latency of 37.0 ± 2.6 and 36.4 ± 3.2 ms for anal and clitoral stimulation, respectively, was found. In the male subjects, the cortical latencies were 38.0 ± 3.5 ms for the anal stimulation and 40.2 ± 3.7 ms for the penile stimulation. At MANOVA, a statistically significant main effect of stimulation site and gender as well as a significant interaction between the two variables was found. Anal and dorsal penile/clitoral SEPs represent a well-tolerated and reproducible method to assess the functional integrity of the sensory pathways in male and female subjects. Obtaining sex-specific reference data, by individual electrophysiological testing, is highly recommended because of significant latency differences between males and females, at least as far as penile/clitoral responses are concerned.

  2. Contact heat evoked potentials using simultaneous EEG and fMRI and their correlation with evoked pain

    Directory of Open Access Journals (Sweden)

    Atherton Duncan

    2008-12-01

    Full Text Available Abstract Background The Contact Heat Evoked Potential Stimulator (CHEPS utilises rapidly delivered heat pulses with adjustable peak temperatures to stimulate the differential warm/heat thresholds of receptors expressed by Aδ and C fibres. The resulting evoked potentials can be recorded and measured, providing a useful clinical tool for the study of thermal and nociceptive pathways. Concurrent recording of contact heat evoked potentials using electroencephalogram (EEG and functional magnetic resonance imaging (fMRI has not previously been reported with CHEPS. Developing simultaneous EEG and fMRI with CHEPS is highly desirable, as it provides an opportunity to exploit the high temporal resolution of EEG and the high spatial resolution of fMRI to study the reaction of the human brain to thermal and nociceptive stimuli. Methods In this study we have recorded evoked potentials stimulated by 51°C contact heat pulses from CHEPS using EEG, under normal conditions (baseline, and during continuous and simultaneous acquisition of fMRI images in ten healthy volunteers, during two sessions. The pain evoked by CHEPS was recorded on a Visual Analogue Scale (VAS. Results Analysis of EEG data revealed that the latencies and amplitudes of evoked potentials recorded during continuous fMRI did not differ significantly from baseline recordings. fMRI results were consistent with previous thermal pain studies, and showed Blood Oxygen Level Dependent (BOLD changes in the insula, post-central gyrus, supplementary motor area (SMA, middle cingulate cortex and pre-central gyrus. There was a significant positive correlation between the evoked potential amplitude (EEG and the psychophysical perception of pain on the VAS. Conclusion The results of this study demonstrate the feasibility of recording contact heat evoked potentials with EEG during continuous and simultaneous fMRI. The combined use of the two methods can lead to identification of distinct patterns of brain

  3. Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging

    DEFF Research Database (Denmark)

    Fuglø, Dan; Pedersen, Henrik; Rostrup, Egill

    2012-01-01

    To compare different electroencephalography (EEG)-based regressors and their ability to predict the simultaneously recorded blood oxygenation level dependent response during blocked visual stimulation, simultaneous EEG-functional magnetic resonance imaging in 10 healthy volunteers was performed...

  4. The role of visual evoked potential and electroretinography in the preoperative assessment of osteo‐keratoprosthesis or osteo‐odonto‐keratoprosthesis surgery

    National Research Council Canada - National Science Library

    de Araujo, Aline L; Charoenrook, Victor; de la Paz, Maria F; Temprano, Jose; Barraquer, Rafael I; Michael, Ralph

    2012-01-01

    ...) in predicting visual outcome in patients undergoing osteo‐keratoprosthesis (OKP) or osteo‐odonto‐keratoprosthesis (OOKP) surgery. Methods:  We performed a retrospective cohort study of 143 eyes in 101 patients who underwent OKP or OOKP surgery...

  5. An evoked potential mapping of transcallosal projections in the cat

    Directory of Open Access Journals (Sweden)

    A. Cukiert

    1989-03-01

    Full Text Available In ten adult cats anesthetized with ketamine hydrochloride the neocortex was exposed and rectangular pulses (1msec, 0.5 Hz and variable intensity were applied to discrete points of one side and transcallosal evoked potentials were recorded from the other. The stimulation and recording positions were determined on a cartesian map of most of the exposable neocortical areas and the potentials were analysed as to their components, voltage and latency. Passive spread and electrotonic potentials and the effects of increasing frequency were also analysed. The results showed large transcallosal potentials in some areas and an increase of potentials in the caudorostral direction, attaining the highest values in anteromedial areas of the suprasylvian gyrus. Confirming anatomical studies, a few silent spots were found in the motor and somesthetic cortex and in restricted posterior regions of the visual cortex, where small or zero voltages occurred. While causing weak contralateral potentials, stimulation of some posterior sites provoked high voltage potentials in anterior regions of the side being stimulated and in the corresponding area of the opposite site. These posterior sites are. poorly interconnected by the corpus callosum. The L-shaped indirect connection described in this work may be involved in some types of epilepsy and may explain the effectiveness of partial callosotomy in their treatment.

  6. Distraction Reduces Both Early and Late Electrocutaneous Stimulus Evoked Potentials

    NARCIS (Netherlands)

    Blom, J.H.G.; Wiering, Caro H.; van der Lubbe, Robert Henricus Johannes

    2012-01-01

    Previous electroencephalography studies revealed mixed effects of sustained distraction on early negative and later positive event-related potential components evoked by electrocutaneous stimuli. In our study we further examined the influence of sustained distraction to clarify these discrepancies.

  7. Two Sides of the Same Coin: ERP and Wavelet Analyses of Visual Potentials Evoked and Induced by Task-Relevant Faces

    NARCIS (Netherlands)

    van der Lubbe, Robert Henricus Johannes; Szumska, Izabela; Fajkowska, Malgorzata

    2016-01-01

    New analysis techniques of the electroencephalogram (EEG) such as wavelet analysis open the possibility to address questions that may largely improve our understanding of the EEG and clarify its relation with related potentials (ERPs). Three issues were addressed. 1) To what extent can early ERP

  8. Functional Brain Activity Changes after 4 Weeks Supplementation with a Multi-Vitamin/Mineral Combination: A Randomized, Double-Blind, Placebo-Controlled Trial Exploring Functional Magnetic Resonance Imaging and Steady-State Visual Evoked Potentials during Working Memory.

    Science.gov (United States)

    White, David J; Cox, Katherine H M; Hughes, Matthew E; Pipingas, Andrew; Peters, Riccarda; Scholey, Andrew B

    2016-01-01

    This study explored the neurocognitive effects of 4 weeks daily supplementation with a multi-vitamin and -mineral combination (MVM) in healthy adults (aged 18-40 years). Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n = 32, 16 females) and Steady-State Visual Evoked Potential recordings (SSVEP; n = 39, 20 females) during working memory and continuous performance tasks at baseline and following 4 weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following 4 weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment (n = 16) demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP) within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with 4 weeks of daily treatment with a multi-vitamin and -mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity.

  9. Functional brain activity changes after four weeks supplementation with a multi-vitamin/mineral combination: A randomized, double-blind, placebo-controlled trial exploring functional Magnetic Resonance Imaging and Steady-State Visual Evoked Potentials during working memory

    Directory of Open Access Journals (Sweden)

    David J White

    2016-12-01

    Full Text Available This study explored the neurocognitive effects of four weeks daily supplementation with a multivitamin and mineral combination (MVM in healthy adults (aged 18-40 years. Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n=32, 16 females and Steady-State Visual Evoked Potential recordings (SSVEP; n=39, 20 females during working memory and continuous performance tasks at baseline and following four weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following four weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment (n=16 demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with four weeks of daily treatment with a multivitamin and mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity.

  10. Analysis of visual evoked responses in multiple sclerosis.

    Science.gov (United States)

    Mallecourt, J; Chain, F; Leblanc, M; Lhermitte, F

    1980-12-01

    In Multiple Sclerosis (MS) the modification of the latency of visual evoked responses (VER's) shows sequels of the involvement of anterior optic tracts manifested by a retro-bulbar optic neuritis (RBON). This study was made on 102 patients with MS. The stimulus used the pattern reversal of a checkboard. The influence of the size and squares 8' and 20' chosen as stimulus has been first studied in patients with antecedents of RBON. Using the 8' squares, all eyes with a history of RBON had pathological VER's. When there is no clinical antecedent of RBON, this means of stimulation enabled us to detect sequels of RBON. In "definitive" and "probable" MS, 100% of patients had pathological VER's either for both eyes of a single eyes. In "possible" MS a sequel of RBON was demonstrated in 57% of this population without clinical antecedent of RBON. A correlation between VER's result and the ophthalmological examination (visual acuity, fundoscopic examination and acquired dyschromatopsie) was made. Although VER's are an excellent method for detecting the sequels of RBON in MS. VER's abnormalities have no etiological significance, they are observed in other neurological involvements of anterior optic tracts. These different points are discussed and a physiological interpretation of VER's abnormalities is proposed.

  11. Evoked Potentials in Motor Cortical Local Field Potentials Reflect Task Timing and Behavioral Performance

    Science.gov (United States)

    Confais, Joachim; Ponce-Alvarez, Adrián; Diesmann, Markus; Riehle, Alexa

    2010-01-01

    Evoked potentials (EPs) are observed in motor cortical local field potentials (LFPs) during movement execution (movement-related potentials [MRPs]) and in response to relevant visual cues (visual evoked potentials [VEPs]). Motor cortical EPs may be directionally selective, but little is known concerning their relation to other aspects of motor behavior, such as task timing and performance. We recorded LFPs in motor cortex of two monkeys during performance of a precued arm-reaching task. A time cue at the start of each trial signaled delay duration and thereby the pace of the task and the available time for movement preparation. VEPs and MRPs were strongly modulated by the delay duration, VEPs being systematically larger in short-delay trials and MRPs larger in long-delay trials. Despite these systematic modulations related to the task timing, directional selectivity was similar in short and long trials. The behavioral reaction time was positively correlated with MRP size and negatively correlated with VEP size, within sessions. In addition, the behavioral performance improved across sessions, in parallel with a slow decrease in the size of VEPs and MRPs. Our results clearly show the strong influence of the behavioral context and performance on motor cortical population activity during movement preparation and execution. PMID:20884766

  12. Optical and electrical recording of neural activity evoked by graded contrast visual stimulus

    Directory of Open Access Journals (Sweden)

    Bulf Luca

    2007-07-01

    Full Text Available Abstract Background Brain activity has been investigated by several methods with different principles, notably optical ones. Each method may offer information on distinct physiological or pathological aspects of brain function. The ideal instrument to measure brain activity should include complementary techniques and integrate the resultant information. As a "low cost" approach towards this objective, we combined the well-grounded electroencephalography technique with the newer near infrared spectroscopy methods to investigate human visual function. Methods The article describes an embedded instrumentation combining a continuous-wave near-infrared spectroscopy system and an electroencephalography system to simultaneously monitor functional hemodynamics and electrical activity. Near infrared spectroscopy (NIRS signal depends on the light absorption spectra of haemoglobin and measures the blood volume and blood oxygenation regulation supporting the neural activity. The NIRS and visual evoked potential (VEP are concurrently acquired during steady state visual stimulation, at 8 Hz, with a b/w "windmill" pattern, in nine human subjects. The pattern contrast is varied (1%, 10%, 100% according to a stimulation protocol. Results In this study, we present the measuring system; the results consist in concurrent recordings of hemodynamic changes and evoked potential responses emerging from different contrast levels of a patterned stimulus. The concentration of [HbO2] increases and [HHb] decreases after the onset of the stimulus. Their variation shows a clear relationship with the contrast value: large contrast produce huge difference in concentration, while low contrast provokes small concentration difference. This behaviour is similar to the already known relationship between VEP response amplitude and contrast. Conclusion The simultaneous recording and analysis of NIRS and VEP signals in humans during visual stimulation with a b/w pattern at variable

  13. Evoked cochlear potentials in the barn owl.

    Science.gov (United States)

    Köppl, Christine; Gleich, Otto

    2007-06-01

    Gross electrical responses to tone bursts were measured in adult barn owls, using a single-ended wire electrode placed onto the round window. Cochlear microphonic (CM) and compound action potential (CAP) responses were evaluated separately. Both potentials were physiologically vulnerable. Selective abolishment of neural responses at high frequencies confirmed that the CAP was of neural origin, while the CM remained unaffected. CAP latencies decreased with increasing stimulus frequency and CAP amplitudes were correlated with known variations in afferent fibre numbers from the different papillar regions. This suggests a local origin of the CAP along the tonotopic gradient within the basilar papilla. The audiograms derived from CAP and CM threshold responses both showed a broad frequency region of optimal sensitivity, very similar to behavioural and single-unit data, but shifted upward in absolute sensitivity. CAP thresholds rose above 8 kHz, while CM responses showed unchanged sensitivity up to 10 kHz.

  14. Modeling auditory evoked potentials to complex stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch

    cochlear compression would be of great benefit, as a more precise diagnose of the deficits underlying a potential hearing impairment in both infants and adults could be obtained. It was demonstrated in this thesis, via experimental recordings and supported by model simulations, that the growth of the ASSR....... Sensorineural hearing impairments is commonly associated with a loss of outer hair-cell functionality, and a measurable consequence is the decreased amount of cochlear compression at frequencies corresponding to the damaged locations in the cochlea. In clinical diagnostics, a fast and objective measure of local...... clinically and in research towards using realistic and complex stimuli, such as speech, to electrophysiologically assess the human hearing. However, to interpret the AEP generation to complex sounds, the potential patterns in response to simple stimuli needs to be understood. Therefore, the model was used...

  15. Human auditory evoked potentials. II - Effects of attention

    Science.gov (United States)

    Picton, T. W.; Hillyard, S. A.

    1974-01-01

    Attention directed toward auditory stimuli, in order to detect an occasional fainter 'signal' stimulus, caused a substantial increase in the N1 (83 msec) and P2 (161 msec) components of the auditory evoked potential without any change in preceding components. This evidence shows that human auditory attention is not mediated by a peripheral gating mechanism. The evoked response to the detected signal stimulus also contained a large P3 (450 msec) wave that was topographically distinct from the preceding components. This late positive wave could also be recorded in response to a detected omitted stimulus in a regular train and therefore seemed to index a stimulus-independent perceptual decision process.

  16. Single-sweep spectral analysis of contact heat evoked potentials

    DEFF Research Database (Denmark)

    Hansen, Tine M; Graversen, Carina; Frøkjaer, Jens B

    2015-01-01

    AIMS: The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep ch...

  17. Analysis of the influence of bromazepam on cognitive performance through the visual evoked potential (P300 Análise da influência do bromazepam na performance cognitiva através do potencial evocado visual (P300

    Directory of Open Access Journals (Sweden)

    Fernanda Puga

    2005-06-01

    Full Text Available Benzodiazepines have been used in the pharmacological treatment of anxiety for over four decades. However, very few studies have combined bromazepam and event-related potentials (ERP. The present study aimed at investigating the modulatory effects of this drug on brain dynamics. Specifically, the effects of bromazepam (3mg on the P300 component of the ERP were tested in a double-blind experiment. The sample, consisting of 15 healthy subjects (7 male and 8 female, was submitted to a visual discrimination task, which employed the "oddball" paradigm. Electrophysiological (P300 and behavioral measures (stroop, digit span, and reaction time were analyzed across three experimental conditions: placebo 1, placebo 2, and bromazepam. Results suggest that the effects of bromazepam (3mg on cognitive processes are not apparent. In spite of what seems irrefutable in current literature, bromazepam did not produce evident effects on the behavioral and electrophysiological variables analyzed.Benzodiazepínicos têm sido utilizados no tratamento farmacológico da ansiedade há mais de quatro décadas. No entanto, poucos estudos têm combinado bromazepam e potencial evocado relacionado a evento (PRE. O presente estudo teve por objetivo investigar os efeitos modulatórios desta droga na dinâmica cerebral. Especificamente, os efeitos de 3mg de bromazepam no componente P300 do PRE foram analisados em um experimento duplo-cego. A amostra consistiu de 15 sujeitos sadios (7 homens e 8 mulheres, submetidos a uma tarefa de discriminação visual utilizando o paradigma "oddball". Medidas eletrofisiológicas (P300 e comportamentais (stroop, digit span, e tempo de reação foram analisadas em três condições experimentais: placebo 1, placebo 2 e bromazepam. Os resultados sugerem que os efeitos de 3mg de bromazepam em processos cognitivos não são aparentes. Apesar do que parece irrefutável na literatura, o bromazepam não produziu efeitos evidentes nas vari

  18. Auditory evoked potentials in children and adolescents with Down syndrome.

    Science.gov (United States)

    Gregory, Letícia; Rosa, Rafael F M; Zen, Paulo R G; Sleifer, Pricila

    2018-01-01

    Down syndrome, or trisomy 21, is the most common genetic alteration in humans. The syndrome presents with several features, including hearing loss and changes in the central nervous system, which may affect language development in children and lead to school difficulties. The present study aimed to investigate group differences in the central auditory system by long-latency auditory evoked potentials and cognitive potential. An assessment of 23 children and adolescents with Down syndrome was performed, and a control group composed of 43 children and adolescents without genetic and/or neurological changes was used for comparison. All children underwent evaluation with pure tone and vocal audiometry, acoustic immitance measures, long-latency auditory evoked potentials, and cognitive potential. Longer latencies of the waves were found in the Down syndrome group than the control group, without significant differences in amplitude, suggesting that individuals with Down syndrome have difficulty in discrimination and auditory memory. It is, therefore, important to stimulate and monitor these children in order to enable adequate development and improve their life quality. We also emphasize the importance of the application of auditory evoked potentials in clinical practice, in order to contribute to the early diagnosis of hearing alterations and the development of more research in this area. © 2017 Wiley Periodicals, Inc.

  19. [Evaluation of the central visual field by the Friedmann Mark I analyzer and color vision in 85 patients with multiple sclerosis. Correlation with visual evoked potentials in 50 cases].

    Science.gov (United States)

    Grochowicki, M; Vighetto, A

    1988-01-01

    Analysis of the visual field using Friedmann's analyser Mark I and color study in 85 multiple sclerosis patients. Static perimetry of the central visual field and test batteries (Ishihara plates, 15 Hue Standard, 15 Hue of Lanthony) for acquired color vision defects were performed in 85 multiple sclerosis patients (61 definite, 12 probable, 12 possible cases). Results in patients were compared to data obtained in 53 control subjects matched for age. 64% of the 85 patients and 52% of 48 patients with no history of optic nevritis showed visual field abnormalities and/or color vision defects. Comparison with VEP was available in 50 patients. While 10 patients had abnormal VEP and normal static perimetry and coloration tests, 5 patients had the reverse findings.

  20. Evoked potentials and head injury. 2. Clinical applications.

    Science.gov (United States)

    Rappaport, M; Hopkins, H K; Hall, K; Belleza, T

    1981-10-01

    The method of rating abnormality of evoked brain potential patterns and assessing the extent and severity of cortical and subcortical brain dysfunction in head injury patients described in Part I is applied in a clinical context. Evoked potential abnormality (EPA) scores are found to be significantly correlated both with admission and outcome disability approximately one year after head injury. Correlations increase with the increase in the number of sensory modalities tested. Correlations between EPA scores and clinical disability (measured by the Disability Rating Scale) decrease with time after injury. Significant correlations, however, persist for about 60 days after onset of injury. It was found that EP pattern abnormalities can reflect specific sensory (and at times motor) deficits in noncommunicative patients and thereby contribute significantly to early treatment and rehabilitation planning.

  1. Abdominal acupuncture reduces laser-evoked potentials in healthy subjects

    DEFF Research Database (Denmark)

    Pazzaglia, C.; Liguori, S.; Minciotti, I.

    2015-01-01

    Objective: Acupuncture is known to reduce clinical pain, although the exact mechanism is unknown. The aim of the current study was to investigate the effect of acupuncture on laser-evoked potential amplitudes and laser pain perception. Methods: In order to evaluate whether abdominal acupuncture...... is able to modify pain perception, 10 healthy subjects underwent a protocol in which laser-evoked potentials (LEPs) and laser pain perception were collected before the test (baseline), during abdominal acupuncture, and 15. min after needle removal. The same subjects also underwent a similar protocol...... in which, however, sham acupuncture without any needle penetration was used. Results: During real acupuncture, both N1 and N2/P2 amplitudes were reduced, as compared to baseline (p . < 0.01). The reduction lasted up to 15. min after needle removal. Furthermore, laser pain perception was reduced during...

  2. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  3. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Motor evoked potentials of the perineal floor. Preliminary results].

    Science.gov (United States)

    Opsomer, R J; Van Cangh, P J; Humblet, Y; Abi Aad, A; Rossini, P M

    1989-01-01

    Neuromotor pathways from the brain to the pelvic floor have been poorly documented. The recent development of Motor Evoked Potentials may well fill this gap in our basic knowledge. Our technique consists of transcutaneous stimulation of the motor cortex and sacral roots with a magnetic device while recording the evoked response from the bulbocavernosus muscle and anal sphincter. Cortical stimulation is performed first at rest and then during voluntary contraction of the examined muscles ("facilitation" procedure). Sacral root stimulation is performed at rest. Stimulation at 2 different levels allows measurement of the total transit time (brain to muscle transit time) and the peripheral transit time (sacral roots to muscle). By subtracting the latter from the former, the central transit time (brain to sacral roots) is obtained. The technique is painless, and to our knowledge no side effects have been reported. The authors present the preliminary results of this new technique.

  5. Temporal Tuning Effects in the Visually Evoked Response,

    Science.gov (United States)

    1985-08-01

    Berger (1932) also observed that these brain waves are slowed in states of depressed function such as sleep activity and that they can be blocked by...Ma4cay and Jefferys, 1973). Transient VER’s, polyphasic in form and 200-500 milliseconds in duration, are evoked by stepwise changes in one or more per

  6. Human auditory evoked potentials. I - Evaluation of components

    Science.gov (United States)

    Picton, T. W.; Hillyard, S. A.; Krausz, H. I.; Galambos, R.

    1974-01-01

    Fifteen distinct components can be identified in the scalp recorded average evoked potential to an abrupt auditory stimulus. The early components occurring in the first 8 msec after a stimulus represent the activation of the cochlea and the auditory nuclei of the brainstem. The middle latency components occurring between 8 and 50 msec after the stimulus probably represent activation of both auditory thalamus and cortex but can be seriously contaminated by concurrent scalp muscle reflex potentials. The longer latency components occurring between 50 and 300 msec after the stimulus are maximally recorded over fronto-central scalp regions and seem to represent widespread activation of frontal cortex.

  7. The Electrically Evoked Compound Action Potential: From Laboratory to Clinic.

    Science.gov (United States)

    He, Shuman; Teagle, Holly F B; Buchman, Craig A

    2017-01-01

    The electrically evoked compound action potential (eCAP) represents the synchronous firing of a population of electrically stimulated auditory nerve fibers. It can be directly recorded on a surgically exposed nerve trunk in animals or from an intra-cochlear electrode of a cochlear implant. In the past two decades, the eCAP has been widely recorded in both animals and clinical patient populations using different testing paradigms. This paper provides an overview of recording methodologies and response characteristics of the eCAP, as well as its potential applications in research and clinical situations. Relevant studies are reviewed and implications for clinicians are discussed.

  8. Brainstem auditory evoked potentials in children with lead exposure

    Directory of Open Access Journals (Sweden)

    Katia de Freitas Alvarenga

    2015-02-01

    Full Text Available Introduction: Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. Objective: To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Methods: Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months. Results: The mean time-integrated cumulative blood lead index was 12 µg/dL (SD ± 5.7, range:2.433. All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. Conclusion: No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area.

  9. Brainstem auditory evoked potentials in children with lead exposure.

    Science.gov (United States)

    Alvarenga, Katia de Freitas; Morata, Thais Catalani; Lopes, Andrea Cintra; Feniman, Mariza Ribeiro; Corteletti, Lilian Cassia Bornia Jacob

    2015-01-01

    Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months). The mean time-integrated cumulative blood lead index was 12 μg/dL (SD ± 5.7, range: 2.433). All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. EEG sources of noise in intraoperative somatosensory evoked potential monitoring during propofol anesthesia.

    Science.gov (United States)

    Joutsen, Atte; Puumala, Pasi; Lyytikäinen, Leo-Pekka; Pajulo, Olli; Etelämäki, Aira; Eskola, Hannu; Jäntti, Ville

    2009-08-01

    It was hypothesized that somato- sensory evoked potentials can be achieved faster by selective averaging during periods of low spontaneous electroen- cephalographic (EEG) activity. We analyzed the components of EEG that decrease the signal-to-noise ratio of somatosensory evoked potential (SEP) recordings during propofol anesthesia. Patient EEGs were recorded with a high sampling frequency during deep anesthesia, when EEGs were in burst suppression. EEGs were segmented visually into bursts, spindles, suppressions, and artifacts. Tibial somatosensory evoked potentials (tSEPs) were averaged offline separately for burst, suppression, and spindle segments using a signal bandwidth of 30-200 Hz. Averages achieved with 2, 4, 8, 16, 64, 128, and 256 responses were compared both visually, and by calculating the signal-to-noise ratios. During bursts and spindles, the noise levels were similar and significantly higher than during suppressions. Four to eight times more responses had to be averaged during bursts and spindles than during suppressions in order to achieve a similar response quality. Averaging selectively during suppressions can therefore yield reliable tSEPs in approximately one-fifth of the time required during bursts. The major source of EEG noise in tSEP recordings is the mixed frequency activity of the slow waves of bursts that occur during propofol anesthesia. Spindles also have frequency components that increase noise levels, but these are less important, as the number of spindles is fewer. The fastest way to obtain reliable tSEPs is by averaging selectively during suppressions.

  11. Cortical modulation of short-latency TMS-evoked potentials

    Directory of Open Access Journals (Sweden)

    Domenica eVeniero

    2013-01-01

    Full Text Available Transcranial magnetic stimulation - electroencephalogram (TMS-EEG co-registration offers the opportunity to test reactivity of brain areas across distinct conditions through TMS-evoked potentials (TEPs. Several TEPs have been described, their functional meaning being largely unknown. In particular, short-latency potentials peaking at 5 (P5 and 8 (N8 ms after the TMS pulse have been recently described, but because of their huge amplitude, the problem of whether their origin is cortical or not has been opened. To gain information about these components, we employed a protocol that modulates primary motor cortex excitability (MI through an exclusively cortical phenomena: low frequency stimulation of premotor area (PMC. TMS was applied simultaneously with EEG recording from 70 electrodes. Amplitude of TEPs evoked by 200 single-pulses TMS delivered over MI at 110% of resting motor threshold was measured before and after applying 900 TMS conditioning stimuli to left premotor cortex with 1 Hz repetition rate. Single subject analyses showed reduction in TEPs amplitude after PMC conditioning in a sample of participants and increase in TEPs amplitude in two subjects. No effects were found on corticospinal excitability as recorded by motor evoked potentials (MEPs. Furthermore, correlation analysis showed an inverse relation between the effects of the conditioning protocol on P5-N8 complex amplitude and MEPs amplitude. Because the effects of the used protocol have been ascribed to a cortical interaction between premotor area and MI, we suggest that despite the sign of P5-N8 amplitude modulation is not consistent across participant, this modulation could indicate, at least in part, their cortical origin. We conclude that with an accurate experimental procedure early-latency components can be used to evaluate the reactivity of the stimulated cortex.

  12. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    Science.gov (United States)

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  13. The division of attention and the human auditory evoked potential

    Science.gov (United States)

    Hink, R. F.; Van Voorhis, S. T.; Hillyard, S. A.; Smith, T. S.

    1977-01-01

    The sensitivity of the scalp-recorded, auditory evoked potential to selective attention was examined while subjects responded to stimuli presented to one ear (focused attention) and to both ears (divided attention). The amplitude of the N1 component was found to be largest to stimuli in the ear upon which attention was to be focused, smallest to stimuli in the ear to be ignored, and intermediate to stimuli in both ears when attention was divided. The results are interpreted as supporting a capacity model of attention.

  14. Biomedical signal acquisition with streaming wireless communication for recording evoked potentials.

    Science.gov (United States)

    Thie, Johnson; Klistorner, Alexander; Graham, Stuart L

    2012-10-01

    Commercial electrophysiology systems for recording evoked potentials always connect patients to the acquisition unit via long wires. Wires guarantee timely transfer of signals for synchronization with the stimuli, but they are susceptible to electromagnetic and electrostatic interferences. Though wireless solutions are readily available (e.g. Bluetooth), they introduce high delay variability that will distort the evoked potential traces. We developed a complete wireless acquisition system with a fixed delay. The system supports up to 4 bipolar channels; each is amplified by 20,000× and digitized to 24 bits. The system incorporates the "driven-right-leg" circuit to lower the common noise. Data are continuously streamed using radio-frequency transmission operating at 915 MHz and then tagged with the stimulus SYNC signal at the receiver. The delay, noise level and transmission error rate were measured. Flash visual evoked potentials were recorded monocularly from both eyes of six adults with normal vision. The signals were acquired via wireless and wired transmissions simultaneously. The recording was repeated on some participants within 2 weeks. The delay was constant at 20 ms. The system noise was white and Gaussian (2 microvolts RMS). The transmission error rate was about one per million packets. The VEPs recorded with wireless transmission were consistent with those with wired transmission. The VEP amplitudes and shapes showed good intra-session and inter-session reproducibility and were consistent across eyes. The wireless acquisition system can reliably record visual evoked potentials. It has a constant delay of 20 ms and very low error rate.

  15. Binaural interaction in auditory evoked potentials: Brainstem, middle- and long-latency components

    OpenAIRE

    McPherson, DL; Starr, A

    1993-01-01

    Binaural interaction occurs in the auditory evoked potentials when the sum of the monaural auditory evoked potentials are not equivalent to the binaural evoked auditory potentials. Binaural interaction of the early- (0-10 ms), middle- (10-50 ms) and long-latency (50-200 ms) auditory evoked potentials was studied in 17 normal young adults. For the early components, binaural interaction was maximal at 7.35 ms accounting for a reduction of 21% of the amplitude of the binaural evoked potentials. ...

  16. A New Measure for Monitoring Intraoperative Somatosensory Evoked Potentials

    Science.gov (United States)

    Jin, Seung-Hyun; Kim, Jeong Eun; Choi, Young Doo

    2014-01-01

    Objective To propose a new measure for effective monitoring of intraoperative somatosensory evoked potentials (SEP) and to validate the feasibility of this measure for evoked potentials (EP) and single trials with a retrospective data analysis study. Methods The proposed new measure (hereafter, a slope-measure) was defined as the relative slope of the amplitude and latency at each EP peak compared to the baseline value, which is sensitive to the change in the amplitude and latency simultaneously. We used the slope-measure for EP and single trials and compared the significant change detection time with that of the conventional peak-to-peak method. When applied to single trials, each single trial signal was processed with optimal filters before using the slope-measure. In this retrospective data analysis, 7 patients who underwent cerebral aneurysm clipping surgery for unruptured aneurysm middle cerebral artery (MCA) bifurcation were included. Results We found that this simple slope-measure has a detection time that is as early or earlier than that of the conventional method; furthermore, using the slope-measure in optimally filtered single trials provides warning signs earlier than that of the conventional method during MCA clipping surgery. Conclusion Our results have confirmed the feasibility of the slope-measure for intraoperative SEP monitoring. This is a novel study that provides a useful measure for either EP or single trials in intraoperative SEP monitoring. PMID:25628803

  17. A wireless system for monitoring transcranial motor evoked potentials.

    Science.gov (United States)

    Farajidavar, Aydin; Seifert, Jennifer L; Bell, Jennifer E S; Seo, Young-Sik; Delgado, Mauricio R; Sparagana, Steven; Romero, Mario I; Chiao, J-C

    2011-01-01

    Intraoperative neurophysiological monitoring (IONM) is commonly used as an attempt to minimize neurological morbidity from operative manipulations. The goal of IONM is to identify changes in the central and peripheral nervous system function prior to irreversible damage. Intraoperative monitoring also has been effective in localizing anatomical structures, including peripheral nerves and sensorimotor cortex, which helps guide the surgeon during dissection. As part of IONM, transcranial motor evoked potentials (TcMEPs), and somatosensory evoked potentials (SSEPs) are routinely monitored. However, current wired systems are cumbersome as the wires contribute to the crowded conditions in the operating room and in doing so not only it limits the maneuverability of the surgeon and assistants, but also places certain demand in the total anesthesia required during surgery, due to setup preoperative time needed for proper electrode placement, due to the number and length of the wires, and critical identification of the lead wires needed for stimulation and recording. To address these limitations, we have developed a wireless TcMEP IONM system as a first step toward a multimodality IONM system. Bench-top and animal experiments in rodents demonstrated that the wireless method reproduced with high fidelity, and even increased the frequency bandwidth of the TcMEP signals, compared to wired systems. This wireless system will reduce the preoperative time required for IONM setup, add convenience for surgical staff, and reduce wire-related risks for patients during the operation.

  18. Characteristics and clinical applications of ocular vestibular evoked myogenic potentials.

    Science.gov (United States)

    Kantner, C; Gürkov, R

    2012-12-01

    Recently, ocular vestibular evoked myogenic potentials (oVEMPs) have been described and added to the neuro-otologic test battery as a new measure for the vestibulo-ocular reflex. oVEMPs represent extraocular muscle activity in response to otolith stimulation e.g. by air-conducted sound or bone-conducted vibration. In response to vestibular stimulation, electromyographic activity of the extraocular muscles can be recorded by means of surface electrodes placed beneath the contralateral eye. oVEMPs are likely to reflect predominantly utricular function, while the widely established cervical vestibular evoked myogenic potentials (cVEMPs) assess saccular function. Thus, measuring oVEMPs and cVEMPs in addition to caloric and head impulse testing provides further evaluation of the vestibular system and enables quick and cost-effective assessment of otolith function. This review summarizes the neurophysiological properties of oVEMPs, gives recommendations for recording conditions and discusses oVEMP alterations in various disorders of the vestibular system. With increasing insight into oVEMP characteristics in vestibular disorders, e.g. Menière's disease and superior semicircular canal dehiscence syndrome, oVEMPs are becoming a promising new diagnostic tool for evaluating utricular function. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Somatosensory evoked potentials in children with severe head trauma.

    Science.gov (United States)

    Schalamon, Johannes; Singer, Georg; Kurschel, Senta; Höllwarth, Michael E

    2005-07-01

    We evaluated the predictive value of somatosensory evoked potentials (SEP) in a series of children with severe traumatic brain injury (TBI). The prospective clinical investigation was performed in a Level I paediatric trauma centre. We included 26 consecutive comatose paediatric patients aged from 1 month to 17 years (median age 11 years) following severe TBI (initial Glasgow Coma Score (GCS) 8 or below). Besides SEP recordings, the intracranial pressure and the results of an initial cranial CT scan were filed. The Glasgow Outcome Scale (GOS) was used to assess outcome at discharge. Thirteen children had normal SEP measurements, three patients had abnormal SEP recordings and a cortical response was bilaterally absent in ten children. Out of 26 children, 10 died whereas two remained in a persistent vegetative state. Only one child suffered from significant neurological deficits (GOS 3) at discharge. Seven patients survived with a GOS of 4 and six children survived without neurological impairment (GOS 5). Normal SEP indicated a favourable outcome in most children but did not rule out the occurrence of death, while absence of SEP was related to unfavourable outcome in all cases. Measurement of somatosensory evoked potentials provides valuable data for determining the prognosis at early coma stages. Our data show that an unfavourable outcome can be predicted with higher precision than a favourable outcome.

  20. Effects of intraocular mescaline and LSD on visual-evoked responses in the rat.

    Science.gov (United States)

    Eells, J T; Wilkison, D M

    1989-01-01

    The effects of mescaline and LSD on the flash-evoked cortical potential (FEP) were determined in unrestrained rats with chronically-implanted electrodes. Systemic administration of mescaline or LSD significantly attenuated the primary component of the FEP at three stimulus intensities with the greatest effect observed 60-90 minutes following drug administration. The magnitude and specificity of the effects of these agents on the primary response suggest that they produce deficits in conduction through the retino-geniculato-cortical system. The serotonin receptor antagonists, cyproheptadine and methysergide, antagonized the mescaline-induced depression of the FEP in accordance with neurochemical and behavioral evidence that mescaline acts as a partial agonist on serotonin receptors. Topical or intraocular administration of atropine antagonized the actions of systemically-administered mescaline. In addition, intraocular administration of mescaline or LSD attenuated the FEP indicative of an action of these hallucinogens on visual processing in the retina which is modulated by muscarinic receptor activity.

  1. The Intraoperative Effect of Methadone on Somatosensory Evoked Potentials.

    Science.gov (United States)

    Higgs, Maureen; Hackworth, Robert J; John, King; Riffenburgh, Robert; Tomlin, Jeffrey; Wamsley, Brian

    2017-04-01

    Evoked potentials (EP), both somatosensory evoked potentials (SSEP) and transcranial motor evoked potentials (TcMEP), are often used during complex spine surgery to monitor the integrity of spinal pathways during operations in or around the spine. Changes in these monitored EP signals (increased latency and decreased amplitude) may result from ischemia, direct surgical injury, changes in blood pressure, hypoxia, changes in CO2 tension, and anesthetic agents. Typically, a clinically significant change for SSEPs is defined as an increase in latency >10% or a decrease of amplitude >50%. A clinically significant change for TcMEPs is much more complex but is also described in terms of large signal loss or decrease. Opioids have been shown to both increase latency and decrease the amplitude of SSEPs, although this change is usually not clinically significant. There has been a renewed interest in methadone for use in spine and other complex surgeries. However, the effect of methadone on intraoperative monitoring of SSEPs and TcMEPs is unknown. We present the first study to directly look at the effects of methadone on SSEP and TcMEP monitoring during complex spine surgery. The goal of this study was to observe the effect of methadone on an unrandomized set of patients. The primary endpoint was methadone's effect on SSEPs, and the secondary endpoint was methadone's effect on TcMEPs. Adult patients undergoing spine surgery requiring intraoperative neuromonitoring were induced with general anesthesia and had a baseline set of SSEPs and TcMEPs recorded. Next, methadone dosed 0.2 mg/kg/lean body weight was given. Repeat SSEPs and TcMEPs were recorded at 5, 10, and 15 minutes, with the timing based on distribution half-life of methadone between 6 and 8 minutes. Postoperatively, adverse events from methadone administration were collected. There was a statistically significant difference found in SSEPs for N20 latency (95% confidence interval [CI], 0.17-0.53; P=0.028), P37 latency

  2. SOMATOSENSORY EVOKED POTENTIALS IN DIABETES MELLITUS TYPE - 2

    Directory of Open Access Journals (Sweden)

    Rekha

    2015-10-01

    Full Text Available Diabetes mellitus is the most common metabolic disorder affecting majority of population. It is estimated that over 400 million people throughout the world have diabetes. It has progressed to be a pandemic from an epidemic causing morbidity and mortality in the population. Among the many complications of diabetes, diabetic neuropathies contribute majorly to the morbidity associated with the disease. Axonal conduction is affected by elevated levels of protein kinase c causing neuronal ischemia; decreased ce llular myoinositol affecting sodium potassium ATPase pump leads to decreased nerve conduction; Somatosensory E voked P otentials (SSEPs reflect the activity of somatosensory pathways mediated through the dorsal columns of the spinal cord and the specific so matosensory cortex. Recording of Somatosensory Evoked Potentials in diabetics is done to assess the sensory involvement of spinal cord. Presence of SEPs provides clear evidence for axonal continuity and by using different stimulation sites, the rate of reg eneration can be determined. Both onset and peak latencies of all SEP components are prolonged in patients with diabetes. Present study is done to compare somatosensory evoked potentials in diabetics and normal subjects. MATERIALS AND METHOD S: The present study was undertaken at the Upgraded Department of Physiology, Osmania Medical College, Koti, Hyderabad. The study was conducted on subjects, both male and female in the age group of 45 to 55 years, suffering from type II diabetes excluding other neurologi cal disorders. Non - invasive method of estimation of nerve conduction studies using SFEMG/EP — Electromyography or evoked potential system (Nicolet systems — USA using surface electrodes with automated computerized monitor attached with printer is used. RESUL TS : ANOVA showed statistically significant N9 latency (right & left sides. Latencies of all the components of SSEPs were more significant than amplitudes in Diabetic

  3. Brain evoked potential use in a physical medicine and rehabilitation setting.

    Science.gov (United States)

    Rappaport, M; Hopkins, K; Hall, K; Belleza, T; Berrol, S

    1978-01-01

    The objective of this effort was to explore the use of evoked potential (EP) procedure on a head injury unit in a Department of Physical Medicine and Rehabilitation. The method employed both auditory and visual stimulation presented bilaterally to various patients. Recordings of the brain's responses to such stimulation were obtained. Results permitted evaluation of brain stem, subcortical and cortical functioning, ipsilaterally, contralaterally, and bilaterally. EP data provided useful information for patient assessment and rehabilitation planning for head injured patients--particularly for those who were unable to cooperate in their own examination.

  4. Facilitation and refractoriness of the electrically evoked compound action potential.

    Science.gov (United States)

    Hey, Matthias; Müller-Deile, Joachim; Hessel, Horst; Killian, Matthijs

    2017-11-01

    In this study we aim to resolve the contributions of facilitation and refractoriness at very short pulse intervals. Measurements of the refractory properties of the electrically evoked compound action potential (ECAP) of the auditory nerve in cochlear implant (CI) users at inter pulse intervals below 300 μs are influenced by facilitation and recovery effects. ECAPs were recorded using masker pulses with a wide range of current levels relative to the probe pulse levels, for three suprathreshold probe levels and pulse intervals from 13 to 200 μs. Evoked potentials were measured for 21 CI patients by using the masked response extraction artifact cancellation procedure. During analysis of the measurements the stimulation current was not used as absolute value, but in relation to the patient's individual ECAP threshold. This enabled a more general approach to describe facilitation as a probe level independent effect. Maximum facilitation was found for all tested inter pulse intervals at masker levels near patient's individual ECAP threshold, independent from probe level. For short inter pulse intervals an increased N1P1 amplitude was measured for subthreshold masker levels down to 120 CL below patient's individual ECAP threshold in contrast to the recreated state. ECAPs recorded with inter pulse intervals up to 200 μs are influenced by facilitation and recovery. Facilitation effects are most pronounced for masker levels at or below ECAP threshold, while recovery effects increase with higher masker levels above ECAP threshold. The local maximum of the ECAP amplitude for masker levels around ECAP threshold can be explained by the mutual influence of maximum facilitation and minimal refractoriness. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Accuracy of measurement in electrically evoked compound action potentials.

    Science.gov (United States)

    Hey, Matthias; Müller-Deile, Joachim

    2015-01-15

    Electrically evoked compound action potentials (ECAP) in cochlear implant (CI) patients are characterized by the amplitude of the N1P1 complex. The measurement of evoked potentials yields a combination of the measured signal with various noise components but for ECAP procedures performed in the clinical routine, only the averaged curve is accessible. To date no detailed analysis of error dimension has been published. The aim of this study was to determine the error of the N1P1 amplitude and to determine the factors that impact the outcome. Measurements were performed on 32 CI patients with either CI24RE (CA) or CI512 implants using the Software Custom Sound EP (Cochlear). N1P1 error approximation of non-averaged raw data consisting of recorded single-sweeps was compared to methods of error approximation based on mean curves. The error approximation of the N1P1 amplitude using averaged data showed comparable results to single-point error estimation. The error of the N1P1 amplitude depends on the number of averaging steps and amplification; in contrast, the error of the N1P1 amplitude is not dependent on the stimulus intensity. Single-point error showed smaller N1P1 error and better coincidence with 1/√(N) function (N is the number of measured sweeps) compared to the known maximum-minimum criterion. Evaluation of N1P1 amplitude should be accompanied by indication of its error. The retrospective approximation of this measurement error from the averaged data available in clinically used software is possible and best done utilizing the D-trace in forward masking artefact reduction mode (no stimulation applied and recording contains only the switch-on-artefact). Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Mathematical impairment associated with high-contrast abnormalities in change detection and magnocellular visual evoked response.

    Science.gov (United States)

    Jastrzebski, Nicola R; Crewther, Sheila G; Crewther, David P

    2015-10-01

    The cause of developmental dyscalculia, a specific deficit in acquisition of arithmetic skills, particularly of enumeration, has never been investigated with respect to the patency of the visual magnocellular system. Here, the question of dysfunction of the afferent magnocellular cortical input and its dorsal stream projections was tested directly using nonlinear analysis of the visual evoked potential (VEP) and through the psychophysical ability to rapidly detect visual change. A group of young adults with self-reported deficiencies of arithmetical ability, showed marked impairment in magnitude estimation and enumeration performance-though not in lexical decision reaction times when compared with an arithmetically capable group controlled for age and handedness. Multifocal nonlinear VEPs were recorded at low (24 %) and high (96 %) contrast. First- and second-order VEP kernels were comparable between groups at low contrast, but not at high contrast. The mathematically impaired group showed an abnormal lack of contrast saturation in the shortest latency first-order peak (N60) and a delayed P100 positivity in the first slice of the second-order kernel. Both features have previously been argued to be physiological markers of magnocellular function. Mathematically impaired participants also performed worse on a gap paradigm change detection for digit task showing increased reaction times for high-contrast stimuli but not for low-contrast stimuli compared with controls. The VEP results give direct evidence of abnormality in the occipital processing of magnocellular information in those with mathematical impairment. The anomalous high visual contrast physiological and psychophysical performance suggests an abnormality in the inhibitory processes that normally result in saturation of contrast gain in the magnocellular system.

  7. Fluorescent tube light evokes flicker responses in visual neurons.

    Science.gov (United States)

    Eysel, U T; Burandt, U

    1984-01-01

    Single neurons in the cat visual system respond distinctly to the temporal information present in light from fluorescent tubes driven by 50 or 60 Hz alternating current. Despite the resulting flicker frequencies of 100 or 120 Hz all retinal and most thalamic neurons show strong phase locking of the neuronal responses to the modulation of fluorescent tube light. Some retinal ganglion cells have not yet reached their critical flicker fusion frequency under such conditions. Though usually beyond perception, the frequency and depth of modulation of artificial light thus might well play a role in biological light effects.

  8. Protocol to collect late latency auditory evoked potentials.

    Science.gov (United States)

    Ventura, Luzia Maria Pozzobom; Alvarenga, Kátia de Freitas; Costa Filho, Orozimbo Alves

    2009-01-01

    Long Latency Auditory Evoked Potentials (LLAEP) represents a number of electrical changes occurring in the central nervous system, resulting from stimulation of the auditory sensorial pathways. Many studies approach the use of these potentials controlling the artifact created by eye movement with the use of equipment with a large number of channels. However, what happens is very different in Brazilian clinical practice, where the equipment used has a very limited number of channels. to compare the two methods used to control the artifacts created by eye movements during LLAEP capture using two recording channels. this is a prospective study with the application of two LLAEP capturing methods (eye artifact subtraction and rejection limit control) in 10 normal hearing individuals. we did not observe statistically significant differences concerning the latency values obtained with the use of both methods, only concerning amplitude values. both methods were efficient to capture the LLAEP and to control the eye movement artifact. The rejection limit control method produced greater amplitude values.

  9. Vestibular evoked myogenic potentials in patients with ankylosing spondylitis.

    Science.gov (United States)

    Özgür, Abdulkadir; Serdaroğlu Beyazal, Münevver; Terzi, Suat; Coşkun, Zerrin Özergin; Dursun, Engin

    2016-10-01

    Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease with unknown etiology. Although sacroiliac joint involvement is the classic sign along with the formed immune mediators, it may result in immune-mediated inner ear disease and may cause damage to the audiovestibular system. Vestibular evoked myogenic potentials (VEMP) is a clinical reflex test used in the diagnosis of vestibular diseases and is performed by recording and evaluating the muscle potentials resulting from the stimulation of the vestibular system with different stimuli. The aim of this study is to evaluate the cervical VEMP test results in AS patients without vestibular symptoms. Thirty-three patients with AS and a control group of 30 healthy volunteers with similar demographic characteristics were evaluated in the study. VEMP wave latency, P13-N23 wave amplitude, and VEMP asymmetry ratio (VAR) values were compared between the groups. The relationship between clinical and laboratory findings of the AS patients and VEMP data were also investigated. Compared with healthy people, this study shows the response rate of patients with ankylosing spondylitis was reduced in the VEMP test, and P13-N23 wave amplitude showed a decrease in AS patients who had VEMP response (p ankylosing spondylitis. The data obtained from this study suggest that AS may lead to decreased sensitivity of the vestibular system.

  10. Vestibular evoked myogenic potential findings in multiple sclerosis.

    Science.gov (United States)

    Escorihuela García, Vicente; Llópez Carratalá, Ignacio; Orts Alborch, Miguel; Marco Algarra, Jaime

    2013-01-01

    Multiple sclerosis is an inflammatory disease involving the occurrence of demyelinating, chronic neurodegenerative lesions in the central nervous system. We studied vestibular evoked myogenic potentials (VEMPs) in this pathology, to allow us to evaluate the saccule, inferior vestibular nerve and vestibular-spinal pathway non-invasively. There were 23 patients diagnosed with multiple sclerosis who underwent VEMP recordings, comparing our results with a control group consisting of 35 healthy subjects. We registered p13 and n23 wave latencies, interaural amplitude difference and asymmetry ratio between both ears. Subjects also underwent an otoscopy and audiometric examination. The prolongation of p13 and n23 wave latencies was the most notable characteristic, with a mean p13 wave latency of 19.53 milliseconds and a mean latency of 30.06 milliseconds for n23. In contrast, the asymmetry index showed no significant differences with our control group. In case of multiple sclerosis, the prolongation of the p13 and n23 VEMP wave latencies is a feature that has been attributed to slowing of conduction by demyelination of the vestibular-spinal pathway. In this regard, alteration of the response or lack thereof in these potentials has a locator value of injury to the lower brainstem. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  11. P2X7R modulation of visually evoked synaptic responses in the retina.

    Science.gov (United States)

    Chavda, Seetal; Luthert, Philip J; Salt, Thomas E

    2016-12-01

    P2X7Rs are distributed throughout all layers of the retina, and thus, their localisation on various cell types puts into question their specific site(s) of action. Using a dark-adapted, ex vivo mouse retinal whole mount preparation, the present study aimed to characterise the effect of P2X7R activation on light-evoked, excitatory RGC ON-field excitatory post-synaptic potentials (fEPSPs) and on outer retinal electroretinogram (ERG) responses under comparable conditions. The pharmacologically isolated NMDA receptor-mediated RGC ON-fEPSP was reduced in the presence of BzATP, an effect which was significantly attenuated by A438079 and other selective P2X7R antagonists A804598 or AF27139. In physiological Krebs medium, BzATP induced a significant potentiation of the ERG a-wave, with a concomitant reduction in the b-wave and the power of the oscillatory potentials. Conversely, in the pharmacologically modified Mg2+-free perfusate, BzATP reduced both the a-wave and b-wave. The effects of BzATP on the ERG components were suppressed by A438079. A role for P2X7R function in visual processing in both the inner and outer retina under physiological conditions remains controversial. The ON-fEPSP was significantly reduced in the presence of A804598 but not by A438079 or AF27139. Furthermore, A438079 did not have any effect on the ERG components in physiological Krebs but potentiated and reduced the a-wave and b-wave, respectively, when applied to the pharmacologically modified medium. Therefore, activation of P2X7Rs affects the function in the retinal ON pathway. The presence of a high concentration of extracellular ATP would most likely contribute to the modulation of visual transmission in the retina in the pathophysiological microenvironment.

  12. Neurogenic vestibular evoked potentials using a tone pip auditory stimulus.

    Science.gov (United States)

    Papathanasiou, E S; Zamba-Papanicolaou, E; Pantziaris, M; Kleopas, K; Kyriakides, T; Papacostas, S; Pattichis, C; Iliopoulos, I; Piperidou, C

    2004-01-01

    To obtain neurogenic vestibular evoked potentials (NVESTEPs) with surface scalp recording using a tone pip auditory stimulus. Fourteen neurologically normal volunteers (Age range 26-45 years, 10 females and 4 males), and two patients with sensorineural hearing loss and possible multiple sclerosis respectively, were examined. Two channel recordings were obtained, the first channel being P3 referred to Fpz, and the second channel being P4 referred to Fpz. A 1 kHz tone pip stimulus with two cycles was delivered via headphones monoaurally with contralateral masking noise. A consistent negative wave with a mean absolute latency of 4.72 msec was obtained, which we have named N5. 25% of the ears tested had better responses at the ipsilateral parietal electrode. In the patient with bilateral sensorineural hearing loss, NVESTEPs was present, suggesting that the NVESTEP is not a cochlear response. In the patient with possible multiple sclerosis, an abnormal NVESTEP response and a normal BAEP response were found. Use of a tone-pip rather than a click auditory stimulus allows a lower click intensity to be used in the production of NVESTEP responses, leads to a shorter testing time, and is therefore more comfortable for the patient. This study adds to our impression that the NVESTEP may be a physiological response that can be used to assess the vestibular system and is different from the BAEP response. Further testing in patients with symptoms of dizziness and with disorders specific for the vestibular nerve is required.

  13. A Subspace Method for Dynamical Estimation of Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Stefanos D. Georgiadis

    2007-01-01

    Full Text Available It is a challenge in evoked potential (EP analysis to incorporate prior physiological knowledge for estimation. In this paper, we address the problem of single-channel trial-to-trial EP characteristics estimation. Prior information about phase-locked properties of the EPs is assesed by means of estimated signal subspace and eigenvalue decomposition. Then for those situations that dynamic fluctuations from stimulus-to-stimulus could be expected, prior information can be exploited by means of state-space modeling and recursive Bayesian mean square estimation methods (Kalman filtering and smoothing. We demonstrate that a few dominant eigenvectors of the data correlation matrix are able to model trend-like changes of some component of the EPs, and that Kalman smoother algorithm is to be preferred in terms of better tracking capabilities and mean square error reduction. We also demonstrate the effect of strong artifacts, particularly eye blinks, on the quality of the signal subspace and EP estimates by means of independent component analysis applied as a prepossessing step on the multichannel measurements.

  14. Vestibular evoked myogenic potential in noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Kaushlendra Kumar

    2010-01-01

    Full Text Available Noise affects one′s hearing as well as balance mechanism. The hearing mechanism of the noise-exposed individuals has been extensively studied. However, in view of the poor research focus on the sacculo-collic reflexes, especially in this study area, the present study was undertaken to examine the vestibular evoked myogenic potentials (VEMP in subjects with noise-induced hearing loss (NIHL. A total of 30 subjects (55 ears with NIHL participated in the present study within the age range of 30-40 years. VEMP recordings were done at 99 dBnHL using IHS instrument. The results indicated that as the average pure tone hearing threshold increased, the VEMP latencies were prolonged and peak to peak amplitude was reduced in NIHL subjects. Out of the 55 ears, VEMP was absent in 16 (29.0% ears. The latency was prolonged and the peak to peak amplitude was reduced in 19 (34.6% ears. VEMP results were normal in 20 (36.4% ears. Therefore, VEMP was abnormal or absent in 67% of NIHL subjects in the present study. Hence it can be concluded that the possibility of vestibular dysfunction, specially the saccular pathway, is high in individuals with NIHL. VEMP, a non-invasive and user friendly procedure, can be employed in these individuals to assess sacculo-collic reflex.

  15. Ocular Vestibular Evoked Myogenic Potentials: Where Are We Now?

    Science.gov (United States)

    Dlugaiczyk, Julia

    2017-12-01

    Over the last decade, ocular vestibular evoked myogenic potentials (oVEMPs) have evolved as a new clinical test for dynamic otolith (predominantly utricular) function. The aim of this review is to give an update on the neurophysiological foundations of oVEMPs and their implications for recording and interpreting oVEMP responses in clinical practice. Different lines of anatomical, neurophysiological, and clinical evidence support the notion that oVEMPs measure predominantly contralateral utricular function, while cervical cVEMPs are an indicator of ipsilateral saccular function. Bone-conducted vibration (BCV) in the midline of the forehead at the hairline (Fz) or unilateral air-conducted sound (ACS) are commonly used as stimuli for oVEMPs. It is recommended to apply short stimuli with short rise times for obtaining optimal oVEMP responses. Finally, this review summarizes the clinical application and interpretation of oVEMPs, particularly for vestibular neuritis, Ménière's disease, superior canal dehiscence and "challenging" patients.

  16. Auditory Perceptual and Visual-Spatial Characteristics of Gaze-Evoked Tinnitus

    Directory of Open Access Journals (Sweden)

    Jamileh Fattahi

    1996-09-01

    Full Text Available Auditory perceptual and visual-spatial characteristics of subjective tinnitus evoked by eye gaze were studied in two adult human subjects. This uncommon form of tinnitus occurred approximately 4-6 weeks following neurosurgery for gross total excision of space Occupying lesions of the cerebellopontine angle and hearing was lost in the operated ear. In both cases, the gaze evoked tinnitus was characterized as being tonal in nature, with pitch and loudness percepts remaining constant as long as the same horizontal or vertical eye directions were maintained. Tinnitus was absent when the eyes were in a neutral head referenced position with subjects looking straight ahead. The results and implications of ophthalmological, standard and modified visual field assessment, pure tone audio metric assessment, spontaneous otoacoustic emission testing and detailed psychophysical assessment of pitch and loudness are discussed

  17. Diagnostic accuracy of laser-evoked potentials in diabetic neuropathy.

    Science.gov (United States)

    Di Stefano, Giulia; La Cesa, Silvia; Leone, Caterina; Pepe, Alessia; Galosi, Eleonora; Fiorelli, Marco; Valeriani, Massimiliano; Lacerenza, Marco; Pergolini, Mario; Biasiotta, Antonella; Cruccu, Giorgio; Truini, Andrea

    2017-06-01

    Although the most widely agreed neurophysiological tool for investigating small fiber damage is laser-evoked potential (LEP) recording, no study has documented its diagnostic accuracy. In this clinical, neurophysiological, and skin biopsy study, we collected age-corrected LEP normative ranges, verified the association of LEPs with pinprick sensory disturbances in the typical diabetic mixed fiber polyneuropathy, and assessed the sensitivity and specificity of LEPs in diabetic small fiber neuropathy. From 288 LEP recordings from the face, hand, and foot in 73 healthy subjects, we collected age-corrected normative ranges for LEPs. We then selected 100 patients with mixed-fiber diabetic neuropathy and 25 patients with possible small-fiber diabetic neuropathy. In the 100 patients with mixed fiber neuropathy, we verified how LEP abnormalities were associated with clinically evident pinprick sensory disturbances. In the 25 patients with possible pure small fiber neuropathy, using the skin biopsy for assessing the intraepidermal nerve fiber density as a reference standard, we calculated LEP sensitivity and specificity. In healthy participants, age strongly influenced normative ranges for all LEP variables. By applying age-corrected normative ranges for LEPs, we found that LEPs were strongly associated with pinprick sensory disturbances. In relation to the skin biopsy findings, LEPs yielded 78% sensitivity and 81% specificity in the diagnosis of diabetic small fiber neuropathy. Our study, providing age-corrected normative ranges for the main LEP data and their diagnostic accuracy, helps to make LEPs more reliable as a clinical diagnostic tool, and proposes this technique as a less invasive alternative to skin biopsy for diagnosing diabetic small fiber neuropathy.

  18. EVALUATION OF BRAINSTEM AUDITORY EVOKED POTENTIAL IN MIGRAINE PATIENT

    Directory of Open Access Journals (Sweden)

    Sowmiya R, Vinodha R

    2015-10-01

    Full Text Available Background: Migraine is worldwide common, chronic, Neurovascular disorder, characterized by attacks of severe headache and an Aura involving neurologic symptoms. Its pathogenesis was incompletely understood whether of cortical or brainstem origin. Aim: The present study was undertaken to investigate brainstem auditory functions in Migraine patients. Materials and Methods: The subjects were recruited based on International Headache Society classification for Migraine. Subjects with episodes of headache for at least 2yrs, 2 attacks per month in last quarter year were included in the study. Forty subjects (16 Migraine with Aura & 24 cases – Migraine without aura & forty age / sex matched controls were selected. Brainstem auditory evoked potential was recorded using 4-Channel polygraph (Neuro perfect plus. Electrodes were placed according to 10 – 20 electrode placement system. Auditory stimulus in the form of click sound is delivered through the headphones. Clicks were delivered at a rate of 8-10 /sec. The intensity of the stimulus is set at 30db. About 100 averages were recorded. BAEP waveforms – Wave I, III & V latencies and the interpeak latencies were measured. The results were analysed statistically using student‘t’ test. Results: BAEP recording shows significant prolongation in latencies of Wave I, III & V and the Interpeak latency (IPL I-III, III-V & I-V in Migraine with aura. In Migraine without aura, there was significant prolongation of Wave I, III & V and III-V & I-VIPL (P<0.05. Conclusion: Prolongation suggests that there is involvement of brainstem structures in Migraine, thus BAEP can be used as an effective tool in evaluation of Migraine.

  19. Brainstem auditory-evoked potential in Boxer dogs

    Directory of Open Access Journals (Sweden)

    Mariana Isa Poci Palumbo

    2014-10-01

    Full Text Available Brainstem auditory-evoked potential (BAEP has been widely used for different purposes in veterinary practice and is commonly used to identify inherited deafness and presbycusis. In this study, 43 Boxer dogs were evaluated using the BAEP. Deafness was diagnosed in 3 dogs (2 bilateral and 1 unilateral allowing the remaining 40 Boxers to be included for normative data analysis including an evaluation on the influence of age on the BAEP. The animals were divided into 2 groups of 20 Boxers each based on age. The mean age was 4.54 years (range, 1-8 in group I, and 9.83 years (range, 8.5-12 in group II. The mean latency for I, III, and V waves were 1.14 (±0.07, 2.64 (±0.11, and 3.48 (±0.10 ms in group I, and 1.20 (±0.12, 2.73 (±0.15, and 3.58 (±0.22 ms in group II, respectively. The mean inter-peak latencies for the I-III, III-V and I-V intervals were 1.50 (±0.15, 0.84 (±0.15, and 2.34 (±0.11 ms in group I, and 1.53 (±0.16, 0.85 (±0.15, and 2.38 (±0.19 ms in group II, respectively. Latencies of waves I and III were significant different between group I and II. For the I-III, III-V and I-V intervals, no significant differences were observed between the 2 groups. As far as we know, this is the first normative study of BAEP obtained from Boxer dogs.

  20. [Present situation and development of ocular vestibular-evoked myogenic potential].

    Science.gov (United States)

    Hu, Juan; Xu, Min; Zhang, Qing

    2013-04-01

    Myogenic potentials evoked by air conducted sound (ACS), bone conducted vibration (BCV) or galvanic pulses can be recorded with surface electrodes over contracted muscles. These myogenic potentials are of vestibular origin (utricle and saccule) and so these potentials are called vestibular evoked myogenic potentials (VEMPs). Since the vestibular system has projections to many muscle systems, there are many such VEMPs. In this review, we discuss the generated origin, response pathway, waveform characteristics and clinical application of ocular vestibular-evoked myogenic potential (oVEMP).

  1. Automatic Recruitment of the Motor System by Undetected Graspable Objects: A Motor-evoked Potential Study.

    Science.gov (United States)

    McNair, Nicolas A; Behrens, Ashleigh D; Harris, Irina M

    2017-11-01

    Previous behavioral and neuroimaging studies have suggested that the motor properties associated with graspable objects may be automatically accessed when people passively view these objects. We directly tested this by measuring the excitability of the motor pathway when participants viewed pictures of graspable objects that were presented during the attentional blink (AB), when items frequently go undetected. Participants had to identify two briefly presented objects separated by either a short or long SOA. Motor-evoked potentials were measured from the right hand in response to a single TMS pulse delivered over the left primary motor cortex 250 msec after the onset of the second target. Behavioral results showed poorer identification of objects at short SOA compared with long SOA, consistent with an AB, which did not differ between graspable and nongraspable objects. However, motor-evoked potentials measured during the AB were significantly higher for graspable objects than for nongraspable objects, irrespective of whether the object was successfully identified or undetected. This provides direct evidence that the motor system is automatically activated during visual processing of objects that afford a motor action.

  2. The effect of changes in perilymphatic K+ on the vestibular evoked potential in the guinea pig

    NARCIS (Netherlands)

    Kingma, C. M.; Wit, H. P.

    2010-01-01

    To investigate the effect on the functioning of the vestibular system of a rupture of Reissner's membrane, artificial endolymph was injected in scala media of ten guinea pigs and vestibular evoked potentials (VsEPs), evoked by vertical acceleration pulses, were measured. Directly after injection of

  3. [Auditory evoked potential and personality traits in chronic primary insomniacs].

    Science.gov (United States)

    Shen, Jian; Shui, Ren-de; Feng, Lei; Liu, Yu-Hong; He, Wei; Huang, Jing-Yi; Wang, Wei

    2009-05-01

    To investigate the personality traits and intensity dependence of auditory evoked potentials (AEPs) in chronic primary insomnia. Thirty-seven patients with chronic primary insomnia (insomnia group) and 44 healthy subjects (control group) were enrolled in the study. The AEPs were examined in insomnia and control groups; the personality traits were studied by Zuckerman's Sensation Seeking Scales (SSS) and Zuckerman-Kuhlman's Personality Questionnaire (ZKPQ); and the mood states by Plutchik-van Praag's Depression Inventory (PVP). The scores of neuroticism-anxiety and depression in insomnia group were significantly higher than those in control group (P<0.01); and the scores of impulsivity and aggression-hostility were also higher than those in control group (P<0.05); N1-P2 amplitude of AEP increased with stimulus intensity, which were significantly different in 70, 80, 90,100 dB (P<0.01). There were significant correlations between activity and N1 latency at 80 dB, activity and P2 latency at 100 dB (r=0.270, r=0.276, P<0.05); and between total scores of sensation seeking scale and N1-P2 amplitude (r=0.3746, r=0.35329, P<0.01) at 70 and 90 dB stimulus intensity in insomnia group. There were significant correlations among experience seeking and N1-P2 amplitude, experience seeking and slope rate (P<0.01) at 70, 80, 90, 100 dB stimulus intensity in insomnia group (r=0.539, r=0.3439, r=0.439, r=0.3278). There were significant correlations between sensation seeking of boredom susceptibility and slope rate (r=-0.282998, P<0.05) in insomnia group. There were significant correlations between thrill and adventure seeking and N1-P2 amplitude(r=0.2789, P<0.05) at 90 dB stimulus intensity in insomnia group; there were significant correlations between PVP and N1-P2 amplitude (r=-0.3434, r=-0.3158, P<0.05) at 70 dB and N1 latency at 80 dB in insomnia group. Chronic primary insomnia sufferers have higher levels of neuroticism-anxiety, depression, aggression-hostility and impulsivity

  4. Phenothiazine effects on cerebral-evoked potentials and eye movements in acute schizophrenics.

    Science.gov (United States)

    Rappaport, M; Hopkins, H K; Hall, K; Belleza, T

    1975-01-01

    An investigation was made of the effects of phenothiazine medication on the averaged visual-evoked potentials (AVEP) and on eye movements in hospitalized, young, acute schizophrenic patients. These results were compared with those of normal subjects who were not given medication. AVEP measures included maximum amplitude (Am), frequency of peaks (FOP'S), variability (V) and peak latencies for an early negative peak (N1) and a later positive peak (P6). Eye movement measures included percent of time looking at a stimulus slide, percent of time looking at a figure on the slide, the number of fixations and the percent of cells entered in which fixations occurred. For schizophrenics off and on phenothiazine medication, there were no consistently significant drug effects on any measure except frequency of peaks. Schizophrenics compared to normals had lower amplitudes, greater frequency of peaks, greater variability and lower eye movement scores.

  5. Learned control over spinal nociception reduces supraspinal nociception as quantified by late somatosensory evoked potentials.

    Science.gov (United States)

    Ruscheweyh, Ruth; Bäumler, Maximilian; Feller, Moritz; Krafft, Stefanie; Sommer, Jens; Straube, Andreas

    2015-12-01

    We have recently shown that subjects can learn to use cognitive-emotional strategies to suppress their spinal nociceptive flexor reflex (RIII reflex) under visual RIII feedback and proposed that this reflects learned activation of descending pain inhibition. Here, we investigated whether learned RIII suppression also affects supraspinal nociception and whether previous relaxation training increases success. Subjects were trained over 3 sessions to reduce their RIII size by self-selected cognitive-emotional strategies. Two groups received true RIII feedback (with or without previous relaxation training) and a sham group received false feedback (15 subjects per group). RIII reflexes, late somatosensory evoked potentials (SEPs), and F-waves were recorded and pain intensity ratings collected. Both true feedback groups achieved significant (P nociception as quantified by SEPs, although effects on pain ratings were less clear. Lower motor neuron excitability as quantified by F-waves was not affected. Previous relaxation training did not significantly improve RIII feedback training success.

  6. Differential effects of LSD serotonin and l-tryptophan on visually evoked responses.

    Science.gov (United States)

    Strahlendorf, J C; Goldstein, F J; Rossi, G V; Malseed, R T

    1982-01-01

    Alterations in photically-evoked cortical responses were assessed in immobilized artificially respired cats following intraraphe microinjections of LSD and serotonin (5-HT) and IV administration of LSD and l-tryptophan. Both systemic (10-100 micrograms/kg; N = 5) and intraraphe (0.25 microgram; N = 10) LSD significantly increased the amplitudes of the three primary components of the visual evoked response (VER). In contrast, the same VER components were significantly depressed following intraraphe 5-HT (30 micrograms; N = 4) and IV l-tryptophan (100 mg/kg; N = 6), a serotonin precursor that elevates raphe 5-HT levels. Intraraphe cinanserin (180 micrograms; 30 minute pretreatment) completely reversed LSD-induced enhancements in all three components (p less than 0.01). Depressions of VER following intraraphe 5-HT (30 micrograms) were also antagonized by cinanserin, although to lesser degree (p less than 0.05 for first 2 components only) than with LSD. The depressive effects of l-tryptophan (100 mg/kg) were unaffected by cinanserin. Modification of raphe neuronal activity can significantly alter photically evoked responses, and may explain the perceptual disturbances associated with LSD, i.e., depression of an area (raphe) normally inhibiting forebrain areas of the visual system.

  7. Visually-evoked pattern and photomyoclonic responses in video game and television epilepsy: case reports.

    Science.gov (United States)

    Anyanwu, E; Watson, N A

    1996-01-01

    This research paper reports a case study of two male photosensitive epileptic patients, aged 14 and 16 years old respectively, whose epileptic seizures were often triggered by the flickers from television and video games respectively. The 14-year old patient had no family history of epilepsy, while the 16 year old had a family history of epilepsy. A comprehensive electroencephalogram (EEG), including hyperventilation, intermittent photic stimulation (IPS) and pattern stimulation were carried out on them and EEG abnormalities including photoparoxysmal responses (PPR) and generalized myoclonic responses were evoked. A thorough analysis of the EEG morphology of the myclonic responses and the clinical manifestations showed evidence of two separate entitles of seizures namely: visually evoked pattern-myoclonic responses (PTMR) and visually evoked photomyoclonic responses (PMR). PTMR was independent of flash rate and occurred before a PPR and at the same time as the flash rate, while PMR occurred after the PPR and was dependent on flash rate. These findings suggest that "Video Game" epilepsy is probably a pattern sensitive epilepsy, electronic screen being the source of the triggering patterns; hence, the morphology and the family histories and the myoclonic phenomena differ from those of pure photosensitive epilepsy.

  8. A Visual Pathway for Looming-Evoked Escape in Larval Zebrafish.

    Science.gov (United States)

    Temizer, Incinur; Donovan, Joseph C; Baier, Herwig; Semmelhack, Julia L

    2015-07-20

    Avoiding the strike of an approaching predator requires rapid visual detection of a looming object, followed by a directed escape maneuver. While looming-sensitive neurons have been discovered in various animal species, the relative importance of stimulus features that are extracted by the visual system is still unclear. Furthermore, the neural mechanisms that compute object approach are largely unknown. We found that a virtual looming stimulus, i.e., a dark expanding disk on a bright background, reliably evoked rapid escape movements. Related stimuli, such as dimming, receding, or bright looming objects, were substantially less effective, and angular size was a critical determinant of escape initiation. Two-photon calcium imaging in retinal ganglion cell (RGC) axons revealed three retinorecipient areas that responded robustly to looming stimuli. One of these areas, the optic tectum, is innervated by a subset of RGC axons that respond selectively to looming stimuli. Laser-induced lesions of the tectal neuropil impaired the behavior. Our findings demonstrate a visually mediated escape behavior in zebrafish larvae exposed to objects approaching on a collision course. This response is sensitive to spatiotemporal parameters of the looming stimulus. Our data indicate that a subset of RGC axons within the tectum responds selectively to features of looming stimuli and that this input is necessary for visually evoked escape. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Alarm calls evoke a visual search image of a predator in birds.

    Science.gov (United States)

    Suzuki, Toshitaka N

    2018-01-29

    One of the core features of human speech is that words cause listeners to retrieve corresponding visual mental images. However, whether vocalizations similarly evoke mental images in animal communication systems is surprisingly unknown. Japanese tits (Parus minor) produce specific alarm calls when and only when encountering a predatory snake. Here, I show that simply hearing these calls causes tits to become more visually perceptive to objects resembling snakes. During playback of snake-specific alarm calls, tits approach a wooden stick being moved in a snake-like fashion. However, tits do not respond to the same stick when hearing other call types or if the stick's movement is dissimilar to that of a snake. Thus, before detecting a real snake, tits retrieve its visual image from snake-specific alarm calls and use this to search out snakes. This study provides evidence for a call-evoked visual search image in a nonhuman animal, offering a paradigm to explore the cognitive basis for animal vocal communication in the wild.

  10. Effects of Visual Speech on Early Auditory Evoked Fields - From the Viewpoint of Individual Variance.

    Directory of Open Access Journals (Sweden)

    Izumi Yahata

    Full Text Available The effects of visual speech (the moving image of the speaker's face uttering speech sound on early auditory evoked fields (AEFs were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years. AEFs (N100m in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker's face uttering /be/ (congruent visual stimuli or uttering /ge/ (incongruent visual stimuli, and visual noise (still image processed from speaker's face using a strong Gaussian filter: control condition. On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information.

  11. Seeing One's Own Painful Hand Positioned in the Contralateral Space Reduces Subjective Reports of Pain and Modulates Laser Evoked Potentials.

    Science.gov (United States)

    Valentini, Elia; Koch, Katharina; Aglioti, Salvatore Maria

    2015-06-01

    Studies report that viewing the body or keeping one's arms crossed while receiving painful stimuli may have an analgesic effect. Interestingly, changes in ratings of pain are accompanied by a reduction of brain metabolism or of laser evoked potentials amplitude. What remains unknown is the link between visual analgesia and crossed-arms related analgesia. Here, we investigated pain perception and laser evoked potentials in 3 visual contexts while participants kept their arms in a crossed or uncrossed position during vision of 1) one's own hand, 2) a neutral object in the same spatial location, and 3) a fixation cross placed in front of the participant. We found that having vision of the affected body part in the crossed-arms position was associated with a significant reduction in pain reports. However, no analgesic effect of having vision of the hand in an uncrossed position or of crossing the arms alone was found. The increase of the late vertex laser evoked potential P2 amplitude indexed a general effect of vision of the hand. Our results hint at a complex interaction between cross-modal input and body representation in different spatial frames of reference and at the same time question the effect of visual analgesia and crossed-arms analgesia alone. We found that nociceptive stimuli delivered to the hand in a crossed-arms position evoke less pain than in a canonical anatomic position. Yet we report no significant analgesic effect of vision or crossing the arms on their own. These findings foster the integration of visuospatial and proprioceptive information in rehabilitation protocols. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. NLP-12 engages different UNC-13 proteins to potentiate tonic and evoked release.

    Science.gov (United States)

    Hu, Zhitao; Vashlishan-Murray, Amy B; Kaplan, Joshua M

    2015-01-21

    A neuropeptide (NLP-12) and its receptor (CKR-2) potentiate tonic and evoked ACh release at Caenorhabditis elegans neuromuscular junctions. Increased evoked release is mediated by a presynaptic pathway (egl-30 Gαq and egl-8 PLCβ) that produces DAG, and by DAG binding to short and long UNC-13 proteins. Potentiation of tonic ACh release persists in mutants deficient for egl-30 Gαq and egl-8 PLCβ and requires DAG binding to UNC-13L (but not UNC-13S). Thus, NLP-12 adjusts tonic and evoked release by distinct mechanisms. Copyright © 2015 the authors 0270-6474/15/351038-05$15.00/0.

  13. Quantifying interhemispheric symmetry of somatosensory evoked potentials with the intraclass correlation coefficient

    NARCIS (Netherlands)

    van de Wassenberg, Wilma J. G.; van der Hoeven, Johannes H.; Leenders, Klaus L.; Maurits, Natasha M.

    Although large intersubject variability is reported for cortical somatosensory evoked potentials (SEPs), variability between hemispheres within one subject is thought to be small. Therefore, interhemispheric comparison of SEP waveforms might be clinically useful to detect unilateral abnormalities in

  14. Clinical Evaluation of the Vestibular Nerve Using Vestibular Evoked Myogenic Potentials.

    Science.gov (United States)

    Bogle, Jamie M

    2018-01-01

    Vestibular evoked myogenic potentials are currently the most clinically accessible method to evaluate the otolith reflex pathways. These responses provide unique information regarding the status of the utriculo-ocular and sacculo-collic reflex pathways, information that has previously been unavailable. Vestibular evoked myogenic potentials are recorded from tonically contracted target muscles known to be innervated by these respective otolith organs. Diagnosticians can use vestibular evoked myogenic potentials to better evaluate the overall integrity of the inner ear and neural pathways; however, there are specific considerations for each otolith reflex protocol. In addition, specific patient populations may require protocol variations to better evaluate atypical function of the inner ear organs, vestibular nerve transmission, or subsequent reflex pathways. This is a review of the clinical application and interpretation of cervical and ocular vestibular evoked myogenic potentials.

  15. Awareness during anaesthesia for surgery requiring evoked potential monitoring: A pilot study

    Directory of Open Access Journals (Sweden)

    Pritish J Korula

    2017-01-01

    Full Text Available Background: Evoked potential monitoring such as somatosensory-evoked potential (SSEP or motor-evoked potential (MEP monitoring during surgical procedures in proximity to the spinal cord requires minimising the minimum alveolar concentrations (MACs below the anaesthetic concentrations normally required (1 MAC to prevent interference in amplitude and latency of evoked potentials. This could result in awareness. Our primary objective was to determine the incidence of awareness while administering low MAC inhalational anaesthetics for these unique procedures. The secondary objective was to assess the adequacy of our anaesthetic technique from neurophysiologist′s perspective. Methods: In this prospective observational pilot study, 61 American Society of Anesthesiologists 1 and 2 patients undergoing spinal surgery for whom intraoperative evoked potential monitoring was performed were included; during the maintenance phase, 0.7-0.8 MAC of isoflurane was targeted. We evaluated the intraoperative depth of anaesthesia using a bispectral (BIS index monitor as well as the patients response to surgical stimulus (PRST scoring system. Post-operatively, a modified Bruce questionnaire was used to verify awareness. The adequacy of evoked potential readings was also assessed. Results: Of the 61 patients, no patient had explicit awareness. Intraoperatively, 19 of 61 patients had a BIS value of above sixty at least once, during surgery. There was no correlation with PRST scoring and BIS during surgery. Fifty-four out of 61 patient′s evoked potential readings were deemed ′good′ or ′fair′ for the conduct of electrophysiological monitoring. Conclusions: This pilot study demonstrates that administering low MAC inhalational anaesthetics to facilitate evoked potential monitoring does not result in explicit awareness. However, larger studies are needed to verify this. The conduct of SSEP electrophysiological monitoring was satisfactory with the use of this

  16. Influence of delta9-tetrahydrocannabinol and cannabidiol on photically evoked after-discharge potentials.

    Science.gov (United States)

    Turkanis, S A; Chiu, P; Borys, H K; Karler, R

    1977-04-29

    Two cannabinoids, delta9-tetrahydrocannabinol and cannabidiol, and several reference drugs were compared relative to their effects in a recently developed anticonvulsant test system, the after-discharge potentials of the visually evoked response; the potentials were recorded electrophysiologically from electrodes permanently mounted over the visual cortices of conscious rats. In anticonvulsant doses, trimethadione and ethosuximide produced an extensive depression of after-discharge activity, whereas diphenylhydantoin and cannabidiol exerted no such effect. In contrast, anticonvulsant doses of delta9-tetrahydrocannabinol and subconvulsant doses of pentylenetetrazol markedly increased after-discharge activity, which may represent a manifestation of their central nervous system excitatory properties. The data from the present study support our previously published ovservations from several other anticonvulsant tests that indicate the anticonvulsant characteristics of cannabidiol resemble those of diphenylhydantoin rather than those of trimethadione and that the central excitatory properties of delta9-tetrahydrocannabinol distinguish it from cannabidiol. The results consistently suggest that the cannabinoids will be effective against grand mal but not absence seizures.

  17. Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals.

    Science.gov (United States)

    Sayenko, Dimitry G; Angeli, Claudia; Harkema, Susan J; Edgerton, V Reggie; Gerasimenko, Yury P

    2014-03-01

    Epidural stimulation (ES) of the lumbosacral spinal cord has been used to facilitate standing and voluntary movement after clinically motor-complete spinal-cord injury. It seems of importance to examine how the epidurally evoked potentials are modulated in the spinal circuitry and projected to various motor pools. We hypothesized that chronically implanted electrode arrays over the lumbosacral spinal cord can be used to assess functionally spinal circuitry linked to specific motor pools. The purpose of this study was to investigate the functional and topographic organization of compound evoked potentials induced by the stimulation. Three individuals with complete motor paralysis of the lower limbs participated in the study. The evoked potentials to epidural spinal stimulation were investigated after surgery in a supine position and in one participant, during both supine and standing, with body weight load of 60%. The stimulation was delivered with intensity from 0.5 to 10 V at a frequency of 2 Hz. Recruitment curves of evoked potentials in knee and ankle muscles were collected at three localized and two wide-field stimulation configurations. Epidural electrical stimulation of rostral and caudal areas of lumbar spinal cord resulted in a selective topographical recruitment of proximal and distal leg muscles, as revealed by both magnitude and thresholds of the evoked potentials. ES activated both afferent and efferent pathways. The components of neural pathways that can mediate motor-evoked potentials were highly dependent on the stimulation parameters and sensory conditions, suggesting a weight-bearing-induced reorganization of the spinal circuitries.

  18. Segmental somatosensory-evoked potentials as a diagnostic tool in chronic inflammatory demyelinating polyneuropathies, and other sensory neuropathies.

    Science.gov (United States)

    Koutlidis, R M; Ayrignac, X; Pradat, P-F; Le Forestier, N; Léger, J-M; Salachas, F; Maisonobe, T; Fournier, E; Viala, K

    2014-09-01

    Somatosensory-evoked potentials with segmental recordings were performed with the aim of distinguishing chronic inflammatory demyelinating polyneuropathy from other sensory neuropathies. Four groups of 20 subjects each corresponded to patients with (1) possible sensory chronic inflammatory demyelinating polyneuropathy, (2) patients with sensory polyneuropathy of unknown origin, (3) patients with amyotrophic lateral sclerosis and (4) normal subjects. The patients selected for this study had preserved sensory potentials on electroneuromyogram and all waves were recordable in evoked potentials. Somatosensory-evoked potentials evaluations were carried out by stimulation of the posterior tibial nerve at the ankle, recording peripheral nerve potential in the popliteal fossa, radicular potential and spinal potential at the L4-L5 and T12 levels, and cortical at C'z, with determination of distal conduction time, proximal and radicular conduction time and central conduction time. In the group of chronic inflammatory demyelinating polyneuropathy, 80% of patients had abnormal conduction in the N8-N22 segment and 95% had abnormal N18-N22 conduction time. In the group of neuropathies, distal conduction was abnormal in most cases, whereas 60% of patients had no proximal abnormality. None of the patients in the group of amyotrophic lateral sclerosis had an abnormal N18-N22 conduction time. Somatosensory-evoked potentials with segmental recording can be used to distinguish between atypical sensory chronic inflammatory demyelinating polyneuropathy and other sensory neuropathies, at the early stage of the disease. Graphical representation of segmental conduction times provides a rapid and accurate visualization of the profile of each patient. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Characterization of Motor and Somatosensory Evoked Potentials in the Yucatan Micropig Using Transcranial and Epidural Stimulation.

    Science.gov (United States)

    Benavides, Francisco D; Santamaria, Andrea J; Bodoukhin, Nikita; Guada, Luis G; Solano, Juan P; Guest, James D

    2017-09-15

    Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.

  20. Slow excitatory synaptic potentials evoked by distension in myenteric descending interneurones of guinea-pig ileum

    Science.gov (United States)

    Thornton, P D J; Bornstein, J C

    2002-01-01

    The functional significance of the slow excitatory synaptic potentials (EPSPs) in myenteric neurones is unknown. We investigated this using intracellular recording from myenteric neurones in guinea-pig ileum, in vitro. In all, 121 neurones responded with fast EPSPs to distension of the intestine oral to the recording site. In 28 of these neurones, distension also evoked depolarizations similar to the slow EPSPs evoked by electrical stimulation in the same neurones. Intracellular injection of biocytin and immunohistochemistry revealed that neurones responding to distension with slow EPSPs were descending interneurones, which were immunoreactive for nitric oxide synthase (NOS). Other neurones, including inhibitory motor neurones and interneurones lacking NOS, did not respond to distension with slow EPSPs, but many had slow EPSPs evoked electrically. Slow EPSPs evoked electrically or by distension in NOS-immunoreactive descending interneurones were resistant to blockade of NK1 or NK3 tachykinin receptors (SR 140333, 100 nm; SR 142801, 100 nm, respectively) and group I metabotropic glutamate receptors (PHCCC, 10–30 μm), when the antagonists were applied in the recording chamber of a two-chambered organ bath. However, slow EPSPs evoked electrically in inhibitory motor neurones were substantially depressed by SR 140333 (100 nm). Blockade of synaptic transmission in the stimulation chamber of the organ bath abolished slow EPSPs evoked by distension, indicating that they arose from activity in interneurones, and not from anally directed, intrinsic sensory neurones. Thus, distension evokes slow EPSPs in a subset of myenteric neurones, which may be important for intestinal motility. PMID:11882690

  1. [The use of short-latency auditory evoked potentials in the diagnosis of acoustic neurinomas].

    Science.gov (United States)

    Baliazin, V A; Bakhtin, O M; Bu Khaled, Kh E; Filatova, V S

    1993-01-01

    The short-latent acoustic evoked potentials in patients with unilateral neurosensory hypoacusis due to the tumor of the acoustic nerve or other etiology were recorded. It was found that the patients had no potential in the diseased area in monaural sound stimulation, but binaural sound stimulation enabled these potentials to be recorded. With this, the short-latent acoustic evoked potentials in patients with verified neurinoma showed a reduction in the third wave to the point of its disappearance. Those in patients whose neurosensory hypoacusis were unassociated with the development of neoplasms in the area of the acoustic nerve involve the third wave whose magnitude did not differ from that recorded in the examinees with otologically normal hearing. The authors propose to measure the third wave of the short-latent acoustic evoked potential recorded in binaural sound stimulation as a possible screening of persons at a high risk for neurinoma among patients with unilateral neurosensory hypoacusis.

  2. Multimodal evoked potentials in spinocerebellar ataxia types 1, 2, and 3

    Directory of Open Access Journals (Sweden)

    Vijay Chandran

    2014-01-01

    Full Text Available Aims: Spinocerebellar ataxias (SCA are a clinically heterogeneous group of disorders that are characterized by ataxia and an autosomal dominant pattern of inheritance. The aim of our study was to describe the findings of evoked potentials (EPs among genetically proven SCA types 1, 2, and 3 and to additionally evaluate if EPs can be used to differentiate between them. Materials and Methods: Forty-three cases of genetically proven SCA (SCA1 = 19, SCA2 = 13, and SCA3 = 11 were evaluated with median somatosensory-EP (mSSEP, visual-EP (VEP, and brainstem auditory-evoked response (BAER by standard procedures and compared with normative laboratory data. An EP was considered abnormal if latency was prolonged (>mean + 3 standard deviation (SD of laboratory control data or the waveform was absent or poorly defined. The waves studied were as follows: mSSEP - N20, VEP - P100 and BAER - interpeak latency 1-3 and 3-5. Results: EPs were abnormal in at least one modality in 90.9% of patients. The most common abnormality was of BAER (86.1% followed by VEP (34.9% and mSSEP (30.2%. The degree of abnormality in VEP, mSSEP, and BAER among patients with SCA1 was 42.1, 41.2, and 73.3%, respectively; among patients with SCA2 was 38.5, 27.3, and 100%, respectively; and among patients with SCA3 was 18.2, 37.5, and 88.9%, respectively. The differences between the subgroups of SCAs were not statistically significant. Conclusions: BAER was the most frequent abnormality in SCA types 1, 2, and 3; abnormalities of mSSEP were comparable in the three SCAs; whereas, abnormality of VEP was less often noted in SCA3.

  3. An objective method for measuring face detection thresholds using the sweep steady-state visual evoked response.

    Science.gov (United States)

    Ales, Justin M; Farzin, Faraz; Rossion, Bruno; Norcia, Anthony M

    2012-09-29

    We introduce a sensitive method for measuring face detection thresholds rapidly, objectively, and independently of low-level visual cues. The method is based on the swept parameter steady-state visual evoked potential (ssVEP), in which a stimulus is presented at a specific temporal frequency while parametrically varying ("sweeping") the detectability of the stimulus. Here, the visibility of a face image was increased by progressive derandomization of the phase spectra of the image in a series of equally spaced steps. Alternations between face and fully randomized images at a constant rate (3/s) elicit a robust first harmonic response at 3 Hz specific to the structure of the face. High-density EEG was recorded from 10 human adult participants, who were asked to respond with a button-press as soon as they detected a face. The majority of participants produced an evoked response at the first harmonic (3 Hz) that emerged abruptly between 30% and 35% phase-coherence of the face, which was most prominent on right occipito-temporal sites. Thresholds for face detection were estimated reliably in single participants from 15 trials, or on each of the 15 individual face trials. The ssVEP-derived thresholds correlated with the concurrently measured perceptual face detection thresholds. This first application of the sweep VEP approach to high-level vision provides a sensitive and objective method that could be used to measure and compare visual perception thresholds for various object shapes and levels of categorization in different human populations, including infants and individuals with developmental delay.

  4. Cerebral activation associated with visually evoked sexual arousal in the limbic system: functional MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eun, Sung Jong; Kong, Gwang Woo; Kim, Hyung Joong; Seo, Jeong Jin; Kang, Heoung Keun; Cho, Ki Hyun; Yoon, Ka Hyun [School of Medicine, Chonnam National Univ., Kwangju (Korea, Republic of); Kim, Kyung Yo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-08-01

    To identify the brain centers associated with visually evoked sexual arousal in the human brain, and to investigate the neural mechanism for sexual arousal using functional MRI (fMRI). A total of 20 sexually potent volunteers consisting of 10 males (mean age: 24) and 10 females (mean age: 23) underwent fMRI on a 1.5T MR scanner (GE Signa Horizon). The fMRI data were obtained from 7 slices (10 mm slice thickness) parallel to the AC-PC (anterior commissure and posterior commissure) line, giving a total of 511 MR images. The sexual stimulation consisted of a 1-minute rest with black screen, followed by a 4-minute stimulation by an erotic video film, and concluded with a 2-minute rest. The brain activation maps and their quantification were analyzed by the statistical parametric mapping (SPM 99) program. The brain activation regions associated with visual sexual arousal in the limbic system are the posterior cingulate gyrus, parahippocampal gyrus, hypothalamus, medial cingulate gyrus, thalamus, amygdala, anterior cingulate gyrus, insula, hippocampus, caudate nucleus, globus pallidus and putamen. Especially, the parahippocampal gyrus, cingulate gyrus, thalamus and hypothalamus were highly activated in comparison with other areas. The overall activities of the limbic lobe, diencephalon, and basal ganglia were 11.8%, 10.5%, and 3.4%, respectively. In the correlation test between brain activity and sexual arousal, the hypothalamus and thalamus showed positive correlation, but the other brain areas showed no correlation. The fMRI is useful to quantitatively evaluate the cerebral activation associated with visually evoked, sexual arousal in the human brain. This result may be helpful by providing clinically valuable information on sexual disorder in humans as well as by increasing the understanding of the neuroanatomical correlates of sexual arousal.

  5. Prey capture behavior evoked by simple visual stimuli in larval zebrafish.

    Science.gov (United States)

    Bianco, Isaac H; Kampff, Adam R; Engert, Florian

    2011-01-01

    Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed "virtual reality" assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey.

  6. Prey capture behaviour evoked by simple visual stimuli in larval zebrafish

    Directory of Open Access Journals (Sweden)

    Isaac Henry Bianco

    2011-12-01

    Full Text Available Understanding how the nervous system recognises salient stimuli in the environ- ment and selects and executes the appropriate behavioural responses is a fundamen- tal question in systems neuroscience. To facilitate the neuroethological study of visually-guided behaviour in larval zebrafish, we developed virtual reality assays in which precisely controlled visual cues can be presented to larvae whilst their behaviour is automatically monitored using machine-vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼ 20◦ towards small moving spots (1◦ but reacted to larger spots (10◦ with high-amplitude aversive turns (∼ 60◦. The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analysing movie sequences of larvae hunting parame- cia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behaviour in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey.

  7. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control. PMID:26137479

  8. Stimulus dependency of object-evoked responses in human visual cortex: an inverse problem for category specificity.

    Directory of Open Access Journals (Sweden)

    Britta Graewe

    Full Text Available Many studies have linked the processing of different object categories to specific event-related potentials (ERPs such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200-250 ms (N250 over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components.

  9. Transient Evoked Potential in a Critical Event Detection Task.

    Science.gov (United States)

    1984-02-01

    with a predominantly fronto-central X distribution which is sensitive to changes in stimulus probability(sometimes referred to as the P3a ). (2) A...or SW) (26:381). Using a variety of auditory decision tasks Hillyard reported (1) an early latency, small amplitude P3a with a . fronto-central scalp...decreased (28:131-143). The visual frontal P300 and the auditory P3a are most frequently associated with orienting behavior for the following

  10. Classification of Auditory Evoked Potentials based on the wavelet decomposition and SVM network

    Directory of Open Access Journals (Sweden)

    Michał Suchocki

    2015-12-01

    Full Text Available For electrophysiological hearing assessment and diagnosis of brain stem lesions, the most often used are auditory brainstem evoked potentials of short latency. They are characterized by successively arranged maxima as a function of time, called waves. Morphology of the course, in particular, the timing and amplitude of each wave, allow a neurologist to make diagnose, what is not an easy task. A neurologist should be experienced, concentrated, and should have very good perception. In order to support his diagnostic process, the authors have developed an algorithm implementing the automated classification of auditory evoked potentials to the group of pathological and physiological cases, the sensitivity and specificity determined for an independent test group (of 50 cases of respectively 84% and 88%.[b]Keywords[/b]: biomedical engineering, brainstem auditory evoked potentials, wavelet decomposition, support vector machine

  11. An indirect component in the evoked compound action potential of the vagal nerve

    Science.gov (United States)

    Ordelman, Simone C. M. A.; Kornet, Lilian; Cornelussen, Richard; Buschman, Hendrik P. J.; Veltink, Peter H.

    2010-12-01

    The vagal nerve plays a vital role in the regulation of the cardiovascular system. It not only regulates the heart but also sends sensory information from the heart back to the brain. We hypothesize that the evoked vagal nerve compound action potential contains components that are indirect via the brain stem or coming via the neural network on the heart. In an experimental study of 15 pigs, we identified four components in the evoked compound action potentials. The fourth component was found to be an indirect component, which came from the periphery. The latency of the indirect component increased when heart rate and contractility were decreased by burst stimulation (P = 0.01; n = 7). When heart rate and contractility were increased by dobutamine administration, the latency of the indirect component decreased (P = 0.01; n = 9). This showed that the latency of the indirect component of the evoked compound action potentials may relate to the state of the cardiovascular system.

  12. Predictability of painful stimulation modulates the somatosensory-evoked potential in the rat

    NARCIS (Netherlands)

    Schaap, M.W.H.|info:eu-repo/dai/nl/314411488; van Oostrom, H.|info:eu-repo/dai/nl/340414634; Doornenbal, A.; Baars, A.M.; Arndt, S.S.|info:eu-repo/dai/nl/30483615X; Hellebrekers, L.J.|info:eu-repo/dai/nl/073499234

    2013-01-01

    Abstract Somatosensory-evoked potentials (SEPs) are used in humans and animals to increase knowledge about nociception and pain. Since the SEP in humans increases when noxious stimuli are administered unpredictably, predictability potentially influences the SEP in animals as well. To assess the

  13. Effects of single cycle binaural beat duration on auditory evoked potentials.

    Science.gov (United States)

    Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan

    2014-01-01

    Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.

  14. Anticancer potential evoked by Pleurotus florida and Calocybe ...

    African Journals Online (AJOL)

    The therapeutic potential of the two medicinal mushroom varieties, P. florida and C. indica against T24 urinary bladder cancer cell lines were determined by the MTT assay and DNA fragmentation assay. The results obtained from the MTT assay and DNA fragmentation assay in this study showed the anti-tumour potential of ...

  15. Effects of etidocaine administered epidurally on changes in somatosensory evoked potentials after dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1991-01-01

    The effect of lumbar epidural anesthesia with similar volumes (approximately 20 ml) of 1% and 1.5% etidocaine on early (less than 0.5 seconds) somatosensory evoked potentials (SEPs) to electrical stimulation of the S1, L1, and T10 dermatomes was examined in two groups of ten patients in a randomi......The effect of lumbar epidural anesthesia with similar volumes (approximately 20 ml) of 1% and 1.5% etidocaine on early (less than 0.5 seconds) somatosensory evoked potentials (SEPs) to electrical stimulation of the S1, L1, and T10 dermatomes was examined in two groups of ten patients...

  16. Selecting the smoothing parameter for estimation of slowly changing evoked potential signals.

    Science.gov (United States)

    Raz, J; Turetsky, B; Fein, G

    1989-09-01

    Brain evoked potential (EP) data consist of a true response ("signal") and random background activity ("noise"), which are observed over repeated stimulus presentations ("trials"). A signal that changes slowly from trial to trial can be estimated by smoothing across trials and over time within trials. We present a method for selecting the smoothing parameter by minimizing an estimate of the mean average squared error (MASE). We evaluate the performance of this method using simulated EP data, and apply the method to an example set of real flash evoked potentials.

  17. Development and evaluation of the piecewise Prony method for evoked potential analysis.

    Science.gov (United States)

    Garoosi, V; Jansen, B H

    2000-12-01

    A new method is presented to decompose nonstationary signals into a summation of oscillatory components with time varying frequency, amplitude, and phase characteristics. This method, referred to as piecewise Prony method (PPM), is an improvement over the classical Prony method, which can only deal with signals containing components with fixed frequency, amplitude and phase, and monotonically increasing or decreasing rate of change. PPM allows the study of the temporal profile of post-stimulus signal changes in single-trial evoked potentials (EPs), which can lead to new insights in EP generation. We have evaluated this method on simulated data to test its limitations and capabilities, and also on single-trial EPs. The simulation experiments showed that the PPM can detect amplitude changes as small as 10%, rate changes as small as 10%, and 0.15 Hz of frequency changes. The capabilities of the PPM were demonstrated using single electroencephalogram/EP trials of flash visual EPs recorded from one normal subject. The trial-by-trial results confirmed that the stimulation drastically attenuates the alpha activity shortly after stimulus presentation, with the alpha activity returning about 0.5 s later. The PPM results also provided evidence that delta activity undergoes phase alignment following stimulus presentation.

  18. Evoked potential and EEG study of the neurotoxicity of hydramethylnon in rats.

    Science.gov (United States)

    Strain, George M

    2017-10-31

    The objective of the study was to assess the neurotoxicity, using electrodiagnostic tests, of hydramethylnon (Amdro, AC 217,300), an insecticide marketed for the treatment of red imported fire ants, cockroaches, and other insects. Animals were male Fisher 344 albino rats and Long-Evans hooded rats. Brainstem auditory, visual, and somatosensory evoked potentials (BAER, VEP, SEP) and electroencephalograms (EEG) were recorded from implanted screw electrodes before and at multiple time points through day 10 after a single oral dose of hydramethylnon (at 50% or 75% of the LD50) plus vehicle, or vehicle alone. No evidence of nervous system toxicity was detected with either BAER, VEP, or SEP recordings. Spectral analysis of EEGs recorded over 7days demonstrated a time-limited increase in power at low frequencies and decrease at high frequencies, reflecting a sedative effect. A dose-dependent weight loss was observed. Single-exposure poisonings with AC 217,300 can be expected to produce anorexia and CNS depression, but not lethality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Predictability of painful stimulation modulates the somatosensory-evoked potential in the rat.

    Directory of Open Access Journals (Sweden)

    Manon W H Schaap

    Full Text Available Somatosensory-evoked potentials (SEPs are used in humans and animals to increase knowledge about nociception and pain. Since the SEP in humans increases when noxious stimuli are administered unpredictably, predictability potentially influences the SEP in animals as well. To assess the effect of predictability on the SEP in animals, classical fear conditioning was applied to compare SEPs between rats receiving SEP-evoking electrical stimuli either predictably or unpredictably. As in humans, the rat's SEP increased when SEP-evoking stimuli were administered unpredictably. These data support the hypothesis that the predictability of noxious stimuli plays a distinctive role in the processing of these stimuli in animals. The influence of predictability should be considered when studying nociception and pain in animals. Additionally, this finding suggests that animals confronted with (unpredictable noxious stimuli can be used to investigate the mechanisms underlying the influence of predictability on central processing of noxious stimuli.

  20. Different brain potentials evoked at distinct phases of rule learning.

    Science.gov (United States)

    Li, Fuhong; Cao, Bihua; Gao, Heming; Kuang, Li; Li, Hong

    2012-09-01

    The neural mechanisms of rule learning are of interest to cognitive neuroscientists, but the time course of rule induction and the related brain potential remain unclear. In this study, event-related brain potentials (ERPs) were measured during the distinct phases of rule induction. Participants in two experiments were presented with a series of Arabic numbers and were asked to detect the hidden rules. The ERP results revealed that (a) the rule-discovery trials elicited a larger P3 component than the nondiscovery trials, reflecting the initial identification of the regularity of number series, and (b) when a new instance was incongruent with the previously acquired rule, a larger N2 and enhanced late positive component were elicited, reflecting the process of mismatch detection and the updating of working memory context. Copyright © 2012 Society for Psychophysiological Research.

  1. Vestibular-evoked myogenic potentials in miniature pigs

    Directory of Open Access Journals (Sweden)

    Xi Shi

    2016-06-01

    Conclusion: The latencies and thresholds of VEMPs recorded from the neck extensor muscle and the masseter muscle appear to be comparable in normal adult Bama miniature pigs, although the amplitude recorded from the neck extensor muscle seems to be higher than that from the masseter muscle. However, because of their usually relatively superficial and easily accessible location, as well as their large volume and strong contractions, masseter muscles may be better target muscles for recording myogenic potentials.

  2. A change in the parameters of P300 evoked potentials in relation to the degree of exacerbation of pain syndrome

    Directory of Open Access Journals (Sweden)

    A P Rachin

    2012-01-01

    Full Text Available In chronic pain, the state of suprasegmental brain structures (the cortex, limbic system, truncodiencephalic structures, which form the motivational-affective and cognitive components of pain behavior, actively affects pain afferentation as well. The purpose of the study was to comparatively analyze the parameters and topographic distribution of P300 cognitive evoked potential in patients with lower back pain. Sixty patients aged 22 to 60 years were examined. The authors made their clinical and neurological examinations, collected medical history data, and assessed back pain intensity by a visual analog scale. The findings were compared with the parameters of cognitive evoked potentials (the separating of P300 to count; keystroke in the recognition of significant stimuli; elaboration of a verbal and nonverbal visual stimulation protocol, by using emotionally significant stimuli. The processes of recognition and differentiation, those of directed attention, and the rate of information processing slowed down in patients with different stages of pain syndrome. The P300 separating procedure using the emotionally significant stimuli allows one to assess the specific features of chronization of pain syndromes and the presence of pain memory in the central nervous system of such patients. The estimation of P300 parameters over time or during treatment are of particular value for the optimization and evaluation of its efficiency.

  3. The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects.

    Directory of Open Access Journals (Sweden)

    Martina Guthoff

    Full Text Available BACKGROUND: Insulin is an anorexigenic hormone that contributes to the termination of food intake in the postprandial state. An alteration in insulin action in the brain, named "cerebral insulin resistance", is responsible for overeating and the development of obesity. METHODOLOGY/PRINCIPAL FINDINGS: To analyze the direct effect of insulin on food-related neuronal activity we tested 10 lean and 10 obese subjects. We conducted a magnetencephalography study during a visual working memory task in both the basal state and after applying insulin or placebo spray intranasally to bypass the blood brain barrier. Food and non-food pictures were presented and subjects had to determine whether or not two consecutive pictures belonged to the same category. Intranasal insulin displayed no effect on blood glucose, insulin or C-peptide concentrations in the periphery; however, it led to an increase in the components of evoked fields related to identification and categorization of pictures (at around 170 ms post stimuli in the visual ventral stream in lean subjects when food pictures were presented. In contrast, insulin did not modulate food-related brain activity in obese subjects. CONCLUSIONS/SIGNIFICANCE: We demonstrated that intranasal insulin increases the cerebral processing of food pictures in lean whereas this was absent in obese subjects. This study further substantiates the presence of a "cerebral insulin resistance" in obese subjects and might be relevant in the pathogenesis of obesity.

  4. Revealing the distinction between perception and cognition through intra-individual variability of visual evoked responses.

    Science.gov (United States)

    Constantinescu, V D

    1996-01-01

    Searching for a method to objectively detect the cognitive activity of the brain, the variability of visual evoked responses (ER) was analysed in 75 human subjects and 10 animals. The individual ERs of a normal subject were found typically very scattered in the first approx. 120 ms after stimulation, converging at 160-220 ms and then diverging again progressively. This variability pattern (VP) is event-related and is not attributable to background noise. On the other hand, statistically significant correlation showed that in most patients, with anatomically intact visual structures but with pronounced mental troubles, the VP is absent and the ERs are randomly scattered. Based on these results we consider that the event-related variability reflects the cognition function of the subjects and that it is instrumental in evidencing the distinction between cognitive and perceptive processes. The results are further consistent with the idea that cognition implies the chaotic activity of certain neural populations and that the VP reflects this chaotic, non-repetitive, non-linear and impredictable but effective neural activity.

  5. Brainstem Auditory Evoked Potentials in Patients with Subarachnoid Haemorrhage

    Directory of Open Access Journals (Sweden)

    Mikhail Matveev

    2009-10-01

    Full Text Available Objective. The aim of the present study is to typify BAEPs configurations of patients with different location of lesions caused by subarachnoid haemorrhage (SAH and the ensuing complications, in view of assessing the auditory-brainstem system disturbance.Methods. The typization was performed by comparing BAEPs with standard patterns from two sets of types of BAEPs by ipsilateral and binaural stimulation and by cross-stimulation.Results. 94 BAEPs were used for collection of normal referential values: for the absolute latencies and the absolute amplitudes of waves I, II, III, IV and V; for inter-peak latencies I-III, II-III, III-V, I-V and II-V; for amplitude ratios I/V and III/V. 146 BAEPs of patients with mild SAH and 55 from patients with severe SAH, were typified. In 5 types of BAEPs out of a total of 11, the percentage of the potentials in patients with mild SAH and severe SAH differed significantly (p<0.01.Conclusions. The use of sets of types of BAEPs by ipsilateral, binaural and cross-stimulation correctly classifies the potentials in patients with mild and severe SAH.

  6. Sensory gating of auditory evoked potentials in rats: Effects of repetitive stimulation and the interstimulus interval

    NARCIS (Netherlands)

    Bruin, N.M.W.J. de; Ellenbroek, B.A.; Schaijk, W.J. van; Cools, A.R.; Coenen, A.M.L.; Luijtelaar, E.L.J.M. van

    2001-01-01

    In the P50 gating or conditioning-testing (C-T) paradigm, the P50 response, a small positive midlatency (~50 ms after stimulus onset) component of the human auditory evoked potential (AEP), is reduced towards the second click (S2) as compared to the response to the first click (S1). This phenomenon

  7. Sensory gating of auditory evoked potentials in rats: effects of repetitive stimulation and the interstimulus interval.

    NARCIS (Netherlands)

    Bruin, N.M.W.J. de; Ellenbroek, B.A.; Schaijk, W.J. van; Cools, A.R.; Coenen, A.M.L.; Luijtelaar, E.L.J.M. van

    2001-01-01

    In the P50 gating or conditioning-testing (C-T) paradigm, the P50 response, a small positive midlatency ( approximately 50 ms after stimulus onset) component of the human auditory evoked potential (AEP), is reduced towards the second click (S2) as compared to the response to the first click (S1).

  8. Effect of surgery on sensory threshold and somatosensory evoked potentials after skin stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1990-01-01

    We have studied the effect of surgical injury on cutaneous sensitivity and somatosensory evoked potentials (SSEP) to dermatomal electrical stimulation in 10 patients undergoing hysterectomy. Forty-eight hours after surgery, sensory threshold increased from 2.2 (SEM 0.3) mA to 4.4 (1.1) mA (P less...

  9. Effect of epidural 0.25% bupivacaine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1989-01-01

    The effect of lumbar epidural analgesia with similar volumes (about 25 ml) of 0.25% and 0.5% bupivacaine on early (less than 0.5 seconds) somatosensory evoked potentials (SEPs) to electrical stimulation of the S1, L1, and T10 dermatomes was examined in two groups of ten patients. Level of sensory...

  10. Effects of diazepam on auditory evoked potentials of rats elicited in a ten-tone paradigm

    NARCIS (Netherlands)

    Jongsma, M.L.A.; Rijn, C.M. van; Schaijk, W.J. van; Coenen, A.M.L.; Dirksen, R.

    2000-01-01

    The effect of diazepam on sensory gating was studied in rats, by measuring diazepam effects on Auditory Evoked Potentials (AEPs) elicited in a ten-tone paradigm. Trains of 10 repetitive tone-pip stimuli were presented. Rats (n=8) received 4 mg.kg-1 diazepam s.c. or vehicle, counterbalanced over two

  11. The influence of diazepam on the electroencephalogram-evoked potential interrelation in rats

    NARCIS (Netherlands)

    Jongsma, M.L.A.; Rijn, C.M. van; Egmond, J. van; Schaijk, W.J. van; Sambeth, A.; Coenen, A.M.L.

    2000-01-01

    Though being a sedative increases b-activity in the electroencephalogram (EEG). Diazepam also affects auditory evoked potentials (AEPs). We investigated if the effect of diazepam on AEPs could be ascribed to its b-increasing effect. Eight rats received vehicle and diazepam counterbalanced. AEPs were

  12. Neural generators of the auditory evoked potential components P3a and P3b

    NARCIS (Netherlands)

    Wronka, E.; Kaiser, J.; Coenen, A.M.L.

    2012-01-01

    The aim of the present study was to define the scalp topography of the two subcomponents of the P3 component of the auditory evoked potential elicited in a three-stimulus oddball paradigm and to identify their cortical generators using the standardized low resolution electromagnetic tomography

  13. Analysis of gender based differences in auditory evoked potentials among healthy elderly population

    Directory of Open Access Journals (Sweden)

    Sharat Gupta

    2014-01-01

    Full Text Available Background: Influence of gender on auditory evoked potentials is contentious. Although there are quite a few studies documenting the gender as an influencing factor on auditory evoked potentials in younger subjects, but there is a lack of similar studies among elderly population. The present study was conducted to find out the pattern of gender based differences in auditory evoked potentials among healthy elderly subjects. Materials and Methods: A cross-sectional study was conducted on age matched, healthy males (n = 35 and females (n = 34, aged 50-70 years. The measures included latencies of waves I-V and interpeak latencies (IPL I-III, III-V and I-V separately for both ears. Data was analyzed statistically using Students unpaired t-test, using Statistical Package for Social Sciences software v13.0. Results: The values of all the latencies and IPL for both the ears were non-significantly higher (P > 0.05 in males as compared to females. These results may be attributed to the differences in head circumference between both the genders and to the changed hormonal milieu of sex hormones after menopause. Conclusions: Statistical insignificance of latencies among male and female elderly subjects excludes gender as an influencing factor on auditory evoked potentials in this age group.

  14. Effect of extradural morphine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Selmar, P; Hansen, O B

    1987-01-01

    The effect of the extradural (L2-3) administration of morphine 6 mg on early (less than 0.5 s) somatosensory evoked cortical potentials (SEP) to electrical stimulation of the L1- and S1-dermatomes was examined in eight patients. Extradural morphine did not influence SEP amplitude. SEP latency did...

  15. Multimodal evoked potentials follow up in multiple sclerosis patients under fingolimod therapy

    DEFF Research Database (Denmark)

    Iodice, R; Carotenuto, A; Dubbioso, R

    2016-01-01

    BACKGROUND: Clinical trials have shown the therapeutic effect of fingolimod in reducing disease activity in relapsing-remitting multiple sclerosis (RR-MS), but its influence on nervous conduction assessed by evoked potentials (EPs) has not been previously investigated. METHODS: EP data of 20...

  16. Use of epidurally derived evoked potentials for quantification of caudal nociception in ponies

    NARCIS (Netherlands)

    van Loon, J.P.A.M.; Stienen, P.J.; Doornenbal, A.; Hellebrekers, L.J.

    2009-01-01

    Am J Vet Res. 2009 Jul;70(7):813-9. Use of epidurally derived evoked potentials for quantification of caudal nociception in ponies. van Loon JP, Stienen PJ, Doornenbal A, Hellebrekers LJ. Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The

  17. Nociception-related somatosensory evoked potentials in awake dogs recorded after intra epidermal electrical stimulation

    NARCIS (Netherlands)

    van Oostrom, H.; Stienen, P.J.; Doornenbal, A.; Hellebrekers, L.J.

    2009-01-01

    Eur J Pain. 2009 Feb;13(2):154-60. Epub 2008 May 16. Nociception-related somatosensory evoked potentials in awake dogs recorded after intra epidermal electrical stimulation. van Oostrom H, Stienen PJ, Doornenbal A, Hellebrekers LJ. Department of Clinical Sciences of Companion Animals, Division

  18. Rhythmic context influences the auditory evoked potentials of musicians and nonmusicians

    NARCIS (Netherlands)

    Jongsma, M.L.A.; Desain, P.W.M.; Honing, H.J.

    2004-01-01

    In this study, we investigated how rhythms are processed in the brain by measuring both behaviourally obtained ratings and auditory evoked potentials (AEPs) from the EEG. We presented probe beats on seven positions within a test bar. Two bars of either a duple- or triple meter rhythm preceded probe

  19. Facilitation of soleus but not tibialis anterior motor evoked potentials before onset of antagonist contraction

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Zuur, Abraham Theodore; Nielsen, Jens Bo

    2008-01-01

    as evidenced by a depression of the soleus H-reflex. The objective of this study was to investigate if motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS) show a similar depression prior to and at the onset of contraction of muscles that are antagonists to the muscle in which......Objective: It is well documented that corticospinal projections to motoneurons of one muscle inhibit antagonist motoneurons through collaterals to reciprocally organized spinal inhibitory interneurons. During and just prior to dorsiflexion of the ankle, soleus motoneurons are thus inhibited...... the MEP is evoked. Methods: Seated subjects (n=11) were instructed to react to an auditory cue by contracting either the tibialis anterior (TA) or soleus muscle of the left ankle to 30% of their maximal dorsiflexion voluntary contraction (MVC) or plantar flexion MVC, respectively. Focal TMS at 1.2 x motor...

  20. Do resting brain dynamics predict oddball evoked-potential?

    Directory of Open Access Journals (Sweden)

    Lee Tien-Wen

    2011-11-01

    Full Text Available Abstract Background The oddball paradigm is widely applied to the investigation of cognitive function in neuroscience and in neuropsychiatry. Whether cortical oscillation in the resting state can predict the elicited oddball event-related potential (ERP is still not clear. This study explored the relationship between resting electroencephalography (EEG and oddball ERPs. The regional powers of 18 electrodes across delta, theta, alpha and beta frequencies were correlated with the amplitude and latency of N1, P2, N2 and P3 components of oddball ERPs. A multivariate analysis based on partial least squares (PLS was applied to further examine the spatial pattern revealed by multiple correlations. Results Higher synchronization in the resting state, especially at the alpha spectrum, is associated with higher neural responsiveness and faster neural propagation, as indicated by the higher amplitude change of N1/N2 and shorter latency of P2. None of the resting quantitative EEG indices predict P3 latency and amplitude. The PLS analysis confirms that the resting cortical dynamics which explains N1/N2 amplitude and P2 latency does not show regional specificity, indicating a global property of the brain. Conclusions This study differs from previous approaches by relating dynamics in the resting state to neural responsiveness in the activation state. Our analyses suggest that the neural characteristics carried by resting brain dynamics modulate the earlier/automatic stage of target detection.

  1. Motor evoked potentials and compound muscle action potentials as prognostic tools for neonates with spina bifida.

    Science.gov (United States)

    Cuppen, Inge; Geerdink, Niels; Rotteveel, Jan J; Mullaart, Reinier; Roeleveld, Nel; Pasman, Jaco W

    2013-03-01

    MEPs and CMAPs as prognostic tools for spina bifida. The aim of this prospective study was to determine the prognostic value of neurophysiological investigations compared to clinical neurological examination in infants with spina bifida. Thirty-six neonates born with spina bifida between 2002 and 2007 were evaluated and followed for 2 years. Lumbar motor evoked potentials (MEPs) and compound muscle action potentials (CMAPs) were obtained at the median age of 2 days old before surgical closure of the spinal anomaly. MEPs were recorded from the quadriceps femoris, tibialis anterior, and gastrocnemius muscles and CMAPs from the latter two muscles. Areas under the curve and latencies of the MEPs and CMAPs were measured. Clinical neurological outcome at the age of 2 years was described using Muscle Function Classes (MFCs) and ambulation status. The areas under the curve of MEPs and CMAPs in the legs were associated with lower neonatal levels of motor and sensory impairment. Better muscle function class of the lower limbs at 2 years of age was associated with larger MEP and CMAP areas of the gastrocnemius and tibialis anterior muscles at neonatal age. MEPs and CMAPs of the gastrocnemius and tibialis anterior muscles are of prognostic value for clinical neurological outcome in neonates born with spina bifida. Copyright © 2012 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Auditory evoked potentials in patients with dementia of the Alzheimer type.

    Science.gov (United States)

    Grimes, A M; Grady, C L; Pikus, A

    1987-06-01

    Dementia of the Alzheimer type (DAT) disrupts the function of the central auditory nervous system as a result of temporal lobe pathology. Auditory brain stem response (ABR) and middle latency responses (MLR) were studied in a group of patients with DAT to determine whether a correlate of dementia existed in these electrophysiological potentials. Comparison of absolute and interwave latencies on ABR, and absolute latency and amplitude of the MLR in patients with DAT and normal aged controls showed no significant differences between groups for any measure. Further, no relationship with degree of dementia or temporal lobe involvement, as assessed through dichotic speech recognition studies, and auditory evoked potentials could be demonstrated. It was concluded that the temporal lobe atrophy and hypometabolism seen in DAT is not generally sufficient to disrupt the generating of ABR and MLR potentials; however, slow cortical and cognitive evoked potentials may be more sensitive to central auditory nervous system impairment in DAT.

  3. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation.

    Science.gov (United States)

    Kammermeier, Stefan; Singh, Arun; Bötzel, Kai

    2017-01-01

    Human multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation. 14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording. Vestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects ("grand average") bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study. Galvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level. Differential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  4. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-11-01

    Full Text Available IntroductionHuman multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation.Methods14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording.ResultsVestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects (“grand average” bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study.ConclusionGalvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level.SignificanceDifferential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  5. The pain-evoked P2 is not a P3a event-related potential.

    Science.gov (United States)

    Dowman, Robert

    2004-01-01

    The topographic pattern and latency of the P2 component of the somatosensory evoked potential elicited by painful electrical stimulation of the sural nerve was compared to the P3a event-related potential evoked by an infrequent task-irrelevant (deviant) innocuous sural nerve stimulus presented as part of the deviant-odd ball paradigm. Conditions typically used to record the sural nerve pain-evoked P2 (multiple stimulus levels, short fixed inter-stimulus intervals, and the subjects engaged in a pain rating task) did not elicit a P3a. The P3a was elicited when the painful stimuli were presented at a long and variable inter-stimulus interval. When present, the P3a occurred immediately following P2. These findings demonstrate that P2 is not a pain-evoked P3a. Rather, the response properties and latency of P2 present the possibility that it indexes a stimulus evaluation process where the sensory input is compared to an environmental template maintained by working memory.

  6. Role of motor evoked potentials in diagnosis of cauda equina and lumbosacral cord lesions.

    Science.gov (United States)

    Di Lazzaro, V; Pilato, F; Oliviero, A; Saturno, E; Dileone, M; Tonali, P A

    2004-12-28

    To determine the diagnostic value of motor evoked potentials (MEPs) in the diagnosis of lumbosacral cord disorders. MEPs in 37 patients with sensory and motor deficits in the lower limbs were studied. MRI demonstrated spinal cord involvement in 10 patients and cauda equina lesions in 27 patients. A double determination of central motor conduction time (CMCT), calculated as the difference between the latencies of responses evoked by cortical and paravertebral magnetic stimulation and as the difference between the latency of cortical MEP and the total peripheral conduction time calculated from the F-wave latency, enabled discrimination between a delay along the proximal root and a delay along the corticospinal tract. An abnormality of the CMCT calculated with both techniques is indicative of central motor pathway damage, whereas an abnormality of the CMCT calculated from the latency of responses evoked by paravertebral magnetic stimulation associated with a normal CMCT calculated from the F-wave latency suggests a cauda equina lesion. Neurophysiologic findings strongly correlated with the lesion site documented by MRI (cauda equina or lumbosacral cord). All patients with MR evidence of cord involvement had an abnormality of CMCT calculated with both methods, suggesting a lesion of central motor pathways. Clinical examination often failed to document a spinal cord lesion, suggesting pure peripheral involvement in 5 of the 10 patients with MR evidence of cord lesion. Motor evoked potential recording is an accurate and easily applicable test for the diagnosis of lumbosacral spinal cord lesions.

  7. Auditory-evoked potentials during coma: do they improve our prediction of awakening in comatose patients?

    Science.gov (United States)

    Rodriguez, Rosendo A; Bussière, Miguel; Froeschl, Michael; Nathan, Howard J

    2014-02-01

    The mismatch negativity (MMN), an auditory event-related potential, has been identified as a good indicator of recovery of consciousness during coma. We explored the predictive value of the MMN and other auditory-evoked potentials including brainstem and middle-latency potentials for predicting awakening in comatose patients after cardiac arrest or cardiogenic shock. Auditory brainstem, middle-latency (Pa wave), and event-related potentials (N100 and MMN waves) were recorded in 17 comatose patients and 9 surgical patients matched by age and coronary artery disease. Comatose patients were followed up daily to determine recovery of consciousness and classified as awakened and nonawakened. Among the auditory-evoked potentials, the presence or absence of MMN best discriminated between patients who awakened or those who did not. Mismatch negativity was present during coma in all patients who awakened (7/7) and in 2 of those (2/10) who did not awaken. In patients who awakened and in whom MMN was detected, 3 of those awakened between 2 and 3 days and 4 between 9 and 21 days after evoked potential examination. All awakened patients had intact N100 waves and identifiable brainstem and middle-latency waves. In nonawakened patients, N100 and Pa waves were detected in 5 cases (50%) and brainstem waves in 9 (90%). The MMN is a good predictor of awakening in comatose patients after cardiac arrest and cardiogenic shock and can be measured days before awakening encouraging ongoing life support. © 2013.

  8. Vestibular Dysfunctions in Cochlear Implant Patients; A Vestibular Evoked Myogenic Potential Study

    Directory of Open Access Journals (Sweden)

    Masoud Motasaddi Zarandy

    2011-12-01

    Full Text Available Background and Aim: Vestibular evoked myogenic potential in response to click or short tone burst stimuli have been used as a clinical test for distinguish saccule and inferior vestibular nerve diseases. Different studies show that cochlear implant could have inverse effects on vestibular structures. We aimed to investigate vestibular evoked myogenic potential in unilateral cochlear implanted individuals in compare to normal individuals.Methods: Thirty-three unilateral cochlear implanted patients (mean age 19.96 years and 30 normal hearing individuals (mean age 24-27 years as control group were enrolled in this cross- sectional study. Absolute latencies and amplitudes of myogenic potential responses were measured and compared in both groups.Results: Myogenic potential recorded in both ears of all controls were normal. No response could be recorded in 16 patients (48.48% from both ears. In three patients, responses were recorded in both ears though the amplitude of waves was reduced in implanted ear. Unilateral response could be recorded in 14 patients only in their non-implanted ear.Conclusion: Vestibular evoked myogenic potential test is a useful tool for assessing saccular function in cochlear implant patients. Damages of osseous spiral lamina and basilar membrane after cochlear implantation could result in dysfunctions of vestibular organs specially saccule. It seems that saccule could be easily damaged after cochlear implantation. This would cause absence or reduced amplitudes in myogenic potential.

  9. Cortical Auditory-Evoked Potential and Behavioral Evidence for Differences in Auditory Processing between Good and Poor Readers.

    Science.gov (United States)

    Barker, Matthew D; Kuruvilla-Mathew, Abin; Purdy, Suzanne C

    2017-06-01

    The relationship between auditory processing (AP) and reading is thought to be significant; however our understanding of this relationship is somewhat limited. Previous studies have investigated the relation between certain electrophysiological and behavioral measures of AP and reading abilities in children. This study attempts to further understand that relation. Differences in AP between good and poor readers were investigated using electrophysiological and behavioral measures. Thirty-two children (15 female) aged 9-11 yr were placed in either a good reader group or poor reader group, based on the scores of a nationally normed reading test in New Zealand. Children were initially tested using an automated behavioral measuring system that runs through a tablet computer known as "Feather Squadron." Following the administration of Feather Squadron, cortical auditory-evoked potentials (CAEPs) were recorded using a speech stimulus (/m/) with the HEARLab(®) Cortical Auditory Evoked Potential Analyzer. The children were evaluated on eight subsections of the Feather Squadron, and CAEP waveform peaks were visually identified and averaged. Separate Kruskal-Wallis analyses were performed for the behavioral and electrophysiological variables, with group (good versus poor readers) serving as the between-group independent variable and scores from the Feather Squadron AP tasks as well as CAEP latencies and amplitudes as dependent variables. After the children's AP status was determined, the entire group was further divided into three groups: typically developing, auditory processing disorder + reading difficulty (APD + RD), and RDs only. Statistical analyses were repeated for these subgroups. Poorer readers showed significantly worse scores than the good readers for the Tonal Pattern 1, Tonal Pattern 2, and Word Double Dichotic Right tasks. CAEP differences observed across groups indicated comorbid effects of RD and AP difficulties. N2 amplitude was significantly smaller for

  10. Increased Evoked Potentials to Arousing Auditory Stimuli during Sleep: Implication for the Understanding of Dream Recall.

    Science.gov (United States)

    Vallat, Raphael; Lajnef, Tarek; Eichenlaub, Jean-Baptiste; Berthomier, Christian; Jerbi, Karim; Morlet, Dominique; Ruby, Perrine M

    2017-01-01

    High dream recallers (HR) show a larger brain reactivity to auditory stimuli during wakefulness and sleep as compared to low dream recallers (LR) and also more intra-sleep wakefulness (ISW), but no other modification of the sleep macrostructure. To further understand the possible causal link between brain responses, ISW and dream recall, we investigated the sleep microstructure of HR and LR, and tested whether the amplitude of auditory evoked potentials (AEPs) was predictive of arousing reactions during sleep. Participants (18 HR, 18 LR) were presented with sounds during a whole night of sleep in the lab and polysomnographic data were recorded. Sleep microstructure (arousals, rapid eye movements (REMs), muscle twitches (MTs), spindles, KCs) was assessed using visual, semi-automatic and automatic validated methods. AEPs to arousing (awakenings or arousals) and non-arousing stimuli were subsequently computed. No between-group difference in the microstructure of sleep was found. In N2 sleep, auditory arousing stimuli elicited a larger parieto-occipital positivity and an increased late frontal negativity as compared to non-arousing stimuli. As compared to LR, HR showed more arousing stimuli and more long awakenings, regardless of the sleep stage but did not show more numerous or longer arousals. These results suggest that the amplitude of the brain response to stimuli during sleep determine subsequent awakening and that awakening duration (and not arousal) is the critical parameter for dream recall. Notably, our results led us to propose that the minimum necessary duration of an awakening during sleep for a successful encoding of dreams into long-term memory is approximately 2 min.

  11. Prandial states modify the reactivity of the gustatory cortex using gustatory evoked potentials in humans

    Directory of Open Access Journals (Sweden)

    Agnès eJACQUIN-PIQUES

    2016-01-01

    Full Text Available Previous functional Magnetic Resonance Imaging studies evaluated the role of satiety on cortical taste area activity and highlighted decreased activation in the orbito-frontal cortex when food was eaten until satiation. The modulation of orbito-frontal neurons (secondary taste area by ad libitum food intake has been associated with the pleasantness of the food’s flavor. The insula and frontal operculum (primary taste area are also involved in reward processing. The aim was to compare human gustatory evoked potentials (GEP recorded in the primary and secondary gustatory cortices in a fasted state with those after food intake. Fifteen healthy volunteers were enrolled in this observational study. In each of two sessions, two GEP recordings were performed (at 11:00 am and 1:30 pm in response to sucrose gustatory stimulation, and a sucrose-gustatory threshold was determined. During one session, a standard lunch was provided between the two GEP recordings. During the other session, subjects had nothing to eat. Hunger sensation, wanting, liking and the perception of the solution’s intensity were evaluated with visual analogue scales. GEP latencies measured in the Pz (p<0.001, Cz (p<0.01, Fz (p<0.001 recordings (primary taste area were longer after lunch than in the pre-prandial condition. Fp1 and Fp2 latencies (secondary taste area tended to be longer after lunch, but the difference was not significant. No difference was observed for the sucrose-gustatory threshold regardless of the session and time. Modifications in the primary taste area activity during the post-prandial period occurred regardless of the nature of the food eaten and could represent the activity of the frontal operculum and insula, which was recently shown to be modulated by gut signals (GLP-1, CCK, ghrelin, or insulin through vagal afferent neurons or metabolic changes of the internal milieu after nutrient absorption. This trial was registered at clinicalstrials.gov as NCT

  12. Electrocochleography potentials evoked by condensation and rarefaction clicks independently derived by a new numerical filtering approach.

    Science.gov (United States)

    Sparacino, G; Milani, S; Magnavita, V; Arslan, E

    2000-01-01

    The cochlear microphonic potential (CM) and the compound action potential (CAP) cannot be measured separately but only in combination. In the literature their individual estimates are conventionally recovered by the so-called CM cancellation technique. This method averages the potential obtained in response to rarefaction and condensation clicks under the assumption that changing the polarity of the clicks only affects the CM sign and does not alter the CAP in any way. However, both theory and evidence suggest that these hypotheses can be critical. In addition, recent contributions in the electrocochleography (ECochG) literature suggested that assessing the influence of stimulus polarity on the evoked CAP may constitute an indicator of clinical usefulness which the CM cancellation method cannot supply. In this work we propose a new algorithm to estimate the cochlear potentials evoked from positive clicks, CAP+ and CM+, and those evoked from negative clicks, CAP- and CM-, by processing the same kind and amount of data employed in the CM cancellation method. The application to real data taken from 3 subjects exhibiting quantitatively and qualitatively different ECochG responses at various levels of stimulation intensity is presented. In addition, simulated problems where the true CAP and CM are known are studied to permit a fair assessment of the proposed technique. Results suggest that the new algorithm is potentially able to point out small differences between CAP+ and CAP-. This encourages its further employment on a larger scale. Copyright 2000 S. Karger AG, Basel

  13. Does filtering and smoothing of average evoked potentials really pay? A statistical comparison.

    Science.gov (United States)

    Möcks, J; Gasser, T; Köhler, W; De Weerd, J P

    1986-11-01

    Averaging of sweeps to obtain evoked potentials provides an unsatisfactory reduction of the background activity for a small number of stimuli. A posteriori Wiener filtering, time varying filtering, and smoothing of the average EP have been proposed to meet this problem. As to a posteriori Wiener filtering, a controversy regarding its merits has been going on for several years. The present paper gives a statistical comparison of the above methods, based on real data of two groups of subjects (flash evoked potentials in 41 subjects, pattern reversal evoked potentials in 9 subjects). It is shown that most of the improvement of the filtering approaches was due to an attenuation effect, without any improvement in smoothness of the potentials. The strength of the attenuation introduced by the filtering approaches depended on the specific underlying signal-to-noise ratio. This effect led to an artificially enhanced interindividual variability and could intraindividually lead to biased topographical distribution, when several electrodes are considered. The smoothing method did not show this undesired feature, but, when applying strong smoothing, this method also rendered sizable distortions of the potentials.

  14. Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials.

    Directory of Open Access Journals (Sweden)

    Heike Althen

    Full Text Available The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN, an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system.

  15. Spatial characteristics of evoked potentials elicited by a MEMS microelectrode array for suprachoroidal-transretinal stimulation in a rabbit.

    Science.gov (United States)

    Yan, Yan; Sui, Xiaohong; Liu, Wenjia; Lu, Yiliang; Cao, Pengjia; Ma, Zengguang; Chen, Yao; Chai, Xinyu; Li, Liming

    2015-09-01

    Suprachoroidal-transretinal stimulation (STS) can potentially restore vision. This study investigated the spatial characteristics of cortical electrical evoked potentials (EEPs) elicited by STS. A 4 × 4 thin-film platinum microelectrode stimulating array (200 μm electrode diameter and 400 μm center-to-center distance) was fabricated by a micro-electro-mechanical systems (MEMS) techniques and implanted into the suprachoroidal space of albino rabbits. The current threshold to elicit reliable EEPs by a single electrode was 41.6 ± 12.6 μA, corresponding to a 66.2 ± 20.1 μC · cm(-2) charge density per phase, which was lower than the reported safety limits. Spatially differentiated cortical responses could be evoked by STS through different rows or columns of electrical stimulation; furthermore, shifts in the location of the maximum cortical activities were consistent with cortical visuotopic maps; increasing the number of simultaneously stimulating electrodes increased the response amplitudes of EEPs and expanded the spatial spread as well. In addition, long-term implantation and electrical stimulation of the MEMS electrode array in suprachoroidal space are necessary to evaluate systematically the safety and biocompatibility of this approach. This study indicates that the STS approach by a MEMS-based platinum electrode array is a feasible alternative for visual restoration, and relatively high spatial discrimination may be achieved.

  16. Long latency auditory evoked potentials in children with cochlear implants: systematic review.

    Science.gov (United States)

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Matas, Carla Gentile; Carvalho, Ana Claudia Martinho de

    2013-11-25

    The aim of this study was to analyze the findings on Cortical Auditory Evoked Potentials in children with cochlear implant through a systematic literature review. After formulation of research question and search of studies in four data bases with the following descriptors: electrophysiology (eletrofisiologia), cochlear implantation (implante coclear), child (criança), neuronal plasticity (plasticidade neuronal) and audiology (audiologia), were selected articles (original and complete) published between 2002 and 2013 in Brazilian Portuguese or English. A total of 208 studies were found; however, only 13 contemplated the established criteria and were further analyzed; was made data extraction for analysis of methodology and content of the studies. The results described suggest rapid changes in P1 component of Cortical Auditory Evoked Potentials in children with cochlear implants. Although there are few studies on the theme, cochlear implant has been shown to produce effective changes in central auditory path ways especially in children implanted before 3 years and 6 months of age.

  17. Increased Evoked Potentials to Arousing Auditory Stimuli during Sleep: Implication for the Understanding of Dream Recall

    OpenAIRE

    Vallat, Raphael; Lajnef, Tarek; Eichenlaub, Jean-Baptiste; Berthomier, Christian; Jerbi, Karim; Morlet, Dominique; Ruby, Perrine M.

    2017-01-01

    High dream recallers (HR) show a larger brain reactivity to auditory stimuli during wakefulness and sleep as compared to low dream recallers (LR) and also more intra-sleep wakefulness (ISW), but no other modification of the sleep macrostructure. To further understand the possible causal link between brain responses, ISW and dream recall, we investigated the sleep microstructure of HR and LR, and tested whether the amplitude of auditory evoked potentials (AEPs) was predictive of arousing react...

  18. Influence of electrode site and size on variability of magnetic evoked potentials.

    Science.gov (United States)

    Dunnewold, R J; van der Kamp, W; van den Brink, A M; Stijl, M; van Dijk, J G

    1998-12-01

    Successive magnetic evoked potentials (MEPs) concern varying motor neurons. We investigated whether this MEP-specific source of variability depends on electrode site and size. Amplitude variability (standard deviation) was largest over the center of the hypothenar muscles. Latencies were longer at distal and proximal sites than at the center site. Large electrodes (10 cm2) did not decrease this source of amplitude variability compared with EEG electrodes, in contrast to other sources of variability.

  19. Temporal processing and long-latency auditory evoked potential in stutterers

    Directory of Open Access Journals (Sweden)

    Raquel Prestes

    Full Text Available Abstract Introduction: Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. Objective: To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. Methods: The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n = 20 and non-stutters (n = 21, compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Results: Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Conclusion: Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components.

  20. Functional MRI brain imaging studies using the Contact Heat Evoked Potential Stimulator (CHEPS) in a human volunteer topical capsaicin pain model

    Science.gov (United States)

    Shenoy, Ravikiran; Roberts, Katherine; Papadaki, Anastasia; McRobbie, Donald; Timmers, Maarten; Meert, Theo; Anand, Praveen

    2011-01-01

    Acute application of topical capsaicin produces spontaneous burning and stinging pain similar to that seen in some neuropathic states, with local hyperalgesia. Use of capsaicin applied topically or injected intradermally has been described as a model for neuropathic pain, with patterns of activation in brain regions assessed using functional magnetic resonance imaging (fMRI) and positron emission tomography. The Contact Heat Evoked Potential Stimulator (CHEPS) is a noninvasive clinically practical method of stimulating cutaneous A-delta nociceptors. In this study, topical capsaicin (1%) was applied to the left volar forearm for 15 minutes of twelve adult healthy human volunteers. fMRI scans and a visual analog pain score were recorded during CHEPS stimulation precapsaicin and postcapsaicin application. Following capsaicin application there was a significant increase in visual analog scale (mean ± standard error of the mean; precapsaicin 26.4 ± 5.3; postcapsaicin 48.9 ± 6.0; P < 0.0001). fMRI demonstrated an overall increase in areas of activation, with a significant increase in the contralateral insular signal (mean ± standard error of the mean; precapsaicin 0.434 ± 0.03; postcapsaicin 0.561 ± 0.07; P = 0.047). The authors of this paper recently published a study in which CHEPS-evoked A-delta cerebral potential amplitudes were found to be decreased postcapsaicin application. In patients with neuropathic pain, evoked pain and fMRI brain responses are typically increased, while A-delta evoked potential amplitudes are decreased. The protocol of recording fMRI following CHEPS stimulation after topical application of capsaicin could be combined with recording of evoked potentials to provide a simple, rapid, and robust volunteer model to develop novel drugs for neuropathic pain. PMID:22090805

  1. Suboccipital craniotomy for Chiari I results in evoked potential conduction changes

    Science.gov (United States)

    Chen, Jason A.; Coutin-Churchman, Pedro E.; Nuwer, Marc R.; Lazareff, Jorge A.

    2012-01-01

    Background: Management of Chiari I is controversial, in part because there is no widely used quantitative measurement of decompression. It has been demonstrated that brainstem auditory evoked responses (BAER) and somatosensory evoked potentials (SSEP) have decreased conduction latencies after wide craniectomy. We analyzed these parameters in a suboccipital craniectomy/craniotomy procedure. Methods: Thirteen consecutive patients underwent suboccipital decompression for treatment of symptomatic Chiari I. Craniectomy was restricted to the inferior aspect of the nuchal line, and in most cases the bone flap was replaced. Neuronal conduction was monitored continuously with median nerve somatosensory evoked potentials (M-SEP), posterior tibial nerve somatosensory evoked potentials (T-SEP), BAER, or a combination. The M-SEP N20, T-SEP P37, and BAER V latencies were recorded at four milestones – preoperatively, following craniotomy, following durotomy, and following closure. Results: Five males and eight females, with average age of 9 years, were studied. Clinical improvement was noted in all 13 patients. M-SEP N20 latency decreased from a mean of 18.55 at baseline to 17.75 ms after craniotomy (P = 0.01); to 17.06 ms after durotomy (P = 0.01); and to 16.68 ms after closing (P = 0.02). T-SEP P37 latency did not change significantly. BAER V latency decreased from a mean of 6.25 ms at baseline to 6.14 ms after craniotomy (P = 0.04); to 5.98 ms after durotomy (P = 0.01); and to 5.95 ms after closing (P = 0.45). Conclusion: Significant improvements in conduction followed both craniectomy and durotomy. Bone replacement did not affect these results. PMID:23372981

  2. Differential effects of lysergic acid diethylamide, methysergide, and cyproheptadine on modality-specific and nonspecific sensory evoked potentials.

    Science.gov (United States)

    Wilkison, D M; Hosko, M J

    1983-11-01

    The effects of lysergic acid diethylamide (LSD), methysergide, and cyproheptadine on activity in classical primary pathways of the visual and somatosensory systems were compared with their effects on activity in sensory convergent (association) regions in alpha-chloralose-anesthetized cats. Those effects were blocked by cyproheptadine whereas methysergide potentiated the actions of LSD on visual primary activity. In contrast, LSD depressed the primary somatic pathway, at small doses (25 to 50 micrograms/kg) and facilitated the response at larger doses (200 micrograms/kg). Cyproheptadine and methysergide did not agonize these actions of LSD. The anterior marginal cortex, nucleus central median-parafascicularis, nucleus lateral posterior, and the superior colliculus, all sites of heterosensory convergence, were depressed by LSD. The depression of responses at heterosensory sites by LSD was blocked by cyproheptadine. Methysergide potentiated the LSD-induced depression of visual-evoked activity but not somatosensory activity. These results suggest that LSD depresses sensory activity in regions which integrate multiple sensory modalities independently of actions on sensory-specific pathways. These effects appear to involve a cyproheptadine-sensitive system.

  3. Cholinergic Potentiation of Restoration of Visual Function after Optic Nerve Damage in Rats

    Directory of Open Access Journals (Sweden)

    Mira Chamoun

    2017-01-01

    Full Text Available Enhancing cortical plasticity and brain connectivity may improve residual vision following a visual impairment. Since acetylcholine plays an important role in attention and neuronal plasticity, we explored whether potentiation of the cholinergic transmission has an effect on the visual function restoration. To this end, we evaluated for 4 weeks the effect of the acetylcholinesterase inhibitor donepezil on brightness discrimination, visually evoked potentials, and visual cortex reactivity after a bilateral and partial optic nerve crush in adult rats. Donepezil administration enhanced brightness discrimination capacity after optic nerve crush compared to nontreated animals. The visually evoked activation of the primary visual cortex was not restored, as measured by evoked potentials, but the cortical neuronal activity measured by thallium autometallography was not significantly affected four weeks after the optic nerve crush. Altogether, the results suggest a role of the cholinergic system in postlesion cortical plasticity. This finding agrees with the view that restoration of visual function may involve mechanisms beyond the area of primary damage and opens a new perspective for improving visual rehabilitation in humans.

  4. Neonatal Cortical Auditory Evoked Potentials Are Affected by Clinical Conditions Occurring in Early Prematurity.

    Science.gov (United States)

    Suppiej, Agnese; Cainelli, Elisa; Cappellari, Ambra; Ermani, Mario; Sartori, Stefano; Bisiacchi, Patrizia S

    2015-10-01

    Cortical auditory evoked potentials may serve as an early indicator of developmental problems in the auditory cortex. The aim of the study was to determine the effect on neonatal cortical auditory processing of clinical conditions occurring in early prematurity. Sixty-seven preterm infants born at 29 weeks mean gestational age (range, 23-34 weeks) were recorded at a mean postconception age of 35 weeks, before discharge from the third level neonatal intensive care unit. The average of 330 responses to standard 1000 Hz pure tones delivered in an oddball paradigm was recorded at frontal location. Data of 45 of 67 recruited premature infants were available for analysis. Mean amplitudes calculated from the data points of 30 milliseconds centered on P1 and N2 peaks in the waveforms of each subject were measured. The effect of perinatal clinical factors on cortical auditory evoked responses was evaluated. The amplitude of P1 component was significantly lower in infants with bronco-pulmonary dysplasia (P = 0.004) and retinopathy of prematurity (P = 0.03). The multivariate analysis, done to evaluate the relative weight of gestational age and bronco-pulmonary dysplasia and/or retinopathy of prematurity on cortical auditory evoked potentials components, showed an effect of clinical factors on P1 (P = 0.005) and of gestational age on N2 (P = 0.02). Cortical auditory processing seems to be influenced by clinical conditions complicating extremely preterm birth.

  5. Human cerebrocortical potentials evoked by stimulation of the dorsal nerve of the penis.

    Science.gov (United States)

    Bradley, W E; Farrell, D F; Ojemann, G A

    1998-01-01

    Cortical evoked potentials resulting from stimulation of the dorsal nerve of the penis (DNP) provide a unique opportunity to document the cortical localization of sexual sensory representation in man. The DNP supplies sensory axons to the major portion of the human phallus, including the penile shaft and glans. Animal and human studies indicate that this nerve plays a crucial role in erection and ejaculation. Direct cortical evoked responses to DNP electrical stimulation were recorded in patients undergoing preoperative evaluation for resection of epileptic foci. These studies provided evidence that the primary sensory cortex contains a large area of cortex devoted to the afferent fibers of the DNP and that the sensory field is in a different location than previously described. The location and distribution of this response indicated the need for revision of the traditional concept of the sensory cortical homunculus.

  6. Effect of neck flexion on somatosensory and motor evoked potentials in Hirayama disease.

    Science.gov (United States)

    Abraham, A; Gotkine, M; Drory, V E; Blumen, S C

    2013-11-15

    Hirayama disease (HD) is a rare motor disorder mainly affecting young men, characterized by atrophy and weakness of forearm and hand muscles corresponding to a C7-T1 myotome distribution. The weakness is usually unilateral or asymmetric and progression usually stops within several years. The etiology of HD is not well understood. One hypothesis, mainly based on MRI findings, is that the weakness is a consequence of cervical flexion myelopathy. The aim of this study was to explore the function of corticospinal and ascending somatosensory pathways during neck flexion using evoked responses. 15 men with HD and 7 age-matched control male subjects underwent somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) studies with the neck in neutral position and fully flexed. SSEP studies included electrical stimulation of median and ulnar nerves at the wrist, and tibial nerve at the ankle with recording over the ipsilateral Erb's point, cervical spine, and contralateral sensory cortex. MEP recordings were obtained by magnetic stimulation of the motor cortex and the cervical lower spinal roots; the evoked responses were recorded from the contralateral thenar and abductor hallucis muscles. MEP recordings demonstrated significant lower amplitudes, and slightly prolonged latencies in HD patients on cervical stimulation, compared to control subjects. During neck flexion, MEP studies also demonstrated a statistically significant drop in mean upper limb amplitude on cervical stimulation in HD patients, as well as in control subjects, although to a lesser degree. In contrast, no significant differences were found in SSEP studies in HD patients compared to control subjects, or between neutral and flexed position in these groups. The study shows a negative effect of cervical flexion on MEP amplitudes in HD patients as well as in control subjects, requiring more studies to investigate its significance. Neck flexion did not have an influence on any SSEP parameters in

  7. Spatial summation revealed in the earliest visual evoked component C1 and the effect of attention on its linearity.

    Science.gov (United States)

    Chen, Juan; Yu, Qing; Zhu, Ziyun; Peng, Yujia; Fang, Fang

    2016-01-01

    In natural scenes, multiple objects are usually presented simultaneously. How do specific areas of the brain respond to multiple objects based on their responses to each individual object? Previous functional magnetic resonance imaging (fMRI) studies have shown that the activity induced by a multiobject stimulus in the primary visual cortex (V1) can be predicted by the linear or nonlinear sum of the activities induced by its component objects. However, there has been little evidence from electroencephelogram (EEG) studies so far. Here we explored how V1 responded to multiple objects by comparing the EEG signals evoked by a three-grating stimulus with those evoked by its two components (the central grating and 2 flanking gratings). We focused on the earliest visual component C1 (onset latency of ∼50 ms) because it has been shown to reflect the feedforward responses of neurons in V1. We found that when the stimulus was unattended, the amplitude of the C1 evoked by the three-grating stimulus roughly equaled the sum of the amplitudes of the C1s evoked by its two components, regardless of the distances between these gratings. When the stimulus was attended, this linear spatial summation existed only when the three gratings were far apart from each other. When the three gratings were close to each other, the spatial summation became compressed. These results suggest that the earliest visual responses in V1 follow a linear summation rule when attention is not involved and that attention can affect the earliest interactions between multiple objects. Copyright © 2016 the American Physiological Society.

  8. the variability in P300 cognitive evoked potential amplitude in the auditory oddball paradigm

    Directory of Open Access Journals (Sweden)

    Biševac B.

    2015-01-01

    Full Text Available One of the best-studied responses of cognitive evoked potentials is a so-called 'P300', the late positive wave complex that occurs about 300-500 ms after the stimulus. It is obtained when the subject's attention is focused on a signal that is rare, especially if the signal has a motivational or emotional meaning. In the study of P300 potential, we followed the variations of potential amplitude and latency, so the objective was to examine whether there is a difference in Fz and Cz amplitudes of auditory induced cognitive evoked P300 potential depending on the performance of oddball tasks, both in male and female subjects. The study included 60 subjects (30 female respondents and 30 male respondents. P300 potential is induced by the auditory 'oddball' paradigm with 80% of non-target and 20% of target stimuli that are presented to the patient through headphones. The target tones are high tones of 2000 Hz. The standard, 1000 Hz tones the respondent should ignore but when he hears the target tones the respondent should press the button on the special handle. The value of Fz and Cz amplitudes both in male and female subjects obtained in the classical 'oddball' paradigm when the subject reacted to the signal by pressing the key with the dominant (right arm were statistically significantly lower (p>0,05 than the values of Fz and Cz amplitudes obtained when the key was pressed by the non-dominant hand. Based on this experiment it can be concluded that both in male and female subjects the performance of oddball tasks does not affect the amplitude of P300 cognitive evoked potentials.

  9. The vestibular evoked-potential profile of Ménière's disease.

    Science.gov (United States)

    Taylor, Rachael L; Wijewardene, Ayanthi A; Gibson, William P R; Black, Deborah A; Halmagyi, G Michael; Welgampola, Miriam S

    2011-06-01

    To define the ocular and cervical vestibular evoked myogenic potential (oVEMP and cVEMP) profile in Ménière's Disease (MD), we studied air-conducted (AC) sound and bone-conducted vibration (BCV)-evoked responses in 77 patients and 35 controls. oVEMPs were recorded from unrectified infra-orbital surface electromyography (EMG) during upward gaze. cVEMPs were recorded from rectified and unrectified sternocleidomastoid EMG during head elevation against gravity. Responses to AC clicks delivered via headphones and BC forehead taps delivered with a mini-shaker (bone-conduction vibrator) and a triggered tendon-hammer were recorded. In clinically definite unilateral MD (n=60), the prevalence of unilateral VEMP abnormalities was 50.0%, 10.2% and 11.9% for click, minitap and tendon-hammer evoked oVEMPs, 40.0%, 22.8% and 10.7% for click, minitap and tendon-hammer evoked cVEMPs. The most commonly observed profile was abnormality to AC stimulation alone (33.3%), followed by abnormalities to both AC and BCV stimuli (26.7%). Isolated abnormalities to BCV stimuli were rare (5%) and limited to the minitap cVEMP. The prevalence of abnormalities for each of the AC VEMPs was significantly higher than for any one BCV VEMP. For click cVEMP, click oVEMP and minitap cVEMP, average Reflex Asymmetry Ratios (AR) were significantly higher in MD compared with controls. Test results for AC cVEMP, AC oVEMP, minitap cVEMP and caloric asymmetry were significantly correlated with hearing loss. Predominance of abnormalities in oVEMP and cVEMP responses to AC sound is characteristic of MD and indicative of saccular involvement. This pattern of VEMP abnormalities may enable separation of Ménière's disease from other peripheral vestibulopathies. Copyright © 2010 International Federation of Clinical Neurophysiology. All rights reserved.

  10. Comparison of binaural auditory brainstem responses and the binaural difference potential evoked by chirps and clicks.

    Science.gov (United States)

    Riedel, Helmut; Kollmeier, Birger

    2002-07-01

    Rising chirps that compensate for the dispersion of the travelling wave on the basilar membrane evoke larger monaural brainstem responses than clicks. In order to test if a similar effect applies for the early processing stages of binaural information, monaurally and binaurally evoked auditory brainstem responses were recorded for clicks and chirps for levels from 10 to 60 dB nHL in steps of 10 dB. Ten thousand sweeps were collected for every stimulus condition from 10 normal hearing subjects. Wave V amplitudes are significantly larger for chirps than for clicks for all conditions. The amplitude of the binaural difference potential, DP1-DN1, is significantly larger for chirps at the levels 30 and 40 dB nHL. Both the binaurally evoked potential and the binaural difference potential exhibit steeper growth functions for chirps than for clicks for levels up to 40 dB nHL. For higher stimulation levels the chirp responses saturate approaching the click evoked amplitude. For both stimuli the latency of DP1 is shorter than the latency of the binaural wave V, which in turn is shorter than the latency of DN1. The amplitude ratio of the binaural difference potential to the binaural response is independent of stimulus level for clicks and chirps. A possible interpretation is that with click stimulation predominantly binaural interaction from high frequency regions is seen which is compatible with a processing by contralateral inhibitory and ipsilateral excitatory (IE) cells. Contributions from low frequencies are negligible since the responses from low frequencies are not synchronized for clicks. The improved synchronization at lower frequencies using chirp stimuli yields contributions from both low and high frequency neurons enlarging the amplitudes of the binaural responses as well as the binaural difference potential. Since the constant amplitude ratio of the binaural difference potential to the binaural response makes contralateral and ipsilateral excitatory interaction

  11. Olfactory Cerebral Evoked Potentials for Pleasant and Unpleasant Smells in Humans

    Directory of Open Access Journals (Sweden)

    Tomohiko Igasaki

    2011-10-01

    Full Text Available The relationship between sensory estimation and evoked potential when pleasant or unpleasant smell delivered to human nose was investigated. Ten healthy men participated. First, the subject was presented gamma-undecalactone (pleasant smell or isovaleric acid (unpleasant smell, and instructed to estimate the odor magnitude and pleasantness/unpleasantness (sensory test session. Then, evoked potentials of the subject were measured from 19 scalp electrodes when pleasant or unpleasant smell were delivered 100 times to the subject, respectively (EEG measurement session. In the sensory test session, both the evaluation of odor magnitude and pleasantness/unpleasantness were significantly changed according to the concentration of smells. On the Pz scalp electrode, the positive potentials at the latency of 610 ms and 450 ms were observed in the pleasant and unpleasant stimulation, respectively. Statistically, it was found that the variance of the positive potential latency in unpleasant stimulation was significantly smaller than that in pleasant stimulation. It was also found that the positive potential latency in unpleasant stimulation was significantly earlier than that in pleasant stimulation. The small variance of latency and the earlier latency for unpleasant smell could be considered to reflect human behavior, such as quick reaction for avoiding dangerous odor to save one's life.

  12. Cortical somatosensory-evoked potentials during spine surgery in patients with neuromuscular and idiopathic scoliosis under propofol-remifentanil anaesthesia

    NARCIS (Netherlands)

    Hermanns, H.; Lipfert, P.; Meier, S.; Jetzek-Zader, M.; Krauspe, R.; Stevens, M. F.

    2007-01-01

    BACKGROUND: Intraoperative monitoring of the spinal cord via cortical somatosensory-evoked potentials (SSEP) is a routine during spinal surgery. However, especially in neuromuscular scoliosis, the reliability of cortical SSEP has been questioned. Therefore, we compared the feasibility of cortical

  13. Cold Saline Injection Attenuates Motor-evoked Potential in the Spinal Cord by Cortical Electrical Stimulation in the Dog

    OpenAIRE

    Kumagai, Hajime; Sugawara, Yuji; Isaka, Mitsuhiro; Okada, Kenji; Orihashi, Kazumasa; Sueda, Taijiro

    2005-01-01

    Changes in the motor-evoked potential of the spinal cord with transcranial stimulation are monitored for spinal cord function during thoracoabdominal aortic aneurysm surgeries. We examined the effects of changes in motor-evoked potential with cold saline injected into the clamped segment of the aorta, and compared the effects to lidocaine and warm saline injection.   Eighteen dogs were divided into three groups according to the injected agents: Warm saline group (37°C, 20 ml), Cold saline...

  14. Changes in brainstem auditory evoked potentials among North Indian females with Type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Pooja Baweja

    2013-01-01

    Full Text Available Background: Diabetes mellitus is a complex metabolic disorder whose detrimental effects on various organ systems, including the nervous system are well known. Aim: This study was conducted to determine the changes in the brainstem auditory evoked potentials (BAEP in patients with type 2 diabetes mellitus. Materials and Methods: In this case-control study, 116 females with type 2 diabetes and 100 age matched, healthy female volunteers were selected. The brainstem auditory evoked potentials (BAEP were recorded with RMS EMG EP Marc-II Channel machine. The measures included latencies of waves I, II, III, IV, V and Interpeak latencies (IPL I-III, III-V and I-V separately for both ears. Data was analysed statistically with SPSS software v13.0. Results: It was found that IPL I-III was significantly delayed (P = 0.028 only in the right ear, while the latency of wave V and IPL I-V showed a significant delay bilaterally (P values for right ear being 0.021 and 0.0381 respectively while those for left ear being 0.028 and 0.016 respectively, in diabetic females. However, no significant difference (P > 0.05 was found between diabetic and control subjects as regards to the latencies of waves I, II, III, IV and IPL III-V bilaterally and IPL I-III unilaterally in the left ear. Also, none of the BAEP latencies were significantly correlated with either the duration of disease or with fasting blood glucose levels in diabetics. Conclusions: Therefore, it could be concluded that diabetes patients have an early involvement of central auditory pathway, which can be detected quite accurately with the help of auditory evoked potential studies.

  15. The investigation of cortical auditory evoked potentials responses in young adults having musical education.

    Science.gov (United States)

    Polat, Zahra; Ataş, Ahmet

    2014-12-01

    In the literature, music education has been shown to enhance auditory perception for children and young adults. When compared to young adult non-musicians, young adult musicians demonstrate increased auditory processing, and enhanced sensitivity to acoustic changes. The evoked response potentials associated with the interpretation of sound are enhanced in musicians. Studies show that training also changes sound perception and cortical responses. The earlier training appears to lead to larger changes in the auditory cortex. Most cortical studies in the literature have used pure tones or musical instrument sounds as stimuli signals. The aim of those studies was to investigate whether musical education would enhance auditory cortical responses when speech signals were used. In this study, the speech sounds extracted from running speech were used as sound stimuli. Non-randomized controlled study. The experimental group consists of young adults up to 21 years-old, all with a minimum of 4 years of musical education. The control group was selected from young adults of the same age without any musical education. The experiments were conducted by using a cortical evoked potential analyser and /m/, /t/ /g/ sound stimulation at the level of 65 dB SPL. In this study, P1 / N1 / P2 amplitude and latency values were measured. Significant differences were found in the amplitude values of P1 and P2 (p0.05). The results obtained in our study indicate that musical experience has an effect on the nervous system and this can be seen in cortical auditory evoked potentials recorded when the subjects hear speech.

  16. Normal postexercise facilitation and depression of motor evoked potentials in postpolio patients.

    Science.gov (United States)

    Samii, A; Lopez-Devine, J; Wasserman, E M; Dalakas, M C; Clark, K; Grafman, J; Hallett, M

    1998-07-01

    We studied the effects of exercise on motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation in healthy subjects and postpolio patients. Subjects performed repeated sets of isometric exercise until the muscle fatigued. In both groups, the mean MEP amplitude immediately after each exercise set was approximately twice that of the baseline amplitude, indicating similar postexercise facilitation, and after fatigue was approximately half that of the baseline amplitude, indicating similar postexercise depression. We conclude that the intracortical component of central fatigue is normal in postpolio patients.

  17. Assessment of an ICA-based noise reduction method for multi-channel auditory evoked potentials

    Science.gov (United States)

    Mirahmadizoghi, Siavash; Bell, Steven; Simpson, David

    2015-03-01

    In this work a new independent component analysis (ICA) based method for noise reduction in evoked potentials is evaluated on for auditory late responses (ALR) captured with a 63-channel electroencephalogram (EEG) from 10 normal-hearing subjects. The performance of the new method is compared with a single channel alternative in terms of signal to noise ratio (SNR), the number of channels with an SNR above an empirically derived statistical critical value and an estimate of hearing threshold. The results show that the multichannel signal processing method can significantly enhance the quality of the signal and also detected hearing thresholds significantly lower than with the single channel alternative.

  18. Effect of epidural clonidine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1989-01-01

    The effect of lumbar epidural clonidine 150 micrograms on early (less than 0.5 s) somatosensory evoked potentials (SEP) to electrical stimulation of the L1 and S1 dermatomes was examined in twelve cancer patients. Epidural clonidine led to a minor but significant decrease in amplitude of two...... systolic and diastolic blood pressures decreased from 118 +/- 4/72 +/- 5 mmHg to 99 +/- 5/60 +/- 3 mmHg (P less than 0.01), respectively. It is concluded that epidural clonidine has a minor effect on the early SEPs to electrical dermatomal stimulation. Additionally, a pronounced effect on cancer pain...

  19. [Forensic application of brainstem auditory evoked potential in patients with brain concussion].

    Science.gov (United States)

    Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin

    2008-12-01

    To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (Pbrain concussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.

  20. Proprioceptive evoked potentials in man: cerebral responses to changing weight loads on the hand

    DEFF Research Database (Denmark)

    Arnfred, S; He, Chen; Eder, D

    2000-01-01

    We studied cerebral evoked potentials on the scalp to the stimulation of the right hand from a change in weight of 400-480 g in ten subjects. Rise-time was 20g/10 ms, Inter Stimulus Interval 2s and stimulus duration was 100 ms. The cerebral activations were a double positive contralateral C3'/P70......). Further studies of the PEP are needed to assess the influence of load manipulations and of muscle contraction and to explore the effect of attentional manipulation....

  1. A Case Report of Intraoperative Monitoring During the Spinal Surgery by Means of Somatosensory Evoked Potentials

    Directory of Open Access Journals (Sweden)

    S.K. Shakoori

    2006-01-01

    Full Text Available Introduction : To prevent spinal lesions during surgery we can use somatosensory evoked potentials (SSEP to monitor the patients who are under surgery particularly the ones under the spinal cord surgery. Case Report: The following case refers to the monitoring of a 23 year – old youth with the use of Intraoperative SSEP who has been under the operation of tumor removal with the diagnosis of space occupying mass in the conous region of spine in Tabriz Shohada Hospital. Conclusion: SSEP study for left tibial nerve after surgery was the same as before surgery. Pathology diagnosis was epandymom. Patient gave recovery process in few days.

  2. The influence of anesthetic depth on motor evoked potential response during awake craniotomy

    OpenAIRE

    Ohtaki, Shunya

    2016-01-01

    術中のMEP(motor evoked potential)の振幅および潜時は麻酔深度に影響される. またMEP振幅のdeviationに関しても麻酔深度と相関し, 覚醒下ではdeviationが小さい. 覚醒下手術におけるMEPの測定は, 術中の運動機能評価をより正確に行うことが出来る可能性が示唆される.

  3. Unmasking of an early laser evoked potential by a point localization task

    DEFF Research Database (Denmark)

    Valeriani, M.; Restuccia, D.; Le Pera, D.

    2000-01-01

    dorsum, and the subjects were asked to identify the stimulated area. The mean error rate in point localization was 4.5%. (2) Non-task condition: laser pulses were delivered on the first intermetacarpal space, and the subject was asked to count the number of stimuli. The mean error rate in counting was 5......Objectives: The investigation of the CO2 laser evoked potential (LEP) modifications following a point localization task. Methods: LEPs were recorded from 10 healthy subjects in two different conditions. (1) Task condition: laser stimuli were shifted among 3 different locations on the right hand...

  4. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials.

    Science.gov (United States)

    Niazi, Imran Khan; Mrachacz-Kersting, Natalie; Jiang, Ning; Dremstrup, Kim; Farina, Dario

    2012-07-01

    This paper proposes the development and experimental tests of a self-paced asynchronous brain-computer interfacing (BCI) system that detects movement related cortical potentials (MRCPs) produced during motor imagination of ankle dorsiflexion and triggers peripheral electrical stimulations timed with the occurrence of MRCPs to induce corticospinal plasticity. MRCPs were detected online from EEG signals in eight healthy subjects with a true positive rate (TPR) of 67.15 ± 7.87% and false positive rate (FPR) of 22.05 ±9.07%. The excitability of the cortical projection to the target muscle (tibialis anterior) was assessed before and after the intervention through motor evoked potentials (MEP) using transcranial magnetic stimulation (TMS). The peak of the evoked potential significantly (P=0.02) increased after the BCI intervention by 53 ± 43% (relative to preintervention measure), although the spinal excitability (tested by stretch reflexes) did not change. These results demonstrate for the first time that it is possible to alter the corticospinal projections to the tibialis anterior muscle by using an asynchronous BCI system based on online motor imagination that triggered peripheral stimulation. This type of repetitive proprioceptive feedback training based on self-generated brain signal decoding may be a requirement for purposeful skill acquisition in intact humans and in the rehabilitation of persons with brain damage.

  5. Functional MRI brain imaging studies using the Contact Heat Evoked Potential Stimulator (CHEPS in a human volunteer topical capsaicin pain model

    Directory of Open Access Journals (Sweden)

    Shenoy R

    2011-10-01

    Full Text Available Ravikiran Shenoy1, Katherine Roberts1, Anastasia Papadaki2, Donald McRobbie2, Maarten Timmers3, Theo Meert3, Praveen Anand11Peripheral Neuropathy Unit, Hammersmith Hospital, Imperial College London; 2Imaging Sciences Department, Charing Cross Hospital, London, United Kingdom; 3Johnson and Johnson Pharmaceutical Research and Development, Beerse, BelgiumAbstract: Acute application of topical capsaicin produces spontaneous burning and stinging pain similar to that seen in some neuropathic states, with local hyperalgesia. Use of capsaicin applied topically or injected intradermally has been described as a model for neuropathic pain, with patterns of activation in brain regions assessed using functional magnetic resonance imaging (fMRI and positron emission tomography. The Contact Heat Evoked Potential Stimulator (CHEPS is a noninvasive clinically practical method of stimulating cutaneous A-delta nociceptors. In this study, topical capsaicin (1% was applied to the left volar forearm for 15 minutes of twelve adult healthy human volunteers. fMRI scans and a visual analog pain score were recorded during CHEPS stimulation precapsaicin and postcapsaicin application. Following capsaicin application there was a significant increase in visual analog scale (mean ± standard error of the mean; precapsaicin 26.4 ± 5.3; postcapsaicin 48.9 ± 6.0; P < 0.0001. fMRI demonstrated an overall increase in areas of activation, with a significant increase in the contralateral insular signal (mean ± standard error of the mean; precapsaicin 0.434 ± 0.03; postcapsaicin 0.561 ± 0.07; P = 0.047. The authors of this paper recently published a study in which CHEPS-evoked A-delta cerebral potential amplitudes were found to be decreased postcapsaicin application. In patients with neuropathic pain, evoked pain and fMRI brain responses are typically increased, while A-delta evoked potential amplitudes are decreased. The protocol of recording fMRI following CHEPS stimulation

  6. Source localization of EEG versus MEG: Emperical comparison using visually evoked responses and theoretical considerations

    NARCIS (Netherlands)

    Lopes da silva, F.H.; Wieringa, H.J.; Wieringa, H.J.; Peters, M.J.

    1991-01-01

    Theoretically, the information we can obtain about the functional localization of a source of brain activity from the scalp, for instance evoked by a sensory stimulus, is the same whether one uses EEG or MEG recordings. However, the nature of the sources and, especially of the volume conductor,

  7. Relative efficacy of transcranial motor evoked potentials, mechanically-elicited electromyography, and evoked EMG to assess nerve root function during sustained retraction in a porcine model.

    Science.gov (United States)

    Lyon, Russ; Lieberman, Jeremy A; Feiner, John; Burch, Shane

    2009-07-15

    This is an animal experiment using transcranial motor evoked potentials (TcMEP), mechanically elicited electromyography (EMG), and evoked EMG during spinal nerve root retraction in a pig model. To compare the sensitivity of these 3 electrophysiological measures for a constant retraction force applied to an isolated lumbar nerve root for a specific duration of time. The incidence of nerve root injury during lumbar spine surgery ranges from 0.2% to 31%. Direct retraction of spinal nerve roots may cause these injuries, but the amount and duration of force that may safely be applied is not clear. Using an established porcine model, we examined the changes occurring to multimyotomal TcMEPs, mechanically elicited EMGs, and evoked EMGs during continuous retraction of a nerve root at a constant force applied over 10 minutes. TcMEP, mechanically elicited EMG, and evoked EMG responses were recorded from the tibialis anterior (TA) muscle in 10 experiments. The dominant root innervating the TA was determined with evoked EMG; preretraction TcMEP and nerve root stimulation threshold (NRT) was obtained. The dominant root was retracted at 2 Newton (N) for 10 minutes. TcMEP trials were elicited every minute during retraction. NRT was measured immediately after retraction. TcMEP and NRT were measured after 10 minutes of recovery. RESULTS.: During the 10 minutes of retraction at 2 N, the amplitude of the TA muscle progressively decreased in all trials in a highly significant curvilinear fashion. The mean TcMEP amplitude decreased 59% +/- 14% from baseline values. The mean NRT after 10 minutes of retraction at 2 N rose to 1.8 +/- 0.7 mA (P EMG activity was variable; tonic EMG was observed in only 2 nerve roots (20%). Three electrophysiologic methods were used intraoperatively to assess neural function during retraction of a single nerve root. Retraction produced consistent changes in TcMEPs and evoked EMG. These 2 methods show promise for assessing the limits on the force and duration

  8. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit

    Science.gov (United States)

    Yamauchi, Yasuyuki; Franco, Luisa M.; Jackson, Douglas J.; Naber, John F.; Ofer Ziv, R.; Rizzo, Joseph F., III; Kaplan, Henry J.; Enzmann, Volker

    2005-03-01

    The aim of the study was to directly compare the threshold electrical charge density of the retina (retinal threshold) in rabbits for the generation of electrical evoked potentials (EEP) by delivering electrical stimulation with a custom-made microelectrode array (MEA) implanted into either the subretinal or suprachoroidal space. Nine eyes of seven Dutch-belted rabbits were studied. The electroretinogram (ERG), visual evoked potentials (VEP) and EEP were recorded. Electrodes for the VEP and EEP were placed on the dura mater overlying the visual cortex. The EEP was recorded following electrical stimulation of the MEA placed either subretinally beneath the visual streak of the retina or in the suprachoroidal space in the rabbit eye. An ab externo approach was used for placement of the MEA. Liquid perfluorodecaline (PFCL; 0.4 ml) was placed within the vitreous cavity to flatten the neurosensory retina on the MEA after subretinal implantation. The retinal threshold for generation of an EEP was determined for each MEA placement by three consecutive measurements consisting of 100 computer-averaged recordings. Animals were sacrificed at the conclusion of the experiment and the eyes were enucleated for histological examination. The retinal threshold to generate an EEP was 9 ± 7 nC (0.023 ± 0.016 mC cm-2) within the subretinal space and 150 ± 122 nC (0.375 ± 0.306 mC cm-2) within the suprachoroidal space. Histology showed disruption of the outer retina with subretinal but not suprachoroidal placement. The retinal threshold to elicit an EEP is significantly lower with subretinal placement of the MEA compared to suprachoroidal placement (P < 0.05). The retinal threshold charge density with a subretinal MEA is well below the published charge limit of 1 mC cm-2, which is the level below which chronic stimulation of the retina is considered necessary to avoid tissue damage (Shannon 1992 IEEE Trans. Biomed. Eng. 39 424-6). Supported in part by The Charles D Kelman, MD

  9. [Effect of stimulating pulse width on the threshold of electrically evoked compound action potential].

    Science.gov (United States)

    Yu, Zhongde; Xiao, Ling; Li, Ping; Meng, Li; Zi, Rui; Fei, Xingbo

    2014-12-01

    This paper discusses the relationship between stimulating pulse width and the threshold of electrically evoked compound action potential (ECAP). Firstly, the rheobase and chronaxy from strength-duration curve of nerve fiber was computed using the shepherd's experiment results. Secondly, based on the relationship between ECAP and the action potential of nerve fiber, a mathematical expression to describe the relationship between stimulating pulse width and ECAP threshold was proposed. Thirdly, the parameters were obtained and the feasibility was proved to the expression with the results of experiment using guinea pigs. Research result showed that with ECAP compared to the action potential of nerve fiber, their threshold function relationship with stimulating pulse width was similar, and rheobase from the former was an order smaller in the magnitude than the latter, but the chronaxy was close to each other. These findings may provide meaningful guidance to clinical ECAP measurement and studying speech processing strategies of cochlear implant.

  10. Diagnostic use of dermatomal somatosensory-evoked potentials in spinal disorders: Case series

    Science.gov (United States)

    Dikmen, Pinar Yalinay; Oge, A. Emre

    2013-01-01

    Objective/Context Dermatomal somatosensory-evoked potentials (dSEPs) may be valuable for diagnostic purposes in selected cases with spinal disorders. Design Reports on cases with successful use of dSEPs. Findings Cases 1 and 2 had lesions causing multiple root involvement (upper to middle lumbar region in Case 1 and lower sacral region in Case 2). Cystic lesions in both cases seemed to compress more than one nerve root, and stimulation at the center of the involved dermatomes in dSEPs helped to reveal the functional abnormality. Cases 3 and 4 had lesions involving the spinal cord with or without nerve root impairment. In Case 3, an magnetic resonance imaging (MRI)-verified lesion seemed to occupy a considerable volume of the lower spinal cord, causing only very restricted clinical sensory and motor signs. In Case 4, a cervical MRI showed a small well-circumscribed intramedullary lesion at right C2 level. All neurophysiological investigations were normal in the latter two patients (motor, tibial, and median somatosensory-evoked potentials in Case 3, and electromyography in both) except for the dSEPs. Conclusions Objectifying the presence and degree of sensory involvement in spinal disorders may be helpful for establishing diagnoses and in therapeutic decision-making. Valuable information could be provided by dSEPs in selected patients with multiple root or spinal cord involvement. PMID:24089995

  11. Test-retest reliability of contact heat-evoked potentials from cervical dermatomes.

    Science.gov (United States)

    Kramer, John L K; Taylor, Philippa; Haefeli, Jenny; Blum, Julia; Zariffa, Jose; Curt, Armin; Steeves, John

    2012-02-01

    The purpose of this study was to investigate the test-retest reliability of contact heat-evoked potentials (CHEPs) in neurologically healthy subjects from cervical dermatomes (C4-C8). Seventeen individuals underwent test-retest examination of cervical CHEPs. Peak latencies and peak-to-peak amplitude of N2-P2 and ratings of perceived intensity were analyzed using test-retest reliability statistics (intraclass correlation coefficients [ICCs] and Bland-Altman confidence parameters). For comparison, a group of similar age and gender was also examined with dermatomal somatosensory-evoked potentials (dSSEPs, n = 17). The ICC values for CHEP latency and amplitude parameters were significant (P dermatomes. The coefficients of repeatability (i.e., 2SD of the difference between examinations) confirm that CHEPs and dSSEPs are reliable according to measures of latency. Superior peak-to-peak amplitude test-retest reliability was found for CHEPs. In conclusion, the test-retest reliability of dSSEP and CHEP parameters supports the fact that these outcomes can be used to objectively track changes in spinal conduction in the dorsal column and spinothalamic tract, respectively. The reliable acquisition of CHEPs may depend on the intensity of the sensation reported by the subject for a given area of skin stimulated.

  12. Cortical Evoked Potentials and Hearing Aids in Individuals with Auditory Dys-Synchrony.

    Science.gov (United States)

    Yuvaraj, Pradeep; Mannarukrishnaiah, Jayaram

    2015-12-01

    The purpose of the present study was to investigate the relationship between cortical processing of speech and benefit from hearing aids in individuals with auditory dys-synchrony. Data were collected from 38 individuals with auditory dys-synchrony. Participants were selected based on hearing thresholds, middle ear reflexes, otoacoustic emissions, and auditory brain stem responses. Cortical-evoked potentials were recorded for click and speech. Participants with auditory dys-synchrony were fitted with bilateral multichannel wide dynamic range compression hearing aids. Aided and unaided speech identification scores for 40 words were obtained for each participant. Hierarchical cluster analysis using Ward's method clearly showed four subgroups of participants with auditory dys-synchrony based on the hearing aid benefit score (aided minus unaided speech identification score). The difference in the mean aided and unaided speech identification scores was significantly different in participants with auditory dys-synchrony. However, the mean unaided speech identification scores were not significantly different between the four subgroups. The N2 amplitude and P1 latency of the speech-evoked cortical potentials were significantly different between the four subgroups formed based on hearing aid benefit scores. The results indicated that subgroups of individuals with auditory dys-synchrony who benefit from hearing aids exist. Individuals who benefitted from hearing aids showed decreased N2 amplitudes compared with those who did not. N2 amplitude is associated with greater suppression of background noise while processing speech.

  13. Diminished N1 auditory evoked potentials to oddball stimuli in misophonia patients

    Directory of Open Access Journals (Sweden)

    Arjan eSchröder

    2014-04-01

    Full Text Available Misophonia (hatred of sound is a newly defined psychiatric condition in which ordinary human sounds, such as breathing and eating, trigger impulsive aggression. In the current study we investigated if a dysfunction in the brain’s early auditory processing system could be present in misophonia. We screened 20 patients with misophonia with the diagnostic criteria for misophonia, and 14 matched healthy controls without misophonia, and investigated any potential deficits in auditory processing of misophonia patients using auditory event-related potentials (ERPs during an oddball task.Subjects watched a neutral silent movie while being presented a regular frequency of beep sounds in which oddball tones of 250 Hz and 4000 Hz were randomly embedded in a stream of repeated 1000 Hz standard tones. We examined the P1, N1 and P2 components locked to the onset of the tones.For misophonia patients, the N1 peak evoked by the oddball tones had a smaller mean peak amplitude than the control group. However, no significant differences were found in P1 and P2 components evoked by the oddball tones. There were no significant differences between the misophonia patients and their controls in any of the ERP components to the standard tones.The diminished N1 component to oddball tones in misophonia patients suggests an underlying neurobiological deficit in misophonia patients. This reduction might reflect a basic impairment in auditory processing in misophonia patients.

  14. Objective detection of auditory steady-state evoked potentials based on mutual information.

    Science.gov (United States)

    Bidelman, Gavin M; Bhagat, Shaum P

    2016-01-01

    Recently, we developed a metric to objectively detect human auditory evoked potentials based on the mutual information (MI) between neural responses and stimulus spectrograms. Here, the MI algorithm is evaluated further for validity in testing the auditory steady-state response (ASSR), a sustained potential used in objective audiometry. MI was computed between spectrograms of ASSRs and their evoking stimuli to quantify the shared time-frequency information between neuroelectric activity and stimulus acoustics. MI was compared against two traditional ASSR detection metrics: F-test and magnitude-squared coherence (MSC). Using an empirically derived threshold (⊖MI=1.45), MI was applied as a binary classifier to distinguish actual biological responses recorded in human participants (n=11) from sham recordings, containing only EEG noise (i.e., non-stimulus-control condition). MI achieved high overall accuracy (>90%) in identifying true ASSRs from sham recordings, with true positive/true negative rates of 82/100%. During online averaging, comparison with two other indices (F-test, MSC) indicated that MI could detect ASSRs in roughly half the number of trials (i.e., ∼400 sweeps) as the MSC and performed comparably to the F-test, but showed slightly better signal detection performance. MI provides an alternative, more flexible metric for efficient and automated ASSR detection.

  15. Comparing the vestibular evoked myogenic potentials in patients with type Ι diabetes mellitus and normal people

    Directory of Open Access Journals (Sweden)

    Behnoush Kamali

    2013-05-01

    Full Text Available Background and Aim: Patients with type I diabetes mellitus commonly complain about dizziness, floating sensation, tinnitus, weakness, and sweating. The aim of this study was comparing vestibular evoked myogenic potentials (VEMPs between these patients and normal people. Methods: Twenty-four patients with type I diabetes mellitus and twenty-four healthy volunteers with the age range of 15-40 years were enrolled in this study. A tone burst of 500 Hz, with the intensity of 95 dB nHL, was delivered through a insert earphone and vestibular evoked myogenic potential was recorded. The t-test was used to compare the results between the two groups. To investigate the effect of glycated hemoglobin (HbA1c on VEMP responses (latency, absolute and relative amplitude, the regression analysis was used. Results: The mean p13 and n23 latency were significantly more in patients with type Ι diabetes mellitus (for P13 latency, p=0.013 in right and p=0.010 in left ear, and for n23 latency, p0.050. There was no correlation between VEMPs and HbA1c in patients with type 1 diabetes mellitus (p>0.05. Conclusion: Prolonged latencies of the VEMP in patients with type 1 diabetes mellitus suggest lesions in the retrolabyrinthine, especially in the vestibulospinal tract. Nevertheless, due to the limited number of examined samples, further investigation with more patients should be performed.

  16. Movement gating of beta/gamma oscillations involved in the N30 somatosensory evoked potential.

    Science.gov (United States)

    Cebolla, Ana Maria; De Saedeleer, Caty; Bengoetxea, Ana; Leurs, Françoise; Balestra, Costantino; d'Alcantara, Pablo; Palmero-Soler, Ernesto; Dan, Bernard; Cheron, Guy

    2009-05-01

    Evoked potential modulation allows the study of dynamic brain processing. The mechanism of movement gating of the frontal N30 component of somatosensory evoked potentials (SEP) produced by the stimulation of the median nerve at wrist remains to be elucidated. At rest, a power enhancement and a significant phase-locking of the electroencephalographic (EEG) oscillation in the beta/gamma range (25-35 Hz) are related to the emergence of the N30. The latter was also perfectly identified in presence of pure phase-locking situation. Here, we investigated the contribution of these rhythmic activities to the specific gating of the N30 component during movement. We demonstrated that concomitant execution of finger movement of the stimulated hand impinges such temporal concentration of the ongoing beta/gamma EEG oscillations and abolishes the N30 component throughout their large topographical extent on the scalp. This also proves that the phase-locking phenomenon is one of the main actors for the N30 generation. These findings could be explained by the involvement of neuronal populations of the sensorimotor cortex and other related areas, which are unable to respond to the phasic sensory activation and to phase-lock their firing discharges to the external sensory input during the movement. This new insight into the contribution of phase-locked oscillation in the emergence of the N30 and in its gating behavior calls for a reappraisal of fundamental and clinical interpretation of the frontal N30 component. (c) 2008 Wiley-Liss, Inc.

  17. Modeling neural correlates of auditory attention in evoked potentials using corticothalamic feedback dynamics.

    Science.gov (United States)

    Trenado, Carlos; Haab, Lars; Strauss, Daniel J

    2007-01-01

    Auditory evoked cortical potentials (AECP) are well established as diagnostic tool in audiology and gain more and more impact in experimental neuropsychology, neuro-science, and psychiatry, e.g., for the attention deficit disorder, schizophrenia, or for studying the tinnitus decompensation. The modulation of AECP due to exogenous and endogenous attention plays a major role in many clinical applications and has experimentally been studied in neuropsychology. However the relation of corticothalamic feedback dynamics to focal and non-focal attention and its large-scale effect reflected in AECPs is far from being understood. In this paper, we model neural correlates of auditory attention reflected in AECPs using corticothalamic feedback dynamics. We present a mapping of a recently developed multiscale model of evoked potentials to the hearing path and discuss for the first time its neurofunctionality in terms of corticothalamic feedback loops related to focal and non-focal attention. Our model reinforced recent experimental results related to online attention monitoring using AECPs with application as objective tinnitus decompensation measure. It is concluded that our model presents a promising approach to gain a deeper understanding of the neurodynamics of auditory attention and might be use as an efficient forward model to reinforce hypotheses that are obtained from experimental paradigms involving AECPs.

  18. Can a finding of cervical vestibular evoked myogenic potentials contribute to vestibular migraine diagnostics?

    Directory of Open Access Journals (Sweden)

    Tihana Vešligaj

    2016-02-01

    Full Text Available Aim To investigate differences in vestibular evoked myogenic potentials (VEMP results with patients suffering from vestibular migraine and healthy people, taking into consideration values of threshold and latency of occurrence of the characteristic wave complex, size of amplitude, and interaural amplitude ratio. According to the results, determine the importance and usefulness of VEMP in vestibular migraine diagnostics. Methods A total number of 62 subjects were included in the study, 32 of them belonging to a group of patients suffering from vestibular migraine (VM, while other 30 were in a control group of healthy subjects. Information was collected during the diagnostic evaluation. General and otoneurological history of patients and bedside tests, audiological results, videonystagmography and cervical vestibular evoked myogenic potentials (cVEMP were made. Results There was a difference in an interaural ratio of amplitudes in the experimental and control groups, but it was not found to be clinically significant. By ToneBurst 500 Hz method, the interaural amplitude ratio higher than 35% was measured in 46.97% subjects, while the response was totally unilaterally missing in 28.8% patients. Conclusion Even the sophisticated method as cVEMP does not give the ultimate result confirming the vestibular migraine diagnosis, and neither do other diagnostic methods. cVEMP result can contribute to the completion of full mosaic of vestibular migraine diagnostics.

  19. Effects of stimulation intensity, gender and handedness upon auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Susana Camposano

    1992-03-01

    Full Text Available Left handers and women show less anatomical brain asymmetry, larger corpus callosum and more bilateral representation of specific functions. Sensory and cognitive components of cortical auditory evoked potentials (AEF have been shown to be asymmetric in right handed males and to be influenced by stimulus intensity. In this study the influence of sex, handedness and stimulus intensity upon AEP components is investigated under basal conditions of passive attention. 14 right handed males, 14 right handed females, 14 left handed males, and 14 left handed females were studied while lying awake and paying passive attention to auditory stimulation (series of 100 binaural clicks, duration 1 msec, rate 1/sec, at four intensities. Cz, C3 and C4 referenced to linked mastoids and right EOG were recorded. Analysis time was 400 msec, average evoked potentials were based on 100 clicks. Stimulus intensity and gender affect early sensory components (P1N1 and N1P2 at central leads, asymmetry is influenced only by handedness, right handers showing larger P1N1 amplitudes over the right hemisphere.

  20. [Recommendations for the clinical use of motor evoked potentials in multiple sclerosis].

    Science.gov (United States)

    Fernández, V; Valls-Sole, J; Relova, J L; Raguer, N; Miralles, F; Dinca, L; Taramundi, S; Costa-Frossard, L; Ferrandiz, M; Ramió-Torrentà, Ll; Villoslada, P; Saiz, A; Calles, C; Antigüedad, A; Alvarez-Cermeño, J C; Prieto, J M; Izquierdo, G; Montalbán, X; Fernández, O

    2013-09-01

    To establish clinical guidelines for the clinical use and interpretation of motor evoked potentials (MEP) in diagnosing and monitoring patients with multiple sclerosis (MS). Recommendations for MEP use and interpretation will help us rationalise and optimise resources used in MS patient diagnosis and follow up. We completed an extensive literature review and pooled our own data to produce a consensus statement with recommendations for the clinical use of MEPs in the study of MS. MEPs, in addition to spinal and cranial magnetic resonance imaging (MRI), help us diagnose and assess MS patients whose disease initially presents as spinal cord syndrome and those with non-specific brain MRI findings, or a normal brain MRI and clinical signs of MS. Whenever possible, a multimodal evoked potential study should be performed on patients with suspected MS in order to demonstrate involvement of the motor pathway which supports a diagnosis of dissemination in space. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  1. Late auditory event-related evoked potential (P300) in Down's syndrome patients.

    Science.gov (United States)

    César, Carla Patrícia Hernandez Alves Ribeiro; Caovilla, Heloisa Helena; Munhoz, Mário Sérgio Lei; Ganança, Maurício Malavasi

    2010-01-01

    Down syndrome is caused by a trisomy of chromosome 21 and is associated with central auditory processing deficit, learning disability and, probably, early-onset Alzheimer's disease. To evaluate the latencies and amplitudes of evoked late auditory potential related to P300 events and their changes in young adults with Down's syndrome. Prospective case study. P300 test latency and amplitudes were evaluated in 17 individuals with Down's syndrome and 34 healthy individuals. RESULTS The P300 latency (N1, P2, N2 and P3) was longer and the N2-P3 amplitude was lower in individuals with Down syndrome when compared to those in the control group. In young adults with Down syndrome, N1, P2, N2 and P3 latencies of late auditory evoked potential related to P300 events were prolonged, and N2 - P3 amplitudes were significantly reduced, suggesting integration impairment between the auditory association area and cortical and subcortical areas of the central nervous system.

  2. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  3. The effects of rise/fall time and plateau time on ocular vestibular evoked myogenic potentials.

    Science.gov (United States)

    Kantner, Claudia; Hapfelmeier, Alexander; Drexl, Markus; Gürkov, Robert

    2014-09-01

    Ocular vestibular evoked myogenic potentials (oVEMP) are strongly influenced by recording conditions and stimulus parameters. Throughout the published literature, a large variety of stimuli is used for eliciting oVEMP. Our objective was to determine the effects of different rise/fall times and plateau times on oVEMP amplitudes and latencies. 32 healthy subjects were enrolled in the study. 500 Hz air-conducted tone bursts with the parameters rise-plateau-fall time 0-4-0, 4-0-4, 2-2-2 and 2-4-2 ms were used for eliciting oVEMP. For all stimuli, response prevalences were 100 %. The 4-0-4 ms stimulus generated the smallest amplitudes, whereas the 2-2-2 and 0-4-0 ms stimuli achieved the largest amplitudes. n1 and p1 latencies were significantly shorter for the 0-4-0 ms than for the other stimuli, whereas latencies in response to the 4-0-4 ms stimulus were prolonged. Hence, a variety of stimuli is suitable for evoking oVEMP in healthy subjects. We recommend a 2-2-2 ms stimulus for clinical testing of oVEMP elicited by air conducted sound, because it reproducibly generates oVEMP without exposing the ear to unnecessary amounts of acoustic energy.

  4. A Preclinical Study of Laryngeal Motor-Evoked Potentials as a Marker Vagus Nerve Activation.

    Science.gov (United States)

    Grimonprez, Annelies; Raedt, Robrecht; De Taeye, Leen; Larsen, Lars Emil; Delbeke, Jean; Boon, Paul; Vonck, Kristl

    2015-12-01

    Vagus nerve stimulation (VNS) is a treatment for refractory epilepsy and depression. Previous studies using invasive recording electrodes showed that VNS induces laryngeal motor-evoked potentials (LMEPs) through the co-activation of the recurrent laryngeal nerve and subsequent contractions of the laryngeal muscles. The present study investigates the feasibility of recording LMEPs in chronically VNS-implanted rats, using a minimally-invasive technique, to assess effective current delivery to the nerve and to determine optimal VNS output currents for vagal fiber activation. Three weeks after VNS electrode implantation, signals were recorded using an electromyography (EMG) electrode in the proximity of the laryngeal muscles and a reference electrode on the skull. The VNS output current was gradually ramped up from 0.1 to 1.0 mA in 0.1 mA steps. In 13/27 rats, typical LMEPs were recorded at low VNS output currents (median 0.3 mA, IQR 0.2-0.3 mA). In 11/27 rats, significantly higher output currents were required to evoke electrophysiological responses (median 0.7 mA, IQR 0.5-0.7 mA, p vagus nerve. Furthermore, our results suggest that low output currents are sufficient to activate vagal fibers.

  5. Visual evoked response in patients with severe carotid disease--functional transcranial doppler study of posterior circulation.

    Science.gov (United States)

    Roje Bedeković, Marina; Bosnar Puretić, Marijana; Lovrencić Huzjan, Arijana; Demarin, Vida

    2009-12-01

    The goal of this study was to evaluate the visual evoked response in posterior cerebral artery (PCA) by means of functional transcranial doppler in patients with severe carotid disease and to determine the hemodynamic effect of severe carotid disease on posterior circulation. Measurements were performed successively in the dark and during the white light stimulation in 49 patients with high-grade (70-99%) internal carotid artery (ICA) stenosis or occlusion and compared with 30 healthy age and sex matched subjects. Mean blood flow velocities (MBFV) (cm/s +/- 2SD) and mean reaction time (MRT) (s +/- 2SD) during three consecutive repetitive periods of 1 minute each were analyzed. MBFV in PCA during the white light stimulation and in the dark between the two groups didn't differ. MRT in patients showed a significantly prolonged visual evoked response in both affected (light: patients 29.36 +/- 14.46, controls 19.67 +/- 11.25, respectively, p dark: patients 35.25 +/- 11.9 controls 21.89 +/- 10.31, respectively, p dark: patients 33.13 +/- 11.12, controls 23.89 +/- 11.23, respectively, p circle that is necessary to be considered separately.

  6. Modulation of sensory inhibition of motor evoked potentials elicited by TMS prior to movement?

    DEFF Research Database (Denmark)

    Leukel, Christian; Lundbye-Jensen, Jesper; Nielsen, Jens Bo

    Short latency afferent inhibition (SAI) refers to a decrement of the size of a motor evoked potential (MEP) by transcranial magnetic stimulation (TMS) after electrical stimulation of a peripheral afferent nerve (PNS) (Tokimura et al. 2000). Since SAI occurs when TMS is applied at the time...... to rest. In 9 healthy subjects (23 ± 3 years) MEPs were recorded in m. first dorsal interosseus (FDI) and m. abductor pollicis brevis (APB). To induce SAI, n. medianus was stimulated 20 ms prior to TMS over the motorcortex. In control trials, interstimulus intervals (ISIs) between afferent stimulation...... because the afferent information triggered the movement and therefore was important for motor performance. Alle et al. (2009). J Physiol 587:5163-5176 Chen et al. (1998). Ann Neurol 44:317-325 Tokimura et al. (2000). J Physiol 523 Pt 2:503-513...

  7. The N2-P3 complex of the evoked potential and human performance

    Science.gov (United States)

    Odonnell, Brian F.; Cohen, Ronald A.

    1988-01-01

    The N2-P3 complex and other endogenous components of human evoked potential provide a set of tools for the investigation of human perceptual and cognitive processes. These multidimensional measures of central nervous system bioelectrical activity respond to a variety of environmental and internal factors which have been experimentally characterized. Their application to the analysis of human performance in naturalistic task environments is just beginning. Converging evidence suggests that the N2-P3 complex reflects processes of stimulus evaluation, perceptual resource allocation, and decision making that proceed in parallel, rather than in series, with response generation. Utilization of these EP components may provide insights into the central nervous system mechanisms modulating task performance unavailable from behavioral measures alone. The sensitivity of the N2-P3 complex to neuropathology, psychopathology, and pharmacological manipulation suggests that these components might provide sensitive markers for the effects of environmental stressors on the human central nervous system.

  8. The application of somatosensory evoked potentials in spinal cord injury rehabilitation.

    Science.gov (United States)

    Caizhong, Xie; Chunlei, Shan; Beibei, Liu; Zhiqing, Ding; Qinneng, Ding; Tong, Wang

    2014-01-01

    For a therapeutic intervention after spinal cord injury (SCI), it is important to take accurate and objective assessment tools. To explore the practicability of somatosensory evoked potentials (SEPs) and Modified Barthel Index (MBI) scale and describe the rehabilitation value of SEPs in different degrees of SCI. Thirty-six SCI patients were enrolled in this study. All the patients received comprehensive rehabilitation treatment, such as physical therapy, occupational therapy, functional electrical stimulation, and psychotherapy. The nerve function of the spinal cord was assessed by SEPs, the activities of daily living (ADL) was evaluated by MBI scale, and SEP recordings and MBI scores were obtained before and after treatment. There were statistically significant differences in SEPs latency among different grades of SCI before treatment. The SEPs latency after treatment was better than that before treatment in every grade (p rehabilitation value varies in different grades of SCI.

  9. [Increase in intracranial pressure in monitoring brain stem auditory evoked potentials using headphones].

    Science.gov (United States)

    Schwarz, G; Pfurtscheller, G; Tritthart, H; List, W F

    1988-11-01

    Ten measurements of intracranial pressure (ICP) (ventricular n = 5, epidural n = 3) in 8 patients (3 after aneurysm surgery, 5 with head trauma) were performed before and after application of conventional headphones for stimulating brainstem auditory evoked potentials (BAEP). The effects of miniature earphones and sound tubes on ICP were also studied. In 7 of 10 measurements after application of headphones a reversible increase of ICP (mean 26 +/- 19% in patients with ICP greater than 10 mmHg was recorded; in 3 patients (ICP less than or equal to 10 mgHg) no changes of ICP were seen. Using miniature earphones and sound tubes no increase of ICP was noted in any patient, and hence these can be recommended for stimulating BAEP in case of increased ICP.

  10. [Evoked potentials and the prediction of the efficacy of psychopharmaceutical agents].

    Science.gov (United States)

    Kolomaznik, M; Komzák, F; Haloupková, L; Seidl, I; Hronek, J

    1988-01-01

    The authors have studied early brain stem auditory evoked potentials (EPs) registered after a single intramuscular administration of 2.5 mg of haloperidol in 32 healthy volunteers and 14 schizophrenic patients. Haloperidol led to a significant decrease in the latency of wave V of brain stem auditory EPs in patients with schizophrenia and to its increase in normal subjects. A diminution in wave V of brain stem auditory EPs directly correlated with a reduction of psychopathology expressed in points of the Overall-Gorham scale (BPRS) and observed after one-month haloperidol treatment. The authors discuss the possibility of using changes in brain stem auditory EPs after a single administration of various psychotropics to select an optimal drug for a given patient and also as a possible supplementary diagnostic criterion.

  11. Effect of nitric oxide on spinal evoked potentials and survival rate in rats with decompression sickness

    DEFF Research Database (Denmark)

    Randsøe, Thomas; Meehan, Claire Francesca; Broholm, Helle

    2015-01-01

    Nitric oxide (NO) releasing agents have, in experimental settings, been shown to decrease intravascular nitrogen bubble formation and to increase the survival rate during decompression sickness (DCS) from diving. The effect has been ascribed to a possible removal of preexisting micronuclei...... evaluated by means of spinal evoked potentials (SEPs). Anesthetized rats were decompressed from a 1-h hyperbaric air dive at 506.6 kPa (40 m of seawater) for 3 min and 17 s, and spinal cord conduction was studied by measurements of SEPs. Histological samples of the spinal cord were analyzed for lesions...... GTN (group 6) during the dive, before decompression. In all groups, decompression caused considerable intravascular bubble formation. The ISMN groups showed no difference compared with the control group, whereas the GTN groups showed a tendency toward faster SEP disappearance and shorter survival...

  12. Neurotoxic effects of rubber factory environment. An auditory evoked potential study.

    Science.gov (United States)

    Kumar, V; Tandon, O P

    1997-01-01

    The effects of rubber factory environment on functional integrity of auditory pathway have been studied in forty rubber factory workers using Brainstem Auditory Evoked Potentials (BAEPs) technique to detect early subclinical impairments. Results indicate that 47 percent of the workers showed abnormalities in prolongations of either peak latencies or interpeak latencies when compared with age and sex matched control subjects not exposed to rubber factory environment. The percent distribution of abnormalities (ears affected) were in the order of extrusion and calendering (75%) > vulcanising (41.66%) > mixing (28.57%) > loading and dispatch (23.07%) > tubing (18.75%) sections of the factory. This incidence of abnormalities may be attributed to solvents being used in these units of rubber factory. These findings suggest that rubber factory environment does affect auditory pathway in the brainstem.

  13. Effects of diabetes mellitus type Ι with or without neuropathy on vestibular evoked myogenic potentials.

    Science.gov (United States)

    Kamali, Behnoush; Hajiabolhassan, Fahimeh; Fatahi, Jamileh; Nasli Esfahani, Ensieh; Sarrafzadeh, Javad; Faghihzadeh, Soghrat

    2013-03-16

    Diabetes mellitus type Ι is a metabolic disorder that affects multiple systems including the inner ear. Patients with diabetes mellitus commonly complain about dizziness, floating sensation, tinnitus and sweating. The aim of this study was to compare vestibular evoked myogenic potentials (VEMPs) between diabetic patients with or without neuropathy. Subjects included 14 patients with diabetes mellitus type Ι with polyneuropathy, 10 patients with diabetes mellitus type Ι without polyneuropathy and 24 healthy volunteers. Range of age in participants was 15-40 years old. The VEMPs were recorded with 500 Hz tone bursts with intensity at 95 dB. There was statistically significant difference between the groups in P13 and N23 latencies (P<0.05). There was no statistically significant difference between groups in absolute and relative amplitudes. Prolonged latencies of the VEMP suggest lesions in the retrolabyrinthine, especially in the vestibulospinal tract.

  14. Effects of Diabetes Mellitus Type Ι with or without Neuropathy on Vestibular Evoked Myogenic Potentials

    Directory of Open Access Journals (Sweden)

    Behnoush Kamali

    2013-02-01

    Full Text Available Diabetes mellitus type Ι is a metabolic disorder that affects multiple systems including the inner ear. Patients with diabetes mellitus commonly complain about dizziness, floating sensation, tinnitus and sweating. The aim of this study was to compare vestibular evoked myogenic potentials (VEMPs between diabetic patients with or without neuropathy. Subjects included 14 patients with diabetes mellitus type Ι with polyneuropathy, 10 patients with diabetes mellitus type Ι without polyneuropathy and 24 healthy volunteers. Range of age in participants was 15-40 years old. The VEMPs were recorded with 500 Hz tone bursts with intensity at 95 dB. There was statistically significant difference between the groups in P13 and N23 latencies (P<0.05. There was no statistically significant difference between groups in absolute and relative amplitudes. Prolonged latencies of the VEMP suggest lesions in the retrolabyrinthine, especially in the vestibulospinal tract.

  15. Long-latency components of somatosensory evoked potentials during passive tactile perception of gratings.

    Science.gov (United States)

    Genna, C; Artoni, F; Fanciullacci, C; Chisari, C; Oddo, C M; Micera, S

    2016-08-01

    Perception of tactile stimuli elicits Somatosensory Evoked Potentials (SEPs) that can be recorded via non-invasive electroencephalography (EEG). However, it is not yet clear how SEPs localization, shape and latency are modulated by different stimuli during mechanical tactile stimulation of fingertips. The aim of this work is thus to characterize SEPs generated by the tactile perception of gratings during dynamic passive stimulation of the dominant fingertip by means of a mechatronic platform. Results show that a random sequence of stimuli elicited SEPs with two long-latency components: (i) a negative deflection around 140 ms located in the frontal-central-parietal side in the contralateral hemisphere; (ii) a positive deflection around 250 ms located in the frontal-central midline. Time-frequency analysis revealed significant continuous bilateral desynchronization in the alpha band throughout the passive stimulation. These results are a fundamental step towards building a model of brain responses during perception of tactile stimuli for future benchmarking studies.

  16. Early impairment of somatosensory evoked potentials in very young children with achondroplasia with foramen magnum stenosis.

    Science.gov (United States)

    Fornarino, Stefania; Rossi, Daniela Paola; Severino, Mariasavina; Pistorio, Angela; Allegri, Anna Elsa Maria; Martelli, Simona; Doria Lamba, Laura; Lanteri, Paola

    2017-02-01

    To evaluate the contribution of somatosensory evoked potentials after median nerve (MN-SEPs) and posterior tibial nerve (PTN-SEPs) stimulation in functional assessment of cervical and lumbar spinal stenosis in children with achondroplasia. We reviewed MN-SEPs, PTN-SEPs, and spinal magnetic resonance imaging (MRI) examinations performed in 58 patients with achondroplasia (25 males, 33 females; age range 21d-16y 10mo; mean age 4y 3mo [SD 4y 1mo]). Patients were subdivided into four age categories: achondroplasia, the cortical component of PTN-SEPs is more sensitive than the cortical component and central conduction time of MN-SEPs in detection of cervical spinal cord compression at early ages. © 2016 Mac Keith Press.

  17. Timing of evoked potentials forecasting the prognosis of severe stroke patients

    Directory of Open Access Journals (Sweden)

    Shu-ying XIAO

    2015-12-01

    Full Text Available Objective To investigate the best assessment time of short-latency somatosensory-evoked potential (SLSEP and brain stem auditory-evoked potential (BAEP in predicting the prognosis of patients with acute severe stroke. Methods Fifty-two patients who were diagnosed as supratentorial massive cerebral infarction or large-volume cerebral hemorrhage by brain CT and/or MRI examination with Glasgow Coma Scale (GCS ≤ 12 were selected as observation subjects. GCS, SLSEP and BAEP were recorded at 1-3 and 4-7 d after onset. Outcomes were examined 6 months later using the modified Rankin Scale (mRS. A mRS score of 0-4 was considered as favorable outcome while a score of 5-6 was considered as unfavorable. The correlation between different predictive indexes (GCS, SLSEP and BAEP and outcome (mRS was analyzed. The predictive accuracy was also analyzed. Results At 1-3 d after onset, there was no correlation between all the predictors and outcome (P > 0.05, for all. At 4-7 d after onset, SLSEP and BAEP were significantly correlated with mRS (P < 0.01, for all; C > 0.400. At 4-7 d after onset, the prognostic sensitivity of SLSEP and BAEP Ⅴ wave was 85.71%-97.62% ; prognostic specificity of BAEP was 80.00%-90.00%; positive predictive value of all predictors was 89.13%-96.88%; negative predictive value of SLSEP was 83.33%-85.71% ; total predictive accuracy of SLSEP was 88.46%-90.38%. The predictive accuracy of both SLSEP and BAEP achieved the clinical expectation, and the former is better than the latter. Conclusions SLSEP and BAEP have a high accuracy rate in predicting the unfavorable prognosis of patients with acute severe stroke 4-7 d after onset. DOI: 10.3969/j.issn.1672-6731.2015.12.004

  18. Mechanically evoked cortical potentials: A physiological approach to assessment of anorectal sensory pathways.

    Science.gov (United States)

    Carrington, E V; Evers, J; Scott, S M; Knowles, C H; O'Connell, P R; Jones, J F X

    2015-12-30

    Normal defaecation involves activation of anorectal mechanoreceptors responsive to pressure and stretch. The aim of this study was to develop selective anal and rectal mucosal light-touch stimulation suitable for measurement of cortical evoked potentials (EPs) in order to explore the sensory arm of these pathways. A novel device was manufactured to deliver selective rectal and/or anal light-touch stimulation using a shielded inter-dental brush mounted on a rotating stepper motor (1Hz, 1ms, 15° rotation). Resultant somatosensory EPs recorded with a 32-channel cortical multi-electrode array were compared to those elicited by electrical anorectal stimulation (2mm anal plug electrode [1Hz, 1ms, 10V]). Eighteen anaesthetized female Wistar rats (body mass 180-250g) were studied. Electrical and mechanical stimulation provoked similar maximal response amplitudes (electrical anorectal 39.0μV[SEM 5.5], mechanical anal 42.2μV[8.1], mechanical rectal 45.8μV[9.0]). Response latency was longer following mechanical stimulation (electrical anorectal 8.8ms[0.5], mechanical anal 16.4ms[1.1], mechanical rectal 18.3ms[2.5]). The extent of activated sensory cortex was smaller for mechanical stimulation. Sensory inferior rectal nerve activity was greater during anal compared to rectal mechanical in a subgroup of 4 rats. Evoked potentials were reproducible over 40min in a subgroup of 9 rats. Cortical EPs are typically recorded in response to non-physiological electrical stimuli. The use of a mechanical stimulus may provide a more localized physiological method of assessment. To the authors' knowledge these are the first selective brush-elicited anal and rectal EPs recorded in animals and provide a physiological approach to testing of anorectal afferent pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Medical technology assessment EEG and evoked potentials in the intensive care unit.

    Science.gov (United States)

    Guérit, J M

    1999-09-01

    We review the principal aspects of EEG and evoked potential (EP) neuromonitoring in the intensive care unit. The electrophysiological methods allow functional assessment of comatose patients and can be used (a) as a help to diagnose the origin of coma, (b) as a means to predict outcome, and (c) for monitoring purposes. The combination of the EEG and long-, middle-, and short-latency EPs allows widespread assessment of the cerebral cortex, the brain-stem, and the spinal cord. The EEG and the EP interpretation first requires taking into account non-neurological factors that may interfere with the recorded activities (sensory pathologies, toxic or metabolic problems, body temperature). The sensitivity and the specificity of any neurophysiological technique depend on the etiology of coma. Anoxic comas are associated with a predominantly cortical involvement, while the cortical and brain-stem functions are to be taken into account to interpret the EEG and the EPs in head trauma. The EEG and the EPs can be used to differentiate the comas due to structural lesions from those of metabolic origin, to confirm brain death and help to diagnose psychogenic unresponsiveness or a de-efferented state. While the prognostic value of the EEG is markedly hampered by the widespread use of sedative drugs, it has been possible to design efficient systems based on early- and middle-latency multimodality evoked potentials in anoxic and traumatic comas and, more generally, in all comas associated with an increase of the intracranial pressure. Continuous neuromonitoring techniques are currently under development. They have already been proven useful for the early detection and for the prevention of subclinical seizures, transtentorial herniation, vasospasm, and other causes of brain or spinal-cord ischemia.

  20. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials

    DEFF Research Database (Denmark)

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L.

    2013-01-01

    The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound...... in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners...

  1. Effects of isoflurane and desflurane on neurogenic motor- and somatosensory-evoked potential monitoring for scoliosis surgery.

    Science.gov (United States)

    Bernard, J M; Péréon, Y; Fayet, G; Guihéneuc, P

    1996-11-01

    Most techniques used to monitor spinal cord tracts are sensitive to the effects of anesthesia, particularly to volatile anesthetic agents. The aim of this prospective study was to show that evoked potentials recorded from the peripheral nerves after spinal cord stimulation, so-called neurogenic motor evoked potentials, are resistant to clinical concentrations of isoflurane or desflurane, compared with somatosensory-evoked potentials. Twenty-three patients were studied during surgery to correct scoliosis. The background anesthetic consisted of a continuous infusion of propofol. Isoflurane (n = 12) or desflurane (n = 11) were then introduced to achieve 0.5 and 1.0 end-tidal minimum alveolar concentrations (MAC), both in 50% oxygen-nitrous oxide and in 100% oxygen. Somatosensory-evoked potentials were elicited and recorded using a standard method, defining cortical P40 and subcortical P29. Neurogenic motor-evoked potentials were elicited by electric stimulation of the spinal cord via needle electrodes placed by the surgeon in the rostral part of the surgical field. Responses were recorded from needle electrodes inserted in the right and left popliteal spaces close to the sciatic nerve. Stimulus intensity was adjusted to produce a supramaximal response; that is, an unchanged response in amplitude with subsequent increases in stimulus intensity. Measurements were obtained before introducing volatile agents and 20 min after obtaining a stable level of each concentration. Isoflurane and desflurane in both 50% oxygen-nitrous oxide and 100% oxygen were associated with a significant decrease in the amplitude and an increase in the latency of the cortical P40, whereas subcortical P29 latency did not vary significantly. Typical neurogenic motor-evoked potentials were obtained in all patients without volatile anesthetic agents, consisting of a biphasic wave, occurring 15 to 18 ms after stimulation, with an amplitude ranging from 1.3 to 4.1 microV. Latency or peak

  2. Prognostic value of somatosensory-evoked potentials and CT scan evaluation in acute traumatic brain injury.

    Science.gov (United States)

    Bosco, Enrico; Zanatta, Paolo; Ponzin, Diego; Marton, Elisabetta; Feletti, Alberto; Scarpa, Bruno; Longatti, Pierluigi; Paolin, Adolfo

    2014-10-01

    The aim of this study is to assess whether a complete analysis of all early cortical somatosensory-evoked potentials (SEPs) components and computed tomography (CT) scan features can provide a better prognostic measure than the early cortical component N20/P25 alone, in patients with severe head injury. We studied 81 consecutive patients admitted to intensive care unit with diagnosis of severe head injury. All patients underwent neurophysiological assessment with SEPs and electroencephalography within the first 6 days after trauma. The marginal effect of each variable on Glasgow Outcome Scale score was evaluated by using univariate measures of association. We fit a cumulative logit model by maximum likelihood, and the partial effect of each variable was assessed by likelihood ratio test. We performed variable selection by forward stepwise, according to the Akaike information criterion. Our final cumulative logit model including SEPs primary complex (pN20/fP20/cP22), SEPs middle latency (N30/P45/N60), and CT scan hypodensity values showed a significantly increased predictive power of Glasgow Outcome Scale, compared with pN20 alone (P<0.0001). Statistical analysis revealed a highly significant (P<0.0001) improvement in outcome prediction when the model includes a pool of amplitudes and latencies referred to different early-evoked components pN20, pP25, fP20, cP22, N30, P45, and N60, associated to CT scan hypodensity values, compared with the use of the cortical parietal N20/P25 alone.

  3. Modulation of Cortical Motor Evoked Potential After Stroke During Electrical Stimulation of the Lateral Cerebellar Nucleus.

    Science.gov (United States)

    Park, Hyun-Joo; Furmaga, Havan; Cooperrider, Jessica; Gale, John T; Baker, Kenneth B; Machado, Andre G

    2015-01-01

    Deep brain stimulation (DBS) targeting the dentato-thalamo-cortical (DTC) pathway at its origin in the lateral cerebellar nucleus (LCN) has been shown to enhance motor recovery in a rodent model of cortical ischemia. LCN DBS also yielded frequency-specific changes in motor cortex excitability in the normal brain, indexed by motor evoked potential (MEP) amplitude. To investigate the effect of cortical stroke on cortical motor excitability in a rodent ischemia model and to measure the effects of LCN DBS on post-ischemia excitability as a function of stimulation parameters. Adult Sprague-Dawley rats were divided into two groups: naïve and stroke, with cortical ischemia induced through multiple, unilateral endothelin-1 injections. All animals were implanted with a bipolar electrode in the LCN opposite the affected hemisphere. MEPs were elicited from the affected hemisphere using intracortical microstimulation (ICMS) techniques. Multiple LCN DBS parameters were examined, including isochronal stimulation at 20, 30, 50, and 100 Hz as well as a novel burst stimulation pattern. ICMS-evoked MEPs were reduced in stroke (n = 10) relative to naïve (n = 12) animals. However, both groups showed frequency-dependent augmentation of cortical excitability in response to LCN DBS. In the naïve group, LCN DBS increased MEPs by 22-58%, while in the stroke group, MEPs were enhanced by 9-41% compared to OFF-DBS conditions. Activation of the DTC pathway increases cortical excitability in both naïve and post-stroke animals. These effects may underlie, at least partially, functional reorganization and therapeutic benefits associated with chronic LCN DBS in post-stroke animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Long-latency auditory evoked potentials with verbal and nonverbal stimuli,

    Directory of Open Access Journals (Sweden)

    Sheila Jacques Oppitz

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. OBJECTIVE: To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and absence of these data. METHODS: A total of 30 subjects with normal hearing were assessed, aged 18-32 years old, matched by gender. Nonverbal stimuli were used (tone burst; 1000 Hz - frequent and 4000 Hz - rare; and verbal (/ba/ - frequent; /ga/, /da/, and /di/ - rare. RESULTS: Considering the component N2 for tone burst, the lowest latency found was 217.45 ms for the BA/DI stimulus; the highest latency found was 256.5 ms. For the P3 component, the shortest latency with tone burst stimuli was 298.7 with BA/GA stimuli, the highest, was 340 ms. For the P3 amplitude, there was no statistically significant difference among the different stimuli. For latencies of components P1, N1, P2, N2, P3, there were no statistical differences among them, regardless of the stimuli used. CONCLUSION: There was a difference in the latency of potentials N2 and P3 among the stimuli employed but no difference was observed for the P3 amplitude.

  5. Vagal sensory evoked potentials disappear under the neuromuscular block - an experimental study.

    Science.gov (United States)

    Leutzow, Bianca; Lange, Jörn; Gibb, Andreas; Schroeder, Henry; Nowak, Andreas; Wendt, Michael; Usichenko, Taras I

    2013-09-01

    Transcutaneous vagal nerve stimulation is a promising treatment modality in patients suffering mood disorders and chronic pain, however, the mechanisms are still to be elucidated. A recently developed technique of EEG responses to electrical stimulation of the inner side of the tragus suggests that these responses are far field potentials, generated in the vagal system - Vagal Sensory Evoked Potentials (VSEP). To reproduce the VSEP technique free from myogenic artifacts. Fourteen ASA I-II patients scheduled for elective surgery in standardized Total Intravenous Anesthesia (TIVA) were enrolled. Transcutaneous electrical stimulation was applied to the inner side of the right tragus. Averaged EEG responses were recorded from the electrode positions C4-F4 and T4-O2 before and after induction of TIVA, during the maximal effect of the non-depolarizing muscle relaxing agent, cis-atracurium (C-AR) and after recovery from C-AR under TIVA. Typical response curves with P1, N1 and P2 peaks could be reproduced in all patients before and after anesthesia induction. The response curves disappeared during the C-AR action and re-appeared after recovery from C-AR under TIVA. The disappearance of the scalp responses to electrical tragus stimulation under the neuromuscular block suggests a muscular origin of these potentials. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice.

    Science.gov (United States)

    Zhao, Xinyu; Liu, Mingna; Cang, Jianhua

    2014-10-01

    Neural circuits in the brain often receive inputs from multiple sources, such as the bottom-up input from early processing stages and the top-down input from higher-order areas. Here we study the function of top-down input in the mouse superior colliculus (SC), which receives convergent inputs from the retina and visual cortex. Neurons in the superficial SC display robust responses and speed tuning to looming stimuli that mimic approaching objects. The looming-evoked responses are reduced by almost half when the visual cortex is optogenetically silenced in awake, but not in anesthetized, mice. Silencing the cortex does not change the looming speed tuning of SC neurons, or the response time course, except at the lowest tested speed. Furthermore, the regulation of SC responses by the corticotectal input is organized retinotopically. This effect we revealed may thus provide a potential substrate for the cortex, an evolutionarily new structure, to modulate SC-mediated visual behaviors. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Change in body surface temperature as an ancillary measurement to motor evoked potentials.

    Science.gov (United States)

    Yang, J H; Suh, S W; Park, Y-S; Lee, J-H; Park, B K; Ham, C H; Choi, J W

    2015-11-01

    Experimental study. To study the role of surface temperature as an adjunct to motor evoked potentials (MEPs) in rabbit spinal cord injury (SCI) model. Department of Orthopedics, Korea University Guro Hospital, Seoul, Korea. Rabbits (n =18) were divided into Complete (n = 9) and Incomplete (n = 9) SCI groups. Complete SCI was defined as being non-responsive to a wake-up test with loss of MEPs after transection of spinal cord. Incomplete SCI was defined as being responsive to a wake-up test with significant attenuation (⩾ 80%) of MEPs after impaction on spinal cord. Surface temperature of upper and lower extremities, core temperature and MEPs signals were checked before, during and after SCI for 20 min. A wake-up test was conducted and spinal cord was histologicaly evaluated. Experimental conditions between the two groups were statistically similar (P > 0.005 for all values). After SCI, upper extremity temperatures did not change in either group (P > 0.005); however, the surface temperature of the lower extremities in the Complete SCI Group elevated to 1.7 ± 0.5°C in comparison to 0.5 ± 0.1°C in the Incomplete SCI Group (P surface temperature of the lower extremities can be potentially used to identify the completeness of SCI in a rabbit model.

  8. Sensitivity of offset and onset cortical auditory evoked potentials to signals in noise.

    Science.gov (United States)

    Baltzell, Lucas S; Billings, Curtis J

    2014-02-01

    The purpose of this study was to determine the effects of SNR and signal level on the offset response of the cortical auditory evoked potential (CAEP). Successful listening often depends on how well the auditory system can extract target signals from competing background noise. Both signal onsets and offsets are encoded neurally and contribute to successful listening in noise. Neural onset responses to signals in noise demonstrate a strong sensitivity to signal-to-noise ratio (SNR) rather than signal level; however, the sensitivity of neural offset responses to these cues is not known. We analyzed the offset response from two previously published datasets for which only the onset response was reported. For both datasets, CAEPs were recorded from young normal-hearing adults in response to a 1000-Hz tone. For the first dataset, tones were presented at seven different signal levels without background noise, while the second dataset varied both signal level and SNR. Offset responses demonstrated sensitivity to absolute signal level in quiet, SNR, and to absolute signal level in noise. Offset sensitivity to signal level when presented in noise contrasts with previously published onset results. This sensitivity suggests a potential clinical measure of cortical encoding of signal level in noise.

  9. Normative data for the segmental acquisition of contact heat evoked potentials in cervical dermatomes.

    Science.gov (United States)

    Jutzeler, Catherine R; Rosner, Jan; Rinert, Janosch; Kramer, John L K; Curt, Armin

    2016-10-06

    Contact heat evoked potentials (CHEPs) represent a neurophysiological approach to assess conduction in the spinothalamic tract. The aim of this study was to establish normative values of CHEPs acquired from cervical dermatomes (C4, C6, C8) and examine the potential confounds of age, sex, and height. 101 (49 male) healthy subjects of three different age groups (18-40, 41-60, and 61-80 years) were recruited. Normal (NB, 35-52 °C) followed by increased (IB, 42-52 °C) baseline stimulation protocols were employed to record CHEPs. Multi-variate linear models were used to investigate the effect of age, sex, and height on the CHEPs parameters (i.e., N2 latency, N2P2 amplitude, rating of perceived intensity). Compared to NB, IB stimulation reduced latency jitter within subjects, yielding larger N2P2 amplitudes, and decreased inter-subject N2 latency variability. Age was associated with reduced N2P2 amplitude and prolonged N2 latency. After controlling for height, male subjects had significantly longer N2 latencies than females during IB stimulation. The study provides normative CHEPs data in a large cohort of healthy subjects from segmentally examined cervical dermatomes. Age and sex were identified as important factors contributing to N2 latency and N2P2 amplitude. The normative data will improve the diagnosis of spinal cord pathologies.

  10. Cognitive Evoked Potential Measurement, P300, in a group of healthy Colombian individuals

    Directory of Open Access Journals (Sweden)

    Natalia Gutiérrez Giraldo

    2013-05-01

    Full Text Available Cognitive evoked potentials are electrophysiological measurements of cognitive functions. Cognitivepotential P300 is specifically related to attention processes. Objetive: the aim of this studywas to establish reference values for latency and amplitude of P300 wave in the Colombian population and determine their variability with age, gender and education of the subjects. Methods:we studied 122 healthy subjects between 6 and 80 years, are practical potential measurementmethodology as odd-ball, in leads Cz and Pz. Results: we were able to establish reference valuesfor different age groups, and statistical significance was found with which the latency of P300wave increases with the age of individuals, and instead thereof the amplitude tends to decrease.Similarly to correlate latency and amplitude was shown an inverse relationship between them.Conclusions: no differences were found for latency and wave amplitude, gender-related or schoolsubjects as well as no difference was found when measuring the Pz derivation obtained comparedwith the wave in lead Cz.

  11. Evaluation of Cervical Vestibular Evoked Myogenic Potential in Subjects with Chronic Noise Exposure.

    Science.gov (United States)

    Abd El Salam, Nehal Mamdouh; Ismail, Elshahat Ibrahem; El Saeed El Sharabasy, Ayman

    2017-12-14

    Noise has been recognized as a major cause of cochlear damage resulting in both tinnitus and hearing loss. On the other hand, damage to the vestibular system, especially the saccule, can be considered as a potential problem. The cervical vestibular-evoked myogenic potentials (cVEMPs) have been established as a clinical test of measuring both sac-cular and inferior vestibular nerve function. Therefore, it is thought to be sensitive to the noise-induced damage to the vestibular system. Accordingly, this study was designed to assess the vestibular system in subjects exposed to noise during work by using cVEMPs. This study was performed in over 60 adult males who were divided into a study group (consisting of 40 adult males) with history of chronic occupational noise exposure and with variable degree of hearing levels and a control group consisting of 20 healthy adults with normal peripheral hearing, with no history of noise exposure and no vestibular complaints. cVEMP recordings were elicited using 95dB nHL click stimuli. There was statistically significant prolonged cVEMP latency of the P13 and N23 waves of the study versus the control groups. As regard to the sense of imbalance, there were significant prolonged cVEMPs latencies in present versus absent sense of imbalance. However, there were statistically insignificant reduced cVEMP amplitudes in present versus absent sense of imbalance. Chronic noise exposure damages the vestibular system especially the saccule in addition to cochlear damage.

  12. The use of somatosensory evoked potentials for detection of neuropraxia during shoulder arthroscopy.

    Science.gov (United States)

    Pitman, M I; Nainzadeh, N; Ergas, E; Springer, S

    1988-01-01

    With the increase in the use of shoulder arthroscopy in the past decade, there has been an increased awareness of complications. Reports of the occurrence of transient neuropraxia indicate an incidence of 10%-30%. The recording of somatosensory evoked potentials (SEP) for the study and functional monitoring of the sensory pathway is well accepted as a reproducible method of monitoring peripheral nerve and spinal cord function during surgery. SEPs were recorded during shoulder arthroscopy in 20 patients to monitor the musculocutaneous nerve, ulnar nerve, and either the median or radial nerve. In all 20 cases, abnormal SEPs of the musculocutaneous nerve were demonstrated. In 16 cases, this was produced upon initial joint distention, and in 15 cases, by traction; in 11, by longitudinal traction of greater than or equal to 12 lb, and in six by perpendicular traction of greater than or equal to 7 lb. In 10 patients, there were varying combinations of median, ulnar, and radial nerve involvement. There were two cases of clinical neuropraxia in this series. One resolved in 24 h and one in 48 h. The conclusion is that there is a real potential for neurologic damage during shoulder arthroscopy and that the musculocutaneous nerve is the most vulnerable. Factors responsible include joint distention, excessive traction, and extravasation of fluid. The use of SEPs provides a reliable means for monitoring the neurologic status of the extremity during shoulder arthroscopy.

  13. Intraoperative subdural low-noise EEG recording of the high frequency oscillation in the somatosensory evoked potential.

    Science.gov (United States)

    Fedele, Tommaso; Schönenberger, Claudio; Curio, Gabriel; Serra, Carlo; Krayenbühl, Niklaus; Sarnthein, Johannes

    2017-10-01

    The detectability of high frequency oscillations (HFO, >200Hz) in the intraoperative ECoG is restricted by their low signal-to-noise ratio (SNR). Using the somatosensory evoked HFO, we quantify how HFO detectability can benefit from a custom-made low-noise amplifier (LNA). In 9 patients undergoing tumor surgery in the central region, subdural strip electrodes were placed for intraoperative neurophysiological monitoring. We recorded the somatosensory evoked potential (SEP) simultaneously by custom-made LNA and by a commercial device (CD). We varied the stimulation rate between 1.3 and 12.7Hz to tune the SNR of the N20 component and the evoked HFO and quantified HFO detectability at the single trial level. In three patients we compared Propofol® and Sevoflurane® anesthesia. In the average, amplitude decreased in both in N20 and evoked HFO amplitude with increasing stimulation rate (pnoise amplification improves the detection of the evoked HFO in recordings with subdural electrodes with low impedance. Low-noise EEG might critically improve the detectability of interictal spontaneous HFO in subdural and possibly in scalp recordings. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  14. The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations

    Directory of Open Access Journals (Sweden)

    Staines W Richard

    2004-05-01

    Full Text Available Abstract Background Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation. We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP centre of pressure (COP peak displacements and tibialis anterior (TA muscle activity. Healthy young adults (n = 7 were instructed to continuously track (cognitive task or not track (control task a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG measures were collected. Results Results revealed a significant decrease in the magnitude of early cortical activity (the N1 response, the first negative peak after perturbation onset during the tracking task compared to the control condition. More pronounced AP COP peak displacements and EMG magnitudes were also observed for the tracking task and were possibly related to changes in the N1 response. Conclusion Based on previous notions that the N1 response represents sensory processing of the balance disturbance, we suggest that the attenuation of the N1 response is an important central mechanism that may provide insight into the relationship between attention and postural control.

  15. Abnormal Cervical Vestibular-Evoked Myogenic Potentials Predict Evolution of Isolated Recurrent Vertigo into Meniere's Disease.

    Science.gov (United States)

    Lee, Sun-Uk; Kim, Hyo-Jung; Choi, Jeong-Yoon; Koo, Ja-Won; Kim, Ji-Soo

    2017-01-01

    Vestibular-evoked myogenic potentials (VEMPs) can be abnormal in patients with idiopathic recurrent spontaneous vertigo. We aimed to determine whether abnormal cervical vestibular-evoked myogenic potentials (cVEMPs) can predict evolution of isolated recurrent vertigo into Meniere's disease (MD). We had followed up 146 patients with isolated recurrent vertigo and an evaluation of cVEMPs for 0-142 months [median = 6, interquartile range (IQR) = 0-29] at the Dizziness Clinic of Seoul National University Bundang Hospital from June 2003 to May 2014. We defined the variables associated with a progression into MD and calculated cumulative progression rates. Among the 94 patients with recurrent vertigo and abnormal cVEMPs, 18 (18/94, 19%) showed an evolution into MD while only 2 of the 50 (4%) patients with normal cVEMPs evolved into MD during the follow-up (p = 0.01). The interval between onset of vertigo and development of cochlear symptoms ranged from 1 month to 13.6 years (median = 3 years, IQR = 0.5-4.5 years). Overall, pure tone audiometry (PTA) threshold at 0.25 kHz [hazard ratio (HR) = 1.1, 95% confidence interval (CI) = 1.0-1.2] and abnormalities of cVEMPs (HR = 5.6, 95% CI = 1.3-25.5) were found to be significantly associated with a later conversion into MD. The cumulative progression rate was 12% (95% CI = 5-18) at 1 year, 18% (8-26) at 2 years, and 22% (11-32) at 3 years. Abnormal cVEMPs may be an indicator for evolution of isolated recurrent vertigo into MD. Patients with isolated recurrent vertigo may be better managed conforming to MD when cVEMPs are abnormal.

  16. Topography of synchronization of somatosensory evoked potentials elicited by stimulation of the sciatic nerve in rat

    Directory of Open Access Journals (Sweden)

    Xuefeng eQu

    2016-05-01

    Full Text Available Purpose: Traditionally, the topography of somatosensory evoked potentials (SEPs is generated based on amplitude and latency. However, this operation focuses on the physical morphology and field potential-power, so it suffers from difficulties in performing identification in an objective manner. In this study, measurement of the synchronization of SEPs is proposed as a method to explore brain functional networks as well as the plasticity after peripheral nerve injury. Method: SEPs elicited by unilateral sciatic nerve stimulation in twelve adult male Sprague-Dawley (SD rats in the normal group were compared with SEPs evoked after unilateral sciatic nerve hemisection in four peripheral nerve injured SD rats. The characterization of synchronized networks from SEPs was conducted using equal-time correlation, correlation matrix analysis, and comparison to randomized surrogate data. Eigenvalues of the correlation matrix were used to identify the clusters of functionally synchronized neuronal activity, and the participation index (PI was calculated to indicate the involvement of each channel in the cluster. The PI value at the knee point of the PI histogram was used as a threshold to demarcate the cortical boundary. Results: Ten out of the twelve normal rats showed only one synchronized brain network. The remaining two normal rats showed one strong and one weak network. In the peripheral nerve injured group, only one synchronized brain network was found in each rat. In the normal group, all network shapes appear regular and the network is largely contained in the posterior cortex. In the injured group, the network shapes appear irregular, the network extends anteriorly and posteriorly, and the network area is significantly larger. There are considerable individual variations in the shape and location of the network after peripheral nerve injury. Conclusion: The proposed method can detect functional brain networks. Compared to the results of the

  17. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity - A study of 145 patients

    NARCIS (Netherlands)

    Langeloo, DD; Lelivelt, A; Journee, HL; Slappendel, R; de Kleuver, M

    2003-01-01

    Study Design. A descriptive historic cohort study was conducted. Objectives. To determine intraoperative response amplitude criteria for transcranial electrical motor-evoked potential monitoring that warn of neurologic damage, and to determine the additional value of monitoring six instead of two

  18. Ipsilesional Motor-Evoked Potential Absence in Pediatric Hemiparesis Impacts Tracking Accuracy of the Less Affected Hand

    OpenAIRE

    Cassidy, Jessica M.; Carey, James R.; Lu, Chiahao; Krach, Linda E.; Feyma, Tim; Durfee, William K.; GILLICK, BERNADETTE T

    2015-01-01

    This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional ...

  19. Stimulus-response characteristics of motor evoked potentials and silent periods in proximal and distal upper-extremity muscles.

    NARCIS (Netherlands)

    Kuijk, A.A. van; Anker, L.C.; Pasman, J.W.; Hendriks, J.C.M.; Elswijk, G.A.F. van; Geurts, A.C.H.

    2009-01-01

    OBJECTIVE: To compare stimulus-response characteristics of both motor evoked potentials (MEP) and silent periods (SP) induced by transcranial magnetic stimulation (TMS) in proximal and distal upper-extremity muscles. METHODS: Stimulus-response curves of MEPs and SPs were obtained from the biceps

  20. Analysis of electrically evoked compound action potential of the auditory nerve in children with bilateral cochlear implants.

    Science.gov (United States)

    Caldas, Fernanda Ferreira; Cardoso, Carolina Costa; Barreto, Monique Antunes de Souza Chelminski; Teixeira, Marina Santos; Hilgenberg, Anacléia Melo da Silva; Serra, Lucieny Silva Martins; Bahmad Junior, Fayez

    2016-01-01

    The cochlear implant device has the capacity to measure the electrically evoked compound action potential of the auditory nerve. The neural response telemetry is used in order to measure the electrically evoked compound action potential of the auditory nerve. To analyze the electrically evoked compound action potential, through the neural response telemetry, in children with bilateral cochlear implants. This is an analytical, prospective, longitudinal, historical cohort study. Six children, aged 1-4 years, with bilateral cochlear implant were assessed at five different intervals during their first year of cochlear implant use. There were significant differences in follow-up time (p=0.0082) and electrode position (p=0.0019) in the T-NRT measure. There was a significant difference in the interaction between time of follow-up and electrode position (p=0.0143) when measuring the N1-P1 wave amplitude between the three electrodes at each time of follow-up. The electrically evoked compound action potential measurement using neural response telemetry in children with bilateral cochlear implants during the first year of follow-up was effective in demonstrating the synchronized bilateral development of the peripheral auditory pathways in the studied population. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. Comparative Sensitivity of Intraoperative Motor Evoked Potential Monitoring in Predicting Postoperative Neurologic Deficits: Nondegenerative versus Degenerative Myelopathy

    OpenAIRE

    Clark, Aaron J.; Safaee, Michael; Chou, Dean; Weinstein, Philip R.; Molinaro, Annette M.; Clark, John P.; Mummaneni, Praveen V.

    2015-01-01

    Study Design ?Retrospective review. Objective ?Intraoperative motor evoked potential (MEP) monitoring in spine surgery may assist surgeons in taking corrective measures to prevent neurologic deficits. The efficacy of monitoring MEPs intraoperatively in patients with myelopathy from nondegenerative causes has not been quantified. We compared the sensitivity and specificity of intraoperative MEP monitoring in patients with myelopathy caused by nondegenerative processes to patients with degenera...

  2. Criteria for transcranial electrical motor evoked potential monitoring during spinal deformity surgery - A review and discussion of the literature

    NARCIS (Netherlands)

    Langeloo, D. -D.; Journee, H. -L.; de Kleuver, M.; Grotenhuis, J. A.

    2007-01-01

    Transcranial electrical stimulated motor evoked potential monitoring (TES-MEP) has proven to be a successful and reliable neuromonitoring technique during spinal correction surgery. However, three criteria for TES-MEP monitoring have been described in the literature. This study aims at discussing

  3. [The vestibulocollic reflex: assessment and characteristics of vestibular-evoked myogenic potentials analysed by age groups].

    Science.gov (United States)

    Gonzalez-Garcia, E; Piqueras-Del Rey, A; Martin-Alba, V; Parra-Escorihuela, S; Soler-Algarra, S; Chumillas, M J; Perez-Guillen, V; Perez-Garrigues, H; Morera-Perez, C

    Obtaining vestibular-evoked myogenic potentials (VEMP) by means of the vestibulocollic reflex is a readily available technique that provides an image of vestibular functioning and is useful for evaluating the pathologies that involve compromise of the anatomical pathway of the reflex. Although normal patterns do exist, responses vary at different ages. To obtain reference values of the vestibulocollic reflex according to different age groups. We studied 40 volunteers with no symptoms of auditory or vestibular compromise. Each ear was stimulated separately by a series of clicks (sounds lasting 0.1 s; 3 pps; intensities of 100 dB nHL and 85 dB nHL) and recordings were made in the sternocleidomastoid muscles by means of surface electrodes as patients who were lying on their backs contracted these muscles as they lifted their heads. We studied the latency of the initial p13-n23 positive-negative potential and the peak-to-peak amplitude. The existence of later n34-p44 potentials was evaluated. No statistically significant differences were found between genders or between the two ears. We did not find any differences between the latencies of the waves according to the intensity of the stimulus, but there is a relationship between the amplitude of the p13-n23 potential and the intensity of the stimulus. The latencies of the responses in children under 10 years of age differ from those of the other groups, but no differences were found among those over the age of 11. The VEMP display steady and easily identifiable latencies. We obtained different reference values for latency in children under the age of 10 and those over 11 years old. The amplitude decreases with the intensity of the stimulus.

  4. Auditory Evoked Potentials with Different Speech Stimuli: a Comparison and Standardization of Values

    Directory of Open Access Journals (Sweden)

    Didoné, Dayane Domeneghini

    2016-02-01

    Full Text Available Introduction Long Latency Auditory Evoked Potentials (LLAEP with speech sounds has been the subject of research, as these stimuli would be ideal to check individualś detection and discrimination. Objective The objective of this study is to compare and describe the values of latency and amplitude of cortical potentials for speech stimuli in adults with normal hearing. Methods The sample population included 30 normal hearing individuals aged between 18 and 32 years old with ontological disease and auditory processing. All participants underwent LLAEP search using pairs of speech stimuli (/ba/ x /ga/, /ba/ x /da/, and /ba/ x /di/. The authors studied the LLAEP using binaural stimuli at an intensity of 75dBNPS. In total, they used 300 stimuli were used (∼60 rare and 240 frequent to obtain the LLAEP. Individuals received guidance to count the rare stimuli. The authors analyzed latencies of potential P1, N1, P2, N2, and P300, as well as the ampleness of P300. Results The mean age of the group was approximately 23 years. The averages of cortical potentials vary according to different speech stimuli. The N2 latency was greater for /ba/ x /di/ and P300 latency was greater for /ba/ x /ga/. Considering the overall average amplitude, it ranged from 5.35 and 7.35uV for different speech stimuli. Conclusion It was possible to obtain the values of latency and amplitude for different speech stimuli. Furthermore, the N2 component showed higher latency with the / ba / x / di / stimulus and P300 for /ba/ x / ga /.

  5. The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study

    Directory of Open Access Journals (Sweden)

    Gounot Daniel

    2003-09-01

    Full Text Available Abstract Background The integration of EEG and fMRI is attractive because of their complementary precision regarding time and space. But the relationship between the indirect hemodynamic fMRI signal and the more direct EEG signal is uncertain. Event-related EEG responses can be analyzed in two different ways, reflecting two different kinds of brain activity: evoked, i.e. phase-locked to the stimulus, such as evoked potentials, or induced, i.e. non phase-locked to the stimulus such as event-related oscillations. In order to determine which kind of EEG activity was more closely related with fMRI, EEG and fMRI signals were acquired together, while subjects were presented with two kinds of rare events intermingled with frequent distractors. Target events had to be signaled by pressing a button and Novel events had to be ignored. Results Both Targets and Novels triggered a P300, of larger amplitude in the Novel condition. On the opposite, the fMRI BOLD response was stronger in the Target condition. EEG event-related oscillations in the gamma band (32–38 Hz reacted in a way similar to the BOLD response. Conclusions The reasons for such opposite differential reactivity between oscillations / fMRI on the one hand, and evoked potentials on the other, are discussed in the paper. Those results provide further arguments for a closer relationship between fast oscillations and the BOLD signal, than between evoked potentials and the BOLD signal.

  6. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena [Turku University Central Hospital, Department of Paediatrics, Turku (Finland); Parkkola, Riitta [Turku University Central Hospital, Department of Radiology and Turku PET Centre, Turku (Finland); Johansson, Reijo [Turku University Central Hospital, Department of Otorhinolaryngology, Turku (Finland); Jaeaeskelaeinen, Satu K. [Turku University Central Hospital, Department of Clinical Neurophysiology, Turku (Finland); Kujari, Harry [Turku University Central Hospital, Department of Pathology, Turku (Finland); Haataja, Leena [Turku University Central Hospital, Department of Paediatric Neurology, Turku (Finland)

    2009-08-15

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  7. Amphibious auditory evoked potentials in four North American Testudines genera spanning the aquatic-terrestrial spectrum.

    Science.gov (United States)

    Zeyl, Jeffrey N; Johnston, Carol E

    2015-10-01

    Animals exhibit unique hearing adaptations in relation to the habitat media in which they reside. This study was a comparative analysis of auditory specialization in relation to habitat medium in Testudines, a taxon that includes both highly aquatic and fully terrestrial members. Evoked potential audiograms were collected in four species groups representing diversity along the aquatic-terrestrial spectrum: terrestrial and fossorial Gopherus polyphemus, terrestrial Terrapene carolina carolina, and aquatic Trachemys scripta and Sternotherus (S. odoratus and S. minor). Additionally, underwater sensitivity was tested in T. c. carolina, T. scripta, and Sternotherus with tympana submerged just below the water surface. In aerial audiograms, T. c. carolina were most sensitive, with thresholds 18 dB lower than Sternotherus. At 100-300 Hz, thresholds in T. c. carolina, G. polyphemus, and T. scripta were similar to each other. At 400-800 Hz, G. polyphemus thresholds were elevated to 11 dB above T. c. carolina. The underwater audiograms of T. c. carolina, T. scripta, and Sternotherus were similar. The results suggest aerial hearing adaptations in emydids and high-frequency hearing loss associated with seismic vibration detection in G. polyphemus. The underwater audiogram of T. c. carolina could reflect retention of ancestral aquatic auditory function.

  8. Effects of different doses of epidural midazolam on spinal somatosensory evoked potentials.

    Science.gov (United States)

    Ciçek, S; Attar, A; Tuna, H; Keçik, Y; Egemen, N

    2000-01-01

    The aim of this study is to find out the effects of different doses of midazolam, when used epidurally, on somatosensory evoked potentials (SEP) by delaying neuronal conduction. Thirty two New Zeland albino male rabbits were divided into four groups. All rabbits were anesthetised with ketamine and xylasine combination and atracurium was used as muscle relaxant. 10 mg/kg/hr ketamine infusion was used for maintenance of anesthesia. After insertion of the epidural catheter surgically; Group 1 received 1.5 ml isotonic saline (Control), Group 2 received 150 microg/kg, Group 3 received 250 microg/kg, and Group 4 received 500 microg/kg midazolam epidurally. With the stimulation of sciatic nerve. SEP records were recorded from the epidural space. Records were received before the injection of the drug, and 20, 40, 60 minutes after injection of the drug. "Latency" results were increased according to control in all groups (including isotonic saline-control-group). Increase in latency in the control group was interpreted as due to the effect of temperature mismatch of the saline and the rabbits. While in the first and second group amplitudes showed no differences, group 3 and 4 showed decreases of up to 50%. Epidurally administered midazolam up to 150 microg/kg caused no change in SEP records, but 250 and 500 microg/kg doses caused decreases in SEP records which can lead to misinterpretation as neurological damage.

  9. Specific neck training induces sustained corticomotor hyperexcitability as assessed by motor evoked potentials.

    Science.gov (United States)

    Rittig-Rasmussen, Bjarne; Kasch, Helge; Fuglsang-Frederiksen, Anders; Jensen, Troels S; Svensson, Peter

    2013-07-15

    Experimental investigation of short-term and long-term corticomotor effects of specific neck training, coordination training, and no training. To determine the effects of different training programs on the motor neurons controlling the neck muscles as well as the effects of training on muscle strength and muscle fatigue, and the correlations between corticomotor control and motor learning. Training is usually recommended for unspecific neck pain and consists of neck and upper body coordination, strengthening, and endurance exercises. However, it is unclear which type of training is the most effective. No studies have previously investigated the neural effect of neck training and the possible differential effect of specific versus coordination training on corticomotor control. Transcranial magnetic stimulation and electromyography were used to elicit and monitor motor evoked potentials (MEPs) from the trapezius and thumb muscles before and 30 minutes, 1 hour, and 7 days after training. Parameters measured were MEP amplitude, MEP latency, strength, learning effects, and muscle fatigue. Only specific neck training yielded a 67% increase in MEP amplitudes for up to 7 days after training compared with baseline (P coordination training, no training, and in the within-subject control muscle. The mean muscle strength increased immediately after specific neck training from 56.6 to 61 kg (P fatigue were observed. Specific neck training induced a sustained hyperexcitability of motor neurons controlling the neck muscles compared with coordination training and controls. These findings may prove valuable in the process of developing more effective clinical training programs for unspecific neck pain.

  10. A MISO-ARX-Based Method for Single-Trial Evoked Potential Extraction

    Directory of Open Access Journals (Sweden)

    Nannan Yu

    2017-01-01

    Full Text Available In this paper, we propose a novel method for solving the single-trial evoked potential (EP estimation problem. In this method, the single-trial EP is considered as a complex containing many components, which may originate from different functional brain sites; these components can be distinguished according to their respective latencies and amplitudes and are extracted simultaneously by multiple-input single-output autoregressive modeling with exogenous input (MISO-ARX. The extraction process is performed in three stages: first, we use a reference EP as a template and decompose it into a set of components, which serve as subtemplates for the remaining steps. Then, a dictionary is constructed with these subtemplates, and EPs are preliminarily extracted by sparse coding in order to roughly estimate the latency of each component. Finally, the single-trial measurement is parametrically modeled by MISO-ARX while characterizing spontaneous electroencephalographic activity as an autoregression model driven by white noise and with each component of the EP modeled by autoregressive-moving-average filtering of the subtemplates. Once optimized, all components of the EP can be extracted. Compared with ARX, our method has greater tracking capabilities of specific components of the EP complex as each component is modeled individually in MISO-ARX. We provide exhaustive experimental results to show the effectiveness and feasibility of our method.

  11. Preservation of motor maps with increased motor evoked potential amplitude threshold in RMT determination.

    Science.gov (United States)

    Lucente, Giuseppe; Lam, Steven; Schneider, Heike; Picht, Thomas

    2018-02-01

    Non-invasive pre-surgical mapping of eloquent brain areas with navigated transcranial magnetic stimulation (nTMS) is a useful technique linked to the improvement of surgical planning and patient outcomes. The stimulator output intensity and subsequent resting motor threshold determination (rMT) are based on the motor-evoked potential (MEP) elicited in the target muscle with an amplitude above a predetermined threshold of 50 μV. However, a subset of patients is unable to achieve complete relaxation in the target muscles, resulting in false positives that jeopardize mapping validity with conventional MEP determination protocols. Our aim is to explore the feasibility and reproducibility of a novel mapping approach that investigates how an increase of the MEP amplitude threshold to 300 and 500 μV affects subsequent motor maps. Seven healthy subjects underwent motor mapping with nTMS. RMT was calculated with the conventional methodology in conjunction with experimental 300- and 500-μV MEP amplitude thresholds. Motor mapping was performed with 105% of rMT stimulator intensity using the FDI as the target muscle. Motor mapping was possible in all patients with both the conventional and experimental setups. Motor area maps with a conventional 50-μV threshold showed poor correlation with 300-μV (α = 0.446, p motor area maps (α = 0.974, p motor area mapping with nTMS without losing precision.

  12. Interaction of Musicianship and Aging: A Comparison of Cortical Auditory Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Jennifer L. O’Brien

    2015-01-01

    Full Text Available Objective. The goal of this study was to begin to explore whether the beneficial auditory neural effects of early music training persist throughout life and influence age-related changes in neurophysiological processing of sound. Design. Cortical auditory evoked potentials (CAEPs elicited by harmonic tone complexes were examined, including P1-N1-P2, mismatch negativity (MMN, and P3a. Study Sample. Data from older adult musicians (n=8 and nonmusicians (n=8 (ages 55–70 years were compared to previous data from young adult musicians (n=40 and nonmusicians (n=20 (ages 18–33 years. Results. P1-N1-P2 amplitudes and latencies did not differ between older adult musicians and nonmusicians; however, MMN and P3a latencies for harmonic tone deviances were earlier for older musicians than older nonmusicians. Comparisons of P1-N1-P2, MMN, and P3a components between older and young adult musicians and nonmusicians suggest that P1 and P2 latencies are significantly affected by age, but not musicianship, while MMN and P3a appear to be more sensitive to effects of musicianship than aging. Conclusions. Findings support beneficial influences of musicianship on central auditory function and suggest a positive interaction between aging and musicianship on the auditory neural system.

  13. Neural generators of the auditory evoked potential components P3a and P3b.

    Science.gov (United States)

    Wronka, Eligiusz; Kaiser, Jan; Coenen, Anton M L

    2012-01-01

    The aim of the present study was to define the scalp topography of the two subcomponents of the P3 component of the auditory evoked potential elicited in a three-stimulus oddball paradigm and to identify their cortical generators using the standardized low resolution electromagnetic tomography (sLORETA). Subjects were presented with a random sequence of auditory stimuli and instructed to respond to an infrequently occurring target stimulus inserted into a sequence of frequent standard and rare non-target stimuli. Results show that the magnitude of the frontal P3a is determined by the relative physical difference among stimuli, as it was larger for the stimulus more deviant from the standard. Major neural generators of the P3a were localized within frontal cortex and anterior cingulate gyrus. In contrast to this, the P3b, showing maximal amplitude at parietal locations, was larger for stimuli demanding a response than for the rare non-target. Major sources of the P3b included the superior parietal lobule and the posterior part of the cingulate gyrus. Our findings are in line with the hypothesis that P3a is related to alerting activity during the initial allocation of attention, while P3b is related to activation of a posterior network when the neuronal model of perceived stimulation is compared with the attentional trace.

  14. Impact of loudness dependency of auditory evoked potentials on the panic response to CCK-4.

    Science.gov (United States)

    Eser, Daniela; Leicht, Gregor; Baghai, Thomas; Pogarell, Oliver; Schüle, Cornelius; Karch, Susanne; Nothdurfter, Caroline; Rupprecht, Rainer; Mulert, Christoph

    2009-01-01

    Experimental panic induction with cholecystokinin-tetrapeptide (CCK-4) has been established as a model to study the pathophysiology of panic disorder. In line with the serotonin (5-HT)-hypothesis of panic disorder it has been suggested that the panicogenic effects of CCK-4 are mediated in part through the 5-HT system. The analysis of the loudness dependency of the auditory evoked potentials (LDAEP) is a valid non-invasive indicator of central serotonergic activity. We investigated the correlation between LDAEP and behavioral, cardiovascular and neuroendocrine panic responses to CCK-4in 77 healthy volunteers and explored whether differences in LDAEP paralleled subjective panic severity. Behavioral panic responses were measured with the panic symptom scale (PSS). Heart rate and ACTH/cortisol plasma concentrations were assessed concomitantly. LDAEP did not differ between panickers and nonpanickers. Furthermore, LDAEP did not correlate with the behavioral panic response. However, a significant positive correlation between LDAEP and CCK-4 induced HPA-axis activation, which was uniform in panickers and nonpanickers, could be detected. The psychological effects of CCK-4 rather are mediated by neurotransmitters others than the endogenous 5-HT system. However, the extent of the neuroendocrine activation related to the CCK-4 panic provocation was correlated with the LDAEP, thereby suggesting that central 5-HT mechanisms are involved in the HPA-axis activation during this challenge paradigm.

  15. Ketamine-Based Anesthetic Protocols and Evoked Potential Monitoring: A Risk/Benefit Overview

    Directory of Open Access Journals (Sweden)

    Nicoleta eStoicea

    2016-02-01

    Full Text Available Since its discovery, ketamine, a noncompetitive N-methyl D-aspartate (NMDA receptor antagonist related to phencyclidine, has been linked to multiple adverse reactions sometimes described as out of body and near death experiences, including emergence phenomena, delusions, hallucinations, delirium, and confusion. Due to these effects, ketamine has been withdrawn from mainstream anesthetic use in adult patients. Evoked potentials (EPs are utilized to monitor neural pathways during surgery, detect intraoperative stress or damage, detect and define the level of neural lesions, and define abnormalities. Unfortunately, many of the volatile anesthetics commonly used during spinal and neurologic procedures suppress EP amplitude and monitoring.. Ketamine has been found in several preclinical and clinical studies to actually increase EP amplitude and thus has been used as an analgesic adjunct in procedures where EP monitoring is critical. Once the gap in our knowledge of ketamine’s risks has been sufficiently addressed in animal models, informed clinical trials should be conducted in order to properly incorporate ketamine-based anesthetic regimens during EP-monitored neurosurgeries.

  16. Effect of caffeine on cervical vestibular-evoked myogenic potential in healthy individuals

    Directory of Open Access Journals (Sweden)

    Ana Maria Almeida de Sousa

    2014-06-01

    Full Text Available INTRODUCTION: Caffeine is the most common psychoactive drug in use around the world and is found at different concentrations in a variety of common food items. Clinically, a strong association between caffeine consumption and diseases of the vestibular system has been established. Cervical vestibular-evoked myogenic potential (cVEMP is an electrophysiological test that is used to assess the sacculocollic pathway by measuring changes in the vestialibulocollic reflex. AIM: The present study aimed to evaluate the effect of an acute dose of caffeine on the vestibulocollic reflex by using cVEMP. METHOD: A prospective experimental study was performed in which healthy volunteers were submitted to the test before and after the intake of 420 mg of caffeine. The following parameters were compared: p13 and n23 latencies and p13-n23 amplitude. RESULT: No statistically significant difference was found in the test results before and after caffeine use. CONCLUSION: The vestibulocollic reflex is not altered by caffeine intake.

  17. Background noise can enhance cortical auditory evoked potentials under certain conditions

    Science.gov (United States)

    Papesh, Melissa A.; Billings, Curtis J.; Baltzell, Lucas S.

    2017-01-01

    Objective To use cortical auditory evoked potentials (CAEPs) to understand neural encoding in background noise and the conditions under which noise enhances CAEP responses. Methods CAEPs from 16 normal-hearing listeners were recorded using the speech syllable/ba/presented in quiet and speech-shaped noise at signal-to-noise ratios of 10 and 30 dB. The syllable was presented binaurally and monaurally at two presentation rates. Results The amplitudes of N1 and N2 peaks were often significantly enhanced in the presence of low-level background noise relative to quiet conditions, while P1 and P2 amplitudes were consistently reduced in noise. P1 and P2 amplitudes were significantly larger during binaural compared to monaural presentations, while N1 and N2 peaks were similar between binaural and monaural conditions. Conclusions Methodological choices impact CAEP peaks in very different ways. Negative peaks can be enhanced by background noise in certain conditions, while positive peaks are generally enhanced by binaural presentations. Significance Methodological choices significantly impact CAEPs acquired in quiet and in noise. If CAEPs are to be used as a tool to explore signal encoding in noise, scientists must be cognizant of how differences in acquisition and processing protocols selectively shape CAEP responses. PMID:25453611

  18. Sensory gating revisited: relation between brain oscillations and auditory evoked potentials in schizophrenia.

    Science.gov (United States)

    Brockhaus-Dumke, Anke; Mueller, Ralf; Faigle, Ulrich; Klosterkoetter, Joachim

    2008-02-01

    Disturbances of auditory information processing have repeatedly been shown in schizophrenia. To contribute to a better understanding of the neurophysiological underpinnings of habituation in auditory processing and its disturbance in schizophrenia we used three different approaches to analyze auditory evoked responses, namely phase-locking (PL) analyses, single trial amplitudes, and averaged event-related potentials (P50 and N100). Given that brain oscillations reflect the neuronal correlates of information processing we hypothesized that PL and amplitudes reflect even more essential parts of auditory processing than the averaged ERP responses. In 32 schizophrenia patients and 32 matched controls EEG was continuously recorded using an auditory paired click paradigm. PL of the lower frequency bands (alpha and theta) was significantly reduced in patients whereas no significant differences were present in higher frequencies (gamma and beta). Alpha and theta PL and amplitudes showed a marked increase after the first click and to a minor degree after the second one. This habituation was more prominent in controls whereas in schizophrenia patients the response to both clicks differed only slightly. N100 suppression was significantly reduced in schizophrenia patients whereas no group differences were present with respect to the P50. This corresponded to the finding that gamma mostly contributed to the prediction of the P50 response and theta mostly to the N100 response. Our data showed that analyzing phase and amplitude in single trials provides more information on auditory information processing and reflects differences between schizophrenia patients and controls better than analyzing the averaged ERP responses.

  19. Otoacoustic emissions, auditory evoked potentials, and traits related to sex and sexual orientation.

    Science.gov (United States)

    Loehlin, John C; McFadden, Dennis

    2003-04-01

    A number of trait measures, possibly reflective of prenatal hormonal effects, were obtained in studies of otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) carried out with male and female heterosexual and homosexual/bisexual college students. Most of the measures were from a self-report questionnaire; others were from experimenters' ratings or cognitive tests (Mental Rotation Test and Water Level Test). The questionnaire, test, and rating measures included physical characteristics (e.g., height, body type, eye color); spatial abilities; sex roles and sexual orientation; childhood gender nonconformity; and, in the OAE study, presence of homosexuality or bisexuality among relatives. Correlations with sexual orientation were most often consistent with the hypothesis that male homosexuals were undermasculinized and female homosexuals overmasculinized. Some correlations of the questionnaire, test, and rating measures with auditory measures were observed, but most of these were reduced or eliminated by statistically controlling for sex. In supplementary analyses, pigmentation measures appeared to be unrelated to OAEs, and data relevant to several hypotheses in the sexual orientation literature were briefly examined, including childhood gender nonconformity, X-linkage, handedness, and the tendency of homosexuality to run in families.

  20. Ocular vestibular evoked myogenic potentials: skull taps can cause a stimulus direction dependent double-peak.

    Science.gov (United States)

    Holmeslet, Berit; Westin, Magnus; Brantberg, Krister

    2011-02-01

    To explore the mechanisms for skull tap induced ocular vestibular evoked myogenic potentials (oVEMP). An electro-mechanical "skull tapper" was used to test oVEMP in response to four different stimulus sites (forehead, occiput and above each ear) in healthy subjects (n=20) and in patients with unilateral loss of vestibular function (n=10). In normals, the oVEMP in response to forehead taps and the contra-lateral oVEMP to taps above the ears were similar. These responses had typical oVEMP features, i.e. a short-latency negative peak (n10) followed by a positive peak (p15). In contrast, the ipsi-lateral oVEMP to the laterally directed skull taps, as well as the oVEMP to occiput taps, had an initial double negative peak (n10+n10b). In patients with unilateral loss of vestibular function, the crossed responses from the functioning labyrinth were very similar to the corresponding oVEMP in normals. The present data support a theory that skull tapping may cause both a response that is more stimulus direction dependent and one that is less so. Whereas the stimulus direction dependent occurrence of the negative double-peak might reveal the functional status of one part of the labyrinth, the rather stimulus direction-independent response might reveal the functional status of other parts. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Test-retest reliability of infant event related potentials evoked by faces.

    Science.gov (United States)

    Munsters, N M; van Ravenswaaij, H; van den Boomen, C; Kemner, C

    2017-04-05

    Reliable measures are required to draw meaningful conclusions regarding developmental changes in longitudinal studies. Little is known, however, about the test-retest reliability of face-sensitive event related potentials (ERPs), a frequently used neural measure in infants. The aim of the current study is to investigate the test-retest reliability of ERPs typically evoked by faces in 9-10 month-old infants. The infants (N=31) were presented with neutral, fearful and happy faces that contained only the lower or higher spatial frequency information. They were tested twice within two weeks. The present results show that the test-retest reliability of the face-sensitive ERP components is moderate (P400 and Nc) to substantial (N290). However, there is low test-retest reliability for the effects of the specific experimental manipulations (i.e. emotion and spatial frequency) on the face-sensitive ERPs. To conclude, in infants the face-sensitive ERP components (i.e. N290, P400 and Nc) show adequate test-retest reliability, but not the effects of emotion and spatial frequency on these ERP components. We propose that further research focuses on investigating elements that might increase the test-retest reliability, as adequate test-retest reliability is necessary to draw meaningful conclusions on individual developmental trajectories of the face-sensitive ERPs in infants. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Evaluation of an automated analysis for pain-related evoked potentials

    Directory of Open Access Journals (Sweden)

    Wulf Michael

    2017-09-01

    Full Text Available This paper presents initial steps towards an auto-mated analysis for pain-related evoked potentials (PREP to achieve a higher objectivity and non-biased examination as well as a reduction in the time expended during clinical daily routines. While manually examining, each epoch of an en-semble of stimulus-locked EEG signals, elicited by electrical stimulation of predominantly intra-epidermal small nerve fibers and recorded over the central electrode (Cz, is in-spected for artifacts before calculating the PREP by averag-ing the artifact-free epochs. Afterwards, specific peak-latencies (like the P0-, N1 and P1-latency are identified as certain extrema in the PREP’s waveform. The proposed automated analysis uses Pearson’s correlation and low-pass differentiation to perform these tasks. To evaluate the auto-mated analysis’ accuracy its results of 232 datasets were compared to the results of the manually performed examina-tion. Results of the automated artifact rejection were compa-rable to the manual examination. Detection of peak-latencies was more heterogeneous, indicating some sensitivity of the detected events upon the criteria used during data examina-tion.

  3. Preserved motor-evoked potentials but without good motor recovery in a patient with decerebrate rigidity

    Directory of Open Access Journals (Sweden)

    Chuen-Der Kao

    2011-01-01

    Full Text Available The corticospinal tract is not incriminated in decerebrate rigidity (DR. However, this has not yet been proven in humans. We applied transcranial magnetic stimulation (TMS in a decerebrate patient to support the hypothesis. A patient suffering from pontine hemorrhage with the fourth ventricular extension was admitted unconscious and in a decerebrate posture. Five days later, she regained consciousness but remained in a decerebrate posture. Motor-evoked potentials (MEPs to TMS were measured 1 week after she had regained consciousness, and this provoked muscle responses in her hands and feet bilaterally. During the follow-up, the patient’s muscle tone became persistently flaccid, although her strength increased to varying degrees in different body and limb muscles. She remained bedridden for 3 years after the stroke and could neither turn on the bed by herself nor perform skilled movements using her hands. The findings of TMS confirmed the animal studies in that the mechanism of decerebrate rigidity did not come through a damage of the corticospinal pathway. This also implies that a preserved corticospinal tract function cannot guarantee a good motor recovery in a stroke patient.

  4. Preserved motor-evoked potentials but without good motor recovery in a patient with decerebrate rigidity.

    Science.gov (United States)

    Kao, Chuen-Der; Lin, Kon-Ping; Chen, Jen-Tse; Chang, Jiun-Bin; Guo, Wan-Yuo; Lin, Yung-Yang; Liao, Kwong-Kum

    2011-01-01

    The corticospinal tract is not incriminated in decerebrate rigidity (DR). However, this has not yet been proven in humans. We applied transcranial magnetic stimulation (TMS) in a decerebrate patient to support the hypothesis. A patient suffering from pontine hemorrhage with the fourth ventricular extension was admitted unconscious and in a decerebrate posture. Five days later, she regained consciousness but remained in a decerebrate posture. Motor-evoked potentials (MEPs) to TMS were measured 1 week after she had regained consciousness, and this provoked muscle responses in her hands and feet bilaterally. During the follow-up, the patient's muscle tone became persistently flaccid, although her strength increased to varying degrees in different body and limb muscles. She remained bedridden for 3 years after the stroke and could neither turn on the bed by herself nor perform skilled movements using her hands. The findings of TMS confirmed the animal studies in that the mechanism of decerebrate rigidity did not come through a damage of the corticospinal pathway. This also implies that a preserved corticospinal tract function cannot guarantee a good motor recovery in a stroke patient. Copyright © 2011. Published by Elsevier B.V.

  5. Wavelet denoising of EEG signals and identification of evoked response potentials

    Science.gov (United States)

    Carmona, Rene A.; Hudgins, Lonnie H.

    1994-10-01

    The purpose of this study is to apply a recently developed wavelet based de-noising filter to the analysis of human electroencephalogram (EEG) signals, and measure its performance. The data used contained subject EEG responses to two different stimuli using the `odd-ball' paradigm. Electrical signals measured at standard locations on the scalp were processed to detect and identify the Evoked Response Potentials (ERP's). First, electrical artifacts emitting from the eyes were identified and removed. Second, the mean signature for each type of response was extracted and used as a matched filter to define baseline detector performance for the noisy data. Third, a nonlinear filtering procedure based on the wavelet extrema representation was used to de-noise the signals. Overall detection rates for the de-noised signals were then compared to the baseline performance. It was found that while the filtered signals have significantly lower noise than the raw signals, detector performance remains comparable. We therefore conclude that all of the information that is important to matched filter detection is preserved by the filter. The implication is that the wavelet based filter eliminates much of the noise while retaining ERP's.

  6. Ketamine-Based Anesthetic Protocols and Evoked Potential Monitoring: A Risk/Benefit Overview

    Science.gov (United States)

    Stoicea, Nicoleta; Versteeg, Gregory; Florescu, Diana; Joseph, Nicholas; Fiorda-Diaz, Juan; Navarrete, Víctor; Bergese, Sergio D.

    2016-01-01

    Since its discovery, ketamine, a non-competitive N-methyl D-aspartate (NMDA) receptor antagonist related to phencyclidine, has been linked to multiple adverse reactions sometimes described as “out of body” and “near death experiences,” including emergence phenomena, delusions, hallucinations, delirium, and confusion. Due to these effects, ketamine has been withdrawn from mainstream anesthetic use in adult patients. Evoked potentials (EPs) are utilized to monitor neural pathways during surgery, detect intraoperative stress or damage, detect and define the level of neural lesions, and define abnormalities. Unfortunately, many of the volatile anesthetics commonly used during spinal and neurologic procedures suppress EP amplitude and monitoring. Ketamine has been found in several preclinical and clinical studies to actually increase EP amplitude and thus has been used as an analgesic adjunct in procedures where EP monitoring is critical. Once the gap in our knowledge of ketamine's risks has been sufficiently addressed in animal models, informed clinical trials should be conducted in order to properly incorporate ketamine-based anesthetic regimens during EP-monitored neurosurgeries. PMID:26909017

  7. Modulation of the N30 generators of the somatosensory evoked potentials by the mirror neuron system.

    Science.gov (United States)

    Cebolla, A M; Palmero-Soler, E; Dan, B; Cheron, G

    2014-07-15

    The N30 component of the somatosensory evoked potential is known to be modulated by sensory interference, motor action, movement ideation and observation. We introduce a new paradigm in which the observation task of another person's hand movement triggers the somatosensory stimulus, inducing the N30 response in participants. In order to identify the possible contribution of the mirror neuron network (MNN) to this early sensorimotor processing, we analyzed the N30 topography, the event-related spectral perturbation and the inter-trial coherence on single electroencephalogram (EEG) trials, and we applied swLORETA to localize the N30 sources implicated in the time-frequency domain at rest and during observation, as well as the generators differentiating these two contextual brain states. We found that N30 amplitude increase correlated with increased contralateral precentral alpha, frontal beta, and contralateral frontal gamma power spectrum, and with central and precentral alpha and parietal beta phase-locking of ongoing EEG signals. We demonstrate specific activation of the contralateral post-central and parietal cortex where the angular gyrus (BA39), an important MNN node, is implicated in this enhancement during observation. We conclude that this part of the MNN, involved in proprioceptive processing and more complex body-action representations, is already active prior to somatosensory input and may enhance N30. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?

    Science.gov (United States)

    Takayoshi, Hiroyuki; Onoda, Keiichi; Yamaguchi, Shuhei

    2018-01-01

    Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP) obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI). Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation.

  9. Language plasticity in aphasics after recovery: evidence from slow evoked potentials.

    Science.gov (United States)

    Spironelli, Chiara; Angrilli, Alessandro; Pertile, Marco

    2008-04-01

    With the present experiment we sought to investigate brain plasticity underlying language recovery in a group of seventeen patients with non-fluent aphasia mainly caused by stroke. Patients were screened along three domains of measures: analysis of linguistic components by the Aachener Aphasie Test, combined mapping of their lesion from CT/MRI scans, and functional measure of the reorganized linguistic processes by means of mapping of slow evoked potentials. The spatial dimension and temporal dynamics of word processing were measured in three tasks, Phonological, Semantic and Orthographic. Compared with the matched control group, patients showed relative inhibition (decreased negativity) of left central regions in perisylvian areas, which were damaged in most subjects. In addition, reorganization of linguistic functions occurred within the left hemisphere both at frontal and posterior sites corresponding to spared brain regions. Correlations between linguistic lateralization in the three tasks and AAT subtests point to functional reorganization of phonological processes over left frontal sites and dysfunctional reorganization of semantic processing over left posterior regions.

  10. The effects of stimulus parameters on auditory evoked potentials of Carassius auratus.

    Science.gov (United States)

    Garabon, Jessica R; Higgs, Dennis M

    2017-11-01

    Whole-brain responses to sound are easily measured through auditory evoked potentials (AEP), but it is unclear how differences in experimental parameters affect these responses. The effect of varying parameters is especially unclear in fish studies, the majority of which use simple sound types and then extrapolate to natural conditions. The current study investigated AEPs in goldfish (Carassius auratus) using sounds of different durations (5, 10, and 20 ms) and frequencies (200, 500, 600 and 700 Hz) to test stimulus effects on latency and thresholds. We quantified differences in latency and threshold in comparison to a 10-ms test tone, a duration often used in AEP fish studies. Both response latency and threshold were significantly affected by stimulus duration, with latency patterning suggesting that AEP fires coincident with a decrease in stimulus strength. Response latency was also significantly affected by presentation frequency. These results show that stimulus type has important effects on AEP measures of hearing and call for clearer standards across different measures of AEP. Duration effects also suggest that AEP measures represent summed responses of duration-detecting neural circuit, but more effort is needed to understand the neural drivers of this commonly used technique.

  11. Effects of mastication on human somatosensory processing: A study using somatosensory-evoked potentials.

    Science.gov (United States)

    Nakata, Hiroki; Aoki, Mai; Sakamoto, Kiwako

    2017-04-01

    The aim of the present study was to investigate the effects of mastication on somatosensory processing using somatosensory-evoked potentials (SEPs). Fourteen healthy subjects received a median nerve stimulation at the right wrist under two conditions: Mastication and Control. SEPs were recorded in five sessions for approximately seven minutes: Pre, Post 1, 2, 3, and 4. Subjects were asked to chew gum for five minutes after one session in Mastication. Control included the same five sessions. The amplitudes and latencies of P14, N20, P25, N35, P45, and N60 components at C3', frontal N30 component at Fz, and P100 and N140 components at Pz were analyzed. The amplitude of P45-N60 was significantly smaller at Post 1, 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P25 was significantly longer at Post 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P100 was significantly longer at Post 2 than at Pre in Control, but not in Mastication. These results suggest the significant effects of mastication on the neural activity of human somatosensory processing. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  12. Simultaneous recording of cervical and ocular vestibular-evoked myogenic potentials.

    Science.gov (United States)

    Oh, Sun-Young; Shin, Hyun-June; Boegle, Rainer; Ertl, Matthias; Eulenburg, Peter Zu; Kim, Ji-Soo; Dieterich, Marianne

    2018-01-16

    To increase clinical application of vestibular-evoked myogenic potentials (VEMPs) by reducing the testing time by evaluating whether a simultaneous recording of ocular and cervical VEMPs can be achieved without a loss in diagnostic sensitivity and specificity. Simultaneous recording of ocular and cervical VEMPs on each side during monaural stimulation, bilateral simultaneous recording of ocular VEMPs and cervical VEMPs during binaural stimulation, and conventional sequential recording of ocular and cervical VEMPs on each side using air-conducted sound (500 Hz, 5-millisecond tone burst) were compared in 40 healthy participants (HPs) and 20 patients with acute vestibular neuritis. Either simultaneous recording during monaural and binaural stimulation effectively reduced the recording time by ≈55% of that for conventional sequential recordings in both the HP and patient groups. The simultaneous recording with monaural stimulation resulted in latencies and thresholds of both VEMPs and the amplitude of cervical VEMPs similar to those found during the conventional recordings but larger ocular VEMP amplitudes (156%) in both groups. In contrast, compared to the conventional recording, simultaneous recording of each VEMP during binaural stimulation showed reduced amplitudes (31%) and increased thresholds for cervical VEMPs in both groups. The results of simultaneous recording of cervical and ocular VEMPs during monaural stimulation were comparable to those obtained from the conventional recording while reducing the time to record both VEMPs on each side. NCT03049683. Copyright © 2017 American Academy of Neurology.

  13. Superior canal dehiscence syndrome : Diagnosis with vestibular evoked myogenic potentials and fremitus nystagmus.

    Science.gov (United States)

    Gürkov, R; Jerin, C; Flatz, W; Maxwell, R

    2017-12-14

    Superior canal dehiscence syndrome (SCDS) is a relatively rare neurotological disorder that is characterized by a heterogeneous clinical picture. Recently, vestibular evoked myogenic potential (VEMP) measurement was established for the diagnosis of SCDS. In the present study, a case series of patients with SCDS were analyzed, with a focus on VEMP. Four patients with SCDS were prospectively examined with ocular VEMP (oVEMP) and cervical VEMP (cVEMP). The clinical features and the standard audiovestibular test battery results are summarized and analyzed. The diagnostic accuracy of VEMP testing is evaluated. The increased oVEMP amplitudes had a specificity of 100% in this patient population. All patients had normal caloric function and head impulse testing. The Tullio sign was observed in two patients. Three patients had autophony. The air-bone gap was not greater than 10 dB in any of the patients. Two patients had marked fremitus nystagmus. All patients had a bony dehiscence of the superior semicircular canal on computed tomography imaging. The subjective and clinical features in this case series of SCDS patients were heterogeneous. However, objective oVEMP testing had the highest diagnostic value. Furthermore, we describe a new diagnostic clinical sign: fremitus nystagmus.

  14. Anterior Cervical Disc Fusion Does not Affect the Presence of Cervical Vestibular-Evoked Myogenic Potential.

    Science.gov (United States)

    Kastanioudakis, Ioannis; Saravakos, Panagiotis; Zigouris, Andreas; Ragos, Vasileios; Reichel, Oliver; Ziavra, Nafsika

    2017-12-14

    Cervical spondylosis and cervical disk herniation are the most frequent forms of degenerative disease in the cervical spine. Surgical treatment mainly includes anterior cervical disk fusion. However, information concerning vestibular-evoked myogenic potential (VEMP) recording in patients undergoing cervical spine surgery is limited. The present prospective study aimed to investigate the effect of anterior disk fusion surgery on cervical VEMP (cVEMP) parameters. Twenty-five patients were enrolled in this study, and 20 patients (10 men and 10 women) completed cVEMP testing. Patient ages ranged from 29 to 76 y (mean, 52 y). Patients with conductive hearing loss or vestibular dysfunction were excluded. The cVEMP test was recorded preoperatively and 1 and 4 months postoperatively. Air-conducted tone-bursts of 500 Hz were used. We found no statistically significant difference between the preoperative and postoperative cVEMP values. Cervical spine surgery (anterior cervical disk fusion) for treating cervical spondylosis does not appear to affect the presence of cVEMP or the parameters of cVEMP, when using air-conducted tone-bursts of 500 Hz. Moreover, cVEMP testing can be used in the postoperative phase for evaluating vertigo in patients who have undergone anterior cervical disk fusion.

  15. Bone-conducted Vestibular-evoked Myogenic Potentials Before and After Stapes Surgery.

    Science.gov (United States)

    Akazawa, Kazuyuki; Ohta, Shigeto; Tsuzuki, Kenzo; Sakagami, Masafumi

    2018-01-01

    To identify whether stapes surgery causes otolith dysfunction using bone-conducted vestibular-evoked myogenic potentials (VEMPs). Prospective study. Hyogo College of Medicine Hospital. Twenty primary ears (19 otosclerosis, 1 congenital stapes fixation) in 17 patients (2 men, 15 women; mean age 51 yr, range 20-68 yr) who had normal cervical VEMP (cVEMP) and ocular VEMP (oVEMP) results with bone-conducted stimulation were included. Stapes surgery. Both VEMP tests with bone-conducted stimulation were performed before and after stapes surgery. The normalized p13-n23 amplitude of cVEMPs and the nI-pI amplitude of oVEMPs were measured within 3 months after stapes surgery. Then, the asymmetry ratio (AR) was calculated to examine the effect of surgery on otolith function. Seven patients complained of temporary dizziness postoperatively, but their symptoms disappeared within approximately a week. Deterioration of VEMPs of the operated ear was not seen in any ears. Significantly greater amplitude compared with the opposite ear was found for cVEMP in one ear and oVEMP in two ears after the surgery. Their VEMP results recovered to the normal range at 6 months postoperatively. These findings suggest that stapes surgery causes no or undetectably small otolith dysfunction from the perspective of VEMP evaluation.

  16. Short-term food deprivation increases amplitudes of heartbeat-evoked potentials.

    Science.gov (United States)

    Schulz, André; Ferreira de Sá, Diana S; Dierolf, Angelika M; Lutz, Annika; van Dyck, Zoé; Vögele, Claus; Schächinger, Hartmut

    2015-05-01

    Nutritional state (i.e., fasting or nonfasting) may affect the processing of interoceptive signals, but mechanisms underlying this effect remain unclear. We investigated 16 healthy women on two separate days: when satiated (standardized food intake) and after an 18-h food deprivation period. On both days, heartbeat-evoked potentials (HEPs) and cardiac and autonomic nervous system activation indices (heart rate, normalized low frequency heart rate variability [nLF HRV]) were assessed. The HEP is an EEG pattern that is considered an index of cortical representation of afferent cardiovascular signals. Average HEP activity (R wave +455-595 ms) was enhanced during food deprivation compared to normal food intake. Cardiac activation did not differ between nutritional conditions. Our results indicate that short-term food deprivation amplifies an electrophysiological correlate of the cortical representation of visceral-afferent signals originating from the cardiovascular system. This effect could not be attributed to increased cardiac activation, as estimated by heart rate and nLF HRV, after food deprivation. © 2014 Society for Psychophysiological Research.

  17. Intraoperative tractography and motor evoked potential (MEP) monitoring in surgery for gliomas around the corticospinal tract.

    Science.gov (United States)

    Maesawa, Satoshi; Fujii, Masazumi; Nakahara, Norimoto; Watanabe, Tadashi; Wakabayashi, Toshihiko; Yoshida, Jun

    2010-07-01

    Our goal is to indicate the importance of combining intraoperative tractography with motor-evoked potential (MEP) monitoring for glioma surgery in motor eloquent areas. Tumor removal was performed in 28 patients with gliomas in and around the corticospinal tract (CST), in an operation theater equipped with an integrated high-field intraoperative magnetic resonance imaging and a neuronavigation system. Diffusion-tensor imaging-based tractography of the CST was implemented preoperatively and intraoperatively. When the surgically manipulated area came close to the corticospinal pathway, MEP responses were elicited by subcortical stimulation. Responsive areas were compared with the locations of fibers traced by preoperative and intraoperative tractography. Imaging and functional outcomes were reviewed. Intraoperative tractography demonstrated significant inward or outward shift during surgery. MEP responses were observed around the tract at various intensities, and the distance between MEP responsive sites and intraoperative tractography was significantly correlated with the stimulation intensity (P MEP monitoring can enhance the quality of surgery for gliomas in motor eloquent areas. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation

    Science.gov (United States)

    Kent, Alexander R.; Grill, Warren M.

    2012-01-01

    Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000x over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894

  19. Motor-evoked potentials (MEP) during brainstem surgery to preserve corticospinal function.

    Science.gov (United States)

    Sarnthein, Johannes; Bozinov, Oliver; Melone, Angelina Graziella; Bertalanffy, Helmut

    2011-09-01

    Brainstem surgery bears a risk of damage to the corticospinal tract (CST). Motor-evoked potentials (MEPs) are used intraoperatively to monitor CST function in order to detect CST damage at a reversible stage and thus impede permanent neurological deficits. While the method of MEP is generally accepted, warning criteria in the context of brainstem surgery still have to be agreed on. We analyzed 104 consecutive patients who underwent microsurgical resection of lesions affecting the brainstem. Motor grade was documented prior to surgery, early postoperatively and at discharge. A baseline MEP stimulation intensity threshold was defined and intraoperative testing aimed to keep MEP response amplitude constant. MEPs were considered deteriorated and the surgical team was notified whenever the threshold was elevated by ≥20 mA or MEP response fell under 50%. On the first postoperative day, 18 patients experienced new paresis that resolved by discharge in 11. MEPs deteriorated in 39 patients, and 16 of these showed new postoperative paresis, indicating a 41% risk of new paresis. In the remaining 2/18 patients, intraoperative MEPs were stable, although new paresis appeared postoperatively. In one of these patients, intraoperative hemorrhage caused postoperative swelling, and the new motor deficit persisted until discharge. Of all 104 patients, 7 deteriorated in motor grade at discharge, 92 remained unchanged, and 5 patients have improved. Adjustment of surgical strategy contributed to good motor outcome in 33/39 patients. MEP monitoring may help significantly to prevent motor deficits during demanding neurosurgical procedures on the brainstem.

  20. Distinct Somatic Discrimination Reflected by Laser-Evoked Potentials Using Scalp EEG Leads.

    Science.gov (United States)

    Hsueh, Jen-Jui; Chen, Jia-Jin Jason; Shaw, Fu-Zen

    Discrimination is an important function in pain processing of the somatic cortex. The involvement of the somatic cortex has been studied using equivalent dipole analysis and neuroimaging, but the results are inconsistent. Scalp electroencephalography (EEG) can reflect functional changes of particular brain regions underneath a lead. However, the responses of EEG leads close to the somatic cortex in response to pain have not been systematically evaluated. The present study applied CO2 laser stimulation to the dorsum of the left hand. Laser-evoked potentials (LEPs) of C4, T3, and T4 leads and pain ratings in response to four stimulus intensities were analyzed. LEPs started earlier at the C4 and T4 leads. The onset latency and peak latency of LEPs for C4 and T4 leads were the same. Only 10 of 22 subjects (45 %) presented equivalent current dipoles within the primary somatosensory or motor cortices. LEP amplitudes of these leads increased as stimulation intensity increased. The stimulus-response pattern of the C4 lead was highly correlated with pain rating. In contrast, an S-shaped stimulus-response curve was obtained for the T3 and T4 leads. The present study provides supporting evidence that particular scalp channels are able to reflect the functional characteristics of their underlying cortical areas. Our data strengthen the clinical application of somatic-cortex-related leads for pain discrimination.

  1. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.

    Science.gov (United States)

    Cone, Barbara; Whitaker, Richard

    2013-07-01

    Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency

  2. Pleasure for visual and olfactory stimuli evoking energy-dense foods is decreased in anorexia nervosa.

    Science.gov (United States)

    Jiang, Tao; Soussignan, Robert; Rigaud, Daniel; Schaal, Benoist

    2010-11-30

    Although patients with anorexia nervosa have been suggested to be anhedonic, few experiments have directly measured their sensory pleasure for a range of food and non-food stimuli. This study aimed to examine whether restrictive anorexia nervosa (AN-R) patients displayed: i) a generalized decline in sensory pleasure or only in food-related sensory pleasure; ii) a modification of hedonic responses to food cues (liking) and of the desire to eat foods (wanting) as a function of their motivational state (hunger vs. satiety) and energy density of foods (high vs. low). Forty-six female participants (AN-R n=17; healthy controls (HC) n=29) reported before/after lunch their pleasure for pictures/odorants representing foods of different energy density and non-food objects. They also reported their desire to eat the foods evoked by the sensory stimuli, and completed the Physical Anhedonia Scale and the Beck Depression Inventory. AN-R and HC participants did not differ on liking ratings when exposed to low energy-density food or to non-food stimuli. The two groups also had similar physical anhedonia scores. However, compared to HC, AN-R reported lower liking ratings for high energy food pictures regardless of their motivational state. Olfactory pleasure was reduced only during the pre-prandial state in the AN-R group. The wanting ratings showed a distinct pattern since AN-R participants reported less desire to eat the foods representing both low and high energy densities, but the effect was restricted to the pre-prandial state. Taken together these results reflect more the influence of core symptoms in anorexia nervosa (fear of gaining weight) than an overall inability to experience pleasure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Not all reading is alike: Task modulation of magnetic evoked response to visual word

    Directory of Open Access Journals (Sweden)

    Pavlova A. A.

    2017-09-01

    Full Text Available Background. Previous studies have shown that brain response to a written word depends on the task: whether the word is a target in a version of lexical decision task or should be read silently. Although this effect has been interpreted as an evidence for an interaction between word recognition processes and task demands, it also may be caused by greater attention allocation to the target word. Objective. We aimed to examine the task effect on brain response evoked by non- target written words. Design. Using MEG and magnetic source imaging, we compared spatial-temporal pattern of brain response elicited by a noun cue when it was read silently either without additional task (SR or with a requirement to produce an associated verb (VG. Results.The task demands penetrated into early (200-300 ms and late (500-800 ms stages of a word processing by enhancing brain response under VG versus SR condition. The cortical sources of the early response were localized to bilateral inferior occipitotemporal and anterior temporal cortex suggesting that more demanding VG task required elaborated lexical-semantic analysis. The late effect was observed in the associative auditory areas in middle and superior temporal gyri and in motor representation of articulators. Our results suggest that a remote goal plays a pivotal role in enhanced recruitment of cortical structures underlying orthographic, semantic and sensorimotor dimensions of written word perception from the early processing stages. Surprisingly, we found that to fulfil a more challenging goal the brain progressively engaged resources of the right hemisphere throughout all stages of silent reading. Conclusion. Our study demonstrates that a deeper processing of linguistic input amplifies activation of brain areas involved in integration of speech perception and production. This is consistent with theories that emphasize the role of sensorimotor integration in speech understanding.

  4. Frontal phasic and oscillatory generators of the N30 somatosensory evoked potential.

    Science.gov (United States)

    Cebolla, A M; Palmero-Soler, E; Dan, B; Cheron, G

    2011-01-15

    The N30 component of somatosensory evoked potentials has been recognized as a crucial index of brain sensorimotor processing and has been increasingly used clinically. Previously, we have shown that the N30 is accompanied by both an increase of the power spectrum of the ongoing beta-gamma EEG (event related synchronization, ERS) and by a reorganization (phase-locking) of the spontaneous phase of this rhythm (inter-trials coherency, ITC). In order to localize its sources taking into account both the phasic and oscillatory aspects of the phenomenon, we here apply swLORETA methods on averaged signals of the event-related potential (ERP) from a 128 scalp-electrodes array in time domain and also on raw EEG signals in frequency domain at the N30 peak latency. We demonstrate that the two different mechanisms that generate the N30 component power increase (ERS) and phase locking (ITC) across EEG trials are spatially localized in overlapping areas in the precentral cortex, namely the motor cortex (BA4) and the premotor cortex (BA6). From this common region, the generator of the N30 event-related potential expands toward the posterior part of BA4, the anterior part of BA6 and the prefrontal cortex (BA9). These latter areas also present significant ITC sources in the beta-gamma frequency range, but without significant power increase of this rhythm. This demonstrates that N30 results from network activity that depends on distinct oscillating and phasic generators localized in the frontal cortex. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Penile and perianal pudendal nerve somatosensory evoked potentials in the diagnosis of erectile dysfunction.

    Science.gov (United States)

    Kaiser, T; Jost, W H; Osterhage, J; Derouet, H; Schimrigk, K

    2001-04-01

    Neurophysiologic examinations in differential diagnosis of erectile dysfunction comprise electromyogramme of the pelvic floor, pudendal nerve terminal motor latency (PNTML) and evaluation of pudendal somatosensory evoked potentials (SSEP). We focused our interest on comparing diagnostic importance of penile and perianal pudendal nerve SSEP. We examined 20 patients suffering from erectile dysfunction and 20 patients without any manifestation of impotence. The stimulus was administered using penile ring electrodes at the base of the penis (cathode) and distally on the penis shaft (anode), as well as a perianal surface electrode applied at 3 o'clock in lithotomy position and 5 cm laterally on the gluteal skin. The potentials were recorded with intradermal needle electrodes at C(z)-2 cm (different) and F(z) (indifferent). 500 stimuli were averaged for a single tracing. The stimulus strength was set at an average of 3-4 times the stimulus threshold. Cortical latency of P 40 ranged from 39.0 to 45.6 ms (penile) and from 33.6 to 43.2 ms (perianal) in the control group, in the patient group latencies ranged from 38.8 to 51.6 (penile) and 34.0 to 44.8 ms (perianal). In two patients no potential was recordable after perianal stimulation, one patient showed a marked prolongation of the penile response with a normal perianal latency. Penile and perianal latencies of P 40 were significantly prolonged in the patient group compared to the control group (Ppenile and perianal pudendal SSEP may provide valuable additional information in differential diagnosis of erectile dysfunction, especially allowing to identify different sites of neurogenic lesions. In contrast to perianal pudendal SSEP, penile stimulation may help to discover pathologic changes in the distal course of the pudendal nerve, especially the dorsal nerve of the penis.

  6. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays.

    Science.gov (United States)

    Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi

    2017-01-01

    Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm2. The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control.

  7. Visual and Postural Motion-Evoked Dizziness Symptoms Are Predominant in Vestibular Migraine Patients.

    Science.gov (United States)

    Vuralli, Doga; Yildirim, Funuzar; Akcali, Didem T; Ilhan, Mustafa N; Goksu, Nebil; Bolay, Hayrunnisa

    2018-01-01

    Vestibular migraine (VM) is one of the most common underdiagnosed disorders. We aimed to study the clinical characteristics of VM patients who were referred to a neurology-headache unit by otolaryngology after exclusion of peripheral causes of vertigo. One hundred and one patients diagnosed with VM in the headache unit were included. Description of vestibular symptoms, demographic and clinical features, trigger factors, accompanying diseases, and response to vestibular-suppressant medications and prophylactic migraine treatment were evaluated. Vestibular symptoms were triggered by daily head and body movements and mainly consisted of brief attacks lasting seconds (60.4% of patients) although the total duration of the vestibular episode lasted hours or days. Other aggravating factors were moving visual stimuli, passive motion, and visually busy environments. Visually induced vestibular symptoms were defined by 71.3% of the patients, and positional motion-induced vestibular symptoms were described by 82.2% of the patients. Vestibular symptoms were mainly defined as feeling the ground slipping from under their feet (40.6%), feeling like there is an earthquake or swaying (27.7%), sensation of rocking on a boat (26.7%), and sensation as if stepping on empty space (24.8%). The majority of the patients (83.2%) previously used vestibular-suppressant drugs, and these drugs were effective temporarily only in 12.9%. Chronic recurrent dizziness symptoms, rather than internal or external vertigo, are predominant in our VM patients. Recurrent brief dizziness attacks induced upon routine visual and/or postural motion, longstanding symptoms with limited response to vestibular suppressants, and precipitation by typical migraine triggers are suggestive of VM.

  8. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M

    2014-07-14

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.

  9. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2014-07-01

    Full Text Available The evoked electromyographic signal (eEMG potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05 between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI population.

  10. Effects of multiple doses of organophosphates on evoked potentials in mouse diaphragm.

    Science.gov (United States)

    Kelly, S S; de Blaquière, G E; Williams, F M; Blain, P G

    1997-02-01

    1. Male albino mice were injected s.c. with an organophosphate (mipafox, ecothiopate or paraoxon). Treatments were either a single injection or multiple daily injections with lower doses for 5 or 8 days. At 3 h after injection the activity of brain and diaphragm acetylcholinesterase and of brain neuropathy target esterase (NTE) was measured. Also measured in the diaphragm at 3 h post dose was the duration of spontaneous miniature endplate potentials (eMEPPs), recorded extracellularly. 2. At 7 and 28 days after dosing action potentials and evoked endplate potentials, produced by stimulating the phrenic nerve at 30 Hz, were recorded in diaphragm muscle. The amplitudes, time-course and latencies of these potentials were measured and the variability of latencies (jitter) was calculated. 3. Single doses of mipafox (20 mg/kg), ecothiopate (0.192 mg/kg) or paraoxon (0.415 mg/kg) in the mouse produced ca. 70% inhibition of diaphragm acetylcholinesterase at 3 h after dosing. All three OPs produced a prolongation of the half-decay times of eMEPPs. 4. All three OPs in the above single doses produced increased muscle action potential (postjunctional) jitter but only mipafox produced an increase in endplate potential (prejunctional) jitter. Mipafox in a slightly reduced single dose (17.5 mg/kg) had no effect on prejunctional or postjunctional jitter. 5. Multiple dosing with mipafox (8 mg/kg daily for 5 days) increased both postjunctional and prejunctional jitter at both 7 and 28 days after the end of dosing. After multiple dosing with mipafox (5 mg/kg daily for 5 days) postjunctional (but not prejunctional) jitter was increased. Multiple doses of paraoxon (0.166 mg/kg daily for 5 days) or ecothiopate (0.76 mg/kg daily for 5 days) increased prejunctional and postjunctional jitter. 6. Depending on the dosing regime, all three OPs tested were capable of increasing both prejunctional and postjunctional jitter. Neither ecothiopate nor paraoxon inhibited NTE, so this prejunctional

  11. Gating of the vertex somatosensory and auditory evoked potential P50 and the correlation to skin conductance orienting response in healthy men

    DEFF Research Database (Denmark)

    Arnfred, S M; Eder, D N; Hemmingsen, R P

    2001-01-01

    A defect in auditory evoked potential (AEP) P50 gating supports the theory of information-processing deficits in schizophrenia. The relationship between gating of the mid-latency evoked potentials (EP) in the somatosensory and the auditory modalities has not been studied together before. In schiz...

  12. [Loss of brain stem auditory evoked potential waves I and II during controlled hypotension].

    Science.gov (United States)

    Papadopoulos, G; Lang, M; Link, J; Schäfer, M; Schaffartzik, W; Eyrich, K; Bornfeld, N; Foerster, M H

    1995-11-01

    For surgical removal of a malignant choroid melanoma, it is necessary to reduce systolic blood pressure to around 50-60 mmHg in order to prevent choroidal haemorrhages. However, blood pressure reduction is associated with the risk of cerebral ischaemia. We report a patient with a malignant choroid melanoma in whom waves I and II of the brainstem auditory evoked potentials (BAEP) disappeared during surgery under controlled arterial hypotension and hypothermia (31.1 degrees C). The waves could be recorded again immediately after the mean arterial pressure was increased from 48 to 77 mmHg. The oesophageal temperature had dropped by 0.3 degrees C at this time. The 2-channel electroencephalogram (EEG) showed no irregularities during this time period. A bilateral, reversible, apparently blood-pressure-dependent loss of waves I and II during arterial hypotension despite a normal EEG has to our knowledge not been previously described in the literature. The isolated loss of waves I and II with maintenance of waves III, IV, and V is unusual. The literature contains reports of acoustic neurinoma patients in whom only wave V could be recorded. This is regarded as an indication of continued impulse conduction despite the loss of waves I to IV. Others have observed a patient with temporary and reversible loss of BAEP wave I due to vasospasm of the internal auditory artery that apparently occurred during or shortly after manipulation of the internal auditory meatus. Assuming anatomic peculiarities in the blood supply to the generators of the BAEP waves, a stenosis of the basilar artery could be considered as the cause of the bilateral reversible loss of waves I and II. Another potential source could be induced hypothermia, but this does not seem very likely because the patient's temperature was 0.3 degrees C lower at the return of the waves than at their loss.

  13. Direct motor evoked potentials and cortical mapping using the NIM® nerve monitoring system: A technical note.

    Science.gov (United States)

    Bharadwaj, Suparna; Haji, Faizal; Hebb, Matthew; Chui, Jason

    2017-04-01

    Motor evoked potentials (MEPs) are commonly used to prevent neurological injury when operating in close proximity to the motor cortex or corticospinal pathway. We report a novel application of the NIM® nerve monitoring system (Medtronic@ NIM response 3.0) for intraoperative direct cortical (dc)-MEPs monitoring. A 69-year-old female patient presented with a 4month history of progressive left hemiparesis resulting from a large right sided posterior frontal meningioma that abutted and compressed the motor cortex. Motor cortical mapping and MEPs were indicated. The patient was anesthetized and maintained on total intravenous anesthetics. Compound muscle action potentials (CMAP) of the right upper limb were monitored using the NIM system. After a craniotomy was performed, we first used the Ojemann stimulator (monopolar) for dc-stimulation and then switched to use the monopolar nerve stimulator probe of the NIM system. The CMAP response was successfully elicited using the NIM stimulating probe (pulse width=250s, train frequency=7pulses/s, current=20mA). A gross total resection of the tumor was achieved with intermittent cortical mapping of MEPs. There were no intraoperative complications and the patient's motor function was preserved after the surgery. In this case, we reported the successful use of the NIM nerve monitoring system to elicit dc-MEPs under general anesthesia. The advantages of using this system include a simple set up and application, neurosurgeon familiarity, wide availability and lower cost. dc-MEPs can be achieved using the NIM system. We conclude that the NIM nerve monitoring system is a feasible alternative to standard neurophysiological monitoring systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sensitivity of cortical auditory