WorldWideScience

Sample records for visualization tool withfunctional

  1. CMS tracker visualization tools

    Energy Technology Data Exchange (ETDEWEB)

    Mennea, M.S. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy); Osborne, I. [Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States); Regano, A. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy); Zito, G. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy)]. E-mail: giuseppe.zito@ba.infn.it

    2005-08-21

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking.

  2. NASA Planetary Visualization Tool

    Science.gov (United States)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  3. Python tools for Visual Studio

    CERN Document Server

    Wang, Cathy

    2014-01-01

    This is a hands-on guide that provides exemplary coverage of all the features and concepts related to PTVS.The book is intended for developers who are aiming to enhance their productivity in Python projects with automation tools that Visual Studio provides for the .Net community. Some basic knowledge of Python programming is essential.

  4. VCAT: Visual Crosswalk Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Timothy J. [Los Alamos National Laboratory; Forslund, David W. [Los Alamos National Laboratory; Cleland, Catherine A. [Los Alamos National Laboratory

    2012-08-31

    VCAT is a knowledge modeling and analysis tool. It was synthesized from ideas in functional analysis, business process modeling, and complex network science. VCAT discovers synergies by analyzing natural language descriptions. Specifically, it creates visual analytic perspectives that capture intended organization structures, then overlays the serendipitous relationships that point to potential synergies within an organization or across multiple organizations.

  5. Visualization Tools for Planetary Data

    Science.gov (United States)

    DeWolfe, Alexandria; Larsen, Kristopher; Brain, David; Chaffin, Michael; Harter, Bryan; Putnam, Brian

    2017-04-01

    We have developed a set of software tools for displaying and analyzing data from the MAVEN and MMS missions. In order to better visualize the science data and models, we have constructed 3D visualizations of MAVEN orbiting Mars and MMS orbiting Earth using the CesiumJS library. These visualizations allow viewing of not only spacecraft orientation and position over time, but also scientific data from the spacecraft, and atmospheric models as well. We have also developed a Python toolkit which replicates the functionality of the widely-used IDL "tplot" toolkit for analyzing planetary atmospheric data. We use the bokeh and matplotlib libraries to generate interactive line plots and spectrograms, providing additional functionality beyond the capabilities of IDL graphics. These Python tools are generalized to work with missions beyond MAVEN, and our open-source software is available on Github.

  6. Visual intelligence Microsoft tools and techniques for visualizing data

    CERN Document Server

    Stacey, Mark; Jorgensen, Adam

    2013-01-01

    Go beyond design concepts and learn to build state-of-the-art visualizations The visualization experts at Microsoft's Pragmatic Works have created a full-color, step-by-step guide to building specific types of visualizations. The book thoroughly covers the Microsoft toolset for data analysis and visualization, including Excel, and explores best practices for choosing a data visualization design, selecting tools from the Microsoft stack, and building a dynamic data visualization from start to finish. You'll examine different types of visualizations, their strengths and weaknesses, a

  7. Visualization Tools for Teaching Computer Security

    Science.gov (United States)

    Yuan, Xiaohong; Vega, Percy; Qadah, Yaseen; Archer, Ricky; Yu, Huiming; Xu, Jinsheng

    2010-01-01

    Using animated visualization tools has been an important teaching approach in computer science education. We have developed three visualization and animation tools that demonstrate various information security concepts and actively engage learners. The information security concepts illustrated include: packet sniffer and related computer network…

  8. Integrated Data Visualization and Virtual Reality Tool

    Science.gov (United States)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  9. Visualizing Tools To Analyze Online Conferences.

    Science.gov (United States)

    Hara, Noriko

    Computer-mediated communication (CMC) is used in different contexts and uses different tools, such as those of computer conferencing, e-mail, and groupware. This article introduces the use of Formal Concept Analysis (FCA) as a methodology to visualize the data in CMC. FCA, which is based on a mathematical lattice theory, offers visual maps…

  10. Visualization Tools for Lattice QCD - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Massimo Di Pierro

    2012-03-15

    Our research project is about the development of visualization tools for Lattice QCD. We developed various tools by extending existing libraries, adding new algorithms, exposing new APIs, and creating web interfaces (including the new NERSC gauge connection web site). Our tools cover the full stack of operations from automating download of data, to generating VTK files (topological charge, plaquette, Polyakov lines, quark and meson propagators, currents), to turning the VTK files into images, movies, and web pages. Some of the tools have their own web interfaces. Some Lattice QCD visualization have been created in the past but, to our knowledge, our tools are the only ones of their kind since they are general purpose, customizable, and relatively easy to use. We believe they will be valuable to physicists working in the field. They can be used to better teach Lattice QCD concepts to new graduate students; they can be used to observe the changes in topological charge density and detect possible sources of bias in computations; they can be used to observe the convergence of the algorithms at a local level and determine possible problems; they can be used to probe heavy-light mesons with currents and determine their spatial distribution; they can be used to detect corrupted gauge configurations. There are some indirect results of this grant that will benefit a broader audience than Lattice QCD physicists.

  11. Tool Capability in Visual EAM Analytics

    Directory of Open Access Journals (Sweden)

    Dierk Jugel

    2015-04-01

    Full Text Available Enterprise Architectures (EA consist of a multitude of architecture elements, which relate in manifold ways to each other. As the change of a single element hence impacts various other elements, mechanisms for architecture analysis are important to stakeholders. The high number of relationships aggravates architecture analysis and makes it a complex yet important task. In practice EAs are often analyzed using visualizations. This article contributes to the field of visual analytics in enterprise architecture management (EAM by reviewing how state-of-the-art software platforms in EAM support stakeholders with respect to providing and visualizing the “right” information for decision-making tasks. We investigate the collaborative decision-making process in an experiment with master students using professional EAM tools by developing a research study. We evaluate the students’ findings by comparing them with the experience of an enterprise architect.

  12. Data Visualization Using Immersive Virtual Reality Tools

    Science.gov (United States)

    Cioc, Alexandru; Djorgovski, S. G.; Donalek, C.; Lawler, E.; Sauer, F.; Longo, G.

    2013-01-01

    The growing complexity of scientific data poses serious challenges for an effective visualization. Data sets, e.g., catalogs of objects detected in sky surveys, can have a very high dimensionality, ~ 100 - 1000. Visualizing such hyper-dimensional data parameter spaces is essentially impossible, but there are ways of visualizing up to ~ 10 dimensions in a pseudo-3D display. We have been experimenting with the emerging technologies of immersive virtual reality (VR) as a platform for a scientific, interactive, collaborative data visualization. Our initial experiments used the virtual world of Second Life, and more recently VR worlds based on its open source code, OpenSimulator. There we can visualize up to ~ 100,000 data points in ~ 7 - 8 dimensions (3 spatial and others encoded as shapes, colors, sizes, etc.), in an immersive virtual space where scientists can interact with their data and with each other. We are now developing a more scalable visualization environment using the popular (practically an emerging standard) Unity 3D Game Engine, coded using C#, JavaScript, and the Unity Scripting Language. This visualization tool can be used through a standard web browser, or a standalone browser of its own. Rather than merely plotting data points, the application creates interactive three-dimensional objects of various shapes, colors, and sizes, and of course the XYZ positions, encoding various dimensions of the parameter space, that can be associated interactively. Multiple users can navigate through this data space simultaneously, either with their own, independent vantage points, or with a shared view. At this stage ~ 100,000 data points can be easily visualized within seconds on a simple laptop. The displayed data points can contain linked information; e.g., upon a clicking on a data point, a webpage with additional information can be rendered within the 3D world. A range of functionalities has been already deployed, and more are being added. We expect to make this

  13. Evaluation of filesystem provenance visualization tools.

    Science.gov (United States)

    Borkin, Michelle A; Yeh, Chelsea S; Boyd, Madelaine; Macko, Peter; Gajos, Krzysztof Z; Seltzer, Margo; Pfister, Hanspeter

    2013-12-01

    Having effective visualizations of filesystem provenance data is valuable for understanding its complex hierarchical structure. The most common visual representation of provenance data is the node-link diagram. While effective for understanding local activity, the node-link diagram fails to offer a high-level summary of activity and inter-relationships within the data. We present a new tool, InProv, which displays filesystem provenance with an interactive radial-based tree layout. The tool also utilizes a new time-based hierarchical node grouping method for filesystem provenance data we developed to match the user's mental model and make data exploration more intuitive. We compared InProv to a conventional node-link based tool, Orbiter, in a quantitative evaluation with real users of filesystem provenance data including provenance data experts, IT professionals, and computational scientists. We also compared in the evaluation our new node grouping method to a conventional method. The results demonstrate that InProv results in higher accuracy in identifying system activity than Orbiter with large complex data sets. The results also show that our new time-based hierarchical node grouping method improves performance in both tools, and participants found both tools significantly easier to use with the new time-based node grouping method. Subjective measures show that participants found InProv to require less mental activity, less physical activity, less work, and is less stressful to use. Our study also reveals one of the first cases of gender differences in visualization; both genders had comparable performance with InProv, but women had a significantly lower average accuracy (56%) compared to men (70%) with Orbiter.

  14. chimeraviz: a tool for visualizing chimeric RNA.

    Science.gov (United States)

    Lågstad, Stian; Zhao, Sen; Hoff, Andreas M; Johannessen, Bjarne; Lingjærde, Ole Christian; Skotheim, Rolf I

    2017-09-15

    Advances in high-throughput RNA sequencing have enabled more efficient detection of fusion transcripts, but the technology and associated software used for fusion detection from sequencing data often yield a high false discovery rate. Good prioritization of the results is important, and this can be helped by a visualization framework that automatically integrates RNA data with known genomic features. Here we present chimeraviz , a Bioconductor package that automates the creation of chimeric RNA visualizations. The package supports input from nine different fusion-finder tools: deFuse, EricScript, InFusion, JAFFA, FusionCatcher, FusionMap, PRADA, SOAPfuse and STAR-FUSION. chimeraviz is an R package available via Bioconductor ( https://bioconductor.org/packages/release/bioc/html/chimeraviz.html ) under Artistic-2.0. Source code and support is available at GitHub ( https://github.com/stianlagstad/chimeraviz ). rolf.i.skotheim@rr-research.no. Supplementary data are available at Bioinformatics online.

  15. Web tools for rapid experimental visualization prototyping

    Science.gov (United States)

    Decker, Jonathan W.; Livingstion, Mark A.

    2013-01-01

    Quite often a researcher finds themselves looking at spreadsheets of high-dimensional data generated by experimental models and user studies. We can use analysis to challenge or confirm hypothesis, but unexpected results can easily be lost in the shuffle. For this reason, it would be useful to visualize the results so we can explore our data and make new discoveries. Web browsers have become increasingly capable for creating complex, multi-view applications. Javascript is quickly becoming a de facto standard for scripting, online and offline. This work demonstrates the use of web technologies as a powerful tool for rapid visualization prototyping. We have developed two prototypes: One for high-dimensional results of the abELICIT - multi-agent version of the ELICIT platform tasked with collaborating to identify the parameters of a pending attack. Another prototype displays responses to a user study on the effectiveness of multi-layer visualization techniques. We created coordinated multiple views prototypes in the Google Chrome web browser written in Javascript, CSS and HTML. We will discuss the benefits and shortcomings of this approach.

  16. Tool-Based Curricula and Visual Learning

    Directory of Open Access Journals (Sweden)

    Dragica Vasileska

    2013-12-01

    Full Text Available In the last twenty years nanotechnology hasrevolutionized the world of information theory, computers andother important disciplines, such as medicine, where it hascontributed significantly in the creation of more sophisticateddiagnostic tools. Therefore, it is important for people working innanotechnology to better understand basic concepts to be morecreative and productive. To further foster the progress onNanotechnology in the USA, the National Science Foundation hascreated the Network for Computational Nanotechnology (NCNand the dissemination of all the information from member andnon-member participants of the NCN is enabled by thecommunity website www.nanoHUB.org. nanoHUB’s signatureservices online simulation that enables the operation ofsophisticated research and educational simulation engines with acommon browser. No software installation or local computingpower is needed. The simulation tools as well as nano-conceptsare augmented by educational materials, assignments, and toolbasedcurricula, which are assemblies of tools that help studentsexcel in a particular area.As elaborated later in the text, it is the visual mode of learningthat we are exploiting in achieving faster and better results withstudents that go through simulation tool-based curricula. Thereare several tool based curricula already developed on thenanoHUB and undergoing further development, out of which fiveare directly related to nanoelectronics. They are: ABACUS –device simulation module; ACUTE – Computational Electronicsmodule; ANTSY – bending toolkit; and AQME – quantummechanics module. The methodology behind tool-based curriculais discussed in details. Then, the current status of each module ispresented, including user statistics and student learningindicatives. Particular simulation tool is explored further todemonstrate the ease by which students can grasp information.Representative of Abacus is PN-Junction Lab; representative ofAQME is PCPBT tool; and

  17. Visual Tools for Quantum Mechanics Education

    OpenAIRE

    Bernd Thaller

    2006-01-01

    We present the project Visual Quantum Mechanics, which uses computer-generated visualizations and animations to redefine content and quality of quantum-mechanical education at all levels. Main target group have been students of theoretical physics at universities, but more recently, we have developed learning objects for use at high schools. We describe the reasons for a visual approach to quantum mechanics and some specific methods for the visualization of quantum-mechanical objects.

  18. Visual Tools for Quantum Mechanics Education

    Directory of Open Access Journals (Sweden)

    Bernd Thaller

    2006-07-01

    Full Text Available We present the project Visual Quantum Mechanics, which uses computer-generated visualizations and animations to redefine content and quality of quantum-mechanical education at all levels. Main target group have been students of theoretical physics at universities, but more recently, we have developed learning objects for use at high schools. We describe the reasons for a visual approach to quantum mechanics and some specific methods for the visualization of quantum-mechanical objects.

  19. Learn to Teach Chemistry Using Visual Media Tools

    Science.gov (United States)

    Turkoguz, Suat

    2012-01-01

    The aim of this study was to investigate undergraduate students' attitudes to using visual media tools in the chemistry laboratory. One hundred and fifteen undergraduates studying science education at Dokuz Eylul University, Turkey participated in the study. They video-recorded chemistry experiments with visual media tools and assessed them on a…

  20. VisTool: A user interface and visualization development system

    DEFF Research Database (Denmark)

    Xu, Shangjin

    system – to simplify user interface development. VisTool allows user interface development without real programming. With VisTool a designer assembles visual objects (e.g. textboxes, ellipse, etc.) to visualize database contents. In VisTool, visual properties (e.g. color, position, etc.) can be formulas....... However, it is more difficult to follow the classical usability approach for graphical presentation development. These difficulties result from the fact that designers cannot implement user interface with interactions and real data. We developed VisTool – a user interface and visualization development...... interface objects and properties. We built visualizations such as Lifelines, Parallel Coordinates, Heatmap, etc. to show that the formula-based approach is powerful enough for building customized visualizations. The evaluation with Cognitive Dimensions shows that the formula-based approach is cognitively...

  1. Evaluation of current visualization tools for cyber security

    Science.gov (United States)

    Langton, John T.; Newey, Brent

    2010-04-01

    Visualization tools for cyber security often overlook related research from the information visualization domain. Cyber security data sets are notoriously large, yet many of the popular analysis tools use 3D techniques and parallel coordinates which have been shown to suffer issues of occlusion when applied to large data sets1,2. While techniques exist to ameliorate these issues they are typically not used. In this paper we evaluate several cyber security visualization tools based on established design principles and human-computer interaction research. We conclude by enumerating challenges, requirements, and recommendations for future work.

  2. Tools for visualization of knowledge patterns

    Science.gov (United States)

    Miarka, Rostislav; Žáček, Martin; Gongolová, Zuzana

    2017-07-01

    Knowledge patterns are closely related to ontologies and knowledge bases. They represent general patterns of knowledge, which can be used in various ontologies. We propose to represent knowledge patterns in RDF language. This paper presents the possibilities of visualization of knowledge patterns in available editors of RDF graphs.

  3. Modular target acquisition model & visualization tool

    NARCIS (Netherlands)

    Bijl, P.; Hogervorst, M.A.; Vos, W.K.

    2008-01-01

    We developed a software framework for image-based simulation models in the chain: scene-atmosphere-sensor-image enhancement-display-human observer: EO-VISTA. The goal is to visualize the steps and to quantify (Target Acquisition) task performance. EO-VISTA provides an excellent means to

  4. uVis: A Formula-Based Visualization Tool

    DEFF Research Database (Denmark)

    Pantazos, Kostas; Xu, Shangjin; Kuhail, Mohammad Amin

    Several tools use programming approaches for developing advanced visualizations. Others can with a few steps create simple visualizations with built-in patterns, and users with limited IT experience can use them. However, it is programming and time demanding to create and customize...

  5. VCMM: a visual tool for continuum molecular modeling.

    Science.gov (United States)

    Bai, Shiyang; Lu, Benzhuo

    2014-05-01

    This paper describes the design and function of a visualization tool, VCMM, for visualizing and analyzing data, and interfacing solvers for generic continuum molecular modeling. In particular, an emphasis of the program is to treat the data set based on unstructured mesh as used in finite/boundary element simulations, which largely enhances the capabilities of current visualization tools in this area that only support structured mesh. VCMM is segmented into molecular, meshing and numerical modules. The capabilities of molecular module include molecular visualization and force field assignment. Meshing module contains mesh generation, analysis and visualization tools. Numerical module currently provides a few finite/boundary element solvers of continuum molecular modeling, and contains several common visualization tools for the numerical result such as line and plane interpolations, surface probing, volume rendering and stream rendering. Three modules can exchange data with each other and carry out a complete process of modeling. Interfaces are also designed in order to facilitate usage of other mesh generation tools and numerical solvers. We develop a technique to accelerate data retrieval and have combined many graphical techniques in visualization. VCMM is highly extensible, and users can obtain more powerful functions by introducing relevant plug-ins. VCMM can also be useful in other fields such as computational quantum chemistry, image processing, and material science. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. IView: Introgression library visualization and query tool

    Science.gov (United States)

    Near-isogenic lines (NIL) are powerful genetic resources to analyze phenotypic variation and are important to map-base clone genes underlying mutations and traits. With many thousands of distinct genotypes, querying introgression libraries for lines of interest is an issue. We have created a tool ...

  7. Large Data Visualization with Open-Source Tools

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Visualization and post-processing of large data have become increasingly challenging and require more and more tools to support the diversity of data to process. In this seminar, we will present a suite of open-source tools supported and developed by Kitware to perform large-scale data visualization and analysis. In particular, we will present ParaView, an open-source tool for parallel visualization of massive datasets, the Visualization Toolkit (VTK), an open-source toolkit for scientific visualization, and Tangelohub, a suite of tools for large data analytics. About the speaker Julien Jomier is directing Kitware's European subsidiary in Lyon, France, where he focuses on European business development. Julien works on a variety of projects in the areas of parallel and distributed computing, mobile computing, image processing, and visualization. He is one of the developers of the Insight Toolkit (ITK), the Visualization Toolkit (VTK), and ParaView. Julien is also leading the CDash project, an open-source co...

  8. DspaceOgre 3D Graphics Visualization Tool

    Science.gov (United States)

    Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.

    2011-01-01

    This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.

  9. HMMEditor: a visual editing tool for profile hidden Markov model

    Directory of Open Access Journals (Sweden)

    Cheng Jianlin

    2008-03-01

    Full Text Available Abstract Background Profile Hidden Markov Model (HMM is a powerful statistical model to represent a family of DNA, RNA, and protein sequences. Profile HMM has been widely used in bioinformatics research such as sequence alignment, gene structure prediction, motif identification, protein structure prediction, and biological database search. However, few comprehensive, visual editing tools for profile HMM are publicly available. Results We develop a visual editor for profile Hidden Markov Models (HMMEditor. HMMEditor can visualize the profile HMM architecture, transition probabilities, and emission probabilities. Moreover, it provides functions to edit and save HMM and parameters. Furthermore, HMMEditor allows users to align a sequence against the profile HMM and to visualize the corresponding Viterbi path. Conclusion HMMEditor provides a set of unique functions to visualize and edit a profile HMM. It is a useful tool for biological sequence analysis and modeling. Both HMMEditor software and web service are freely available.

  10. Collecting, Analyzing and Visualizing Tweets using Open Source Tools

    OpenAIRE

    Yang, Seungwon; Kavanaugh, Andrea L.

    2011-01-01

    This tutorial will teach participants how to collect, analyze and visualize results from twitter data. We will demonstrate several different free, open-source web-based tools that participants can use to collect twitter data (e.g., Archivist, 140kit.com, TwapperKeeper), and show them a few different methods, tools or programs they can use to analyze the data in a given collection. Finally, we will show participants visualization tools and programs they can use to present the analyses, such ...

  11. A Visualization-Based Tutoring Tool for Engineering Education

    Science.gov (United States)

    Nguyen, Tang-Hung; Khoo, I.-Hung

    2010-06-01

    In engineering disciplines, students usually have hard time to visualize different aspects of engineering analysis and design, which inherently are too complex or abstract to fully understand without the aid of visual explanations or visualizations. As examples, when learning materials and sequences of construction process, students need to visualize how all components of a constructed facility are assembled? Such visualization can not be achieved in a textbook and a traditional lecturing environment. In this paper, the authors present the development of a computer tutoring software, in which different visualization tools including video clips, 3 dimensional models, drawings, pictures/photos together with complementary texts are used to assist students in deeply understanding and effectively mastering materials. The paper will also discuss the implementation and the effectiveness evaluation of the proposed tutoring software, which was used to teach a construction engineering management course offered at California State University, Long Beach.

  12. VBioindex: A Visual Tool to Estimate Biodiversity

    Directory of Open Access Journals (Sweden)

    Dong Su Yu

    2015-09-01

    Full Text Available Biological diversity, also known as biodiversity, is an important criterion for measuring the value of an ecosystem. As biodiversity is closely related to human welfare and quality of life, many efforts to restore and maintain the biodiversity of species have been made by government agencies and non-governmental organizations, thereby drawing a substantial amount of international attention. In the fields of biological research, biodiversity is widely measured using traditional statistical indices such as the Shannon-Wiener index, species richness, evenness, and relative dominance of species. However, some biologists and ecologists have difficulty using these indices because they require advanced mathematical knowledge and computational techniques. Therefore, we developed VBioindex, a user-friendly program that is capable of measuring the Shannon-Wiener index, species richness, evenness, and relative dominance. VBioindex serves as an easy to use interface and visually represents the results in the form of a simple chart and in addition, VBioindex offers functions for long-term investigations of datasets using time-series analyses.

  13. Visual Decision Support Tool for Supporting Asset ...

    Science.gov (United States)

    Abstract:Managing urban water infrastructures faces the challenge of jointly dealing with assets of diverse types, useful life, cost, ages and condition. Service quality and sustainability require sound long-term planning, well aligned with tactical and operational planning and management. In summary, the objective of an integrated approach to infrastructure asset management is to assist utilities answer the following questions:•Who are we at present?•What service do we deliver?•What do we own?•Where do we want to be in the long-term?•How do we get there?The AWARE-P approach (www.aware-p.org) offers a coherent methodological framework and a valuable portfolio of software tools. It is designed to assist water supply and wastewater utility decision-makers in their analyses and planning processes. It is based on a Plan-Do-Check-Act process and is in accordance with the key principles of the International Standards Organization (ISO) 55000 standards on asset management. It is compatible with, and complementary to WERF’s SIMPLE framework. The software assists in strategic, tactical, and operational planning, through a non-intrusive, web-based, collaborative environment where objectives and metrics drive IAM planning. It is aimed at industry professionals and managers, as well as at the consultants and technical experts that support them. It is easy to use and maximizes the value of information from multiple existing data sources, both in da

  14. Large Terrain Continuous Level of Detail 3D Visualization Tool

    Science.gov (United States)

    Myint, Steven; Jain, Abhinandan

    2012-01-01

    This software solved the problem of displaying terrains that are usually too large to be displayed on standard workstations in real time. The software can visualize terrain data sets composed of billions of vertices, and can display these data sets at greater than 30 frames per second. The Large Terrain Continuous Level of Detail 3D Visualization Tool allows large terrains, which can be composed of billions of vertices, to be visualized in real time. It utilizes a continuous level of detail technique called clipmapping to support this. It offloads much of the work involved in breaking up the terrain into levels of details onto the GPU (graphics processing unit) for faster processing.

  15. Optimal visual-haptic integration with articulated tools.

    Science.gov (United States)

    Takahashi, Chie; Watt, Simon J

    2017-05-01

    When we feel and see an object, the nervous system integrates visual and haptic information optimally, exploiting the redundancy in multiple signals to estimate properties more precisely than is possible from either signal alone. We examined whether optimal integration is similarly achieved when using articulated tools. Such tools (tongs, pliers, etc) are a defining characteristic of human hand function, but complicate the classical sensory 'correspondence problem' underlying multisensory integration. Optimal integration requires establishing the relationship between signals acquired by different sensors (hand and eye) and, therefore, in fundamentally unrelated units. The system must also determine when signals refer to the same property of the world-seeing and feeling the same thing-and only integrate those that do. This could be achieved by comparing the pattern of current visual and haptic input to known statistics of their normal relationship. Articulated tools disrupt this relationship, however, by altering the geometrical relationship between object properties and hand posture (the haptic signal). We examined whether different tool configurations are taken into account in visual-haptic integration. We indexed integration by measuring the precision of size estimates, and compared our results to optimal predictions from a maximum-likelihood integrator. Integration was near optimal, independent of tool configuration/hand posture, provided that visual and haptic signals referred to the same object in the world. Thus, sensory correspondence was determined correctly (trial-by-trial), taking tool configuration into account. This reveals highly flexible multisensory integration underlying tool use, consistent with the brain constructing internal models of tools' properties.

  16. ASCI visualization tool evaluation, Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, P. [ed.] [Sandia National Labs., Livermore, CA (United States). Center for Computational Engineering

    1997-04-01

    The charter of the ASCI Visualization Common Tools subgroup was to investigate and evaluate 3D scientific visualization tools. As part of that effort, a Tri-Lab evaluation effort was launched in February of 1996. The first step was to agree on a thoroughly documented list of 32 features against which all tool candidates would be evaluated. These evaluation criteria were both gleaned from a user survey and determined from informed extrapolation into the future, particularly as concerns the 3D nature and extremely large size of ASCI data sets. The second step was to winnow a field of 41 candidate tools down to 11. The selection principle was to be as inclusive as practical, retaining every tool that seemed to hold any promise of fulfilling all of ASCI`s visualization needs. These 11 tools were then closely investigated by volunteer evaluators distributed across LANL, LLNL, and SNL. This report contains the results of those evaluations, as well as a discussion of the evaluation philosophy and criteria.

  17. BMDExpress Data Viewer - a visualization tool to analyze BMDExpress datasets.

    Science.gov (United States)

    Kuo, Byron; Francina Webster, A; Thomas, Russell S; Yauk, Carole L

    2016-08-01

    Regulatory agencies increasingly apply benchmark dose (BMD) modeling to determine points of departure for risk assessment. BMDExpress applies BMD modeling to transcriptomic datasets to identify transcriptional BMDs. However, graphing and analytical capabilities within BMDExpress are limited, and the analysis of output files is challenging. We developed a web-based application, BMDExpress Data Viewer (http://apps.sciome.com:8082/BMDX_Viewer/), for visualizing and graphing BMDExpress output files. The application consists of "Summary Visualization" and "Dataset Exploratory" tools. Through analysis of transcriptomic datasets of the toxicants furan and 4,4'-methylenebis(N,N-dimethyl)benzenamine, we demonstrate that the "Summary Visualization Tools" can be used to examine distributions of gene and pathway BMD values, and to derive a potential point of departure value based on summary statistics. By applying filters on enrichment P-values and minimum number of significant genes, the "Functional Enrichment Analysis" tool enables the user to select biological processes or pathways that are selectively perturbed by chemical exposure and identify the related BMD. The "Multiple Dataset Comparison" tool enables comparison of gene and pathway BMD values across multiple experiments (e.g., across timepoints or tissues). The "BMDL-BMD Range Plotter" tool facilitates the observation of BMD trends across biological processes or pathways. Through our case studies, we demonstrate that BMDExpress Data Viewer is a useful tool to visualize, explore and analyze BMDExpress output files. Visualizing the data in this manner enables rapid assessment of data quality, model fit, doses of peak activity, most sensitive pathway perturbations and other metrics that will be useful in applying toxicogenomics in risk assessment. © 2015 Her Majesty the Queen in Right of Canada. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. © 2015 Her Majesty the Queen in Right of Canada. Journal

  18. Comparing automated visual GUI testing tools: an industrial case study

    NARCIS (Netherlands)

    Garousi, V.; Afzal, Wasif; Caglar, Adem; Berk Isik, Ihsan; Baydan, Berker; Caylak, Seckin; Zeki Boyraz, Ahmet; Yolacan, Burak; Herkiloglu, Kadir

    2017-01-01

    Visual GUI testing (VGT) is a tool-driven technique, which uses image recognition for interaction and assertion of the behaviour of system under test. Motivated by a real industrial need, in the context of a large Turkish software and systems company providing solutions in the areas of defense and

  19. Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.; Podmore, Robin

    2009-04-01

    This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.

  20. A visual training tool for the Photoload sampling technique

    Science.gov (United States)

    Violet J. Holley; Robert E. Keane

    2010-01-01

    This visual training aid is designed to provide Photoload users a tool to increase the accuracy of fuel loading estimations when using the Photoload technique. The Photoload Sampling Technique (RMRS-GTR-190) provides fire managers a sampling method for obtaining consistent, accurate, inexpensive, and quick estimates of fuel loading. It is designed to require only one...

  1. Geospatial Visualization Tool Kit for Scientists Using Fortran

    Science.gov (United States)

    Chiang, Gen-Tao; White, Toby O. H.; Dove, Martin T.

    2009-07-01

    In recent years, visualization for the Earth and environmental sciences has developed significantly. Among the most notable advances has been the rise of Web-based tools colloquially called “geobrowsers.” These tools enable users from a range of sciences to access an enormous quantity of satellite and aerial photography with detailed maps to create a high-quality “virtual Earth” [e.g., McCaffrey et al., 2008; Oberlies et al., 2009]. One important geobrowser is Google Earth™ (http://earth.google.com/). It provides free tools for most major computing platforms and handheld devices, together with the ability to incorporate data from users.

  2. Abstractocyte: A Visual Tool for Exploring Nanoscale Astroglial Cells

    KAUST Repository

    Mohammed, Haneen

    2017-08-28

    This paper presents Abstractocyte, a system for the visual analysis of astrocytes and their relation to neurons, in nanoscale volumes of brain tissue. Astrocytes are glial cells, i.e., non-neuronal cells that support neurons and the nervous system. The study of astrocytes has immense potential for understanding brain function. However, their complex and widely-branching structure requires high-resolution electron microscopy imaging and makes visualization and analysis challenging. Furthermore, the structure and function of astrocytes is very different from neurons, and therefore requires the development of new visualization and analysis tools. With Abstractocyte, biologists can explore the morphology of astrocytes using various visual abstraction levels, while simultaneously analyzing neighboring neurons and their connectivity. We define a novel, conceptual 2D abstraction space for jointly visualizing astrocytes and neurons. Neuroscientists can choose a specific joint visualization as a point in this space. Interactively moving this point allows them to smoothly transition between different abstraction levels in an intuitive manner. In contrast to simply switching between different visualizations, this preserves the visual context and correlations throughout the transition. Users can smoothly navigate from concrete, highly-detailed 3D views to simplified and abstracted 2D views. In addition to investigating astrocytes, neurons, and their relationships, we enable the interactive analysis of the distribution of glycogen, which is of high importance to neuroscientists. We describe the design of Abstractocyte, and present three case studies in which neuroscientists have successfully used our system to assess astrocytic coverage of synapses, glycogen distribution in relation to synapses, and astrocytic-mitochondria coverage.

  3. Tools and procedures for visualization of proteins and other biomolecules.

    Science.gov (United States)

    Pan, Lurong; Aller, Stephen G

    2015-04-01

    Protein, peptides, and nucleic acids are biomolecules that drive biological processes in living organisms. An enormous amount of structural data for a large number of these biomolecules has been described with atomic precision in the form of structural "snapshots" that are freely available in public repositories. These snapshots can help explain how the biomolecules function, the nature of interactions between multi-molecular complexes, and even how small-molecule drugs can modulate the biomolecules for clinical benefits. Furthermore, these structural snapshots serve as inputs for sophisticated computer simulations to turn the biomolecules into moving, "breathing" molecular machines for understanding their dynamic properties in real-time computer simulations. In order for the researcher to take advantage of such a wealth of structural data, it is necessary to gain competency in the use of computer molecular visualization tools for exploring the structures and visualizing three-dimensional spatial representations. Here, we present protocols for using two common visualization tools--the Web-based Jmol and the stand-alone PyMOL package--as well as a few examples of other popular tools. Copyright © 2015 John Wiley & Sons, Inc.

  4. Cascade: an RNA-seq visualization tool for cancer genomics.

    Science.gov (United States)

    Shifman, Aaron R; Johnson, Radia M; Wilhelm, Brian T

    2016-01-25

    Cancer genomics projects are producing ever-increasing amounts of rich and diverse data from patient samples. The ability to easily visualize this data in an integrated an intuitive way is currently limited by the current software available. As a result, users typically must use several different tools to view the different data types for their cohort, making it difficult to have a simple unified view of their data. Here we present Cascade, a novel web based tool for the intuitive 3D visualization of RNA-seq data from cancer genomics experiments. The Cascade viewer allows multiple data types (e.g. mutation, gene expression, alternative splicing frequency) to be simultaneously displayed, allowing a simplified view of the data in a way that is tuneable based on user specified parameters. The main webpage of Cascade provides a primary view of user data which is overlaid onto known biological pathways that are either predefined or added by users. A space-saving menu for data selection and parameter adjustment allows users to access an underlying MySQL database and customize the features presented in the main view. There is currently a pressing need for new software tools to allow researchers to easily explore large cancer genomics datasets and generate hypotheses. Cascade represents a simple yet intuitive interface for data visualization that is both scalable and customizable.

  5. STRING 3: An Advanced Groundwater Flow Visualization Tool

    Science.gov (United States)

    Schröder, Simon; Michel, Isabel; Biedert, Tim; Gräfe, Marius; Seidel, Torsten; König, Christoph

    2016-04-01

    The visualization of 3D groundwater flow is a challenging task. Previous versions of our software STRING [1] solely focused on intuitive visualization of complex flow scenarios for non-professional audiences. STRING, developed by Fraunhofer ITWM (Kaiserslautern, Germany) and delta h Ingenieurgesellschaft mbH (Witten, Germany), provides the necessary means for visualization of both 2D and 3D data on planar and curved surfaces. In this contribution we discuss how to extend this approach to a full 3D tool and its challenges in continuation of Michel et al. [2]. This elevates STRING from a post-production to an exploration tool for experts. In STRING moving pathlets provide an intuition of velocity and direction of both steady-state and transient flows. The visualization concept is based on the Lagrangian view of the flow. To capture every detail of the flow an advanced method for intelligent, time-dependent seeding is used building on the Finite Pointset Method (FPM) developed by Fraunhofer ITWM. Lifting our visualization approach from 2D into 3D provides many new challenges. With the implementation of a seeding strategy for 3D one of the major problems has already been solved (see Schröder et al. [3]). As pathlets only provide an overview of the velocity field other means are required for the visualization of additional flow properties. We suggest the use of Direct Volume Rendering and isosurfaces for scalar features. In this regard we were able to develop an efficient approach for combining the rendering through raytracing of the volume and regular OpenGL geometries. This is achieved through the use of Depth Peeling or A-Buffers for the rendering of transparent geometries. Animation of pathlets requires a strict boundary of the simulation domain. Hence, STRING needs to extract the boundary, even from unstructured data, if it is not provided. In 3D we additionally need a good visualization of the boundary itself. For this the silhouette based on the angle of

  6. The visual encoding of tool-object affordances.

    Science.gov (United States)

    Natraj, N; Pella, Y M; Borghi, A M; Wheaton, L A

    2015-12-03

    The perception of tool-object pairs involves understanding their action-relationships (affordances). Here, we sought to evaluate how an observer visually encodes tool-object affordances. Eye-movements were recorded as right-handed participants freely viewed static, right-handed, egocentric tool-object images across three contexts: correct (e.g. hammer-nail), incorrect (e.g. hammer-paper), spatial/ambiguous (e.g. hammer-wood), and three grasp-types: no hand, functional grasp-posture (grasp hammer-handle), non-functional/manipulative grasp-posture (grasp hammer-head). There were three areas of interests (AOI): the object (nail), the operant tool-end (hammer-head), the graspable tool-end (hammer-handle). Participants passively evaluated whether tool-object pairs were functionally correct/incorrect. Clustering of gaze scanpaths and AOI weightings grouped conditions into three distinct grasp-specific clusters, especially across correct and spatial tool-object contexts and to a lesser extent within the incorrect tool-object context. The grasp-specific gaze scanpath clusters were reasonably robust to the temporal order of gaze scanpaths. Gaze was therefore automatically primed to grasp-affordances though the task required evaluating tool-object context. Participants also primarily focused on the object and the operant tool-end and sparsely attended to the graspable tool-end, even in images with functional grasp-postures. In fact, in the absence of a grasp, the object was foveally weighted the most, indicative of a possible object-oriented action priming effect wherein the observer may be evaluating how the tool engages on the object. Unlike the functional grasp-posture, the manipulative grasp-posture caused the greatest disruption in the object-oriented priming effect, ostensibly as it does not afford tool-object action due to its non-functional interaction with the operant tool-end that actually engages with the object (e.g., hammer-head to nail). The enhanced attention

  7. Statistical and Visualization Data Mining Tools for Foundry Production

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-07-01

    Full Text Available In recent years a rapid development of a new, interdisciplinary knowledge area, called data mining, is observed. Its main task is extracting useful information from previously collected large amount of data. The main possibilities and potential applications of data mining in manufacturing industry are characterized. The main types of data mining techniques are briefly discussed, including statistical, artificial intelligence, data base and visualization tools. The statistical methods and visualization methods are presented in more detail, showing their general possibilities, advantages as well as characteristic examples of applications in foundry production. Results of the author’s research are presented, aimed at validation of selected statistical tools which can be easily and effectively used in manufacturing industry. A performance analysis of ANOVA and contingency tables based methods, dedicated for determination of the most significant process parameters as well as for detection of possible interactions among them, has been made. Several numerical tests have been performed using simulated data sets, with assumed hidden relationships as well some real data, related to the strength of ductile cast iron, collected in a foundry. It is concluded that the statistical methods offer relatively easy and fairly reliable tools for extraction of that type of knowledge about foundry manufacturing processes. However, further research is needed, aimed at explanation of some imperfections of the investigated tools as well assessment of their validity for more complex tasks.

  8. 3D Immersive Visualization: An Educational Tool in Geosciences

    Science.gov (United States)

    Pérez-Campos, N.; Cárdenas-Soto, M.; Juárez-Casas, M.; Castrejón-Pineda, R.

    2007-05-01

    3D immersive visualization is an innovative tool currently used in various disciplines, such as medicine, architecture, engineering, video games, etc. Recently, the Universidad Nacional Autónoma de México (UNAM) mounted a visualization theater (Ixtli) with leading edge technology, for academic and research purposes that require immersive 3D tools for a better understanding of the concepts involved. The Division of Engineering in Earth Sciences of the School of Engineering, UNAM, is running a project focused on visualization of geoscience data. Its objective is to incoporate educational material in geoscience courses in order to support and to improve the teaching-learning process, especially in well-known difficult topics for students. As part of the project, proffessors and students are trained in visualization techniques, then their data are adapted and visualized in Ixtli as part of a class or a seminar, where all the attendants can interact, not only among each other but also with the object under study. As part of our results, we present specific examples used in basic geophysics courses, such as interpreted seismic cubes, seismic-wave propagation models, and structural models from bathymetric, gravimetric and seismological data; as well as examples from ongoing applied projects, such as a modeled SH upward wave, the occurrence of an earthquake cluster in 1999 in the Popocatepetl volcano, and a risk atlas from Delegación Alvaro Obregón in Mexico City. All these examples, plus those to come, constitute a library for students and professors willing to explore another dimension of the teaching-learning process. Furthermore, this experience can be enhaced by rich discussions and interactions by videoconferences with other universities and researchers.

  9. Visual Data Comm: A Tool for Visualizing Data Communication in the Multi Sector Planner Study

    Science.gov (United States)

    Lee, Hwasoo Eric

    2010-01-01

    Data comm is a new technology proposed in future air transport system as a potential tool to provide comprehensive data connectivity. It is a key enabler to manage 4D trajectory digitally, potentially resulting in improved flight times and increased throughput. Future concepts with data comm integration have been tested in a number of human-in-the-loop studies but analyzing the results has proven to be particularly challenging because future traffic environment in which data comm is fully enabled has assumed high traffic density, resulting in data set with large amount of information. This paper describes the motivation, design, current and potential future application of Visual Data Comm (VDC), a tool for visualizing data developed in Java using Processing library which is a tool package designed for interactive visualization programming. This paper includes an example of an application of VDC on data pertaining to the most recent Multi Sector Planner study, conducted at NASA s Airspace Operations Laboratory in 2009, in which VDC was used to visualize and interpret data comm activities

  10. [Digital administrative maps - a tool for visualization of epidemiological data].

    Science.gov (United States)

    Niewiadomska, Ewa; Kowalska, Malgorzata; Czech, Elibieta; Skrzypek, Michal

    2013-01-01

    The aim of the study is to present the methods for visualization of epidemiological data using digital contour maps that take into account administrative division of Poland. The possibility of epidemiological data visualization in a geographical order, limited to the administrative level of the country, voivodeships and poviats (countics), are presented. They are crucial for the process of identifying and undertaking adequate prophylactic activities directed towards decreasing the risk and improving the population's health. This paper presents tools and techniques available in Geographic Information System ArcGIS and statistical software package R. The work includes our own data reflecting: 1) the values of specific mortality rates due to respiratory diseases, Poland, 2010, based on the Central Statistical Office data, using the R statistical software package; 2) the averaged registered incidence rates of sarcoidosis in 2006-2010 for the population aged 19+ in the Silesian voivodeship, using G(eographic Information System ArcGIS; and 3) the number of children with diagnosed respiratory diseases in the city of L.egnica in 2009, taking into account their place of residence, using layered maps in Geographic Information System ArcGIS. The tools presented and described in this paper make it possible to visualize the results of research, to increase attractiveness of courses for students, as well as to enhance the skills and competence of students and participants of courses.

  11. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    Science.gov (United States)

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  12. Vizic: Jupyter-based interactive visualization tool for astronomical catalogs

    Science.gov (United States)

    Yu, Weixiang; Carrasco-Kind, Matias; Brunner, Robert J.

    2017-01-01

    Vizic is a Python visualization library that builds the connection between images and catalogs through an interactive map of the sky region. The software visualizes catalog data over a custom background canvas using the shape, size and orientation of each object in the catalog and displays interactive and customizable objects in the map. Property values such as redshift and magnitude can be used to filter or apply colormaps, and objects can be selected for further analysis through standard Python functions from inside a Jupyter notebook. Vizic allows custom overlays to be appended dynamically on top of the sky map; included are Voronoi, Delaunay, Minimum Spanning Tree and HEALPix layers, which are helpful for visualizing large-scale structure. Overlays can be generated, added or removed dynamically with one line of code. Catalog data is kept in a non-relational database. The Jupyter Notebook allows the user to create scripts to analyze and plot the data selected/displayed in the interactive map, making Vizic a powerful and flexible interactive analysis tool. Vizic be used for data inspection, clustering analysis, galaxy alignment studies, outlier identification or simply large-scale visualizations.

  13. Colorstock, SScolor, Ratón: RNA alignment visualization tools.

    Science.gov (United States)

    Bendaña, Yuri R; Holmes, Ian H

    2008-02-15

    Interactive examination of RNA multiple alignments for covariant mutations is a useful step in non-coding RNA sequence analysis. We present three parallel implementations of an RNA visualization metaphor: Colorstock, a command-line script using ANSI terminal color; SScolor, a Perl script that generates static HTML pages; and Ratón, an AJAX web application generating dynamic HTML. Each tool can be used to color RNA alignments by secondary structure and to visually highlight compensatory mutations in stems. All source code is freely available under the GPL. The source code can be downloaded and a prototype of Ratón can be accessed at http://biowiki.org/RnaAlignmentViewers.

  14. An interactive tool for visualizing design heterogeneity in clinical trials.

    Science.gov (United States)

    Hernandez, Maria-Elena; Carini, Simona; Storey, Margaret-Anne; Sim, Ida

    2008-11-06

    Clinical questions are often studied by randomized clinical trials (RCTs) of heterogeneous design. Systematic reviewers and trial designers need to compare the design and results across these trials. If trial information is available in computer processable form, computer-based visualization techniques can provide cognitive support for such comparisons. CTeXplorer offers systematic reviewers and trial designers a tool to better and more quickly understand design heterogeneity in RCTs. CTeXplorer supports dynamic queries on eligibility criteria, interventions, and outcomes in three linked views. We tested CTeXplorer for displaying 12 RCTs on prevention of mother-to-child transmission of HIV. Three target users found the representation and organization of information intuitive and easy to learn. They were able to use CTeXplorer to achieve a quick cognitive overview of a heterogeneous group of RCTs. This work shows the benefit of capturing trial information in computable form. Future work includes leveraging ontologies to enhance CTeXplorer visualizations.

  15. A Jupyter-based Interactive Visualization Tool for Astronomical Catalogs

    Science.gov (United States)

    Yu, Weixiang; Carrasco Kind, Matias; Brunner, Robert

    2017-01-01

    The ever-growing datasets in observational astronomy have challenged scientists in many aspects, including an efficient and interactive data exploration and visualization. Many tools have been developed to confront this challenge. However, they usually focus on displaying the actual images or focus on visualizing patterns within catalogs. Here we present Vizic, a Python visualization library that builds the connection between images and catalogs through an interactive map of the sky region. Vizic visualizes catalog data over a custom background canvas using the shape, size and orientation of each object in the catalog. The displayed objects in the map are highly interactive and customizable comparing to those in the observation images. These objects can be filtered by or colored by their property values, such as redshift and/or magnitude or can be sub-selected using a lasso-like tool. In addition, Vizic also allows custom overlays to be appended dynamically on top of the image. We have implemented a minimum spanning tree overlay and a Voronoi diagram overlay. Both overlays can be generated, added or removed with just a click of a button. All the data is kept in a non relational database, and the interfaces were developed in JavaScript and Python to work on Jupyter notebooks which allows to create custom widgets, user generated scripts to analyze and plot the data selected/displayed in the interactive map.Vizic can be adopted in variety of exercises, for example, data inspection, clustering analysis, galaxy alignment studies or public data release for large surveys.

  16. Genome display tool: visualizing features in complex data sets

    Directory of Open Access Journals (Sweden)

    Lu Yue

    2007-02-01

    Full Text Available Abstract Background The enormity of the information contained in large data sets makes it difficult to develop intuitive understanding. It would be useful to have software that allows visualization of possible correlations between properties that can be associated with a core data set. In the case of bacterial genomes, existing visualization tools focus on either global properties such as variations in composition or detailed local displays of the features that comprise the annotation. It is not easy to visualize other information in the context of this core information. Results A Java based software known as the Genome Display Tool (GDT, allows the user to simultaneously view the distribution of multiple attributes pertaining to genes and intragenic regions in a single bacterial genome using different colours and shapes on a single screen. The display represents each gene by small boxes that correlate with physical position in the genome. The size of the boxes is dynamically allocated based on the number of genes and a zoom feature allows close-up inspection of regions of interest. The display is interfaced with a MS-Access relational database and can display any feature in the database that can be represented by discrete values. Data is readily added to the database from an MS-Excel spread sheet. The functionality of GDT is demonstrated by comparing the results of two predictions of recent horizontal transfer events in the genome of Synechocystis PCC-6803. The resulting display allows the user to immediately see how much agreement exists between the two methods and also visualize how genes in various categories (e.g. predicted in both methods, one method etc are distributed in the genome. Conclusion The GDT software provides the user with a powerful tool that allows development of an intuitive understanding of the relative distribution of features in a large data set. As additional features are added to the data set, the number of possible

  17. Researchermap: a tool for visualizing author locations using Google maps.

    Science.gov (United States)

    Rastegar-Mojarad, Majid; Bales, Michael E; Yu, Hong

    2013-01-01

    We hereby present ResearcherMap, a tool to visualize locations of authors of scholarly papers. In response to a query, the system returns a map of author locations. To develop the system we first populated a database of author locations, geocoding institution locations for all available institutional affiliation data in our database. The database includes all authors of Medline papers from 1990 to 2012. We conducted a formative heuristic usability evaluation of the system and measured the system's accuracy and performance. The accuracy of finding the accurate address is 97.5% in our system.

  18. Ophiucus: RDF-based visualization tool for health simulation models.

    Science.gov (United States)

    Sutcliffe, Andrew; Okhmatovskaia, Anya; Shaban-Nejad, Arash; Buckeridge, David

    2012-01-01

    Simulation modeling of population health is becoming increasingly popular for epidemiology research and public health policy-making. However, the acceptability of population health simulation models is inhibited by their complexity and the lack of established standards to describe these models. To address this issue, we propose Ophiuchus - an RDF (Resource Description Framework: http://www.w3.org/RDF/)-based visualization tool for generating interactive 2D diagrams of population health simulation models, which describe these models in an explicit and formal manner. We present the results of a preliminary system assessment and discuss current limitations of the system.

  19. INSPIIRED: Quantification and Visualization Tools for Analyzing Integration Site Distributions

    Directory of Open Access Journals (Sweden)

    Charles C. Berry

    2017-03-01

    Full Text Available Analysis of sites of newly integrated DNA in cellular genomes is important to several fields, but methods for analyzing and visualizing these datasets are still under development. Here, we describe tools for data analysis and visualization that take as input integration site data from our INSPIIRED pipeline. Paired-end sequencing allows inference of the numbers of transduced cells as well as the distributions of integration sites in target genomes. We present interactive heatmaps that allow comparison of distributions of integration sites to genomic features and that support numerous user-defined statistical tests. To summarize integration site data from human gene therapy samples, we developed a reproducible report format that catalogs sample population structure, longitudinal dynamics, and integration frequency near cancer-associated genes. We also introduce a novel summary statistic, the UC50 (unique cell progenitors contributing the most expanded 50% of progeny cell clones, which provides a single number summarizing possible clonal expansion. Using these tools, we characterize ongoing longitudinal characterization of a patient from the first trial to treat severe combined immunodeficiency-X1 (SCID-X1, showing successful reconstitution for 15 years accompanied by persistence of a cell clone with an integration site near the cancer-associated gene CCND2. Software is available at https://github.com/BushmanLab/INSPIIRED.

  20. FilooT: a visualization tool for exploring genomic data

    Science.gov (United States)

    Zeinaly, Mahshid; Soltangheis, Mina; Shaw, Chris D.

    2013-12-01

    In order to enhance analysis of synthetic health data of the IEEE VAST Challenge 2010, we introduce an interactive Visual Analytics tool called FilooT designed as a part of the Interactive Multi-genomic Analysis System (IMAS) project. In this paper, we describe different interactive views of FilooT: the Tabular View for exploring and comparing genetic sequences, the Matrix View for sorting sequences according to the values of different characteristics, the P-value View for finding the most important mutations across a family of sequences, the Graph View for finding related sequences and the Group View to group them for further investigation. We followed the Nested Process Model framework throughout the design process and the evaluation. To understand the tool's design capabilities for target domain analysts, we conducted a User Experience scenario-based study followed by an informal interview. The findings indicated how analysts employ each of the visualization and interaction designs in their Bioinformatics task-analysis process. The critical analysis of the results inspired design informing suggestions.

  1. Next generation tools for genomic data generation, distribution, and visualization

    Directory of Open Access Journals (Sweden)

    Nix David A

    2010-09-01

    Full Text Available Abstract Background With the rapidly falling cost and availability of high throughput sequencing and microarray technologies, the bottleneck for effectively using genomic analysis in the laboratory and clinic is shifting to one of effectively managing, analyzing, and sharing genomic data. Results Here we present three open-source, platform independent, software tools for generating, analyzing, distributing, and visualizing genomic data. These include a next generation sequencing/microarray LIMS and analysis project center (GNomEx; an application for annotating and programmatically distributing genomic data using the community vetted DAS/2 data exchange protocol (GenoPub; and a standalone Java Swing application (GWrap that makes cutting edge command line analysis tools available to those who prefer graphical user interfaces. Both GNomEx and GenoPub use the rich client Flex/Flash web browser interface to interact with Java classes and a relational database on a remote server. Both employ a public-private user-group security model enabling controlled distribution of patient and unpublished data alongside public resources. As such, they function as genomic data repositories that can be accessed manually or programmatically through DAS/2-enabled client applications such as the Integrated Genome Browser. Conclusions These tools have gained wide use in our core facilities, research laboratories and clinics and are freely available for non-profit use. See http://sourceforge.net/projects/gnomex/, http://sourceforge.net/projects/genoviz/, and http://sourceforge.net/projects/useq.

  2. Dynamic Visual Acuity: a Functionally Relevant Research Tool

    Science.gov (United States)

    Peters, Brian T.; Brady, Rachel A.; Miller, Chris A.; Mulavara, Ajitkumar P.; Wood, Scott J.; Cohen, Helen S.; Bloomberg, Jacob J.

    2010-01-01

    Coordinated movements between the eyes and head are required to maintain a stable retinal image during head and body motion. The vestibulo-ocular reflex (VOR) plays a significant role in this gaze control system that functions well for most daily activities. However, certain environmental conditions or interruptions in normal VOR function can lead to inadequate ocular compensation, resulting in oscillopsia, or blurred vision. It is therefore possible to use acuity to determine when the environmental conditions, VOR function, or the combination of the two is not conductive for maintaining clear vision. Over several years we have designed and tested several tests of dynamic visual acuity (DVA). Early tests used the difference between standing and walking acuity to assess decrements in the gaze stabilization system after spaceflight. Supporting ground-based studies measured the responses from patients with bilateral vestibular dysfunction and explored the effects of visual target viewing distance and gait cycle events on walking acuity. Results from these studies show that DVA is affected by spaceflight, is degraded in patients with vestibular dysfunction, changes with target distance, and is not consistent across the gait cycle. We have recently expanded our research to include studies in which seated subjects are translated or rotated passively. Preliminary results from this work indicate that gaze stabilization ability may differ between similar active and passive conditions, may change with age, and can be affected by the location of the visual target with respect to the axis of motion. Use of DVA as a diagnostic tool is becoming more popular but the functional nature of the acuity outcome measure also makes it ideal for identifying conditions that could lead to degraded vision. By doing so, steps can be taken to alter the problematic environments to improve the man-machine interface and optimize performance.

  3. VECT: an automatic visual Perl programming tool for nonprogrammers.

    Science.gov (United States)

    Chou, Hui-Hsien

    2005-04-01

    Modern high-throughput biological research produces enormous amount of data that must be processed by computers, but many biologists dealing with these data are not professional programmers. Despite increased awareness of interdisciplinary training in bioinformatics, many biologists still find it difficult to create their own computational solutions. VECT, the Visual Extraction and Conversion Tool, has been developed to assist nonprogrammers to create simple bioinformatics without having to master a programming language. VECT provides a unified graphical user interface for data extraction, data conversion, output composition, and Perl code generation. Programming using VECT is achieved by visually performing the desired data extraction, conversion, and output composition tasks using some sample user data. These tasks are then compiled by VECT into an executable Perl program, which can be saved for later use and can carry out the same computation independently of VECT. VECT is released under the GNU General Public License and is freely available for all major computing platforms including Macintosh OS X, Linux, and Microsoft Windows at www.complex.iastate.edu.

  4. Mapping as a visual health communication tool: promises and dilemmas.

    Science.gov (United States)

    Parrott, Roxanne; Hopfer, Suellen; Ghetian, Christie; Lengerich, Eugene

    2007-01-01

    In the era of evidence-based public health promotion and planning, the use of maps as a form of evidence to communicate about the multiple determinants of cancer is on the rise. Geographic information systems and mapping technologies make future proliferation of this strategy likely. Yet disease maps as a communication form remain largely unexamined. This content analysis considers the presence of multivariate information, credibility cues, and the communication function of publicly accessible maps for cancer control activities. Thirty-six state comprehensive cancer control plans were publicly available in July 2005 and were reviewed for the presence of maps. Fourteen of the 36 state cancer plans (39%) contained map images (N = 59 static maps). A continuum of map inter activity was observed, with 10 states having interactive mapping tools available to query and map cancer information. Four states had both cancer plans with map images and interactive mapping tools available to the public on their Web sites. Of the 14 state cancer plans that depicted map images, two displayed multivariate data in a single map. Nine of the 10 states with interactive mapping capability offered the option to display multivariate health risk messages. The most frequent content category mapped was cancer incidence and mortality, with stage at diagnosis infrequently available. The most frequent communication function served by the maps reviewed was redundancy, as maps repeated information contained in textual forms. The social and ethical implications for communicating about cancer through the use of visual geographic representations are discussed.

  5. Testing the Visual Soil Assessment tool on Estonian farm fields

    Science.gov (United States)

    Reintam, Endla; Are, Mihkel; Selge, Are

    2017-04-01

    Soil quality estimation plays important role in decision making on farm as well on policy level. Sustaining the production ability and good health of the soil the chemical, physical and biological indicators should be taken into account. The system to use soil chemical parameters is usually quite well established in most European counties, including Estonia. However, measuring soil physical properties, such bulk density, porosity, penetration resistance, structural stability ect is time consuming, needs special tools and is highly weather dependent. In that reason these parameters are excluded from controllable quality parameters in policy in Estonia. Within the project "Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience" (iSQAPER) the visual soil assessment (VSA) tool was developed for easy detection of soil quality as well the different soil friendly agricultural management practices (AMP) were detected. The aim of current study was to test the VSA tool on Estonian farm fields under different management practices and compare the results with laboratory measurements. The main focus was set on soil physical parameters. Next to the VSA, the undisturbed soil samples were collected from the depth of 5-10 cm and 25-30 cm. The study revealed that results of a visually assessed soil physical parameters, such a soil structure, soil structural stability, soil porosity, presence of tillage pan, were confirmed by laboratory measurements in most cases. Soil water stable structure measurement on field (on 1 cm2 net in one 1 l box with 4-6 cm air dry clods for 5-10 min) underestimated very well structured soil on grassland and overestimated the structure aggregates stability of compacted soil. The slightly better soil quality was detected under no-tillage compared to ploughed soils. However, the ploughed soil got higher quality points compared with minimum tillage. The slurry application (organic manuring) had

  6. Visualization and Quality Control Web Tools for CERES Products

    Science.gov (United States)

    Mitrescu, C.; Doelling, D. R.; Rutan, D. A.

    2016-12-01

    The CERES project continues to provide the scientific community a wide variety of satellite-derived data products such as observed TOA broadband shortwave and longwave observed fluxes, computed TOA and Surface fluxes, as well as cloud, aerosol, and other atmospheric parameters. They encompass a wide range of temporal and spatial resolutions, suited to specific applications. Now in its 16-year, CERES products are mostly used by climate modeling communities that focus on global mean energetics, meridianal heat transport, and climate trend studies. In order to serve all our users, we developed a web-based Ordering and Visualization Tool (OVT). Using Opens Source Software such as Eclipse, java, javascript, OpenLayer, Flot, Google Maps, python, and others, the OVT Team developed a series of specialized functions to be used in the process of CERES Data Quality Control (QC). We mention 1- and 2-D histogram, anomaly, deseasonalization, temporal and spatial averaging, side-by-side parameter comparison, and others that made the process of QC far easier and faster, but more importantly far more portable. We are now in the process of integrating ground site observed surface fluxes to further facilitate the CERES project to QC the CERES computed surface fluxes. These features will give users the opportunity to perform their own comparisons of the CERES computed surface fluxes and observed ground site fluxes. An overview of the CERES OVT basic functions using Open Source Software, as well as future steps in expanding its capabilities will be presented at the meeting.

  7. Application of Frameworks in the Analysis and (Re)design of Interactive Visual Learning Tools

    Science.gov (United States)

    Liang, Hai-Ning; Sedig, Kamran

    2009-01-01

    Interactive visual learning tools (IVLTs) are software environments that encode and display information visually and allow learners to interact with the visual information. This article examines the application and utility of frameworks in the analysis and design of IVLTs at the micro level. Frameworks play an important role in any design. They…

  8. A Visual Training Tool for Teaching Kanji to Children with Developmental Dyslexia

    Science.gov (United States)

    Ikeshita-Yamazoe, Hanae; Miyao, Masutomo

    2016-01-01

    We developed a visual training tool to assist children with developmental dyslexia in learning to recognize and understand Chinese characters (kanji). The visual training tool presents the strokes of a kanji character as separate shapes and requires students to use these fragments to construct the character. Two types of experiments were conducted…

  9. A Survey of Visualization Tools Assessed for Anomaly-Based Intrusion Detection Analysis

    Science.gov (United States)

    2014-04-01

    domain to aid analysts’ tasks. The innovative tools accounted for in this survey includes Bloom Diagram, Circos , DocuBurst, NVIVO, PathFinder...screen; play animation over time. No monitoring or response capabilities. Circos http://mkweb.bcgsc.ca/template/ circos /$url_root /tableviewer...assessment for the following visualization need(s) for analysts’ tasks: • Visualization need “M2” may be accomplished by using visualization tools Circos

  10. Reflections on developing a tool for creating visual representations of learning designs: towards a visual language for learning designs

    OpenAIRE

    Brasher, Andrew; Cross, Simon

    2015-01-01

    Over the past four years we have been developing CompendiumLD, a software tool for designing learning activities using a flexible visual interface. It has been developed as a tool to support lecturers, teachers and others involved in education to help them articulate their ideas and map out a design or learning sequence. CompendiumLD is a specialised version of Compendium, a tool for managing connections between information and ideas, which has been applied in many domains including the mappi...

  11. Virtual Reality: A Tool for Cartographic Visualization | Quaye-Ballard ...

    African Journals Online (AJOL)

    Visualization methods in the analysis of geographical datasets are based on static models, which restrict the visual analysis capabilities. The use of virtual reality, which is a three-dimensional (3D) perspective, gives the user the ability to change viewpoints and models dynamically overcomes the static limitations of ...

  12. Enhancing suicide risk assessment: a novel visual metaphor learning tool.

    Science.gov (United States)

    Alyami, Mohsen; Alyami, Hussain; Sundram, Frederick; Cheung, Gary; Haarhoff, Beverly A; Lyndon, Mataroria P; Hill, Andrew G

    2016-12-01

    Suicide risk assessment is variably taught and learnt by health professionals. The literature indicates that training programs of this fundamental competency need to be enhanced. To facilitate teaching and learning of this core clinical skill, we propose a novel visual metaphor in order to conceptualize suicide risk factors. The design of the proposed visual metaphor was informed by the Cognitive Load Theory to enhance deep learning of the various suicide risk factors. The visual metaphor depicting suicide risk factors can potentially improve memory and recall. It activates prior knowledge and is based on educational theory informed design principles. © The Royal Australian and New Zealand College of Psychiatrists 2016.

  13. iSAT: a visual learning analytics tool for instructors

    National Research Council Canada - National Science Library

    Rwitajit Majumdar; Sridhar Iyer

    2016-01-01

    .... Interactive visual analytics gives the instructor the affordance of understanding the dynamics of the class of students and their activities from the data collected in their own teaching-learning context...

  14. Dynamic visualizations as tools for supporting cosmological literacy

    Science.gov (United States)

    Buck, Zoe Elizabeth

    My dissertation research is designed to improve access to STEM content through the development of cosmology visualizations that support all learners as they engage in cosmological sense-making. To better understand how to design visualizations that work toward breaking cycles of power and access in the sciences, I orient my work to following "meta-question": How might educators use visualizations to support diverse ways of knowing and learning in order to expand access to cosmology, and to science? In this dissertation, I address this meta-question from a pragmatic epistemological perspective, through a sociocultural lens, following three lines of inquiry: experimental methods (Creswell, 2003) with a focus on basic visualization design, activity analysis (Wells, 1996; Ash, 2001; Rahm, 2012) with a focus on culturally and linguistically diverse learners, and case study (Creswell, 2000) with a focus on expansive learning at a planetarium (Engestrom, 2001; Ash, 2014). My research questions are as follows, each of which corresponds to a self contained course of inquiry with its own design, data, analysis and results: 1) Can mediational cues like color affect the way learners interpret the content in a cosmology visualization? 2) How do cosmology visualizations support cosmological sense-making for diverse students? 3) What are the shared objects of dynamic networks of activity around visualization production and use in a large, urban planetarium and how do they affect learning? The result is a mixed-methods design (Sweetman, Badiee & Creswell, 2010) where both qualitative and quantitative data are used when appropriate to address my research goals. In the introduction I begin by establishing a theoretical framework for understanding visualizations within cultural historical activity theory (CHAT) and situating the chapters that follow within that framework. I also introduce the concept of cosmological literacy, which I define as the set of conceptual, semiotic and

  15. Abstractocyte: A Visual Tool for Exploring Nanoscale Astroglial Cells

    KAUST Repository

    Mohammed, Haneen

    2017-06-12

    This thesis presents the design and implementation of Abstractocyte, a system for the visual analysis of astrocytes, and their relation to neurons, in nanoscale volumes of brain tissue. Astrocytes are glial cells, i.e., non-neuronal cells that support neurons and the nervous system. Even though glial cells make up around 50 percent of all cells in the mammalian brain, so far they have been far less studied than neurons. Nevertheless, the study of astrocytes has immense potential for understanding brain function. However, the complex and widely-branching structure of astrocytes requires high-resolution electron microscopy imaging and makes visualization and analysis challenging. Using Abstractocyte, biologists can explore the morphology of astrocytes at various visual abstraction levels, while simultaneously analyzing neighboring neurons and their connectivity. We define a novel, conceptual 2D abstraction space for jointly visualizing astrocytes and neurons. Neuroscientists can choose a joint visualization as a specific point in that 2D abstraction space. Dragging this point allows them to smoothly transition between different abstraction levels in an intuitive manner. We describe the design of Abstractocyte, and present three case studies in which neuroscientists have successfully used our system to assess astrocytic coverage of synapses, glycogen distribution in relation to synapses, and astrocytic-mitochondria coverage.

  16. New tools for the visualization of biological pathways.

    Science.gov (United States)

    Ghosh, Tomojit; Ma, Xiaofeng; Kirby, Michael

    2018-01-01

    This paper presents several geometrically motivated techniques for the visualization of high-dimensional biological data sets. The Grassmann manifold provides a robust framework for measuring data similarity in a subspace context. Sparse radial basis function classification as a visualization technique leverages recent advances in radial basis function learning via convex optimization. In the spirit of deep belief networks, supervised centroid-encoding is proposed as a way to exploit class label information. These methods are compared to linear and nonlinear principal component analysis (autoencoders) in the context of data visualization; these approaches may perform poorly for visualization when the variance of the data is spread across more than three dimensions. In contrast, the proposed methods are shown to capture significant data structure in two or three dimensions, even when the information in the data lives in higher dimensional subspaces. To illustrate these ideas, the visualization techniques are applied to gene expression data sets that capture the host immune system's response to infection by the Ebola virus in non-human primate and collaborative cross mouse. Copyright © 2017. Published by Elsevier Inc.

  17. Impact of a prototype visualization tool for new information in EHR clinical documents.

    Science.gov (United States)

    Farri, O; Rahman, A; Monsen, K A; Zhang, R; Pakhomov, S V; Pieczkiewicz, D S; Speedie, S M; Melton, G B

    2012-01-01

    EHR clinical document synthesis by clinicians may be time-consuming and error-prone due to the complex organization of narratives, excessive redundancy within documents, and, at times, inadvertent proliferation of data inconsistencies. Development of EHR systems that are easily adaptable to the user's work processes requires research into visualization techniques that can optimize information synthesis at the point of care. To evaluate the effect of a prototype visualization tool for clinically relevant new information on clinicians' synthesis of EHR clinical documents and to understand how the tool may support future designs of clinical document user interfaces. A mixed methods approach to analyze the impact of the visualization tool was used with a sample of eight medical interns as they synthesized EHR clinical documents to accomplish a set of four pre-formed clinical scenarios using a think-aloud protocol. Differences in the missing (unretrieved) patient information (2.3±1.2 [with the visualization tool] vs. 6.8±1.2 [without the visualization tool], p = 0.08) and accurate inferences (1.3±0.3 vs 2.3±0.3, p = 0.09) were not statistically significant but suggest some improvement with the new information visualization tool. Despite the non-significant difference in total times to task completion (43±4 mins vs 36±4 mins, p = 0.35) we observed shorter times for two scenarios with the visualization tool, suggesting that the time-saving benefits may be more evident with certain clinical processes. Other observed effects of the tool include more intuitive navigation between patient details and increased efforts towards methodical synthesis of clinical documents. Our study provides some evidence that new information visualization in clinical notes may positively influence synthesis of patient information from EHR clinical documents. Our findings provide groundwork towards a more effective display of EHR clinical documents using advanced visualization applications.

  18. Visualizing data mining results with the Brede tools

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    2009-01-01

    has expanded and now includes its own database with coordinates along with ontologies for brain regions and functions: The Brede Database. With Brede Toolbox and Database combined we setup automated workflows for extraction of data, mass meta-analytic data mining and visualizations. Most of the Web......A few neuroinformatics databases now exist that record results from neuroimaging studies in the form of brain coordinates in stereotaxic space. The Brede Toolbox was originally developed to extract, analyze and visualize data from one of them --- the BrainMap database. Since then the Brede Toolbox...

  19. Video games as a tool to train visual skills

    Science.gov (United States)

    Achtman, R.L.; Green, C.S.; Bavelier, D.

    2010-01-01

    Purpose Adult brain plasticity, although possible, is often difficult to elicit. Training regimens in adults can produce specific improvements on the trained task without leading to general enhancements that would improve quality of life. This paper considers the case of playing action video games as a way to induce widespread enhancement in vision. Conclusions We review the range of visual skills altered by action video game playing as well as the game components important in promoting visual plasticity. Further, we discuss what these results might mean in terms of rehabilitation for different patient populations. PMID:18997318

  20. Lighting Studies for Fuelling Machine Deployed Visual Inspection Tool

    Energy Technology Data Exchange (ETDEWEB)

    Stoots, Carl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Griffith, George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    Under subcontract to James Fisher Nuclear, Ltd., INL has been reviewing advanced vision systems for inspection of graphite in high radiation, high temperature, and high pressure environments. INL has performed calculations and proof-of-principle measurements of optics and lighting techniques to be considered for visual inspection of graphite fuel channels in AGR reactors in UK.

  1. Audio-Visual Communications, A Tool for the Professional

    Science.gov (United States)

    Journal of Environmental Health, 1976

    1976-01-01

    The manner in which the Cuyahoga County, Ohio Department of Environmental Health utilizes audio-visual presentations for communication with business and industry, professional public health agencies and the general public is presented. Subjects including food sanitation, radiation protection and safety are described. (BT)

  2. Visible Vowels : A Tool for the Visualization of Vowel Variation

    NARCIS (Netherlands)

    Heeringa, W.J.; Van de Velde, Hans

    2017-01-01

    This paper presents Visible Vowels, a web app that visualizes variation in f0, formants and duration. It combines user friend-liness with maximum functionality and flexibility, using a live plot view. See: https://fryske-akademy.nl/fa-apps/VisVow/

  3. Line Spread as a Visual Clinical Tool for Thickened Liquids

    Science.gov (United States)

    Lund, Annelise Masters; Mertz Garcia, Jane; Chambers, Edgar, IV.

    2013-01-01

    Purpose: Preparing modified liquids to a target level of consistency is critical to patients' nutritional care. This study examined the relationship of line spread (i.e., the distance a liquid flows) to viscometer measurements for a variety of product/liquid combinations and determined if flow distance visually differentiated nectar-thick…

  4. A Sensemaking Visualization Tool with Military Doctrinal Elements

    Science.gov (United States)

    2008-06-01

    these characteristics generally apply to visualization in any type of operational situation. Hence, they serve to frame any sort of analysis that...warfare has some elements of complexity, dynamism, uncertainty, and other characteristics that defy conventional planning. It begs for deeper...Supported Cooperative Work. Other influential early systems are SEPIA (Streitz, Hanneman, & Thuring, 1989) and SIBYL (Lee, 1990). The systems previously

  5. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism

    Directory of Open Access Journals (Sweden)

    HyoYoung Kim

    2014-12-01

    Full Text Available Copy number variation (CNV or single nucleotide phlyorphism (SNP is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i the enrichment of genome contents in CNV; ii the physical distribution of CNV or SNP on chromosomes; iii the distribution of log2 ratio of CNVs with criteria of interested; iv the number of CNV or SNP per binning unit; v the distribution of homozygosity of SNP genotype; and vi cytomap of genes within CNV or SNP region.

  6. iVCJ: A tool for Interactive Visualization of high explosives CJ states

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aslam, Tariq Dennis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von Howard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-12

    A graphical user interface (GUI) tool has been developed that facilitates the visualization and analysis of the Chapman-Jouguet state for high explosives gaseous products using the Jones- Wilkins-Lee equation of state.

  7. From a Gloss to a Learning Tool: Does Visual Aids Enhance Better Sentence Comprehension?

    Science.gov (United States)

    Sato, Takeshi; Suzuki, Akio

    2012-01-01

    The aim of this study is to optimize CALL environments as a learning tool rather than a gloss, focusing on the learning of polysemous words which refer to spatial relationship between objects. A lot of research has already been conducted to examine the efficacy of visual glosses while reading L2 texts and has reported that visual glosses can be…

  8. Consensus Coding as a Tool in Visual Appearance Research

    Directory of Open Access Journals (Sweden)

    D R Simmons

    2011-04-01

    Full Text Available A common problem in visual appearance research is how to quantitatively characterise the visual appearance of a region of an image which is categorised by human observers in the same way. An example of this is scarring in medical images (Ayoub et al, 2010, The Cleft-Palate Craniofacial Journal, in press. We have argued that “scarriness” is itself a visual appearance descriptor which summarises the distinctive combination of colour, texture and shape information which allows us to distinguish scarred from non-scarred tissue (Simmons et al, ECVP 2009. Other potential descriptors for other image classes would be “metallic”, “natural”, or “liquid”. Having developed an automatic algorithm to locate scars in medical images, we then tested “ground truth” by asking untrained observers to draw around the region of scarring. The shape and size of the scar on the image was defined by building a contour plot of the agreement between observers' outlines and thresholding at the point above which 50% of the observers agreed: a consensus coding scheme. Based on the variability in the amount of overlap between the scar as defined by the algorithm, and the consensus scar of the observers, we have concluded that the algorithm does not completely capture the putative appearance descriptor “scarriness”. A simultaneous analysis of qualitative descriptions of the scarring by the observers revealed that other image features than those encoded by the algorithm (colour and texture might be important, such as scar boundary shape. This approach to visual appearance research in medical imaging has potential applications in other application areas, such as botany, geology and archaeology.

  9. Property Integration: Componentless Design Techniques and Visualization Tools

    DEFF Research Database (Denmark)

    El-Halwagi, Mahmoud M; Glasgow, I.M.; Eden, Mario Richard

    2004-01-01

    integration is defined as a functionality-based, holistic approach to the allocation and manipulation of streams and processing units, which is based on tracking, adjusting, assigning, and matching functionalities throughout the process. Revised lever arm rules are devised to allow optimal allocation while...... techniques. Particularly, systematic rules and visualization techniques for the identification of optimal mixing of streams and their allocation to units. Furthermore, a derivation of the correspondence between clustering arms and fractional contribution of streams is presented. This correspondence...

  10. Visual tools and languages: Directions for the '90s

    Energy Technology Data Exchange (ETDEWEB)

    Glinert, E.P. (Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Computer Science); Blattner, M.M. (Lawrence Livermore National Lab., CA (United States)); Frerking, C.J. (California Univ., Davis, CA (United States))

    1991-01-01

    We identify and discuss three domains where we believe that innovative application of visual programming languages is likely to make a significant impact in the near term: concurrent computing, computer-based assistance for people with disabilities, and the multimedia/multimodal environments of tomorrow in which it will be possible to hear and physically interact with information as well as see it. 33 refs., 3 figs.

  11. Writing in the air: A visualization tool for written languages.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Itaguchi

    Full Text Available The present study investigated interactions between cognitive processes and finger actions called "kusho," meaning "air-writing" in Japanese. Kanji-culture individuals often employ kusho behavior in which they move their fingers as a substitute for a pen to write mostly done when they are trying to recall the shape of a Kanji character or the spelling of an English word. To further examine the visualization role of kusho behavior on cognitive processing, we conducted a Kanji construction task in which a stimulus (i.e., sub-parts to be constructed was simultaneously presented. In addition, we conducted a Kanji vocabulary test to reveal the relation between the kusho benefit and vocabulary size. The experiment provided two sets of novel findings. First, executing kusho behavior improved task performance (correct responses as long as the participants watched their finger movements while solving the task. This result supports the idea that visual feedback of kusho behavior helps cognitive processing for the task. Second, task performance was positively correlated with the vocabulary score when stimuli were presented for a relatively long time, whereas the kusho benefits and vocabulary score were not correlated regardless of stimulus-presentation time. These results imply that a longer stimulus-presentation could allow participants to utilize their lexical resources for solving the task. The current findings together support the visualization role of kusho behavior, adding experimental evidence supporting the view that there are interactions between cognition and motor behavior.

  12. Writing in the air: A visualization tool for written languages.

    Science.gov (United States)

    Itaguchi, Yoshihiro; Yamada, Chiharu; Yoshihara, Masahiro; Fukuzawa, Kazuyoshi

    2017-01-01

    The present study investigated interactions between cognitive processes and finger actions called "kusho," meaning "air-writing" in Japanese. Kanji-culture individuals often employ kusho behavior in which they move their fingers as a substitute for a pen to write mostly done when they are trying to recall the shape of a Kanji character or the spelling of an English word. To further examine the visualization role of kusho behavior on cognitive processing, we conducted a Kanji construction task in which a stimulus (i.e., sub-parts to be constructed) was simultaneously presented. In addition, we conducted a Kanji vocabulary test to reveal the relation between the kusho benefit and vocabulary size. The experiment provided two sets of novel findings. First, executing kusho behavior improved task performance (correct responses) as long as the participants watched their finger movements while solving the task. This result supports the idea that visual feedback of kusho behavior helps cognitive processing for the task. Second, task performance was positively correlated with the vocabulary score when stimuli were presented for a relatively long time, whereas the kusho benefits and vocabulary score were not correlated regardless of stimulus-presentation time. These results imply that a longer stimulus-presentation could allow participants to utilize their lexical resources for solving the task. The current findings together support the visualization role of kusho behavior, adding experimental evidence supporting the view that there are interactions between cognition and motor behavior.

  13. The Tools, Approaches and Applications of Visual Literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria

    Science.gov (United States)

    Ecoma, Victor

    2016-01-01

    The paper reflects upon the tools, approaches and applications of visual literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria. The objective of the discourse is to examine how the visual arts training and practice equip students with skills in visual literacy through methods of production, materials and…

  14. A component based astronomical visualization tool for instrument control

    Science.gov (United States)

    Briegel, Florian; Berwein, Jürgen; Kittmann, Frank; Pavlov, Alexey

    2008-07-01

    For various astronomical instruments developed at the Max-Planck-Institute-Heidelberg there was a need for a highly flexible display and control tool. Many display tools (ximtool, DS9, skycat,...) are available for astronomy, but all this applications are monolitic and can't be easily enriched by plugins for interaction with the graphical display, and other functionalities for remote access and control of the instrument and data pipepline. It was developed on top of Trolltechs Cross-Platform Rich Client Development Framework Qt,1 the modern middleware Internet Communications Engine 2 from ZeroC and the template based SOA developer framework for astronomical instrumentation - NICE.3 The display tool is used on the Calar Alto Observatory, Spain) as a guider, for a wide field imager and guider at the Wise Observatory (Israel; for the LBT interferometer Linc-Nirvana, USA).

  15. MATH: A Scientific Tool for Numerical Methods Calculation and Visualization

    Directory of Open Access Journals (Sweden)

    Henrich Glaser-Opitz

    2016-02-01

    Full Text Available MATH is an easy to use application for various numerical methods calculations with graphical user interface and integrated plotting tool written in Qt with extensive use of Qwt library for plotting options and use of Gsl and MuParser libraries as a numerical and parser helping libraries. It can be found at http://sourceforge.net/projects/nummath. MATH is a convenient tool for use in education process because of its capability of showing every important step in solution process to better understand how it is done. MATH also enables fast comparison of similar method speed and precision.

  16. P2PStudio - Monitoring, Controlling and Visualization Tool for Peer-to-Peer Networks Research

    OpenAIRE

    Kotilainen, Niko; Vapa, Mikko; Auvinen, Annemari; Weber, Matthieu; Vuori, Jarkko

    2006-01-01

    Peer-to-Peer Studio has been developed as a monitoring, controlling and visualization tool for peer-to-peer networks. It uses a centralized architecture to gather events from a peer-to-peer network and can be used to visualize network topology and to send different commands to individual peer-to-peer nodes. The tool has been used with Chedar Peer-to-Peer network to study the behavior of different peer-to-peer resource discovery and topology management algorithms and for visualizing the result...

  17. Visual Temporal Logic as a Rapid Prototying Tool

    DEFF Research Database (Denmark)

    Fränzle, Martin; Lüth, Karsten

    2001-01-01

    of the informal timing diagrams widely used in electrical engineering. ICOS integrates a variety of tools, ranging from graphical specification editors over tautology checking and counterexample generation to code generators emitting C or VHDL, thus bridging the gap from formal specification to rapid prototype...

  18. Portable Rapid Visual Workflow Simulation Tool for Human Robot Coproduction

    NARCIS (Netherlands)

    Dukalski, R.R.; Çençen, A.; Aschenbrenner, D.; Verlinden, J.C.

    2017-01-01

    Within the European Factory-in-a-day project, the aim is to improve communication between automation integrator and factory owner, in their analysis of feasibility and appropriateness of automating a manual task. A visualisation tool with preconfigured workflows and working principles, with

  19. The DiaCog: A Prototype Tool for Visualizing Online Dialog Games' Interactions

    Science.gov (United States)

    Yengin, Ilker; Lazarevic, Bojan

    2014-01-01

    This paper proposes and explains the design of a prototype learning tool named the DiaCog. The DiaCog visualizes dialog interactions within an online dialog game by using dynamically created cognitive maps. As a purposefully designed tool for enhancing learning effectiveness the DiaCog might be applicable to dialogs at discussion boards within a…

  20. Experimental Evaluation of Electric Power Grid Visualization Tools in the EIOC

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.; Podmore, Robin; Dalton, Angela C.

    2009-12-01

    The present study follows an initial human factors evaluation of four electric power grid visualization tools and reports on an empirical evaluation of two of the four tools: Graphical Contingency Analysis, and Phasor State Estimator. The evaluation was conducted within specific experimental studies designed to measure the impact on decision making performance.

  1. A Visual Tool for Computer Supported Learning: The Robot Motion Planning Example

    Science.gov (United States)

    Elnagar, Ashraf; Lulu, Leena

    2007-01-01

    We introduce an effective computer aided learning visual tool (CALVT) to teach graph-based applications. We present the robot motion planning problem as an example of such applications. The proposed tool can be used to simulate and/or further to implement practical systems in different areas of computer science such as graphics, computational…

  2. AR4VI: AR as an Accessibility Tool for People with Visual Impairments

    Science.gov (United States)

    Coughlan, James M.; Miele, Joshua

    2017-01-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness – an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well. PMID:29303163

  3. AR4VI: AR as an Accessibility Tool for People with Visual Impairments.

    Science.gov (United States)

    Coughlan, James M; Miele, Joshua

    2017-10-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness - an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well.

  4. Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data.

    Science.gov (United States)

    Fernandez, Nicolas F; Gundersen, Gregory W; Rahman, Adeeb; Grimes, Mark L; Rikova, Klarisa; Hornbeck, Peter; Ma'ayan, Avi

    2017-10-10

    Most tools developed to visualize hierarchically clustered heatmaps generate static images. Clustergrammer is a web-based visualization tool with interactive features such as: zooming, panning, filtering, reordering, sharing, performing enrichment analysis, and providing dynamic gene annotations. Clustergrammer can be used to generate shareable interactive visualizations by uploading a data table to a web-site, or by embedding Clustergrammer in Jupyter Notebooks. The Clustergrammer core libraries can also be used as a toolkit by developers to generate visualizations within their own applications. Clustergrammer is demonstrated using gene expression data from the cancer cell line encyclopedia (CCLE), original post-translational modification data collected from lung cancer cells lines by a mass spectrometry approach, and original cytometry by time of flight (CyTOF) single-cell proteomics data from blood. Clustergrammer enables producing interactive web based visualizations for the analysis of diverse biological data.

  5. VarB Plus: An Integrated Tool for Visualization of Genome Variation Datasets

    KAUST Repository

    Hidayah, Lailatul

    2012-07-01

    Research on genomic sequences has been improving significantly as more advanced technology for sequencing has been developed. This opens enormous opportunities for sequence analysis. Various analytical tools have been built for purposes such as sequence assembly, read alignments, genome browsing, comparative genomics, and visualization. From the visualization perspective, there is an increasing trend towards use of large-scale computation. However, more than power is required to produce an informative image. This is a challenge that we address by providing several ways of representing biological data in order to advance the inference endeavors of biologists. This thesis focuses on visualization of variations found in genomic sequences. We develop several visualization functions and embed them in an existing variation visualization tool as extensions. The tool we improved is named VarB, hence the nomenclature for our enhancement is VarB Plus. To the best of our knowledge, besides VarB, there is no tool that provides the capability of dynamic visualization of genome variation datasets as well as statistical analysis. Dynamic visualization allows users to toggle different parameters on and off and see the results on the fly. The statistical analysis includes Fixation Index, Relative Variant Density, and Tajima’s D. Hence we focused our efforts on this tool. The scope of our work includes plots of per-base genome coverage, Principal Coordinate Analysis (PCoA), integration with a read alignment viewer named LookSeq, and visualization of geo-biological data. In addition to description of embedded functionalities, significance, and limitations, future improvements are discussed. The result is four extensions embedded successfully in the original tool, which is built on the Qt framework in C++. Hence it is portable to numerous platforms. Our extensions have shown acceptable execution time in a beta testing with various high-volume published datasets, as well as positive

  6. Professional Readiness of Teachers to Use Computer Visualization Tools: A Crucial Drive

    Directory of Open Access Journals (Sweden)

    Elena V. Semenikhina

    2016-12-01

    Full Text Available The training of teachers involves the formation of skills which are meant to be used in their future professional activities. Given the exponential increase in information content, there is a need to look into the levels and components of the professional readiness of teachers to use computer visualization tools. This article describes the four levels of teachers’ readiness [passive, basic, conscious, active] to use computer visualization tools. These levels are based on the proposed components of teachers’ readiness [motivational, cognitive, technological, reflexive] to use these tools.

  7. Development and Evaluation of Secure Socket Layer Visualization Tool with Packet Capturing Function

    Directory of Open Access Journals (Sweden)

    Arai Masayuki

    2015-01-01

    Full Text Available Secure Socket Layer (SSL has become a fundamental technology that secures browser-processed personal details sent to the server. As a result, communication and computer engineers are advised to learn the protocol. However, understanding SSL is very difficult because of its intricate communication procedure. To solve this problem, we developed a visualization tool for understanding SSL. This paper describes the design, implementation methods, and evaluation of the tool. The evaluation results show that the visualization tool is effective for learning SSL.

  8. Exploration of Metagenome Assemblies with an Interactive Visualization Tool

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, Michael; Nordberg, Henrik; Smirnova, Tatyana; Andersen, Evan; Tringe, Susannah; Hess, Matthias; Dubchak, Inna

    2014-07-09

    Metagenomics, one of the fastest growing areas of modern genomic science, is the genetic profiling of the entire community of microbial organisms present in an environmental sample. Elviz is a web-based tool for the interactive exploration of metagenome assemblies. Elviz can be used with publicly available data sets from the Joint Genome Institute or with custom user-loaded assemblies. Elviz is available at genome.jgi.doe.gov/viz

  9. Interactive Data Visualization for HIV Cohorts: Leveraging Data Exchange Standards to Share and Reuse Research Tools.

    Directory of Open Access Journals (Sweden)

    Meridith Blevins

    Full Text Available To develop and disseminate tools for interactive visualization of HIV cohort data.If a picture is worth a thousand words, then an interactive video, composed of a long string of pictures, can produce an even richer presentation of HIV population dynamics. We developed an HIV cohort data visualization tool using open-source software (R statistical language. The tool requires that the data structure conform to the HIV Cohort Data Exchange Protocol (HICDEP, and our implementation utilized Caribbean, Central and South America network (CCASAnet data.This tool currently presents patient-level data in three classes of plots: (1 Longitudinal plots showing changes in measurements viewed alongside event probability curves allowing for simultaneous inspection of outcomes by relevant patient classes. (2 Bubble plots showing changes in indicators over time allowing for observation of group level dynamics. (3 Heat maps of levels of indicators changing over time allowing for observation of spatial-temporal dynamics. Examples of each class of plot are given using CCASAnet data investigating trends in CD4 count and AIDS at antiretroviral therapy (ART initiation, CD4 trajectories after ART initiation, and mortality.We invite researchers interested in this data visualization effort to use these tools and to suggest new classes of data visualization. We aim to contribute additional shareable tools in the spirit of open scientific collaboration and hope that these tools further the participation in open data standards like HICDEP by the HIV research community.

  10. A ROOT Tool for 3D Event Visualization in ATLAS Calorimeters

    CERN Document Server

    Manhaes de Andrade, L

    2007-01-01

    The ATLAS (A Toroidal LHC ApparatuS) detector is being tested with cosmic rays before LHC (Large Hadron Collider) starts its full operation by the midle of the year 2008. For the ongoing commissioning phase, it is necessary to develop specific tools that can perform efficient cosmic ray data analysis. An important issue for final analysis is to provide a way to visualize cosmic muon tracks and the corresponding activated cells in the detector, so that one can check visually the coherence of the reconstructed data and seek for potential problems. This work presents a 3D visualization tool for cosmic muon track visualization based on activated cells in the highly segmented ATLAS calorimeter system. This tool was developed in the ROOT framework, which allows a smooth integration between specifics analyses from ATLAS community and the visualization tool. This tool uses the ROOT embedded geometry package to create the ATLAS calorimeter, cell by cell, and provides routines to fill calorimeter cells with the reconst...

  11. Living Liquid: Design and Evaluation of an Exploratory Visualization Tool for Museum Visitors.

    Science.gov (United States)

    Ma, J; Liao, I; Ma, Kwan-Liu; Frazier, J

    2012-12-01

    Interactive visualizations can allow science museum visitors to explore new worlds by seeing and interacting with scientific data. However, designing interactive visualizations for informal learning environments, such as museums, presents several challenges. First, visualizations must engage visitors on a personal level. Second, visitors often lack the background to interpret visualizations of scientific data. Third, visitors have very limited time at individual exhibits in museums. This paper examines these design considerations through the iterative development and evaluation of an interactive exhibit as a visualization tool that gives museumgoers access to scientific data generated and used by researchers. The exhibit prototype, Living Liquid, encourages visitors to ask and answer their own questions while exploring the time-varying global distribution of simulated marine microbes using a touchscreen interface. Iterative development proceeded through three rounds of formative evaluations using think-aloud protocols and interviews, each round informing a key visualization design decision: (1) what to visualize to initiate inquiry, (2) how to link data at the microscopic scale to global patterns, and (3) how to include additional data that allows visitors to pursue their own questions. Data from visitor evaluations suggests that, when designing visualizations for public audiences, one should (1) avoid distracting visitors from data that they should explore, (2) incorporate background information into the visualization, (3) favor understandability over scientific accuracy, and (4) layer data accessibility to structure inquiry. Lessons learned from this case study add to our growing understanding of how to use visualizations to actively engage learners with scientific data.

  12. Visual Impairment/lntracranial Pressure Risk Clinical Care Data Tools

    Science.gov (United States)

    Van Baalen, Mary; Mason, Sara S.; Taiym, Wafa; Wear, Mary L.; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William

    2014-01-01

    Prior to 2010, several ISS crewmembers returned from spaceflight with changes to their vision, ranging from a mild hyperopic shift to frank disc edema. As a result, NASA expanded clinical vision testing to include more comprehensive medical imaging, including Optical Coherence Tomography and 3 Tesla Brain and Orbit MRIs. The Space and Clinical Operations (SCO) Division developed a clinical practice guideline that classified individuals based on their symptoms and diagnoses to facilitate clinical care. For the purposes of clinical surveillance, this classification was applied retrospectively to all crewmembers who had sufficient testing for classification. This classification is also a tool that has been leveraged for researchers to identify potential risk factors. In March 2014, driven in part by a more comprehensive understanding of the imaging data and increased imaging capability on orbit, the SCO Division revised their clinical care guidance to outline in-flight care and increase post-flight follow up. The new clinical guidance does not include a classification scheme

  13. Head mounted DLP for visual stimulation in freely moving rats: a novel tool for visual neuroscience research

    Science.gov (United States)

    Mandel, Yossi; Arens-Arad, Tamar; Farah, Nairouz; Zlotnik, Alex; Zalevsky, Zeev

    2015-03-01

    Novel technologies are constantly under development for vision restoration in blind patients. In some of these techniques, such as photodiode implants or optogenetics based treatment, a glasses mounted optical projection system projects the visual scene onto the retina. The desired projection system is characterized by a relatively high power density, a localized retinal stimulation area and compatibility for wavelengths that are specific for the technology at hand. The challenges of obtaining such a projection system are not only limited by developing the tools and the apparatus for testing the visual performance of artificial retina, but also devising the technique and the methodology for training and testing the behaving animals using this tool. Current research techniques used for evaluation of visual function in behaving animals utilize computer screens for retinal stimulation, and therefore do not fulfill the requirements of the evaluation of retinal implant performance or optogenetics based treatment (inefficient power and no wavelength flexibility). In the following work we will present and evaluate a novel projection system that is suited for behavioral animal studies and meet the requirements for artificial retinal stimulation. The proposed system is based on a miniature Digital Mirror Device (DMD) for pattern projection and a telescope for relaying the pattern directly onto the animal eye. This system facilitates the projection of patterns with high spatial resolution at high light intensities with the desired wavelength and may prove to be a vital tool in natural and artificial vision performance research in behaving animals.

  14. Phylo-VISTA: An Interactive Visualization Tool for Multiple DNA Sequence Alignments

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.; Brudno, Michael; Batzoglou, Serafim; Bethel, E. Wes; Rubin, Edward M.; Hamann, Bernd; Dubchak, Inna

    2004-04-01

    We have developed Phylo-VISTA (Shah et al., 2003), an interactive software tool for analyzing multiple alignments by visualizing a similarity measure for DNA sequences of multiple species. The complexity of visual presentation is effectively organized using a framework based upon inter-species phylogenetic relationships. The phylogenetic organization supports rapid, user-guided inter-species comparison. To aid in navigation through large sequence datasets, Phylo-VISTA provides a user with the ability to select and view data at varying resolutions. The combination of multi-resolution data visualization and analysis, combined with the phylogenetic framework for inter-species comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments.

  15. MSIdV: a versatile tool to visualize biological indices from mass spectrometry imaging data.

    Science.gov (United States)

    Hayakawa, Eisuke; Fujimura, Yoshinori; Miura, Daisuke

    2016-12-15

    Mass spectrometry imaging (MSI) visualizes the simultaneous lateral distribution of multiple compounds on sample surface. However, it is still difficult to visualize biological indices such as energy charge index from multiple compounds because of the lack of publicly available tools. Here we present MSIdV, a visualization tool for biological indices calculated from mass spectrometry imaging data, which can effectively scan a series of mass spectra and process, calculate and visualize user-defined index measures accurately with a number of signal processing features. MSIdV is implemented in Python 2.7 and is freely available on the web at https://sourceforge.net/projects/msidv/ CONTACT: eisuke.hayakawa@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Experiences of graduate students: Using Cabri as a visualization tool in math education

    Directory of Open Access Journals (Sweden)

    Çiğdem Gül

    2014-12-01

    Full Text Available Through the use of graphic calculators and dynamic software running on computers and mobile devices, students can learn complex algebraic concepts. The purpose of this study is to investigate the experiences of graduate students using Cabri as a visualization tool in math education. The qualitative case study was used in this study. Five students from graduate students studying at the non-thesis math program of a university located in the Blacksea region were the participant of the study. As a dynamic learning tool, Cabri provided participants an environment where participants visually discovered the geometry. It was concluded that dynamic learning tools like Cabri has a huge potential for teaching visually the challenging concepts that students struggle to image. Further research should investigate the potential plans for integrating the use of dynamic learning software into the math curriculum

  17. Visualizing vowel-production mechanism using simple educational tools

    Science.gov (United States)

    Arai, Takayuki

    2005-09-01

    To develop intuitive and effective methods for educating Acoustics to students of different ages and from varied backgrounds, Arai [J. Phonetic Soc. Jpn. 5, 31-38, (2001)] replicated Chiba and Kajiyama's physical models of the human vocal tract as educational tools and verified that the physical models and sound sources, such as an artificial larynx, yield a simple but powerful demonstration of vowel production in the classroom. We have also started exhibiting our models at the Science Museum ``Ru-Ku-Ru'' in Shizuoka City, Japan. We further extended our model to a lung model as well as several head-shaped models with visible vocal tract to demonstrate the total vowel-production mechanism from phonation to articulation. The lung model imitates the human respiratory system with a diaphragm. In the head-shaped model, the midsaggital cross section is visible from the outside. To adjust the degree of nasopharyngeal coupling, the velum may be rotated. Another head-shaped model with the manipulable tongue position was also developed. Two test results were compared before and after using these physical models, and the educational effectiveness of the models was confirmed. The homepage of the vocal-tract models is available at http://www.splab.ee.sophia.ac.jp/Vocal-Tract-Model/index-e.htm. [Work supported by KAKENHI (17500603).

  18. An open source GIS tool to quantify the visual impact of wind turbines and photovoltaic panels

    Energy Technology Data Exchange (ETDEWEB)

    Minelli, Annalisa, E-mail: Annalisa.Minelli@univ-brest.fr [Insitute Universitaire Européen de la Mer, Université de la Bretagne Occidentale, Rue Dumont D' Urville, 29280 Plouzané (France); Marchesini, Ivan, E-mail: Ivan.Marchesini@irpi.cnr.it [National Research Council (CNR), Research Insitute for Geo-hydrological Protection (IRPI), Strada della Madonna Alta 126, 06125 Perugia (Italy); Taylor, Faith E., E-mail: Faith.Taylor@kcl.ac.uk [Earth and Environmental Dynamics Research Group, Department of Geography, King' s College London, Strand, London WC2R 2LS (United Kingdom); De Rosa, Pierluigi, E-mail: Pierluigi.Derosa@unipg.it [Physics and Geology Department, University of Perugia, Via Zefferino Faina 4, 06123 Perugia (Italy); Casagrande, Luca, E-mail: Luca.Casagrande@gfosservices.it [Gfosservices S.A., Open Source GIS-WebGIS Solutions, Spatial Data Infrastructures, Planning and Counseling, Via F.lli Cairoli 24, 06127 Perugia (Italy); Cenci, Michele, E-mail: mcenci@regione.umbria.it [Servizio Energia qualità dell' ambiente, rifiuti, attività estrattive, Regione Umbia, Corso Vannucci 96, 06121 Perugia (Italy)

    2014-11-15

    Although there are clear economic and environmental incentives for producing energy from solar and wind power, there can be local opposition to their installation due to their impact upon the landscape. To date, no international guidelines exist to guide quantitative visual impact assessment of these facilities, making the planning process somewhat subjective. In this paper we demonstrate the development of a method and an Open Source GIS tool to quantitatively assess the visual impact of these facilities using line-of-site techniques. The methods here build upon previous studies by (i) more accurately representing the shape of energy producing facilities, (ii) taking into account the distortion of the perceived shape and size of facilities caused by the location of the observer, (iii) calculating the possible obscuring of facilities caused by terrain morphology and (iv) allowing the combination of various facilities to more accurately represent the landscape. The tool has been applied to real and synthetic case studies and compared to recently published results from other models, and demonstrates an improvement in accuracy of the calculated visual impact of facilities. The tool is named r.wind.sun and is freely available from GRASS GIS AddOns. - Highlights: • We develop a tool to quantify wind turbine and photovoltaic panel visual impact. • The tool is freely available to download and edit as a module of GRASS GIS. • The tool takes into account visual distortion of the shape and size of objects. • The accuracy of calculation of visual impact is improved over previous methods.

  19. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    KAUST Repository

    Yong Wan,

    2009-11-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist\\'s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.

  20. An Interactive Visualization Tool for Multi-channel Confocal Microscopy Data in Neurobiology Research

    Science.gov (United States)

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2010-01-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist’s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system. PMID:19834225

  1. Development of a visual tool to analyze interactions in forums in an e-learning environment

    Directory of Open Access Journals (Sweden)

    Cláudio Filipe Tereso

    2016-12-01

    Full Text Available This article presents VAFAE – Forum Access Visualization on a Distance Learning Environment, a web tool that visually maps Universidade Aberta’s (UAb students’ interaction with a course available on the e-learning platform. Raw data is extracted from the log files that are then transformed to obtain the necessary format. Next, different visualization techniques are applied with the aim of improving and streamlining the underlying information. In a more specific way, VAFAE aims at helping teachers to better understand the level and quality of the interaction of the students with the modules of the learning units in UAb’s distance learning environment.

  2. Visualization in Big Data: A tool for pattern recognition in data stream

    Directory of Open Access Journals (Sweden)

    SOARES, V. H. A.

    2015-06-01

    Full Text Available The development of new technologies is responsible for the generation and storage of continuous and massive amounts of data. Such type of data is known as data stream. The analysis of data streams may be advantageous in many elds, like bioinformatics, medicine, companies and others, as it may result in important information about the data. In this work, we propose a new software tool for Data Visualization that permits the analysis of the evolution of clusters in real time during the data streaming. The proposed visualization tool is add-on for SAMOA, a new variant of MOA (Massive Online Analysis for massive data streams mining and processing distribution.

  3. A web-based data visualization tool for the MIMIC-II database.

    Science.gov (United States)

    Lee, Joon; Ribey, Evan; Wallace, James R

    2016-02-04

    Although MIMIC-II, a public intensive care database, has been recognized as an invaluable resource for many medical researchers worldwide, becoming a proficient MIMIC-II researcher requires knowledge of SQL programming and an understanding of the MIMIC-II database schema. These are challenging requirements especially for health researchers and clinicians who may have limited computer proficiency. In order to overcome this challenge, our objective was to create an interactive, web-based MIMIC-II data visualization tool that first-time MIMIC-II users can easily use to explore the database. The tool offers two main features: Explore and Compare. The Explore feature enables the user to select a patient cohort within MIMIC-II and visualize the distributions of various administrative, demographic, and clinical variables within the selected cohort. The Compare feature enables the user to select two patient cohorts and visually compare them with respect to a variety of variables. The tool is also helpful to experienced MIMIC-II researchers who can use it to substantially accelerate the cumbersome and time-consuming steps of writing SQL queries and manually visualizing extracted data. Any interested researcher can use the MIMIC-II data visualization tool for free to quickly and conveniently conduct a preliminary investigation on MIMIC-II with a few mouse clicks. Researchers can also use the tool to learn the characteristics of the MIMIC-II patients. Since it is still impossible to conduct multivariable regression inside the tool, future work includes adding analytics capabilities. Also, the next version of the tool will aim to utilize MIMIC-III which contains more data.

  4. A Review of Pathway-Based Analysis Tools That Visualize Genetic Variants.

    Science.gov (United States)

    Cirillo, Elisa; Parnell, Laurence D; Evelo, Chris T

    2017-01-01

    Pathway analysis is a powerful method for data analysis in genomics, most often applied to gene expression analysis. It is also promising for single-nucleotide polymorphism (SNP) data analysis, such as genome-wide association study data, because it allows the interpretation of variants with respect to the biological processes in which the affected genes and proteins are involved. Such analyses support an interactive evaluation of the possible effects of variations on function, regulation or interaction of gene products. Current pathway analysis software often does not support data visualization of variants in pathways as an alternate method to interpret genetic association results, and specific statistical methods for pathway analysis of SNP data are not combined with these visualization features. In this review, we first describe the visualization options of the tools that were identified by a literature review, in order to provide insight for improvements in this developing field. Tool evaluation was performed using a computational epistatic dataset of gene-gene interactions for obesity risk. Next, we report the necessity to include in these tools statistical methods designed for the pathway-based analysis with SNP data, expressly aiming to define features for more comprehensive pathway-based analysis tools. We conclude by recognizing that pathway analysis of genetic variations data requires a sophisticated combination of the most useful and informative visual aspects of the various tools evaluated.

  5. Visualizing Anomalies in Electronic Health Record Data: The Variability Explorer Tool

    OpenAIRE

    Estiri, Hossein; Chan, Ya-Fen; Baldwin, Laura-Mae; Jung, Hyunggu; Cole, Allison; Stephens, Kari A.

    2015-01-01

    As Electronic Health Record (EHR) systems are becoming more prevalent in the U.S. health care domain, the utility of EHR data in translational research and clinical decision-making gains prominence. Leveraging primay? care-based. multi-clinic EHR data, this paper introduces a web-based visualization tool, the Variability Explorer Tool (VET), to assist researchers with profiling variability among diagnosis codes. VET applies a simple statistical method to approximate probability distribution f...

  6. MediaEval 2013 Visual Privacy Task: Warping-based Privacy Protection Tool

    OpenAIRE

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-01-01

    In this paper, we describe EPFL privacy protection tool submitted to the MediaEval 2013 Visual Privacy task. The goal of the task is to obscure faces and other personal items of people in the provided surveillance clips to preserve their personal privacy. In the privacy protection tool, we used a combination of reversible privacy protection filter based on geometric warping transformation, randomized saturation filter, masking with partial opacity, and pixelization. The aim of the implementat...

  7. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data

    Directory of Open Access Journals (Sweden)

    Brinkley James F

    2007-10-01

    Full Text Available Abstract Background Three-dimensional (3-D visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.

  8. The Film as Visual Aided Learning Tool in Classroom Management Course

    Science.gov (United States)

    Altinay Gazi, Zehra; Altinay Aksal, Fahriye

    2011-01-01

    This research aims to investigate the impact of the visual aided learning on pre-service teachers' co-construction of subject matter knowledge in teaching practice. The study revealed the examination of film as an active cognizing and learning tool in classroom management course within teacher education programme. Within the framework of action…

  9. GreedEx: A Visualization Tool for Experimentation and Discovery Learning of Greedy Algorithms

    Science.gov (United States)

    Velazquez-Iturbide, J. A.; Debdi, O.; Esteban-Sanchez, N.; Pizarro, C.

    2013-01-01

    Several years ago we presented an experimental, discovery-learning approach to the active learning of greedy algorithms. This paper presents GreedEx, a visualization tool developed to support this didactic method. The paper states the design goals of GreedEx, makes explicit the major design decisions adopted, and describes its main characteristics…

  10. Visualization: A Tool for Enhancing Students' Concept Images of Basic Object-Oriented Concepts

    Science.gov (United States)

    Cetin, Ibrahim

    2013-01-01

    The purpose of this study was twofold: to investigate students' concept images about class, object, and their relationship and to help them enhance their learning of these notions with a visualization tool. Fifty-six second-year university students participated in the study. To investigate his/her concept images, the researcher developed a survey…

  11. Using Visual Simulation Tools And Learning Outcomes-Based Curriculum To Help Transportation Engineering Students And Practitioners To Better Understand And Design Traffic Signal Control Systems

    Science.gov (United States)

    2012-06-01

    The use of visual simulation tools to convey complex concepts has become a useful tool in education as well as in research. : This report describes a project that developed curriculum and visualization tools to train transportation engineering studen...

  12. Development of a Visual Inspection Data Collection Tool for Evaluation of Fielded PV Module Condition

    Energy Technology Data Exchange (ETDEWEB)

    Packard, C. E.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-08-01

    A visual inspection data collection tool for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate describing the condition of PV modules with regard to field performance. The proposed data collection tool consists of 14 sections, each documenting the appearance or properties of a part of the module. This report instructs on how to use the collection tool and defines each attribute to ensure reliable and valid data collection. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from such a single data collection tool has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

  13. This article presents a tool for visual discourse analysis that allows stylistic research indicators to be systematised. The tool, called Matrix for Documentary Analysis, is based on the theoretical aspects of visual semiotics. It can be used to describe

    OpenAIRE

    Bartomeu Magaña, Elena; , EINA

    2016-01-01

    This article presents a tool for visual discourse analysis that allows stylistic research indicators to be systematised. The tool, called Matrix for Documentary Analysis, is based on the theoretical aspects of visual semiotics. It can be used to describe or forecast the scope of trends in graphic design and visual communication. This article also presents a test carried out on a trend in logotype design in Spain during the first decade of the 21st century known as Pollination. The results con...

  14. Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-19

    A partnership across government, academic, and private sectors has created a novel system that enables climate researchers to solve current and emerging data analysis and visualization challenges. The Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) software project utilizes the Python application programming interface (API) combined with C/C++/Fortran implementations for performance-critical software that offers the best compromise between "scalability" and “ease-of-use.” The UV-CDAT system is highly extensible and customizable for high-performance interactive and batch visualization and analysis for climate science and other disciplines of geosciences. For complex, climate data-intensive computing, UV-CDAT’s inclusive framework supports Message Passing Interface (MPI) parallelism as well as taskfarming and other forms of parallelism. More specifically, the UV-CDAT framework supports the execution of Python scripts running in parallel using the MPI executable commands and leverages Department of Energy (DOE)-funded general-purpose, scalable parallel visualization tools such as ParaView and VisIt. This is the first system to be successfully designed in this way and with these features. The climate community leverages these tools and others, in support of a parallel client-server paradigm, allowing extreme-scale, server-side computing for maximum possible speed-up.

  15. MAPT and PAICE: Tools for time series and single time point transcriptionist visualization and knowledge discovery.

    Science.gov (United States)

    Hosseini, Parsa; Tremblay, Arianne; Matthews, Benjamin F; Alkharouf, Nadim W

    2012-01-01

    With the advent of next-generation sequencing, -omics fields such as transcriptomics have experienced increases in data throughput on the order of magnitudes. In terms of analyzing and visually representing these huge datasets, an intuitive and computationally tractable approach is to map quantified transcript expression onto biochemical pathways while employing datamining and visualization principles to accelerate knowledge discovery. We present two cross-platform tools: MAPT (Mapping and Analysis of Pathways through Time) and PAICE (Pathway Analysis and Integrated Coloring of Experiments), an easy to use analysis suite to facilitate time series and single time point transcriptomics analysis. In unison, MAPT and PAICE serve as a visual workbench for transcriptomics knowledge discovery, data-mining and functional annotation. Both PAICE and MAPT are two distinct but yet inextricably linked tools. The former is specifically designed to map EC accessions onto KEGG pathways while handling multiple gene copies, detection-call analysis, as well as UN/annotated EC accessions lacking quantifiable expression. The latter tool integrates PAICE datasets to drive visualization, annotation, and data-mining. The database is available for free at http://sourceforge.net/projects/paice/http://sourceforge.net/projects/mapt/

  16. XCluSim: a visual analytics tool for interactively comparing multiple clustering results of bioinformatics data

    Science.gov (United States)

    2015-01-01

    Background Though cluster analysis has become a routine analytic task for bioinformatics research, it is still arduous for researchers to assess the quality of a clustering result. To select the best clustering method and its parameters for a dataset, researchers have to run multiple clustering algorithms and compare them. However, such a comparison task with multiple clustering results is cognitively demanding and laborious. Results In this paper, we present XCluSim, a visual analytics tool that enables users to interactively compare multiple clustering results based on the Visual Information Seeking Mantra. We build a taxonomy for categorizing existing techniques of clustering results visualization in terms of the Gestalt principles of grouping. Using the taxonomy, we choose the most appropriate interactive visualizations for presenting individual clustering results from different types of clustering algorithms. The efficacy of XCluSim is shown through case studies with a bioinformatician. Conclusions Compared to other relevant tools, XCluSim enables users to compare multiple clustering results in a more scalable manner. Moreover, XCluSim supports diverse clustering algorithms and dedicated visualizations and interactions for different types of clustering results, allowing more effective exploration of details on demand. Through case studies with a bioinformatics researcher, we received positive feedback on the functionalities of XCluSim, including its ability to help identify stably clustered items across multiple clustering results. PMID:26328893

  17. Parallel analysis tools and new visualization techniques for ultra-large climate data set

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Don [National Center for Atmospheric Research, Boulder, CO (United States); Haley, Mary [National Center for Atmospheric Research, Boulder, CO (United States)

    2014-12-10

    ParVis was a project funded under LAB 10-05: “Earth System Modeling: Advanced Scientific Visualization of Ultra-Large Climate Data Sets”. Argonne was the lead lab with partners at PNNL, SNL, NCAR and UC-Davis. This report covers progress from January 1st, 2013 through Dec 1st, 2014. Two previous reports covered the period from Summer, 2010, through September 2011 and October 2011 through December 2012, respectively. While the project was originally planned to end on April 30, 2013, personnel and priority changes allowed many of the institutions to continue work through FY14 using existing funds. A primary focus of ParVis was introducing parallelism to climate model analysis to greatly reduce the time-to-visualization for ultra-large climate data sets. Work in the first two years was conducted on two tracks with different time horizons: one track to provide immediate help to climate scientists already struggling to apply their analysis to existing large data sets and another focused on building a new data-parallel library and tool for climate analysis and visualization that will give the field a platform for performing analysis and visualization on ultra-large datasets for the foreseeable future. In the final 2 years of the project, we focused mostly on the new data-parallel library and associated tools for climate analysis and visualization.

  18. Collaboratively Conceived, Designed and Implemented: Matching Visualization Tools with Geoscience Data Collections and Geoscience Data Collections with Visualization Tools via the ToolMatch Service.

    Science.gov (United States)

    Hoebelheinrich, N. J.; Lynnes, C.; West, P.; Ferritto, M.

    2014-12-01

    Two problems common to many geoscience domains are the difficulties in finding tools to work with a given dataset collection, and conversely, the difficulties in finding data for a known tool. A collaborative team from the Earth Science Information Partnership (ESIP) has gotten together to design and create a web service, called ToolMatch, to address these problems. The team began their efforts by defining an initial, relatively simple conceptual model that addressed the two uses cases briefly described above. The conceptual model is expressed as an ontology using OWL (Web Ontology Language) and DCterms (Dublin Core Terms), and utilizing standard ontologies such as DOAP (Description of a Project), FOAF (Friend of a Friend), SKOS (Simple Knowledge Organization System) and DCAT (Data Catalog Vocabulary). The ToolMatch service will be taking advantage of various Semantic Web and Web standards, such as OpenSearch, RESTful web services, SWRL (Semantic Web Rule Language) and SPARQL (Simple Protocol and RDF Query Language). The first version of the ToolMatch service was deployed in early fall 2014. While more complete testing is required, a number of communities besides ESIP member organizations have expressed interest in collaborating to create, test and use the service and incorporate it into their own web pages, tools and / or services including the USGS Data Catalog service, DataONE, the Deep Carbon Observatory, Virtual Solar Terrestrial Observatory (VSTO), and the U.S. Global Change Research Program. In this session, presenters will discuss the inception and development of the ToolMatch service, the collaborative process used to design, refine, and test the service, and future plans for the service.

  19. iRaster: a novel information visualization tool to explore spatiotemporal patterns in multiple spike trains.

    Science.gov (United States)

    Somerville, J; Stuart, L; Sernagor, E; Borisyuk, R

    2010-12-15

    Over the last few years, simultaneous recordings of multiple spike trains have become widely used by neuroscientists. Therefore, it is important to develop new tools for analysing multiple spike trains in order to gain new insight into the function of neural systems. This paper describes how techniques from the field of visual analytics can be used to reveal specific patterns of neural activity. An interactive raster plot called iRaster has been developed. This software incorporates a selection of statistical procedures for visualization and flexible manipulations with multiple spike trains. For example, there are several procedures for the re-ordering of spike trains which can be used to unmask activity propagation, spiking synchronization, and many other important features of multiple spike train activity. Additionally, iRaster includes a rate representation of neural activity, a combined representation of rate and spikes, spike train removal and time interval removal. Furthermore, it provides multiple coordinated views, time and spike train zooming windows, a fisheye lens distortion, and dissemination facilities. iRaster is a user friendly, interactive, flexible tool which supports a broad range of visual representations. This tool has been successfully used to analyse both synthetic and experimentally recorded datasets. In this paper, the main features of iRaster are described and its performance and effectiveness are demonstrated using various types of data including experimental multi-electrode array recordings from the ganglion cell layer in mouse retina. iRaster is part of an ongoing research project called VISA (Visualization of Inter-Spike Associations) at the Visualization Lab in the University of Plymouth. The overall aim of the VISA project is to provide neuroscientists with the ability to freely explore and analyse their data. The software is freely available from the Visualization Lab website (see www.plymouth.ac.uk/infovis). Copyright © 2010

  20. Vizic: A Jupyter-based interactive visualization tool for astronomical catalogs

    Science.gov (United States)

    Yu, W.; Carrasco Kind, M.; Brunner, R. J.

    2017-07-01

    The ever-growing datasets in observational astronomy have challenged scientists in many aspects, including an efficient and interactive data exploration and visualization. Many tools have been developed to confront this challenge. However, they usually focus on displaying the actual images or focus on visualizing patterns within catalogs in a predefined way. In this paper we introduce Vizic, a Python visualization library that builds the connection between images and catalogs through an interactive map of the sky region. Vizic visualizes catalog data over a custom background canvas using the shape, size and orientation of each object in the catalog. The displayed objects in the map are highly interactive and customizable comparing to those in the observation images. These objects can be filtered by or colored by their property values, such as redshift and magnitude. They also can be sub-selected using a lasso-like tool for further analysis using standard Python functions and everything is done from inside a Jupyter notebook. Furthermore, Vizic allows custom overlays to be appended dynamically on top of the sky map. We have initially implemented several overlays, namely, Voronoi, Delaunay, Minimum Spanning Tree and HEALPix grid layer, which are helpful for visualizing large-scale structure. All these overlays can be generated, added or removed interactively with just one line of code. The catalog data is stored in a non-relational database, and the interfaces have been developed in JavaScript and Python to work within Jupyter Notebook, which allows to create customizable widgets, user generated scripts to analyze and plot the data selected/displayed in the interactive map. This unique design makes Vizic a very powerful and flexible interactive analysis tool. Vizic can be adopted in variety of exercises, for example, data inspection, clustering analysis, galaxy alignment studies, outlier identification or just large scale visualizations.

  1. MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.

    Science.gov (United States)

    Jang, Yeongjun; Yu, Namhee; Seo, Jihae; Kim, Sun; Lee, Sanghyuk

    2016-03-18

    Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .

  2. Online characterization of planetary surfaces: PlanetServer, an open-source analysis and visualization tool

    Science.gov (United States)

    Marco Figuera, R.; Pham Huu, B.; Rossi, A. P.; Minin, M.; Flahaut, J.; Halder, A.

    2018-01-01

    The lack of open-source tools for hyperspectral data visualization and analysis creates a demand for new tools. In this paper we present the new PlanetServer, a set of tools comprising a web Geographic Information System (GIS) and a recently developed Python Application Programming Interface (API) capable of visualizing and analyzing a wide variety of hyperspectral data from different planetary bodies. Current WebGIS open-source tools are evaluated in order to give an overview and contextualize how PlanetServer can help in this matters. The web client is thoroughly described as well as the datasets available in PlanetServer. Also, the Python API is described and exposed the reason of its development. Two different examples of mineral characterization of different hydrosilicates such as chlorites, prehnites and kaolinites in the Nili Fossae area on Mars are presented. As the obtained results show positive outcome in hyperspectral analysis and visualization compared to previous literature, we suggest using the PlanetServer approach for such investigations.

  3. Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future.

    Science.gov (United States)

    Pavlopoulos, Georgios A; Malliarakis, Dimitris; Papanikolaou, Nikolas; Theodosiou, Theodosis; Enright, Anton J; Iliopoulos, Ioannis

    2015-01-01

    "Α picture is worth a thousand words." This widely used adage sums up in a few words the notion that a successful visual representation of a concept should enable easy and rapid absorption of large amounts of information. Although, in general, the notion of capturing complex ideas using images is very appealing, would 1000 words be enough to describe the unknown in a research field such as the life sciences? Life sciences is one of the biggest generators of enormous datasets, mainly as a result of recent and rapid technological advances; their complexity can make these datasets incomprehensible without effective visualization methods. Here we discuss the past, present and future of genomic and systems biology visualization. We briefly comment on many visualization and analysis tools and the purposes that they serve. We focus on the latest libraries and programming languages that enable more effective, efficient and faster approaches for visualizing biological concepts, and also comment on the future human-computer interaction trends that would enable for enhancing visualization further.

  4. Development of a standardized occupational therapy screening tool for visual perception in adults.

    Science.gov (United States)

    Cooke, Deirdre M; McKenna, Kryss; Fleming, Jennifer

    2005-06-01

    Occupational therapy assessment and treatment of visual perceptual impairments are integral to the rehabilitation of clients following stroke and other acquired brain injuries. Occupational therapists need to identify the nature of visual perceptual performance impairments in order to choose rehabilitation intervention strategies appropriate for remediation of specific problems or to compensate for limitations in daily function. This paper describes the variations in visual perception terminology and occupational therapy approaches to visual perceptual assessment. Limitations of existing assessment tools for visual perception are highlighted in terms of reliability, validity, normative information, length of time to administer, and comprehensiveness in screening for visual perceptual impairment. In response to these limitations, a battery of items, called the Occupational Therapy Adult Perceptual Screening Test (OT-APST) was selected to screen adults comprehensively for impairments of agnosia, visuospatial skills including body scheme and neglect, constructional skills, apraxia, and acalculia. It also includes a subtest to evaluate functional skills directly observed during screening. This new battery has established reliability, validity and age-stratified normative data for adults 16 to 97 years of age. The OT-APST is recommended for use in conjunction with observational assessment of activities of daily living for clients with stroke and acquired brain injury.

  5. VisBOL: Web-Based Tools for Synthetic Biology Design Visualization.

    Science.gov (United States)

    McLaughlin, James Alastair; Pocock, Matthew; Mısırlı, Göksel; Madsen, Curtis; Wipat, Anil

    2016-08-19

    VisBOL is a Web-based application that allows the rendering of genetic circuit designs, enabling synthetic biologists to visually convey designs in SBOL visual format. VisBOL designs can be exported to formats including PNG and SVG images to be embedded in Web pages, presentations and publications. The VisBOL tool enables the automated generation of visualizations from designs specified using the Synthetic Biology Open Language (SBOL) version 2.0, as well as a range of well-known bioinformatics formats including GenBank and Pigeoncad notation. VisBOL is provided both as a user accessible Web site and as an open-source (BSD) JavaScript library that can be used to embed diagrams within other content and software.

  6. Monitoring CMS Tracker Construction and Data Quality Using a Web Service Based on a Visualization Tool

    Science.gov (United States)

    Zito, G.; Mennea, M. S.; Regano, A.

    2005-10-01

    We describe here the deployment of a visualization tool as a web service to monitor the CMS tracker. The results obtained with a first prototype consisting of a Java client which implements the GUI and a data server connected to the CMS construction database and event store on the Grid are promising. This tool will allow access to monitoring data and services by tracker experts from anywhere in the world: something essential for a detector built by an international collaboration. The main representation used is a schematic 2-D map of the whole tracker: its use is essential for fast monitoring on the web.

  7. Visual DSD: a design and analysis tool for DNA strand displacement systems.

    Science.gov (United States)

    Lakin, Matthew R; Youssef, Simon; Polo, Filippo; Emmott, Stephen; Phillips, Andrew

    2011-11-15

    The Visual DSD (DNA Strand Displacement) tool allows rapid prototyping and analysis of computational devices implemented using DNA strand displacement, in a convenient web-based graphical interface. It is an implementation of the DSD programming language and compiler described by Lakin et al. (2011) with additional features such as support for polymers of unbounded length. It also supports stochastic and deterministic simulation, construction of continuous-time Markov chains and various export formats which allow models to be analysed using third-party tools.

  8. Visual Tools for Crowdsourcing Data Validation Within the GLOBELAND30 Geoportal

    Science.gov (United States)

    Chuprikova, E.; Wu, H.; Murphy, C. E.; Meng, L.

    2016-06-01

    This research aims to investigate the role of visualization of the user generated data that can empower the geoportal of GlobeLand30 produced by NGCC (National Geomatics Center of China). The focus is set on the development of a concept of tools that can extend the Geo-tagging functionality and make use of it for different target groups. The anticipated tools should improve the continuous data validation, updating and efficient use of the remotely-sensed data distributed within GlobeLand30.

  9. GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes

    DEFF Research Database (Denmark)

    Hallin, Peter Fischer; Stærfeldt, Hans Henrik; Rotenberg, Eva

    2009-01-01

    , standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. [Supplemental material including interactive...... atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/]....... readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot, allowing for example visualization of gene expression and regulation data. Further...

  10. A new web-based tool for data visualization in MDSplus

    Energy Technology Data Exchange (ETDEWEB)

    Manduchi, G., E-mail: gabriele.manduchi@igi.cnr.it [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, Padova 35127 (Italy); Fredian, T.; Stillerman, J. [Massachusetts Institute of Technology, 175 Albany Street, Cambridge, MA 02139 (United States)

    2014-05-15

    Highlights: • The paper describes a new web-based data visualization tool for MDSplus. • It describes the experience gained with the previous data visualization tools. • It describes the used technologies for web data access and visualization. • It describes the current architecture of the tool and the new foreseen features. - Abstract: The Java tool jScope has been widely used for years to display acquired waveform in MDSplus. The choice of the Java programming language for its implementation has been successful for several reasons among which the fact that Java supports a multiplatform environment and it is well suited for graphics and the management of network communication. jScope can be used both as a local and remote application. In the latter case, data are acquired via TCP/IP communication using the mdsip protocol. Exporting data in this way however introduces several security problems due to the necessity of opening firewall holes for the user ports. For this reason, and also due to the fact that JavaScript is becoming a widely used language for web applications, a new tool written in JavaScript and called WebScope has been developed for the visualization of MDSplus data in web browsers. Data communication is now achieved via http protocol using Asynchronous JavaScript and XML (AJAX) technology. At the server side, data access is carried out by a Python module that interacts with the web server via Web Server Gateway Interface (WSGI). When a data item, described by an MDSplus expression, is requested by the web browser for visualization, it is returned as a binary message and then handled by callback JavaScript functions activated by the web browser. Scalable Vector Graphics (SVG) technology is used to handle graphics within the web browser and to carry out the same interactive data visualization provided by jScope. In addition to mouse events, touch events are supported to provide interactivity also on touch screens. In this way, waveforms can be

  11. Visual DSD: a design and analysis tool for DNA strand displacement systems

    Science.gov (United States)

    Lakin, Matthew R.; Youssef, Simon; Polo, Filippo; Emmott, Stephen; Phillips, Andrew

    2011-01-01

    Summary: The Visual DSD (DNA Strand Displacement) tool allows rapid prototyping and analysis of computational devices implemented using DNA strand displacement, in a convenient web-based graphical interface. It is an implementation of the DSD programming language and compiler described by Lakin et al. (2011) with additional features such as support for polymers of unbounded length. It also supports stochastic and deterministic simulation, construction of continuous-time Markov chains and various export formats which allow models to be analysed using third-party tools. Availability: Visual DSD is available as a web-based Silverlight application for most major browsers on Windows and Mac OS X at http://research.microsoft.com/dna. It can be installed locally for offline use. Command-line versions for Windows, Mac OS X and Linux are also available from the web page. Contact: aphillip@microsoft.com Supplementary Information:Supplementary data are available at Bioinformatics online. PMID:21984756

  12. VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Hank; Brugger, Eric; Whitlock, Brad; Meredith, Jeremy; Ahern, Sean; Pugmire, David; Biagas, Kathleen; Miller, Mark; Weber, Gunther H.; Krishnan, Hari; Fogal, Thomas; Sanderson, Allen; Garth, Christoph; Bethel, E. Wes; Camp, David; Ruebel, Oliver; Durant, Marc; Favre, Jean; Navratil, Paul

    2012-11-01

    VisIt is a popular open source tool for visualizing and analyzing big data. It owes its success to its foci of increasing data understanding, large data support, and providing a robust and usable product, as well as its underlying design that fits today's supercomputing landscape. This report, which draws heavily from an earlier publication at the SciDAC Conference in 2011 describes the VisIt project and its accomplishments.

  13. statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data

    Directory of Open Access Journals (Sweden)

    Mark S. Handcock

    2007-12-01

    Full Text Available statnet is a suite of software packages for statistical network analysis. The packages implement recent advances in network modeling based on exponential-family random graph models (ERGM. The components of the package provide a comprehensive framework for ERGM-based network modeling, including tools for model estimation, model evaluation, model-based network simulation, and network visualization. This broad functionality is powered by a central Markov chain Monte Carlo (MCMC algorithm. The coding is optimized for speed and robustness.

  14. Three-dimensional visualization of ensemble weather forecasts – Part 1: The visualization tool Met.3D (version 1.0

    Directory of Open Access Journals (Sweden)

    M. Rautenhaus

    2015-07-01

    Full Text Available We present "Met.3D", a new open-source tool for the interactive three-dimensional (3-D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns; however, it is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output – 3-D visualization, ensemble visualization and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2-D visualization methods commonly used in meteorology to 3-D visualization by combining both visualization types in a 3-D context. We address the issue of spatial perception in the 3-D view and present approaches to using the ensemble to allow the user to assess forecast uncertainty. Interactivity is key to our approach. Met.3D uses modern graphics technology to achieve interactive visualization on standard consumer hardware. The tool supports forecast data from the European Centre for Medium Range Weather Forecasts (ECMWF and can operate directly on ECMWF hybrid sigma-pressure level grids. We describe the employed visualization algorithms, and analyse the impact of the ECMWF grid topology on computing 3-D ensemble statistical quantities. Our techniques are demonstrated with examples from the T-NAWDEX-Falcon 2012 (THORPEX – North Atlantic Waveguide and Downstream Impact Experiment campaign.

  15. SlicerAstro: A 3-D interactive visual analytics tool for HI data

    Science.gov (United States)

    Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Fillion-Robin, J. C.; Yu, L.

    2017-04-01

    SKA precursors are capable of detecting hundreds of galaxies in HI in a single 12 h pointing. In deeper surveys one will probe more easily faint HI structures, typically located in the vicinity of galaxies, such as tails, filaments, and extraplanar gas. The importance of interactive visualization in data exploration has been demonstrated by the wide use of tools (e.g. Karma, Casaviewer, VISIONS) that help users to receive immediate feedback when manipulating the data. We have developed SlicerAstro, a 3-D interactive viewer with new analysis capabilities, based on traditional 2-D input/output hardware. These capabilities enhance the data inspection, allowing faster analysis of complex sources than with traditional tools. SlicerAstro is an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing. We demonstrate the capabilities of the current stable binary release of SlicerAstro, which offers the following features: (i) handling of FITS files and astronomical coordinate systems; (ii) coupled 2-D/3-D visualization; (iii) interactive filtering; (iv) interactive 3-D masking; (v) and interactive 3-D modeling. In addition, SlicerAstro has been designed with a strong, stable and modular C++ core, and its classes are also accessible via Python scripting, allowing great flexibility for user-customized visualization and analysis tasks.

  16. Intuitive Visualization of Transient Flow: Towards a Full 3D Tool

    Science.gov (United States)

    Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph

    2015-04-01

    Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool

  17. Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Silva, Claudio [New York Univ. (NYU), NY (United States). Computer Science and Engineering Dept.

    2013-09-30

    For the past three years, a large analysis and visualization effort—funded by the Department of Energy’s Office of Biological and Environmental Research (BER), the National Aeronautics and Space Administration (NASA), and the National Oceanic and Atmospheric Administration (NOAA)—has brought together a wide variety of industry-standard scientific computing libraries and applications to create Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) to serve the global climate simulation and observational research communities. To support interactive analysis and visualization, all components connect through a provenance application–programming interface to capture meaningful history and workflow. Components can be loosely coupled into the framework for fast integration or tightly coupled for greater system functionality and communication with other components. The overarching goal of UV-CDAT is to provide a new paradigm for access to and analysis of massive, distributed scientific data collections by leveraging distributed data architectures located throughout the world. The UV-CDAT framework addresses challenges in analysis and visualization and incorporates new opportunities, including parallelism for better efficiency, higher speed, and more accurate scientific inferences. Today, it provides more than 600 users access to more analysis and visualization products than any other single source.

  18. Preoperative automatic visual behavioural analysis as a tool for intraocular lens choice in cataract surgery

    Directory of Open Access Journals (Sweden)

    Heloisa Neumann Nogueira

    2015-04-01

    Full Text Available Purpose: Cataract is the main cause of blindness, affecting 18 million people worldwide, with the highest incidence in the population above 50 years of age. Low visual acuity caused by cataract may have a negative impact on patient quality of life. The current treatment is surgery in order to replace the natural lens with an artificial intraocular lens (IOL, which can be mono- or multifocal. However, due to potential side effects, IOLs must be carefully chosen to ensure higher patient satisfaction. Thus, studies on the visual behavior of these patients may be an important tool to determine the best type of IOL implantation. This study proposed an anamnestic add-on for optimizing the choice of IOL. Methods: We used a camera that automatically takes pictures, documenting the patient’s visual routine in order to obtain additional information about the frequency of distant, intermediate, and near sights. Results: The results indicated an estimated frequency percentage, suggesting that visual analysis of routine photographic records of a patient with cataract may be useful for understanding behavioural gaze and for choosing visual management strategy after cataract surgery, simultaneously stimulating interest for customized IOL manufacturing according to individual needs.

  19. A richly interactive exploratory data analysis and visualization tool using electronic medical records.

    Science.gov (United States)

    Huang, Chih-Wei; Lu, Richard; Iqbal, Usman; Lin, Shen-Hsien; Nguyen, Phung Anh Alex; Yang, Hsuan-Chia; Wang, Chun-Fu; Li, Jianping; Ma, Kwan-Liu; Li, Yu-Chuan Jack; Jian, Wen-Shan

    2015-11-12

    Electronic medical records (EMRs) contain vast amounts of data that is of great interest to physicians, clinical researchers, and medial policy makers. As the size, complexity, and accessibility of EMRs grow, the ability to extract meaningful information from them has become an increasingly important problem to solve. We develop a standardized data analysis process to support cohort study with a focus on a particular disease. We use an interactive divide-and-conquer approach to classify patients into relatively uniform within each group. It is a repetitive process enabling the user to divide the data into homogeneous subsets that can be visually examined, compared, and refined. The final visualization was driven by the transformed data, and user feedback direct to the corresponding operators which completed the repetitive process. The output results are shown in a Sankey diagram-style timeline, which is a particular kind of flow diagram for showing factors' states and transitions over time. This paper presented a visually rich, interactive web-based application, which could enable researchers to study any cohorts over time by using EMR data. The resulting visualizations help uncover hidden information in the data, compare differences between patient groups, determine critical factors that influence a particular disease, and help direct further analyses. We introduced and demonstrated this tool by using EMRs of 14,567 Chronic Kidney Disease (CKD) patients. We developed a visual mining system to support exploratory data analysis of multi-dimensional categorical EMR data. By using CKD as a model of disease, it was assembled by automated correlational analysis and human-curated visual evaluation. The visualization methods such as Sankey diagram can reveal useful knowledge about the particular disease cohort and the trajectories of the disease over time.

  20. MATISSE: A novel tool to access, visualize and analyse data from planetary exploration missions

    Science.gov (United States)

    Zinzi, A.; Capria, M. T.; Palomba, E.; Giommi, P.; Antonelli, L. A.

    2016-04-01

    The increasing number and complexity of planetary exploration space missions require new tools to access, visualize and analyse data to improve their scientific return. ASI Science Data Center (ASDC) addresses this request with the web-tool MATISSE (Multi-purpose Advanced Tool for the Instruments of the Solar System Exploration), allowing the visualization of single observation or real-time computed high-order products, directly projected on the three-dimensional model of the selected target body. Using MATISSE it will be no longer needed to download huge quantity of data or to write down a specific code for every instrument analysed, greatly encouraging studies based on joint analysis of different datasets. In addition the extremely high-resolution output, to be used offline with a Python-based free software, together with the files to be read with specific GIS software, makes it a valuable tool to further process the data at the best spatial accuracy available. MATISSE modular structure permits addition of new missions or tasks and, thanks to dedicated future developments, it would be possible to make it compliant to the Planetary Virtual Observatory standards currently under definition. In this context the recent development of an interface to the NASA ODE REST API by which it is possible to access to public repositories is set.

  1. On the road to a stronger public health workforce: visual tools to address complex challenges.

    Science.gov (United States)

    Drehobl, Patricia; Stover, Beth H; Koo, Denise

    2014-11-01

    The public health workforce is vital to protecting the health and safety of the public, yet for years, state and local governmental public health agencies have reported substantial workforce losses and other challenges to the workforce that threaten the public's health. These challenges are complex, often involve multiple influencing or related causal factors, and demand comprehensive solutions. However, proposed solutions often focus on selected factors and might be fragmented rather than comprehensive. This paper describes approaches to characterizing the situation more comprehensively and includes two visual tools: (1) a fishbone, or Ishikawa, diagram that depicts multiple factors affecting the public health workforce; and (2) a roadmap that displays key elements-goals and strategies-to strengthen the public health workforce, thus moving from the problems depicted in the fishbone toward solutions. The visual tools aid thinking about ways to strengthen the public health workforce through collective solutions and to help leverage resources and build on each other's work. The strategic roadmap is intended to serve as a dynamic tool for partnership, prioritization, and gap assessment. These tools reflect and support CDC's commitment to working with partners on the highest priorities for strengthening the workforce to improve the public's health. Published by Elsevier Inc.

  2. Calculating alcohol risk in a visualization tool for promoting healthy behavior.

    Science.gov (United States)

    Bissett, Scott; Wood, Sharon; Cox, Richard; Scott, Donia; Cassell, Jackie

    2013-08-01

    To investigate effective methods for communicating the personalized risks of alcohol consumption, particularly to young people. An interactive computerized blood alcohol content calculator was implemented in Flash based on literature findings for effectively communicating risk. Young people were consulted on attitudes to the animation features and visualization techniques used to display personalized risk based on disclosed alcohol consumption. Preliminary findings reveal the calculator is relatively enjoyable to use for its genre. However, the primary aims of the visualization tool to effectively communicate personalized risk were undermined for some users by technical language. Transparency of risk calculations might further enhance the tool for others. Worryingly, user feedback revealed a tension between accurate presentation of risk and its consequent lack of sensationalism in terms of personal risk to the individual. Initial findings suggest the tool may provide a relatively engaging vehicle for exploring the link between action choices and risk outcomes. Suggestions for enhancing risk communication include using intelligent techniques for selecting data presentation formats and for demonstrating the effects of sustained risky behavior. Effective communication of risk contributes only partially to effecting behavior change; the role of the tool in influencing contributing attitudinal factors is also discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. MARs Tools for Interactive ANalysis (MARTIAN): Google Maps Tools for Visual Exploration of Geophysical Modeling on Mars

    Science.gov (United States)

    Dimitrova, L. L.; Haines, M.; Holt, W. E.; Schultz, R. A.; Richard, G.; Haines, A. J.

    2006-12-01

    Interactive maps of surface-breaking faults and stress models on Mars provide important tools to engage undergraduate students, educators, and scientists with current geological and geophysical research. We have developed a map based on the Google Maps API -- an Internet based tool combining DHTML and AJAX, -- which allows very large maps to be viewed over the World Wide Web. Typically, small portions of the maps are downloaded as needed, rather than the entire image at once. This set-up enables relatively fast access for users with low bandwidth. Furthermore, Google Maps provides an extensible interactive interface making it ideal for visualizing multiple data sets at the user's choice. The Google Maps API works primarily with data referenced to latitudes and longitudes, which is then mapped in Mercator projection only. We have developed utilities for general cylindrical coordinate systems by converting these coordinates into equivalent Mercator projection before including them on the map. The MARTIAN project is available at http://rock.geo.sunysb.edu/~holt/Mars/MARTIAN/. We begin with an introduction to the Martian surface using a topography model. Faults from several datasets are classified by type (extension vs. compression) and by time epoch. Deviatoric stresses due to gravitational potential energy differences, calculated from the topography and crustal thickness, can be overlain. Several quantitative measures for the fit of the stress field to the faults are also included. We provide introductory text and exercises spanning a range of topics: how are faults identified, what stress is and how it relates to faults, what gravitational potential energy is and how variations in it produce stress, how the models are created, and how these models can be evaluated and interpreted. The MARTIAN tool is used at Stony Brook University in GEO 310: Introduction to Geophysics, a class geared towards junior and senior geosciences majors. Although this project is in its

  4. IPAT: a freely accessible software tool for analyzing multiple patent documents with inbuilt landscape visualizer.

    Science.gov (United States)

    Ajay, Dara; Gangwal, Rahul P; Sangamwar, Abhay T

    2015-01-01

    Intelligent Patent Analysis Tool (IPAT) is an online data retrieval tool, operated based on text mining algorithm to extract specific patent information in a predetermined pattern into an Excel sheet. The software is designed and developed to retrieve and analyze technology information from multiple patent documents and generate various patent landscape graphs and charts. The software is C# coded in visual studio 2010, which extracts the publicly available patent information from the web pages like Google Patent and simultaneously study the various technology trends based on user-defined parameters. In other words, IPAT combined with the manual categorization will act as an excellent technology assessment tool in competitive intelligence and due diligence for predicting the future R&D forecast.

  5. A methodology for online visualization of the energy flow in a machine tool

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Züst, Simon; Mayr, Josef

    2017-01-01

    the machining process and by this increasing its energy efficiency. This study intents to propose a method which has the capability of real-time monitoring of the entire energetic flows in a CNC machine tool including motors, pumps and cooling fluid. The structure of this approach is based on categorizing......The demand of energy efficient machine tools has increased recently due to the awareness for energyefficient production in precision manufacturing. A portion of the energy supplied to machine tools istransferred to thermal losses which influence also the thermal behavior of the precision related...... the machine into subsystems and measurements of the consumers (pump, motors, . . . ) power, temperature at the inlet and outlet of the pumps and current as well as the speed of the motors. The visualization is carried out by a 2D Sankey diagram, which makes it easy to understand the energetic flows...

  6. A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation

    Science.gov (United States)

    Hyman, Cody

    2011-01-01

    Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.

  7. Development of a Quick Look Pandemic Influenza Modeling and Visualization Tool

    Energy Technology Data Exchange (ETDEWEB)

    Brigantic, Robert T.; Ebert, David S.; Corley, Courtney D.; Maciejewski, Ross; Muller, George; Taylor, Aimee E.

    2010-05-30

    Federal, State, and local decision makers and public health officials must prepare and exercise complex plans to contend with a variety of possible mass casualty events, such as pandemic influenza. Through the provision of quick look tools (QLTs) focused on mass casualty events, such planning can be done with higher accuracy and more realism through the combination of interactive simulation and visualization in these tools. If an event happens, the QLTs can then be employed to rapidly assess and execute alternative mitigation strategies, and thereby minimize casualties. This can be achieved by conducting numerous 'what-if' assessments prior to any event in order to assess potential health impacts (e.g., number of sick individuals), required community resources (e.g., vaccinations and hospital beds), and optimal mitigative decision strategies (e.g., school closures) during the course of a pandemic. In this presentation, we overview and demonstrate a pandemic influenza QLT, discuss some of the modeling methods and construct and visual analytic components and interface, and outline additional development concepts. These include the incorporation of a user selectable infectious disease palette, simultaneous visualization of decision alternatives, additional resource elements associated with emergency response (e.g., first responders and medical professionals), and provisions for other potential disaster events.

  8. Digital administrative maps – A tool for visualization of epidemiological data

    Directory of Open Access Journals (Sweden)

    Ewa Niewiadomska

    2013-08-01

    Full Text Available Background: The aim of the study is to present the methods for visualization of epidemiological data using digital contour maps that take into account administrative division of Poland. Materials and Methods: The possibility of epidemiological data visualization in a geographical order, limited to the administrative level of the country, voivodeships and poviats (counties, are presented. They are crucial for the process of identifying and undertaking adequate prophylactic activities directed towards decreasing the risk and improving the population's health. This paper presents tools and techniques available in Geographic Information System ArcGIS and statistical software package R. Results: The work includes our own data reflecting: 1 the values of specific mortality rates due to respiratory diseases, Poland, 2010, based on the Central Statistical Office data, using the R statistical software package; 2 the averaged registered incidence rates of sarcoidosis in 2006-2010 for the population aged 19+ in the Silesian voivodeship, using Geographic Information System ArcGIS; and 3 the number of children with diagnosed respiratory diseases in the city of Legnica in 2009, taking into account their place of residence, using layered maps in Geographic Information System ArcGIS. Conclusions: The tools presented and described in this paper make it possible to visualize the results of research, to increase attractiveness of courses for students, as well as to enhance the skills and competence of students and participants of courses. Med Pr 2013;64(4:533–539

  9. EcoBrowser: a web-based tool for visualizing transcriptome data of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jia Peng

    2011-10-01

    Full Text Available Abstract Background Escherichia coli has been extensively studied as a prokaryotic model organism whose whole genome was determined in 1997. However, it is difficult to identify all the gene products involved in diverse functions by using whole genome sequencesalone. The high-resolution transcriptome mapping using tiling arrays has proved effective to improve the annotation of transcript units and discover new transcripts of ncRNAs. While abundant tiling array data have been generated, the lack of appropriate visualization tools to accommodate and integrate multiple sources of data has emerged. Findings EcoBrowser is a web-based tool for visualizing genome annotations and transcriptome data of E. coli. Important tiling array data of E. coli from different experimental platforms are collected and processed for query. An AJAX based genome browser is embedded for visualization. Thus, genome annotations can be compared with transcript profiling and genome occupancy profiling from independent experiments, which will be helpful in discovering new transcripts including novel mRNAs and ncRNAs, generating a detailed description of the transcription unit architecture, further providing clues for investigation of prokaryotic transcriptional regulation that has proved to be far more complex than previously thought. Conclusions With the help of EcoBrowser, users can get a systemic view both from the vertical and parallel sides, as well as inspirations for the design of new experiments which will expand our understanding of the regulation mechanism.

  10. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    Science.gov (United States)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  11. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.

    Science.gov (United States)

    Barre, Arnaud; Armand, Stéphane

    2014-04-01

    C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. The effectiveness of dental health education tools for visually impaired students in Bukit Mertajam

    Science.gov (United States)

    Shahabudin, Saadiah; Hashim, Hasnah; Omar, Maizurah

    2016-12-01

    Oral health is a vital component of overall health. It is important in adults and children alike, however, it is even more crucial for children with special needs as they have limited ability to perform oral health practices. Disabled children deserve the same opportunity for oral health as normal children. Unfortunately, oral health care is the most unattended health needs of the disabled children. This study aimed to assess the effectiveness of dental health education tools for visually impaired students in two schools in Bukit Mertajam, Penang. The project utilized dental health education tools consisting of an oral health module (printed in braille for the blind and in font 18px for the partially blind), an audio narration of the module were prepared and content-validated by an expert panel. Baseline plaque scores of 38 subjects aged 6-17 years were determined by a trained dental staff nurse. The module was then administered to the subjects facilitated by the teachers. Post intervention plaque scores were recorded again after one month. The pre and post intervention data were analyzed using Wilcoxon Signed Ranks Test with a significant p value set at factors could affect the result of the overall mean OHI-score in this study. In conclusion, the tools appeared to have a positive effect on promoting good oral hygiene among students with visual impairment. We recommend for further studies to be conducted on a bigger sample.

  13. Large-Scale Mesenchymal Stem/Stromal Cell Expansion: A Visualization Tool for Bioprocess Comparison.

    Science.gov (United States)

    Lambrechts, Toon; Sonnaert, Maarten; Schrooten, Jan; Luyten, Frank P; Aerts, Jean-Marie; Papantoniou, Ioannis

    2016-12-01

    Large-scale and cost-effective cell expansion processes are a prerequisite for the clinical and commercial translation of cell-based therapies. A large variety of cell expansion processes are described in literature, utilizing different cell types, culture vessels, and medium formulations. Consequently there are no straightforward means for the comparison or benchmarking of these processes in terms of efficiency, scale, or costs. The purpose of this study was to systematically review the available mesenchymal stromal cell (MSC) expansion literature and develop an interactive visualization tool for comparing the expansion processes. By using this computational tool, process data could be concentrated, standardized, and analyzed to facilitate a more general understanding of the parameters that define a cell culture process, and in the future allow rational selection or design of these bioprocesses. Additionally, a set of bioprocess metrics were defined that assured the comparability between different processes. Currently, the literature-based data repository holds 73 individual cell expansion processes on seven different types of human MSCs in five different types of culture vessels. The visualization tool allowed benchmarking of these processes against each other, serving as a reference point for cell expansion process efficiency.

  14. ENTVis: A Visual Analytic Tool for Entropy-Based Network Traffic Anomaly Detection.

    Science.gov (United States)

    Zhou, Fangfang; Huang, Wei; Zhao, Ying; Shi, Yang; Liang, Xing; Fan, Xiaoping

    2015-01-01

    Entropy-based traffic metrics have received substantial attention in network traffic anomaly detection because entropy can provide fine-grained metrics of traffic distribution characteristics. However, some practical issues--such as ambiguity, lack of detailed distribution information, and a large number of false positives--affect the application of entropy-based traffic anomaly detection. In this work, we introduce a visual analytic tool called ENTVis to help users understand entropy-based traffic metrics and achieve accurate traffic anomaly detection. ENTVis provides three coordinated views and rich interactions to support a coherent visual analysis on multiple perspectives: the timeline group view for perceiving situations and finding hints of anomalies, the Radviz view for clustering similar anomalies in a period, and the matrix view for understanding traffic distributions and diagnosing anomalies in detail. Several case studies have been performed to verify the usability and effectiveness of our method. A further evaluation was conducted via expert review.

  15. VisANT: an online visualization and analysis tool for biological interaction data

    Directory of Open Access Journals (Sweden)

    DeLisi Charles

    2004-02-01

    Full Text Available Abstract Background New techniques for determining relationships between biomolecules of all types – genes, proteins, noncoding DNA, metabolites and small molecules – are now making a substantial contribution to the widely discussed explosion of facts about the cell. The data generated by these techniques promote a picture of the cell as an interconnected information network, with molecular components linked with one another in topologies that can encode and represent many features of cellular function. This networked view of biology brings the potential for systematic understanding of living molecular systems. Results We present VisANT, an application for integrating biomolecular interaction data into a cohesive, graphical interface. This software features a multi-tiered architecture for data flexibility, separating back-end modules for data retrieval from a front-end visualization and analysis package. VisANT is a freely available, open-source tool for researchers, and offers an online interface for a large range of published data sets on biomolecular interactions, including those entered by users. This system is integrated with standard databases for organized annotation, including GenBank, KEGG and SwissProt. VisANT is a Java-based, platform-independent tool suitable for a wide range of biological applications, including studies of pathways, gene regulation and systems biology. Conclusion VisANT has been developed to provide interactive visual mining of biological interaction data sets. The new software provides a general tool for mining and visualizing such data in the context of sequence, pathway, structure, and associated annotations. Interaction and predicted association data can be combined, overlaid, manipulated and analyzed using a variety of built-in functions. VisANT is available at http://visant.bu.edu.

  16. BisoGenet: a new tool for gene network building, visualization and analysis.

    Science.gov (United States)

    Martin, Alexander; Ochagavia, Maria E; Rabasa, Laya C; Miranda, Jamilet; Fernandez-de-Cossio, Jorge; Bringas, Ricardo

    2010-02-17

    The increasing availability and diversity of omics data in the post-genomic era offers new perspectives in most areas of biomedical research. Graph-based biological networks models capture the topology of the functional relationships between molecular entities such as gene, protein and small compounds and provide a suitable framework for integrating and analyzing omics-data. The development of software tools capable of integrating data from different sources and to provide flexible methods to reconstruct, represent and analyze topological networks is an active field of research in bioinformatics. BisoGenet is a multi-tier application for visualization and analysis of biomolecular relationships. The system consists of three tiers. In the data tier, an in-house database stores genomics information, protein-protein interactions, protein-DNA interactions, gene ontology and metabolic pathways. In the middle tier, a global network is created at server startup, representing the whole data on bioentities and their relationships retrieved from the database. The client tier is a Cytoscape plugin, which manages user input, communication with the Web Service, visualization and analysis of the resulting network. BisoGenet is able to build and visualize biological networks in a fast and user-friendly manner. A feature of Bisogenet is the possibility to include coding relations to distinguish between genes and their products. This feature could be instrumental to achieve a finer grain representation of the bioentities and their relationships. The client application includes network analysis tools and interactive network expansion capabilities. In addition, an option is provided to allow other networks to be converted to BisoGenet. This feature facilitates the integration of our software with other tools available in the Cytoscape platform. BisoGenet is available at http://bio.cigb.edu.cu/bisogenet-cytoscape/.

  17. 3D visualization of planetary data: the MATISSE tool in the framework of VESPA-Europlanet 2020 activity

    Science.gov (United States)

    Longobardo, A.; Zinzi, A.; Capria, M. T.; Erard, S.; Giardino, M.; Ivanovski, S.; Fonte, S.; Palomba, E.; Antonelli, L. A.

    2017-09-01

    MATISSE is a web tool allowing 3D visualization of planetary data. Here we discuss the new functions implemented on MATISSE to allow visualization of derived and high-level data, as well as the implementation of protocols to make it compatible with the planetary Virtual Observatory, developed under the VESPA-Europlanet2020 activity.

  18. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists

    Directory of Open Access Journals (Sweden)

    Steinfeld Israel

    2009-02-01

    Full Text Available Abstract Background Since the inception of the GO annotation project, a variety of tools have been developed that support exploring and searching the GO database. In particular, a variety of tools that perform GO enrichment analysis are currently available. Most of these tools require as input a target set of genes and a background set and seek enrichment in the target set compared to the background set. A few tools also exist that support analyzing ranked lists. The latter typically rely on simulations or on union-bound correction for assigning statistical significance to the results. Results GOrilla is a web-based application that identifies enriched GO terms in ranked lists of genes, without requiring the user to provide explicit target and background sets. This is particularly useful in many typical cases where genomic data may be naturally represented as a ranked list of genes (e.g. by level of expression or of differential expression. GOrilla employs a flexible threshold statistical approach to discover GO terms that are significantly enriched at the top of a ranked gene list. Building on a complete theoretical characterization of the underlying distribution, called mHG, GOrilla computes an exact p-value for the observed enrichment, taking threshold multiple testing into account without the need for simulations. This enables rigorous statistical analysis of thousand of genes and thousands of GO terms in order of seconds. The output of the enrichment analysis is visualized as a hierarchical structure, providing a clear view of the relations between enriched GO terms. Conclusion GOrilla is an efficient GO analysis tool with unique features that make a useful addition to the existing repertoire of GO enrichment tools. GOrilla's unique features and advantages over other threshold free enrichment tools include rigorous statistics, fast running time and an effective graphical representation. GOrilla is publicly available at: http://cbl-gorilla.cs.technion.ac.il

  19. Accessing Cloud Properties and Satellite Imagery: A tool for visualization and data mining

    Science.gov (United States)

    Chee, T.; Nguyen, L.; Minnis, P.; Spangenberg, D.; Palikonda, R.

    2016-12-01

    Providing public access to imagery of cloud macro and microphysical properties and the underlying satellite imagery is a key concern for the NASA Langley Research Center Cloud and Radiation Group. This work describes a tool and system that allows end users to easily browse cloud information and satellite imagery that is otherwise difficult to acquire and manipulate. The tool has two uses, one to visualize the data and the other to access the data directly. It uses a widely used access protocol, the Open Geospatial Consortium's Web Map and Processing Services, to encourage user to access the data we produce. Internally, we leverage our practical experience with large, scalable application practices to develop a system that has the largest potential for scalability as well as the ability to be deployed on the cloud. One goal of the tool is to provide a demonstration of the back end capability to end users so that they can use the dynamically generated imagery and data as an input to their own work flows or to set up data mining constraints. We build upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite cloud product information and satellite imagery accessible and easily searchable. Increasingly, information is used in a "mash-up" form where multiple sources of information are combined to add value to disparate but related information. In support of NASA strategic goals, our group aims to make as much cutting edge scientific knowledge, observations and products available to the citizen science, research and interested communities for these kinds of "mash-ups" as well as provide a means for automated systems to data mine our information. This tool and access method provides a valuable research tool to a wide audience both as a standalone research tool and also as an easily accessed data source that can easily be mined or used with existing tools.

  20. MovExp: A Versatile Visualization Tool for Human-Computer Interaction Studies with 3D Performance and Biomechanical Data.

    Science.gov (United States)

    Palmas, Gregorio; Bachynskyi, Myroslav; Oulasvirta, Antti; Seidel, Hans-Peter; Weinkauf, Tina

    2014-12-01

    In Human-Computer Interaction (HCI), experts seek to evaluate and compare the performance and ergonomics of user interfaces. Recently, a novel cost-efficient method for estimating physical ergonomics and performance has been introduced to HCI. It is based on optical motion capture and biomechanical simulation. It provides a rich source for analyzing human movements summarized in a multidimensional data set. Existing visualization tools do not sufficiently support the HCI experts in analyzing this data. We identified two shortcomings. First, appropriate visual encodings are missing particularly for the biomechanical aspects of the data. Second, the physical setup of the user interface cannot be incorporated explicitly into existing tools. We present MovExp, a versatile visualization tool that supports the evaluation of user interfaces. In particular, it can be easily adapted by the HCI experts to include the physical setup that is being evaluated, and visualize the data on top of it. Furthermore, it provides a variety of visual encodings to communicate muscular loads, movement directions, and other specifics of HCI studies that employ motion capture and biomechanical simulation. In this design study, we follow a problem-driven research approach. Based on a formalization of the visualization needs and the data structure, we formulate technical requirements for the visualization tool and present novel solutions to the analysis needs of the HCI experts. We show the utility of our tool with four case studies from the daily work of our HCI experts.

  1. WebGIVI: a web-based gene enrichment analysis and visualization tool.

    Science.gov (United States)

    Sun, Liang; Zhu, Yongnan; Mahmood, A S M Ashique; Tudor, Catalina O; Ren, Jia; Vijay-Shanker, K; Chen, Jian; Schmidt, Carl J

    2017-05-04

    A major challenge of high throughput transcriptome studies is presenting the data to researchers in an interpretable format. In many cases, the outputs of such studies are gene lists which are then examined for enriched biological concepts. One approach to help the researcher interpret large gene datasets is to associate genes and informative terms (iTerm) that are obtained from the biomedical literature using the eGIFT text-mining system. However, examining large lists of iTerm and gene pairs is a daunting task. We have developed WebGIVI, an interactive web-based visualization tool ( http://raven.anr.udel.edu/webgivi/ ) to explore gene:iTerm pairs. WebGIVI was built via Cytoscape and Data Driven Document JavaScript libraries and can be used to relate genes to iTerms and then visualize gene and iTerm pairs. WebGIVI can accept a gene list that is used to retrieve the gene symbols and corresponding iTerm list. This list can be submitted to visualize the gene iTerm pairs using two distinct methods: a Concept Map or a Cytoscape Network Map. In addition, WebGIVI also supports uploading and visualization of any two-column tab separated data. WebGIVI provides an interactive and integrated network graph of gene and iTerms that allows filtering, sorting, and grouping, which can aid biologists in developing hypothesis based on the input gene lists. In addition, WebGIVI can visualize hundreds of nodes and generate a high-resolution image that is important for most of research publications. The source code can be freely downloaded at https://github.com/sunliang3361/WebGIVI . The WebGIVI tutorial is available at http://raven.anr.udel.edu/webgivi/tutorial.php .

  2. A Multi-facetted Visual Analytics Tool for Exploratory Analysis of Human Brain and Function Datasets

    Directory of Open Access Journals (Sweden)

    Diego Andrés Angulo Pabón

    2016-08-01

    Full Text Available Brain research typically requires large amounts of data from different sources, and often of different nature. The use of different software tools adapted to the nature of each data source can make research work cumbersome and time consuming. It follows that data is not often used to its fullest potential thus limiting exploratory analysis. This paper presents an ancillary software tool called BRAVIZ that integrates interactive visualization with real-time statistical analyses, facilitating access to multi-facetted neuroscience data and automating many cumbersome and error-prone tasks required to explore such data. Rather than relying on abstract numerical indicators, BRAVIZ emphasizes brain images as the main object of the analysis process of individuals or groups. BRAVIZ facilitates exploration of trends or relationships to gain an integrated view of the phenomena studied, thus motivating discovery of new hypotheses. A case study is presented that incorporates brain structure and function outcomes together with different types of clinical data.

  3. New Tool for Visualization of Time Series and Anomalies in Streaming Data

    Directory of Open Access Journals (Sweden)

    Marek Otáhal

    2016-01-01

    Full Text Available A new software tool for simultaneous visualization of multiple time dependent signals, featuring a novel and highly useful combination of capabilities, and published as an open source solution is presented in this paper. The tool is designed to meet the needs of its users who expect lightweight, interactive & intuitive use and ease of deployment in current setups, including live monitoring systems with anomaly detection, highlighting and streaming data processing abilities. The functionality and motivation for our system is derived from various signal analysis applications, our research activities related to design and evaluation of neural network models, and from systems for continuous monitoring and anomaly detection (e.g. in IT or medical domains, which is demonstrated on simple use case examples.

  4. Guide Picker is a comprehensive design tool for visualizing and selecting guides for CRISPR experiments.

    Science.gov (United States)

    Hough, Soren H; Kancleris, Kris; Brody, Leigh; Humphryes-Kirilov, Neil; Wolanski, Joseph; Dunaway, Keith; Ajetunmobi, Ayokunmi; Dillard, Victor

    2017-03-14

    Guide Picker ( https://www.deskgen.com/guide-picker/ ) serves as a meta tool for designing CRISPR experiments by presenting ten different guide RNA scoring functions in one simple graphical interface. It allows investigators to simultaneously visualize and sort through every guide targeting the protein-coding regions of any mouse or human gene. Utilizing a multidimensional graphical display featuring two plots and four axes, Guide Picker can analyze all guides while filtering based on four different criteria at a time. Guide Picker further facilitates the CRISPR design process by using pre-computed scores for all guides, thereby offering rapid guide RNA generation and selection. The ease-of-use of Guide Picker complements CRISPR itself, matching a powerful and modular biological system with a flexible online web tool that can be used in a variety of genome editing experimental contexts.

  5. π Scope: python based scientific workbench with visualization tool for MDSplus data

    Science.gov (United States)

    Shiraiwa, S.

    2014-10-01

    π Scope is a python based scientific data analysis and visualization tool constructed on wxPython and Matplotlib. Although it is designed to be a generic tool, the primary motivation for developing the new software is 1) to provide an updated tool to browse MDSplus data, with functionalities beyond dwscope and jScope, and 2) to provide a universal foundation to construct interface tools to perform computer simulation and modeling for Alcator C-Mod. It provides many features to visualize MDSplus data during tokamak experiments including overplotting different signals and discharges, various plot types (line, contour, image, etc.), in-panel data analysis using python scripts, and publication quality graphics generation. Additionally, the logic to produce multi-panel plots is designed to be backward compatible with dwscope, enabling smooth migration for dwscope users. πScope uses multi-threading to reduce data transfer latency, and its object-oriented design makes it easy to modify and expand while the open source nature allows portability. A built-in tree data browser allows a user to approach the data structure both from a GUI and a script, enabling relatively complex data analysis workflow to be built quickly. As an example, an IDL-based interface to perform GENRAY/CQL3D simulations was ported on πScope, thus allowing LHCD simulation to be run between-shot using C-Mod experimental profiles. This workflow is being used to generate a large database to develop a LHCD actuator model for the plasma control system. Supported by USDoE Award DE-FC02-99ER54512.

  6. Text mining and visualization case studies using open-source tools

    CERN Document Server

    Chisholm, Andrew

    2016-01-01

    Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors-all highly experienced with text mining and open-source software-explain how text data are gathered and processed from a wide variety of sources, including books, server access logs, websites, social media sites, and message boards. Each chapter presents a case study that you can follow as part of a step-by-step, reproducible example. You can also easily apply and extend the techniques to other problems. All the examples are available on a supplementary website. The book shows you how to exploit your text data, offering successful application examples and blueprints for you to tackle your text mining tasks and benefit from open and freely available tools. It gets you up to date on the latest and most powerful tools, the data mining process, and specific text mining activities.

  7. Software tools for identification, visualization and analysis of protein tunnels and channels.

    Science.gov (United States)

    Brezovsky, Jan; Chovancova, Eva; Gora, Artur; Pavelka, Antonin; Biedermannova, Lada; Damborsky, Jiri

    2013-01-01

    Protein structures contain highly complex systems of voids, making up specific features such as surface clefts or grooves, pockets, protrusions, cavities, pores or channels, and tunnels. Many of them are essential for the migration of solvents, ions and small molecules through proteins, and their binding to the functional sites. Analysis of these structural features is very important for understanding of structure-function relationships, for the design of potential inhibitors or proteins with improved functional properties. Here we critically review existing software tools specialized in rapid identification, visualization, analysis and design of protein tunnels and channels. The strengths and weaknesses of individual tools are reported together with examples of their applications for the analysis and engineering of various biological systems. This review can assist users with selecting a proper software tool for study of their biological problem as well as highlighting possible avenues for further development of existing tools. Development of novel descriptors representing not only geometry, but also electrostatics, hydrophobicity or dynamics, is needed for reliable identification of biologically relevant tunnels and channels. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. “Now Maybe I Feel Like Trying”: Engaging Learners Using a Visual Tool

    Directory of Open Access Journals (Sweden)

    Mayumi Abe

    2014-09-01

    Full Text Available For every learning advisor and language teacher, a fundamental goal is to foster learners’ motivation and self-regulation for successful L2 learning. This paper presents a visual tool that can be used in advising and teaching to realize this purpose. With the tool, learners can review their own L2 learning and ability, and create an inventory of their learning strategies, which helps them find their weaknesses, goals and develop their approach. The tool, the Strategy Tree for Language Learners, consists of the image of a tree, water and the sun. The trunk and leaves of the tree represent learners’ linguistic knowledge and skills, the roots learners’ affective strategies, water cognitive strategies, and the sun sociocultural-interactive strategies. The notions of these three types of strategies are based on the concepts presented by Oxford (2011. By drawing their own L2 Strategy Tree, learners can perceive their learning situations objectively and notice which step they should take next. In practice at a Japanese university, it was observed that learners developed learning strategies and their motivation increased. The Strategy Tree is a useful tool to encourage learners to feel confident and responsible and help them to self-regulate.

  9. Data visualization, bar naked: A free tool for creating interactive graphics.

    Science.gov (United States)

    Weissgerber, Tracey L; Savic, Marko; Winham, Stacey J; Stanisavljevic, Dejana; Garovic, Vesna D; Milic, Natasa M

    2017-12-15

    Although bar graphs are designed for categorical data, they are routinely used to present continuous data in studies that have small sample sizes. This presentation is problematic, as many data distributions can lead to the same bar graph, and the actual data may suggest different conclusions from the summary statistics. To address this problem, many journals have implemented new policies that require authors to show the data distribution. This paper introduces a free, web-based tool for creating an interactive alternative to the bar graph (http://statistika.mfub.bg.ac.rs/interactive-dotplot/). This tool allows authors with no programming expertise to create customized interactive graphics, including univariate scatterplots, box plots, and violin plots, for comparing values of a continuous variable across different study groups. Individual data points may be overlaid on the graphs. Additional features facilitate visualization of subgroups or clusters of non-independent data. A second tool enables authors to create interactive graphics from data obtained with repeated independent experiments (http://statistika.mfub.bg.ac.rs/interactive-repeated-experiments-dotplot/). These tools are designed to encourage exploration and critical evaluation of the data behind the summary statistics and may be valuable for promoting transparency, reproducibility, and open science in basic biomedical research. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Non-invasive visual tools for diagnosis of oral cancer and dysplasia: A systematic review.

    Science.gov (United States)

    Giovannacci, I; Vescovi, P; Manfredi, M; Meleti, M

    2016-05-01

    Gold standard for the diagnosis of oral dysplasia (OD) and oral squamous cell carcinoma (OSCC) and malignant lesions is the histological examination. Several adjunctive diagnostic techniques have been proposed in order to increase the sensitivity (SE) and specificity (SP) of conventional oral examination and to improve the diagnostic first level accuracy. The aim of this study is to perform a systematic review on non-invasive tools for diagnosis of OD and early OSCC. Medline, Scopus, Web of Knowledge databases were searched, using as entry terms "oral dysplasia AND diagnosis" / "oral cancer AND diagnosis". Data extracted from each study included number of lesions evaluated, histopathological diagnosis, SE, SP, positive and negative predictive values (PPV and NPV), diagnostic accuracy (DA) and the main conclusions. After title and abstract scanning of 11.080 records, we selected 35 articles for full text evaluation. Most evaluated tools were autofluorescence (AF), chemiluminescence (CL), toluidine blu (TL) and chemiluminescence associated with toluidine blue (CLTB). There is a great inhomogeneity of the reported values and there is no significant evidence of superiority of one tool over the other. Further clinical trials with a higher level of evidence are necessary in order to assess the real usefulness visual diagnostic tools.

  11. [Visual cues as a therapeutic tool in Parkinson's disease. A systematic review].

    Science.gov (United States)

    Muñoz-Hellín, Elena; Cano-de-la-Cuerda, Roberto; Miangolarra-Page, Juan Carlos

    2013-01-01

    Sensory stimuli or sensory cues are being used as a therapeutic tool for improving gait disorders in Parkinson's disease patients, but most studies seem to focus on auditory stimuli. The aim of this study was to conduct a systematic review regarding the use of visual cues over gait disorders, dual tasks during gait, freezing and the incidence of falls in patients with Parkinson to obtain therapeutic implications. We conducted a systematic review in main databases such as Cochrane Database of Systematic Reviews, TripDataBase, PubMed, Ovid MEDLINE, Ovid EMBASE and Physiotherapy Evidence Database, during 2005 to 2012, according to the recommendations of the Consolidated Standards of Reporting Trials, evaluating the quality of the papers included with the Downs & Black Quality Index. 21 articles were finally included in this systematic review (with a total of 892 participants) with variable methodological quality, achieving an average of 17.27 points in the Downs and Black Quality Index (range: 11-21). Visual cues produce improvements over temporal-spatial parameters in gait, turning execution, reducing the appearance of freezing and falls in Parkinson's disease patients. Visual cues appear to benefit dual tasks during gait, reducing the interference of the second task. Further studies are needed to determine the preferred type of stimuli for each stage of the disease. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.

  12. Web tools for effective retrieval, visualization, and evaluation of cardiology medical images and records

    Science.gov (United States)

    Masseroli, Marco; Pinciroli, Francesco

    2000-12-01

    To provide easy retrieval, integration and evaluation of multimodal cardiology images and data in a web browser environment, distributed application technologies and java programming were used to implement a client-server architecture based on software agents. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. The client side is a Java applet running in a web browser and providing a friendly medical user interface to perform queries on patient and medical test dat and integrate and visualize properly the various query results. A set of tools based on Java Advanced Imaging API enables to process and analyze the retrieved cardiology images, and quantify their features in different regions of interest. The platform-independence Java technology makes the developed prototype easy to be managed in a centralized form and provided in each site where an intranet or internet connection can be located. Giving the healthcare providers effective tools for querying, visualizing and evaluating comprehensively cardiology medical images and records in all locations where they can need them- i.e. emergency, operating theaters, ward, or even outpatient clinics- the developed prototype represents an important aid in providing more efficient diagnoses and medical treatments.

  13. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-27

    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities. The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.

  14. Visualizing Anomalies in Electronic Health Record Data: The Variability Explorer Tool.

    Science.gov (United States)

    Estiri, Hossein; Chan, Ya-Fen; Baldwin, Laura-Mae; Jung, Hyunggu; Cole, Allison; Stephens, Kari A

    2015-01-01

    As Electronic Health Record (EHR) systems are becoming more prevalent in the U.S. health care domain, the utility of EHR data in translational research and clinical decision-making gains prominence. Leveraging primay· care-based. multi-clinic EHR data, this paper introduces a web-based visualization tool, the Variability Explorer Tool (VET), to assist researchers with profiling variability among diagnosis codes. VET applies a simple statistical method to approximate probability distribution functions for the prevalence of any given diagnosis codes to visualize between-clinic and across-year variability. In a depression diagnoses use case, VET outputs demonstrated substantial variability in code use. Even though data quality research often characterizes variability as an indicator for data quality, variability can also reflect real characteristics of data, such as practice-level, and patient-level issues. Researchers benefit from recognizing variability in early stages of research to improve their research design and ensure validity and generalizability of research findings.

  15. An interactive mapping tool for visualizing lacunarity of laser scanned point clouds

    Science.gov (United States)

    Kania, Adam; Székely, Balázs

    2016-04-01

    Lacunarity, a measure of the spatial distribution of the empty space in a certain model or real space over large spatial scales, is found to be a useful descriptive quantity in many fields using imagery, including, among others, geology, dentistry, neurology. Its application in ecology was suggested more than 20 years ago. The main problem of its application was the lack of appropriate high resolution data. Nowadays, full-waveform laser scanning, also known as FWF LiDAR, provides the tool for mapping the vegetation in unprecedented details and accuracy. Consequently, the lacunarity concept can be revitalized, in order to study the structure of the vegetation in this sense as well. Calculation of lacunarity, even if it is done in two dimensions (2D), is still has its problems: on one hand it is a number-crunching procedure, on the other hand, it produces 4D results: at each 3D point it returns a set of data that are function of scale. These data sets are difficult to visualize, to evaluate, and to compare. In order to solve this problem, an interactive mapping tool has been conceptualized that is designed to manipulate and visualize the data, lets the user set parameters for best visualization or comparison results. The system is able to load large amounts of data, visualize them as lacunarity curves, or map view as horizontal slices or in 3D point clouds coloured according to the user's choice. Lacunarity maps are presented as a series of (usually) horizontal profiles, e.g. rasters, which cells contain color-mapped values of selected lacunarity of the point cloud. As lacunarity is usually analysed in a series of successive windows sizes, the tool can show a series of rasters with sequentially animated lacunarity maps calculated for various window sizes. A very fast switching of colour schemes is possible to facilitate rapid visual feedback to better understand underlying data patterns exposed by lacunarity functions. In the comparison mode, two sites (or two areas

  16. PointCloudXplore: a visualization tool for 3D gene expressiondata

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver; Weber, Gunther H.; Keranen, Soile V.E.; Fowlkes,Charles C.; Luengo Hendriks, Cristian L.; Simirenko, Lisa; Shah, NameetaY.; Eisen, Michael B.; Biggn, Mark D.; Hagen, Hans; Sudar, Damir J.; Malik, Jitendra; Knowles, David W.; Hamann, Bernd

    2006-10-01

    The Berkeley Drosophila Transcription Network Project (BDTNP) has developed a suite of methods that support quantitative, computational analysis of three-dimensional (3D) gene expression patterns with cellular resolution in early Drosophila embryos, aiming at a more in-depth understanding of gene regulatory networks. We describe a new tool, called PointCloudXplore (PCX), that supports effective 3D gene expression data exploration. PCX is a visualization tool that uses the established visualization techniques of multiple views, brushing, and linking to support the analysis of high-dimensional datasets that describe many genes' expression. Each of the views in PointCloudXplore shows a different gene expression data property. Brushing is used to select and emphasize data associated with defined subsets of embryo cells within a view. Linking is used to show in additional views the expression data for a group of cells that have first been highlighted as a brush in a single view, allowing further data subset properties to be determined. In PCX, physical views of the data are linked to abstract data displays such as parallel coordinates. Physical views show the spatial relationships between different genes' expression patterns within an embryo. Abstract gene expression data displays on the other hand allow for an analysis of relationships between different genes directly in the gene expression space. We discuss on parallel coordinates as one example abstract data view currently available in PCX. We have developed several extensions to standard parallel coordinates to facilitate brushing and the visualization of 3D gene expression data.

  17. 3D visual analysis tool in support of the SANDF's growing ground based air defence simulation capability

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-10-01

    Full Text Available A 3D visual analysis tool has been developed to add value to the SANDF's growing Ground Based Air Defence (GBAD) System of Systems simulation capability. A time based XML interface between the simulation and analysis tool, via a TCP connection or a...

  18. Content validity of a home-based person-environment interaction assessment tool for visually impaired adults.

    Science.gov (United States)

    Carignan, Mathieu; Rousseau, Jacqueline; Gresset, Jacques; Couturier, Julie-Anne

    2008-01-01

    Home-based assessments require in-depth analyses of daily living difficulties. No assessment tool that has been validated with visually impaired adult subjects has allowed such analysis. This research adapted a home-based person-environment interaction assessment tool designed for persons who are visually impaired. The Model of Competence, an explanatory model of the person-environment relationship, served as the conceptual framework. A qualitative study was conducted with professionals, visually impaired persons, and informal caregivers. Focus groups and semistructured individual interviews were used for data collection. The content and form had to be modified to adapt the assessment tool for use with visually impaired adults. This qualitative study documents the content validity of the Home Assessment of Person-Environment Interaction-Visual Version. The assessment tool will provide vision rehabilitation professionals better screens and explanations of handicap-created situations faced by visually impaired persons at home. By using a structured analysis based on a person-environment theoretical model, this new assessment tool fills a scientific and clinical gap, optimizes the evaluation process, and documents the intervention plan by providing an understanding of the home context.

  19. Visual operations management tools applied to the oil pipelines and terminals standardization process: the experience of TRANSPETRO

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Maria Fatima Ludovico de [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio/ITUC), Rio de Janeiro, RJ (Brazil). Instituto Tecnologico; Santiago, Adilson; Ribeiro, Kassandra Senra; Arruda, Daniela Mendonca [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper describes the process by which visual operations management (VOM) tools were implemented, concerning standards and operational procedures in TRANSPETRO's Oil Pipelines and Terminals Unit. It provides: a brief literature review of visual operations management tools applied to total quality management and the standardization processes; a discussion of the assumptions from the second level of VOM (visual standards) upon which TRANSPETRO's oil pipelines and terminals business processes and operational procedures are based; and a description of the VOM implementation process involving more than 100 employees and one illustrative example of 'Quick Guides' for right-of- way management activities. Finally, it discusses the potential impacts and benefits of using VOM tools in the current practices in TRANSPETRO's Oil Pipelines and Terminals Unit, reinforcing the importance of such visual guides as vital to implement regional and corporate procedures, focusing on the main operational processes. (author)

  20. Acceptance and practicability of a visual communication tool in smoking cessation counselling: a randomised controlled trial.

    Science.gov (United States)

    Neuner-Jehle, Stefan; Knecht, Marianne I; Stey-Steurer, Claudia; Senn, Oliver

    2013-12-01

    Smoking cessation advice is important for reducing the worldwide burden of disease resulting from tobacco smoking. Appropriate risk communication formats improve the success of counselling interventions in primary care. To test the feasibility and acceptance of a smoking cessation counselling tool with different cardiovascular risk communication formats including graphs, in comparison with the International Primary Care Respiratory Group (IPCRG) 'quit smoking assistance' tool. GPs were randomised into an intervention group (using our communication tool in addition to the IPCRG sheet) and a control group (using the IPCRG sheet only). We asked participants for socioeconomic data, smoking patterns, understanding of information, motivation, acceptance and feasibility, and measured the duration and frequency of counselling sessions. Twenty-five GPs performed 2.8 counselling sessions per month in the intervention group and 1.7 in the control group (p=0.3) with 114 patients. The median duration of a session was 10 mins (control group 11 mins, p=0.09 for difference). Median patients' motivation for smoking cessation was 7 on a 10-point visual analogue scale with no significant difference before and after the intervention (p=0.2) or between groups (p=0.73 before and p=0.15 after the intervention). Median patients' ratings of motivation, selfconfidence, understanding of information, and satisfaction with the counselling were 3-5 on a 5-point Likert scale, similar to GPs' ratings of acceptance and feasibility, with no significant difference between groups. Among Swiss GPs and patients, both our innovative communication tool and the IPCRG tool were well accepted and both merit further dissemination and application in research.

  1. Evaluating role of interactive visualization tool in improving students' conceptual understanding of chemical equilibrium

    Science.gov (United States)

    Sampath Kumar, Bharath

    The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student's concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, cooperative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier's principle (LCP) etc. Kress et al. (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone. Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student's mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative

  2. Tools for Teaching Mathematical Functions and Geometric Figures to Tactile Visualization through a Braille Printer for Visual Impairment People

    Directory of Open Access Journals (Sweden)

    Lorena León

    2016-04-01

    Full Text Available In this article, we showed the features and facilities offered by two new computer programs developed for the treatment and generation of geometric figures and math functions, through a Braille printer designed for visually impaired people. The programs have complete accessible features, in which users with full visual impairments can communicate with the systems via short-keys, and the speech synthesizer. The system sends sound messages that will accompanying the user during all the process to generate geometrical figures or to do a mathematical treatment. Finally, a tactile visualization displays as the results to the person with visual impairment, thus they will can complete their geometry and mathematical studies.

  3. Spectacle and SpecViz: New Spectral Analysis and Visualization Tools

    Science.gov (United States)

    Earl, Nicholas; Peeples, Molly; JDADF Developers

    2018-01-01

    A new era of spectroscopic exploration of our universe is being ushered in with advances in instrumentation and next-generation space telescopes. The advent of new spectroscopic instruments has highlighted a pressing need for tools scientists can use to analyze and explore these new data. We have developed Spectacle, a software package for analyzing both synthetic spectra from hydrodynamic simulations as well as real COS data with an aim of characterizing the behavior of the circumgalactic medium. It allows easy reduction of spectral data and analytic line generation capabilities. Currently, the package is focused on automatic determination of absorption regions and line identification with custom line list support, simultaneous line fitting using Voigt profiles via least-squares or MCMC methods, and multi-component modeling of blended features. Non-parametric measurements, such as equivalent widths, delta v90, and full-width half-max are available. Spectacle also provides the ability to compose compound models used to generate synthetic spectra allowing the user to define various LSF kernels, uncertainties, and to specify sampling.We also present updates to the visualization tool SpecViz, developed in conjunction with the JWST data analysis tools development team, to aid in the exploration of spectral data. SpecViz is an open source, Python-based spectral 1-D interactive visualization and analysis application built around high-performance interactive plotting. It supports handling general and instrument-specific data and includes advanced tool-sets for filtering and detrending one-dimensional data, along with the ability to isolate absorption regions using slicing and manipulate spectral features via spectral arithmetic. Multi-component modeling is also possible using a flexible model fitting tool-set that supports custom models to be used with various fitting routines. It also features robust user extensions such as custom data loaders and support for user

  4. Three-Dimensional Online Visualization and Engagement Tools for the Geosciences

    Science.gov (United States)

    Cockett, R.; Moran, T.; Pidlisecky, A.

    2013-12-01

    Educational tools often sacrifice interactivity in favour of scalability so they can reach more users. This compromise leads to tools that may be viewed as second tier when compared to more engaging activities performed in a laboratory; however, the resources required to deliver laboratory exercises that are scalable is often impractical. Geoscience education is well situated to benefit from interactive online learning tools that allow users to work in a 3D environment. Visible Geology (http://3ptscience.com/visiblegeology) is an innovative web-based application designed to enable visualization of geologic structures and processes through the use of interactive 3D models. The platform allows users to conceptualize difficult, yet important geologic principles in a scientifically accurate manner by developing unique geologic models. The environment allows students to interactively practice their visualization and interpretation skills by creating and interacting with their own models and terrains. Visible Geology has been designed from a user centric perspective resulting in a simple and intuitive interface. The platform directs students to build there own geologic models by adding beds and creating geologic events such as tilting, folding, or faulting. The level of ownership and interactivity encourages engagement, leading learners to discover geologic relationships on their own, in the context of guided assignments. In January 2013, an interactive geologic history assignment was developed for a 700-student introductory geology class at The University of British Columbia. The assignment required students to distinguish the relative age of geologic events to construct a geologic history. Traditionally this type of exercise has been taught through the use of simple geologic cross-sections showing crosscutting relationships; from these cross-sections students infer the relative age of geologic events. In contrast, the Visible Geology assignment offers students a unique

  5. Recovery Act: Advanced Interaction, Computation, and Visualization Tools for Sustainable Building Design

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Donald P. [Cornell Univ., Ithaca, NY (United States); Hencey, Brandon M. [Cornell Univ., Ithaca, NY (United States)

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactive graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.

  6. Kiwi: a tool for integration and visualization of network topology and gene-set analysis.

    Science.gov (United States)

    Väremo, Leif; Gatto, Francesco; Nielsen, Jens

    2014-12-11

    The analysis of high-throughput data in biology is aided by integrative approaches such as gene-set analysis. Gene-sets can represent well-defined biological entities (e.g. metabolites) that interact in networks (e.g. metabolic networks), to exert their function within the cell. Data interpretation can benefit from incorporating the underlying network, but there are currently no optimal methods that link gene-set analysis and network structures. Here we present Kiwi, a new tool that processes output data from gene-set analysis and integrates them with a network structure such that the inherent connectivity between gene-sets, i.e. not simply the gene overlap, becomes apparent. In two case studies, we demonstrate that standard gene-set analysis points at metabolites regulated in the interrogated condition. Nevertheless, only the integration of the interactions between these metabolites provides an extra layer of information that highlights how they are tightly connected in the metabolic network. Kiwi is a tool that enhances interpretability of high-throughput data. It allows the users not only to discover a list of significant entities or processes as in gene-set analysis, but also to visualize whether these entities or processes are isolated or connected by means of their biological interaction. Kiwi is available as a Python package at http://www.sysbio.se/kiwi and an online tool in the BioMet Toolbox at http://www.biomet-toolbox.org.

  7. ICoVeR - an interactive visualization tool for verification and refinement of metagenomic bins.

    Science.gov (United States)

    Broeksema, Bertjan; Calusinska, Magdalena; McGee, Fintan; Winter, Klaas; Bongiovanni, Francesco; Goux, Xavier; Wilmes, Paul; Delfosse, Philippe; Ghoniem, Mohammad

    2017-05-02

    Recent advances in high-throughput sequencing allow for much deeper exploitation of natural and engineered microbial communities, and to unravel so-called "microbial dark matter" (microbes that until now have evaded cultivation). Metagenomic analyses result in a large number of genomic fragments (contigs) that need to be grouped (binned) in order to reconstruct draft microbial genomes. While several contig binning algorithms have been developed in the past 2 years, they often lack consensus. Furthermore, these software tools typically lack a provision for the visualization of data and bin characteristics. We present ICoVeR, the Interactive Contig-bin Verification and Refinement tool, which allows the visualization of genome bins. More specifically, ICoVeR allows curation of bin assignments based on multiple binning algorithms. Its visualization window is composed of two connected and interactive main views, including a parallel coordinates view and a dimensionality reduction plot. To demonstrate ICoVeR's utility, we used it to refine disparate genome bins automatically generated using MetaBAT, CONCOCT and MyCC for an anaerobic digestion metagenomic (AD microbiome) dataset. Out of 31 refined genome bins, 23 were characterized with higher completeness and lower contamination in comparison to their respective, automatically generated, genome bins. Additionally, to benchmark ICoVeR against a previously validated dataset, we used Sharon's dataset representing an infant gut metagenome. ICoVeR is an open source software package that allows curation of disparate genome bins generated with automatic binning algorithms. It is freely available under the GPLv3 license at https://git.list.lu/eScience/ICoVeR . The data management and analytical functions of ICoVeR are implemented in R, therefore the software can be easily installed on any system for which R is available. Installation and usage guide together with the example files ready to be visualized are also provided via

  8. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.

    Science.gov (United States)

    Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y

    2008-08-12

    New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges

  9. TROVE: A User-friendly Tool for Visualizing and Analyzing Cancer Hallmarks in Signaling Networks.

    Science.gov (United States)

    Chua, Huey Eng; Bhowmick, Sourav S; Zheng, Jie

    2017-09-22

    Cancer hallmarks, a concept that seeks to explain the complexity of cancer initiation and development, provide a new perspective of studying cancer signaling which could lead to a greater understanding of this complex disease. However, to the best of our knowledge, there is currently a lack of tools that support such hallmark-based study of the cancer signaling network, thereby impeding the gain of knowledge in this area. We present TROVE, a user-friendly software that facilitates hallmark annotation, visualization and analysis in cancer signaling networks. In particular, TROVE facilitates hallmark analysis specific to particular cancer types. Available under the Eclipse Public License from: https://sites.google.com/site/cosbyntu/softwares/trove and https://github.com/trove2017/Trove. hechua@ntu.edu.sg or assourav@ntu.edu.sg.

  10. Data Visualization and Analysis Tools for the Global Precipitation Measurement (GPM) Validation Network

    Science.gov (United States)

    Morris, Kenneth R.; Schwaller, Mathew

    2010-01-01

    The Validation Network (VN) prototype for the Global Precipitation Measurement (GPM) Mission compares data from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR) to similar measurements from U.S. and international operational weather radars. This prototype is a major component of the GPM Ground Validation System (GVS). The VN provides a means for the precipitation measurement community to identify and resolve significant discrepancies between the ground radar (GR) observations and similar satellite observations. The VN prototype is based on research results and computer code described by Anagnostou et al. (2001), Bolen and Chandrasekar (2000), and Liao et al. (2001), and has previously been described by Morris, et al. (2007). Morris and Schwaller (2009) describe the PR-GR volume-matching algorithm used to create the VN match-up data set used for the comparisons. This paper describes software tools that have been developed for visualization and statistical analysis of the original and volume matched PR and GR data.

  11. Feature Usage Explorer: Usage Monitoring and Visualization Tool in HTML5 Based Applications

    Directory of Open Access Journals (Sweden)

    Sarunas Marciuska

    2013-10-01

    Full Text Available Feature Usage Explorer is a JavaScript library, which automatically detects features in HTML5 based applications and monitors their usage. The collected information can be visualized in a Feature Usage Diagram, which is automatically generated from an input json file. Currently, the users of Feature Usage Explorer have to design their own tool in order to generate the json file from collected usage information. This option remains viable when using the library in order not to constraint the user’s choice of preferred data storage. Feature Usage Explorer can be reused in any HTML5 based applications where an understanding of how users interact with the system is required (i.e. user experience and usability studies, human computer interaction field, or requirement prioritization area.

  12. A capstone teaching project for undergraduate nursing students: development of a visual teaching-learning tool.

    Science.gov (United States)

    Epstein, Carol D

    2007-05-01

    The purpose of this article is to describe an original teaching-learning capstone project designed to promote active learning by senior nursing students as they transition to professional practice. The centerpiece of the capstone experience is the creation of a three-dimensional educational tool called a Visual Project, which addresses the learning needs of patients, their families, or the nursing staff. Students create their project during the spring semester of their senior year, when they are paired with an experienced, baccalaureate-prepared nurse preceptor. Students present their projects to both the nursing unit in which they worked and the faculty and students of the nursing school. Students consistently express a sense of accomplishment when they present their projects and recognize that they themselves have undergone the same teaching-learning process that was the focus of their project.

  13. Vortex filament method as a tool for computational visualization of quantum turbulence

    Science.gov (United States)

    Hänninen, Risto; Baggaley, Andrew W.

    2014-01-01

    The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear. PMID:24704873

  14. Exploring Variability of Gaseous Composition of the Troposphere Using Giovanni Online Visualization and Analysis Tool

    Science.gov (United States)

    Leptoukh, G.

    2006-05-01

    We present remote sensing observations of various gases in the atmospheric measured by several instruments aboard EOS NASA satellites. The emphasis is on providing options for quick exploration of these data using Giovanni, the NASA GES DISC developed online visualization and analysis tool. We describe the Atmospheric Composition Data and Information Services Center (http://acdisc.gsfc.nasa.gov), a one-stop shopping center for atmospheric composition. We provide a comprehensive list of geophysical parameters measured by TOMS, OMI, AIRS, MODIS, MLS, and other instruments, including description of data preparation for utilization in Giovanni. We describe various Giovanni functionalities, including time-series, area maps, vertical profiles, vertical cross- sections, zonal averages, etc., that allow Atmospheric Composition researches quickly and conveniently assess variability and intercompare behavior of various gases without even downloading data - everything is done online. We also discuss potential inclusion of ground station measurements of pollution into Giovanni, and utilization of this system in air-quality studies.

  15. CASMI—A visualization tool for the World Stress Map database

    Science.gov (United States)

    Heidbach, Oliver; Höhne, Jens

    2008-07-01

    The World Stress Map (WSM) project has compiled a global database of quality-ranked data records on the contemporary tectonic stresses in the Earth's crust. The WSM 2005 database release contains approximately 16 000 data records from different types of stress indicators such as earthquake focal mechanisms solutions, well bore breakouts, hydraulic fracturing and overcoring measurements, as well as quaternary fault-slip data and volcanic alignments. To provide a software tool for database visualization, analysis and interpretation of stress data as well its integration with other data records, we developed the program CASMI. This public domain software tool for Unix-like operating systems enables the selection of stress data records from the WSM database according to location, data quality, type of stress indicator, and depth. Each selected data record is visualized by a symbol that represents the type of stress indicator and the orientation of the maximum horizontal compressive stress. Symbol size is proportional to the quality of the data record, and the colour indicates different tectonic regimes. Stress maps can be produced in different geographical projections and high-quality output formats. CASMI also allows the integration of user-defined stress data sets and a wide range of other data such as topography, Harvard centroid moment tensors, polygons, text data, and plate motion trajectories. CASMI, including the WSM 2005 database release, can be requested free of charge from the project's website at http://www.world-stress-map.org/casmi. We present two stress map examples generated with CASMI ranging from plate-wide to regional scale: (1) A stress map of central Europe, that reveals the correlation of stress field orientation and relative plate motion. (2) The fan-shape stress pattern in North Germany.

  16. A Software Tool to Visualize Verbal Protocols to Enhance Strategic and Metacognitive Abilities in Basic Programming

    Directory of Open Access Journals (Sweden)

    Carlos A. Arévalo

    2011-07-01

    Full Text Available Learning to program is difficult for many first year undergraduate students. Instructional strategies of traditional programming courses tend to focus on syntactic issues and assigning practice exercises using the presentation-examples-practice formula and by showing the verbal and visual explanation of a teacher during the “step by step” process of writing a computer program. Cognitive literature regarding the mental processes involved in programming suggests that the explicit teaching of certain aspects such as mental models, strategic knowledge and metacognitive abilities, are critical issues of how to write and assemble the pieces of a computer program. Verbal protocols are often used in software engineering as a technique to record the short term cognitive process of a user or expert in evaluation or problem solving scenarios. We argue that verbal protocols can be used as a mechanism to explicitly show the strategic and metacognitive process of an instructor when writing a program. In this paper we present an Information System Prototype developed to store and visualize worked examples derived from transcribed verbal protocols during the process of writing introductory level programs. Empirical data comparing the grades obtained by two groups of novice programming students, using ANOVA, indicates a statistically positive difference in performance in the group using the tool, even though these results still cannot be extrapolated to general population, given the reported limitations of this study.

  17. Visual Basic, Excel-based fish population modeling tool - The pallid sturgeon example

    Science.gov (United States)

    Moran, Edward H.; Wildhaber, Mark L.; Green, Nicholas S.; Albers, Janice L.

    2016-02-10

    The model presented in this report is a spreadsheet-based model using Visual Basic for Applications within Microsoft Excel (http://dx.doi.org/10.5066/F7057D0Z) prepared in cooperation with the U.S. Army Corps of Engineers and U.S. Fish and Wildlife Service. It uses the same model structure and, initially, parameters as used by Wildhaber and others (2015) for pallid sturgeon. The difference between the model structure used for this report and that used by Wildhaber and others (2015) is that variance is not partitioned. For the model of this report, all variance is applied at the iteration and time-step levels of the model. Wildhaber and others (2015) partition variance into parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level and temporal variance (uncertainty caused by random environmental fluctuations with time) applied at the time-step level. They included implicit individual variance (uncertainty caused by differences between individuals) within the time-step level.The interface developed for the model of this report is designed to allow the user the flexibility to change population model structure and parameter values and uncertainty separately for every component of the model. This flexibility makes the modeling tool potentially applicable to any fish species; however, the flexibility inherent in this modeling tool makes it possible for the user to obtain spurious outputs. The value and reliability of the model outputs are only as good as the model inputs. Using this modeling tool with improper or inaccurate parameter values, or for species for which the structure of the model is inappropriate, could lead to untenable management decisions. By facilitating fish population modeling, this modeling tool allows the user to evaluate a range of management options and implications. The goal of this modeling tool is to be a user-friendly modeling tool for developing fish population models useful to natural resource

  18. Visible Earthquakes: a web-based tool for visualizing and modeling InSAR earthquake data

    Science.gov (United States)

    Funning, G. J.; Cockett, R.

    2012-12-01

    InSAR (Interferometric Synthetic Aperture Radar) is a technique for measuring the deformation of the ground using satellite radar data. One of the principal applications of this method is in the study of earthquakes; in the past 20 years over 70 earthquakes have been studied in this way, and forthcoming satellite missions promise to enable the routine and timely study of events in the future. Despite the utility of the technique and its widespread adoption by the research community, InSAR does not feature in the teaching curricula of most university geoscience departments. This is, we believe, due to a lack of accessibility to software and data. Existing tools for the visualization and modeling of interferograms are often research-oriented, command line-based and/or prohibitively expensive. Here we present a new web-based interactive tool for comparing real InSAR data with simple elastic models. The overall design of this tool was focused on ease of access and use. This tool should allow interested nonspecialists to gain a feel for the use of such data and greatly facilitate integration of InSAR into upper division geoscience courses, giving students practice in comparing actual data to modeled results. The tool, provisionally named 'Visible Earthquakes', uses web-based technologies to instantly render the displacement field that would be observable using InSAR for a given fault location, geometry, orientation, and slip. The user can adjust these 'source parameters' using a simple, clickable interface, and see how these affect the resulting model interferogram. By visually matching the model interferogram to a real earthquake interferogram (processed separately and included in the web tool) a user can produce their own estimates of the earthquake's source parameters. Once satisfied with the fit of their models, users can submit their results and see how they compare with the distribution of all other contributed earthquake models, as well as the mean and median

  19. AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis

    Directory of Open Access Journals (Sweden)

    Araya Carlos L

    2006-06-01

    Full Text Available Abstract Background The invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point. Results We have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data. Conclusion By pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development.

  20. Gas discharge visualization: an imaging and modeling tool for medical biometrics.

    Science.gov (United States)

    Kostyuk, Nataliya; Cole, Phyadragren; Meghanathan, Natarajan; Isokpehi, Raphael D; Cohly, Hari H P

    2011-01-01

    The need for automated identification of a disease makes the issue of medical biometrics very current in our society. Not all biometric tools available provide real-time feedback. We introduce gas discharge visualization (GDV) technique as one of the biometric tools that have the potential to identify deviations from the normal functional state at early stages and in real time. GDV is a nonintrusive technique to capture the physiological and psychoemotional status of a person and the functional status of different organs and organ systems through the electrophotonic emissions of fingertips placed on the surface of an impulse analyzer. This paper first introduces biometrics and its different types and then specifically focuses on medical biometrics and the potential applications of GDV in medical biometrics. We also present our previous experience with GDV in the research regarding autism and the potential use of GDV in combination with computer science for the potential development of biological pattern/biomarker for different kinds of health abnormalities including cancer and mental diseases.

  1. Gas Discharge Visualization: An Imaging and Modeling Tool for Medical Biometrics

    Directory of Open Access Journals (Sweden)

    Nataliya Kostyuk

    2011-01-01

    Full Text Available The need for automated identification of a disease makes the issue of medical biometrics very current in our society. Not all biometric tools available provide real-time feedback. We introduce gas discharge visualization (GDV technique as one of the biometric tools that have the potential to identify deviations from the normal functional state at early stages and in real time. GDV is a nonintrusive technique to capture the physiological and psychoemotional status of a person and the functional status of different organs and organ systems through the electrophotonic emissions of fingertips placed on the surface of an impulse analyzer. This paper first introduces biometrics and its different types and then specifically focuses on medical biometrics and the potential applications of GDV in medical biometrics. We also present our previous experience with GDV in the research regarding autism and the potential use of GDV in combination with computer science for the potential development of biological pattern/biomarker for different kinds of health abnormalities including cancer and mental diseases.

  2. netview p: a network visualization tool to unravel complex population structure using genome-wide SNPs.

    Science.gov (United States)

    Steinig, Eike J; Neuditschko, Markus; Khatkar, Mehar S; Raadsma, Herman W; Zenger, Kyall R

    2016-01-01

    Network-based approaches are emerging as valuable tools for the analysis of complex genetic structure in wild and captive populations. netview p combines data quality control with the construction of population networks through mutual k-nearest neighbours thresholds applied to genome-wide SNPs. The program is cross-platform compatible, open-source and efficiently operates on data ranging from hundreds to hundreds of thousands of SNPs. The pipeline was used for the analysis of pedigree data from simulated (n = 750, SNPs = 1279) and captive silver-lipped pearl oysters (n = 415, SNPs = 1107), wild populations of the European hake from the Atlantic and Mediterranean (n = 834, SNPs = 380) and grey wolves from North America (n = 239, SNPs = 78 255). The population networks effectively visualize large- and fine-scale genetic structure within and between populations, including family-level structure and relationships. netview p comprises a network-based addition to other population analysis tools and provides user-friendly access to a complex network analysis pipeline through implementation in python. © 2015 John Wiley & Sons Ltd.

  3. Listening to the solar eclipse with an educational tool for the blind and visually impaired

    Science.gov (United States)

    Bieryla, Allyson; Diaz-Merced, Wanda; Davis, Daniel; Hart, Robert

    2018-01-01

    The Great American Solar Eclipse took place on August 21, 2017 and swept through 14 of the United States. This was a highly publicized event and much of the world took notice. We live in a time where everything is accessible via the internet as it is happening. Many people, even those outside of the eclipse path, wanted to experience the event in real-time. We built a device, using an Arduino compatible microcontroller, that converts sunlight to sound so that the blind and visually impaired community could experience the eclipse live with the rest of the world. The device has a high dynamic range light sensor and an audio output that connects to a webcam and a computer. The event was successfully streamed to YouTube from Jackson Hole, Wyoming and people from all around the world connected to listen as the sun was temporarily dimmed by the eclipse of the moon. This device is inexpensive to reproduce (< $40 per device) and can be used as a teaching tool in a lab or classroom setting. Students can learn to build and write code for these devices as well. This is a tool with great potential for human development.

  4. The Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT): Data Analysis and Visualization for Geoscience Data

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doutriaux, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patchett, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Sean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Ross [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Steed, Chad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Krishnan, Harinarayan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Silva, Claudio [NYU Polytechnic School of Engineering, New York, NY (United States); Chaudhary, Aashish [Kitware, Inc., Clifton Park, NY (United States); Bremer, Peer-Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pugmire, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Childs, Hank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prabhat, Mr. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Bauer, Andrew [Kitware, Inc., Clifton Park, NY (United States); Pletzer, Alexander [Tech-X Corp., Boulder, CO (United States); Poco, Jorge [NYU Polytechnic School of Engineering, New York, NY (United States); Ellqvist, Tommy [NYU Polytechnic School of Engineering, New York, NY (United States); Santos, Emanuele [Federal Univ. of Ceara, Fortaleza (Brazil); Potter, Gerald [NASA Johnson Space Center, Houston, TX (United States); Smith, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maxwell, Thomas [NASA Johnson Space Center, Houston, TX (United States); Kindig, David [Tech-X Corp., Boulder, CO (United States); Koop, David [NYU Polytechnic School of Engineering, New York, NY (United States)

    2013-05-01

    To support interactive visualization and analysis of complex, large-scale climate data sets, UV-CDAT integrates a powerful set of scientific computing libraries and applications to foster more efficient knowledge discovery. Connected through a provenance framework, the UV-CDAT components can be loosely coupled for fast integration or tightly coupled for greater functionality and communication with other components. This framework addresses many challenges in the interactive visual analysis of distributed large-scale data for the climate community.

  5. 3D Visualization Tools to Support Soil Management In Relation to Sustainable Agriculture and Ecosystem Services

    Science.gov (United States)

    Wang, Chen

    2017-04-01

    Visualization tools [1][2][6] have been used increasingly as part of information, consultation, and collaboration in relation to issues of global significance. Visualization techniques can be used in a variety of different settings, depending on their association with specific types of decision. Initially, they can be used to improve awareness of the local community and landscape, either individually or in groups [5]. They can also be used to communicate different aspects of change, such as digital soil mapping, ecosystem services and climate change [7][8]. A prototype 3D model was developed to present Tarland Catchment on the North East Scotland which includes 1:25000 soil map data and 1:50000 land capability for agriculture (LCA) data [4]. The model was used to identify issues arising between the growing interest soil monitoring and management, and the potential effects on existing soil characteristics. The online model was also created which can capture user/stakeholder comments they associate with soil features. In addition, people are located physically within the real-world bounds of the current soil management scenario, they can use Augmented Reality to see the scenario overlaid on their immediate surroundings. Models representing alternative soil use and management were used in the virtual landscape theatre (VLT) [3]with electronic voting designed to elicit public aspirations and concerns regarding future soil uses, and to develop scenarios driven by local input. Preliminary findings suggest positive audience responses to the relevance of the inclusion of soil data within a scene when considering questions regarding the impact of land-use change, such as woodland, agricultural land and open spaces. A future development is the use of the prototype virtual environment in a preference survey of scenarios of changes in land use, and in stakeholder consultations on such changes.END Rua, H. and Alvito, P. (2011) Living the past: 3D models, virtual reality and

  6. Visualization of Near-Infrared Spectral Data of Eros Using the Small Body Mapping Tool

    Science.gov (United States)

    Klima, Rachel L.; Ernst, Carolyn

    2016-10-01

    One of the primary drivers for many missions visiting asteroids is to advance our understanding of their composition beyond what can be (and is) already measured by telescopes. Without sample return or lander missions, this task relies primarily on resolved near-infrared spectroscopic measurements. Scientific analysis using spectral data collected by point spectrometers is not as straightforward as for imaging spectrometers, where the local spatial context is immediately available. In the case of Eros and other highly non-spherical bodies, this problem becomes even more severe when trying to locate spectra that cross a mapped feature that bends over an irregularly shaped surface. Thus, it is often the case that outside of the mission teams, few from the community at large delve into these data sets, as they lack the tools necessary to incorporate the spectral information into geological analyses of the asteroids. Ultimately, we seek to make such spectral datasets, which NASA has invested significant amounts of money to obtain, more widely accessible and user-friendly. The Small Bodies Mapping Tool (SBMT) is a Java-based, interactive, three-dimensional visualization tool written and developed at APL to map and analyze features on irregularly shaped solar system bodies. The SBMT can be used to locate and then "drape" spacecraft images, spectra, and laser altimetry around the shape model of such bodies. It provides a means for rapid identification of available data in a region of interest and allows features to be mapped directly onto the shape model. The program allows the free rotation of a shape model (including any overlain data) in all directions, so that the correlation and distribution of mapped features can be easily and globally observed.We will present the results of our work on the NEAR/Near-Infrared Spectrograph (NIS) data, including improvements to the calibration made by using the geometric information provided by the SBMT and improvements to the SMBT

  7. Visualization tool for three-dimensional plasma velocity distributions (ISEE_3D) as a plug-in for SPEDAS

    Science.gov (United States)

    Keika, Kunihiro; Miyoshi, Yoshizumi; Machida, Shinobu; Ieda, Akimasa; Seki, Kanako; Hori, Tomoaki; Miyashita, Yukinaga; Shoji, Masafumi; Shinohara, Iku; Angelopoulos, Vassilis; Lewis, Jim W.; Flores, Aaron

    2017-12-01

    This paper introduces ISEE_3D, an interactive visualization tool for three-dimensional plasma velocity distribution functions, developed by the Institute for Space-Earth Environmental Research, Nagoya University, Japan. The tool provides a variety of methods to visualize the distribution function of space plasma: scatter, volume, and isosurface modes. The tool also has a wide range of functions, such as displaying magnetic field vectors and two-dimensional slices of distributions to facilitate extensive analysis. The coordinate transformation to the magnetic field coordinates is also implemented in the tool. The source codes of the tool are written as scripts of a widely used data analysis software language, Interactive Data Language, which has been widespread in the field of space physics and solar physics. The current version of the tool can be used for data files of the plasma distribution function from the Geotail satellite mission, which are publicly accessible through the Data Archives and Transmission System of the Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA). The tool is also available in the Space Physics Environment Data Analysis Software to visualize plasma data from the Magnetospheric Multiscale and the Time History of Events and Macroscale Interactions during Substorms missions. The tool is planned to be applied to data from other missions, such as Arase (ERG) and Van Allen Probes after replacing or adding data loading plug-ins. This visualization tool helps scientists understand the dynamics of space plasma better, particularly in the regions where the magnetohydrodynamic approximation is not valid, for example, the Earth's inner magnetosphere, magnetopause, bow shock, and plasma sheet.

  8. The stadium diagram, a web-based tool for visualizing the expected outcomes of alternative clinical management strategies.

    Science.gov (United States)

    Bell, Douglas S; Sobolevsky, Steven; Day, Frank C; Hoffman, Jerome R; Higa, Jerilyn K; Wilkes, Michael S

    2005-01-01

    To explore the use of graphical animation for helping clinicians to understand the evidence about expected risks and benefits associated with multi-step clinical management strategies. We used Flash and XML to create a tool capable of displaying the sequence of health state changes that may result from a specific management strategy, as applied to a simulated population. We evaluated this tool in 6 focus groups involving a total of 44 community internists and family physicians. We successively revised the tool based on grounded theory analysis of the focus group transcripts. The process of responding to design issues raised in focus groups resulted in a final tool that presents a group of person icons arranged in rows to give the illusion of people in a stadium or theater. Each action in the management strategy causes persons to change color and move among rows to reflect changes in health state. The tool can play audio narration to explain each step and links are provided to the supporting evidence. Most physicians found these visualizations to be attractive and clear. Some were interested in using the tool with patients. Others rejected the specific decision model used to demonstrate the tool and a few rejected the notion of applying quantitative risks to individual patients. A visual approach to demonstrating the possible benefits and harms of a given management strategy holds interest for many clinicians. However, visualizations may fail to influence clinicians who do not believe the available evidence.

  9. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome.

    Science.gov (United States)

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the "connectome". Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.

  10. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome.

    Directory of Open Access Journals (Sweden)

    Mahmoud Hassan

    Full Text Available The brain is a large-scale complex network often referred to as the "connectome". Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc, and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i Basic steps in preprocessing M/EEG signals, ii the solution of the inverse problem to localize / reconstruct the cortical sources, iii the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.

  11. SocialMood: an information visualization tool to measure the mood of the people in social networks

    Science.gov (United States)

    Amorim, Guilherme; Franco, Roberto; Moraes, Rodolfo; Figueiredo, Bruno; Miranda, João.; Dobrões, José; Afonso, Ricardo; Meiguins, Bianchi

    2013-12-01

    Based on the arena of social networks, the tool developed in this study aims to identify trends mood among undergraduate students. Combining the methodology Self-Assessment Manikin (SAM), which originated in the field of Psychology, the system filters the content provided on the Web and isolates certain words, establishing a range of values as perceived positive, negative or neutral. A Big Data summarizing the results, assisting in the construction and visualization of behavioral profiles generic, so we have a guideline for the development of information visualization tools for social networks.

  12. Signature Evaluation Tool (SET: a Java-based tool to evaluate and visualize the sample discrimination abilities of gene expression signatures

    Directory of Open Access Journals (Sweden)

    Lin Chi-Hung

    2008-01-01

    Full Text Available Abstract Background The identification of specific gene expression signature for distinguishing sample groups is a dominant field in cancer research. Although a number of tools have been developed to identify optimal gene expression signatures, the number of signature genes obtained is often overly large to be applied clinically. Furthermore, experimental verification is sometimes limited by the availability of wet-lab materials such as antibodies and reagents. A tool to evaluate the discrimination power of candidate genes is therefore in high demand by clinical researchers. Results Signature Evaluation Tool (SET is a Java-based tool adopting the Golub's weighted voting algorithm as well as incorporating the visual presentation of prediction strength for each array sample. SET provides a flexible and easy-to-follow platform to evaluate the discrimination power of a gene signature. Here, we demonstrated the application of SET for several purposes: (1 for signatures consisting of a large number of genes, SET offers the ability to rapidly narrow down the number of genes; (2 for a given signature (from third party analyses or user-defined, SET can re-evaluate and re-adjust its discrimination power by selecting/de-selecting genes repeatedly; (3 for multiple microarray datasets, SET can evaluate the classification capability of a signature among datasets; and (4 by providing a module to visualize the prediction strength for each sample, SET allows users to re-evaluate the discrimination power on mis-grouped or less-certain samples. Information obtained from the above applications could be useful in prognostic analyses or clinical management decisions. Conclusion Here we present SET to evaluate and visualize the sample-discrimination ability of a given gene expression signature. This tool provides a filtration function for signature identification and lies between clinical analyses and class prediction (or feature selection tools. The simplicity

  13. Self and Peer Assessment and Dominance During Group Work Using Online Visual Tools

    Directory of Open Access Journals (Sweden)

    Ed Lester

    2010-11-01

    Full Text Available An experiment undertaken with engineering undergraduate students at the University of Nottingham involved 26 groups of three being filmed during a study using a virtual-reality-based problem-solving exercise. After the exercise, each individual filled in a questionnaire relating to the exercise which allowed them to score themselves and their peers for contribution and overall grade. The comparing of video evidence with perceived contributions made it possible to observe patterns of behaviour based on temperament dominance. This ‘dominance’ was based on two simple parameters extracted from an electronic version of the Myers-Briggs test: first, the time taken to complete the study, called ‘decisiveness’, and secondly, the degree of Extroversion/Introversion. The more decisive subjects received higher marks from their peers, despite the absence of any video evidence that they had actually contributed more than their peers. The most dominant extroverts appear to ‘do more’ with respect to the physical operation of the mouse/keyboard and interaction with the visual simulation during the virtual-reality exercise. However, there was no link with these simple temperament measures with the degree of enjoyment of the tasks, which appeared to be highly consistent. The authors do not argue that visual-media tools, such as the virtual-reality environment described in this article, might offer solutions to problems associated with group work in engineering, but rather that information regarding the character traits of the participants may help to create more effective teams and to help understand the inter-personal dynamics within teams undertaking such tasks.

  14. Improvement of visual debugging tool. Shortening the elapsed time for getting data and adding new functions to compare/combine a set of visualized data

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Katsuyuki; Takemiya, Hiroshi

    2001-03-01

    The visual debugging tool 'vdebug' has been improved, which was designed for the debugging of programs for scientific computing. Improved were the following two points; (1) shortening the elapsed time required for getting appropriate data to visualize; (2) adding new functions which enable to compare and/or combine a set of visualized data originated from two or more different programs. As for shortening elapsed time for getting data, with the improved version of 'vdebug', we could achieve the following results; over hundred times shortening the elapsed time with dbx, pdbx of SX-4 and over ten times with ndb of SR2201. As for the new functions to compare/combine visualized data, it was confirmed that we could easily checked the consistency between the computational results obtained in each calculational steps on two different computers: SP and ONYX. In this report, we illustrate how the tool 'vdebug' has been improved with an example. (author)

  15. Tool kit development to refine and visualize essential climate data and information for marine protected areas

    Science.gov (United States)

    Cecil, L.; Stachniewicz, J.; Shein, K. A.; Ansari, S.; Jarvis, C.

    2013-05-01

    Marine ecosystem responses to climate variability and change such as changing water temperature, water chemistry (e.g., pH, salinity), water level, or storminess may result in adverse impacts including mass mortality, loss of habitat, increased disease susceptibility, and trophic cascade feedbacks. Unfortunately, while marine ecosystem resource managers are aware of these threats, they often lack sufficient expertise with identifying, accessing and using the many large and complex climate data products that would inform ecosystem-scale climate impact assessments. NOAA's National Climatic Data Center (NCDC) has been working with the Gulf of the Farallones National Marine Sanctuary Ocean Climate Center to enhance and expand the functionality of NCDC's Weather and Climate Toolkit (WCT) to begin to address this limitation. The WCT is a freely available, Java-based user interface (http://www.ncdc.noaa.gov/oa/wct/) designed to access, analyze, and display a variety of NCDC's georeferenced climate data products (e.g., satellite data, radar, reanalysis datasets, in-situ observations). However, the WCT requires the user to have already identified a data set of interest and gained access to it. This can limit its utility by users who are not knowledgeable about which data sets are relevant to their needs and where those data sets can be found. The Integrated Marine Protected Area Climate Tools (IMPACT) prototype modification to the WCT addresses those requirements through an iterative process between climate scientists and resource managers. The WCT-IMPACT prototype couples a user query approach with a quasi-expert system that determines, retrieves, and loads the appropriate data products for visualization and analysis by the user. Relevant data products are identified based on the environmental variables in which ecosystem managers have indicated an importance to their ecosystems. To improve response time, the user, through the WCT-IMPACT interface, crops (or subsets) the

  16. solQTL: a tool for QTL analysis, visualization and linking to genomes at SGN database

    Directory of Open Access Journals (Sweden)

    van der Knaap Esther

    2010-10-01

    Full Text Available Abstract Background A common approach to understanding the genetic basis of complex traits is through identification of associated quantitative trait loci (QTL. Fine mapping QTLs requires several generations of backcrosses and analysis of large populations, which is time-consuming and costly effort. Furthermore, as entire genomes are being sequenced and an increasing amount of genetic and expression data are being generated, a challenge remains: linking phenotypic variation to the underlying genomic variation. To identify candidate genes and understand the molecular basis underlying the phenotypic variation of traits, bioinformatic approaches are needed to exploit information such as genetic map, expression and whole genome sequence data of organisms in biological databases. Description The Sol Genomics Network (SGN, http://solgenomics.net is a primary repository for phenotypic, genetic, genomic, expression and metabolic data for the Solanaceae family and other related Asterids species and houses a variety of bioinformatics tools. SGN has implemented a new approach to QTL data organization, storage, analysis, and cross-links with other relevant data in internal and external databases. The new QTL module, solQTL, http://solgenomics.net/qtl/, employs a user-friendly web interface for uploading raw phenotype and genotype data to the database, R/QTL mapping software for on-the-fly QTL analysis and algorithms for online visualization and cross-referencing of QTLs to relevant datasets and tools such as the SGN Comparative Map Viewer and Genome Browser. Here, we describe the development of the solQTL module and demonstrate its application. Conclusions solQTL allows Solanaceae researchers to upload raw genotype and phenotype data to SGN, perform QTL analysis and dynamically cross-link to relevant genetic, expression and genome annotations. Exploration and synthesis of the relevant data is expected to help facilitate identification of candidate genes

  17. Visual DMDX: A web-based authoring tool for DMDX, a Windows display program with millisecond accuracy.

    Science.gov (United States)

    Garaizar, Pablo; Reips, Ulf-Dietrich

    2015-09-01

    DMDX is a software package for the experimental control and timing of stimulus display for Microsoft Windows systems. DMDX is reliable, flexible, millisecond accurate, and can be downloaded free of charge; therefore it has become very popular among experimental researchers. However, setting up a DMDX-based experiment is burdensome because of its command-based interface. Further, DMDX relies on RTF files in which parts of the stimuli, design, and procedure of an experiment are defined in a complicated (DMASTR-compatible) syntax. Other experiment software, such as E-Prime, Psychopy, and WEXTOR, became successful as a result of integrated visual authoring tools. Such an intuitive interface was lacking for DMDX. We therefore created and present here Visual DMDX (http://visualdmdx.com/), a HTML5-based web interface to set up experiments and export them to DMDX item files format in RTF. Visual DMDX offers most of the features available from the rich DMDX/DMASTR syntax, and it is a useful tool to support researchers who are new to DMDX. Both old and modern versions of DMDX syntax are supported. Further, with Visual DMDX, we go beyond DMDX by having added export to JSON (a versatile web format), easy backup, and a preview option for experiments. In two examples, one experiment each on lexical decision making and affective priming, we explain in a step-by-step fashion how to create experiments using Visual DMDX. We release Visual DMDX under an open-source license to foster collaboration in its continuous improvement.

  18. Validation of a Mexican food photograph album as a tool to visually estimate food amounts in adolescents

    National Research Council Canada - National Science Library

    Bernal-Orozco, M Fernanda; Vizmanos-Lamotte, Barbara; Rodríguez-Rocha, Norma P; Macedo-Ojeda, Gabriela; Orozco-Valerio, María; Rovillé-Sausse, Françoise; León-Estrada, Sandra; Márquez-Sandoval, Fabiola; Fernández-Ballart, Joan D

    2013-01-01

    The aim of the present study was to validate a food photograph album (FPA) as a tool to visually estimate food amounts, and to compare this estimation with that attained through the use of measuring cups (MC) and food models (FM...

  19. The Effect of Using a Visual Representation Tool in a Teaching-Learning Sequence for Teaching Newton's Third Law

    Science.gov (United States)

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2017-01-01

    This paper presents a research-based teaching-learning sequence (TLS) that focuses on the notion of interaction in teaching Newton's third law (N3 law) which is, as earlier studies have shown, a challenging topic for students to learn. The TLS made systematic use of a visual representation tool--an interaction diagram (ID)--highlighting…

  20. The Effects of Visual Magnification and Physical Movement Scale on the Manipulation of a Tool with Indirect Vision

    Science.gov (United States)

    Bohan, Michael; McConnell, Daniel S.; Chaparro, Alex; Thompson, Shelby G.

    2010-01-01

    Modern tools often separate the visual and physical aspects of operation, requiring users to manipulate an instrument while viewing the results indirectly on a display. This can pose usability challenges particularly in applications, such as laparoscopic surgery, that require a high degree of movement precision. Magnification used to augment the…

  1. PRI-CAT: a web-tool for the analysis, storage and visualization of plant ChIP-seq experiments.

    NARCIS (Netherlands)

    Muino, J.M.; Hoogstraat, M.; Ham, van R.C.H.J.; Dijk, van A.D.J.

    2011-01-01

    Although several tools for the analysis of ChIP-seq data have been published recently, there is a growing demand, in particular in the plant research community, for computational resources with which such data can be processed, analyzed, stored, visualized and integrated within a single,

  2. Ultrabroadband 2D electronic spectroscopy as a tool for direct visualization of pathways of energy flow

    Science.gov (United States)

    Son, Minjung; Schlau-Cohen, Gabriela S.

    2017-08-01

    Two-dimensional electronic spectroscopy (2DES) has emerged as an incisive tool for mapping out energy relaxation pathways in complex molecular systems by determining correlation maps between the excitation and emission frequencies. Its enhanced spectral as well as temporal resolution offer new insights into coupling and energy transfer between closely-spaced energy states, which are often hidden in a one-dimensional transient spectrum. However, a major drawback of the current 2DES technique is that the spectral window of detection is directly limited to the laser bandwidth used, which leads to an incomplete visualization of the full energy landscape of the system. As a solution to this limitation, we present an ultrabroadband 2DES apparatus utilizing a 8-fs, 185-nm bandwidth supercontinuum that covers the entire visible region. We demonstrate the utility of our setup by measuring the 2D spectra of laser dyes absorbing at different regions of the laser spectrum, and the major light-harvesting complex of spinach.

  3. The "phosphorus pyramid": a visual tool for dietary phosphate management in dialysis and CKD patients.

    Science.gov (United States)

    D'Alessandro, Claudia; Piccoli, Giorgina B; Cupisti, Adamasco

    2015-01-20

    Phosphorus retention plays a pivotal role in the onset of mineral and bone disorders (MBD) in chronic kidney disease (CKD). Phosphorus retention commonly occurs as a result of net intestinal absorption exceeding renal excretion or dialysis removal. The dietary phosphorus load is crucial since the early stages of CKD, throughout the whole course of the disease, up to dialysis-dependent end-stage renal disease.Agreement exits regarding the need for dietary phosphate control, but it is quite challenging in the real-life setting. Effective strategies to control dietary phosphorus intake include restricting phosphorus-rich foods, preferring phosphorus sourced from plant origin, boiling as the preferred cooking procedure and avoiding foods with phosphorus-containing additives. Nutritional education is crucial in this regard.Based on the existing literature, we developed the "phosphorus pyramid", namely a novel, visual, user-friendly tool for the nutritional education of patients and health-care professionals. The pyramid consists of six levels in which foods are arranged on the basis of their phosphorus content, phosphorus to protein ratio and phosphorus bioavailability. Each has a colored edge (from green to red) that corresponds to recommended intake frequency, ranging from "unrestricted" to "avoid as much as possible".The aim of the phosphorus pyramid is to support dietary counseling in order to reduce the phosphorus load, a crucial aspect of integrated CKD-MBD management.

  4. E-infocenter, a visual tool for project management in educational robotics using web technologies

    Directory of Open Access Journals (Sweden)

    Kathia Pittí Patiño

    2012-07-01

    Full Text Available Normal.dotm 0 0 1 147 838 Universidad de Salamanca 6 1 1029 12.0 0 false 18 pt 18 pt 0 0 false false false /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Internet applications and educational robotics are technologies that are characterized by their relatively novelty and motivating character. They are the ideal setting for the application of active teaching methods. The project-based learning is considered as one of the most attractive of these teaching methods. Under our approach, the projects with robots makes use of the Web 2.0 collaborative environment, so this one will be considered as student support tool. In this way they can develop many skills that are easily transferable to the work-market. In this paper, an online visual tool called E-infocenter is described. We will show the developed selection process, the design and the implementation of the mentioned project management. This tool has been used for the first time for six weeks in the workshop “Vehicles LEGO NXT” that is, an experience dedicated to children aged between 8 and 15 years. The benefits perceived by the participants have been at management level, emotional and collaboration.

  5. Sinistrals are rarely ‘right’: evidence from tool­-affordance processing in visual half-­field paradigms

    Directory of Open Access Journals (Sweden)

    Bartosz eMichałowski

    2015-03-01

    Full Text Available Although current neuroscience and behavioral studies provide substantial understanding of tool representations (e.g., the processing of tool-­related affordances in the human brain, most of this knowledge is limited to right-handed individuals with typical organization of cognitive and manual skills. Therefore, any insights from these lines of research may be of little value in rehabilitation of patients with atypical laterality of praxis and/or hand dominance. To fill this gap, we tested perceptual processing of man­-made objects in 18 healthy left-­handers who were likely to show greater incidence of right-sided or bilateral (atypical lateralization of functions. In the two experiments reported here, participants performed a tool vs. non-­tool categorization task. In Exp. 1, target and distracter objects were presented for 200 ms in the left (LVF or right (RVF visual field, followed by 200ms masks. In Exp. 2, the centrally presented targets were preceded by masked primes of 35ms duration, again presented in the LVF or RVF. Based on results from both studies, i.e., response times to correctly discriminated stimuli irrespective of their category, participants were divided into two groups showing privileged processing in either left (N = 9 or right (N = 9 visual field. In Exp. 1, only individuals with RVF advantage showed significantly faster categorization of tools in their dominant visual field, whereas those with LVF advantage revealed merely a trend towards such an effect. In Exp. 2, when targets were preceded by identical primes, the ‘atypical’ group showed significantly facilitated categorization of non­-tools, whereas the ‘typical’ group demonstrated a trend towards faster categorization of tools. These results indicate that in subjects with atypically organized cognitive skills, tool­-related processes are not just mirror reversed. Thus, our outcomes call for particular caution in neurorehabilitation directed at left

  6. Virtual phacoemulsification surgical simulation using visual guidance and performance parameters as a feasible proficiency assessment tool.

    Science.gov (United States)

    Lam, Chee Kiang; Sundaraj, Kenneth; Sulaiman, Mohd Nazri; Qamarruddin, Fazilawati A

    2016-06-14

    Computer based surgical training is believed to be capable of providing a controlled virtual environment for medical professionals to conduct standardized training or new experimental procedures on virtual human body parts, which are generated and visualised three-dimensionally on a digital display unit. The main objective of this study was to conduct virtual phacoemulsification cataract surgery to compare performance by users with different proficiency on a virtual reality platform equipped with a visual guidance system and a set of performance parameters. Ten experienced ophthalmologists and six medical residents were invited to perform the virtual surgery of the four main phacoemulsification cataract surgery procedures - 1) corneal incision (CI), 2) capsulorhexis (C), 3) phacoemulsification (P), and 4) intraocular lens implantation (IOL). Each participant was required to perform the complete phacoemulsification cataract surgery using the simulator for three consecutive trials (a standardized 30-min session). The performance of the participants during the three trials was supported using a visual guidance system and evaluated by referring to a set of parameters that was implemented in the performance evaluation system of the simulator. Subjects with greater experience obtained significantly higher scores in all four main procedures - CI1 (ρ = 0.038), CI2 (ρ = 0.041), C1 (ρ = 0.032), P2 (ρ = 0.035) and IOL1 (ρ = 0.011). It was also found that experience improved the completion times in all modules - CI4 (ρ = 0.026), C4 (ρ = 0.018), P6 (ρ = 0.028) and IOL4 (ρ = 0.029). Positive correlation was observed between experience and anti-tremor - C2 (ρ = 0.026), P3 (ρ = 0.015), P4 (ρ = 0.042) and IOL2 (ρ = 0.048) and similarly with anti-rupture - CI3 (ρ = 0.013), C3 (ρ = 0.027), P5 (ρ = 0.021) and IOL3 (ρ = 0.041). No significant difference was observed between the groups with regards to

  7. Big Data Geo-Analytical Tool Development for Spatial Analysis Uncertainty Visualization and Quantification Needs

    Science.gov (United States)

    Rose, K.; Bauer, J. R.; Baker, D. V.

    2015-12-01

    As big data computing capabilities are increasingly paired with spatial analytical tools and approaches, there is a need to ensure uncertainty associated with the datasets used in these analyses is adequately incorporated and portrayed in results. Often the products of spatial analyses, big data and otherwise, are developed using discontinuous, sparse, and often point-driven data to represent continuous phenomena. Results from these analyses are generally presented without clear explanations of the uncertainty associated with the interpolated values. The Variable Grid Method (VGM) offers users with a flexible approach designed for application to a variety of analyses where users there is a need to study, evaluate, and analyze spatial trends and patterns while maintaining connection to and communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations. In this presentation we will show how we are utilizing Hadoop to store and perform spatial analysis through the development of custom Spark and MapReduce applications that incorporate ESRI Hadoop libraries. The team will present custom 'Big Data' geospatial applications that run on the Hadoop cluster and integrate with ESRI ArcMap with the team's probabilistic VGM approach. The VGM-Hadoop tool has been specially built as a multi-step MapReduce application running on the Hadoop cluster for the purpose of data reduction. This reduction is accomplished by generating multi-resolution, non-overlapping, attributed topology that is then further processed using ESRI's geostatistical analyst to convey a probabilistic model of a chosen study region. Finally, we will share our approach for implementation of data reduction and topology generation

  8. 3D visualization tools to explore ancient architectures in South America

    Directory of Open Access Journals (Sweden)

    Roberto Pierdicca

    2016-11-01

    Full Text Available Chan Chan is a wide archaeological site located in Peru. Its knowledge is limited to the visit of Palacio Tschudi, the only restored up to now, whilst the majority of the site remains unknown to the visitors. The reasons are manifold. The site is very large and difficult to visit. Some well-conserved architectures, such as Huaca Arco Iris, are very far from the core centre. Furthermore, there are heavy factors of decay, mainly caused by illegal excavations, by marine salt and by the devastating phenomenon of El Niño. For these reasons, the majority of the decorative elements are protected by new mud brick walls. Finally, the vastness of the buildings makes difficult to understand their real value, even through a direct visit of the site. In order to overcome the aforesaid problems, we designed, developed and realized the museum exhibition presented in this paper. We named Esquina Multimedia an installation where every corner is aimed to solve a specific problem, providing the tourists with interactive and enjoyable applications.  The virtual tour allows reaching also the unreachable areas. An Augmented Reality (AR application has been developed in order to show ancient artefacts covered by the earth.  A web-browser has been specifically designed to show bas-reliefs, with HD visualization, anaglyph stereoscopic view and a 3D virtual model of both the structures and the bas-reliefs. At the same time, a wall-mounted panel representing a metric 3D reconstruction of the building helps the user to find the artefact position.  Descriptions of the hardware components and of the software details are presented, with particular focus regarding the implementation of the application, arguing how the digital approach could represent the only answer towards a full exploitation of archaeological sites. The paper also deals with the implementation of a web tool, specifically designed to display and browse 3D-Models.

  9. DMDtoolkit: a tool for visualizing the mutated dystrophin protein and predicting the clinical severity in DMD.

    Science.gov (United States)

    Zhou, Jiapeng; Xin, Jing; Niu, Yayun; Wu, Shiwen

    2017-02-02

    Dystrophinopathy is one of the most common human monogenic diseases which results in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). Mutations in the dystrophin gene are responsible for both DMD and BMD. However, the clinical phenotypes and treatments are quite different in these two muscular dystrophies. Since early diagnosis and treatment results in better clinical outcome in DMD it is essential to establish accurate early diagnosis of DMD to allow efficient management. Previously, the reading-frame rule was used to predict DMD versus BMD. However, there are limitations using this traditional tool. Here, we report a novel molecular method to improve the accuracy of predicting clinical phenotypes in dystrophinopathy. We utilized several additional molecular genetic rules or patterns such as "ambush hypothesis", "hidden stop codons" and "exonic splicing enhancer (ESE)" to predict the expressed clinical phenotypes as DMD versus BMD. A computer software "DMDtoolkit" was developed to visualize the structure and to predict the functional changes of mutated dystrophin protein. It also assists statistical prediction for clinical phenotypes. Using the DMDtoolkit we showed that the accuracy of predicting DMD versus BMD raised about 3% in all types of dystrophin mutations when compared with previous methods. We performed statistical analyses using correlation coefficients, regression coefficients, pedigree graphs, histograms, scatter plots with trend lines, and stem and leaf plots. We present a novel DMDtoolkit, to improve the accuracy of clinical diagnosis for DMD/BMD. This computer program allows automatic and comprehensive identification of clinical risk and allowing them the benefit of early medication treatments. DMDtoolkit is implemented in Perl and R under the GNU license. This resource is freely available at http://github.com/zhoujp111/DMDtoolkit , and http://www.dmd-registry.com .

  10. Pattern-reversal visual evoked potentials as a diagnostic tool for ocular malingering

    Directory of Open Access Journals (Sweden)

    Tarciana de Souza Soares

    Full Text Available ABSTRACT Purpose: To investigate the contributions of transient pattern-reversal visual evoked potentials in the diagnosis of ocular malingering at a Brazilian university hospital. Methods: Adult patients with suspected malingering in one or both eyes were referred for visual evoked potential testing. Data from patients' medical records were reviewed and analyzed retrospectively. Data analysis included the distance optotype visual acuity based on a ETDRS retro-illuminated chart and the transient pattern-reversal visual evoked potential parameters of latency (milliseconds and amplitude (microvolts for the P100 component, using checkerboards with visual subtenses of 15' and 60'. Motivations for malingering were noted. Results: The 20 subjects included 11 (55% women. Patient ages ranged from 21 to 61 years (mean= 45.05 ± 11.76 years; median= 49 years. In 8 patients (6 women, both eyes exhibited reduced visual acuity with normal pattern-reversal visually evoked potential parameters (pure malingerers. The remaining 12 patients (7 men exhibited reduced vision in only 1 eye, with simulated reduced vision in the contralateral eye (exaggerators. Financial motivation was noted in 18 patients (9 men. Conclusion: Normal pattern-reversal visually evoked potential parameters with suspected ocular malingering were observed in a 20 patient cohort. This electrophysiological technique appeared to be useful as a measure of visual pathway integrity in this specific population.

  11. Grammar Charts Analysis: A Tool to Promote Students' Visual Literacy and Autonomous Learning

    Science.gov (United States)

    Nausa T., Ricardo A.

    2007-01-01

    This reflection paper attempts to show how we foreign language (FL) teachers can help our students develop their visual literacy concerning the use of grammar charts to help them to make better sense of the grammar information presented in their textbooks. In the first part, this reflection overviews the concept of visual literacy (VL), its…

  12. An Empirical Comparison of Visualization Tools To Assist Information Retrieval on the Web.

    Science.gov (United States)

    Heo, Misook; Hirtle, Stephen C.

    2001-01-01

    Discusses problems with navigation in hypertext systems, including cognitive overload, and describes a study that tested information visualization techniques to see which best represented the underlying structure of Web space. Considers the effects of visualization techniques on user performance on information searching tasks and the effects of…

  13. Visual Analysis as a design and decision-making tool in the development of a quarry

    Science.gov (United States)

    Randall Boyd Fitzgerald

    1979-01-01

    In order to obtain local and state government approvals, an environmental impact analysis of the mining and reclamation of a proposed hard rock quarry was required. High visibility of the proposed mining area from the adjacent community required a visual impact analysis in the planning and design of the project. The Visual Analysis defined design criteria for the...

  14. Deaf Readers and Phrasal Verbs: Instructional Efficacy of Chunking as a Visual Tool

    Science.gov (United States)

    Atwell, William R.

    2013-01-01

    The purpose of this study was to examine the effectiveness of a visual strategy that of chunking or visually bracketing phrasal verbs in sentences in short stories. A descriptive case study design was used for this study to compare the two instructional strategies. In this study, stories were presented to 14 severely and profound deaf students…

  15. VID-R and SCAN: Tools and Methods for the Automated Analysis of Visual Records.

    Science.gov (United States)

    Ekman, Paul; And Others

    The VID-R (Visual Information Display and Retrieval) system that enables computer-aided analysis of visual records is composed of a film-to-television chain, two videotape recorders with complete remote control of functions, a video-disc recorder, three high-resolution television monitors, a teletype, a PDP-8, a video and audio interface, three…

  16. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion.

    Science.gov (United States)

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M

    2016-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.

  17. Visual dynamic e-module as a tool to fulfill informational needs and care continuum for diabetic patients

    Directory of Open Access Journals (Sweden)

    Mohan Shinde

    2015-01-01

    Full Text Available Introduction: Diabetes can be envisaged as a lifelong phenomenon having the ominous odds for multisystemic involvement in the duration of disease. The probabilities of the occurrence of these events are influenced by the adopted lifestyle. Hence, information about the disease and lifestyle modification are vital from the perspective of prognostics. This study attempts to explore the potential of a "visual dynamic tool" for imparting knowledge and consequently  received acumen by diabetic patients. Objectives: To appraise the effectiveness of a constructed visual dynamic module (encompassing the various dimensions related to and affected by diabetes by capturing the opinions, perceptions, and experiences of the diabetic patients who underwent intervention through the module. Materials and Methods: A visual e-module with dynamically imposed and animated images in the vernacular (Hindi was prepared. This module was instituted among the diabetic patients in a logical sequence for consecutive 3 days. All the diabetic patients who underwent this intervention were interviewed in depth in order to ascertain the effectiveness of the module. These interviews were analyzed by thematic and framework analyses. Result: The visual module was perceived by the diabetic patients as an optically engaging tool for receiving, connecting, and synthesizing information about diabetes. They sensed and expressed the ease to connect with the images and labeled the received information as inclusive. Conclusion: Initial evidences suggest that visual e-module is an effective and efficient tool for knowledge management in diabetes. This issue may be further explored at diverse academic and clinical settings for gathering more information for efficacy.

  18. Visual analogue scale (VAS) as a monitoring tool for daily changes in asthma symptoms in adolescents: a prospective study

    OpenAIRE

    Rhee, Hyekyun; Belyea, Michael; Mammen, Jennifer

    2017-01-01

    Background Success in asthma management hinges on patients? competency to detect and respond to ever-changing symptom severity. Thus, it is crucial to have reliable, simple, and sustainable methods of symptom monitoring that can be readily incorporated into daily life. Although visual analogue scale (VAS) has been considered as a simple symptom assessment method, its utility as a daily symptom monitoring tool in adolescents is unknown. This study was to determine the concurrent validity of VA...

  19. Social Media and Its Dual Use in Biopreparedness: Communication and Visualization Tools in an Animal Bioterrorism Incident

    DEFF Research Database (Denmark)

    Sjöberg, Elisabeth; Barker, Gary C.; Landgren, Jonas

    2013-01-01

    This article focuses on social media and interactive challenges for emergency organizations during a bioterrorism or agroterrorism incident, and it outlines the dual-use dilemma of social media. Attackers or terrorists can use social media as their modus of operandi, and defenders, including emer...... in stream graphs and networks showing clusters of Twitter and Facebook users. The visualization of social media can be an important preparedness tool in the response to bioterrorism and agroterrorism....

  20. Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences

    Directory of Open Access Journals (Sweden)

    Lee DT

    2007-02-01

    Full Text Available Abstract Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL http://biocomp.iis.sinica.edu.tw/phylomlogo.

  1. An EcologicalVisual Exploration Tool to Support the Analysis of Visual Processing Pathways in Children with Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Dario Cazzato

    2017-12-01

    Full Text Available Recent improvements in the field of assistive technologies have led to innovative solutions aiming at increasing the capabilities of people with disability, helping them in daily activities with applications that span from cognitive impairments to developmental disabilities. In particular, in the case of Autism Spectrum Disorder (ASD, the need to obtain active feedback in order to extract subsequently meaningful data becomes of fundamental importance. In this work, a study about the possibility of understanding the visual exploration in children with ASD is presented. In order to obtain an automatic evaluation, an algorithm for free (i.e., without constraints, nor using additional hardware, infrared (IR light sources or other intrusive methods gaze estimation is employed. Furthermore, no initial calibration is required. It allows the user to freely rotate the head in the field of view of the sensor, and it is insensitive to the presence of eyeglasses, hats or particular hairstyles. These relaxations of the constraints make this technique particularly suitable to be used in the critical context of autism, where the child is certainly not inclined to employ invasive devices, nor to collaborate during calibration procedures.The evaluation of children’s gaze trajectories through the proposed solution is presented for the purpose of an Early Start Denver Model (ESDM program built on the child’s spontaneous interests and game choice delivered in a natural setting.

  2. Visual exploration and analysis of ionospheric scintillation monitoring data: The ISMR Query Tool

    Science.gov (United States)

    Vani, Bruno César; Shimabukuro, Milton Hirokazu; Galera Monico, João Francisco

    2017-07-01

    Ionospheric Scintillations are rapid variations on the phase and/or amplitude of a radio signal as it passes through ionospheric plasma irregularities. The ionosphere is a specific layer of the Earth's atmosphere located approximately between 50 km and 1000 km above the Earth's surface. As Global Navigation Satellite Systems (GNSS) - such as GPS, Galileo, BDS and GLONASS - use radio signals, these variations degrade their positioning service quality. Due to its location, Brazil is one of the places most affected by scintillation in the world. For that reason, ionosphere monitoring stations have been deployed over Brazilian territory since 2011 through cooperative projects between several institutions in Europe and Brazil. Such monitoring stations compose a network that generates a large amount of monitoring data everyday. GNSS receivers deployed at these stations - named Ionospheric Scintillation Monitor Receivers (ISMR) - provide scintillation indices and related signal metrics for available satellites dedicated to satellite-based navigation and positioning services. With this monitoring infrastructure, more than ten million observation values are generated and stored every day. Extracting the relevant information from this huge amount of data was a hard process and required the expertise of computer and geoscience scientists. This paper describes the concepts, design and aspects related to the implementation of the software that has been supporting research on ISMR data - the so-called ISMR Query Tool. Usability and other aspects are also presented via examples of application. This web based software has been designed and developed aiming to ensure insights over the huge amount of ISMR data that is fetched every day on an integrated platform. The software applies and adapts time series mining and information visualization techniques to extend the possibilities of exploring and analyzing ISMR data. The software is available to the scientific community through the

  3. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers

    Science.gov (United States)

    Pabinger, Stephan; Ernst, Karina; Pulverer, Walter; Kallmeyer, Rainer; Valdes, Ana M.; Metrustry, Sarah; Katic, Denis; Nuzzo, Angelo; Kriegner, Albert; Vierlinger, Klemens; Weinhaeusel, Andreas

    2016-01-01

    Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM). Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage. TABSAT is freely

  4. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers.

    Science.gov (United States)

    Pabinger, Stephan; Ernst, Karina; Pulverer, Walter; Kallmeyer, Rainer; Valdes, Ana M; Metrustry, Sarah; Katic, Denis; Nuzzo, Angelo; Kriegner, Albert; Vierlinger, Klemens; Weinhaeusel, Andreas

    2016-01-01

    Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM). Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage. TABSAT is freely

  5. A New Multifunctional GES DAAC Data Processing and Visualization Tool for Land, Ocean and Atmosphere MODIS Data

    Science.gov (United States)

    Gonzales, L.; Deroo, C.; Ouzounov, D.; Ahmad, S.; Koziana, J.; Leptoukh, G.; Savtchenko, A.; Serafino, G.; Sharma, A.; Qu, J.

    2001-12-01

    The unique position of the NASA Goddard Earth Sciences Distributed Active Archive Center (GES DAAC) as an intermediary between users and MODIS data led us to explore and develop tools that could help users access and manipulate data. Currently all available tools are not able to meet the MODIS data processing requirements, which are critical at the GES DAAC. Our goal was to unify the strengths of the current tools and add new features in a new tool intended to visualize, validate, and analyze MODIS data. HDFLook-MODIS is a result of joint collaboration between LOA USTL, France, and GES DAAC and is based on the very popular MSPHINX (http://www-loa.univ-lille1.fr/informatique/anim.html) tool philosophy. Created as a flexible modular tool, is it easy to update, add new features, and is free to users obtaining it from the GES DAAC. HDFLook-MODIS helps MODIS Data Support Team significantly to visualize, validate and analyze MODIS data, and also is to be used for batch-mode local processing. Main features of HDFLook-MODIS are: 1) Accessing and visualization of all swath (level-1, and 2) and gridded (level-3 and 4) MODIS radiometric and geolocation, atmosphere, land, and ocean products; 2) Re-mapping of swath data to world map. Geo-projection conversion. Reprojection the initial projection into several pre defined selection; 3) Interactive and batch mode capabilities; 4) Subsetting features - availability of parameter, band, and spatial subsetting; 5) Multi-granule processing - Mosaic and stitch capabilities; 6) Displays ancillary/data attributes; 7) Data conversion- from scaled quantities to physical units. Format conversion- HDF-EOS to ASCII, Binary, JPEG, GIS (Geo Tiff shape files); 8) Aerosol and other ancillary data available from the ground based sun photometer measurements (AERONET data bank) for the atmospheric correction and validation of some atmospheric products. HDFLook-MODIS is developed for XWindows computer envorment and has been tested on SGI and Linux

  6. VisPortal: Deploying grid-enabled visualization tools through a web-portal interface

    Energy Technology Data Exchange (ETDEWEB)

    Bethel, Wes; Siegerist, Cristina; Shalf, John; Shetty, Praveenkumar; Jankun-Kelly, T.J.; Kreylos, Oliver; Ma, Kwan-Liu

    2003-06-09

    The LBNL/NERSC Visportal effort explores ways to deliver advanced Remote/Distributed Visualization (RDV) capabilities through a Grid-enabled web-portal interface. The effort focuses on latency tolerant distributed visualization algorithms, GUI designs that are more appropriate for the capabilities of web interfaces, and refactoring parallel-distributed applications to work in a N-tiered component deployment strategy. Most importantly, our aim is to leverage commercially-supported technology as much as possible in order to create a deployable, supportable, and hence viable platform for delivering grid-based visualization services to collaboratory users.

  7. Web-based Data Exploration, Exploitation and Visualization Tools for Satellite Sensor VIS/IR Calibration Applications

    Science.gov (United States)

    Gopalan, A.; Doelling, D. R.; Scarino, B. R.; Chee, T.; Haney, C.; Bhatt, R.

    2016-12-01

    The CERES calibration group at NASA/LaRC has developed and deployed a suite of online data exploration and visualization tools targeted towards a range of spaceborne VIS/IR imager calibration applications for the Earth Science community. These web-based tools are driven by the open-source R (Language for Statistical Computing and Visualization) with a web interface for the user to customize the results according to their application. The tool contains a library of geostationary and sun-synchronous imager spectral response functions (SRF), incoming solar spectra, SCIAMACHY and Hyperion Earth reflected visible hyper-spectral data, and IASI IR hyper-spectral data. The suite of six specific web-based tools was designed to provide critical information necessary for sensor cross-calibration. One of the challenges of sensor cross-calibration is accounting for spectral band differences and may introduce biases if not handled properly. The spectral band adjustment factors (SBAF) are a function of the earth target, atmospheric and cloud conditions or scene type and angular conditions, when obtaining sensor radiance pairs. The SBAF will need to be customized for each inter-calibration target and sensor pair. The advantages of having a community open source tool are: 1) only one archive of SCIAMACHY, Hyperion, and IASI datasets needs to be maintained, which is on the order of 50TB. 2) the framework will allow easy incorporation of new satellite SRFs and hyper-spectral datasets and associated coincident atmospheric and cloud properties, such as PW. 3) web tool or SBAF algorithm improvements or suggestions when incorporated can benefit the community at large. 4) The customization effort is on the user rather than on the host. In this paper we discuss each of these tools in detail and explore the variety of advanced options that can be used to constrain the results along with specific use cases to highlight the value-added by these datasets.

  8. Visinets: a web-based pathway modeling and dynamic visualization tool

    National Research Council Canada - National Science Library

    Spychala, Jozef; Spychala, Pawel; Gomez, Shawn; Weinreb, Gabriel E

    2015-01-01

    In this report we describe a novel graphically oriented method for pathway modeling and a software package that allows for both modeling and visualization of biological networks in a user-friendly format...

  9. Visinets: A Web-Based Pathway Modeling and Dynamic Visualization Tool: e0123773

    National Research Council Canada - National Science Library

    Jozef Spychala; Pawel Spychala; Shawn Gomez; Gabriel E Weinreb

    2015-01-01

      In this report we describe a novel graphically oriented method for pathway modeling and a software package that allows for both modeling and visualization of biological networks in a user-friendly format...

  10. LSIVIEWER 2.0 – A CLIENT-ORIENTED ONLINE VISUALIZATION TOOL FOR GEOSPATIAL VECTOR DATA

    OpenAIRE

    K. Manikanta; K S Rajan

    2017-01-01

    Geospatial data visualization systems have been predominantly through applications that are installed and run in a desktop environment. Over the last decade, with the advent of web technologies and its adoption by Geospatial community, the server-client model for data handling, data rendering and visualization respectively has been the most prevalent approach in Web-GIS. While the client devices have become functionally more powerful over the recent years, the above model has largely...

  11. A new tool for virtual scientific and autostereoscopic visualization of EAST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: lidan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Xiao, B.J.; Xia, J.Y.; Wang, K.R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui (China); Chen, S.L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Luo, W.L. [709th Research lnstitute, China Shipbuilding lndustry Corporation, Wuhan, Hubei (China)

    2016-11-15

    Highlights: • 3D effect of the virtual EAST has been improved and data visualization has been realized in the ASEAST system. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, data visualization and model visualization. • QT libraries are adopted to realize the cross-platform and impressive graphical interface. • In order to manage the models, the web-based model manager system is constructed. - Abstract: The Experimental Advanced Superconducting Tokamak (EAST) Device began operation in 2006. EAST visualization work has been paid more and more attention for simulating its running state and inner structure. The VEAST system had been developed to display the 3D model of EAST facility and some diagnostic data based on Java3D. Compared with the VEAST system, a new system named autosterescopic scientific EAST (ASEAST) using C/S (Client/Server) structure in combination with the technology of OpenGL and an open-source software system for 3D computer graphics and visualization called VTK (Visualization Toolkit) and the Qt5 libraries for the graphical user interface (GUI) has been developed to improve the 3D effect of the virtual EAST and visualize the experimental data. The ASEAST can be used to get access to the information of EAST and physical properties. In addition, as a general system, ASEAST supports a wide variety of 3D formats. The visualization result can be output in the corresponding format of the input. In order to improve the rendering speed, we used the classic QEM algorithm to simplify the models in preprocess stage. As for the 3D effect, we made an investigation and the survey revealed that the system had good 3D effect.

  12. Toward Mixed Method Evaluations of Scientific Visualizations and Design Process as an Evaluation Tool

    Science.gov (United States)

    Jackson, Bret; Coffey, Dane; Thorson, Lauren; Schroeder, David; Ellingson, Arin M.; Nuckley, David J.

    2017-01-01

    In this position paper we discuss successes and limitations of current evaluation strategies for scientific visualizations and argue for embracing a mixed methods strategy of evaluation. The most novel contribution of the approach that we advocate is a new emphasis on employing design processes as practiced in related fields (e.g., graphic design, illustration, architecture) as a formalized mode of evaluation for data visualizations. To motivate this position we describe a series of recent evaluations of scientific visualization interfaces and computer graphics strategies conducted within our research group. Complementing these more traditional evaluations our visualization research group also regularly employs sketching, critique, and other design methods that have been formalized over years of practice in design fields. Our experience has convinced us that these activities are invaluable, often providing much more detailed evaluative feedback about our visualization systems than that obtained via more traditional user studies and the like. We believe that if design-based evaluation methodologies (e.g., ideation, sketching, critique) can be taught and embraced within the visualization community then these may become one of the most effective future strategies for both formative and summative evaluations. PMID:28944349

  13. DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool.

    Science.gov (United States)

    Gouws, André; Woods, Will; Millman, Rebecca; Morland, Antony; Green, Gary

    2009-01-01

    Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data.

  14. DataViewer3D: An open-source, cross-platform multi-modal neuroimaging data visualization tool

    Directory of Open Access Journals (Sweden)

    Andre D Gouws

    2009-03-01

    Full Text Available Integration and display of results from multiple neuroimaging modalities (e.g. MRI, MEG, EEG relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK for 2D and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay. Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additonal format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data.

  15. 'tomo_display' and 'vol_tools': IDL VM Packages for Tomography Data Reconstruction, Processing, and Visualization

    Science.gov (United States)

    Rivers, M. L.; Gualda, G. A.

    2009-05-01

    One of the challenges in tomography is the availability of suitable software for image processing and analysis in 3D. We present here 'tomo_display' and 'vol_tools', two packages created in IDL that enable reconstruction, processing, and visualization of tomographic data. They complement in many ways the capabilities offered by Blob3D (Ketcham 2005 - Geosphere, 1: 32-41, DOI: 10.1130/GES00001.1) and, in combination, allow users without programming knowledge to perform all steps necessary to obtain qualitative and quantitative information using tomographic data. The package 'tomo_display' was created and is maintained by Mark Rivers. It allows the user to: (1) preprocess and reconstruct parallel beam tomographic data, including removal of anomalous pixels, ring artifact reduction, and automated determination of the rotation center, (2) visualization of both raw and reconstructed data, either as individual frames, or as a series of sequential frames. The package 'vol_tools' consists of a series of small programs created and maintained by Guilherme Gualda to perform specific tasks not included in other packages. Existing modules include simple tools for cropping volumes, generating histograms of intensity, sample volume measurement (useful for porous samples like pumice), and computation of volume differences (for differential absorption tomography). The module 'vol_animate' can be used to generate 3D animations using rendered isosurfaces around objects. Both packages use the same NetCDF format '.volume' files created using code written by Mark Rivers. Currently, only 16-bit integer volumes are created and read by the packages, but floating point and 8-bit data can easily be stored in the NetCDF format as well. A simple GUI to convert sequences of tiffs into '.volume' files is available within 'vol_tools'. Both 'tomo_display' and 'vol_tools' include options to (1) generate onscreen output that allows for dynamic visualization in 3D, (2) save sequences of tiffs to disk

  16. SeqX: a tool to detect, analyze and visualize residue co-locations in protein and nucleic acid structures

    Directory of Open Access Journals (Sweden)

    Fördös Gergely

    2005-07-01

    Full Text Available Abstract Background The interacting residues of protein and nucleic acid sequences are close to each other – they are co-located. Structure databases (like Protein Data Bank, PDB and Nucleic Acid Data Bank, NDB contain all information about these co-locations; however it is not an easy task to penetrate this complex information. We developed a JAVA tool, called SeqX for this purpose. Results SeqX tool is useful to detect, analyze and visualize residue co-locations in protein and nucleic acid structures. The user a. selects a structure from PDB; b. chooses an atom that is commonly present in every residues of the nucleic acid and/or protein structure(s c. defines a distance from these atoms (3–15 Å. The SeqX tool detects every residue that is located within the defined distances from the defined "backbone" atom(s; provides a DotPlot-like visualization (Residues Contact Map, and calculates the frequency of every possible residue pairs (Residue Contact Table in the observed structure. It is possible to exclude +/- 1 to 10 neighbor residues in the same polymeric chain from detection, which greatly improves the specificity of detections (up to 60% when tested on dsDNA. Results obtained on protein structures showed highly significant correlations with results obtained from literature (p Conclusion The tool is simple and easy to use and provides a quick and reliable visualization and analyses of residue co-locations in protein and nucleic acid structures. Availability and requirements http://janbiro.com/Downloads.html SeqX, Java J2SE Runtime Environment 5.0 (available from [see Additional file 1] http://www.sun.com and at least a 1 GHz processor and with a minimum 256 Mb RAM. Source codes are available from the authors. Additional File 1 SeqX_1.041_05601.jar. see this article Click here for file

  17. Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates.

    Science.gov (United States)

    Bhat, Hema Balakrishna; Ishitsuka, Reiko; Inaba, Takehiko; Murate, Motohide; Abe, Mitsuhiro; Makino, Asami; Kohyama-Koganeya, Ayako; Nagao, Kohjiro; Kurahashi, Atsushi; Kishimoto, Takuma; Tahara, Michiru; Yamano, Akinori; Nagamune, Kisaburo; Hirabayashi, Yoshio; Juni, Naoto; Umeda, Masato; Fujimori, Fumihiro; Nishibori, Kozo; Yamaji-Hasegawa, Akiko; Greimel, Peter; Kobayashi, Toshihide

    2015-09-01

    Ceramide phosphoethanolamine (CPE), a sphingomyelin analog, is a major sphingolipid in invertebrates and parasites, whereas only trace amounts are present in mammalian cells. In this study, mushroom-derived proteins of the aegerolysin family—pleurotolysin A2 (PlyA2; K(D) = 12 nM), ostreolysin (Oly; K(D) = 1.3 nM), and erylysin A (EryA; K(D) = 1.3 nM)—strongly associated with CPE/cholesterol (Chol)-containing membranes, whereas their low affinity to sphingomyelin/Chol precluded establishment of the binding kinetics. Binding specificity was determined by multilamellar liposome binding assays, supported bilayer assays, and solid-phase studies against a series of neutral and negatively charged lipid classes mixed 1:1 with Chol or phosphatidylcholine. No cross-reactivity was detected with phosphatidylethanolamine. Only PlyA2 also associated with CPE, independent of Chol content (K(D) = 41 μM), rendering it a suitable tool for visualizing CPE in lipid-blotting experiments and biologic samples from sterol auxotrophic organisms. Visualization of CPE enrichment in the CNS of Drosophila larvae (by PlyA2) and in the bloodstream form of the parasite Trypanosoma brucei (by EryA) by fluorescence imaging demonstrated the versatility of aegerolysin family proteins as efficient tools for detecting and visualizing CPE. © FASEB.

  18. SNPexp - A web tool for calculating and visualizing correlation between HapMap genotypes and gene expression levels

    Directory of Open Access Journals (Sweden)

    Franke Andre

    2010-12-01

    Full Text Available Abstract Background Expression levels for 47294 transcripts in lymphoblastoid cell lines from all 270 HapMap phase II individuals, and genotypes (both HapMap phase II and III of 3.96 million single nucleotide polymorphisms (SNPs in the same individuals are publicly available. We aimed to generate a user-friendly web based tool for visualization of the correlation between SNP genotypes within a specified genomic region and a gene of interest, which is also well-known as an expression quantitative trait locus (eQTL analysis. Results SNPexp is implemented as a server-side script, and publicly available on this website: http://tinyurl.com/snpexp. Correlation between genotype and transcript expression levels are calculated by performing linear regression and the Wald test as implemented in PLINK and visualized using the UCSC Genome Browser. Validation of SNPexp using previously published eQTLs yielded comparable results. Conclusions SNPexp provides a convenient and platform-independent way to calculate and visualize the correlation between HapMap genotypes within a specified genetic region anywhere in the genome and gene expression levels. This allows for investigation of both cis and trans effects. The web interface and utilization of publicly available and widely used software resources makes it an attractive supplement to more advanced bioinformatic tools. For the advanced user the program can be used on a local computer on custom datasets.

  19. Visualizing the Cardiac Cycle: A Useful Tool to Promote Student Understanding

    Directory of Open Access Journals (Sweden)

    Ivan Shun Ho

    2011-03-01

    Full Text Available The cardiac cycle is an important concept presented in human anatomy and physiology courses. At Kingsborough Community College, all Allied Health majors taking Anatomy & Physiology must understand the cardiac cycle to grasp more advanced concepts. Contemporary textbooks illustrate the cardiac cycle’s concurrent events via linear models with overlapping line segments as physiological readouts. This presentation is appropriate for reference but, in the interactive classroom the promotion of understanding through clear, concise visual cues is essential. Muzio and Pilchman created a diagram to summarize events of the cardiac cycle. After discussions with one of the authors, I modified the diagram to aid visualization of the cycle and emphasize it as a repetitive, continuous process. A flow diagram presenting the portions of the cycle individually and progressively was also constructed. Three labeled phases are made from the diagram, based on grouped events occurring at different points. The simple, compartmentalized, cyclical diagram presented here promotes understanding of the cardiac cycle visually.

  20. Effects of Various Sketching Tools on Visual Thinking in Idea Development

    Science.gov (United States)

    Chu, Po Ying; Hung, Hsiu Yen; Wu, Chih Fu; Liu, Yen Te

    2017-01-01

    Due to the wide application of digital tools and the improvement in interactive technologies, design thinking might change in digital world comparing to that in traditional design process. This study aims to explore the difference of design thinking between three kinds of sketching tools, i.e. hand-sketch, tablet, and pen-input display, by means…

  1. TextTile: An Interactive Visualization Tool for Seamless Exploratory Analysis of Structured Data and Unstructured Text.

    Science.gov (United States)

    Felix, Cristian; Pandey, Anshul Vikram; Bertini, Enrico

    2017-01-01

    We describe TextTile, a data visualization tool for investigation of datasets and questions that require seamless and flexible analysis of structured data and unstructured text. TextTile is based on real-world data analysis problems gathered through our interaction with a number of domain experts and provides a general purpose solution to such problems. The system integrates a set of operations that can interchangeably be applied to the structured as well as to unstructured text part of the data to generate useful data summaries. Such summaries are then organized in visual tiles in a grid layout to allow their analysis and comparison. We validate TextTile with task analysis, use cases and a user study showing the system can be easily learned and proficiently used to carry out nontrivial tasks.

  2. A New Tool for Collaborative Video Search via Content-based Retrieval and Visual Inspection

    NARCIS (Netherlands)

    Hürst, W.O.; Ip Vai Ching, Algernon; Hudelist, Marco A.; Primus, Manfred J.; Schoeffmann, Klaus; Beecks, Chrisitan

    2016-01-01

    We present a new approach for collaborative video search and video browsing relying on a combination of traditional, indexbased video retrieval complemented with large-scale human-based visual inspection. In particular, a traditional PC interface is used for query-based search using advanced

  3. Evaluating the Interactive Learning Tool Simreal+ for Visualizing and Simulating Mathematical Concepts

    Science.gov (United States)

    Hadjerrouit, Said

    2015-01-01

    This research study aims at evaluating the suitability of SimReal+ for effective use in teacher education. SimReal+ was originally developed to teach mathematics in universities, but it is has been recently improved to include school mathematics. The basic idea of SimReal+ is that the visualization of mathematical concepts is a powerful technique…

  4. Knowledge Visualizations: A Tool to Achieve Optimized Operational Decision Making and Data Integration

    Science.gov (United States)

    2015-06-01

    27 3. Intelligence Collection .......................................................................28 4. Semiotics and Visualization... Language DSS Decision Support Systems DTD Deployable Training Division DWM Digital World Model EEI Essential Elements of Information EEFI...Vehicle UPS United Parcel Service USMC United States Marine Corps XML Extensible Markup Language xvi THIS PAGE INTENTIONALLY LEFT BLANK

  5. Using Molecular Visualization to Explore Protein Structure and Function and Enhance Student Facility with Computational Tools

    Science.gov (United States)

    Terrell, Cassidy R.; Listenberger, Laura L.

    2017-01-01

    Recognizing that undergraduate students can benefit from analysis of 3D protein structure and function, we have developed a multiweek, inquiry-based molecular visualization project for Biochemistry I students. This project uses a virtual model of cyclooxygenase-1 (COX-1) to guide students through multiple levels of protein structure analysis. The…

  6. Steady-state visual evoked potentials as a research tool in social affective neuroscience.

    Science.gov (United States)

    Wieser, Matthias J; Miskovic, Vladimir; Keil, Andreas

    2016-12-01

    Like many other primates, humans place a high premium on social information transmission and processing. One important aspect of this information concerns the emotional state of other individuals, conveyed by distinct visual cues such as facial expressions, overt actions, or by cues extracted from the situational context. A rich body of theoretical and empirical work has demonstrated that these socioemotional cues are processed by the human visual system in a prioritized fashion, in the service of optimizing social behavior. Furthermore, socioemotional perception is highly dependent on situational contexts and previous experience. Here, we review current issues in this area of research and discuss the utility of the steady-state visual evoked potential (ssVEP) technique for addressing key empirical questions. Methodological advantages and caveats are discussed with particular regard to quantifying time-varying competition among multiple perceptual objects, trial-by-trial analysis of visual cortical activation, functional connectivity, and the control of low-level stimulus features. Studies on facial expression and emotional scene processing are summarized, with an emphasis on viewing faces and other social cues in emotional contexts, or when competing with each other. Further, because the ssVEP technique can be readily accommodated to studying the viewing of complex scenes with multiple elements, it enables researchers to advance theoretical models of socioemotional perception, based on complex, quasinaturalistic viewing situations. © 2016 Society for Psychophysiological Research.

  7. Student profiling on university co-curriculum activities using data visualization tools

    Science.gov (United States)

    Jamil, Jastini Mohd.; Shaharanee, Izwan Nizal Mohd

    2017-11-01

    Co-curricular activities are playing a vital role in the development of a holistic student. Co-curriculum can be described as an extension of the formal learning experiences in a course or academic program. There are many co-curriculum activities such as students' participation in sports, volunteerism, leadership, entrepreneurship, uniform body, student council, and other social events. The number of student involves in co-curriculum activities are large, thus creating an enormous volume of data including their demographic facts, academic performance and co-curriculum types. The task for discovering and analyzing these information becomes increasingly difficult and hard to comprehend. Data visualization offer a better ways in handling with large volume of information. The need for an understanding of these various co-curriculum activities and their effect towards student performance are essential. Visualizing these information can help related stakeholders to become aware of hidden and interesting information from large amount of data drowning in their student data. The main objective of this study is to provide a clearer understanding of the different trends hidden in the student co-curriculum activities data with related to their activities and academic performances. The data visualization software was used to help visualize the data extracted from the database.

  8. Genoviz Software Development Kit: Java tool kit for building genomics visualization applications

    Directory of Open Access Journals (Sweden)

    Chervitz Stephen A

    2009-08-01

    Full Text Available Abstract Background Visualization software can expose previously undiscovered patterns in genomic data and advance biological science. Results The Genoviz Software Development Kit (SDK is an open source, Java-based framework designed for rapid assembly of visualization software applications for genomics. The Genoviz SDK framework provides a mechanism for incorporating adaptive, dynamic zooming into applications, a desirable feature of genome viewers. Visualization capabilities of the Genoviz SDK include automated layout of features along genetic or genomic axes; support for user interactions with graphical elements (Glyphs in a map; a variety of Glyph sub-classes that promote experimentation with new ways of representing data in graphical formats; and support for adaptive, semantic zooming, whereby objects change their appearance depending on zoom level and zooming rate adapts to the current scale. Freely available demonstration and production quality applications, including the Integrated Genome Browser, illustrate Genoviz SDK capabilities. Conclusion Separation between graphics components and genomic data models makes it easy for developers to add visualization capability to pre-existing applications or build new applications using third-party data models. Source code, documentation, sample applications, and tutorials are available at http://genoviz.sourceforge.net/.

  9. SlicerAstro : A 3-D interactive visual analytics tool for HI data

    NARCIS (Netherlands)

    Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Fillion-Robin, J. C.; Yu, L.

    SKA precursors are capable of detecting hundreds of galaxies in HI in a single 12 h pointing. In deeper surveys one will probe more easily faint HI structures, typically located in the vicinity of galaxies, such as tails, filaments, and extraplanar gas. The importance of interactive visualization in

  10. 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data

    National Research Council Canada - National Science Library

    Kuo, Tien-Chueh; Tian, Tze-Feng; Tseng, Yufeng Jane

    2013-01-01

    .... The 3Omics one-click web tool was developed to visualize and rapidly integrate multiple human inter- or intra-transcriptomic, proteomic, and metabolomic data by combining five commonly used analyses...

  11. GenomeCAT: a versatile tool for the analysis and integrative visualization of DNA copy number variants.

    Science.gov (United States)

    Tebel, Katrin; Boldt, Vivien; Steininger, Anne; Port, Matthias; Ebert, Grit; Ullmann, Reinhard

    2017-01-06

    The analysis of DNA copy number variants (CNV) has increasing impact in the field of genetic diagnostics and research. However, the interpretation of CNV data derived from high resolution array CGH or NGS platforms is complicated by the considerable variability of the human genome. Therefore, tools for multidimensional data analysis and comparison of patient cohorts are needed to assist in the discrimination of clinically relevant CNVs from others. We developed GenomeCAT, a standalone Java application for the analysis and integrative visualization of CNVs. GenomeCAT is composed of three modules dedicated to the inspection of single cases, comparative analysis of multidimensional data and group comparisons aiming at the identification of recurrent aberrations in patients sharing the same phenotype, respectively. Its flexible import options ease the comparative analysis of own results derived from microarray or NGS platforms with data from literature or public depositories. Multidimensional data obtained from different experiment types can be merged into a common data matrix to enable common visualization and analysis. All results are stored in the integrated MySQL database, but can also be exported as tab delimited files for further statistical calculations in external programs. GenomeCAT offers a broad spectrum of visualization and analysis tools that assist in the evaluation of CNVs in the context of other experiment data and annotations. The use of GenomeCAT does not require any specialized computer skills. The various R packages implemented for data analysis are fully integrated into GenomeCATs graphical user interface and the installation process is supported by a wizard. The flexibility in terms of data import and export in combination with the ability to create a common data matrix makes the program also well suited as an interface between genomic data from heterogeneous sources and external software tools. Due to the modular architecture the functionality of

  12. ECR Browser: A Tool For Visualizing And Accessing Data From Comparisons Of Multiple Vertebrate Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Loots, G G; Ovcharenko, I; Stubbs, L; Nobrega, M A

    2004-01-06

    The increasing number of vertebrate genomes being sequenced in draft or finished form provide a unique opportunity to study and decode the language of DNA sequence through comparative genome alignments. However, novel tools and strategies are required to accommodate this increasing volume of genomic information and to facilitate experimental annotation of genome function. Here we present the ECR Browser, a tool that provides an easy and dynamic access to whole genome alignments of human, mouse, rat and fish sequences. This web-based tool (http://ecrbrowser.dcode.org) provides the starting point for discovery of novel genes, identification of distant gene regulatory elements and prediction of transcription factor binding sites. The genome alignment portal of the ECR Browser also permits fast and automated alignment of any user-submitted sequence to the genome of choice. The interconnection of the ECR browser with other DNA sequence analysis tools creates a unique portal for studying and exploring vertebrate genomes.

  13. EMPeror: a tool for visualizing high-throughput microbial community data

    National Research Council Canada - National Science Library

    Vázquez-Baeza, Yoshiki; Pirrung, Meg; Gonzalez, Antonio; Knight, Rob

    2013-01-01

    As microbial ecologists take advantage of high-throughput sequencing technologies to describe microbial communities across ever-increasing numbers of samples, new analysis tools are required to relate...

  14. MAP_CHANNELS: a computation tool to aid in the visualization and characterization of solvent channels in macromolecular crystals.

    Science.gov (United States)

    Juers, Douglas H; Ruffin, Jon

    2014-12-01

    A computation tool is described that facilitates visualization and characterization of solvent channels or pores within macromolecular crystals. A scalar field mapping the shortest distance to protein surfaces is calculated on a grid covering the unit cell and is written as a map file. The map provides a multiscale representation of the solvent channels, which when viewed in standard macromolecular crystallographic software packages gives an intuitive sense of the solvent channel architecture. The map is analysed to yield descriptors of the topology and the morphology of the solvent channels, including bottleneck radii, tortuosity, width variation and anisotropy.

  15. VISUALIZATION IN THE PACKAGE AUTODESK INVENTOR SKETCH GEOMETRY WHEN USING TOOLS IN THE THEORY OF R-FUNCTIONS

    Directory of Open Access Journals (Sweden)

    E. Іvanov

    2015-12-01

    Full Text Available The paper deals with possibility of automation and control of the computational process when using the tools in the theory of R-functions possessing the properties of logic algebra, while not going beyond the elementary functions, make it possible to build the equations of geometric objects with an almost arbitrary shape. And the use of computer graphics makes it posible to represent the equation of the boundar surface and the conical region of the curved tooth coupling and the whole disk in on analytical form with possible visualization in the Autodesk Inventor package.

  16. Web based tools for visualizing imaging data and development of XNATView, a zero footprint image viewer

    Directory of Open Access Journals (Sweden)

    David A Gutman

    2014-05-01

    Full Text Available Advances in web technologies now allow direct visualization of imaging data sets without necessitating the download of large file sets or the installation of software. This allows centralization of file storage and facilitates image review and analysis. XNATView is a light framework recently developed in our lab to visualize DICOM images stored in The Extensible Neuroimaging Archive Toolkit (XNAT. It consists of a PyXNAT-based framework to wrap around the REST API and query the data in XNAT. XNATView was developed to simplify quality assurance, help organize imaging data, and facilitate data sharing for intra- and inter-laboratory collaborations. Its zero-footprint design allows the user to connect to XNAT from a web browser, navigate through projects, experiments, and subjects, and view DICOM images with accompanying metadata all within a single viewing instance.

  17. A Visual Analytic for High-Dimensional Data Exploitation: The Heterogeneous Data-Reduction Proximity Tool

    Science.gov (United States)

    2013-07-01

    technique that effectively combines MDS with the flexibility of mixed-scale Gower’s similarity calculation. The domain of interest for this instantiation...Figure 5 illustrates the overall Unified Modeling Langauge class diagram for the HDPT web application. The associated source code can be found in...National Laboratory (PNNL), Richland, WA, 2011. 3. Börner, K.; Chen, C.; Boyack, K. Visualizing Knowledge Domains , in Blaise Cronin (Ed.), Annual

  18. Creating User-Friendly Tools for Data Analysis and Visualization in K-12 Classrooms: A Fortran Dinosaur Meets Generation Y

    Science.gov (United States)

    Chambers, L. H.; Chaudhury, S.; Page, M. T.; Lankey, A. J.; Doughty, J.; Kern, Steven; Rogerson, Tina M.

    2008-01-01

    During the summer of 2007, as part of the second year of a NASA-funded project in partnership with Christopher Newport University called SPHERE (Students as Professionals Helping Educators Research the Earth), a group of undergraduate students spent 8 weeks in a research internship at or near NASA Langley Research Center. Three students from this group formed the Clouds group along with a NASA mentor (Chambers), and the brief addition of a local high school student fulfilling a mentorship requirement. The Clouds group was given the task of exploring and analyzing ground-based cloud observations obtained by K-12 students as part of the Students' Cloud Observations On-Line (S'COOL) Project, and the corresponding satellite data. This project began in 1997. The primary analysis tools developed for it were in FORTRAN, a computer language none of the students were familiar with. While they persevered through computer challenges and picky syntax, it eventually became obvious that this was not the most fruitful approach for a project aimed at motivating K-12 students to do their own data analysis. Thus, about halfway through the summer the group shifted its focus to more modern data analysis and visualization tools, namely spreadsheets and Google(tm) Earth. The result of their efforts, so far, is two different Excel spreadsheets and a Google(tm) Earth file. The spreadsheets are set up to allow participating classrooms to paste in a particular dataset of interest, using the standard S'COOL format, and easily perform a variety of analyses and comparisons of the ground cloud observation reports and their correspondence with the satellite data. This includes summarizing cloud occurrence and cloud cover statistics, and comparing cloud cover measurements from the two points of view. A visual classification tool is also provided to compare the cloud levels reported from the two viewpoints. This provides a statistical counterpart to the existing S'COOL data visualization tool

  19. A Component Based Astronomical Visualization Tool for Instrument Control and Data Pipeline

    Science.gov (United States)

    Briegel, F.; Berwein, J.; Kittmann, F.

    2008-08-01

    For various instruments developed at the Max-Planck-Institute-Heidelberg there was a need for a highly flexible display and control tool. Many display tools (ximtool, DS9, skycat,..) are available for astronomy, but all this applications are monolitic and can't be easily enriched by plugins for interaction with the graphical display, and other functionality for remote access and control of the instrument and data pipepline. It was developed on top of Trolltechs Cross-Platform Rich Client Development Framework Qt, the modern middleware Internet Communications Engine (ICE) from ZeroC and the template based SOA developer framework for astronomical instrumentation (NICE - see Abstract Juergen Berwein). The display tool is used on the Calar Alto Observatory (Spain) as a guider, for an wide field imager and guider at the Wise Observatory (Israel) and for LBTs interferometer Linc-Nirvana (USA).

  20. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data.

    Science.gov (United States)

    Dhariwal, Achal; Chong, Jasmine; Habib, Salam; King, Irah L; Agellon, Luis B; Xia, Jianguo

    2017-04-26

    The widespread application of next-generation sequencing technologies has revolutionized microbiome research by enabling high-throughput profiling of the genetic contents of microbial communities. How to analyze the resulting large complex datasets remains a key challenge in current microbiome studies. Over the past decade, powerful computational pipelines and robust protocols have been established to enable efficient raw data processing and annotation. The focus has shifted toward downstream statistical analysis and functional interpretation. Here, we introduce MicrobiomeAnalyst, a user-friendly tool that integrates recent progress in statistics and visualization techniques, coupled with novel knowledge bases, to enable comprehensive analysis of common data outputs produced from microbiome studies. MicrobiomeAnalyst contains four modules - the Marker Data Profiling module offers various options for community profiling, comparative analysis and functional prediction based on 16S rRNA marker gene data; the Shotgun Data Profiling module supports exploratory data analysis, functional profiling and metabolic network visualization of shotgun metagenomics or metatranscriptomics data; the Taxon Set Enrichment Analysis module helps interpret taxonomic signatures via enrichment analysis against >300 taxon sets manually curated from literature and public databases; finally, the Projection with Public Data module allows users to visually explore their data with a public reference data for pattern discovery and biological insights. MicrobiomeAnalyst is freely available at http://www.microbiomeanalyst.ca. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Visualization Tools and Techniques for Search and Validation of Large Earth Science Spatial-Temporal Metadata Databases

    Science.gov (United States)

    Baskin, W. E.; Herbert, A.; Kusterer, J.

    2014-12-01

    Spatial-temporal metadata databases are critical components of interactive data discovery services for ordering Earth Science datasets. The development staff at the Atmospheric Science Data Center (ASDC) works closely with satellite Earth Science mission teams such as CERES, CALIPSO, TES, MOPITT, and CATS to create and maintain metadata databases that are tailored to the data discovery needs of the Earth Science community. This presentation focuses on the visualization tools and techniques used by the ASDC software development team for data discovery and validation/optimization of spatial-temporal objects in large multi-mission spatial-temporal metadata databases. The following topics will be addressed: Optimizing the level of detail of spatial temporal metadata to provide interactive spatial query performance over a multi-year Earth Science mission Generating appropriately scaled sensor footprint gridded (raster) metadata from Level1 and Level2 Satellite and Aircraft time-series data granules Performance comparison of raster vs vector spatial granule footprint mask queries in large metadata database and a description of the visualization tools used to assist with this analysis

  2. Performance analysis and optimization of an advanced pharmaceutical wastewater treatment plant through a visual basic software tool (PWWT.VB).

    Science.gov (United States)

    Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha

    2016-05-01

    A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.

  3. Retrieval interval mapping: a tool to visualize the impact of the spectral retrieval range on differential optical absorption spectroscopy evaluations

    Directory of Open Access Journals (Sweden)

    L. Vogel

    2013-02-01

    Full Text Available Remote sensing via differential optical absorption spectroscopy (DOAS has become a standard technique to identify and quantify trace gases in the atmosphere. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the retrieval parameters for each specific case and particular trace gas of interest. Of these parameters, the retrieval wavelength range is one of the most important ones. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach for finding the optimal retrieval wavelength range and quantitative assessment is missing. Here we present a novel tool to visualize the effect of different evaluation wavelength ranges. It is based on mapping retrieved column densities in the retrieval wavelength space and thus visualizing the consequences of different choices of spectral retrieval ranges caused by slightly erroneous absorption cross sections, cross correlations and instrumental features. Based on the information gathered, an optimal retrieval wavelength range may be determined systematically.

    The technique is demonstrated using examples of a theoretical study of BrO retrievals for stratospheric BrO and BrO measurements in volcanic plumes. However, due to the general nature of the tool, it is applicable to any type of DOAS retrieval (active or passive.

  4. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0206

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  5. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0223

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  6. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0204

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  7. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0227

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  8. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0255

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  9. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0226

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  10. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0215

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  11. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0207

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  12. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0214

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  13. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0209

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  14. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0212

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  15. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0231

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  16. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0222

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  17. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0201

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  18. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0215

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  19. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0253

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  20. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0208

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  1. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0217

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  2. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0210

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  3. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0219

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  4. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0221

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  5. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0209

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  6. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0220

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  7. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0217

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  8. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0224

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  9. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0216

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.; Lytle, John

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  10. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0205

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  11. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0228

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  12. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0213

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  13. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0221

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  14. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0213

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  15. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0212

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  16. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0225

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  17. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0216

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  18. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0211

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  19. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0210

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  20. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0230

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  1. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0214

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  2. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0202

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  3. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0218

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  4. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0203

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  5. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0229

    Science.gov (United States)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  6. The Computerized Perceptual Motor Skills Assessment: A new visual perceptual motor skills evaluation tool for children in early elementary grades.

    Science.gov (United States)

    Howe, Tsu-Hsin; Chen, Hao-Ling; Lee, Candy Chieh; Chen, Ying-Dar; Wang, Tien-Ni

    2017-10-01

    Visual perceptual motor skills have been proposed as underlying courses of handwriting difficulties. However, there is no evaluation tool currently available to assess these skills comprehensively and to serve as a sensitive measure. The purpose of this study was to validate the Computerized Perceptual Motor Skills Assessment (CPMSA), a newly developed evaluation tool for children in early elementary grades. Its test-retest reliability, concurrent validity, discriminant validity, and responsiveness were examined in 43 typically developing children and 26 children with handwriting difficulty. The CPMSA demonstrated excellent reliability across all subtests with intra-class correlation coefficients (ICCs)≥0.80. Significant moderate correlations between the domains of the CPMSA and corresponding gold standards including Beery VMI, the TVPS-3, and the eye-hand coordination subtest of the DTVP-2 demonstrated good concurrent validity. In addition, the CPMSA showed evidence of discriminant validity in samples of children with and without handwriting difficulty. This article provides evidence in support of the CPMSA. The CPMSA is a reliable, valid, and promising measure of visual perceptual motor skills for children in early elementary grades. Directions for future study and improvements to the assessment are discussed. Copyright © 2017. Published by Elsevier Ltd.

  7. An Integrated Approach to the Use of Complementary Visual Learning Tools in an Undergraduate Microbiology Class

    Science.gov (United States)

    McCabe, Bernadette

    2011-01-01

    The ability to appreciate the inter-connectedness of complex biological relationships can be difficult for many students. Graphical knowledge in the form of concept maps and flow charts are learning tools which can assist students to recognise the inter-connectivity. This report focuses on a trial which incorporates these two related visual…

  8. SBGNViz: A Tool for Visualization and Complexity Management of SBGN Process Description Maps.

    Directory of Open Access Journals (Sweden)

    Mecit Sari

    Full Text Available Information about cellular processes and pathways is becoming increasingly available in detailed, computable standard formats such as BioPAX and SBGN. Effective visualization of this information is a key recurring requirement for biological data analysis, especially for -omic data. Biological data analysis is rapidly migrating to web based platforms; thus there is a substantial need for sophisticated web based pathway viewers that support these platforms and other use cases.Towards this goal, we developed a web based viewer named SBGNViz for process description maps in SBGN (SBGN-PD. SBGNViz can visualize both BioPAX and SBGN formats. Unique features of SBGNViz include the ability to nest nodes to arbitrary depths to represent molecular complexes and cellular locations, automatic pathway layout, editing and highlighting facilities to enable focus on sub-maps, and the ability to inspect pathway members for detailed information from EntrezGene. SBGNViz can be used within a web browser without any installation and can be readily embedded into web pages. SBGNViz has two editions built with ActionScript and JavaScript. The JavaScript edition, which also works on touch enabled devices, introduces novel methods for managing and reducing complexity of large SBGN-PD maps for more effective analysis.SBGNViz fills an important gap by making the large and fast-growing corpus of rich pathway information accessible to web based platforms. SBGNViz can be used in a variety of contexts and in multiple scenarios ranging from visualization of the results of a single study in a web page to building data analysis platforms.

  9. SBGNViz: A Tool for Visualization and Complexity Management of SBGN Process Description Maps.

    Science.gov (United States)

    Sari, Mecit; Bahceci, Istemi; Dogrusoz, Ugur; Sumer, Selcuk Onur; Aksoy, Bülent Arman; Babur, Özgün; Demir, Emek

    2015-01-01

    Information about cellular processes and pathways is becoming increasingly available in detailed, computable standard formats such as BioPAX and SBGN. Effective visualization of this information is a key recurring requirement for biological data analysis, especially for -omic data. Biological data analysis is rapidly migrating to web based platforms; thus there is a substantial need for sophisticated web based pathway viewers that support these platforms and other use cases. Towards this goal, we developed a web based viewer named SBGNViz for process description maps in SBGN (SBGN-PD). SBGNViz can visualize both BioPAX and SBGN formats. Unique features of SBGNViz include the ability to nest nodes to arbitrary depths to represent molecular complexes and cellular locations, automatic pathway layout, editing and highlighting facilities to enable focus on sub-maps, and the ability to inspect pathway members for detailed information from EntrezGene. SBGNViz can be used within a web browser without any installation and can be readily embedded into web pages. SBGNViz has two editions built with ActionScript and JavaScript. The JavaScript edition, which also works on touch enabled devices, introduces novel methods for managing and reducing complexity of large SBGN-PD maps for more effective analysis. SBGNViz fills an important gap by making the large and fast-growing corpus of rich pathway information accessible to web based platforms. SBGNViz can be used in a variety of contexts and in multiple scenarios ranging from visualization of the results of a single study in a web page to building data analysis platforms.

  10. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Science.gov (United States)

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  11. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Directory of Open Access Journals (Sweden)

    Mingrui Xia

    Full Text Available The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI, we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/.

  12. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  13. Custom Visualization without Real Programming

    DEFF Research Database (Denmark)

    Pantazos, Kostas

    Information Visualization tools have simplified visualization development. Some tools help simple users construct standard visualizations; others help programmers develop custom visualizations. This thesis contributes to the field of Information Visualization and End-User Development. The first c...

  14. The Methods of Cognitive Visualization for the Astronomical Databases Analyzing Tools Development

    Science.gov (United States)

    Vitkovskiy, V.; Gorohov, V.

    2008-08-01

    There are two kinds of computer graphics: the illustrative one and the cognitive one. Appropriate the cognitive pictures not only make evident and clear the sense of complex and difficult scientific concepts, but promote, --- and not so very rarely, --- a birth of a new knowledge. On the basis of the cognitive graphics concept, we worked out the SW-system for visualization and analysis. It allows to train and to aggravate intuition of researcher, to raise his interest and motivation to the creative, scientific cognition, to realize process of dialogue with the very problems simultaneously.

  15. What Does the Future Hold for Scientific Journals? Visual Abstracts and Other Tools for Communicating Research.

    Science.gov (United States)

    Nikolian, Vahagn C; Ibrahim, Andrew M

    2017-09-01

    Journals fill several important roles within academic medicine, including building knowledge, validating quality of methods, and communicating research. This section provides an overview of these roles and highlights innovative approaches journals have taken to enhance dissemination of research. As journals move away from print formats and embrace web-based content, design-centered thinking will allow for engagement of a larger audience. Examples of recent efforts in this realm are provided, as well as simplified strategies for developing visual abstracts to improve dissemination via social media. Finally, we hone in on principles of learning and education which have driven these advances in multimedia-based communication in scientific research.

  16. The pyPHaz software, an interactive tool to analyze and visualize results from probabilistic hazard assessments

    Science.gov (United States)

    Tonini, Roberto; Selva, Jacopo; Costa, Antonio; Sandri, Laura

    2014-05-01

    Probabilistic Hazard Assessment (PHA) is becoming an essential tool for risk mitigation policies, since it allows to quantify the hazard due to hazardous phenomena and, differently from the deterministic approach, it accounts for both aleatory and epistemic uncertainties. On the other hand, one of the main disadvantages of PHA methods is that their results are not easy to understand and interpret by people who are not specialist in probabilistic tools. For scientists, this leads to the issue of providing tools that can be easily used and understood by decision makers (i.e., risk managers or local authorities). The work here presented fits into the problem of simplifying the transfer between scientific knowledge and land protection policies, by providing an interface between scientists, who produce PHA's results, and decision makers, who use PHA's results for risk analyses. In this framework we present pyPHaz, an open tool developed and designed to visualize and analyze PHA results due to one or more phenomena affecting a specific area of interest. The software implementation has been fully developed with the free and open-source Python programming language and some featured Python-based libraries and modules. The pyPHaz tool allows to visualize the Hazard Curves (HC) calculated in a selected target area together with different levels of uncertainty (mean and percentiles) on maps that can be interactively created and modified by the user, thanks to a dedicated Graphical User Interface (GUI). Moreover, the tool can be used to compare the results of different PHA models and to merge them, by creating ensemble models. The pyPHaz software has been designed with the features of storing and accessing all the data through a MySQL database and of being able to read as input the XML-based standard file formats defined in the frame of GEM (Global Earthquake Model). This format model is easy to extend also to any other kind of hazard, as it will be shown in the applications

  17. CAGO: a software tool for dynamic visual comparison and correlation measurement of genome organization.

    Directory of Open Access Journals (Sweden)

    Yi-Feng Chang

    Full Text Available CAGO (Comparative Analysis of Genome Organization is developed to address two critical shortcomings of conventional genome atlas plotters: lack of dynamic exploratory functions and absence of signal analysis for genomic properties. With dynamic exploratory functions, users can directly manipulate chromosome tracks of a genome atlas and intuitively identify distinct genomic signals by visual comparison. Signal analysis of genomic properties can further detect inconspicuous patterns from noisy genomic properties and calculate correlations between genomic properties across various genomes. To implement dynamic exploratory functions, CAGO presents each genome atlas in Scalable Vector Graphics (SVG format and allows users to interact with it using a SVG viewer through JavaScript. Signal analysis functions are implemented using R statistical software and a discrete wavelet transformation package waveslim. CAGO is not only a plotter for generating complex genome atlases, but also a platform for exploring genome atlases with dynamic exploratory functions for visual comparison and with signal analysis for comparing genomic properties across multiple organisms. The web-based application of CAGO, its source code, user guides, video demos, and live examples are publicly available and can be accessed at http://cbs.ym.edu.tw/cago.

  18. Visual objects speak louder than words: motor planning and weight in tool use and object transport.

    Science.gov (United States)

    Osiurak, François; Bergot, Morgane; Chainay, Hanna

    2015-11-01

    For theories of embodied cognition, reading a word activates sensorimotor representations in a similar manner to seeing the physical object the word represents. Thus, reading words representing objects of different sizes interfere with motor planning, inducing changes in grip aperture. An outstanding issue is whether word reading can also evoke sensorimotor information about the weight of objects. This issue was addressed in two experiments wherein participants have first to read the name of an object (Experiment 1)/observe the object (Experiment 2) and then to transport versus use bottles of water. The objects presented as primes were either lighter or heavier than the bottles to be grasped. Results indicated that the main parameters of motor planning recorded (initiation times and finger contact points) were not affected by the presentation of words as primes (Experiment 1). By contrast, the presentation of visual objects as primes induced significant changes in these parameters (Experiment 2). Participants changed their way of grasping the bottles, particularly in the use condition. Taken together, these results suggest that the activation of concepts does not automatically evoke sensorimotor representations about the weight of objects, but visual objects do. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Visual Support in Children with Autism Spectrum Development as a Tool for Changing Problem Behavior

    Directory of Open Access Journals (Sweden)

    olpakova L.O.,

    2016-10-01

    Full Text Available The paper presents data of observations made in a group of 10 children with autism spectrum disorder aged 5-8 years experiencing behavioral problems and difficulties with communication and social interaction. A behavioral intervention was carried out in the group basing on the principles of applied behavioral analysis (ABA. Following the primary test and with accordance to the parents’ requests, a team of specialists worked over the period of six months attempting to change problem behaviors and to compensate for academic deficiencies in the children. Each day the specialists along with the parents collected data and introduced necessary corrections into the intervention plans. Since all children in the group could barely understand speech and had much difficulty with communication, one of the core methods employed in the work was visual support which became a basic element in every technique applied. Applying visual supports in education settings as well as at home contributed much to the compensation of the difficulties related to speech understanding and helped decrease the level of anxiety in the children, which, in turn, resulted in an apparent decline in problem behavior and faster progress in the acquisition of academic skills.

  20. Lsiviewer 2.0 - a Client-Oriented Online Visualization Tool for Geospatial Vector Data

    Science.gov (United States)

    Manikanta, K.; Rajan, K. S.

    2017-09-01

    Geospatial data visualization systems have been predominantly through applications that are installed and run in a desktop environment. Over the last decade, with the advent of web technologies and its adoption by Geospatial community, the server-client model for data handling, data rendering and visualization respectively has been the most prevalent approach in Web-GIS. While the client devices have become functionally more powerful over the recent years, the above model has largely ignored it and is still in a mode of serverdominant computing paradigm. In this paper, an attempt has been made to develop and demonstrate LSIViewer - a simple, easy-to-use and robust online geospatial data visualisation system for the user's own data that harness the client's capabilities for data rendering and user-interactive styling, with a reduced load on the server. The developed system can support multiple geospatial vector formats and can be integrated with other web-based systems like WMS, WFS, etc. The technology stack used to build this system is Node.js on the server side and HTML5 Canvas and JavaScript on the client side. Various tests run on a range of vector datasets, upto 35 MB, showed that the time taken to render the vector data using LSIViewer is comparable to a desktop GIS application, QGIS, over an identical system.

  1. LSIVIEWER 2.0 – A CLIENT-ORIENTED ONLINE VISUALIZATION TOOL FOR GEOSPATIAL VECTOR DATA

    Directory of Open Access Journals (Sweden)

    K. Manikanta

    2017-09-01

    Full Text Available Geospatial data visualization systems have been predominantly through applications that are installed and run in a desktop environment. Over the last decade, with the advent of web technologies and its adoption by Geospatial community, the server-client model for data handling, data rendering and visualization respectively has been the most prevalent approach in Web-GIS. While the client devices have become functionally more powerful over the recent years, the above model has largely ignored it and is still in a mode of serverdominant computing paradigm. In this paper, an attempt has been made to develop and demonstrate LSIViewer – a simple, easy-to-use and robust online geospatial data visualisation system for the user’s own data that harness the client’s capabilities for data rendering and user-interactive styling, with a reduced load on the server. The developed system can support multiple geospatial vector formats and can be integrated with other web-based systems like WMS, WFS, etc. The technology stack used to build this system is Node.js on the server side and HTML5 Canvas and JavaScript on the client side. Various tests run on a range of vector datasets, upto 35 MB, showed that the time taken to render the vector data using LSIViewer is comparable to a desktop GIS application, QGIS, over an identical system.

  2. A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium falciparum candidate areas in digitized blood smears.

    Science.gov (United States)

    Linder, Nina; Turkki, Riku; Walliander, Margarita; Mårtensson, Andreas; Diwan, Vinod; Rahtu, Esa; Pietikäinen, Matti; Lundin, Mikael; Lundin, Johan

    2014-01-01

    Microscopy is the gold standard for diagnosis of malaria, however, manual evaluation of blood films is highly dependent on skilled personnel in a time-consuming, error-prone and repetitive process. In this study we propose a method using computer vision detection and visualization of only the diagnostically most relevant sample regions in digitized blood smears. Giemsa-stained thin blood films with P. falciparum ring-stage trophozoites (n = 27) and uninfected controls (n = 20) were digitally scanned with an oil immersion objective (0.1 µm/pixel) to capture approximately 50,000 erythrocytes per sample. Parasite candidate regions were identified based on color and object size, followed by extraction of image features (local binary patterns, local contrast and Scale-invariant feature transform descriptors) used as input to a support vector machine classifier. The classifier was trained on digital slides from ten patients and validated on six samples. The diagnostic accuracy was tested on 31 samples (19 infected and 12 controls). From each digitized area of a blood smear, a panel with the 128 most probable parasite candidate regions was generated. Two expert microscopists were asked to visually inspect the panel on a tablet computer and to judge whether the patient was infected with P. falciparum. The method achieved a diagnostic sensitivity and specificity of 95% and 100% as well as 90% and 100% for the two readers respectively using the diagnostic tool. Parasitemia was separately calculated by the automated system and the correlation coefficient between manual and automated parasitemia counts was 0.97. We developed a decision support system for detecting malaria parasites using a computer vision algorithm combined with visualization of sample areas with the highest probability of malaria infection. The system provides a novel method for blood smear screening with a significantly reduced need for visual examination and has a potential to increase the

  3. A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium falciparum candidate areas in digitized blood smears.

    Directory of Open Access Journals (Sweden)

    Nina Linder

    Full Text Available INTRODUCTION: Microscopy is the gold standard for diagnosis of malaria, however, manual evaluation of blood films is highly dependent on skilled personnel in a time-consuming, error-prone and repetitive process. In this study we propose a method using computer vision detection and visualization of only the diagnostically most relevant sample regions in digitized blood smears. METHODS: Giemsa-stained thin blood films with P. falciparum ring-stage trophozoites (n = 27 and uninfected controls (n = 20 were digitally scanned with an oil immersion objective (0.1 µm/pixel to capture approximately 50,000 erythrocytes per sample. Parasite candidate regions were identified based on color and object size, followed by extraction of image features (local binary patterns, local contrast and Scale-invariant feature transform descriptors used as input to a support vector machine classifier. The classifier was trained on digital slides from ten patients and validated on six samples. RESULTS: The diagnostic accuracy was tested on 31 samples (19 infected and 12 controls. From each digitized area of a blood smear, a panel with the 128 most probable parasite candidate regions was generated. Two expert microscopists were asked to visually inspect the panel on a tablet computer and to judge whether the patient was infected with P. falciparum. The method achieved a diagnostic sensitivity and specificity of 95% and 100% as well as 90% and 100% for the two readers respectively using the diagnostic tool. Parasitemia was separately calculated by the automated system and the correlation coefficient between manual and automated parasitemia counts was 0.97. CONCLUSION: We developed a decision support system for detecting malaria parasites using a computer vision algorithm combined with visualization of sample areas with the highest probability of malaria infection. The system provides a novel method for blood smear screening with a significantly reduced need for

  4. ThManager: An Open Source Tool for Creating and Visualizing SKOS

    Directory of Open Access Journals (Sweden)

    Javier Lacasta

    2007-09-01

    Full Text Available Knowledge organization systems denotes formally represented knowledge that is used within the context of digital libraries to improve data sharing and information retrieval. To increase their use, and to reuse them when possible, it is vital to manage them adequately and to provide them in a standard interchange format. Simple knowledge organization systems (SKOS seem to be the most promising representation for the type of knowledge models used in digital libraries, but there is a lack of tools that are able to properly manage it. This work presents a tool that fills this gap, facilitating their use in different environments and using SKOS as an interchange format.

  5. Gnome View: A tool for visual representation of human genome data

    Energy Technology Data Exchange (ETDEWEB)

    Pelkey, J.E.; Thomas, G.S.; Thurman, D.A.; Lortz, V.B.; Douthart, R.J.

    1993-02-01

    GnomeView is a tool for exploring data generated by the Human Gemone Project. GnomeView provides both graphical and textural styles of data presentation: employs an intuitive window-based graphical query interface: and integrates its underlying genome databases in such a way that the user can navigate smoothly across databases and between different levels of data. This paper describes GnomeView and discusses how it addresses various genome informatics issues.

  6. Quaternion contact ribbons: a new tool for visualizing intra- and intermolecular interactions in proteins.

    Science.gov (United States)

    Albrecht, K; Hart, J; Shaw, A; Dunker, A K

    1996-01-01

    Protein side chain interactions between residues separated by at least one loop or turn or break in the amino acid sequence are called 'nonlocal contacts' in this manuscript, and contiguous sets of such interactions located between segments of secondary structure are called 'contact zones.' A new interactive program, the quaternion contact ribbon tool, has been developed to help protein chemists identify, straighten if twisted, and display contact zones between two neighboring segments of helix.

  7. Usability Testing and Workflow Analysis of the TRADOC Data Visualization Tool

    Science.gov (United States)

    2012-09-01

    code monkeys . Dislikes: User feedback indicating loading in-progress, a progress bar would improve user interface When loading a new data set or...Wt ~~~e _.ina miJhiW) ofllocn tnd cirila.. 10 pC’Iie~ in 1 .-ufty ••U~~ty of’ 1hc O.ca ViW~tblioll Tool (OaViTo)dto\\•tJop:d toy 111.AC·MOM<!~. Tho

  8. DESIGN & ANALYSIS TOOLS AND TECHNIQUES FOR AEROSPACE STRUCTURES IN A 3D VISUAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Radu BISCA

    2009-09-01

    Full Text Available The main objective of this project is to develop a set of tools and to integrate techniques in a software package which is build on structure analysis applications based on Romanian engineers experience in designing and analysing aerospace structures, consolidated with the most recent methods and techniques. The applications automates the structure’s design and analysis processes and facilitate the exchange of technical information between the partners involved in a complex aerospace project without limiting the domain.

  9. A tool to visualize and analyze perfusion data: Development and application of the R package "CTP".

    Science.gov (United States)

    Lirette, Seth T; Smith, Andrew D; Aban, Inmaculada B

    2018-01-01

    Computed tomography perfusion (CTP) is a widely used imaging modality especially in neuroimaging. Despite this, CTP is often prohibitive due to the dearth of free/open-source software. This could have wide-ranging implications for instruction and research. We have implemented an online-available CTP tool built and run completely within the R computing environment. Called from within R, the user can select one of four different methods to construct a cerebral blood flow (CBF) map: (1) max-slope (2) singular value decomposition (3) block circulant singular value decomposition or (4) oscillation minimization singular value decomposition. The four methods are compared against a digital CBF phantom. All four methods generate a CBF map, with the oscillation minimization technique giving the most accurate map. We have constructed an easily accessible teaching and research tool to create a CBF map and made it freely available. We hope this tool will help facilitate understanding of the methods involved in constructing perfusion maps and be a valuable resource to future researchers. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Visual-haptic integration with pliers and tongs: signal "weights" take account of changes in haptic sensitivity caused by different tools.

    Science.gov (United States)

    Takahashi, Chie; Watt, Simon J

    2014-01-01

    When we hold an object while looking at it, estimates from visual and haptic cues to size are combined in a statistically optimal fashion, whereby the "weight" given to each signal reflects their relative reliabilities. This allows object properties to be estimated more precisely than would otherwise be possible. Tools such as pliers and tongs systematically perturb the mapping between object size and the hand opening. This could complicate visual-haptic integration because it may alter the reliability of the haptic signal, thereby disrupting the determination of appropriate signal weights. To investigate this we first measured the reliability of haptic size estimates made with virtual pliers-like tools (created using a stereoscopic display and force-feedback robots) with different "gains" between hand opening and object size. Haptic reliability in tool use was straightforwardly determined by a combination of sensitivity to changes in hand opening and the effects of tool geometry. The precise pattern of sensitivity to hand opening, which violated Weber's law, meant that haptic reliability changed with tool gain. We then examined whether the visuo-motor system accounts for these reliability changes. We measured the weight given to visual and haptic stimuli when both were available, again with different tool gains, by measuring the perceived size of stimuli in which visual and haptic sizes were varied independently. The weight given to each sensory cue changed with tool gain in a manner that closely resembled the predictions of optimal sensory integration. The results are consistent with the idea that different tool geometries are modeled by the brain, allowing it to calculate not only the distal properties of objects felt with tools, but also the certainty with which those properties are known. These findings highlight the flexibility of human sensory integration and tool-use, and potentially provide an approach for optimizing the design of visual-haptic devices.

  11. Visual-haptic integration with pliers and tongs: signal ‘weights’ take account of changes in haptic sensitivity caused by different tools

    Directory of Open Access Journals (Sweden)

    Chie eTakahashi

    2014-02-01

    Full Text Available When we hold an object while looking at it, estimates from visual and haptic cues to size are combined in a statistically optimal fashion, whereby the ‘weight’ given to each signal reflects their relative reliabilities. This allows object properties to be estimated more precisely than would otherwise be possible. Tools such as pliers and tongs systematically perturb the mapping between object size and the hand opening. This could complicate visual-haptic integration because it may alter the reliability of the haptic signal, thereby disrupting the determination of appropriate signal weights. To investigate this we first measured the reliability of haptic size estimates made with virtual pliers-like tools (created using a stereoscopic display and force-feedback robots with different ‘gains’ between hand opening and object size. Haptic reliability in tool use was straightforwardly determined by a combination of sensitivity to changes in hand opening and the effects of tool geometry. The precise pattern of sensitivity to hand opening, which violated Weber’s law, meant that haptic reliability changed with tool gain. We then examined whether the visuo-motor system accounts for these reliability changes. We measured the weight given to visual and haptic stimuli when both were available, again with different tool gains, by measuring the perceived size of stimuli in which visual and haptic sizes were varied independently. The weight given to each sensory cue changed with tool gain in a manner that closely resembled the predictions of optimal sensory integration. The results are consistent with the idea that different tool geometries are modelled by the brain, allowing it to calculate not only the distal properties of objects felt with tools, but also the certainty with which those properties are known. These findings highlight the flexibility of human sensory integration and tool-use, and potentially provide an approach for optimising the

  12. The Open Perimetry Interface: an enabling tool for clinical visual psychophysics.

    Science.gov (United States)

    Turpin, Andrew; Artes, Paul H; McKendrick, Allison M

    2012-01-01

    Perimeters are commercially available instruments for measuring various attributes of the visual field in a clinical setting. They have several advantages over traditional lab-based systems for conducting vision experiments, including built-in gaze tracking and calibration, polished appearance, and attributes to increase participant comfort. Prior to this work, there was no standard to control such instruments, making it difficult and time consuming to use them for novel psychophysical experiments. This paper introduces the Open Perimetry Interface (OPI), a standard set of functions that can be used to control perimeters. Currently the standard is partially implemented in the open-source programming language R on two commercially available instruments: the Octopus 900 (a projection-based bowl perimeter produced by Haag-Streit, Switzerland) and the Heidelberg Edge Perimeter (a CRT-based system produced by Heidelberg Engineering, Germany), allowing these instruments to be used as a platform for psychophysical experimentation.

  13. PFP/ESG: automated protein function prediction servers enhanced with Gene Ontology visualization tool.

    Science.gov (United States)

    Khan, Ishita K; Wei, Qing; Chitale, Meghana; Kihara, Daisuke

    2015-01-15

    Protein function prediction (PFP) is an automated function prediction method that predicts Gene Ontology (GO) annotations for a protein sequence using distantly related sequences and contextual associations of GO terms. Extended similarity group (ESG) is another GO prediction algorithm that makes predictions based on iterative sequence database searches. Here, we provide interactive web servers for the PFP and ESG algorithms that are equipped with an effective visualization of the GO predictions in a hierarchical topology. PFP/ESG servers are freely available at http://kiharalab.org/web/pfp.php and http://kiharalab.org/web/esg.php, or access both at http://kiharalab.org/pfp_esg.php. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Real-time interactive tractography analysis for multimodal brain visualization tool: MultiXplore

    Science.gov (United States)

    Bakhshmand, Saeed M.; de Ribaupierre, Sandrine; Eagleson, Roy

    2017-03-01

    Most debilitating neurological disorders can have anatomical origins. Yet unlike other body organs, the anatomy alone cannot easily provide an understanding of brain functionality. In fact, addressing the challenge of linking structural and functional connectivity remains in the frontiers of neuroscience. Aggregating multimodal neuroimaging datasets may be critical for developing theories that span brain functionality, global neuroanatomy and internal microstructures. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) are main such techniques that are employed to investigate the brain under normal and pathological conditions. FMRI records blood oxygenation level of the grey matter (GM), whereas DTI is able to reveal the underlying structure of the white matter (WM). Brain global activity is assumed to be an integration of GM functional hubs and WM neural pathways that serve to connect them. In this study we developed and evaluated a two-phase algorithm. This algorithm is employed in a 3D interactive connectivity visualization framework and helps to accelerate clustering of virtual neural pathways. In this paper, we will detail an algorithm that makes use of an index-based membership array formed for a whole brain tractography file and corresponding parcellated brain atlas. Next, we demonstrate efficiency of the algorithm by measuring required times for extracting a variety of fiber clusters, which are chosen in such a way to resemble all sizes probable output data files that algorithm will generate. The proposed algorithm facilitates real-time visual inspection of neuroimaging data to further the discovery in structure-function relationship of the brain networks.

  15. Oceans 2.0: Interactive tools for the Visualization of Multi-dimensional Ocean Sensor Data

    Science.gov (United States)

    Biffard, B.; Valenzuela, M.; Conley, P.; MacArthur, M.; Tredger, S.; Guillemot, E.; Pirenne, B.

    2016-12-01

    Ocean Networks Canada (ONC) operates ocean observatories on all three of Canada's coasts. The instruments produce 280 gigabytes of data per day with 1/2 petabyte archived so far. In 2015, 13 terabytes were downloaded by over 500 users from across the world. ONC's data management system is referred to as "Oceans 2.0" owing to its interactive, participative features. A key element of Oceans 2.0 is real time data acquisition and processing: custom device drivers implement the input-output protocol of each instrument. Automatic parsing and calibration takes place on the fly, followed by event detection and quality control. All raw data are stored in a file archive, while the processed data are copied to fast databases. Interactive access to processed data is provided through data download and visualization/quick look features that are adapted to diverse data types (scalar, acoustic, video, multi-dimensional, etc). Data may be post or re-processed to add features, analysis or correct errors, update calibrations, etc. A robust storage structure has been developed consisting of an extensive file system and a no-SQL database (Cassandra). Cassandra is a node-based open source distributed database management system. It is scalable and offers improved performance for big data. A key feature is data summarization. The system has also been integrated with web services and an ERDDAP OPeNDAP server, capable of serving scalar and multidimensional data from Cassandra for fixed or mobile devices.A complex data viewer has been developed making use of the big data capability to interactively display live or historic echo sounder and acoustic Doppler current profiler data, where users can scroll, apply processing filters and zoom through gigabytes of data with simple interactions. This new technology brings scientists one step closer to a comprehensive, web-based data analysis environment in which visual assessment, filtering, event detection and annotation can be integrated.

  16. Matching spatial with ontological brain regions using Java tools for visualization, database access, and integrated data analysis.

    Science.gov (United States)

    Bezgin, Gleb; Reid, Andrew T; Schubert, Dirk; Kötter, Rolf

    2009-01-01

    Brain atlases are widely used in experimental neuroscience as tools for locating and targeting specific brain structures. Delineated structures in a given atlas, however, are often difficult to interpret and to interface with database systems that supply additional information using hierarchically organized vocabularies (ontologies). Here we discuss the concept of volume-to-ontology mapping in the context of macroscopical brain structures. We present Java tools with which we have implemented this concept for retrieval of mapping and connectivity data on the macaque brain from the CoCoMac database in connection with an electronic version of "The Rhesus Monkey Brain in Stereotaxic Coordinates" authored by George Paxinos and colleagues. The software, including our manually drawn monkey brain template, can be downloaded freely under the GNU General Public License. It adds value to the printed atlas and has a wider (neuro-)informatics application since it can read appropriately annotated data from delineated sections of other species and organs, and turn them into 3D registered stacks. The tools provide additional features, including visualization and analysis of connectivity data, volume and centre-of-mass estimates, and graphical manipulation of entire structures, which are potentially useful for a range of research and teaching applications.

  17. ModuleRole: a tool for modulization, role determination and visualization in protein-protein interaction networks.

    Science.gov (United States)

    Li, Guipeng; Li, Ming; Zhang, Yiwei; Wang, Dong; Li, Rong; Guimerà, Roger; Gao, Juntao Tony; Zhang, Michael Q

    2014-01-01

    Rapidly increasing amounts of (physical and genetic) protein-protein interaction (PPI) data are produced by various high-throughput techniques, and interpretation of these data remains a major challenge. In order to gain insight into the organization and structure of the resultant large complex networks formed by interacting molecules, using simulated annealing, a method based on the node connectivity, we developed ModuleRole, a user-friendly web server tool which finds modules in PPI network and defines the roles for every node, and produces files for visualization in Cytoscape and Pajek. For given proteins, it analyzes the PPI network from BioGRID database, finds and visualizes the modules these proteins form, and then defines the role every node plays in this network, based on two topological parameters Participation Coefficient and Z-score. This is the first program which provides interactive and very friendly interface for biologists to find and visualize modules and roles of proteins in PPI network. It can be tested online at the website http://www.bioinfo.org/modulerole/index.php, which is free and open to all users and there is no login requirement, with demo data provided by "User Guide" in the menu Help. Non-server application of this program is considered for high-throughput data with more than 200 nodes or user's own interaction datasets. Users are able to bookmark the web link to the result page and access at a later time. As an interactive and highly customizable application, ModuleRole requires no expert knowledge in graph theory on the user side and can be used in both Linux and Windows system, thus a very useful tool for biologist to analyze and visualize PPI networks from databases such as BioGRID. ModuleRole is implemented in Java and C, and is freely available at http://www.bioinfo.org/modulerole/index.php. Supplementary information (user guide, demo data) is also available at this website. API for ModuleRole used for this program can be

  18. ModuleRole: a tool for modulization, role determination and visualization in protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Guipeng Li

    Full Text Available Rapidly increasing amounts of (physical and genetic protein-protein interaction (PPI data are produced by various high-throughput techniques, and interpretation of these data remains a major challenge. In order to gain insight into the organization and structure of the resultant large complex networks formed by interacting molecules, using simulated annealing, a method based on the node connectivity, we developed ModuleRole, a user-friendly web server tool which finds modules in PPI network and defines the roles for every node, and produces files for visualization in Cytoscape and Pajek. For given proteins, it analyzes the PPI network from BioGRID database, finds and visualizes the modules these proteins form, and then defines the role every node plays in this network, based on two topological parameters Participation Coefficient and Z-score. This is the first program which provides interactive and very friendly interface for biologists to find and visualize modules and roles of proteins in PPI network. It can be tested online at the website http://www.bioinfo.org/modulerole/index.php, which is free and open to all users and there is no login requirement, with demo data provided by "User Guide" in the menu Help. Non-server application of this program is considered for high-throughput data with more than 200 nodes or user's own interaction datasets. Users are able to bookmark the web link to the result page and access at a later time. As an interactive and highly customizable application, ModuleRole requires no expert knowledge in graph theory on the user side and can be used in both Linux and Windows system, thus a very useful tool for biologist to analyze and visualize PPI networks from databases such as BioGRID.ModuleRole is implemented in Java and C, and is freely available at http://www.bioinfo.org/modulerole/index.php. Supplementary information (user guide, demo data is also available at this website. API for ModuleRole used for this

  19. A Tool for Interactive Data Visualization: Application to Over 10,000 Brain Imaging and Phantom MRI Data Sets

    Directory of Open Access Journals (Sweden)

    Sandeep R Panta

    2016-03-01

    Full Text Available In this paper we propose a web-based approach for quick visualization of big data from brain magnetic resonance imaging (MRI scans using a combination of an automated image capture and processing system, nonlinear embedding, and interactive data visualization tools. We draw upon thousands of MRI scans captured via the COllaborative Imaging and Neuroinformatics Suite (COINS. We then interface the output of several analysis pipelines based on structural and functional data to a t-distributed stochastic neighbor embedding (t-SNE algorithm which reduces the number of dimensions for each scan in the input data set to two dimensions while preserving the local structure of data sets. Finally, we interactively display the output of this approach via a web-page, based on data driven documents (D3 JavaScript library. Two distinct approaches were used to visualize the data. In the first approach, we computed multiple quality control (QC values from pre-processed data, which were used as inputs to the t-SNE algorithm. This approach helps in assessing the quality of each data set relative to others. In the second case, computed variables of interest (e.g. brain volume or voxel values from segmented gray matter images were used as inputs to the t-SNE algorithm. This approach helps in identifying interesting patterns in the data sets. We demonstrate these approaches using multiple examples including 1 quality control measures calculated from phantom data over time, 2 quality control data from human functional MRI data across various studies, scanners, sites, 3 volumetric and density measures from human structural MRI data across various studies, scanners and sites. Results from (1 and (2 show the potential of our approach to combine t-SNE data reduction with interactive color coding of variables of interest to quickly identify visually unique clusters of data (i.e. data sets with poor QC, clustering of data by site quickly. Results from (3 demonstrate

  20. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  1. Mineotaur: a tool for high-content microscopy screen sharing and visual analytics.

    Science.gov (United States)

    Antal, Bálint; Chessel, Anatole; Carazo Salas, Rafael E

    2015-12-17

    High-throughput/high-content microscopy-based screens are powerful tools for functional genomics, yielding intracellular information down to the level of single-cells for thousands of genotypic conditions. However, accessing their data requires specialized knowledge and most often that data is no longer analyzed after initial publication. We describe Mineotaur ( http://www.mineotaur.org ), a open-source, downloadable web application that allows easy online sharing and interactive visualisation of large screen datasets, facilitating their dissemination and further analysis, and enhancing their impact.

  2. Transcriptome profiling of Set5 and Set1 methyltransferases: Tools for visualization of gene expression

    Directory of Open Access Journals (Sweden)

    Glòria Mas Martín

    2014-12-01

    Full Text Available Cells regulate transcription by coordinating the activities of multiple histone modifying complexes. We recently identified the yeast histone H4 methyltransferase Set5 and discovered functional overlap with the histone H3 methyltransferase Set1 in gene expression. Specifically, using next-generation RNA sequencing (RNA-Seq, we found that Set5 and Set1 function synergistically to regulate specific transcriptional programs at subtelomeres and transposable elements. Here we provide a comprehensive description of the methodology and analysis tools corresponding to the data deposited in NCBI's Gene Expression Omnibus (GEO under the accession number GSE52086. This data complements the experimental methods described in Mas Martín G et al. (2014 and provides the means to explore the cooperative functions of histone H3 and H4 methyltransferases in the regulation of transcription. Furthermore, a fully annotated R code is included to enable researchers to use the following computational tools: comparison of significant differential expression (SDE profiles; gene ontology enrichment of SDE; and enrichment of SDE relative to chromosomal features, such as centromeres, telomeres, and transposable elements. Overall, we present a bioinformatics platform that can be generally implemented for similar analyses with different datasets and in different organisms.

  3. A visualization tool to support decision making in environmental and biological planning

    Science.gov (United States)

    Romañach, Stephanie S.; McKelvy, James M.; Conzelmann, Craig; Suir, Kevin J.

    2014-01-01

    Large-scale ecosystem management involves consideration of many factors for informed decision making. The EverVIEW Data Viewer is a cross-platform desktop decision support tool to help decision makers compare simulation model outputs from competing plans for restoring Florida's Greater Everglades. The integration of NetCDF metadata conventions into EverVIEW allows end-users from multiple institutions within and beyond the Everglades restoration community to share information and tools. Our development process incorporates continuous interaction with targeted end-users for increased likelihood of adoption. One of EverVIEW's signature features is side-by-side map panels, which can be used to simultaneously compare species or habitat impacts from alternative restoration plans. Other features include examination of potential restoration plan impacts across multiple geographic or tabular displays, and animation through time. As a result of an iterative, standards-driven approach, EverVIEW is relevant to large-scale planning beyond Florida, and is used in multiple biological planning efforts in the United States.

  4. Visualizing Space Weather: The Planeterrella Auroral Simulator as a Heliophysics Public Outreach Tool

    Science.gov (United States)

    Masongsong, E. V.; Lilensten, J.; Booth, M. J.; Suri, G.; Heflinger, T. G.; Angelopoulos, V.

    2014-12-01

    The NASA THEMIS and ARTEMIS satellite missions study "space weather," which describes the solar wind influence on Earth's protective magnetic shield, the magnetosphere. Space weather is important to study and predict because it can damage critical GPS and communications satellites, harm space travelers, and even disable our global electrical grid. The Planeterrella is an innovative heliophysics outreach demonstration, expanding public awareness of space weather by visualizing the sun-Earth connection up close and in-person. Using a glass vacuum chamber, two magnetized spheres and a 1kV power supply, the device can simulate plasma configurations of the solar corona, solar wind, Van Allen radiation belts, and auroral ovals, all of which are observable only by satellites. This "aurora in a bottle" is a modernized version of the original Terrella built by Kristian Birkeland in the 1890s to show that the aurora are electrical in nature. Adapted from plans by Lilensten et al. at CNRS-IPAG, the UCLA Planeterrella was completed in Nov. 2013, the second device of its kind in the U.S., and the centerpiece of the THEMIS/ARTEMIS mobile public outreach exhibit. In combination with captivating posters, 3D magnetic field models, dazzling aurora videos and magnetosphere animations, the Planeterrella has already introduced over 1200 people to the electrical link between our sun and the planets. Most visitors had seen solar flare images in the news, however the Planeterrella experience enhanced their appreciation of the dynamic solar wind and its effects on Earth's invisible magnetic field. Most importantly, visitors young and old realized that magnets are not just cool toys or only for powering hybrid car motors and MRIs, they are a fundamental aspect of ongoing life on Earth and are key to the formation and evolution of planets, moons, and stars, extending far beyond our galaxy to other planetary systems throughout the universe. Novel visualizations such as the Planeterrella can

  5. Ximdisp--A visualization tool to aid structure determination from electron microscope images.

    Science.gov (United States)

    Smith, J M

    1999-01-01

    The display of digitized electron microscope images on a computer screen is a crucial first step in the computation of macromolecular structures. It is also essential to be able to visualize the final computed density map in a way that reveals its shape in three dimensions. Ximdisp is an X-windows based, menu-driven computer program that forms the core of the MRC image processing package. Raw electron microscope images, Fourier transforms, and computed density maps may all be displayed in a variety of ways with a choice of colour representations suitable for manuscript illustration purposes. It gives the user full interactive control over its many functions with clear, simple menus, labels, and editable dialogue boxes. Ximdisp plays a part in single-particle analysis with a straightforward particle selection procedure, in processing 2D crystal and electron diffraction data with extended lattice refinement, and in the analysis of helical structures with filament straightening and interactive Fourier transform display of automatically rotated, padded, and floated particles. The role of Ximdisp in all of these analyses and the most effective ways in which it can be used to display images are described. Copyright 1999 Academic Press.

  6. Play dough as an educational tool for visualization of complicated cerebral aneurysm anatomy

    Directory of Open Access Journals (Sweden)

    Eftekhar Behzad

    2005-05-01

    Full Text Available Abstract Background Imagination of the three-dimensional (3D structure of cerebral vascular lesions using two-dimensional (2D angiograms is one of the skills that neurosurgical residents should achieve during their training. Although ongoing progress in computer software and digital imaging systems has facilitated viewing and interpretation of cerebral angiograms enormously, these facilities are not always available. Methods We have presented the use of play dough as an adjunct to the teaching armamentarium for training in visualization of cerebral aneurysms in some cases. Results The advantages of play dough are low cost, availability and simplicity of use, being more efficient and realistic in training the less experienced resident in comparison with the simple drawings and even angiographic views from different angles without the need for computers and similar equipment. The disadvantages include the psychological resistance of residents to the use of something in surgical training that usually is considered to be a toy, and not being as clean as drawings or computerized images. Conclusion Although technology and computerized software using the patients' own imaging data seems likely to become more advanced in the future, use of play dough in some complicated cerebral aneurysm cases may be helpful in 3D reconstruction of the real situation.

  7. The Application of WebGIS Tools for Visualizing Coastal Flooding Vulnerability and Planning for Resiliency: The New Jersey Experience

    Directory of Open Access Journals (Sweden)

    Richard Lathrop

    2014-03-01

    Full Text Available While sea level rise is a world-wide phenomenon, mitigating its impacts is a local decision-making challenge that is going to require site-specific remedies. Faced with a variety of conflicting mandates and uncertainty as to appropriate responses, local land use planners and managers need place-based decision support tools. With the increasing availability of high-resolution digital elevation models and the advancing speed and sophistication of web-based mapping, a number of web geographic information systems (GIS tools have been developed to map and visualize what areas of a coastal landscape will potentially be flooded under different scenarios of sea level rise. This paper presents a case study of one such WebGIS application, NJFloodMapper (www.NJFloodMapper.org, with a focus on the user-centered design process employed to help our target audience of coastal decision-makers in the state of New Jersey, USA, access and understand relevant geographic information concerning sea level rise and exposure to coastal inundation, as well as assess the vulnerability of key infrastructure, populations and natural resources within their communities. We discuss the success of this approach amidst the broader context of the application of WebGIS tools in this arena. Due to its flexible design and user-friendly interface, NJFloodMapper has been widely adopted by government and non-governmental agencies in the state to assess coastal flooding exposure and vulnerability in the aftermath of a recent destructive coastal storm. However, additional decision support tools are needed to help coastal decision-makers translate the place-based information into concrete action plans aimed at promoting more resilient coastal land use decisions.

  8. OECD eXplorer: Making Regional Statistics Come Alive through a Geo-Visual Web-Tool

    Directory of Open Access Journals (Sweden)

    Monica Brezzi

    2011-06-01

    Full Text Available Recent advances in web-enabled graphics technologies have the potential to make a dramatic impact on developing highly interactive Geovisual Analytics applications for the Internet. An emerging and challenging application domain is geovisualization of regional (sub-national statistics. Higher integration drivenby institutional processes and economic globalisation is eroding national borders and creating competition along regional lines in the world market. Sound information at sub-national level and benchmark of regions across borders have gained importance in the policy agenda of many countries. In this paper, we introduce “OECD eXplorer” — an interactive tool for analyzing and communicating gained insights and discoveries about spatial-temporal and multivariate OECD regional data. This database is a potential treasure chest for policy-makers, researchers and citizens to gain a better understanding of a region’s structure and performance and to carry out analysis of territorial trends and disparities based on sound information comparableacross countries. Many approaches and tools have been developed in spatial-related knowledge discovery but generally they do not scale well with dynamic visualization of larger spatial data on the Internet. In this context, we introduce a web-compliant Geovisual Analytics toolkit that supports a broad collection offunctional components for analysis, hypothesis generation and validation. The same tool enables the communicationof results on the basis of a snapshot mechanism that captures, re-uses and shares task-related explorative findings. Further developments underway are in the creation of a generic highly interactive web “eXplorer” platform that can be the foundation for easy customization of similar web applications usingdifferent geographical boundaries and indicators. Given this global dimension, a “generic eXplorer” will be a powerful tool to explore different territorial dimensions

  9. CGAT: a comparative genome analysis tool for visualizing alignments in the analysis of complex evolutionary changes between closely related genomes

    Directory of Open Access Journals (Sweden)

    Kobayashi Ichizo

    2006-10-01

    Full Text Available Abstract Background The recent accumulation of closely related genomic sequences provides a valuable resource for the elucidation of the evolutionary histories of various organisms. However, although numerous alignment calculation and visualization tools have been developed to date, the analysis of complex genomic changes, such as large insertions, deletions, inversions, translocations and duplications, still presents certain difficulties. Results We have developed a comparative genome analysis tool, named CGAT, which allows detailed comparisons of closely related bacteria-sized genomes mainly through visualizing middle-to-large-scale changes to infer underlying mechanisms. CGAT displays precomputed pairwise genome alignments on both dotplot and alignment viewers with scrolling and zooming functions, and allows users to move along the pre-identified orthologous alignments. Users can place several types of information on this alignment, such as the presence of tandem repeats or interspersed repetitive sequences and changes in G+C contents or codon usage bias, thereby facilitating the interpretation of the observed genomic changes. In addition to displaying precomputed alignments, the viewer can dynamically calculate the alignments between specified regions; this feature is especially useful for examining the alignment boundaries, as these boundaries are often obscure and can vary between programs. Besides the alignment browser functionalities, CGAT also contains an alignment data construction module, which contains various procedures that are commonly used for pre- and post-processing for large-scale alignment calculation, such as the split-and-merge protocol for calculating long alignments, chaining adjacent alignments, and ortholog identification. Indeed, CGAT provides a general framework for the calculation of genome-scale alignments using various existing programs as alignment engines, which allows users to compare the outputs of different

  10. Progress of Systematic Hands on Devices for Active Learning Methods by Visualizing ICT Tools in Physics with Milliseconds Resolution

    Science.gov (United States)

    Kobayashi, Akizo; Okiharu, Fumiko

    We are developing various systematic hands on devices for progress of active learning (AL) to improve students' conceptual understanding in physics laws. We are promoting AL methods in physics education for getting deeper conceptual understanding by using various ICT-based hands on devices and using visualizing ICT tools with milliseconds resolution. Here we investigate AL modules on collisions of big balloon pendulum with another known mass pendulum to get directly the air mass in the big balloon. We also discuss on Newton's laws of blowgun darts systems by using tapioca straws where we get definite works and energy just proportional to the length of the pipes of connected tapioca straws. These AL plans by using modules of big balloon system and blowgun-darts system are shown to be very effective for deeper conceptual understanding of Newton's Laws in almost frictionless worlds.

  11. The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization.

    Science.gov (United States)

    Morrell, William C; Birkel, Garrett W; Forrer, Mark; Lopez, Teresa; Backman, Tyler W H; Dussault, Michael; Petzold, Christopher J; Baidoo, Edward E K; Costello, Zak; Ando, David; Alonso-Gutierrez, Jorge; George, Kevin W; Mukhopadhyay, Aindrila; Vaino, Ian; Keasling, Jay D; Adams, Paul D; Hillson, Nathan J; Garcia Martin, Hector

    2017-12-15

    Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDD and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.

  12. CAVER Analyst 1.0: graphic tool for interactive visualization and analysis of tunnels and channels in protein structures.

    Science.gov (United States)

    Kozlikova, Barbora; Sebestova, Eva; Sustr, Vilem; Brezovsky, Jan; Strnad, Ondrej; Daniel, Lukas; Bednar, David; Pavelka, Antonin; Manak, Martin; Bezdeka, Martin; Benes, Petr; Kotry, Matus; Gora, Artur; Damborsky, Jiri; Sochor, Jiri

    2014-09-15

    The transport of ligands, ions or solvent molecules into proteins with buried binding sites or through the membrane is enabled by protein tunnels and channels. CAVER Analyst is a software tool for calculation, analysis and real-time visualization of access tunnels and channels in static and dynamic protein structures. It provides an intuitive graphic user interface for setting up the calculation and interactive exploration of identified tunnels/channels and their characteristics. CAVER Analyst is a multi-platform software written in JAVA. Binaries and documentation are freely available for non-commercial use at http://www.caver.cz. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Building a visual aid for a triage tool in a developing health service.

    Science.gov (United States)

    Ahmad, Mir Saaduddin; Wood, Darryl R

    2017-11-01

    Resources in the modern day emergency department are often stretched, and this holds true more so in developing services. With limited manpower, it is essential that efficient tools are created so that processes can be run safely. Here we pilot the use of a vital signs matrix in a medical camp in Dhaka to screen patients at triage. We further modified this matrix to include the National Early Warning Score as our recording of the NEWS have remained poor in triage. A trial and validation study for the use of this matrix in an NHS setting is currently underway. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Three-dimensional numerical modeling of an induction heated injection molding tool with flow visualization

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Nielsen, Kaspar Kirstein

    2016-01-01

    heating coil has been developed and assembled into an injection molding tool provided with a glass window, so the effect of induction heating can directly be captured by a high speed camera. In addition, thermocouples and pressure sensors are also installed, and together with the high speed videos...... magnetic permeability. The three-dimensional transient thermal field of the mold cavity was then calculated and compared with the experiments. This thermal field was transferred to an injection molding flow solver to compare simulations and experimental results from the high speed video, both...... with and without the effect of induction heating. A rapid thermal cycle was proved to be feasible in a mold with an integrated induction coil. Furthermore, it was shown that the process can be modeled with good accuracy, both in terms of the thermal field and of the flow pattern....

  15. Facilitating climate change adaptation through communication: Insights from the development of a visualization tool

    DEFF Research Database (Denmark)

    Glaas, Erik; Ballantyne, Anne Gammelgaard; Neset, Tina

    2015-01-01

    Climate change communication on anticipated impacts and adaptive responses is frequently presented as an effective means to facilitate implementation of adaptation to mitigate risks to residential buildings. However, it requires that communication is developed in a way that resonates with the con......Climate change communication on anticipated impacts and adaptive responses is frequently presented as an effective means to facilitate implementation of adaptation to mitigate risks to residential buildings. However, it requires that communication is developed in a way that resonates...... with the context of the target audience, provides intelligible information and addresses perceived barriers to adaptation. In this paper we reflect upon criteria for useful climate change communication gained over a three year development process of a web-based tool - VisAdaptTM – aimed at increasing the adaptive...

  16. Three-dimensional numerical modeling of an induction heated injection molding tool with flow visualization

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Nielsen, Kaspar Kirstein

    2016-01-01

    Using elevated mold temperature is known to have a positive influence of final injection molded parts. Induction heating is a method that allow obtaining a rapid thermal cycle, so the overall molding cycle time is not increased. In the present research work, an integrated multi-turn induction...... heating coil has been developed and assembled into an injection molding tool provided with a glass window, so the effect of induction heating can directly be captured by a high speed camera. In addition, thermocouples and pressure sensors are also installed, and together with the high speed videos...... magnetic permeability. The three-dimensional transient thermal field of the mold cavity was then calculated and compared with the experiments. This thermal field was transferred to an injection molding flow solver to compare simulations and experimental results from the high speed video, both...

  17. Developing a MATLAB(registered)-Based Tool for Visualization and Transformation

    Science.gov (United States)

    Anderton, Blake J.

    2003-01-01

    An important step in the structural design and development of spacecraft is the experimental identification of a structure s modal characteristics, such as its natural frequencies and modes of vibration. These characteristics are vital to developing a representative model of any given structure or analyzing the range of input frequencies that can be handled by a particular structure. When setting up such a representative model of a structure, careful measurements using precision equipment (such as accelerometers and instrumented hammers) must be made on many individual points of the structure in question. The coordinate location of each data point is used to construct a wireframe geometric model of the structure. Response measurements obtained from the accelerometers is used to generate the modal shapes of the particular structure. Graphically, this is displayed as a combination of the ways a structure will ideally respond to a specified force input. Two types of models of the tested structure are often used in modal analysis: an analytic model showing expected behavior of the structure, and an experimental model showing measured results due to observed phenomena. To evaluate the results from the experimental model, a comparison of analytic and experimental results must be made between the two models. However, comparisons between these two models become difficult when the two coordinate orientations differ in a manner such that results are displayed in an unclear fashion. Such a problem proposes the need for a tool that not only communicates a graphical image of a structure s wireframe geometry based on various measurement locations (called nodes), but also allows for a type of transformation of the image s coordinate geometry so that a model s coordinate orientation is made to match the orientation of another model. Such a tool should also be designed so that it is able to construct coordinate geometry based on many different listings of node locations and is able

  18. SeqVISTA: a graphical tool for sequence feature visualization and comparison

    Directory of Open Access Journals (Sweden)

    Niu Tianhua

    2003-01-01

    Full Text Available Abstract Background Many readers will sympathize with the following story. You are viewing a gene sequence in Entrez, and you want to find whether it contains a particular sequence motif. You reach for the browser's "find in page" button, but those darn spaces every 10 bp get in the way. And what if the motif is on the opposite strand? Subsequently, your favorite sequence analysis software informs you that there is an interesting feature at position 13982–14013. By painstakingly counting the 10 bp blocks, you are able to examine the sequence at this location. But now you want to see what other features have been annotated close by, and this information is buried several screenfuls higher up the web page. Results SeqVISTA presents a holistic, graphical view of features annotated on nucleotide or protein sequences. This interactive tool highlights the residues in the sequence that correspond to features chosen by the user, and allows easy searching for sequence motifs or extraction of particular subsequences. SeqVISTA is able to display results from diverse sequence analysis tools in an integrated fashion, and aims to provide much-needed unity to the bioinformatics resources scattered around the Internet. Our viewer may be launched on a GenBank record by a single click of a button installed in the web browser. Conclusion SeqVISTA allows insights to be gained by viewing the totality of sequence annotations and predictions, which may be more revealing than the sum of their parts. SeqVISTA runs on any operating system with a Java 1.4 virtual machine. It is freely available to academic users at http://zlab.bu.edu/SeqVISTA.

  19. ADF/ADC Web Tools for Browsing and Visualizing Astronomical Catalogs and NASA Astrophysics Mission Metadata

    Science.gov (United States)

    Shaya, E.; Kargatis, V.; Blackwell, J.; Borne, K.; White, R. A.; Cheung, C.

    1998-05-01

    Several new web based services have been introduced this year by the Astrophysics Data Facility (ADF) at the NASA Goddard Space Flight Center. IMPReSS is a graphical interface to astrophysics databases that presents the user with the footprints of observations of space-based missions. It also aids astronomers in retrieving these data by sending requests to distributed data archives. The VIEWER is a reader of ADC astronomical catalogs and journal tables that allows subsetting of catalogs by column choices and range selection and provides database-like search capability within each table. With it, the user can easily find the table data most appropriate for their purposes and then download either the subset table or the original table. CATSEYE is a tool that plots output tables from the VIEWER (and soon AMASE), making exploring the datasets fast and easy. Having completed the basic functionality of these systems, we are enhancing the site to provide advanced functionality. These will include: market basket storage of tables and records of VIEWER output for IMPReSS and AstroBrowse queries, non-HTML table responses to AstroBrowse type queries, general column arithmetic, modularity to allow entrance into the sequence of web pages at any point, histogram plots, navigable maps, and overplotting of catalog objects on mission footprint maps. When completed, the ADF/ADC web facilities will provide astronomical tabled data and mission retrieval information in several hyperlinked environments geared for users at any level, from the school student to the typical astronomer to the expert datamining tools at state-of-the-art data centers.

  20. An MRspec database query and visualization engine with applications as a clinical diagnostic and research tool.

    Science.gov (United States)

    Miscevic, Filip; Foong, Justin; Schmitt, Benjamin; Blaser, Susan; Brudno, Michael; Schulze, Andreas

    2016-12-01

    Proton magnetic resonance spectroscopy (MRspec), one of the very few techniques for in vivo assessment of neuro-metabolic profiles, is often complicated by lack of standard population norms and paucity of computational tools. 7035 scans and clinical information from 4430 pediatric patients were collected from 2008 to 2014. Scans were conducted using a 1.5T (n=3664) or 3T scanner (n=3371), and with either a long (144ms, n=5559) or short echo time (35ms, n=1476). 3055 of these scans were localized in the basal ganglia (BG), 1211 in parieto-occipital white matter (WM). 34 metabolites were quantified using LCModel. A web application using MySQL, Python and Flask was developed to facilitate the exploration of the data set. Already piloting the application revealed numerous insights. (1), N-acetylaspartate (NAA) increased throughout all ages. During early infancy, total choline was highly varied and myo-inositol demonstrated a downward trend. (2), Total creatine (tCr) and creatine increased throughout childhood and adolescence, though phosphocreatine (PCr) remained constant beyond 200days. (3), tCr was higher in BG than WM. (4), No obvious gender-related differences were observed. (5), Field strength affects quantification using LCModel for some metabolites, most prominently for tCr and total NAA. (6), Outlier analysis identified patients treated with vigabatrin through elevated γ-aminobutyrate, and patients with Klippel-Feil syndrome, Leigh disease and L2-hydroxyglutaric aciduria through low choline in BG. We have established the largest MRSpec database and developed a robust and flexible computational tool for facilitating the exploration of vast metabolite datasets that proved its value for discovering neurochemical trends for clinical diagnosis, treatment monitoring, and research. Open access will lead to its widespread use, improving the diagnostic yield and contributing to better understanding of metabolic processes and conditions in the brain. Copyright © 2016

  1. Social media and its dual use in biopreparedness: communication and visualization tools in an animal bioterrorism incident.

    Science.gov (United States)

    Sjöberg, Elisabeth; Barker, Gary C; Landgren, Jonas; Griberg, Isaac; Skiby, Jeffrey E; Tubbin, Anna; von Stapelmohr, Anne; Härenstam, Malin; Jansson, Mikael; Knutsson, Rickard

    2013-09-01

    This article focuses on social media and interactive challenges for emergency organizations during a bioterrorism or agroterrorism incident, and it outlines the dual-use dilemma of social media. Attackers or terrorists can use social media as their modus operandi, and defenders, including emergency organizations in law enforcement and public and animal health, can use it for peaceful purposes. To get a better understanding of the uses of social media in these situations, a workshop was arranged in Stockholm, Sweden, to raise awareness about social media and animal bioterrorism threats. Fifty-six experts and crisis communicators from international and national organizations participated. As a result of the workshop, it was concluded that emergency organizations can collect valuable information and monitor social media before, during, and after an outbreak. In order to make use of interactive communication to obtain collective intelligence from the public, emergency organizations must adapt to social networking technologies, requiring multidisciplinary knowledge in the fields of information, communication, IT, and biopreparedness. Social network messaging during a disease outbreak can be visualized in stream graphs and networks showing clusters of Twitter and Facebook users. The visualization of social media can be an important preparedness tool in the response to bioterrorism and agroterrorism.

  2. LEGER: knowledge database and visualization tool for comparative genomics of pathogenic and non-pathogenic Listeria species.

    Science.gov (United States)

    Dieterich, Guido; Kärst, Uwe; Fischer, Elmar; Wehland, Jürgen; Jänsch, Lothar

    2006-01-01

    Listeria species are ubiquitous in the environment and often contaminate foods because they grow under conditions used for food preservation. Listeria monocytogenes, the human and animal pathogen, causes Listeriosis, an infection with a high mortality rate in risk groups such as immune-compromised individuals. Furthermore, L.monocytogenes is a model organism for the study of intracellular bacterial pathogens. The publication of its genome sequence and that of the non-pathogenic species Listeria innocua initiated numerous comparative studies and efforts to sequence all species comprising the genus. The Proteome database LEGER (http://leger2.gbf.de/cgi-bin/expLeger.pl) was developed to support functional genome analyses by combining information obtained by applying bioinformatics methods and from public databases to improve the original annotations. LEGER offers three unique key features: (i) it is the first comprehensive information system focusing on the functional assignment of genes and proteins; (ii) integrated visualization tools, KEGG pathway and Genome Viewer, alleviate the functional exploration of complex data; and (iii) LEGER presents results of systematic post-genome studies, thus facilitating analyses combining computational and experimental results. Moreover, LEGER provides an unpublished membrane proteome analysis of L.innocua and in total visualizes experimentally validated information about the subcellular localizations of 789 different listerial proteins.

  3. EMG-based visual-haptic biofeedback: a tool to improve motor control in children with primary dystonia.

    Science.gov (United States)

    Casellato, Claudia; Pedrocchi, Alessandra; Zorzi, Giovanna; Vernisse, Lea; Ferrigno, Giancarlo; Nardocci, Nardo

    2013-05-01

    New insights suggest that dystonic motor impairments could also involve a deficit of sensory processing. In this framework, biofeedback, making covert physiological processes more overt, could be useful. The present work proposes an innovative integrated setup which provides the user with an electromyogram (EMG)-based visual-haptic biofeedback during upper limb movements (spiral tracking tasks), to test if augmented sensory feedbacks can induce motor control improvement in patients with primary dystonia. The ad hoc developed real-time control algorithm synchronizes the haptic loop with the EMG reading; the brachioradialis EMG values were used to modify visual and haptic features of the interface: the higher was the EMG level, the higher was the virtual table friction and the background color proportionally moved from green to red. From recordings on dystonic and healthy subjects, statistical results showed that biofeedback has a significant impact, correlated with the local impairment, on the dystonic muscular control. These tests pointed out the effectiveness of biofeedback paradigms in gaining a better specific-muscle voluntary motor control. The flexible tool developed here shows promising prospects of clinical applications and sensorimotor rehabilitation.

  4. CAChe Molecular Modeling: A Visualization Tool Early in the Undergraduate Chemistry Curriculum

    Science.gov (United States)

    Crouch, R. David; Holden, Michael S.; Samet, Cindy

    1996-10-01

    In Dickinson's chemistry curriculum, "Synthesis & Reactivity" replaces the traditional organic chemistry sequence and begins in the second semester of the freshman year. A key aspect of our sequence is the correlation of laboratory experiments with lecture topics and the extension of laboratory exercises beyond the usual 4-hour period. With this goal in mind, a number of "Synthesis & Reactivity" experiments have been developed that include an out-of-class computational chemistry exercise using CAChe (1), a versatile molecular modeling software package. Because the first semester of "Synthesis & Reactivity" has a large number of freshmen, emphasis is placed on developing an insight for where nucleophiles and electrophiles might attack a molecule. The Visualizer+ routine in CAChe generates striking graphical images of these sites and the reaction of NBS/H2O with 3-sulfolene (2) presents an excellent opportunity to introduce CAChe into an experiment. Before the laboratory, students are introduced to CAChe to determine how NBS might interact with a nucleophile such as an alkene. Students then return to the laboratory to perform the bromohydrin synthesis but are asked to consider what the regiochemistry would be were the alkene not symmetric. Specifically, students are instructed to visit the computer laboratory during the week and perform calculations on the bromonium ion formed from 2-methylpropene to determine where a nucleophilic H2O molecule might attack. The MOPAC routine in CAChe provides data that are converted to a graphical depiction of the frontier density of the intermediate, indicating potential reactive sites based on electron distribution of orbitals near the HOMO and LUMO. When these data are manipulated by Visualizer+, the obvious conclusion is that the nucleophilic water molecule should attack the more highly substituted carbon of the bromonium ion (Fig. 1) and generate one regioisomer. Figure 1. Relative nucleophilic susceptibilities ofr the

  5. LabKey Server NAb: A tool for analyzing, visualizing and sharing results from neutralizing antibody assays

    Science.gov (United States)

    2011-01-01

    Background Multiple types of assays allow sensitive detection of virus-specific neutralizing antibodies. For example, the extent of antibody neutralization of HIV-1, SIV and SHIV can be measured in the TZM-bl cell line through the degree of luciferase reporter gene expression after infection. In the past, neutralization curves and titers for this standard assay have been calculated using an Excel macro. Updating all instances of such a macro with new techniques can be unwieldy and introduce non-uniformity across multi-lab teams. Using Excel also poses challenges in centrally storing, sharing and associating raw data files and results. Results We present LabKey Server's NAb tool for organizing, analyzing and securely sharing data, files and results for neutralizing antibody (NAb) assays, including the luciferase-based TZM-bl NAb assay. The customizable tool supports high-throughput experiments and includes a graphical plate template designer, allowing researchers to quickly adapt calculations to new plate layouts. The tool calculates the percent neutralization for each serum dilution based on luminescence measurements, fits a range of neutralization curves to titration results and uses these curves to estimate the neutralizing antibody titers for benchmark dilutions. Results, curve visualizations and raw data files are stored in a database and shared through a secure, web-based interface. NAb results can be integrated with other data sources based on sample identifiers. It is simple to make results public after publication by updating folder security settings. Conclusions Standardized tools for analyzing, archiving and sharing assay results can improve the reproducibility, comparability and reliability of results obtained across many labs. LabKey Server and its NAb tool are freely available as open source software at http://www.labkey.com under the Apache 2.0 license. Many members of the HIV research community can also access the LabKey Server NAb tool without

  6. LabKey Server NAb: a tool for analyzing, visualizing and sharing results from neutralizing antibody assays.

    Science.gov (United States)

    Piehler, Britt; Nelson, Elizabeth K; Eckels, Josh; Ramsay, Sarah; Lum, Karl; Wood, Blake; Greene, Kelli M; Gao, Hongmei; Seaman, Michael S; Montefiori, David C; Igra, Mark

    2011-05-27

    Multiple types of assays allow sensitive detection of virus-specific neutralizing antibodies. For example, the extent of antibody neutralization of HIV-1, SIV and SHIV can be measured in the TZM-bl cell line through the degree of luciferase reporter gene expression after infection. In the past, neutralization curves and titers for this standard assay have been calculated using an Excel macro. Updating all instances of such a macro with new techniques can be unwieldy and introduce non-uniformity across multi-lab teams. Using Excel also poses challenges in centrally storing, sharing and associating raw data files and results. We present LabKey Server's NAb tool for organizing, analyzing and securely sharing data, files and results for neutralizing antibody (NAb) assays, including the luciferase-based TZM-bl NAb assay. The customizable tool supports high-throughput experiments and includes a graphical plate template designer, allowing researchers to quickly adapt calculations to new plate layouts. The tool calculates the percent neutralization for each serum dilution based on luminescence measurements, fits a range of neutralization curves to titration results and uses these curves to estimate the neutralizing antibody titers for benchmark dilutions. Results, curve visualizations and raw data files are stored in a database and shared through a secure, web-based interface. NAb results can be integrated with other data sources based on sample identifiers. It is simple to make results public after publication by updating folder security settings. Standardized tools for analyzing, archiving and sharing assay results can improve the reproducibility, comparability and reliability of results obtained across many labs. LabKey Server and its NAb tool are freely available as open source software at http://www.labkey.com under the Apache 2.0 license. Many members of the HIV research community can also access the LabKey Server NAb tool without installing the software by using the

  7. LabKey Server NAb: A tool for analyzing, visualizing and sharing results from neutralizing antibody assays

    Directory of Open Access Journals (Sweden)

    Gao Hongmei

    2011-05-01

    Full Text Available Abstract Background Multiple types of assays allow sensitive detection of virus-specific neutralizing antibodies. For example, the extent of antibody neutralization of HIV-1, SIV and SHIV can be measured in the TZM-bl cell line through the degree of luciferase reporter gene expression after infection. In the past, neutralization curves and titers for this standard assay have been calculated using an Excel macro. Updating all instances of such a macro with new techniques can be unwieldy and introduce non-uniformity across multi-lab teams. Using Excel also poses challenges in centrally storing, sharing and associating raw data files and results. Results We present LabKey Server's NAb tool for organizing, analyzing and securely sharing data, files and results for neutralizing antibody (NAb assays, including the luciferase-based TZM-bl NAb assay. The customizable tool supports high-throughput experiments and includes a graphical plate template designer, allowing researchers to quickly adapt calculations to new plate layouts. The tool calculates the percent neutralization for each serum dilution based on luminescence measurements, fits a range of neutralization curves to titration results and uses these curves to estimate the neutralizing antibody titers for benchmark dilutions. Results, curve visualizations and raw data files are stored in a database and shared through a secure, web-based interface. NAb results can be integrated with other data sources based on sample identifiers. It is simple to make results public after publication by updating folder security settings. Conclusions Standardized tools for analyzing, archiving and sharing assay results can improve the reproducibility, comparability and reliability of results obtained across many labs. LabKey Server and its NAb tool are freely available as open source software at http://www.labkey.com under the Apache 2.0 license. Many members of the HIV research community can also access the Lab

  8. Extension of the source-sink potential approach to Hartree-Fock and density functional theory: A new tool to visualize the ballistic current through molecules

    Science.gov (United States)

    Fias, Stijn; Stuyver, Thijs

    2017-11-01

    The recent source and sink potential approach by Pickup et al. [J. Chem. Phys. 143, 194105 (2015)] is extended to Hartree-Fock and density functional theory, allowing the calculation of the transmission and the visualization of ballistic currents through molecules at these levels of theory. This visualization allows the study of the transmission process in real-space, providing an important tool to better understand the conduction process.

  9. SuiteMSA: visual tools for multiple sequence alignment comparison and molecular sequence simulation

    Directory of Open Access Journals (Sweden)

    Strope Cory L

    2011-05-01

    Full Text Available Abstract Background Multiple sequence alignment (MSA plays a central role in nearly all bioinformatics and molecular evolutionary applications. MSA reconstruction is thus one of the most heavily scrutinized bioinformatics fields. Evaluating the quality of MSA reconstruction is often hindered by the lack of good reference MSAs. The use of sequence evolution simulation can provide such reference MSAs. Furthermore, none of the MSA viewing/editing programs currently available allows the user to make direct comparisons between two or more MSAs. Considering the importance of MSA quality in a wide range of research, it is desirable if MSA assessment can be performed more easily. Results We have developed SuiteMSA, a java-based application that provides unique MSA viewers. Users can directly compare multiple MSAs and evaluate where the MSAs agree (are consistent or disagree (are inconsistent. Several alignment statistics are provided to assist such comparisons. SuiteMSA also includes a graphical phylogeny editor/viewer as well as a graphical user interface for a sequence evolution simulator that can be used to construct reference MSAs. Conclusions SuiteMSA provides researchers easy access to a sequence evolution simulator, reference alignments generated by the simulator, and a series of tools to evaluate the performance of the MSA reconstruction programs. It will help us improve the quality of MSAs, often the most important first steps of bioinformatics and other biological research.

  10. Web Viz 2.0: A versatile suite of tools for collaboration and visualization

    Science.gov (United States)

    Spencer, C.; Yuen, D. A.

    2012-12-01

    Most scientific applications on the web fail to realize the full collaborative potential of the internet by not utilizing web 2.0 technology. To relieve users from the struggle with software tools and allow them to focus on their research, new software developed for scientists and researchers must harness the full suite of web technology. For several years WebViz 1.0 enabled researchers with any web accessible device to interact with the peta-scale data generated by the Hierarchical Volume Renderer (HVR) system. We have developed a new iteration of WebViz that can be easily interfaced with many problem domains in addition to HVR by employing the best practices of software engineering and object-oriented programming. This is done by separating the core WebViz system from domain specific code at an interface, leveraging inheritance and polymorphism to allow newly developed modules access to the core services. We employed several design patterns (model-view-controller, singleton, observer, and application controller) to engineer this highly modular system implemented in Java.

  11. Theatre: a software tool for detailed comparative analysis and visualization of genomic sequence

    Science.gov (United States)

    Edwards, Yvonne J. K.; Carver, Tim J.; Vavouri, Tanya; Frith, Martin; Bishop, Martin J.; Elgar, Greg

    2003-01-01

    Theatre is a web-based computing system designed for the comparative analysis of genomic sequences, especially with respect to motifs likely to be involved in the regulation of gene expression. Theatre is an interface to commonly used sequence analysis tools and biological sequence databases to determine or predict the positions of coding regions, repetitive sequences and transcription factor binding sites in families of DNA sequences. The information is displayed in a manner that can be easily understood and can reveal patterns that might not otherwise have been noticed. In addition to web-based output, Theatre can produce publication quality colour hardcopies showing predicted features in aligned genomic sequences. A case study using the p53 promoter region of four mammalian species and two fish species is described. Unlike the mammalian sequences the promoter regions in fish have not been previously predicted or characterized and we report the differences in the p53 promoter region of four mammals and that predicted for two fish species. Theatre can be accessed at http://www.hgmp.mrc.ac.uk/Registered/Webapp/theatre/. PMID:12824356

  12. An interactive visualization tool to explore the biophysical properties of amino acids and their contribution to substitution matrices

    Directory of Open Access Journals (Sweden)

    desJardins Marie

    2006-07-01

    Full Text Available Abstract Background Quantitative descriptions of amino acid similarity, expressed as probabilistic models of evolutionary interchangeability, are central to many mainstream bioinformatic procedures such as sequence alignment, homology searching, and protein structural prediction. Here we present a web-based, user-friendly analysis tool that allows any researcher to quickly and easily visualize relationships between these bioinformatic metrics and to explore their relationships to underlying indices of amino acid molecular descriptors. Results We demonstrate the three fundamental types of question that our software can address by taking as a specific example the connections between 49 measures of amino acid biophysical properties (e.g., size, charge and hydrophobicity, a generalized model of amino acid substitution (as represented by the PAM74-100 matrix, and the mutational distance that separates amino acids within the standard genetic code (i.e., the number of point mutations required for interconversion during protein evolution. We show that our software allows a user to recapture the insights from several key publications on these topics in just a few minutes. Conclusion Our software facilitates rapid, interactive exploration of three interconnected topics: (i the multidimensional molecular descriptors of the twenty proteinaceous amino acids, (ii the correlation of these biophysical measurements with observed patterns of amino acid substitution, and (iii the causal basis for differences between any two observed patterns of amino acid substitution. This software acts as an intuitive bioinformatic exploration tool that can guide more comprehensive statistical analyses relating to a diverse array of specific research questions.

  13. Data-infilling in daily mean river flow records: first results using a visual analytics tool (gapIT)

    Science.gov (United States)

    Giustarini, Laura; Parisot, Olivier; Ghoniem, Mohammad; Trebs, Ivonne; Médoc, Nicolas; Faber, Olivier; Hostache, Renaud; Matgen, Patrick; Otjacques, Benoît

    2015-04-01

    Missing data in river flow records represent a loss of information and a serious drawback in water management. An incomplete time series prevents the computation of hydrological statistics and indicators. Also, records with data gaps are not suitable as input or validation data for hydrological or hydrodynamic modelling. In this work we present a visual analytics tool (gapIT), which supports experts to find the most adequate data-infilling technique for daily mean river flow records. The tool performs an automated calculation of river flow estimates using different data-infilling techniques. Donor station(s) are automatically selected based on Dynamic Time Warping, geographical proximity and upstream/downstream relationships. For each gap the tool computes several flow estimates through various data-infilling techniques, including interpolation, multiple regression, regression trees and neural networks. The visual application provides the possibility for the user to select different donor station(s) w.r.t. those automatically selected. The gapIT software was applied to 24 daily time series of river discharge recorded in Luxembourg over the period 01/01/2007 - 31/12/2013. The method was validated by randomly creating artificial gaps of different lengths and positions along the entire records. Using the RMSE and the Nash-Sutcliffe (NS) coefficient as performance measures, the method is evaluated based on a comparison with the actual measured discharge values. The application of the gapIT software to artificial gaps led to satisfactory results in terms of performance indicators (NS>0.8 for more than half of the artificial gaps). A case-by-case analysis revealed that the limited number of reconstructed record gaps characterized by a high RMSE values (NS>0.8) were caused by the temporary unavailability of the most appropriate donor station. On the other hand, some of the gaps characterized by a high accuracy of the reconstructed record were filled by using the data from

  14. MISR_View and MISR_Plot: Software Tools for Accessing and Visualizing MISR's Multispectral, Multiangle Data

    Science.gov (United States)

    Major, E. R.; Olsen, L. M.; Thompson, C. K.; Hall, J. R.

    2002-12-01

    MISR_view and MISR_plot are IDL-based, cross-platform display and analysis software tools specifically for use with Multiangle Imaging SpectroRadiometer (MISR) HDF-EOS "grid" data files. Although there is some overlap in the methods the two applications utilize to display MISR parameters, these tools serve distinctly different purposes. MISR_view is a general-purpose viewing tool for all MISR "grid" data, including MISR L1B2 georectified radiance, MISR L1B2 radiometric cloud masks, all MISR Level 2 geophysical products, the MISR Ancillary Geographic Product, and AirMISR L1B2 georectified radiances. Through the use of a data selection graphical user interface (GUI), a user has the ability to to extract any parameters for a contiguous range of blocks, assemble the blocks for display, and overlay parameters having different spatial and bit-depth resolutions into the RGB and ancillary planes of a sophisticated viewing window. The viewing window has several utilities and tools including: data transforms (to perform tasks such as data scaling and unpacking), map projections, vector overlays, linking of multiple viewing windows via geolocation, histogram viewing and stretch manipulation, tools for constructing anaglyphs, automatic scrolling through a large range of blocks at full resolution, loading of 8-bit color tables and emulation of 24-bit RGB color on 8-bit display hardware. MISR_plot focuses on visualizing the MISR L1B2 georectified radiance product, in particular the 36 radiance measurements per pixel produced by MISR's 9 multispectral cameras, each measuring radiance in 4 spectral bands (red, green, blue, and near infrared). In addition to displaying the radiance data within a viewing window as described earlier, MISR_plot utilizes an additional interface which allows an analyst to view all of the radiance information available at a given pixel, together with a reconstruction of the illumination and viewing geometry that produced this radiance. The radiance data

  15. Development of the IBD Disk: A Visual Self-administered Tool for Assessing Disability in Inflammatory Bowel Diseases.

    Science.gov (United States)

    Ghosh, Subrata; Louis, Edouard; Beaugerie, Laurent; Bossuyt, Peter; Bouguen, Guillaume; Bourreille, Arnaud; Ferrante, Marc; Franchimont, Denis; Frost, Karen; Hebuterne, Xavier; Marshall, John K; OʼShea, Ciara; Rosenfeld, Greg; Williams, Chadwick; Peyrin-Biroulet, Laurent

    2017-03-01

    The Inflammatory bowel disease (IBD) Disability Index is a validated tool that evaluates functional status; however, it is used mainly in the clinical trial setting. We describe the use of an iterative Delphi consensus process to develop the IBD Disk-a shortened, self-administered adaption of the validated IBD Disability Index-to give immediate visual representation of patient-reported IBD-related disability. In the preparatory phase, the IBD CONNECT group (30 health care professionals) ranked IBD Disability Index items in the perceived order of importance. The Steering Committee then selected 10 items from the IBD Disability Index to take forward for inclusion in the IBD Disk. In the consensus phase, the items were refined and agreed by the IBD Disk Working Group (14 gastroenterologists) using an online iterative Delphi consensus process. Members could also suggest new element(s) or recommend changes to included elements. The final items for the IBD Disk were agreed in February 2016. After 4 rounds of voting, the following 10 items were agreed for inclusion in the IBD Disk: abdominal pain, body image, education and work, emotions, energy, interpersonal interactions, joint pain, regulating defecation, sexual functions, and sleep. All elements, except sexual functions, were included in the validated IBD Disability Index. The IBD Disk has the potential to be a valuable tool for use at a clinical visit. It can facilitate assessment of inflammatory bowel disease-related disability relevant to both patients and physicians, discussion on specific disability-related issues, and tracking changes in disease burden over time.

  16. Validation of a Mexican food photograph album as a tool to visually estimate food amounts in adolescents.

    Science.gov (United States)

    Bernal-Orozco, M Fernanda; Vizmanos-Lamotte, Barbara; Rodríguez-Rocha, Norma P; Macedo-Ojeda, Gabriela; Orozco-Valerio, María; Rovillé-Sausse, Françoise; León-Estrada, Sandra; Márquez-Sandoval, Fabiola; Fernández-Ballart, Joan D

    2013-03-14

    The aim of the present study was to validate a food photograph album (FPA) as a tool to visually estimate food amounts, and to compare this estimation with that attained through the use of measuring cups (MC) and food models (FM). We tested 163 foods over fifteen sessions (thirty subjects/session; 10-12 foods presented in two portion sizes, 20-24 plates/session). In each session, subjects estimated food amounts with the assistance of FPA, MC and FM. We compared (by portion and method) the mean estimated weight and the mean real weight. We also compared the percentage error estimation for each portion, and the mean food percentage error estimation between methods. In addition, we determined the percentage error estimation of each method. We included 463 adolescents from three public high schools (mean age 17·1 (sd 1·2) years, 61·8 % females). All foods were assessed using FPA, 53·4 % of foods were assessed using MC, and FM was used for 18·4 % of foods. The mean estimated weight with all methods was statistically different compared with the mean real weight for almost all foods. However, a lower percentage error estimation was observed using FPA (2·3 v. 56·9 % for MC and 325 % for FM, P< 0·001). Also, when analysing error rate ranges between methods, there were more observations (P< 0·001) with estimation errors higher than 40 % with the MC (56·1 %), than with the FPA (27·5 %) and FM (44·9 %). In conclusion, although differences between estimated and real weight were statistically significant for almost all foods, comparisons between methods showed FPA to be the most accurate tool for estimating food amounts.

  17. Effects of Online Visual and Interactive Technological Tool (OVITT) on Early Adolescent Students' Mathematics Performance, Math Anxiety and Attitudes toward Math

    Science.gov (United States)

    Orabuchi, Nkechi

    2013-01-01

    This study reported the results of a 3-month quasi-experimental study that determined the effectiveness of an online visual and interactive technological tool on sixth grade students' mathematics performance, math anxiety and attitudes towards math. There were 155 sixth grade students from a middle school in the North Texas area who participated…

  18. F-18 FLT PET : A Noninvasive Diagnostic Tool for Visualization of the Bone Marrow Compartment in Patients With Aplastic Anemia A Pilot Study

    NARCIS (Netherlands)

    Agool, Ali; Slart, Riemer H. J. A.; Kluin, Philip M.; de Wolf, Joost Th. M.; Dierckx, Rudi A. J. O.; Vellenga, Edo

    Rationale: A discordant relationship between bone marrow cellularity and peripheral blood findings is regularly noticed in patients with aplastic anemia (AA). Therefore, the feasibility of 3-F-18 fluoro-3-deoxy-L-thymidine (F-18 FLT PET was tested as a noninvasive tool to visualize the total

  19. Final Report for Phase II Study: Prototyping the Sketch Planning Visualization Tool for Non-Motorized Travel

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho-Ling [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Daniel W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reuscher, Tim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chin, Shih-Miao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Taylor, Rob D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-02-01

    To further examine how factors such as those identified from the Phase I NMT study, and the modeling framework developed under that effort could be applied to local/regional level planning activities, FHWA decided to pursue a Phase II study. It was determined that a small geographic area with more detailed local data would be necessary. Although Washington D.C. was not one of the 2009 NHTS add-ons, it did conduct a household travel survey of 11,000 households in 2007-2008. The National Capital Region Transportation Planning Board at the Metropolitan Washington Council of Governments (MWCOG) conducted the household travel survey. The data coverage under the MWCOG survey is much higher than that of the NHTS. As a part of the Phase II study, a prototype of a Geographic Information System (GIS)-based sketch planning visualization tool was also to be developed. The intent was to use a neighborhood in the Washington D.C. region as a case study for this prototype application.

  20. Visual analogue scale (VAS) as a monitoring tool for daily changes in asthma symptoms in adolescents: a prospective study.

    Science.gov (United States)

    Rhee, Hyekyun; Belyea, Michael; Mammen, Jennifer

    2017-01-01

    Success in asthma management hinges on patients' competency to detect and respond to ever-changing symptom severity. Thus, it is crucial to have reliable, simple, and sustainable methods of symptom monitoring that can be readily incorporated into daily life. Although visual analogue scale (VAS) has been considered as a simple symptom assessment method, its utility as a daily symptom monitoring tool in adolescents is unknown. This study was to determine the concurrent validity of VAS in capturing diurnal changes in symptoms and to examine the relationships between VAS and asthma control and pulmonary function. Forty-two adolescents (12-17 years old) with asthma completed daily assessment of symptoms twice per day, morning and bedtime, for a week using VAS and 6-item symptom diary concurrently. Asthma control was measured at enrollment and 6 month later, and spirometry was conducted at enrollment. Pearson correlations, multilevel modeling and regression were conducted to assess the relationships between VAS and symptom diary, asthma control and FEV1. Morning and evening VAS was positively associated with symptom diary items of each corresponding time frame of the day (r = 0.41-0.58, p monitoring, which can provide invaluable information about current and future asthma control without substantially increasing self-monitoring burdens for adolescent patients. Clinical Trial Registration NCT01696357. Registered 18 September 2012.

  1. Visualizing Our Options for Coastal Places: Exploring Realistic Immersive Geovisualizations as Tools for Inclusive Approaches to Coastal Planning and Management

    Directory of Open Access Journals (Sweden)

    Robert Newell

    2017-09-01

    Full Text Available Effective coastal planning is inclusive and incorporates the variety of user needs, values and interests associated with coastal environments. Realistic, immersive geographic visualizations, i.e., geovisualizations, can serve as potentially powerful tools for facilitating such planning because they can provide diverse groups with vivid understandings of how they would feel about certain management outcomes or impacts if transpired in real places. However, the majority of studies in this area have focused on terrestrial environments, and research on applications of such tools in the coastal and marine contexts is in its infancy. The current study aims to advance such research by examining the potential a land-to-sea geovisualization has to serve as a tool for inclusive coastal planning efforts. The research uses Sidney Spit Park (BC, Canada as a study site, and a realistic, dynamic geovisualization of the park was developed (using Unity3D that allows users to interact with and navigate it through the first-person perspective. Management scenarios were developed based on discussions with Parks Canada, and these scenarios included fencing around vegetation areas, positioning of mooring buoys, and management of dog activity within the park. Scenarios were built into the geovisualization in a manner that allows users to toggle different options. Focus groups were then assembled, involving residents of the Capital Regional District (BC, Canada, and participants explored and provided feedback on the scenarios. Findings from the study demonstrate the geovisualization's usefulness for assessing certain qualities of scenarios, such as aesthetics and functionality of fencing options and potential viewshed impacts associated with different mooring boat locations. In addition, the study found that incorporating navigability into the geovisualization proved to be valuable for understanding scenarios that hold implications for the marine environment due to

  2. OrbitMaster: An Online Tool for Investigating Solar System Dynamics and Visualizing Orbital Uncertainties in the Undergraduate Classroom

    Science.gov (United States)

    Puckett, Andrew W.; Rector, Travis A.; Baalke, Ron; Ajiki, Osamu

    2016-01-01

    OrbitMaster is a 3-D orbit visualization tool designed for the undergraduate astronomy classroom. It has been adapted from AstroArts' interactive OrbitViewer applet under the GNU General Public License, as part of the Research-Based Science Education for Undergraduates (RBSEU) curriculum. New features allow the user to alter an asteroid's orbital parameters using slider controls, and to monitor its changing position and speed relative to both Sun and Earth. It detects close approaches and collisions with Earth, and calculates revised distances and impact speeds due to Earth's gravitational attraction. It can also display many asteroid orbits at once, with direct application to visualizing the uncertainty in a single asteroid's orbital parameters. When paired with Project Pluto's Find_Orb orbit determination software and a source of asteroid astrometry, this enables monitoring of changes in orbital uncertainties with time and/or additional observational data. See http://facstaff.columbusstate.edu/puckett_andrew/orbitmaster.html.A series of undergraduate labs using the OrbitMaster applet are available as part of the RBSEU curriculum. In the first lab, students gain hands-on experience with the mechanics of asteroid orbits and confirm Kepler's laws of planetary motion. In the second, they study the orbits of Potentially Hazardous Asteroids as they build their own "Killer Asteroids" and investigate the minimum and maximum speed limits that apply to Earth-impacting objects. In the third and fourth labs, they discover the kinetic energy-crater size relationship, engage in their own Crater Scene Investigation (C.S.I.) to estimate impactor size, and understand the regional consequences of impacts. These labs may be used separately, or in support of a further seven-week sequence culminating in an authentic research project in which students submit measurements to the Minor Planet Center to refine a real asteroid's orbit. As with all RBSE projects, the overarching goal is

  3. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement

    Directory of Open Access Journals (Sweden)

    Juan J. Garcia-Cantero

    2017-06-01

    Full Text Available Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma’s morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been

  4. LogViewer: a software tool to visualize quality control parameters to optimize proteomics experiments using Orbitrap and LTQ-FT mass spectrometers.

    Science.gov (United States)

    Sweredoski, Michael J; Smith, Geoffrey T; Kalli, Anastasia; Graham, Robert L J; Hess, Sonja

    2011-12-01

    Visualization tools that allow both optimization of instrument's parameters for data acquisition and specific quality control (QC) for a given sample prior to time-consuming database searches have been scarce until recently and are currently still not freely available. To address this need, we have developed the visualization tool LogViewer, which uses diagnostic data from the RAW files of the Thermo Orbitrap and linear trap quadrupole-Fourier transform (LTQ-FT) mass spectrometers to monitor relevant metrics. To summarize and visualize the performance on our test samples, log files from RawXtract are imported and displayed. LogViewer is a visualization tool that allows a specific and fast QC for a given sample without time-consuming database searches. QC metrics displayed include: mass spectrometry (MS) ion-injection time histograms, MS ion-injection time versus retention time, MS(2) ion-injection time histograms, MS(2) ion-injection time versus retention time, dependent scan histograms, charge-state histograms, mass-to-charge ratio (M/Z) distributions, M/Z histograms, mass histograms, mass distribution, summary, repeat analyses, Raw MS, and Raw MS(2). Systematically optimizing all metrics allowed us to increase our protein identification rates from 600 proteins to routinely determine up to 1400 proteins in any 160-min analysis of a complex mixture (e.g., yeast lysate) at a false discovery rate of <1%. Visualization tools, such as LogViewer, make QC of complex liquid chromotography (LC)-MS and LC-MS/MS data and optimization of the instrument's parameters accessible to users.

  5. SU-E-T-259: A Statistical and Machine Learning-Based Tool for Modeling and Visualization of Radiotherapy Treatment Outcomes.

    Science.gov (United States)

    Oh, J; Wang, Y; Apte, A; Deasy, J

    2012-06-01

    Effective radiotherapy outcomes modeling could provide physicians with better understanding of the underlying disease mechanism, enabling to early predict outcomes and ultimately allowing for individualizing treatment for patients at high risk. This requires not only sophisticated statistical methods, but user-friendly visualization and data analysis tools. Unfortunately, few tools are available to support these requirements in radiotherapy community. Our group has developed Matlab-based in-house software called DREES for statistical modeling of radiotherapy treatment outcomes. We have noticed that advanced machine learning techniques can be used as useful tools for analyzing and modeling the outcomes data. To this end, we have upgraded DREES such that it takes advantage of useful Statistics and Bioinformatics toolboxes in Matlab that provide robust statistical data modeling and analysis methods as well as user-friendly visualization and graphical interface. Newly added key features include variable selection, discriminant analysis and decision tree for classification, and k-means and hierarchical clustering functions. Also, existing graphical tools and statistical methods in DREES were replaced with a library of the Matlab toolboxes. We analyzed several radiotherapy outcomes datasets with our tools and showed that these can be effectively used for building normal tissue complication probability (NTCP) and tumor control probability (TCP) models. We have developed an integrated software tool for modeling and visualization of radiotherapy outcomes data within the Matlab programming environment. It is our expectation that this tool could help physicians and scientists better understand the complex mechanism of disease and identify clinical and biological factors related to outcomes. © 2012 American Association of Physicists in Medicine.

  6. Evaluation and refinement of a handheld health information technology tool to support the timely update of bedside visual cues to prevent falls in hospitals.

    Science.gov (United States)

    Teh, Ruth C-A; Visvanathan, Renuka; Ranasinghe, Damith; Wilson, Anne

    2017-11-27

    To evaluate clinicians' perspectives, before and after clinical implementation (i.e. trial) of a handheld health information technology (HIT) tool, incorporating an iPad device and automatically generated visual cues for bedside display, for falls risk assessment and prevention in hospital. This pilot study utilized mixed-methods research with focus group discussions and Likert-scale surveys to elicit clinicians' attitudes. The study was conducted across three phases within two medical wards of the Queen Elizabeth Hospital. Phase 1 (pretrial) involved focus group discussion (five staff) and surveys (48 staff) to elicit preliminary perspectives on tool use, benefits and barriers to use and recommendations for improvement. Phase 2 (tool trial) involved HIT tool implementation on two hospital wards over consecutive 12-week periods. Phase 3 (post-trial) involved focus group discussion (five staff) and surveys (29 staff) following tool implementation, with similar themes as in Phase 1. Qualitative data were evaluated using content analysis, and quantitative data using descriptive statistics and logistic regression analysis, with subgroup analyses on user status (P ≤ 0.05). Four findings emerged on clinicians' experience, positive perceptions, negative perceptions and recommendations for improvement of the tool. Pretrial, clinicians were familiar with using visual cues in hospital falls prevention. They identified potential benefits of the HIT tool in obtaining timely, useful falls risk assessment to improve patient care. During the trial, the wards differed in methods of tool implementation, resulting in lower uptake by clinicians on the subacute ward. Post-trial, clinicians remained supportive for incorporating the tool into clinical practice; however, there were issues with usability and lack of time for tool use. Staff who had not used the tool had less appreciation for it improving their understanding of patients' falls risk factors (odds ratio 0.12), or

  7. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D.

    Science.gov (United States)

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron; Gümüs, Zeynep H

    2017-08-01

    Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. © The Authors 2017. Published by Oxford University Press.

  8. Is the NEI-VFQ-25 a useful tool in identifying visual impairment in an elderly population?

    Science.gov (United States)

    Owen, Christopher G; Rudnicka, Alicja R; Smeeth, Liam; Evans, Jennifer R; Wormald, Richard P L; Fletcher, Astrid E

    2006-06-09

    The use of self-report questionnaires to substitute for visual acuity measurement has been limited. We examined the association between visual impairment and self reported visual function in a population sample of older people in the UK. Cross sectional study of people aged more than 75 years who initially participated in a trial of health screening. The association between 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ) scores and visual impairment (defined as an acuity of less than 6/18 in the better eye) was examined using logistic regression. Visual acuity and NEI-VFQ scores were obtained from 1807 participants (aged 77 to 101 years, 36% male), from 20 general practices throughout the UK. After adjustment for age, gender, practice and NEI-VFQ sub-scale scores, those complaining of poor vision in general were 4.77 times (95% CI 3.03 to 7.53) more likely to be visually impaired compared to those who did not report difficulty. Self-reported limitations with social functioning and dependency on others due to poor vision were also associated with visual impairment (odds ratios, 2.52, 95% CI 1.55 to 4.11; 1.73, 95% CI 1.05 to 2.86 respectively). Those reporting difficulties with near vision and colour vision were more likely to be visually impaired (odds ratios, 2.32, 95% CI 1.30 to 4.15; 2.25, 95% CI 1.35 to 3.73 respectively). Other NEI-VFQ sub-scale scores were unrelated to measures of acuity. Similar but weaker odds ratios were found with reduced visual acuity (defined as less than 6/12 in the better eye). Although differences in NEI-VFQ scores were small, scores were strongly associated with visual acuity, binocular status, and difference in acuity between eyes. NEI-VFQ questions regarding the quality of general vision, social functioning, visual dependency, near vision and colour vision are strongly and independently associated with an objective measure of visual impairment in an elderly population.

  9. Is the NEI-VFQ-25 a useful tool in identifying visual impairment in an elderly population?

    Directory of Open Access Journals (Sweden)

    Wormald Richard PL

    2006-06-01

    Full Text Available Abstract Background The use of self-report questionnaires to substitute for visual acuity measurement has been limited. We examined the association between visual impairment and self reported visual function in a population sample of older people in the UK. Methods Cross sectional study of people aged more than 75 years who initially participated in a trial of health screening. The association between 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ scores and visual impairment (defined as an acuity of less than 6/18 in the better eye was examined using logistic regression. Results Visual acuity and NEI-VFQ scores were obtained from 1807 participants (aged 77 to 101 years, 36% male, from 20 general practices throughout the UK. After adjustment for age, gender, practice and NEI-VFQ sub-scale scores, those complaining of poor vision in general were 4.77 times (95% CI 3.03 to 7.53 more likely to be visually impaired compared to those who did not report difficulty. Self-reported limitations with social functioning and dependency on others due to poor vision were also associated with visual impairment (odds ratios, 2.52, 95% CI 1.55 to 4.11; 1.73, 95% CI 1.05 to 2.86 respectively. Those reporting difficulties with near vision and colour vision were more likely to be visually impaired (odds ratios, 2.32, 95% CI 1.30 to 4.15; 2.25, 95% CI 1.35 to 3.73 respectively. Other NEI-VFQ sub-scale scores were unrelated to measures of acuity. Similar but weaker odds ratios were found with reduced visual acuity (defined as less than 6/12 in the better eye. Although differences in NEI-VFQ scores were small, scores were strongly associated with visual acuity, binocular status, and difference in acuity between eyes. Conclusion NEI-VFQ questions regarding the quality of general vision, social functioning, visual dependency, near vision and colour vision are strongly and independently associated with an objective measure of visual impairment in an

  10. Visualization portal for genetic variation (VizGVar): a tool for interactive visualization of SNPs and somatic mutations in exons, genes and protein domains.

    Science.gov (United States)

    Román, Antonio Solano; Alfaro, Verónica; Cruz, Carlos; Solano, Allan Orozco

    2017-10-30

    VizGVar was designed to meet the growing need of the research community for improved genomic and proteomic data viewers that benefit from better information visualization. We implemented a new information architecture and applied user centered design principles to provide a new improved way of visualizing genetic information and protein data related to human disease. VizGVar connects the entire database of Ensembl protein motifs, domains, genes and exons with annotated SNPs and somatic variations from PharmGKB and COSMIC. VizGVar precisely represents genetic variations and their respective location by colored curves to designate different types of variations. The structured hierarchy of biological data is reflected in aggregated patterns through different levels, integrating several layers of information at once. VizGVar provides a new interactive, web-based JavaScript visualization of somatic mutations and protein variation, enabling fast and easy discovery of clinically relevant variation patterns. VizGVar is accessible at http://vizport.io/vizgvar. http://vizport.io/vizgvar/doc/. asolano@broadinstitute.org, allan.orozcosolano@ucr.ac.cr.

  11. Evaluation of Visualization Tools for Computer Network Defense Analysts: Display Design, Methods, and Results for a User Study

    Science.gov (United States)

    2016-11-01

    2.38 “I easily understood the visualization of the tabular display.” 24 1 0 1 5 17 4.54 “The manipulation of the visualization’s features of the...graphical displays.” 14 0 0 3 6 5 4.14 “I easily understood the visualization of the tabular display.” 15 0 1 3 4 7 4.13 “The manipulation of the...used to represent trend analyses and case studies, they are strongest.” • “The table was easy to manipulate and visualize , I could see multiple items

  12. Effects of Visual Communication Tool and Separable Status Display on Team Performance and Subjective Workload in Air Battle Management

    National Research Council Canada - National Science Library

    Schwartz, Daniel; Knott, Benjamin A; Galster, Scott M

    2008-01-01

    ... ambient cabin noise while performing several visual and manual tasks. The purpose of this study is to compare team performance and subjective workload on a simulated AWACS scenario, for two conditions of communication...

  13. Steady-state multifocal visual evoked potential (ssmfVEP) using dartboard stimulation as a possible tool for objective visual field assessment.

    Science.gov (United States)

    Horn, Folkert K; Selle, Franziska; Hohberger, Bettina; Kremers, Jan

    2016-02-01

    To investigate whether a conventional, monitor-based multifocal visual evoked potential (mfVEP) system can be used to record steady-state mfVEP (ssmfVEP) in healthy subjects and to study the effects of temporal frequency, electrode configuration and alpha waves. Multifocal pattern reversal VEP measurements were performed at 58 dartboard fields using VEP recording equipment. The responses were measured using m-sequences with four pattern reversals per m-step. Temporal frequencies were varied between 6 and 15 Hz. Recordings were obtained from nine normal subjects with a cross-shaped, four-electrode device (two additional channels were derived). Spectral analyses were performed on the responses at all locations. The signal to noise ratio (SNR) was computed for each response using the signal amplitude at the reversal frequency and the noise at the neighbouring frequencies. Most responses in the ssmfVEP were significantly above noise. The SNR was largest for an 8.6-Hz reversal frequency. The individual alpha electroencephalogram (EEG) did not strongly influence the results. The percentage of the records in which each of the 6 channels had the largest SNR was between 10.0 and 25.2 %. Our results in normal subjects indicate that reliable mfVEP responses can be achieved by steady-state stimulation using a conventional dartboard stimulator and multi-channel electrode device. The ssmfVEP may be useful for objective visual field assessment as spectrum analysis can be used for automated evaluation of responses. The optimal reversal frequency is 8.6 Hz. Alpha waves have only a minor influence on the analysis. Future studies must include comparisons with conventional mfVEP and psychophysical visual field tests.

  14. CellNetVis: a web tool for visualization of biological networks using force-directed layout constrained by cellular components.

    Science.gov (United States)

    Heberle, Henry; Carazzolle, Marcelo Falsarella; Telles, Guilherme P; Meirelles, Gabriela Vaz; Minghim, Rosane

    2017-09-13

    The advent of "omics" science has brought new perspectives in contemporary biology through the high-throughput analyses of molecular interactions, providing new clues in protein/gene function and in the organization of biological pathways. Biomolecular interaction networks, or graphs, are simple abstract representations where the components of a cell (e.g. proteins, metabolites etc.) are represented by nodes and their interactions are represented by edges. An appropriate visualization of data is crucial for understanding such networks, since pathways are related to functions that occur in specific regions of the cell. The force-directed layout is an important and widely used technique to draw networks according to their topologies. Placing the networks into cellular compartments helps to quickly identify where network elements are located and, more specifically, concentrated. Currently, only a few tools provide the capability of visually organizing networks by cellular compartments. Most of them cannot handle large and dense networks. Even for small networks with hundreds of nodes the available tools are not able to reposition the network while the user is interacting, limiting the visual exploration capability. Here we propose CellNetVis, a web tool to easily display biological networks in a cell diagram employing a constrained force-directed layout algorithm. The tool is freely available and open-source. It was originally designed for networks generated by the Integrated Interactome System and can be used with networks from others databases, like InnateDB. CellNetVis has demonstrated to be applicable for dynamic investigation of complex networks over a consistent representation of a cell on the Web, with capabilities not matched elsewhere.

  15. Metabolite Differentiation and Discovery Lab (MeDDL): A New Tool for Biomarker Discovery and Mass Spectral Visualization

    Science.gov (United States)

    2010-06-01

    Vol. 82, No. 11, June 1, 2010 Published on Web 05/05/2010 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...the (∆m, ∆t) acceptance box as a peak substitute. Visualization System. The visualization system is based on the MVC (model-view-controller) software...supports mouse and keyboard input. The com- munication between the controller and the model is implemented Figure 3. Example MVC (model-view-controller

  16. User-Centered Design of E-Learning Tools for Users with Special Needs: The VisualPedia Case Study

    Directory of Open Access Journals (Sweden)

    Stefano Valtolina

    2012-10-01

    Full Text Available The design of multimedia systems in the e-learning context poses several challenges in term of developing usable and accessible applications. This paper presents a case study related to VisualPedia, a collaborative multimedia e-learning system, whose software lifecycle has followed a participatory design and the analysis of specific phenomena characterizing the HCI process. The goal of this work is to highlight that the adoption of these approaches from the early design phase will lead to make useful, usable and accessible multimedia interactive systems. Results are validated by showing some usability and accessibility analysis carried out in the context of the VisualPedia development process.

  17. Development of an Arabic version of the National Eye Institute Visual Function Questionnaire as a tool to study eye diseases patients in Egypt

    Directory of Open Access Journals (Sweden)

    Nizar Saleh Abdelfattah

    2014-10-01

    Full Text Available AIM:To develop and test an Arabic version of the National Eye Institute Visual Function Questionnaire-25 (NEI-VFQ-25.METHODS:NEI-VFQ-25 was translated into Arabic according to WHO translation guidelines. We enrolled adult consenting patients with bilateral chronic eye diseases who presented to 14 hospitals across Egypt from October to December 2012, and documented their clinical findings. Psychometric properties were then tested using STATA.RESULTS:We recruited 379 patients, whose mean age was (54.5±15y. Of 46.2% were males, 227 had cataract, 31 had glaucoma, 23 had retinal detachment, 37 had diabetic retinopathy, and 61 had miscellaneous visual defects. Non-response rate and the floor and ceiling numbers of the Arabic version (ARB-VFQ-25 were calculated. Internal consistency was high in all subscales (except general health, with Cronbach-α ranging from 0.702-0.911. Test-retest reliability was high (intraclass correlation coefficient 0.79.CONCLUSION:ARB-VFQ-25 is a reliable and valid tool for assessing visual functions of Arabic speaking patients. However, some questions had high non-response rates and should be substituted by available alternatives. Our results support the importance of including self-reported visual functions as part of routine ophthalmologic examination.

  18. Combination of phagostimulant and visual lure as an effective tool in designing house fly toxic baits: a laboratory evaluation.

    Directory of Open Access Journals (Sweden)

    Hafiz Azhar Ali Khan

    Full Text Available House flies (Diptera: Muscidae, potential vectors of a variety of pathogens, characteristically search and feed on sugar sources just after emergence for their survival. Phagostimulants like sugars, and visual characteristics of feeding materials play an important role in foraging success in house flies. Therefore, development of toxic baits by using the combination of phagostimulant and visual lure may prove effective in localized control of house flies. In the present study, visual attraction of house flies to different fabric colors was studied in choice and no choice experiments. Dark blue was the most preferred color in both experiments. In toxicity experiments, insecticide solutions were prepared in 20% sugar solution. Dark blue fabric strips were prepared by moistening with 20% sugar water solution containing median lethal concentrations of one of the four insecticides viz., fipronil, Imidacloprid, indoxacarb and Spinosad. The fabric strips treated with fipronil and Imidacloprid took minimum time (7.66 and 7.81 h, respectively to cause 50% mortality, while those treated with Spinosad and indoxacarb took relatively more time (13.62 and 17.91 h, respectively to cause 50% mortality. In conclusion, the combination of phagostimulant and visual lure could be used in designing toxic baits for house flies.

  19. The Oculus Rift: A cost-effective tool for studying visual-vestibular interactions in self-motion perception

    Directory of Open Access Journals (Sweden)

    Juno eKim

    2015-03-01

    Full Text Available For years now, virtual reality devices have been applied in the field of vision science in an attempt to improve our understanding of perceptual principles underlying the experience of self-motion. Some of this research has been concerned with exploring factors involved in the visually-induced illusory perception of self-motion, known as vection. We examined the usefulness of the cost-effective Oculus Rift in generating vection in seated observers. This device has the capacity to display optic flow in world coordinates by compensating for tracked changes in 3D head orientation. We measured vection strength in three conditions of visual compensation for head movement: compensated, uncompensated, and inversely compensated. During presentation of optic flow, the observer was instructed to make periodic head oscillations (+/- 22 deg horizontal excursions at approximately 0.53 Hz. We found that vection was best in the compensated condition, and was weakest in the inversely compensated condition. Surprisingly, vection was always better in passive viewing conditions, compared with conditions where active head rotations were performed. These findings suggest that vection is highly dependent on interactions between visual, vestibular and proprioceptive information, and may be highly sensitive to limitations of temporal lag in visual-vestibular coupling using this system.

  20. The Oculus Rift: a cost-effective tool for studying visual-vestibular interactions in self-motion perception.

    Science.gov (United States)

    Kim, Juno; Chung, Charles Y L; Nakamura, Shinji; Palmisano, Stephen; Khuu, Sieu K

    2015-01-01

    For years now, virtual reality devices have been applied in the field of vision science in an attempt to improve our understanding of perceptual principles underlying the experience of self-motion. Some of this research has been concerned with exploring factors involved in the visually-induced illusory perception of self-motion, known as vection. We examined the usefulness of the cost-effective Oculus Rift in generating vection in seated observers. This device has the capacity to display optic flow in world coordinates by compensating for tracked changes in 3D head orientation. We measured vection strength in three conditions of visual compensation for head movement: compensated, uncompensated, and inversely compensated. During presentation of optic flow, the observer was instructed to make periodic head oscillations (±22° horizontal excursions at approximately 0.53 Hz). We found that vection was best in the compensated condition, and was weakest in the inversely compensated condition. Surprisingly, vection was always better in passive viewing conditions, compared with conditions where active head rotations were performed. These findings suggest that vection is highly dependent on interactions between visual, vestibular and proprioceptive information, and may be highly sensitive to limitations of temporal lag in visual-vestibular coupling using this system.

  1. 3D Simulation Technology as an Effective Instructional Tool for Enhancing Spatial Visualization Skills in Apparel Design

    Science.gov (United States)

    Park, Juyeon; Kim, Dong-Eun; Sohn, MyungHee

    2011-01-01

    The purpose of this study is to explore the effectiveness of 3D simulation technology for enhancing spatial visualization skills in apparel design education and further to suggest an innovative teaching approach using the technology. Apparel design majors in an introductory patternmaking course, at a large Midwestern University in the United…

  2. Microsurgical Clipping of an Anterior Communicating Artery Aneurysm Using a Novel Robotic Visualization Tool in Lieu of the Binocular Operating Microscope: Operative Video.

    Science.gov (United States)

    Klinger, Daniel R; Reinard, Kevin A; Ajayi, Olaide O; Delashaw, Johnny B

    2018-01-01

    The binocular operating microscope has been the visualization instrument of choice for microsurgical clipping of intracranial aneurysms for many decades. To discuss recent technological advances that have provided novel visualization tools, which may prove to be superior to the binocular operating microscope in many regards. We present an operative video and our operative experience with the BrightMatterTM Servo System (Synaptive Medical, Toronto, Ontario, Canada) during the microsurgical clipping of an anterior communicating artery aneurysm. To the best of our knowledge, the use of this device for the microsurgical clipping of an intracranial aneurysm has never been described in the literature. The BrightMatterTM Servo System (Synaptive Medical) is a surgical exoscope which avoids many of the ergonomic constraints of the binocular operating microscope, but is associated with a steep learning curve. The BrightMatterTM Servo System (Synaptive Medical) is a maneuverable surgical exoscope that is positioned with a directional aiming device and a surgeon-controlled foot pedal. While utilizing this device comes with a steep learning curve typical of any new technology, the BrightMatterTM Servo System (Synaptive Medical) has several advantages over the conventional surgical microscope, which include a relatively unobstructed surgical field, provision of high-definition images, and visualization of difficult angles/trajectories. This device can easily be utilized as a visualization tool for a variety of cranial and spinal procedures in lieu of the binocular operating microscope. We anticipate that this technology will soon become an integral part of the neurosurgeon's armamentarium.

  3. SaVanT: a web-based tool for the sample-level visualization of molecular signatures in gene expression profiles.

    Science.gov (United States)

    Lopez, David; Montoya, Dennis; Ambrose, Michael; Lam, Larry; Briscoe, Leah; Adams, Claire; Modlin, Robert L; Pellegrini, Matteo

    2017-10-25

    Molecular signatures are collections of genes characteristic of a particular cell type, tissue, disease, or perturbation. Signatures can also be used to interpret expression profiles generated from heterogeneous samples. Large collections of gene signatures have been previously developed and catalogued in the MSigDB database. In addition, several consortia and large-scale projects have systematically profiled broad collections of purified primary cells, molecular perturbations of cell types, and tissues from specific diseases, and the specificity and breadth of these datasets can be leveraged to create additional molecular signatures. However, to date there are few tools that allow the visualization of individual signatures across large numbers of expression profiles. Signature visualization of individual samples allows, for example, the identification of patient subcategories a priori on the basis of well-defined molecular signatures. Here, we generate and compile 10,985 signatures (636 newly-generated and 10,349 previously available from MSigDB) and provide a web-based Signature Visualization Tool (SaVanT; http://newpathways.mcdb.ucla.edu/savant ), to visualize these signatures in user-generated expression data. We show that using SaVanT, immune activation signatures can distinguish patients with different types of acute infections (influenza A and bacterial pneumonia). Furthermore, SaVanT is able to identify the prominent signatures within each patient group, and identify the primary cell types underlying different leukemias (acute myeloid and acute lymphoblastic) and skin disorders. The development of SaVanT facilitates large-scale analysis of gene expression profiles on a patient-level basis to identify patient subphenotypes, or potential therapeutic target pathways.

  4. 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data.

    Science.gov (United States)

    Kuo, Tien-Chueh; Tian, Tze-Feng; Tseng, Yufeng Jane

    2013-07-23

    Integrative and comparative analyses of multiple transcriptomics, proteomics and metabolomics datasets require an intensive knowledge of tools and background concepts. Thus, it is challenging for users to perform such analyses, highlighting the need for a single tool for such purposes. The 3Omics one-click web tool was developed to visualize and rapidly integrate multiple human inter- or intra-transcriptomic, proteomic, and metabolomic data by combining five commonly used analyses: correlation networking, coexpression, phenotyping, pathway enrichment, and GO (Gene Ontology) enrichment. 3Omics generates inter-omic correlation networks to visualize relationships in data with respect to time or experimental conditions for all transcripts, proteins and metabolites. If only two of three omics datasets are input, then 3Omics supplements the missing transcript, protein or metabolite information related to the input data by text-mining the PubMed database. 3Omics' coexpression analysis assists in revealing functions shared among different omics datasets. 3Omics' phenotype analysis integrates Online Mendelian Inheritance in Man with available transcript or protein data. Pathway enrichment analysis on metabolomics data by 3Omics reveals enriched pathways in the KEGG/HumanCyc database. 3Omics performs statistical Gene Ontology-based functional enrichment analyses to display significantly overrepresented GO terms in transcriptomic experiments. Although the principal application of 3Omics is the integration of multiple omics datasets, it is also capable of analyzing individual omics datasets. The information obtained from the analyses of 3Omics in Case Studies 1 and 2 are also in accordance with comprehensive findings in the literature. 3Omics incorporates the advantages and functionality of existing software into a single platform, thereby simplifying data analysis and enabling the user to perform a one-click integrated analysis. Visualization and analysis results are

  5. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, Giovanni

    Science.gov (United States)

    Liu, Z.; Acker, J.; Kempler, S.

    2016-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.

  6. The Oculus Rift: A cost-effective tool for studying visual-vestibular interactions in self-motion perception

    OpenAIRE

    Juno eKim; Charles eChung; Shinji eNakamura; Stephen ePalmisano; Sieu Kieu Khuu

    2015-01-01

    For years now, virtual reality devices have been applied in the field of vision science in an attempt to improve our understanding of perceptual principles underlying the experience of self-motion. Some of this research has been concerned with exploring factors involved in the visually-induced illusory perception of self-motion, known as vection. We examined the usefulness of the cost-effective Oculus Rift in generating vection in seated observers. This device has the capacity to display opti...

  7. Visual Discomfort While Viewing Three-dimensional Television as a Screening Tool for Pediatric Eye Diseases in Children.

    Science.gov (United States)

    Suh, Young-Woo; Kim, Seung-Hyun; Ha, Suk-Gyu; Seo, Hyejin; Ahn, Jaemoon

    2017-01-01

    To investigate the efficacy of evaluating 3D asthenopia and 3D perception difficulty for screening of binocular vision abnormalities in children. Patients aged 6-12 years with abnormal binocularity, including strabismus, amblyopia, and anisometropia, were included. Age-matched normal subjects without any ophthalmologic abnormality other than a refractive error were also recruited. The best-corrected visual acuity, refractive error, angle of strabismus, and stereopsis were measured. Presenting visual acuity (PVA) was measured as the uncorrected visual acuity for subjects without glasses and spectacle-corrected visual acuity for those with glasses. After watching 3D TV for 30 min, a survey was administered to evaluate the 3D perception and 3D asthenopia. Receiver operation characteristic (ROC) curve analysis was conducted to evaluate the efficacy of the survey for detecting abnormal binocularity and poor PVA. One hundred subjects were enrolled in this study. Among them, 59 had abnormal binocularity (strabismus, anisometropia, or amblyopia), and 41 were normal control. Among the entire subjects, the number of subjects with a PVA of 20/40 or worse in one or both eyes was 24 (7 from the normal control and 17 with abnormal binocularity). ROC curve analysis revealed that the survey did not effectively detect strabismus, anisometropia, or amblyopia. However, for detection of PVA 20/40 or worse in the subjects with abnormal binocularity, the total score of the survey yielded an area of 0.714 under the ROC curve (p = 0.010). The sensitivity was 88.2% and specificity was 61.9% with a cutoff at 0.50. The degree of 3D asthenopia and 3D perception while watching 3D TV were not effective for screening of abnormal binocularity. However, evaluation of the severity of 3D asthenopia and the quality of 3D perception can help screen of decrease in PVA that requires correction.

  8. Identifying shared genetic structure patterns among Pacific Northwest forest taxa: insights from use of visualization tools and computer simulations.

    Directory of Open Access Journals (Sweden)

    Mark P Miller

    Full Text Available BACKGROUND: Identifying causal relationships in phylogeographic and landscape genetic investigations is notoriously difficult, but can be facilitated by use of multispecies comparisons. METHODOLOGY/PRINCIPAL FINDINGS: We used data visualizations to identify common spatial patterns within single lineages of four taxa inhabiting Pacific Northwest forests (northern spotted owl: Strix occidentalis caurina; red tree vole: Arborimus longicaudus; southern torrent salamander: Rhyacotriton variegatus; and western white pine: Pinus monticola. Visualizations suggested that, despite occupying the same geographical region and habitats, species responded differently to prevailing historical processes. S. o. caurina and P. monticola demonstrated directional patterns of spatial genetic structure where genetic distances and diversity were greater in southern versus northern locales. A. longicaudus and R. variegatus displayed opposite patterns where genetic distances were greater in northern versus southern regions. Statistical analyses of directional patterns subsequently confirmed observations from visualizations. Based upon regional climatological history, we hypothesized that observed latitudinal patterns may have been produced by range expansions. Subsequent computer simulations confirmed that directional patterns can be produced by expansion events. CONCLUSIONS/SIGNIFICANCE: We discuss phylogeographic hypotheses regarding historical processes that may have produced observed patterns. Inferential methods used here may become increasingly powerful as detailed simulations of organisms and historical scenarios become plausible. We further suggest that inter-specific comparisons of historical patterns take place prior to drawing conclusions regarding effects of current anthropogenic change within landscapes.

  9. Ssecrett and neuroTrace: Interactive visualization and analysis tools for large-scale neuroscience data sets

    KAUST Repository

    Jeong, Wonki

    2010-05-01

    Recent advances in optical and electron microscopy let scientists acquire extremely high-resolution images for neuroscience research. Data sets imaged with modern electron microscopes can range between tens of terabytes to about one petabyte. These large data sizes and the high complexity of the underlying neural structures make it very challenging to handle the data at reasonably interactive rates. To provide neuroscientists flexible, interactive tools, the authors introduce Ssecrett and NeuroTrace, two tools they designed for interactive exploration and analysis of large-scale optical- and electron-microscopy images to reconstruct complex neural circuits of the mammalian nervous system. © 2010 IEEE.

  10. Matching spatial with ontological brain regions using Java tools for visualization, database access, and integrated data analysis.

    NARCIS (Netherlands)

    Bezgin, G.; Reid, A.T.; Schubert, D.; Kotter, R.

    2009-01-01

    Brain atlases are widely used in experimental neuroscience as tools for locating and targeting specific brain structures. Delineated structures in a given atlas, however, are often difficult to interpret and to interface with database systems that supply additional information using hierarchically

  11. Making sense of the sea on a shoestring: A review of cost-effective tools for coral reef visualization

    Science.gov (United States)

    Soriano, Maricor

    2017-08-01

    The Philippines being a tropical archipelago with an estimated 27,000 square kilometers of coral reefs has too few trained specialists who can monitor, study, and promote measures to conserve its vast marine resources. Bringing specialists to survey a site comes at a cost while survey equipment can hardly be afforded by low-income municipalities or schools. In this paper I review a suite of coral reef assessment and visualization solutions we designed for low-cost, monitoring of the shallow marine environment either for resource management or for basic research.

  12. Communicating Ocean Acidification and Climate Change to Public Audiences Using Scientific Data, Interactive Exploration Tools, and Visual Narratives

    Science.gov (United States)

    Miller, M. K.; Rossiter, A.; Spitzer, W.

    2016-12-01

    The Exploratorium, a hands-on science museum, explores local environmental conditions of San Francisco Bay to connect audiences to the larger global implications of ocean acidification and climate change. The work is centered in the Fisher Bay Observatory at Pier 15, a glass-walled gallery sited for explorations of urban San Francisco and the Bay. Interactive exhibits, high-resolution data visualizations, and mediated activities and conversations communicate to public audiences the impacts of excess carbon dioxide in the atmosphere and ocean. Through a 10-year education partnership with NOAA and two environmental literacy grants funded by its Office of Education, the Exploratorium has been part of two distinct but complementary strategies to increase climate literacy beyond traditional classroom settings. We will discuss two projects that address the ways complex scientific information can be transformed into learning opportunities for the public, providing information citizens can use for decision-making in their personal lives and their communities. The Visualizing Change project developed "visual narratives" that combine scientific visualizations and other images with story telling about the science and potential solutions of climate impacts on the ocean. The narratives were designed to engage curiosity and provide the public with hopeful and useful information to stimulate solutions-oriented behavior rather than to communicate despair about climate change. Training workshops for aquarium and museum docents prepare informal educators to use the narratives and help them frame productive conversations with the pubic. The Carbon Networks project, led by the Exploratorium, uses local and Pacific Rim data to explore the current state of climate change and ocean acidification. The Exploratorium collects and displays local ocean and atmosphere data as a member of the Central and Northern California Ocean Observing System and as an observing station for NOAA's Pacific

  13. Phi-square Lexical Competition Database (Phi-Lex): an online tool for quantifying auditory and visual lexical competition.

    Science.gov (United States)

    Strand, Julia F

    2014-03-01

    A widely agreed-upon feature of spoken word recognition is that multiple lexical candidates in memory are simultaneously activated in parallel when a listener hears a word, and that those candidates compete for recognition (Luce, Goldinger, Auer, & Vitevitch, Perception 62:615-625, 2000; Luce & Pisoni, Ear and Hearing 19:1-36, 1998; McClelland & Elman, Cognitive Psychology 18:1-86, 1986). Because the presence of those competitors influences word recognition, much research has sought to quantify the processes of lexical competition. Metrics that quantify lexical competition continuously are more effective predictors of auditory and visual (lipread) spoken word recognition than are the categorical metrics traditionally used (Feld & Sommers, Speech Communication 53:220-228, 2011; Strand & Sommers, Journal of the Acoustical Society of America 130:1663-1672, 2011). A limitation of the continuous metrics is that they are somewhat computationally cumbersome and require access to existing speech databases. This article describes the Phi-square Lexical Competition Database (Phi-Lex): an online, searchable database that provides access to multiple metrics of auditory and visual (lipread) lexical competition for English words, available at www.juliastrand.com/phi-lex .

  14. In-lab three-dimensional printing: an inexpensive tool for experimentation and visualization for the field of organogenesis.

    Science.gov (United States)

    Partridge, Roland; Conlisk, Noel; Davies, Jamie A

    2012-01-01

    The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue's three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer.

  15. Componentizing, standardizing and visualizing: How CSDMS is building a new system for integrated modeling from open-source tools and standards

    Science.gov (United States)

    Peckham, S. D.; Hutton, E.

    2009-12-01

    The Community Surface Dynamics Modeling System (CSDMS) is an NSF-funded project that is helping a diverse community of surface dynamics modelers and model users to work together toward common goals. Part of this effort involves enabling models and process modules to work together as plug-and-play components within an integrated modeling system. The CSDMS approach to this problem has been to build upon and combine an existing set of well-established software tools. The standards and tools of the Common Component Architecture (CCA, www.cca-forum.org) provide the foundation for this effort. Babel is one of the key tools in the CCA toolchain, and provides interoperability between components that are written in different languages. It currently supports C, C++, Fortran (all years), Java and Python. Other key CCA tools include (1) Bocca, which makes it easier to package models as CCA-compliant components, (2) Ccaffeine, a CCA-compliant framework for linking components into new applications and (3) Ccaffeine-GUI, a client-side front-end to Ccaffeine that allows components to be linked graphically. In addition to these CCA tools, CSDMS has also based its model component interface on an open interface standard known as OpenMI (www.opemi.org). While tools like Babel, Bocca and Ccaffeine are critical to the design and internal operation of the CSDMS modeling system, they are used at a fairly low-level and are invisible to most users of the system. What most users see is a user-friendly GUI that they install as a small, Java application on their PC. This new GUI is a work in progress that started from the Ccaffeine GUI but which CSDMS has altered significantly to enhance its usability and extend its capabilities. For example, a powerful, HPC visualization tool called VisIt is now accessible from the GUI so it is now possible to visualize model output either during or after a model run. VisIt supports a large number of image and data formats and is configured to automatically

  16. Data Driven Quality Improvement of Health Professions Education: Design and Development of CLUE - An Interactive Curriculum Data Visualization Tool.

    Science.gov (United States)

    Canning, Claire Ann; Loe, Alan; Cockett, Kathryn Jane; Gagnon, Paul; Zary, Nabil

    2017-01-01

    Curriculum Mapping and dynamic visualization is quickly becoming an integral aspect of quality improvement in support of innovations which drive curriculum quality assurance processes in medical education. CLUE (Curriculum Explorer) a highly interactive, engaging and independent platform was developed to support curriculum transparency, enhance student engagement, and enable granular search and display. Reflecting a design based approach to meet the needs of the school's varied stakeholders, CLUE employs an iterative and reflective approach to drive the evolution of its platform, as it seeks to accommodate the ever-changing needs of our stakeholders in the fast pace world of medicine and medical education today. CLUE exists independent of institutional systems and in this way, is uniquely positioned to deliver a data driven quality improvement resource, easily adaptable for use by any member of our health care professions.

  17. The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets.

    Science.gov (United States)

    Stocks, Matthew B; Moxon, Simon; Mapleson, Daniel; Woolfenden, Hugh C; Mohorianu, Irina; Folkes, Leighton; Schwach, Frank; Dalmay, Tamas; Moulton, Vincent

    2012-08-01

    RNA silencing is a complex, highly conserved mechanism mediated by small RNAs (sRNAs), such as microRNAs (miRNAs), that is known to be involved in a diverse set of biological functions including development, pathogen control, genome maintenance and response to environmental change. Advances in next generation sequencing technologies are producing increasingly large numbers of sRNA reads per sample at a fraction of the cost of previous methods. However, many bioinformatics tools do not scale accordingly, are cumbersome, or require extensive support from bioinformatics experts. Therefore, researchers need user-friendly, robust tools, capable of not only processing large sRNA datasets in a reasonable time frame but also presenting the results in an intuitive fashion and visualizing sRNA genomic features. Herein, we present the UEA sRNA workbench, a suite of tools that is a successor to the web-based UEA sRNA Toolkit, but in downloadable format and with several enhanced and additional features. The program and help pages are available at http://srna-workbench.cmp.uea.ac.uk. vincent.moulton@cmp.uea.ac.uk.

  18. A simple quality assurance test tool for the visual verification of light and radiation field congruent using electronic portal images device and computed radiography

    Directory of Open Access Journals (Sweden)

    Njeh Christopher F

    2012-03-01

    Full Text Available Abstract Background The radiation field on most megavoltage radiation therapy units are shown by a light field projected through the collimator by a light source mounted inside the collimator. The light field is traditionally used for patient alignment. Hence it is imperative that the light field is congruent with the radiation field. Method A simple quality assurance tool has been designed for rapid and simple test of the light field and radiation field using electronic portal images device (EPID or computed radiography (CR. We tested this QA tool using Varian PortalVision and Elekta iViewGT EPID systems and Kodak CR system. Results Both the single and double exposure techniques were evaluated, with double exposure technique providing a better visualization of the light-radiation field markers. The light and radiation congruency could be detected within 1 mm. This will satisfy the American Association of Physicists in Medicine task group report number 142 recommendation of 2 mm tolerance. Conclusion The QA tool can be used with either an EPID or CR to provide a simple and rapid method to verify light and radiation field congruence.

  19. How information visualization novices construct visualizations.

    Science.gov (United States)

    Grammel, Lars; Tory, Melanie; Storey, Margaret-Anne

    2010-01-01

    It remains challenging for information visualization novices to rapidly construct visualizations during exploratory data analysis. We conducted an exploratory laboratory study in which information visualization novices explored fictitious sales data by communicating visualization specifications to a human mediator, who rapidly constructed the visualizations using commercial visualization software. We found that three activities were central to the iterative visualization construction process: data attribute selection, visual template selection, and visual mapping specification. The major barriers faced by the participants were translating questions into data attributes, designing visual mappings, and interpreting the visualizations. Partial specification was common, and the participants used simple heuristics and preferred visualizations they were already familiar with, such as bar, line and pie charts. We derived abstract models from our observations that describe barriers in the data exploration process and uncovered how information visualization novices think about visualization specifications. Our findings support the need for tools that suggest potential visualizations and support iterative refinement, that provide explanations and help with learning, and that are tightly integrated into tool support for the overall visual analytics process.

  20. Going virtual with quicktime VR: new methods and standardized tools for interactive dynamic visualization of anatomical structures.

    Science.gov (United States)

    Trelease, R B; Nieder, G L; Dørup, J; Hansen, M S

    2000-04-15

    Continuing evolution of computer-based multimedia technologies has produced QuickTime, a multiplatform digital media standard that is supported by stand-alone commercial programs and World Wide Web browsers. While its core functions might be most commonly employed for production and delivery of conventional video programs (e.g., lecture videos), additional QuickTime VR "virtual reality" features can be used to produce photorealistic, interactive "non-linear movies" of anatomical structures ranging in size from microscopic through gross anatomic. But what is really included in QuickTime VR and how can it be easily used to produce novel and innovative visualizations for education and research? This tutorial introduces the QuickTime multimedia environment, its QuickTime VR extensions, basic linear and non-linear digital video technologies, image acquisition, and other specialized QuickTime VR production methods. Four separate practical applications are presented for light and electron microscopy, dissectable preserved specimens, and explorable functional anatomy in magnetic resonance cinegrams.

  1. Framing scenarios of binational water policy with a tool to visualize, quantify and valuate changes in ecosystem services

    Science.gov (United States)

    Norman, Laura M.; Villarreal, Miguel L.; Niraula, Rewati; Meixner, Thomas; Frisvold, George; Labiosa, William

    2013-01-01

    In the Santa Cruz Watershed, located on the Arizona-Sonora portion of the U.S.-Mexico border, an international wastewater treatment plant treats wastewater from cities on both sides of the border, before discharging it into the river in Arizona. These artificial flows often subsidize important perennial surface water ecosystems in the region. An explicit understanding of the benefits of maintaining instream flow for present and future generations requires the ability to assess and understand the important trade-offs implicit in water-resource management decisions. In this paper, we outline an approach for modeling and visualizing impacts of management decisions in terms of rare terrestrial and aquatic wildlife, vegetation, surface water, groundwater recharge, real-estate values and socio-environmental vulnerable communities. We identify and quantify ecosystem services and model the potential reduction in effluent discharge to the U.S. that is under scrutiny by binational water policy makers and of concern to stakeholders. Results of service provisioning are presented, and implications for policy makers and resource managers are discussed. This paper presents a robust ecosystem services assessment of multiple scenarios of watershed management as a means to discern eco-hydrological responses and consider their potential values for future generations living in the borderlands.

  2. Effectively Visualizing Library Data

    National Research Council Canada - National Science Library

    Phetteplace, Eric

    2012-01-01

    ....6 The North Carolina State University Libraries have an ambitious data visualization project that aims to visualize the usage of reference services, course tools, computer workstations, and group study rooms...

  3. The effects of visual half-field priming on the categorization of familiar intransitive gestures, tool use pantomimes, and meaningless hand movements

    Directory of Open Access Journals (Sweden)

    Honorata eHelon

    2014-05-01

    Full Text Available Although the control of meaningful gestures is one of the most left-lateralized functions, the relative contribution of the two hemispheres to their processing is still debated. We tested the effects of primes appearing in the left or right visual field in the form of pictures (Experiment 1, and words (Experiment 2 on categorization of movies showing intransitive (communicative gestures, tool use (transitive pantomimes, and meaningless movements. 15 participants (8 women watched 36 movies (12 from each category primed for 150 ms with either a congruent or incongruent stimulus followed by a 50-ms mask. On congruent trials, a picture or word was directly related to the presented gesture, including nonsense pictures or non-words for meaningless actions. On incongruent trials, a picture or word belonged to a different category. In Exp. 1, intransitive gestures were categorized significantly faster than the other two types of hand movements. Moreover, whereas the categorization of transitive gestures was significantly facilitated by congruent pictures on the right, the effect was weaker for intransitive, and reversed for meaningless movements. In Exp. 2, intransitive gestures were again categorized significantly faster, but transitive significantly slower than the other two gesture categories. Yet, there was now a significant facilitation of intransitive, and inhibition of transitive gesture categorization following congruent prime words in the right visual field, and significantly faster categorization of intransitive gestures following incongruent words in the left visual field. These outcomes lend support to the complexity account of differences in left-hemisphere representations of meaningful gestures reported in the neuropsychological, behavioral, and neuroimaging literature. Nevertheless, they also indicate that the representations of intransitive gestures show some differential, and sometimes counterintuitive sensitivity to right hemisphere

  4. A Web-Based Tool for Automatic Data Collection, Curation, and Visualization of Complex Healthcare Survey Studies including Social Network Analysis

    Directory of Open Access Journals (Sweden)

    José Alberto Benítez

    2017-01-01

    Full Text Available There is a great concern nowadays regarding alcohol consumption and drug abuse, especially in young people. Analyzing the social environment where these adolescents are immersed, as well as a series of measures determining the alcohol abuse risk or personal situation and perception using a number of questionnaires like AUDIT, FAS, KIDSCREEN, and others, it is possible to gain insight into the current situation of a given individual regarding his/her consumption behavior. But this analysis, in order to be achieved, requires the use of tools that can ease the process of questionnaire creation, data gathering, curation and representation, and later analysis and visualization to the user. This research presents the design and construction of a web-based platform able to facilitate each of the mentioned processes by integrating the different phases into an intuitive system with a graphical user interface that hides the complexity underlying each of the questionnaires and techniques used and presenting the results in a flexible and visual way, avoiding any manual handling of data during the process. Advantages of this approach are shown and compared to the previous situation where some of the tasks were accomplished by time consuming and error prone manipulations of data.

  5. A Web-Based Tool for Automatic Data Collection, Curation, and Visualization of Complex Healthcare Survey Studies including Social Network Analysis.

    Science.gov (United States)

    Benítez, José Alberto; Labra, José Emilio; Quiroga, Enedina; Martín, Vicente; García, Isaías; Marqués-Sánchez, Pilar; Benavides, Carmen

    2017-01-01

    There is a great concern nowadays regarding alcohol consumption and drug abuse, especially in young people. Analyzing the social environment where these adolescents are immersed, as well as a series of measures determining the alcohol abuse risk or personal situation and perception using a number of questionnaires like AUDIT, FAS, KIDSCREEN, and others, it is possible to gain insight into the current situation of a given individual regarding his/her consumption behavior. But this analysis, in order to be achieved, requires the use of tools that can ease the process of questionnaire creation, data gathering, curation and representation, and later analysis and visualization to the user. This research presents the design and construction of a web-based platform able to facilitate each of the mentioned processes by integrating the different phases into an intuitive system with a graphical user interface that hides the complexity underlying each of the questionnaires and techniques used and presenting the results in a flexible and visual way, avoiding any manual handling of data during the process. Advantages of this approach are shown and compared to the previous situation where some of the tasks were accomplished by time consuming and error prone manipulations of data.

  6. Biological Principles and Threshold Concepts for Understanding Natural Selection. Implications for Developing Visualizations as a Pedagogic Tool

    Science.gov (United States)

    Tibell, Lena A. E.; Harms, Ute

    2017-11-01

    Modern evolutionary theory is both a central theory and an integrative framework of the life sciences. This is reflected in the common references to evolution in modern science education curricula and contexts. In fact, evolution is a core idea that is supposed to support biology learning by facilitating the organization of relevant knowledge. In addition, evolution can function as a pivotal link between concepts and highlight similarities in the complexity of biological concepts. However, empirical studies in many countries have for decades identified deficiencies in students' scientific understanding of evolution mainly focusing on natural selection. Clearly, there are major obstacles to learning natural selection, and we argue that to overcome them, it is essential to address explicitly the general abstract concepts that underlie the biological processes, e.g., randomness or probability. Hence, we propose a two-dimensional framework for analyzing and structuring teaching of natural selection. The first—purely biological—dimension embraces the three main principles variation, heredity, and selection structured in nine key concepts that form the core idea of natural selection. The second dimension encompasses four so-called thresholds, i.e., general abstract and/or non-perceptual concepts: randomness, probability, spatial scales, and temporal scales. We claim that both of these dimensions must be continuously considered, in tandem, when teaching evolution in order to allow development of a meaningful understanding of the process. Further, we suggest that making the thresholds tangible with the aid of appropriate kinds of visualizations will facilitate grasping of the threshold concepts, and thus, help learners to overcome the difficulties in understanding the central theory of life.

  7. Biological Principles and Threshold Concepts for Understanding Natural Selection - Implications for Developing Visualizations as a Pedagogic Tool

    Science.gov (United States)

    Tibell, Lena A. E.; Harms, Ute

    2017-11-01

    Modern evolutionary theory is both a central theory and an integrative framework of the life sciences. This is reflected in the common references to evolution in modern science education curricula and contexts. In fact, evolution is a core idea that is supposed to support biology learning by facilitating the organization of relevant knowledge. In addition, evolution can function as a pivotal link between concepts and highlight similarities in the complexity of biological concepts. However, empirical studies in many countries have for decades identified deficiencies in students' scientific understanding of evolution mainly focusing on natural selection. Clearly, there are major obstacles to learning natural selection, and we argue that to overcome them, it is essential to address explicitly the general abstract concepts that underlie the biological processes, e.g., randomness or probability. Hence, we propose a two-dimensional framework for analyzing and structuring teaching of natural selection. The first—purely biological—dimension embraces the three main principles variation, heredity, and selection structured in nine key concepts that form the core idea of natural selection. The second dimension encompasses four so-called thresholds, i.e., general abstract and/or non-perceptual concepts: randomness, probability, spatial scales, and temporal scales. We claim that both of these dimensions must be continuously considered, in tandem, when teaching evolution in order to allow development of a meaningful understanding of the process. Further, we suggest that making the thresholds tangible with the aid of appropriate kinds of visualizations will facilitate grasping of the threshold concepts, and thus, help learners to overcome the difficulties in understanding the central theory of life.

  8. Integrating Authentic Earth Science Data in Online Visualization Tools and Social Media Networking to Promote Earth Science Education

    Science.gov (United States)

    Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.

    2008-12-01

    The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.

  9. A tool for integrating genetic and mass spectrometry-based peptide data: Proteogenomics Viewer: PV: A genome browser-like tool, which includes MS data visualization and peptide identification parameters.

    Science.gov (United States)

    Kroll, José Eduardo; da Silva, Vandeclécio Lira; de Souza, Sandro José; de Souza, Gustavo Antonio

    2017-07-01

    In this manuscript we describe Proteogenomics Viewer, a web-based tool that collects MS peptide identification, indexes to genomic sequence and structure, assigns exon usage, reports the identified protein isoforms with genomic alignments and, most importantly, allows the inspection of MS2 information for proper peptide identification. It also provides all performed indexing to facilitate global analysis of the data. The relevance of such tool is that there has been an increase in the number of proteogenomic efforts to improve the annotation of both genomics and proteomics data, culminating with the release of the two human proteome drafts. It is now clear that mass spectrometry-based peptide identification of uncharacterized sequences, such as those resulting from unpredicted exon joints or non-coding regions, is still prone to a higher than expected false discovery rate. Therefore, proper visualization of the raw data and the corresponding genome alignments are fundamental for further data validation and interpretation. Also see the video abstract here: http://youtu.be/5NzyRvuk4Ac. © 2017 WILEY Periodicals, Inc.

  10. Using GeoMapApp as an Analytical Tool for the Journey From Data Visualization to Synthesis

    Science.gov (United States)

    Ryan, W. B.; Coplan, J. O.; Melkonian, A. K.; Carbotte, S. M.

    2008-12-01

    The potential to explore and understand our world has forever changed since the appearance of the NASA World Wind and Google Earth virtual globes. Now, in the duration of a single breath, we can zoom from the planetary scale of an orbiting spacecraft down to a roadside outcrop and expose layers of information with different and rich contents. But how do we digest all this information into new knowledge that explains the processes that have shaped the land and oceans into their present configurations and behaviors? In our opinion we need to transition beyond visualization to interactive inquiry of multiple datasets across a span of expertise - from the classroom to the research laboratory. Although the virtual globe enables an unprecedented means as revolutionary as the textural search engine to discover information, presently most data on the WEB are not adequately described with metadata to make the subsequent steps of analysis productive. We have begun to address this limitation by linking GeoMapApp to databases in the earth and ocean sciences where content has been vetted for thoroughness, accuracy and global coverage. With structure in the content, the virtual globe can then manipulate these databases in what if? exercises, compare the various attributes of a dataset with each other via graphs and symbols, and correlate results across different scientific domains. We will show examples of such data integration using the results of four decades of ocean floor drilling, the focal mechanisms from thousands of earthquakes, and the chemistry of the volcanic bedrock along the crest of the mid-ocean ridge. A synthesis of ocean drilling shows the dependency of the sediment and faunal content on bedrock age, subsidence history and plate motions relative to the past equator and deserts. A synthesis of earthquake rupture shows focal mechanism dependency on segmentation of the plate boundaries. Patterns in the chemistry of erupted lava are intricately related to the fine

  11. Recall and decay of consent information among parents of infants participating in a randomized controlled clinical trial using an audio-visual tool in The Gambia.

    Science.gov (United States)

    Mboizi, Robert B; Afolabi, Muhammed O; Okoye, Michael; Kampmann, Beate; Roca, Anna; Idoko, Olubukola T

    2017-09-02

    Communicating essential research information to low literacy research participants in Africa is highly challenging, since this population is vulnerable to poor comprehension of consent information. Several supportive materials have been developed to aid participant comprehension in these settings. Within the framework of a pneumococcal vaccine trial in The Gambia, we evaluated the recall and decay of consent information during the trial which used an audio-visual tool called 'Speaking Book', to foster comprehension among parents of participating infants. The Speaking Book was developed in the 2 most widely spoken local languages. Four-hundred and 9 parents of trial infants gave consent to participate in this nested study and were included in the baseline assessment of their knowledge about trial participation. An additional assessment was conducted approximately 90 d later, following completion of the clinical trial protocol. All parents received a Speaking Book at the start of the trial. Trial knowledge was already high at the baseline assessment with no differences related to socio-economic status or education. Knowledge of key trial information was retained at the completion of the study follow-up. The Speaking Book (SB) was well received by the study participants. We hypothesize that the SB may have contributed to the retention of information over the trial follow-up. Further studies evaluating the impact of this innovative tool are thus warranted.

  12. Visualizing inequality

    Science.gov (United States)

    Eliazar, Iddo

    2016-07-01

    The study of socioeconomic inequality is of substantial importance, scientific and general alike. The graphic visualization of inequality is commonly conveyed by Lorenz curves. While Lorenz curves are a highly effective statistical tool for quantifying the distribution of wealth in human societies, they are less effective a tool for the visual depiction of socioeconomic inequality. This paper introduces an alternative to Lorenz curves-the hill curves. On the one hand, the hill curves are a potent scientific tool: they provide detailed scans of the rich-poor gaps in human societies under consideration, and are capable of accommodating infinitely many degrees of freedom. On the other hand, the hill curves are a powerful infographic tool: they visualize inequality in a most vivid and tangible way, with no quantitative skills that are required in order to grasp the visualization. The application of hill curves extends far beyond socioeconomic inequality. Indeed, the hill curves are highly effective 'hyperspectral' measures of statistical variability that are applicable in the context of size distributions at large. This paper establishes the notion of hill curves, analyzes them, and describes their application in the context of general size distributions.

  13. Neurophysiological analytics for all! Free open-source software tools for documenting, analyzing, visualizing, and sharing using electronic notebooks.

    Science.gov (United States)

    Rosenberg, David M; Horn, Charles C

    2016-08-01

    Neurophysiology requires an extensive workflow of information analysis routines, which often includes incompatible proprietary software, introducing limitations based on financial costs, transfer of data between platforms, and the ability to share. An ecosystem of free open-source software exists to fill these gaps, including thousands of analysis and plotting packages written in Python and R, which can be implemented in a sharable and reproducible format, such as the Jupyter electronic notebook. This tool chain can largely replace current routines by importing data, producing analyses, and generating publication-quality graphics. An electronic notebook like Jupyter allows these analyses, along with documentation of procedures, to display locally or remotely in an internet browser, which can be saved as an HTML, PDF, or other file format for sharing with team members and the scientific community. The present report illustrates these methods using data from electrophysiological recordings of the musk shrew vagus-a model system to investigate gut-brain communication, for example, in cancer chemotherapy-induced emesis. We show methods for spike sorting (including statistical validation), spike train analysis, and analysis of compound action potentials in notebooks. Raw data and code are available from notebooks in data supplements or from an executable online version, which replicates all analyses without installing software-an implementation of reproducible research. This demonstrates the promise of combining disparate analyses into one platform, along with the ease of sharing this work. In an age of diverse, high-throughput computational workflows, this methodology can increase efficiency, transparency, and the collaborative potential of neurophysiological research. Copyright © 2016 the American Physiological Society.

  14. SamuROI, a Python-Based Software Tool for Visualization and Analysis of Dynamic Time Series Imaging at Multiple Spatial Scales.

    Science.gov (United States)

    Rueckl, Martin; Lenzi, Stephen C; Moreno-Velasquez, Laura; Parthier, Daniel; Schmitz, Dietmar; Ruediger, Sten; Johenning, Friedrich W

    2017-01-01

    The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca(2+)-imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca(2+) imaging datasets, particularly when these have been acquired at different spatial scales.

  15. Genome Expression Pathway Analysis Tool – Analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context

    Directory of Open Access Journals (Sweden)

    Engelmann Julia C

    2007-06-01

    Full Text Available Abstract Background Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation. Results We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at http

  16. Visual comparison for information visualization

    KAUST Repository

    Gleicher, M.

    2011-09-07

    Data analysis often involves the comparison of complex objects. With the ever increasing amounts and complexity of data, the demand for systems to help with these comparisons is also growing. Increasingly, information visualization tools support such comparisons explicitly, beyond simply allowing a viewer to examine each object individually. In this paper, we argue that the design of information visualizations of complex objects can, and should, be studied in general, that is independently of what those objects are. As a first step in developing this general understanding of comparison, we propose a general taxonomy of visual designs for comparison that groups designs into three basic categories, which can be combined. To clarify the taxonomy and validate its completeness, we provide a survey of work in information visualization related to comparison. Although we find a great diversity of systems and approaches, we see that all designs are assembled from the building blocks of juxtaposition, superposition and explicit encodings. This initial exploration shows the power of our model, and suggests future challenges in developing a general understanding of comparative visualization and facilitating the development of more comparative visualization tools. © The Author(s) 2011.

  17. Customizable Time-Oriented Visualizations

    DEFF Research Database (Denmark)

    Kuhail, Mohammad Amin; Pantazos, Kostas; Lauesen, Søren

    2012-01-01

    Most commercial visualization tools support an easy and quick creation of conventional time-oriented visualizations such as line charts, but customization is limited. In contrast, some academic visualization tools and programming languages support the creation of some customizable time-oriented v......Most commercial visualization tools support an easy and quick creation of conventional time-oriented visualizations such as line charts, but customization is limited. In contrast, some academic visualization tools and programming languages support the creation of some customizable time...

  18. The Use of Visual Decision Support Tools in an Interactive Stakeholder Analysis—Old Ports as New Magnets for Creative Urban Development

    Directory of Open Access Journals (Sweden)

    Peter Nijkamp

    2013-10-01

    Full Text Available Port cities are historically important breeding places of civilization and wealth, and act as attractive high-quality and sustainable places to live and work. They are core places for sustainable development for the entire spatial system as a result of their dynamism, which has in recent years reinforced their position as magnets in a spatial-economic force field. To understand and exploit this potential, the present study presents an analytical framework that links the opportunities provided by traditional port areas/cities to creative, resilient and sustainable urban development. Using evidence-based research, findings are presented from a case study by employing a stakeholder-based model—with interactive visual support tools as novel analysis methods—in a backcasting and forecasting exercise for sustainable development. The empirical study is carried out in and around the NDSM-area, a former dockyard in Amsterdam, the Netherlands. Various future images were used—in an interactive assessment incorporating classes of important stakeholders—as strategic vehicles to identify important policy challenges, and to evaluate options for converting historical-cultural urban port landscapes into sustainable and creative hotspots, starting by reusing, recovering, and regenerating such areas. This approach helps to identify successful policy strategies, and to bring together different forms of expertise in order to resolve conflicts between the interests (or values of a multiplicity of stakeholders, with a view to stimulating economic vitality in combination with meeting social needs and ensuring the conservation of eco-systems in redesigning old port areas. The results indicate that the interactive policy support tools developed for the case study are fit for purpose, and are instrumental in designing sustainable urban port areas.

  19. 10 Data Visualization Tips

    International Development Research Centre (IDRC) Digital Library (Canada)

    Office 2004 Test Drive User

    1. 10 Data Visualization Tips. Data visualizations are an effective tool to communicate research. But to realize their potential, designers should follow these tips to help readers decode their visualizations. 1. Keep it simple! This is the golden rule. Always choose the simplest way to convey your information. 2. Have a specific ...

  20. NEON VISUALIZATION ENVIRONMENT

    Science.gov (United States)

    2017-07-28

    INTRODUCTION .................................................................................................................. 1 3. METHODS... INTRODUCTION Neon is a novel departure from conventional information visualization: the goal was not to develop a typical visualization toolkit but instead...development philosophies . We assisted in creating a demo using Neon and VINI STTR tools as a visualization mechanism for MUSE. With Memex, we

  1. Visualizing Qualitative Information

    Science.gov (United States)

    Slone, Debra J.

    2009-01-01

    The abundance of qualitative data in today's society and the need to easily scrutinize, digest, and share this information calls for effective visualization and analysis tools. Yet, no existing qualitative tools have the analytic power, visual effectiveness, and universality of familiar quantitative instruments like bar charts, scatter-plots, and…

  2. PhasePlot: An Interactive Software Tool for Visualizing Phase Relations, Performing Virtual Experiments, and for Teaching Thermodynamic Concepts in Petrology

    Science.gov (United States)

    Ghiorso, M. S.

    2012-12-01

    The computer program PhasePlot was developed for Macintosh computers and released via the Mac App Store in December 2011. It permits the visualization of phase relations calculated from internally consistent thermodynamic data-model collections, including those from MELTS (Ghiorso and Sack, 1995, CMP 119, 197-212), pMELTS (Ghiorso et al., 2002, G-cubed 3, 10.1029/2001GC000217) and the deep mantle database of Stixrude and Lithgow-Bertelloni (2011, GJI 184, 1180-1213). The software allows users to enter a system bulk composition and a range of reference conditions, and then calculate a grid of phase relations. These relations may be visualized in a variety of ways including pseudosections, phase diagrams, phase proportion plots, and contour diagrams of phase compositions and abundances. The program interface is user friendly and the computations are fast on laptop-scale machines, which makes PhasePlot amenable to in-class demonstrations, as a tool in instructional laboratories, and as an aid in support of out-of-class exercises and research. Users focus on problem specification and interpretation of results rather than on manipulation and mechanics of computation. The software has been developed with NSF support and is free. The PhasePlot web site is at phaseplot.org where extensive user documentation, video tutorials and examples of use may be found. The original release of phase plot permitted calculations to be performed on pressure-, temperature-grids (P-T), by direct minimization of the Gibbs free energy of the system at each grid point. A revision of PhasePlot (scheduled for release to the Mac App Store in December 2012) extends capabilities to include pressure-, entropy-grids (P-S) by system enthalpy minimization, volume-, temperature-grids (V-T) by system Helmholtz energy minimization, and volume-,entropy-grids (V-S) by minimization of the Internal Energy of the system. P-S gridded results may be utilized to visualize phase relations as a function of heat

  3. Survey of Network Visualization Tools

    Science.gov (United States)

    2007-12-01

    The Fruchterman Reingold energy model is good for producing layouts that fulfill certain esthetic criteria like uniform edge length. CCVisu stores...we demonstrate the use of our method to explore financial correlation data for the U.S. stock market in the period from 1990 to 2005. The user can...easily analyze the time-varying correlation graph of the market , uncovering information such as market sector trends, representative stocks for