WorldWideScience

Sample records for visual hand feedback

  1. Rubber hand illusion under delayed visual feedback.

    Directory of Open Access Journals (Sweden)

    Sotaro Shimada

    Full Text Available BACKGROUND: Rubber hand illusion (RHI is a subject's illusion of the self-ownership of a rubber hand that was touched synchronously with their own hand. Although previous studies have confirmed that this illusion disappears when the rubber hand was touched asynchronously with the subject's hand, the minimum temporal discrepancy of these two events for attenuation of RHI has not been examined. METHODOLOGY/PRINCIPAL FINDINGS: In this study, various temporal discrepancies between visual and tactile stimulations were introduced by using a visual feedback delay experimental setup, and RHI effects in each temporal discrepancy condition were systematically tested. The results showed that subjects felt significantly greater RHI effects with temporal discrepancies of less than 300 ms compared with longer temporal discrepancies. The RHI effects on reaching performance (proprioceptive drift showed similar conditional differences. CONCLUSIONS/SIGNIFICANCE: Our results first demonstrated that a temporal discrepancy of less than 300 ms between visual stimulation of the rubber hand and tactile stimulation to the subject's own hand is preferable to induce strong sensation of RHI. We suggest that the time window of less than 300 ms is critical for multi-sensory integration processes constituting the self-body image.

  2. Watch what you type: the role of visual feedback from the screen and hands in skilled typewriting.

    Science.gov (United States)

    Snyder, Kristy M; Logan, Gordon D; Yamaguchi, Motonori

    2015-01-01

    Skilled typing is controlled by two hierarchically structured processing loops (Logan & Crump, 2011): The outer loop, which produces words, commands the inner loop, which produces keystrokes. Here, we assessed the interplay between the two loops by investigating how visual feedback from the screen (responses either were or were not echoed on the screen) and the hands (the hands either were or were not covered with a box) influences the control of skilled typing. Our results indicated, first, that the reaction time of the first keystroke was longer when responses were not echoed than when they were. Also, the interkeystroke interval (IKSI) was longer when the hands were covered than when they were visible, and the IKSI for responses that were not echoed was longer when explicit error monitoring was required (Exp. 2) than when it was not required (Exp. 1). Finally, explicit error monitoring was more accurate when response echoes were present than when they were absent, and implicit error monitoring (i.e., posterror slowing) was not influenced by visual feedback from the screen or the hands. These findings suggest that the outer loop adjusts the inner-loop timing parameters to compensate for reductions in visual feedback. We suggest that these adjustments are preemptive control strategies designed to execute keystrokes more cautiously when visual feedback from the hands is absent, to generate more cautious motor programs when visual feedback from the screen is absent, and to enable enough time for the outer loop to monitor keystrokes when visual feedback from the screen is absent and explicit error reports are required.

  3. Explicit knowledge about the availability of visual feedback affects grasping with the left but not the right hand.

    Science.gov (United States)

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2014-01-01

    Previous research (Whitwell et al. in Exp Brain Res 188:603-611, 2008; Whitwell and Goodale in Exp Brain Res 194:619-629, 2009) has shown that trial history, but not anticipatory knowledge about the presence or absence of visual feedback on an upcoming trial, plays a vital role in determining how that feedback is exploited when grasping with the right hand. Nothing is known about how the non-dominant left hand behaves under the same feedback regimens. In present study, therefore, we compared peak grip aperture (PGA) for left- and right-hand grasps executed with and without visual feedback (i.e., closed- vs. open-loop conditions) in right-handed individuals under three different trial schedules: the feedback conditions were blocked separately, they were randomly interleaved, or they were alternated. When feedback conditions were blocked, the PGA was much larger for open-loop trials as compared to closed-loop trials, although this difference was more pronounced for right-hand grasps than left-hand grasps. Like Whitwell et al., we found that mixing open- and closed-loop trials together, compared to blocking them separately, homogenized the PGA for open- and closed-loop grasping in the right hand (i.e., the PGAs became smaller on open-loop trials and larger on closed-loop trials). In addition, the PGAs for right-hand grasps were entirely determined by trial history and not by knowledge of whether or not visual feedback would be available on an upcoming trial. In contrast to grasps made with the right hand, grasps made by the left hand were affected both by trial history and by anticipatory knowledge of the upcoming visual feedback condition. But these effects were observed only on closed-loop trials, i.e., the PGAs of grasps made with the left hand on closed-loop trials were smaller when participants could anticipate the availability of feedback on an upcoming trial (alternating trials) than when they could not (randomized trials). In contrast, grasps made with the

  4. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Directory of Open Access Journals (Sweden)

    Mohamad Arif Fahmi Ismail

    Full Text Available The rubber hand illusion (RHI is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI, which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms, and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  5. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Science.gov (United States)

    Ismail, Mohamad Arif Fahmi; Shimada, Sotaro

    2016-01-01

    The rubber hand illusion (RHI) is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI), which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms), and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  6. Virtual Hand Feedback Reduces Reaction Time in an Interactive Finger Reaching Task.

    Directory of Open Access Journals (Sweden)

    Johannes Brand

    Full Text Available Computer interaction via visually guided hand or finger movements is a ubiquitous part of daily computer usage in work or gaming. Surprisingly, however, little is known about the performance effects of using virtual limb representations versus simpler cursors. In this study 26 healthy right-handed adults performed cued index finger flexion-extension movements towards an on-screen target while wearing a data glove. They received each of four different types of real-time visual feedback: a simple circular cursor, a point light pattern indicating finger joint positions, a cartoon hand and a fully shaded virtual hand. We found that participants initiated the movements faster when receiving feedback in the form of a hand than when receiving circular cursor or point light feedback. This overall difference was robust for three out of four hand versus circle pairwise comparisons. The faster movement initiation for hand feedback was accompanied by a larger movement amplitude and a larger movement error. We suggest that the observed effect may be related to priming of hand information during action perception and execution affecting motor planning and execution. The results may have applications in the use of body representations in virtual reality applications.

  7. Quantitative impact of direct, personal feedback on hand hygiene technique.

    Science.gov (United States)

    Lehotsky, Á; Szilágyi, L; Ferenci, T; Kovács, L; Pethes, R; Wéber, G; Haidegger, T

    2015-09-01

    This study investigated the effectiveness of targeting hand hygiene technique using a new training device that provides objective, personal and quantitative feedback. One hundred and thirty-six healthcare workers in three Hungarian hospitals participated in a repetitive hand hygiene technique assessment study. Ultraviolet (UV)-labelled hand rub was used at each event, and digital images of the hands were subsequently taken under UV light. Immediate objective visual feedback was given to participants, showing missed areas on their hands. The rate of inadequate hand rubbing reduced from 50% to 15% (P < 0.001). However, maintenance of this reduced rate is likely to require continuous use of the electronic equipment. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand.

    Science.gov (United States)

    Kent, Benjamin A; Engeberg, Erik D

    2014-11-07

    Effortless control of the human hand is mediated by the physical and neural couplings inherent in the structure of the hand. This concept was explored for environmental interaction tasks with the human hand, and a novel human-inspired feedback synergy (HFS) controller was developed for a robotic hand which synchronized position and force feedback signals to mimic observed human hand motions. This was achieved by first recording the finger joint motion profiles of human test subjects, where it was observed that the subjects would extend their fingers to maintain a natural hand posture when interacting with different surfaces. The resulting human joint angle data were used as inspiration to develop the HFS controller for the anthropomorphic robotic hand, which incorporated finger abduction and force feedback in the control laws for finger extension. Experimental results showed that by projecting a broader view of the tasks at hand to each specific joint, the HFS controller produced hand motion profiles that closely mimic the observed human responses and allowed the robotic manipulator to interact with the surfaces while maintaining a natural hand posture. Additionally, the HFS controller enabled the robotic hand to autonomously traverse vertical step discontinuities without prior knowledge of the environment, visual feedback, or traditional trajectory planning techniques.

  9. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand

    International Nuclear Information System (INIS)

    Kent, Benjamin A; Engeberg, Erik D

    2014-01-01

    Effortless control of the human hand is mediated by the physical and neural couplings inherent in the structure of the hand. This concept was explored for environmental interaction tasks with the human hand, and a novel human-inspired feedback synergy (HFS) controller was developed for a robotic hand which synchronized position and force feedback signals to mimic observed human hand motions. This was achieved by first recording the finger joint motion profiles of human test subjects, where it was observed that the subjects would extend their fingers to maintain a natural hand posture when interacting with different surfaces. The resulting human joint angle data were used as inspiration to develop the HFS controller for the anthropomorphic robotic hand, which incorporated finger abduction and force feedback in the control laws for finger extension. Experimental results showed that by projecting a broader view of the tasks at hand to each specific joint, the HFS controller produced hand motion profiles that closely mimic the observed human responses and allowed the robotic manipulator to interact with the surfaces while maintaining a natural hand posture. Additionally, the HFS controller enabled the robotic hand to autonomously traverse vertical step discontinuities without prior knowledge of the environment, visual feedback, or traditional trajectory planning techniques. (paper)

  10. Vision and laterality: does occlusion disclose a feedback processing advantage for the right hand system?

    Science.gov (United States)

    Buekers, M J; Helsen, W F

    2000-09-01

    The main purpose of this study was to examine whether manual asymmetries could be related to the superiority of the left hemisphere/right hand system in processing visual feedback. Subjects were tested when performing single (Experiment 1) and reciprocal (Experiment 2) aiming movements under different vision conditions (full vision, 20 ms on/180 ms off, 10/90, 40/160, 20/80, 60/120, 20/40). Although in both experiments right hand advantages were found, manual asymmetries did not interact with intermittent vision conditions. Similar patterns of results were found across vision conditions for both hands. These data do not support the visual feedback processing hypothesis of manual asymmetry. Motor performance is affected to the same extent for both hand systems when vision is degraded.

  11. Visual control improves the accuracy of hand positioning in Huntington’s disease

    Directory of Open Access Journals (Sweden)

    Emilia J. Sitek

    2017-08-01

    Full Text Available Background: The study aimed at demonstrating dependence of visual feedback during hand and finger positioning task performance among Huntington’s disease patients in comparison to patients with Parkinson’s disease and cervical dystonia. Material and methods: Eighty-nine patients participated in the study (23 with Huntington’s disease, 25 with Parkinson’s disease with dyskinesias, 21 with Parkinson’s disease without dyskinesias, and 20 with cervical dystonia, scoring ≥20 points on Mini-Mental State Examination in order to assure comprehension of task instructions. Neurological examination comprised of the motor section from the Unified Huntington’s Disease Rating Scale for Huntington’s disease, the Unified Parkinson’s Disease Rating Scale Part II–IV for Parkinson’s disease and the Toronto Western Spasmodic Torticollis Rating Scale for cervical dystonia. In order to compare hand position accuracy under visually controlled and blindfolded conditions, the patient imitated each of the 10 examiner’s hand postures twice, once under the visual control condition and once with no visual feedback provided. Results: Huntington’s disease patients imitated examiner’s hand positions less accurately under blindfolded condition in comparison to Parkinson’s disease without dyskinesias and cervical dystonia participants. Under visually controlled condition there were no significant inter-group differences. Conclusions: Huntington’s disease patients exhibit higher dependence on visual feedback while performing motor tasks than Parkinson’s disease and cervical dystonia patients. Possible improvement of movement precision in Huntington’s disease with the use of visual cues could be potentially useful in the patients’ rehabilitation.

  12. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.

    Science.gov (United States)

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2015-05-01

    Goal-directed movements, such as reaching out to grasp an object, are necessarily constrained by the spatial properties of the target such as its size, shape, and position. For example, during a reach-to-grasp movement, the peak width of the aperture formed by the thumb and fingers in flight (peak grip aperture, PGA) is linearly related to the target's size. Suppressing vision throughout the movement (visual open loop) has a small though significant effect on this relationship. Visual open loop conditions also produce a large increase in the PGA compared to when vision is available throughout the movement (visual closed loop). Curiously, this differential effect of the availability of visual feedback is influenced by the presentation order: the difference in PGA between closed- and open-loop trials is smaller when these trials are intermixed (an effect we have called 'homogenization'). Thus, grasping movements are affected not only by the availability of visual feedback (closed loop or open loop) but also by what happened on the previous trial. It is not clear, however, whether this carry-over effect is mediated through motor (or sensorimotor) memory or through the interference of different task sets for closed-loop and open-loop feedback that determine when the movements are fully specified. We reasoned that sensorimotor memory, but not a task set for closed and open loop feedback, would be specific to the type of response. We tested this prediction in a condition in which pointing to targets was alternated with grasping those same targets. Critically, in this condition, when pointing was performed in open loop, grasping was always performed in closed loop (and vice versa). Despite the fact that closed- and open-loop trials were alternating in this condition, we found no evidence for homogenization of the PGA. Homogenization did occur, however, in a follow-up experiment in which grasping movements and visual feedback were alternated between the left and the right

  13. Proprioceptive deafferentation slows down the processing of visual hand feedback

    DEFF Research Database (Denmark)

    Balslev, Daniela; Miall, R Chris; Cole, Jonathan

    2007-01-01

    During visually guided movements both vision and proprioception inform the brain about the position of the hand, so interaction between these two modalities is presumed. Current theories suggest that this interaction occurs by sensory information from both sources being fused into a more reliable...... proprioception facilitates the processing of visual information during motor control. Subjects used a computer mouse to move a cursor to a screen target. In 28% of the trials, pseudorandomly, the cursor was rotated or the target jumped. Reaction time for the trajectory correction in response to this perturbation......, multimodal, percept of hand location. In the literature on perception, however, there is evidence that different sensory modalities interact in the allocation of attention, so that a stimulus in one modality facilitates the processing of a stimulus in a different modality. We investigated whether...

  14. Boosting the Motor Outcome of the Untrained Hand by Action Observation: Mirror Visual Feedback, Video Therapy, or Both Combined—What Is More Effective?

    Directory of Open Access Journals (Sweden)

    Florian Bähr

    2018-01-01

    Full Text Available Action observation (AO allows access to a network that processes visuomotor and sensorimotor inputs and is believed to be involved in observational learning of motor skills. We conducted three consecutive experiments to examine the boosting effect of AO on the motor outcome of the untrained hand by either mirror visual feedback (MVF, video therapy (VT, or a combination of both. In the first experiment, healthy participants trained either with MVF or without mirror feedback while in the second experiment, participants either trained with VT or observed animal videos. In the third experiment, participants first observed video clips that were followed by either training with MVF or training without mirror feedback. The outcomes for the untrained hand were quantified by scores from five motor tasks. The results demonstrated that MVF and VT significantly increase the motor performance of the untrained hand by the use of AO. We found that MVF was the most effective approach to increase the performance of the target effector. On the contrary, the combination of MVF and VT turns out to be less effective looking from clinical perspective. The gathered results suggest that action-related motor competence with the untrained hand is acquired by both mirror-based and video-based AO.

  15. Self-Produced Tickle Sensation by Manipulating Visual Feedback

    Directory of Open Access Journals (Sweden)

    Hiroyuki Iizuka

    2011-10-01

    Full Text Available The aim of the present paper was to clarify how the distinction of self- (sense of agency, SOA and other-produced behavior can be synthesized and recognized in multisensory integration as our cognitive processes. To address this issue, we used tickling paradigm that it is hard for us to tickle ourselves. Previous studies show that tickle sensation by their own motion increases if more delay is given between self-motion of tickling and tactile stimulation (Blakemore et al. 1998, 1999. We introduced visual feedbacks to the tickling experiments. In our hypothesis, integration of vision, proprioception, and motor commands forms the SOA and disintegration causes the breakdown the SOA, which causes the feeling of others, producing tickling sensation even by tickling oneself. We used video-see-through HMD to suddenly delay the real-time images of their hand tickling motions. The tickle sensation was measured by subjective response in the following conditions; 1 tickling oneself without any visual modulation, 2 tickled by others, 3 tickling oneself with visual feedback manipulation. The statistical analysis of ranked evaluation of tickle sensations showed that the delay of visual feedback causes the increase of tickle sensation. The SOA was discussed with Blakemore's and our results.

  16. Reducing Trunk Compensation in Stroke Survivors: A Randomized Crossover Trial Comparing Visual and Force Feedback Modalities.

    Science.gov (United States)

    Valdés, Bulmaro Adolfo; Schneider, Andrea Nicole; Van der Loos, H F Machiel

    2017-10-01

    To investigate whether the compensatory trunk movements of stroke survivors observed during reaching tasks can be decreased by force and visual feedback, and to examine whether one of these feedback modalities is more efficacious than the other in reducing this compensatory tendency. Randomized crossover trial. University research laboratory. Community-dwelling older adults (N=15; 5 women; mean age, 64±11y) with hemiplegia from nontraumatic hemorrhagic or ischemic stroke (>3mo poststroke), recruited from stroke recovery groups, the research group's website, and the community. In a single session, participants received augmented feedback about their trunk compensation during a bimanual reaching task. Visual feedback (60 trials) was delivered through a computer monitor, and force feedback (60 trials) was delivered through 2 robotic devices. Primary outcome measure included change in anterior trunk displacement measured by motion tracking camera. Secondary outcomes included trunk rotation, index of curvature (measure of straightness of hands' path toward target), root mean square error of hands' movement (differences between hand position on every iteration of the program), completion time for each trial, and posttest questionnaire to evaluate users' experience and system's usability. Both visual (-45.6% [45.8 SD] change from baseline, P=.004) and force (-41.1% [46.1 SD], P=.004) feedback were effective in reducing trunk compensation. Scores on secondary outcome measures did not improve with either feedback modality. Neither feedback condition was superior. Visual and force feedback show promise as 2 modalities that could be used to decrease trunk compensation in stroke survivors during reaching tasks. It remains to be established which one of these 2 feedback modalities is more efficacious than the other as a cue to reduce compensatory trunk movement. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Reduction of the elevator illusion from continued hypergravity exposure and visual error-corrective feedback

    Science.gov (United States)

    Welch, R. B.; Cohen, M. M.; DeRoshia, C. W.

    1996-01-01

    Ten subjects served as their own controls in two conditions of continuous, centrifugally produced hypergravity (+2 Gz) and a 1-G control condition. Before and after exposure, open-loop measures were obtained of (1) motor control, (2) visual localization, and (3) hand-eye coordination. During exposure in the visual feedback/hypergravity condition, subjects received terminal visual error-corrective feedback from their target pointing, and in the no-visual feedback/hypergravity condition they pointed open loop. As expected, the motor control measures for both experimental conditions revealed very short lived underreaching (the muscle-loading effect) at the outset of hypergravity and an equally transient negative aftereffect on returning to 1 G. The substantial (approximately 17 degrees) initial elevator illusion experienced in both hypergravity conditions declined over the course of the exposure period, whether or not visual feedback was provided. This effect was tentatively attributed to habituation of the otoliths. Visual feedback produced a smaller additional decrement and a postexposure negative after-effect, possible evidence for visual recalibration. Surprisingly, the target-pointing error made during hypergravity in the no-visual-feedback condition was substantially less than that predicted by subjects' elevator illusion. This finding calls into question the neural outflow model as a complete explanation of this illusion.

  18. Hand Motion-Based Remote Control Interface with Vibrotactile Feedback for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2013-06-01

    Full Text Available This paper presents the design and implementation of a hand-held interface system for the locomotion control of home robots. A handheld controller is proposed to implement hand motion recognition and hand motion-based robot control. The handheld controller can provide a ‘connect-and-play’ service for the users to control the home robot with visual and vibrotactile feedback. Six natural hand gestures are defined for navigating the home robots. A three-axis accelerometer is used to detect the hand motions of the user. The recorded acceleration data are analysed and classified to corresponding control commands according to their characteristic curves. A vibration motor is used to provide vibrotactile feedback to the user when an improper operation is performed. The performances of the proposed hand motion-based interface and the traditional keyboard and mouse interface have been compared in robot navigation experiments. The experimental results of home robot navigation show that the success rate of the handheld controller is 13.33% higher than the PC based controller. The precision of the handheld controller is 15.4% more than that of the PC and the execution time is 24.7% less than the PC based controller. This means that the proposed hand motion-based interface is more efficient and flexible.

  19. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements

    DEFF Research Database (Denmark)

    Reichenbach, Alexandra; Thielscher, Axel; Peer, Angelika

    2014-01-01

    of proprioceptive-only and of multi-sensory information about hand position when reaching for a visual target. TMS over two distinct stimulation sites elicited differential effects: TMS applied over the posterior part of the medial intraparietal sulcus (mIPS) compromised reaching accuracy when proprioception...... was the only sensory information available for correcting the reaching error. When visual feedback of the hand was available, TMS over the anterior intraparietal sulcus (aIPS) prolonged reaching time. Our results show for the first time the causal involvement of the posterior mIPS in processing proprioceptive...

  20. Programming of left hand exploits task set but that of right hand depends on recent history.

    Science.gov (United States)

    Tang, Rixin; Zhu, Hong

    2017-07-01

    There are many differences between the left hand and the right hand. But it is not clear if there is a difference in programming between left hand and right hand when the hands perform the same movement. In current study, we carried out two experiments to investigate whether the programming of two hands was equivalent or they exploited different strategies. In the first experiment, participants were required to use one hand to grasp an object with visual feedback or to point to the center of one object without visual feedback on alternate trials, or to grasp an object without visual feedback and to point the center of one object with visual feedback on alternating trials. They then performed the tasks with the other hand. The result was that previous pointing task affected current grasping when it was performed by the left hand, but not the right hand. In experiment 2, we studied if the programming of the left (or right) hand would be affected by the pointing task performed on the previous trial not only by the same hand, but also by the right (or left) hand. Participants pointed and grasped the objects alternately with two hands. The result was similar with Experiment 1, i.e., left-hand grasping was affected by right-hand pointing, whereas right-hand grasping was immune from the interference from left hand. Taken together, the results suggest that when open- and closed-loop trials are interleaved, motor programming of grasping with the right hand was affected by the nature of the online feedback on the previous trial only if it was a grasping trial, suggesting that the trial-to-trial transfer depends on sensorimotor memory and not on task set. In contrast, motor programming of grasping with the left hand can use information about the nature of the online feedback on the previous trial to specify the parameters of the movement, even when the type of movement that occurred was quite different (i.e., pointing) and was performed with the right hand. This suggests that

  1. Haptically facilitated bimanual training combined with augmented visual feedback in moderate to severe hemiplegia.

    Science.gov (United States)

    Boos, Amy; Qiu, Qinyin; Fluet, Gerard G; Adamovich, Sergei V

    2011-01-01

    This study describes the design and feasibility testing of a hand rehabilitation system that provides haptic assistance for hand opening in moderate to severe hemiplegia while subjects attempt to perform bilateral hand movements. A cable-actuated exoskeleton robot assists the subjects in performing impaired finger movements but is controlled by movement of the unimpaired hand. In an attempt to combine the neurophysiological stimuli of bilateral movement and action observation during training, visual feedback of the impaired hand is replaced by feedback of the unimpaired hand, either by using a sagittaly oriented mirror or a virtual reality setup with a pair of virtual hands presented on a flat screen controlled with movement of the unimpaired hand, providing a visual image of their paretic hand moving normally. Joint angles for both hands are measured using data gloves. The system is programmed to maintain a symmetrical relationship between the two hands as they respond to commands to open and close simultaneously. Three persons with moderate to severe hemiplegia secondary to stroke trained with the system for eight, 30 to 60 minute sessions without adverse events. Each demonstrated positive motor adaptations to training. The system was well tolerated by persons with moderate to severe upper extremity hemiplegia. Further testing of its effects on motor ability with a broader range of clinical presentations is indicated.

  2. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    Science.gov (United States)

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  3. Visual feedback alters force control and functional activity in the visuomotor network after stroke

    Directory of Open Access Journals (Sweden)

    Derek B. Archer

    2018-01-01

    Full Text Available Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke.

  4. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

    Directory of Open Access Journals (Sweden)

    Philipp Leinen

    2015-11-01

    Full Text Available Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926–1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf of the non-contact atomic force microscope (NC-AFM tuning fork sensor as well as the magnitude of the electric current (I flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111 surface.

  5. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    Science.gov (United States)

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  6. Tactile Gap Detection Deteriorates during Bimanual Symmetrical Movements under Mirror Visual Feedback.

    Directory of Open Access Journals (Sweden)

    Janet H Bultitude

    Full Text Available It has been suggested that incongruence between signals for motor intention and sensory input can cause pain and other sensory abnormalities. This claim is supported by reports that moving in an environment of induced sensorimotor conflict leads to elevated pain and sensory symptoms in those with certain painful conditions. Similar procedures can lead to reports of anomalous sensations in healthy volunteers too. In the present study, we used mirror visual feedback to investigate the effects of sensorimotor incongruence on responses to stimuli that arise from sources external to the body, in particular, touch. Incongruence between the sensory and motor signals for the right arm was manipulated by having the participants make symmetrical or asymmetrical movements while watching a reflection of their left arm in a parasagittal mirror, or the left hand surface of a similarly positioned opaque board. In contrast to our prediction, sensitivity to the presence of gaps in tactile stimulation of the right forearm was not reduced when participants made asymmetrical movements during mirror visual feedback, as compared to when they made symmetrical or asymmetrical movements with no visual feedback. Instead, sensitivity was reduced when participants made symmetrical movements during mirror visual feedback relative to the other three conditions. We suggest that small discrepancies between sensory and motor information, as they occur during mirror visual feedback with symmetrical movements, can impair tactile processing. In contrast, asymmetrical movements with mirror visual feedback may not impact tactile processing because the larger discrepancies between sensory and motor information may prevent the integration of these sources of information. These results contrast with previous reports of anomalous sensations during exposure to both low and high sensorimotor conflict, but are nevertheless in agreement with a forward model interpretation of perceptual

  7. Differential effects of visual feedback on subjective visual vertical accuracy and precision.

    Directory of Open Access Journals (Sweden)

    Daniel Bjasch

    Full Text Available The brain constructs an internal estimate of the gravitational vertical by integrating multiple sensory signals. In darkness, systematic head-roll dependent errors in verticality estimates, as measured by the subjective visual vertical (SVV, occur. We hypothesized that visual feedback after each trial results in increased accuracy, as physiological adjustment errors (A-/E-effect are likely based on central computational mechanisms and investigated whether such improvements were related to adaptational shifts of perceived vertical or to a higher cognitive strategy. We asked 12 healthy human subjects to adjust a luminous arrow to vertical in various head-roll positions (0 to 120deg right-ear down, 15deg steps. After each adjustment visual feedback was provided (lights on, display of previous adjustment and of an earth-vertical cross. Control trials consisted of SVV adjustments without feedback. At head-roll angles with the largest A-effect (90, 105, and 120deg, errors were reduced significantly (p0.05 influenced. In seven subjects an additional session with two consecutive blocks (first with, then without visual feedback was completed at 90, 105 and 120deg head-roll. In these positions the error-reduction by the previous visual feedback block remained significant over the consecutive 18-24 min (post-feedback block, i.e., was still significantly (p<0.002 different from the control trials. Eleven out of 12 subjects reported having consciously added a bias to their perceived vertical based on visual feedback in order to minimize errors. We conclude that improvements of SVV accuracy by visual feedback, which remained effective after removal of feedback for ≥18 min, rather resulted from a cognitive strategy than by adapting the internal estimate of the gravitational vertical. The mechanisms behind the SVV therefore, remained stable, which is also supported by the fact that SVV precision - depending mostly on otolith input - was not affected by visual

  8. A Computerized Tablet with Visual Feedback of Hand Position for Functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Mahta eKarimpoor

    2015-03-01

    Full Text Available Neuropsychological tests - behavioral tasks that very commonly involve handwriting and drawing - are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP, a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important.

  9. A computerized tablet with visual feedback of hand position for functional magnetic resonance imaging

    Science.gov (United States)

    Karimpoor, Mahta; Tam, Fred; Strother, Stephen C.; Fischer, Corinne E.; Schweizer, Tom A.; Graham, Simon J.

    2015-01-01

    Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important. PMID:25859201

  10. Research of a New 6-Dof Force Feedback Hand Controller System

    Directory of Open Access Journals (Sweden)

    Xin Gao

    2014-01-01

    Full Text Available The field of teleoperation with force telepresence has expanded its scope to include manipulation at different scales and in virtual worlds, and the key component of which is force feedback hand controller. This paper presents a novel force feedback hand controller system, including a 3-dof translational and 3-dof rotational hand controllers, respectively, to implement position and posture teleoperation of the robot end effector. The 3-dof translational hand controller adopts innovative three-axes decoupling structure based on the linear motor; the 3-dof rotational hand controller adopts serial mechanism based on three-axes intersecting at one point, improving its overall stiffness. Based on the kinematics, statics, and dynamics analyses for two platforms separately, the system applies big closed-loop force control method based on the zero force/torque, improving the feedback force/torque accuracy effectively. Experimental results show that self-developed 6-dof force feedback hand controller has good mechanical properties. The translational hand controller has the following advantages: simple kinematics solver, fast dynamic response, and better than 0.05 mm accuracy of three-axis end positioning, while the advantages of the rotational hand controller are wide turning space, larger than 1 Nm feedback, greater than 180 degrees of operating space of three axes, respectively, and high operation precision.

  11. Voluntarily controlled but not merely observed visual feedback affects postural sway

    Science.gov (United States)

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  12. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study.

    Science.gov (United States)

    Gonzalez, Jose; Soma, Hirokazu; Sekine, Masashi; Yu, Wenwei

    2012-06-09

    Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user's mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject's EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. The performance improvements when using auditory cues, along with vision

  13. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study

    Directory of Open Access Journals (Sweden)

    Gonzalez Jose

    2012-06-01

    Full Text Available Abstract Background Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user’s mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. Methods 10 male subjects (26+/-years old, participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF, Visual Feedback only control (VF, and Audiovisual Feedback control (AVF. For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject’s EEG, ECG, electro-dermal activity (EDA, and respiration rate were measured. Results The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback. Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. Conclusions The performance

  14. Age-specific effects of mirror-muscle activity on cross-limb adaptations under mirror and non-mirror visual feedback conditions.

    Directory of Open Access Journals (Sweden)

    Paola eReissig

    2015-12-01

    Full Text Available Cross-limb transfer (CLT describes the observation of bilateral performance gains due to unilateral motor practice. Previous research has suggested that CLT may be reduced, or absent, in older adults, possibly due to age-related structural and functional brain changes. Based on research showing increases in CLT due to the provision of mirror visual feedback (MVF during task execution in young adults, our study aimed to investigate whether MVF can facilitate CLT in older adults, who are known to be more reliant on visual feedback for accurate motor performance. Participants (N = 53 engaged in a short-term training regime (300 movements involving a ballistic finger task using their dominant hand, while being provided with either visual feedback of their active limb, or a mirror reflection of their active limb (superimposed over the quiescent limb. Bilateral performance was examined before, during and following the training. Furthermore, we measured corticospinal excitability (using TMS at these time points, and assessed muscle activity bilaterally during the task via EMG; these parameters were used to investigate the mechanisms mediating and predicting CLT. Training resulted in significant bilateral performance gains that did not differ as a result of age or visual feedback (all ps > 0.1. Training also elicited bilateral increases in corticospinal excitability (p < 0.05. For younger adults, CLT was significantly predicted by performance gains in the trained hand (β = 0.47, whereas for older adults it was significantly predicted by mirror activity in the untrained hand during training (β = 0.60. The present study suggests that older adults are capable of exhibiting CLT to a similar degree to younger adults. The prominent role of mirror activity in the untrained hand for CLT in older adults indicates that bilateral cortical activity during unilateral motor tasks is a compensatory mechanism. In this particular task, MVF did not facilitate the

  15. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand.

    Science.gov (United States)

    Cipriani, Christian; Segil, Jacob L; Clemente, Francesco; ff Weir, Richard F; Edin, Benoni

    2014-11-01

    Providing functionally effective sensory feedback to users of prosthetics is a largely unsolved challenge. Traditional solutions require high band-widths for providing feedback for the control of manipulation and yet have been largely unsuccessful. In this study, we have explored a strategy that relies on temporally discrete sensory feedback that is technically simple to provide. According to the Discrete Event-driven Sensory feedback Control (DESC) policy, motor tasks in humans are organized in phases delimited by means of sensory encoded discrete mechanical events. To explore the applicability of DESC for control, we designed a paradigm in which healthy humans operated an artificial robot hand to lift and replace an instrumented object, a task that can readily be learned and mastered under visual control. Assuming that the central nervous system of humans naturally organizes motor tasks based on a strategy akin to DESC, we delivered short-lasting vibrotactile feedback related to events that are known to forcefully affect progression of the grasp-lift-and-hold task. After training, we determined whether the artificial feedback had been integrated with the sensorimotor control by introducing short delays and we indeed observed that the participants significantly delayed subsequent phases of the task. This study thus gives support to the DESC policy hypothesis. Moreover, it demonstrates that humans can integrate temporally discrete sensory feedback while controlling an artificial hand and invites further studies in which inexpensive, noninvasive technology could be used in clever ways to provide physiologically appropriate sensory feedback in upper limb prosthetics with much lower band-width requirements than with traditional solutions.

  16. Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.

    Science.gov (United States)

    Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul

    2018-01-08

    Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Control Framework for Dexterous Manipulation Using Dynamic Visual Servoing and Tactile Sensors’ Feedback

    Directory of Open Access Journals (Sweden)

    Carlos A. Jara

    2014-01-01

    Full Text Available Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.

  18. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.

    Science.gov (United States)

    Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter

    2015-03-01

    Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.

  19. Measuring voluntary quadriceps activation: Effect of visual feedback and stimulus delivery.

    Science.gov (United States)

    Luc, Brittney A; Harkey, Matthew H; Arguelles, Gabrielle D; Blackburn, J Troy; Ryan, Eric D; Pietrosimone, Brian

    2016-02-01

    Quadriceps voluntary activation, assessed via the superimposed burst technique, has been extensively studied in a variety of populations as a measure of quadriceps function. However, a variety of stimulus delivery techniques have been employed, which may influence the level of voluntary activation as calculated via the central activation ratio (CAR). The purpose was to determine the effect of visual feedback, stimulus delivery, and perceived discomfort on maximal voluntary isometric contraction (MVIC) peak torque and the CAR. Quadriceps CAR was assessed in 14 individuals on two days using three stimulus delivery methods; (1) manual without visual feedback, (2) manual with visual feedback, and (3) automated with visual feedback. MVIC peak torque and the CAR were not different between the automated with visual feedback (MVIC=3.25, SE=0.14Nm/kg; CAR=88.63, SE=1.75%) and manual with visual feedback (MVIC=3.26, SE=0.13Nm/kg, P=0.859; CAR=89.06, SE=1.70%, P=0.39) stimulus delivery methods. MVIC (2.99, SE=0.12Nm/kg) and CAR (85.32, SE=2.10%) were significantly lower using manual without visual feedback compared to manual with visual feedback and automated with visual feedback (CAR P<0.001; MVIC P<0.001). Perceived discomfort was lower in the second session (P<0.05). Utilizing visual feedback ensures participant MVIC, and may provide a more accurate assessment of quadriceps voluntary activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Interwoven fluctuations during intermodal perception: fractality in head sway supports the use of visual feedback in haptic perceptual judgments by manual wielding.

    Science.gov (United States)

    Kelty-Stephen, Damian G; Dixon, James A

    2014-12-01

    Intermodal integration required for perceptual learning tasks is rife with individual differences. Participants vary in how they use perceptual information to one modality. One participant alone might change her own response over time. Participants vary further in their use of feedback through one modality to inform another modality. Two experiments test the general hypothesis that perceptual-motor fluctuations reveal both information use within modality and coordination among modalities. Experiment 1 focuses on perceptual learning in dynamic touch, in which participants use exploratory hand-wielding of unseen objects to make visually guided length judgments and use visual feedback to rescale their judgments of the same mechanical information. Previous research found that the degree of fractal temporal scaling (i.e., "fractality") in hand-wielding moderates the use of mechanical information. Experiment 1 shows that head-sway fractality moderates the use of visual information. Further, experience with feedback increases head-sway fractality and prolongs its effect on later hand-wielding fractality. Experiment 2 replicates effects of head-sway fractality moderating use of visual information in a purely visual-judgment task. Together, these findings suggest that fractal fluctuations may provide a modal-general window onto not just how participants use perceptual information but also how well they may integrate information among different modalities. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Detecting delay in visual feedback of an action as a monitor of self recognition.

    Science.gov (United States)

    Hoover, Adria E N; Harris, Laurence R

    2012-10-01

    How do we distinguish "self" from "other"? The correlation between willing an action and seeing it occur is an important cue. We exploited the fact that this correlation needs to occur within a restricted temporal window in order to obtain a quantitative assessment of when a body part is identified as "self". We measured the threshold and sensitivity (d') for detecting a delay between movements of the finger (of both the dominant and non-dominant hands) and visual feedback as seen from four visual perspectives (the natural view, and mirror-reversed and/or inverted views). Each trial consisted of one presentation with minimum delay and another with a delay of between 33 and 150 ms. Participants indicated which presentation contained the delayed view. We varied the amount of efference copy available for this task by comparing performances for discrete movements and continuous movements. Discrete movements are associated with a stronger efference copy. Sensitivity to detect asynchrony between visual and proprioceptive information was significantly higher when movements were viewed from a "plausible" self perspective compared with when the view was reversed or inverted. Further, we found differences in performance between dominant and non-dominant hand finger movements across the continuous and single movements. Performance varied with the viewpoint from which the visual feedback was presented and on the efferent component such that optimal performance was obtained when the presentation was in the normal natural orientation and clear efferent information was available. Variations in sensitivity to visual/non-visual temporal incongruence with the viewpoint in which a movement is seen may help determine the arrangement of the underlying visual representation of the body.

  2. The Effect of Concurrent Visual Feedback on Controlling Swimming Speed

    Directory of Open Access Journals (Sweden)

    Szczepan Stefan

    2016-03-01

    Full Text Available Introduction. Developing the ability to control the speed of swimming is an important part of swimming training. Maintaining a defined constant speed makes it possible for the athlete to swim economically at a low physiological cost. The aim of this study was to determine the effect of concurrent visual feedback transmitted by the Leader device on the control of swimming speed in a single exercise test. Material and methods. The study involved a group of expert swimmers (n = 20. Prior to the experiment, the race time for the 100 m distance was determined for each of the participants. In the experiment, the participants swam the distance of 100 m without feedback and with visual feedback. In both variants, the task of the participants was to swim the test distance in a time as close as possible to the time designated prior to the experiment. In the first version of the experiment (without feedback, the participants swam the test distance without receiving real-time feedback on their swimming speed. In the second version (with visual feedback, the participants followed a beam of light moving across the bottom of the swimming pool, generated by the Leader device. Results. During swimming with visual feedback, the 100 m race time was significantly closer to the time designated. The difference between the pre-determined time and the time obtained was significantly statistically lower during swimming with visual feedback (p = 0.00002. Conclusions. Concurrently transmitting visual feedback to athletes improves their control of swimming speed. The Leader device has proven useful in controlling swimming speed.

  3. Effect of an auditory feedback substitution, tactilo-kinesthetic, or visual feedback on kinematics of pouring water from kettle into cup.

    Science.gov (United States)

    Portnoy, Sigal; Halaby, Orli; Dekel-Chen, Dotan; Dierick, Frédéric

    2015-11-01

    Pouring hot water from a kettle into a cup may prove a hazardous task, especially for the elderly or the visually-impaired. Individuals with deteriorating eyesight may endanger their hands by performing this task with both hands, relaying on tactilo-kinesthetic feedback (TKF). Auditory feedback (AF) may allow them to perform the task singlehandedly, thereby reducing the risk for injury. However since relying on an AF is not intuitive and requires practice, we aimed to determine if AF supplied during the task of pouring water can be used naturally as visual feedback (VF) following practice. For this purpose, we quantified, in young healthy sighted subjects (n = 20), the performance and kinematics of pouring water in the presence of three isolated feedbacks: visual, tactilo-kinesthetic, or auditory. There were no significant differences between the weights of spilled water in the AF condition compared to the TKF condition in the first, fifth or thirteenth trials. The subjectively-reported difficulty levels of using the TKF and the AF were significantly reduced between the first and thirteenth trials for both TKF (p = 0.01) and AF (p = 0.001). Trunk rotation during the first trial using the TKF was significantly lower than the trunk rotation while using VF. Also, shoulder adduction during the first trial using the TKF was significantly higher than the shoulder adduction while using the VF. During the AF trials, the median travel distance of the tip of the kettle was significantly reduced in the first trials so that in the thirtieth trial it did not differ significantly from the median travel distance during the thirtieth trial using TKF and VF. The maximal velocity of the tip of the kettle was constant for each of the feedback conditions but was higher in 10 cm s(-1) using VF than TKF, which was higher in 10 cm s(-1) from using AF. The smoothness of movement of the TKF and AF conditions, expressed by the normalized jerk score (NJSM), was one and two orders

  4. Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands.

    Science.gov (United States)

    Ossmy, Ori; Mukamel, Roy

    2017-01-01

    Visual feedback in general, and from the body in particular, is known to influence the performance of motor skills in humans. However, it is unclear how the acquisition of motor skills depends on specific visual feedback parameters such as the size of performing effector. Here, 21 healthy subjects physically trained to perform sequences of finger movements with their right hand. Through the use of 3D Virtual Reality devices, visual feedback during training consisted of virtual hands presented on the screen, tracking subject's hand movements in real time. Importantly, the setup allowed us to manipulate the size of the displayed virtual hands across experimental conditions. We found that performance gains increase with the size of virtual hands. In contrast, when subjects trained by mere observation (i.e., in the absence of physical movement), manipulating the size of the virtual hand did not significantly affect subsequent performance gains. These results demonstrate that when it comes to short-term motor skill learning, the size of visual feedback matters. Furthermore, these results suggest that highest performance gains in individual subjects are achieved when the size of the virtual hand matches their real hand size. These results may have implications for optimizing motor training schemes.

  5. Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands.

    Directory of Open Access Journals (Sweden)

    Ori Ossmy

    Full Text Available Visual feedback in general, and from the body in particular, is known to influence the performance of motor skills in humans. However, it is unclear how the acquisition of motor skills depends on specific visual feedback parameters such as the size of performing effector. Here, 21 healthy subjects physically trained to perform sequences of finger movements with their right hand. Through the use of 3D Virtual Reality devices, visual feedback during training consisted of virtual hands presented on the screen, tracking subject's hand movements in real time. Importantly, the setup allowed us to manipulate the size of the displayed virtual hands across experimental conditions. We found that performance gains increase with the size of virtual hands. In contrast, when subjects trained by mere observation (i.e., in the absence of physical movement, manipulating the size of the virtual hand did not significantly affect subsequent performance gains. These results demonstrate that when it comes to short-term motor skill learning, the size of visual feedback matters. Furthermore, these results suggest that highest performance gains in individual subjects are achieved when the size of the virtual hand matches their real hand size. These results may have implications for optimizing motor training schemes.

  6. Attention affects visual perceptual processing near the hand.

    Science.gov (United States)

    Cosman, Joshua D; Vecera, Shaun P

    2010-09-01

    Specialized, bimodal neural systems integrate visual and tactile information in the space near the hand. Here, we show that visuo-tactile representations allow attention to influence early perceptual processing, namely, figure-ground assignment. Regions that were reached toward were more likely than other regions to be assigned as foreground figures, and hand position competed with image-based information to bias figure-ground assignment. Our findings suggest that hand position allows attention to influence visual perceptual processing and that visual processes typically viewed as unimodal can be influenced by bimodal visuo-tactile representations.

  7. Sensorimotor Learning of Acupuncture Needle Manipulation Using Visual Feedback.

    Directory of Open Access Journals (Sweden)

    Won-Mo Jung

    Full Text Available Humans can acquire a wide variety of motor skills using sensory feedback pertaining to discrepancies between intended and actual movements. Acupuncture needle manipulation involves sophisticated hand movements and represents a fundamental skill for acupuncturists. We investigated whether untrained students could improve their motor performance during acupuncture needle manipulation using visual feedback (VF.Twenty-one untrained medical students were included, randomly divided into concurrent (n = 10 and post-trial (n = 11 VF groups. Both groups were trained in simple lift/thrusting techniques during session 1, and in complicated lift/thrusting techniques in session 2 (eight training trials per session. We compared the motion patterns and error magnitudes of pre- and post-training tests.During motion pattern analysis, both the concurrent and post-trial VF groups exhibited greater improvements in motion patterns during the complicated lifting/thrusting session. In the magnitude error analysis, both groups also exhibited reduced error magnitudes during the simple lifting/thrusting session. For the training period, the concurrent VF group exhibited reduced error magnitudes across all training trials, whereas the post-trial VF group was characterized by greater error magnitudes during initial trials, which gradually reduced during later trials.Our findings suggest that novices can improve the sophisticated hand movements required for acupuncture needle manipulation using sensorimotor learning with VF. Use of two types of VF can be beneficial for untrained students in terms of learning how to manipulate acupuncture needles, using either automatic or cognitive processes.

  8. The Effect of Delayed Visual Feedback on Synchrony Perception in a Tapping Task

    Directory of Open Access Journals (Sweden)

    Mirjam Keetels

    2011-10-01

    Full Text Available Sensory events following a motor action are, within limits, interpreted as a causal consequence of those actions. For example, the clapping of the hands is initiated by the motor system, but subsequently visual, auditory, and tactile information is provided and processed. In the present study we examine the effect of temporal disturbances in this chain of motor-sensory events. Participants are instructed to tap a surface with their finger in synchrony with a chain of 20 sound clicks (ISI 750 ms. We examined the effect of additional visual information on this ‘tap-sound’-synchronization task. During tapping, subjects will see a video of their own tapping hand on a screen in front of them. The video can either be in synchrony with the tap (real-time recording, or can be slightly delayed (∼40–160 ms. In a control condition, no video is provided. We explore whether ‘tap-sound’ synchrony will be shifted as a function of the delayed visual feedback. Results will provide fundamental insights into how the brain preserves a causal interpretation of motor actions and their sensory consequences.

  9. Visual target distance, but not visual cursor path length produces shifts in motor behavior

    Directory of Open Access Journals (Sweden)

    Nike eWendker

    2014-03-01

    Full Text Available When using tools effects in body space and distant space often do not correspond. Findings so far demonstrated that in this case visual feedback has more impact on action control than proprioceptive feedback. The present study varies the dimensional overlap between visual and proprioceptive action effects and investigates its impact on aftereffects in motor responses. In two experiments participants perform linear hand movements on a covered digitizer tablet to produce ∩-shaped cursor trajectories on the display. The shape of hand motion and cursor motion (linear vs. curved is dissimilar and therefore does not overlap. In one condition the length of hand amplitude and visual target distance is similar and constant while the length of the cursor path is dissimilar and varies. In another condition the length of the hand amplitude varies while the lengths of visual target distance (similar or dissimilar and cursor path (dissimilar are constant. First, we found that aftereffects depended on the relation between hand path length and visual target distance, and not on the relation between hand and cursor path length. Second, increasing contextual interference did not reveal larger aftereffects. Finally, data exploration demonstrated a considerable benefit from gain repetitions across trials when compared to gain switches. In conclusion, dimensional overlap between visual and proprioceptive action effects modulates human information processing in visually controlled actions. However, adjustment of the internal model seems to occur very fast for this kind of simple linear transformation, so that the impact of prior visual feedback is fleeting.

  10. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    Science.gov (United States)

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  11. The Effect of Visual Feedback on Writing Size in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Adriaan R. E. Potgieser

    2015-01-01

    Full Text Available Parkinson’s disease (PD leads to impairment in multiple cognitive domains. Micrographia is a relatively early PD sign of visuomotor dysfunction, characterized by a global reduction in writing size and a decrement in size during writing. Here we aimed to investigate the effect of withdrawal of visual feedback on writing size in patients with PD. Twenty-five patients with non-tremor-dominant PD without cognitive dysfunction and twenty-five age-matched controls had to write a standard sentence with and without visual feedback. We assessed the effect of withdrawal of visual feedback by measuring vertical word size (i, horizontal length of the sentence (ii, and the summed horizontal word length without interspacing (iii, comparing patients with controls. In both patients and controls, writing was significantly larger without visual feedback. This enlargement did not significantly differ between the groups. Smaller handwriting significantly correlated with increased disease severity. Contrary to previous observations that withdrawal of visual feedback caused increased writing size in specifically PD, we did not find differences between patients and controls. Both groups wrote larger without visual feedback, which adds insight in general neuronal mechanisms underlying the balance between feed-forward and feedback in visuomotor control, mechanisms that also hold for grasping movements.

  12. Effects of Visual Feedback Distortion on Gait Adaptation: Comparison of Implicit Visual Distortion Versus Conscious Modulation on Retention of Motor Learning.

    Science.gov (United States)

    Kim, Seung-Jae; Ogilvie, Mitchell; Shimabukuro, Nathan; Stewart, Trevor; Shin, Joon-Ho

    2015-09-01

    Visual feedback can be used during gait rehabilitation to improve the efficacy of training. We presented a paradigm called visual feedback distortion; the visual representation of step length was manipulated during treadmill walking. Our prior work demonstrated that an implicit distortion of visual feedback of step length entails an unintentional adaptive process in the subjects' spatial gait pattern. Here, we investigated whether the implicit visual feedback distortion, versus conscious correction, promotes efficient locomotor adaptation that relates to greater retention of a task. Thirteen healthy subjects were studied under two conditions: (1) we implicitly distorted the visual representation of their gait symmetry over 14 min, and (2) with help of visual feedback, subjects were told to walk on the treadmill with the intent of attaining the gait asymmetry observed during the first implicit trial. After adaptation, the visual feedback was removed while subjects continued walking normally. Over this 6-min period, retention of preserved asymmetric pattern was assessed. We found that there was a greater retention rate during the implicit distortion trial than that of the visually guided conscious modulation trial. This study highlights the important role of implicit learning in the context of gait rehabilitation by demonstrating that training with implicit visual feedback distortion may produce longer lasting effects. This suggests that using visual feedback distortion could improve the effectiveness of treadmill rehabilitation processes by influencing the retention of motor skills.

  13. Visual Field Preferences of Object Analysis for Grasping with One Hand

    Directory of Open Access Journals (Sweden)

    Ada eLe

    2014-10-01

    Full Text Available When we grasp an object using one hand, the opposite hemisphere predominantly guides the motor control of grasp movements (Davare et al. 2007; Rice et al. 2007. However, it is unclear whether visual object analysis for grasp control relies more on inputs (a from the contralateral than the ipsilateral visual field, (b from one dominant visual field regardless of the grasping hand, or (c from both visual fields equally. For bimanual grasping of a single object we have recently demonstrated a visual field preference for the left visual field (Le and Niemeier 2013a, 2013b, consistent with a general right-hemisphere dominance for sensorimotor control of bimanual grasps (Le et al., 2013. But visual field differences have never been tested for unimanual grasping. Therefore, here we asked right-handed participants to fixate to the left or right of an object and then grasp the object either with their right or left hand using a precision grip. We found that participants grasping with their right hand performed better with objects in the right visual field: maximum grip apertures (MGAs were more closely matched to the object width and were smaller than for objects in the left visual field. In contrast, when people grasped with their left hand, preferences switched to the left visual field. What is more, MGA scaling showed greater visual field differences compared to right-hand grasping. Our data suggest that, visual object analysis for unimanual grasping shows a preference for visual information from the ipsilateral visual field, and that the left hemisphere is better equipped to control grasps in both visual fields.

  14. Isometric force exaggeration in simulated weightlessness by water immersion: role of visual feedback.

    Science.gov (United States)

    Dalecki, Marc; Bock, Otmar

    2014-06-01

    Previous studies reported that humans produce exaggerated isometric forces (20-50%) in microgravity, hypergravity, and under water. Subjects were not provided with visual feedback and exaggerations were attributed to proprioceptive deficits. The few studies that provided visual feedback in micro- and hypergravity found no deficits. The present work was undertaken to find out whether visual feedback can reduce or eliminate isometric force exaggerations during shallow water immersion, a working environment for astronauts and divers. There were 48 subjects who had to produce isometric forces of 15 N with a joystick; targets were presented via screen. Procedures were similar to earlier studies, but provided visual feedback. Subjects were tested 16.4 ft (5 m) under water (WET) and on dry land (DRY). Response accuracy was calculated with landmarks such as initial and peak force magnitude, and response timing. Initial force and response timing were equal in WET compared to DRY. A small but significant force exaggeration (+5%) remained for peak force in WET that was limited to directions toward the trunk. Force exaggeration under water is largely compensated, but not completely eliminated by visual feedback. As in earlier studies without visual feedback, force exaggeration manifested during later but not early response parts, speaking for impaired proprioceptive feedback rather than for erroneous central motor planning. Since in contrast to micro/hypergravity, visual feedback did not sufficiently abolish force deficits under water, proprioceptive information seems to be weighted differently in micro/hypergravity and shallow water immersion, probably because only the latter environment produces increased ambient pressure, which is known to induce neuronal changes.

  15. Three Principles for the Design of Energy Feedback Visualizations

    DEFF Research Database (Denmark)

    Brewer, Robert S.; Xu, Yongwen; Lee, George E.

    2013-01-01

    , online educational activities, and real-world activities such as workshops and excursions. We describe our experiences developing energy feedback visualizations in the Kukui Cup based on in-lab evaluations and field studies in college residence halls. We learned that energy feedback systems should...

  16. Brain-actuated gait trainer with visual and proprioceptive feedback

    Science.gov (United States)

    Liu, Dong; Chen, Weihai; Lee, Kyuhwa; Chavarriaga, Ricardo; Bouri, Mohamed; Pei, Zhongcai; Millán, José del R.

    2017-10-01

    Objective. Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. Approach. We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. Main results. (i) For real-time classification, the average accuracy was 62.33 +/- 4.95 % and 63.89 +/- 6.41 % for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback (69.45 +/- 9.95 %) was significantly better than with visual feedback (62.89 +/- 9.20 %), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. Significance. The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that

  17. Learning feedback and feedforward control in a mirror-reversed visual environment.

    Science.gov (United States)

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn

    2015-10-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  18. Using visual feedback distortion to alter coordinated pinching patterns for robotic rehabilitation

    Directory of Open Access Journals (Sweden)

    Brewer Bambi R

    2007-05-01

    Full Text Available Abstract Background It is common for individuals with chronic disabilities to continue using the compensatory movement coordination due to entrenched habits, increased perception of task difficulty, or personality variables such as low self-efficacy or a fear of failure. Following our previous work using feedback distortion in a virtual rehabilitation environment to increase strength and range of motion, we address the use of visual feedback distortion environment to alter movement coordination patterns. Methods Fifty-one able-bodied subjects participated in the study. During the experiment, each subject learned to move their index finger and thumb in a particular target pattern while receiving visual feedback. Visual distortion was implemented as a magnification of the error between the thumb and/or index finger position and the desired position. The error reduction profile and the effect of distortion were analyzed by comparing the mean total absolute error and a normalized error that measured performance improvement for each subject as a proportion of the baseline error. Results The results of the study showed that (1 different coordination pattern could be trained with visual feedback and have the new pattern transferred to trials without visual feedback, (2 distorting individual finger at a time allowed different error reduction profile from the controls, and (3 overall learning was not sped up by distorting individual fingers. Conclusion It is important that robotic rehabilitation incorporates multi-limb or finger coordination tasks that are important for activities of daily life in the near future. This study marks the first investigation on multi-finger coordination tasks under visual feedback manipulation.

  19. The role of visual and direct force feedback in robotics-assisted mitral valve annuloplasty.

    Science.gov (United States)

    Currie, Maria E; Talasaz, Ali; Rayman, Reiza; Chu, Michael W A; Kiaii, Bob; Peters, Terry; Trejos, Ana Luisa; Patel, Rajni

    2017-09-01

    The objective of this work was to determine the effect of both direct force feedback and visual force feedback on the amount of force applied to mitral valve tissue during ex vivo robotics-assisted mitral valve annuloplasty. A force feedback-enabled master-slave surgical system was developed to provide both visual and direct force feedback during robotics-assisted cardiac surgery. This system measured the amount of force applied by novice and expert surgeons to cardiac tissue during ex vivo mitral valve annuloplasty repair. The addition of visual (2.16 ± 1.67), direct (1.62 ± 0.86), or both visual and direct force feedback (2.15 ± 1.08) resulted in lower mean maximum force applied to mitral valve tissue while suturing compared with no force feedback (3.34 ± 1.93 N; P forces on cardiac tissue during robotics-assisted mitral valve annuloplasty suturing, force feedback may be required. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand.

    Science.gov (United States)

    Panarese, Alessandro; Edin, Benoni B; Vecchi, Fabrizio; Carrozza, Maria C; Johansson, Roland S

    2009-12-01

    Tactile sensory feedback is essential for dexterous object manipulation. Users of hand myoelectric prostheses without tactile feedback must depend essentially on vision to control their device. Indeed, improved tactile feedback is one of their main priorities. Previous research has provided evidence that conveying tactile feedback can improve prostheses control, although additional effort is required to solve problems related to pattern recognition learning, unpleasant sensations, sensory adaptation, and low spatiotemporal resolution. Still, these studies have mainly focused on providing stimulation to hairy skin regions close to the amputation site, i.e., usually to the upper arm. Here, we explored the possibility to provide tactile feedback to the glabrous skin of toes, which have mechanical and neurophysiological properties similar to the fingertips. We explored this paradigm in a grasp-and-lift task, in which healthy participants controlled two opposing digits of a robotic hand by changing the spacing of their index finger and thumb. The normal forces applied by the robotic fingertips to a test object were fed back to the right big and second toe. We show that within a few lifting trials, all the participants incorporated the force feedback received by the foot in their sensorimotor control of the robotic hand.

  1. Effects of Real-Time Visual Feedback on Pre-Service Teachers' Singing

    Science.gov (United States)

    Leong, S.; Cheng, L.

    2014-01-01

    This pilot study focuses on the use real-time visual feedback technology (VFT) in vocal training. The empirical research has two aims: to ascertain the effectiveness of the real-time visual feedback software "Sing & See" in the vocal training of pre-service music teachers and the teachers' perspective on their experience with…

  2. Visual Acuity Testing: Feedback Affects Neither Outcome nor Reproducibility, but Leaves Participants Happier.

    Science.gov (United States)

    Bach, Michael; Schäfer, Kerstin

    2016-01-01

    Assessment of visual acuity is a well standardized procedure at least for expert opinions and clinical trials. It is often recommended not giving patients feedback on the correctness of their responses. As this viewpoint has not been quantitatively examined so far, we quantitatively assessed possible effects of feedback on visual acuity testing. In 40 normal participants we presented Landolt Cs in 8 orientations using the automated Freiburg Acuity Test (FrACT, feedback was provided in 2 x 4 conditions: (A) no feedback, (B) acoustic signals indicating correctness, (C)visual indication of correct orientation, and (D) a combination of (B) and (C). After each run the participants judged comfort. Main outcome measures were absolute visual acuity (logMAR), its test-retest agreement (limits of agreement) and participants' comfort estimates on a 5-step symmetric Likert scale. Feedback influenced acuity outcome significantly (p = 0.02), but with a tiny effect size: 0.02 logMAR poorer acuity for (D) compared to (A), even weaker effects for (B) and (C). Test-retest agreement was high (limits of agreement: ± 1.0 lines) and did not depend on feedback (p>0.5). The comfort ranking clearly differed, by 2 steps on the Likert scale: the condition (A)-no feedback-was on average "slightly uncomfortable", the other three conditions were "slightly comfortable" (pFeedback affected neither reproducibility nor the acuity outcome to any relevant extent. The participants, however, reported markedly greater comfort with any kind of feedback. We conclude that systematic feedback (as implemented in FrACT) offers nothing but advantages for routine use.

  3. Evaluation of multimodal feedback effects on improving rowing competencies

    Directory of Open Access Journals (Sweden)

    Korman Maria

    2011-12-01

    Full Text Available This study focused on the selection and preliminary evaluation of different types of modal and information feedback in virtual environment to facilitate acquisition and transfer of a complex motor-cognitive skill of rowing. Specifically, we addressed the effectiveness of immediate information feedback provided visually as compared to sensory haptic feedback on the improvement in hands kinematics and changes in cognitive load during the course of learning the basic rowing technique. Several pilot experiments described in this report lead to the evaluation and optimization of the training protocol, to enhance facilitatory effects of adding visual and haptic feedback during training.

  4. Influence of visual feedback on human task performance in ITER remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Schropp, Gwendolijn Y.R., E-mail: g.schropp@heemskerk-innovative.nl [Utrecht University, Utrecht (Netherlands); Heemskerk Innovative Technology, Noordwijk (Netherlands); Heemskerk, Cock J.M. [Heemskerk Innovative Technology, Noordwijk (Netherlands); Kappers, Astrid M.L.; Tiest, Wouter M. Bergmann [Helmholtz Institute-Utrecht University, Utrecht (Netherlands); Elzendoorn, Ben S.Q. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM/FOM, Partner in the Trilateral Euregio Clusterand ITER-NL, PO box 1207, 3430 BE Nieuwegein (Netherlands); Bult, David [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM/FOM, Partner in the Trilateral Euregio Clusterand ITER-NL, PO box 1207, 3430 BE Nieuwegein (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The performance of human operators in an ITER-like test facility for remote handling. Black-Right-Pointing-Pointer Different sources of visual feedback influence how fast one can complete a maintenance task. Black-Right-Pointing-Pointer Insights learned could be used in design of operator work environment or training procedures. - Abstract: In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures. Additional verification and validation is based on simulation and hardware tests in 1:1 scale mockups. The Master Slave manipulator system (MS2) Benchmark Product was designed to implement a reference set of maintenance tasks representative for ITER remote handling. Experiments were performed with two versions of the Benchmark Product. In both experiments, the quality of visual feedback varied by exchanging direct view with indirect view (using video cameras) in order to measure and analyze its impact on human task performance. The first experiment showed that both experienced and novice RH operators perform a simple task significantly better with direct visual feedback than with camera feedback. A more complex task showed a large variation in results and could not be completed by many novice operators. Experienced operators commented on both the mechanical design and visual feedback. In a second experiment, a more elaborate task was tested on an improved Benchmark product. Again, the task was performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indicated that they regarded the lack of 3D perception as the primary factor hindering their performance.

  5. Influence of visual feedback on human task performance in ITER remote handling

    International Nuclear Information System (INIS)

    Schropp, Gwendolijn Y.R.; Heemskerk, Cock J.M.; Kappers, Astrid M.L.; Tiest, Wouter M. Bergmann; Elzendoorn, Ben S.Q.; Bult, David

    2012-01-01

    Highlights: ► The performance of human operators in an ITER-like test facility for remote handling. ► Different sources of visual feedback influence how fast one can complete a maintenance task. ► Insights learned could be used in design of operator work environment or training procedures. - Abstract: In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures. Additional verification and validation is based on simulation and hardware tests in 1:1 scale mockups. The Master Slave manipulator system (MS2) Benchmark Product was designed to implement a reference set of maintenance tasks representative for ITER remote handling. Experiments were performed with two versions of the Benchmark Product. In both experiments, the quality of visual feedback varied by exchanging direct view with indirect view (using video cameras) in order to measure and analyze its impact on human task performance. The first experiment showed that both experienced and novice RH operators perform a simple task significantly better with direct visual feedback than with camera feedback. A more complex task showed a large variation in results and could not be completed by many novice operators. Experienced operators commented on both the mechanical design and visual feedback. In a second experiment, a more elaborate task was tested on an improved Benchmark product. Again, the task was performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indicated that they regarded the lack of 3D perception as the primary factor hindering their performance.

  6. Improving training of laparoscopic tissue manipulation skills using various visual force feedback types

    NARCIS (Netherlands)

    Smit, Daan; Spruit, Edward; Dankelman, J.; Tuijthof, G.J.M.; Hamming, J; Horeman, T.

    2017-01-01

    Background Visual force feedback allows trainees to learn laparoscopic tissue manipulation skills. The aim of this experimental study was to find the most efficient visual force feedback method to acquire these skills. Retention and transfer validity to an untrained task were assessed. Methods

  7. Embodied neurofeedback with an anthropomorphic robotic hand

    Science.gov (United States)

    Braun, Niclas; Emkes, Reiner; Thorne, Jeremy D.; Debener, Stefan

    2016-01-01

    Neurofeedback-guided motor imagery training (NF-MIT) has been suggested as a promising therapy for stroke-induced motor impairment. Whereas much NF-MIT research has aimed at signal processing optimization, the type of sensory feedback given to the participant has received less attention. Often the feedback signal is highly abstract and not inherently coupled to the mental act performed. In this study, we asked whether an embodied feedback signal is more efficient for neurofeedback operation than a non-embodiable feedback signal. Inspired by the rubber hand illusion, demonstrating that an artificial hand can be incorporated into one’s own body scheme, we used an anthropomorphic robotic hand to visually guide the participants’ motor imagery act and to deliver neurofeedback. Using two experimental manipulations, we investigated how a participant’s neurofeedback performance and subjective experience were influenced by the embodiability of the robotic hand, and by the neurofeedback signal’s validity. As pertains to embodiment, we found a promoting effect of robotic-hand embodiment in subjective, behavioral, electrophysiological and electrodermal measures. Regarding neurofeedback signal validity, we found some differences between real and sham neurofeedback in terms of subjective and electrodermal measures, but not in terms of behavioral and electrophysiological measures. This study motivates the further development of embodied feedback signals for NF-MIT. PMID:27869190

  8. Embodied neurofeedback with an anthropomorphic robotic hand.

    Science.gov (United States)

    Braun, Niclas; Emkes, Reiner; Thorne, Jeremy D; Debener, Stefan

    2016-11-21

    Neurofeedback-guided motor imagery training (NF-MIT) has been suggested as a promising therapy for stroke-induced motor impairment. Whereas much NF-MIT research has aimed at signal processing optimization, the type of sensory feedback given to the participant has received less attention. Often the feedback signal is highly abstract and not inherently coupled to the mental act performed. In this study, we asked whether an embodied feedback signal is more efficient for neurofeedback operation than a non-embodiable feedback signal. Inspired by the rubber hand illusion, demonstrating that an artificial hand can be incorporated into one's own body scheme, we used an anthropomorphic robotic hand to visually guide the participants' motor imagery act and to deliver neurofeedback. Using two experimental manipulations, we investigated how a participant's neurofeedback performance and subjective experience were influenced by the embodiability of the robotic hand, and by the neurofeedback signal's validity. As pertains to embodiment, we found a promoting effect of robotic-hand embodiment in subjective, behavioral, electrophysiological and electrodermal measures. Regarding neurofeedback signal validity, we found some differences between real and sham neurofeedback in terms of subjective and electrodermal measures, but not in terms of behavioral and electrophysiological measures. This study motivates the further development of embodied feedback signals for NF-MIT.

  9. Implementation and Impact of an Automated Group Monitoring and Feedback System to Promote Hand Hygiene Among Health Care Personnel

    Science.gov (United States)

    Conway, Laurie J.; Riley, Linda; Saiman, Lisa; Cohen, Bevin; Alper, Paul; Larson, Elaine L.

    2015-01-01

    Article-at-a-Glance Background Despite substantial evidence to support the effectiveness of hand hygiene for preventing health care–associated infections, hand hygiene practice is often inadequate. Hand hygiene product dispensers that can electronically capture hand hygiene events have the potential to improve hand hygiene performance. A study on an automated group monitoring and feedback system was implemented from January 2012 through March 2013 at a 140-bed community hospital. Methods An electronic system that monitors the use of sanitizer and soap but does not identify individual health care personnel was used to calculate hand hygiene events per patient-hour for each of eight inpatient units and hand hygiene events per patient-visit for the six outpatient units. Hand hygiene was monitored but feedback was not provided during a six-month baseline period and three-month rollout period. During the rollout, focus groups were conducted to determine preferences for feedback frequency and format. During the six-month intervention period, graphical reports were e-mailed monthly to all managers and administrators, and focus groups were repeated. Results After the feedback began, hand hygiene increased on average by 0.17 events/patient-hour in inpatient units (interquartile range = 0.14, p = .008). In outpatient units, hand hygiene performance did not change significantly. A variety of challenges were encountered, including obtaining accurate census and staffing data, engendering confidence in the system, disseminating information in the reports, and using the data to drive improvement. Conclusions Feedback via an automated system was associated with improved hand hygiene performance in the short term. PMID:25252389

  10. Implementation and impact of an automated group monitoring and feedback system to promote hand hygiene among health care personnel.

    Science.gov (United States)

    Conway, Laurie J; Riley, Linda; Saiman, Lisa; Cohen, Bevin; Alper, Paul; Larson, Elaine L

    2014-09-01

    Despite substantial evidence to support the effectiveness of hand hygiene for preventing health care-associated infections, hand hygiene practice is often inadequate. Hand hygiene product dispensers that can electronically capture hand hygiene events have the potential to improve hand hygiene performance. A study on an automated group monitoring and feedback system was implemented from January 2012 through March 2013 at a 140-bed community hospital. An electronic system that monitors the use of sanitizer and soap but does not identify individual health care personnel was used to calculate hand hygiene events per patient-hour for each of eight inpatient units and hand hygiene events per patient-visit for the six outpatient units. Hand hygiene was monitored but feedback was not provided during a six-month baseline period and three-month rollout period. During the rollout, focus groups were conducted to determine preferences for feedback frequency and format. During the six-month intervention period, graphical reports were e-mailed monthly to all managers and administrators, and focus groups were repeated. After the feedback began, hand hygiene increased on average by 0.17 events/patient-hour in inpatient units (interquartile range = 0.14, p = .008). In outpatient units, hand hygiene performance did not change significantly. A variety of challenges were encountered, including obtaining accurate census and staffing data, engendering confidence in the system, disseminating information in the reports, and using the data to drive improvement. Feedback via an automated system was associated with improved hand hygiene performance in the short-term.

  11. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels

    Directory of Open Access Journals (Sweden)

    Fabian Steinberg

    2016-01-01

    Full Text Available Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals’ skill level, a factor that might be considered in mirror therapy research.

  12. New reflections on agency and body ownership: The moving rubber hand illusion in the mirror.

    Science.gov (United States)

    Jenkinson, Paul M; Preston, Catherine

    2015-05-01

    No previous study has simultaneously examined body ownership and agency in healthy subjects during mirror self-observation. We used a moving rubber hand illusion to examine how both body ownership and agency are affected by seeing (i) the body moving in a mirror, compared with (ii) directly viewing the moving hand, and (iii) seeing a visually identical hand rotated by 180°. We elicited ownership of the hand using direct visual feedback, finding this effect was further enhanced when looking at the hand in a mirror, whereas rotating the hand 180° abolished ownership. Agency was similarly elicited using direct visual feedback, and equally so in the mirror, but again reduced for the 180° hand. We conclude that the reflected body in a mirror is treated as 'special' in the mind, and distinct from other external objects. This enables bodies and actions viewed in a mirror to be directly related to the self. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    by subconscious (subliminal) augmented visual feedback on motor performance. To test this, 45 subjects participated in the experiment, which involved learning of a ballistic task. The task was to execute simple ankle plantar flexion movements as quickly as possible within 200 ms and to continuously improve...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance.......). It is a well- described phenomenon that we may respond to features of our surroundings without being aware of them. It is also a well-known principle, that learning is reinforced by augmented feedback on motor performance. In the present experiment we hypothesized that motor learning may be facilitated...

  14. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions.

    Science.gov (United States)

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-08

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  15. Depth Camera-Based 3D Hand Gesture Controls with Immersive Tactile Feedback for Natural Mid-Air Gesture Interactions

    Directory of Open Access Journals (Sweden)

    Kwangtaek Kim

    2015-01-01

    Full Text Available Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user’s hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE, 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user’s gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  16. Eye movements in interception with delayed visual feedback.

    Science.gov (United States)

    Cámara, Clara; de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli

    2018-04-19

    The increased reliance on electronic devices such as smartphones in our everyday life exposes us to various delays between our actions and their consequences. Whereas it is known that people can adapt to such delays, the mechanisms underlying such adaptation remain unclear. To better understand these mechanisms, the current study explored the role of eye movements in interception with delayed visual feedback. In two experiments, eye movements were recorded as participants tried to intercept a moving target with their unseen finger while receiving delayed visual feedback about their own movement. In Experiment 1, the target randomly moved in one of two different directions at one of two different velocities. The delay between the participant's finger movement and movement of the cursor that provided feedback about the finger movements was gradually increased. Despite the delay, participants followed the target with their gaze. They were quite successful at hitting the target with the cursor. Thus, they moved their finger to a position that was ahead of where they were looking. Removing the feedback showed that participants had adapted to the delay. In Experiment 2, the target always moved in the same direction and at the same velocity, while the cursor's delay varied across trials. Participants still always directed their gaze at the target. They adjusted their movement to the delay on each trial, often succeeding to intercept the target with the cursor. Since their gaze was always directed at the target, and they could not know the delay until the cursor started moving, participants must have been using peripheral vision of the delayed cursor to guide it to the target. Thus, people deal with delays by directing their gaze at the target and using both experience from previous trials (Experiment 1) and peripheral visual information (Experiment 2) to guide their finger in a way that will make the cursor hit the target.

  17. Effects of hand hygiene education and individual feedback on hand hygiene behaviour, MRSA acquisition rate and MRSA colonization pressure among intensive care unit nurses.

    Science.gov (United States)

    Chun, Hee-Kyung; Kim, Kyung-Mi; Park, Ho-Ran

    2015-12-01

    This study was conducted to increase the frequency and level of thoroughness of hand hygiene practice by nurses, and to assess the influence of the methicillin-resistant Staphylococcus aureus (MRSA) acquired incidence rate and the MRSA colonization pressure in a medical intensive care unit (MICU). A total of 24 MICU nurses received hand hygiene education and individual feedback of hand hygiene frequency and method after a session of education, and two posteducation evaluations were followed. The frequency of hand hygiene (P = 0.001) and the methodology score of hand hygiene increased significantly (P = 0.001). The MRSA acquisition rate decreased significantly, from 11.1% before the education to 0% after (P = 0.014). The MRSA colonization pressure decreased significantly from 39.5% to 8.6% after the education sessions (P = 0.001). This indicates that providing individual feedback after hand hygiene education was very effective in increasing nurses' hand hygiene frequency and improving hand hygiene method; furthermore, it was expected to decrease health care-associated infections. © 2014 Wiley Publishing Asia Pty Ltd.

  18. System to induce and measure embodiment of an artificial hand with programmable convergent visual and tactile stimuli.

    Science.gov (United States)

    Benz, Heather L; Sieff, Talia R; Alborz, Mahsa; Kontson, Kimberly; Kilpatrick, Elizabeth; Civillico, Eugene F

    2016-08-01

    The sense of prosthesis embodiment, or the feeling that the device has been incorporated into a user's body image, may be enhanced by emerging technology such as invasive electrical stimulation for sensory feedback. In turn, prosthesis embodiment may be linked to increased prosthesis use and improved functional outcomes. We describe the development of a tool to assay artificial hand embodiment in a quantitative way in people with intact limbs, and characterize its operation. The system delivers temporally coordinated visual and tactile stimuli at a programmable latency while recording limb temperature. When programmed to deliver visual and tactile stimuli synchronously, recorded latency between the two was 33 ± 24 ms in the final pilot subject. This system enables standardized assays of the conditions necessary for prosthesis embodiment.

  19. Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report

    Directory of Open Access Journals (Sweden)

    Yan Kun

    2011-01-01

    Full Text Available Abstract Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees.

  20. Artificial proprioceptive feedback for myoelectric control.

    Science.gov (United States)

    Pistohl, Tobias; Joshi, Deepak; Ganesh, Gowrishankar; Jackson, Andrew; Nazarpour, Kianoush

    2015-05-01

    The typical control of myoelectric interfaces, whether in laboratory settings or real-life prosthetic applications, largely relies on visual feedback because proprioceptive signals from the controlling muscles are either not available or very noisy. We conducted a set of experiments to test whether artificial proprioceptive feedback, delivered noninvasively to another limb, can improve control of a two-dimensional myoelectrically-controlled computer interface. In these experiments, participants were required to reach a target with a visual cursor that was controlled by electromyogram signals recorded from muscles of the left hand, while they were provided with an additional proprioceptive feedback on their right arm by moving it with a robotic manipulandum. Provision of additional artificial proprioceptive feedback improved the angular accuracy of their movements when compared to using visual feedback alone but did not increase the overall accuracy quantified with the average distance between the cursor and the target. The advantages conferred by proprioception were present only when the proprioceptive feedback had similar orientation to the visual feedback in the task space and not when it was mirrored, demonstrating the importance of congruency in feedback modalities for multi-sensory integration. Our results reveal the ability of the human motor system to learn new inter-limb sensory-motor associations; the motor system can utilize task-related sensory feedback, even when it is available on a limb distinct from the one being actuated. In addition, the proposed task structure provides a flexible test paradigm by which the effectiveness of various sensory feedback and multi-sensory integration for myoelectric prosthesis control can be evaluated.

  1. Real-time feedback on nonverbal clinical communication. Theoretical framework and clinician acceptance of ambient visual design.

    Science.gov (United States)

    Hartzler, A L; Patel, R A; Czerwinski, M; Pratt, W; Roseway, A; Chandrasekaran, N; Back, A

    2014-01-01

    This article is part of the focus theme of Methods of Information in Medicine on "Pervasive Intelligent Technologies for Health". Effective nonverbal communication between patients and clinicians fosters both the delivery of empathic patient-centered care and positive patient outcomes. Although nonverbal skill training is a recognized need, few efforts to enhance patient-clinician communication provide visual feedback on nonverbal aspects of the clinical encounter. We describe a novel approach that uses social signal processing technology (SSP) to capture nonverbal cues in real time and to display ambient visual feedback on control and affiliation--two primary, yet distinct dimensions of interpersonal nonverbal communication. To examine the design and clinician acceptance of ambient visual feedback on nonverbal communication, we 1) formulated a model of relational communication to ground SSP and 2) conducted a formative user study using mixed methods to explore the design of visual feedback. Based on a model of relational communication, we reviewed interpersonal communication research to map nonverbal cues to signals of affiliation and control evidenced in patient-clinician interaction. Corresponding with our formulation of this theoretical framework, we designed ambient real-time visualizations that reflect variations of affiliation and control. To explore clinicians' acceptance of this visual feedback, we conducted a lab study using the Wizard-of-Oz technique to simulate system use with 16 healthcare professionals. We followed up with seven of those participants through interviews to iterate on the design with a revised visualization that addressed emergent design considerations. Ambient visual feedback on non- verbal communication provides a theoretically grounded and acceptable way to provide clinicians with awareness of their nonverbal communication style. We provide implications for the design of such visual feedback that encourages empathic patient

  2. The development of hand-centred visual representations in the primate brain: a computer modelling study using natural visual scenes.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Galeazzi

    2015-12-01

    Full Text Available Neurons that respond to visual targets in a hand-centred frame of reference have been found within various areas of the primate brain. We investigate how hand-centred visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organisation. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localised receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localised receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centred receptive fields decreased their shape selectivity and started responding to a localised region of hand-centred space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localised, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.

  3. Improvement of Hand Hygiene Quality and Compliance Using Bioburden Measurement and Online Feedback in Germany.

    Science.gov (United States)

    Günther, Frank; Rudolph, Kai; Frank, Uwe; Mutters, Nico T

    2017-01-01

    To improve compliance with hand hygiene, a novel method with inclusion of an online reporting system was developed, comprising measurement of total hand bioburden, anonymous online feedback, and onsite training. The intervention significantly improved both compliance and quality of hand hygiene and reduced Staphylococcus aureus incidence. Infect Control Hosp Epidemiol 2016;1-4.

  4. The Effects of Mirror Feedback during Target Directed Movements on Ipsilateral Corticospinal Excitability

    Directory of Open Access Journals (Sweden)

    Mathew Yarossi

    2017-05-01

    Full Text Available Mirror visual feedback (MVF training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1 excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror and presence of a visual target (target present, target absent for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs in the untrained first dorsal interosseous (FDI and abductor digiti minimi (ADM muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1–B4. Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability.

  5. [Nursing Experience of Using Mirror Visual Feedback for a Schizophrenia Patient With Visual Hallucinations].

    Science.gov (United States)

    Lan, Shu-Ling; Chen, Yu-Chi; Chang, Hsiu-Ju

    2018-06-01

    The aim of this paper was to describe the nursing application of mirror visual feedback in a patient suffering from long-term visual hallucinations. The intervention period was from May 15th to October 19th, 2015. Using the five facets of psychiatric nursing assessment, several health problems were observed, including disturbed sensory perceptions (prominent visual hallucinations) and poor self-care (e.g. limited abilities to self-bathe and put on clothing). Furthermore, "caregiver role strain" due to the related intense care burden was noted. After building up a therapeutic interpersonal relationship, the technique of brain plasticity and mirror visual feedback were performed using multiple nursing care methods in order to help the patient suppress her visual hallucinations by enhancing a different visual stimulus. We also taught her how to cope with visual hallucinations in a proper manner. The frequency and content of visual hallucinations were recorded to evaluate the effects of management. The therapeutic plan was formulated together with the patient in order to boost her self-confidence, and a behavior contract was implemented in order to improve her personal hygiene. In addition, psychoeducation on disease-related topics was provided to the patient's family, and they were encouraged to attend relevant therapeutic activities. As a result, her family became less passive and negative and more engaged in and positive about her future. The crisis of "caregiver role strain" was successfully resolved. The current experience is hoped to serve as a model for enhancing communication and cooperation between family and staff in similar medical settings.

  6. Unipedal balance in healthy adults: effect of visual environments yielding decreased lateral velocity feedback.

    Science.gov (United States)

    Deyer, T W; Ashton-Miller, J A

    1999-09-01

    To test the (null) hypotheses that the reliability of unipedal balance is unaffected by the attenuation of visual velocity feedback and that, relative to baseline performance, deterioration of balance success rates from attenuated visual velocity feedback will not differ between groups of young men and older women, and the presence (or absence) of a vertical foreground object will not affect balance success rates. Single blind, single case study. University research laboratory. Two volunteer samples: 26 healthy young men (mean age, 20.0yrs; SD, 1.6); 23 healthy older women (mean age, 64.9 yrs; SD, 7.8). Normalized success rates in unipedal balance task. Subjects were asked to transfer to and maintain unipedal stance for 5 seconds in a task near the limit of their balance capabilities. Subjects completed 64 trials: 54 trials of three experimental visual scenes in blocked randomized sequences of 18 trials and 10 trials in a normal visual environment. The experimental scenes included two that provided strong velocity/weak position feedback, one of which had a vertical foreground object (SVWP+) and one without (SVWP-), and one scene providing weak velocity/strong position (WVSP) feedback. Subjects' success rates in the experimental environments were normalized by the success rate in the normal environment in order to allow comparisons between subjects using a mixed model repeated measures analysis of variance. The normalized success rate was significantly greater in SVWP+ than in WVSP (p = .0001) and SVWP- (p = .013). Visual feedback significantly affected the normalized unipedal balance success rates (p = .001); neither the group effect nor the group X visual environment interaction was significant (p = .9362 and p = .5634, respectively). Normalized success rates did not differ significantly between the young men and older women in any visual environment. Near the limit of the young men's or older women's balance capability, the reliability of transfer to unipedal

  7. Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion.

    Science.gov (United States)

    Suzuki, Keisuke; Garfinkel, Sarah N; Critchley, Hugo D; Seth, Anil K

    2013-11-01

    Identifying with a body is central to being a conscious self. The now classic "rubber hand illusion" demonstrates that the experience of body-ownership can be modulated by manipulating the timing of exteroceptive (visual and tactile) body-related feedback. Moreover, the strength of this modulation is related to individual differences in sensitivity to internal bodily signals (interoception). However the interaction of exteroceptive and interoceptive signals in determining the experience of body-ownership within an individual remains poorly understood. Here, we demonstrate that this depends on the online integration of exteroceptive and interoceptive signals by implementing an innovative "cardiac rubber hand illusion" that combined computer-generated augmented-reality with feedback of interoceptive (cardiac) information. We show that both subjective and objective measures of virtual-hand ownership are enhanced by cardio-visual feedback in-time with the actual heartbeat, as compared to asynchronous feedback. We further show that these measures correlate with individual differences in interoceptive sensitivity, and are also modulated by the integration of proprioceptive signals instantiated using real-time visual remapping of finger movements to the virtual hand. Our results demonstrate that interoceptive signals directly influence the experience of body ownership via multisensory integration, and they lend support to models of conscious selfhood based on interoceptive predictive coding. © 2013 Elsevier Ltd. All rights reserved.

  8. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.

    Science.gov (United States)

    Rand, Miya Kato; Lemay, Martin; Squire, Linda M; Shimansky, Yury P; Stelmach, George E

    2010-03-01

    The present project was aimed at investigating how two distinct and important difficulties (coordination difficulty and pronounced dependency on visual feedback) in Parkinson's disease (PD) affect each other for the coordination between hand transport toward an object and the initiation of finger closure during reach-to-grasp movement. Subjects with PD and age-matched healthy subjects made reach-to-grasp movements to a dowel under conditions in which the target object and/or the hand were either visible or not visible. The involvement of the trunk in task performance was manipulated by positioning the target object within or beyond the participant's outstretched arm to evaluate the effects of increasing the complexity of intersegmental coordination under different conditions related to the availability of visual feedback in subjects with PD. General kinematic characteristics of the reach-to-grasp movements of the subjects with PD were altered substantially by the removal of target object visibility. Compared with the controls, the subjects with PD considerably lengthened transport time, especially during the aperture closure period, and decreased peak velocity of wrist and trunk movement without target object visibility. Most of these differences were accentuated when the trunk was involved. In contrast, these kinematic parameters did not change depending on the visibility of the hand for both groups. The transport-aperture coordination was assessed in terms of the control law according to which the initiation of aperture closure during the reach occurred when the hand distance-to-target crossed a hand-target distance threshold for grasp initiation that is a function of peak aperture, hand velocity and acceleration, trunk velocity and acceleration, and trunk-target distance at the time of aperture closure initiation. When the hand or the target object was not visible, both groups increased the hand-target distance threshold for grasp initiation compared to its

  9. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.

    Science.gov (United States)

    Whitwell, Robert L; Milner, A David; Cavina-Pratesi, Cristiana; Barat, Masihullah; Goodale, Melvyn A

    2015-05-01

    Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF's grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF's performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF's grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets. In a second condition, the haptic feedback was of a constant intermediate width while the visual target varied trial by trial. Despite this incongruent feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF's spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Training based on mirror visual feedback influences transcallosal communication.

    Science.gov (United States)

    Avanzino, Laura; Raffo, Alessia; Pelosin, Elisa; Ogliastro, Carla; Marchese, Roberta; Ruggeri, Piero; Abbruzzese, Giovanni

    2014-08-01

    Mirror visual feedback (MVF) therapy has been demonstrated to be successful in neurorehabilitation, probably inducing neuroplasticity changes in the primary motor cortex (M1). However, it is not known whether MVF training influences the hemispheric balance between the M1s. This topic is of extreme relevance when MVF training is applied to stroke rehabilitation, as the competitive interaction between the two hemispheres induces abnormal interhemispheric inhibition (IHI) that weakens motor function in stroke patients. In the present study, we evaluated, in a group of healthy subjects, the effect of motor training and MVF training on the excitability of the two M1s and the IHI between M1s. The IHI from the 'active' M1 to the opposite M1 (where 'active' means the M1 contralateral to the moving hand in the motor training and the M1 of the seen hand in the MVF training) increased, after training, in both the experimental conditions. Only after motor training did we observe an increase in the excitability of the active M1. Our findings show that training based on MVF may influence the excitability of the transcallosal pathway and support its use in disorders where abnormal IHI is a potential target, such as stroke, where an imbalance between the affected and unaffected M1s has been documented. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Effects of continuous visual feedback during sitting balance training in chronic stroke survivors.

    Science.gov (United States)

    Pellegrino, Laura; Giannoni, Psiche; Marinelli, Lucio; Casadio, Maura

    2017-10-16

    Postural control deficits are common in stroke survivors and often the rehabilitation programs include balance training based on visual feedback to improve the control of body position or of the voluntary shift of body weight in space. In the present work, a group of chronic stroke survivors, while sitting on a force plate, exercised the ability to control their Center of Pressure with a training based on continuous visual feedback. The goal of this study was to test if and to what extent chronic stroke survivors were able to learn the task and transfer the learned ability to a condition without visual feedback and to directions and displacement amplitudes different from those experienced during training. Eleven chronic stroke survivors (5 Male - 6 Female, age: 59.72 ± 12.84 years) participated in this study. Subjects were seated on a stool positioned on top of a custom-built force platform. Their Center of Pressure positions were mapped to the coordinate of a cursor on a computer monitor. During training, the cursor position was always displayed and the subjects were to reach targets by shifting their Center of Pressure by moving their trunk. Pre and post-training subjects were required to reach without visual feedback of the cursor the training targets as well as other targets positioned in different directions and displacement amplitudes. During training, most stroke survivors were able to perform the required task and to improve their performance in terms of duration, smoothness, and movement extent, although not in terms of movement direction. However, when we removed the visual feedback, most of them had no improvement with respect to their pre-training performance. This study suggests that postural training based exclusively on continuous visual feedback can provide limited benefits for stroke survivors, if administered alone. However, the positive gains observed during training justify the integration of this technology-based protocol in a well

  12. Design and test of a Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during training of upper limb movement.

    Science.gov (United States)

    Simonsen, Daniel; Popovic, Mirjana B; Spaich, Erika G; Andersen, Ole Kæseler

    2017-11-01

    The present paper describes the design and test of a low-cost Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during the execution of an upper limb exercise. Eleven sub-acute stroke patients with varying degrees of upper limb function were recruited. Each subject participated in a control session (repeated twice) and a feedback session (repeated twice). In each session, the subjects were presented with a rectangular pattern displayed on a vertical mounted monitor embedded in the table in front of the patient. The subjects were asked to move a marker inside the rectangular pattern by using their most affected hand. During the feedback session, the thickness of the rectangular pattern was changed according to the performance of the subject, and the color of the marker changed according to its position, thereby guiding the subject's movements. In the control session, the thickness of the rectangular pattern and the color of the marker did not change. The results showed that the movement similarity and smoothness was higher in the feedback session than in the control session while the duration of the movement was longer. The present study showed that adaptive visual feedback delivered by use of the Kinect sensor can increase the similarity and smoothness of upper limb movement in stroke patients.

  13. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis.

    Science.gov (United States)

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M; Tyler, Dustin J

    2016-02-01

    Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject's sense of embodiment with a survey and his self-confidence. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  14. A software module for implementing auditory and visual feedback on a video-based eye tracking system

    Science.gov (United States)

    Rosanlall, Bharat; Gertner, Izidor; Geri, George A.; Arrington, Karl F.

    2016-05-01

    We describe here the design and implementation of a software module that provides both auditory and visual feedback of the eye position measured by a commercially available eye tracking system. The present audio-visual feedback module (AVFM) serves as an extension to the Arrington Research ViewPoint EyeTracker, but it can be easily modified for use with other similar systems. Two modes of audio feedback and one mode of visual feedback are provided in reference to a circular area-of-interest (AOI). Auditory feedback can be either a click tone emitted when the user's gaze point enters or leaves the AOI, or a sinusoidal waveform with frequency inversely proportional to the distance from the gaze point to the center of the AOI. Visual feedback is in the form of a small circular light patch that is presented whenever the gaze-point is within the AOI. The AVFM processes data that are sent to a dynamic-link library by the EyeTracker. The AVFM's multithreaded implementation also allows real-time data collection (1 kHz sampling rate) and graphics processing that allow display of the current/past gaze-points as well as the AOI. The feedback provided by the AVFM described here has applications in military target acquisition and personnel training, as well as in visual experimentation, clinical research, marketing research, and sports training.

  15. OpinionSeer: interactive visualization of hotel customer feedback.

    Science.gov (United States)

    Wu, Yingcai; Wei, Furu; Liu, Shixia; Au, Norman; Cui, Weiwei; Zhou, Hong; Qu, Huamin

    2010-01-01

    The rapid development of Web technology has resulted in an increasing number of hotel customers sharing their opinions on the hotel services. Effective visual analysis of online customer opinions is needed, as it has a significant impact on building a successful business. In this paper, we present OpinionSeer, an interactive visualization system that could visually analyze a large collection of online hotel customer reviews. The system is built on a new visualization-centric opinion mining technique that considers uncertainty for faithfully modeling and analyzing customer opinions. A new visual representation is developed to convey customer opinions by augmenting well-established scatterplots and radial visualization. To provide multiple-level exploration, we introduce subjective logic to handle and organize subjective opinions with degrees of uncertainty. Several case studies illustrate the effectiveness and usefulness of OpinionSeer on analyzing relationships among multiple data dimensions and comparing opinions of different groups. Aside from data on hotel customer feedback, OpinionSeer could also be applied to visually analyze customer opinions on other products or services.

  16. Use of visual CO2 feedback as a retrofit solution for improving classroom air quality.

    Science.gov (United States)

    Wargocki, P; Da Silva, N A F

    2015-02-01

    Carbon dioxide (CO2 ) sensors that provide a visual indication were installed in classrooms during normal school operation. During 2-week periods, teachers and students were instructed to open the windows in response to the visual CO2 feedback in 1 week and open them, as they would normally do, without visual feedback, in the other week. In the heating season, two pairs of classrooms were monitored, one pair naturally and the other pair mechanically ventilated. In the cooling season, two pairs of naturally ventilated classrooms were monitored, one pair with split cooling in operation and the other pair with no cooling. Classrooms were matched by grade. Providing visual CO2 feedback reduced CO2 levels, as more windows were opened in this condition. This increased energy use for heating and reduced the cooling requirement in summertime. Split cooling reduced the frequency of window opening only when no visual CO2 feedback was present. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. The Role of Visual Feedback on Power Output During Intermittent Wingate Testing in Ice Hockey Players

    Directory of Open Access Journals (Sweden)

    Petr Stastny

    2018-04-01

    Full Text Available Background: Visual feedback may help elicit peak performance during different types of strength and power testing, but its effect during the anaerobic Wingate test is unexplored. Therefore, the purpose of this study was to determine the effect of visual feedback on power output during a hockey-specific intermittent Wingate test (AnWT6x6 consisting of 6 stages of 6 s intervals with a 1:1 work-to-rest ratio. Methods: Thirty elite college-aged hockey players performed the AnWT6x6 with either constant (n = 15 visual feedback during all 6 stages (CVF or restricted (n = 15 visual feedback (RVF where feedback was shown only during the 2nd through 5th stages. Results: In the first stage, there were moderate-to-large effect sizes for absolute peak power (PP output and PP relative to body mass and PP relative to fat-free mass. However, the remaining stages (2–6 displayed small or negligible effects. Conclusions: These data indicate that visual feedback may play a role in optimizing power output in a non-fatigued state (1st stage, but likely does not play a role in the presence of extreme neuromuscular fatigue (6th stage during Wingate testing. To achieve the highest peak power, coaches and researchers could provide visual feedback during Wingate testing, as it may positively influence performance in the early stages of testing, but does not result in residual fatigue or negatively affect performance during subsequent stages.

  18. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study

    Directory of Open Access Journals (Sweden)

    Soha Saleh

    2017-01-01

    Full Text Available Mirror visual feedback (MVF is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical or opposite (mirror hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with

  19. Effects of four types of non-obtrusive feedback on computer behaviour, task performance and comfort

    NARCIS (Netherlands)

    Korte, E.M.; Huijsmans, M.A.; de Jong, A.M.; van de Ven, J.G.M.; Ruijsendaal, M.

    2012-01-01

    This study investigated the effects of non-obtrusive feedback on continuous lifted hand/finger behaviour, task performance and comfort. In an experiment with 24 participants the effects of two visual and two tactile feedback signals were compared to a no-feedback condition in a computer task.

  20. Haptic Feedback for Enhancing Realism of Walking Simulations

    DEFF Research Database (Denmark)

    Turchet, Luca; Burelli, Paolo; Serafin, Stefania

    2013-01-01

    system. While during the use of the interactive system subjects physically walked, during the use of the non-interactive system the locomotion was simulated while subjects were sitting on a chair. In both the configurations subjects were exposed to auditory and audio-visual stimuli presented...... with and without the haptic feedback. Results of the experiments provide a clear preference towards the simulations enhanced with haptic feedback showing that the haptic channel can lead to more realistic experiences in both interactive and non-interactive configurations. The majority of subjects clearly...... appreciated the added feedback. However, some subjects found the added feedback disturbing and annoying. This might be due on one hand to the limits of the haptic simulation and on the other hand to the different individual desire to be involved in the simulations. Our findings can be applied to the context...

  1. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis

    Science.gov (United States)

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M.; Tyler, Dustin J.

    2016-02-01

    Objective. Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Approach. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject’s sense of embodiment with a survey and his self-confidence. Main results. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Significance. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  2. Motor sequence learning occurs despite disrupted visual and proprioceptive feedback

    Directory of Open Access Journals (Sweden)

    Boyd Lara A

    2008-07-01

    Full Text Available Abstract Background Recent work has demonstrated the importance of proprioception for the development of internal representations of the forces encountered during a task. Evidence also exists for a significant role for proprioception in the execution of sequential movements. However, little work has explored the role of proprioceptive sensation during the learning of continuous movement sequences. Here, we report that the repeated segment of a continuous tracking task can be learned despite peripherally altered arm proprioception and severely restricted visual feedback regarding motor output. Methods Healthy adults practiced a continuous tracking task over 2 days. Half of the participants experienced vibration that altered proprioception of shoulder flexion/extension of the active tracking arm (experimental condition and half experienced vibration of the passive resting arm (control condition. Visual feedback was restricted for all participants. Retention testing was conducted on a separate day to assess motor learning. Results Regardless of vibration condition, participants learned the repeated segment demonstrated by significant improvements in accuracy for tracking repeated as compared to random continuous movement sequences. Conclusion These results suggest that with practice, participants were able to use residual afferent information to overcome initial interference of tracking ability related to altered proprioception and restricted visual feedback to learn a continuous motor sequence. Motor learning occurred despite an initial interference of tracking noted during acquisition practice.

  3. The absence or temporal offset of visual feedback does not influence adaptation to novel movement dynamics.

    Science.gov (United States)

    McKenna, Erin; Bray, Laurence C Jayet; Zhou, Weiwei; Joiner, Wilsaan M

    2017-10-01

    Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information. NEW & NOTEWORTHY A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for

  4. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    Science.gov (United States)

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on

  5. A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.

    Science.gov (United States)

    Hellman, Randall B; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I; Santos, Veronica J

    2015-01-01

    Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden.

  6. A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss

    Directory of Open Access Journals (Sweden)

    Randall B. Hellman

    2015-02-01

    Full Text Available Many upper limb amputees experience an incessant, post-amputation phantom limb pain and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF, rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech rubber hand illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the BairClaw presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced

  7. Probing feedforward and feedback contributions to awareness with visual masking and transcranial magnetic stimulation.

    Science.gov (United States)

    Tapia, Evelina; Beck, Diane M

    2014-01-01

    A number of influential theories posit that visual awareness relies not only on the initial, stimulus-driven (i.e., feedforward) sweep of activation but also on recurrent feedback activity within and between brain regions. These theories of awareness draw heavily on data from masking paradigms in which visibility of one stimulus is reduced due to the presence of another stimulus. More recently transcranial magnetic stimulation (TMS) has been used to study the temporal dynamics of visual awareness. TMS over occipital cortex affects performance on visual tasks at distinct time points and in a manner that is comparable to visual masking. We draw parallels between these two methods and examine evidence for the neural mechanisms by which visual masking and TMS suppress stimulus visibility. Specifically, both methods have been proposed to affect feedforward as well as feedback signals when applied at distinct time windows relative to stimulus onset and as a result modify visual awareness. Most recent empirical evidence, moreover, suggests that while visual masking and TMS impact stimulus visibility comparably, the processes these methods affect may not be as similar as previously thought. In addition to reviewing both masking and TMS studies that examine feedforward and feedback processes in vision, we raise questions to guide future studies and further probe the necessary conditions for visual awareness.

  8. Relationship between sensitivity to visuotactile temporal discrepancy and the rubber hand illusion.

    Science.gov (United States)

    Shimada, Sotaro; Suzuki, Tatsuya; Yoda, Naohiko; Hayashi, Tomoya

    2014-08-01

    The rubber-hand illusion (RHI) is that the subject feels the visually presented tactile stimulation of an artificial (rubber) hand as their own tactile sensation and is caused by stimulating the rubber and real hands synchronously. Our previous study showed that the RHI was greatly reduced as the visual feedback delay of the tactile stimulation of the hand became longer. In the present study, we investigate the relationship between the attenuation of the RHI and the detection of the delay in two experiments: (1) an RHI experiment and (2) a visuotactile asynchrony detection experiment, in which the subjects underwent tactile stimulation of their hand and judged whether visual feedback was consistent with the touch sensation. In line with our previous study, the RHI was significantly reduced as the delay lengthened. Interestingly, proprioceptive drift declined linearly as the delay increased, while the delay detection rate was better fitted by a non-linear (logistic) function. The illusion score showed the intermittent pattern. We suggest that proprioceptive drift is relevant to the processing of the body schema, whereas the delay detection and the subjective feeling of the RHI are more related to the body image processing. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  9. Visual feedback of tongue movement for novel speech sound learning

    Directory of Open Access Journals (Sweden)

    William F Katz

    2015-11-01

    Full Text Available Pronunciation training studies have yielded important information concerning the processing of audiovisual (AV information. Second language (L2 learners show increased reliance on bottom-up, multimodal input for speech perception (compared to monolingual individuals. However, little is known about the role of viewing one’s own speech articulation processes during speech training. The current study investigated whether real-time, visual feedback for tongue movement can improve a speaker’s learning of non-native speech sounds. An interactive 3D tongue visualization system based on electromagnetic articulography (EMA was used in a speech training experiment. Native speakers of American English produced a novel speech sound (/ɖ̠/; a voiced, coronal, palatal stop before, during, and after trials in which they viewed their own speech movements using the 3D model. Talkers’ productions were evaluated using kinematic (tongue-tip spatial positioning and acoustic (burst spectra measures. The results indicated a rapid gain in accuracy associated with visual feedback training. The findings are discussed with respect to neural models for multimodal speech processing.

  10. Influence of visual feedback on knee extensor isokinetic concentric ...

    African Journals Online (AJOL)

    Isokinetic normative data can be invaluable in identifying an individual's strengths and weaknesses, and thus lead to a more effective use of the individual's time to minimise or overcome his weaknesses while maintaining or improving existing strength. However, visual feedback (VF) may significantly affect the result of ...

  11. Audio-Visual Feedback for Self-monitoring Posture in Ballet Training

    DEFF Research Database (Denmark)

    Knudsen, Esben Winther; Hølledig, Malte Lindholm; Bach-Nielsen, Sebastian Siem

    2017-01-01

    An application for ballet training is presented that monitors the posture position (straightness of the spine and rotation of the pelvis) deviation from the ideal position in real-time. The human skeletal data is acquired through a Microsoft Kinect v2. The movement of the student is mirrored......-coded. In an experiment with 9-12 year-old dance students from a ballet school, comparing the audio-visual feedback modality with no feedback leads to an increase in posture accuracy (p

  12. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control.

    Science.gov (United States)

    He, Xin; Du, Yu-Fan; Lan, Ning

    2013-07-01

    The purpose of this study is to validate a neuromechanical model of the virtual arm (VA) by comparing emerging behaviors of the model to those of experimental observations. Hand stiffness of the VA model was obtained by either theoretical computation or simulated perturbations. Variability in hand position of the VA was generated by adding signal dependent noise (SDN) to the motoneuron pools of muscles. Reflex circuits of Ia, Ib and Renshaw cells were included to regulate the motoneuron pool outputs. Evaluation of hand stiffness and variability was conducted in simulations with and without afferent feedback under different patterns of muscle activations during postural maintenance. The simulated hand stiffness and variability ellipses captured the experimentally observed features in shape, magnitude and orientation. Steady state afferent feedback contributed significantly to the increase in hand stiffness by 35.75±16.99% in area, 18.37±7.80% and 16.15±7.15% in major and minor axes; and to the reduction of hand variability by 49.41±21.19% in area, 36.89±12.78% and 18.87±23.32% in major and minor axes. The VA model reproduced the neuromechanical behaviors that were consistent with experimental data, and it could be a useful tool for study of neural control of posture and movement, as well as for application to rehabilitation.

  13. Haptic and Visual feedback in 3D Audio Mixing Interfaces

    DEFF Research Database (Denmark)

    Gelineck, Steven; Overholt, Daniel

    2015-01-01

    This paper describes the implementation and informal evaluation of a user interface that explores haptic feedback for 3D audio mixing. The implementation compares different approaches using either the LEAP Motion for mid-air hand gesture control, or the Novint Falcon for active haptic feed- back...

  14. The persistence of a visual dominance effect in a telemanipulator task: A comparison between visual and electrotactile feedback

    Science.gov (United States)

    Gaillard, J. P.

    1981-01-01

    The possibility to use an electrotactile stimulation in teleoperation and to observe the interpretation of such information as a feedback to the operator was investigated. It is proposed that visual feedback is more informative than an electrotactile one; and that complex electrotactile feedback slows down both the motor decision and motor response processes, is processed as an all or nothing signal, and bypasses the receptive structure and accesses directly in a working memory where information is sequentially processed and where memory is limited in treatment capacity. The electrotactile stimulation is used as an alerting signal. It is suggested that the visual dominance effect is the result of the advantage of both a transfer function and a sensory memory register where information is pretreated and memorized for a short time. It is found that dividing attention has an effect on the acquisition of the information but not on the subsequent decision processes.

  15. Self-Grounded Vision: Hand Ownership Modulates Visual Location through Cortical β and γ Oscillations.

    Science.gov (United States)

    Faivre, Nathan; Dönz, Jonathan; Scandola, Michele; Dhanis, Herberto; Bello Ruiz, Javier; Bernasconi, Fosco; Salomon, Roy; Blanke, Olaf

    2017-01-04

    Vision is known to be shaped by context, defined by environmental and bodily signals. In the Taylor illusion, the size of an afterimage projected on one's hand changes according to proprioceptive signals conveying hand position. Here, we assessed whether the Taylor illusion does not just depend on the physical hand position, but also on bodily self-consciousness as quantified through illusory hand ownership. Relying on the somatic rubber hand illusion, we manipulated hand ownership, such that participants embodied a rubber hand placed next to their own hand. We found that an afterimage projected on the participant's hand drifted depending on illusory ownership between the participants' two hands, showing an implication of self-representation during the Taylor illusion. Oscillatory power analysis of electroencephalographic signals showed that illusory hand ownership was stronger in participants with stronger α suppression over left sensorimotor cortex, whereas the Taylor illusion correlated with higher β/γ power over frontotemporal regions. Higher γ connectivity between left sensorimotor and inferior parietal cortex was also found during illusory hand ownership. These data show that afterimage drifts in the Taylor illusion do not only depend on the physical hand position but also on subjective ownership, which itself is based on the synchrony of somatosensory signals from the two hands. The effect of ownership on afterimage drifts is associated with β/γ power and γ connectivity between frontoparietal regions and the visual cortex. Together, our results suggest that visual percepts are not only influenced by bodily context but are self-grounded, mapped on a self-referential frame. Vision is influenced by the body: in the Taylor illusion, the size of an afterimage projected on one's hand changes according to tactile and proprioceptive signals conveying hand position. Here, we report a new phenomenon revealing that the perception of afterimages depends not only

  16. Can explicit visual feedback of postural sway efface the effects of sensory manipulations on mediolateral balance performance?

    OpenAIRE

    Cofre Lizama, L.E.; Pijnappels, M.A.G.M.; Reeves, N.P.; Verschueren, S.M.; van Dieen, J.H.

    2016-01-01

    Explicit visual feedback on postural sway is often used in balance assessment and training. However, up-weighting of visual information may mask impairments of other sensory systems. We therefore aimed to determine whether the effects of somatosensory, vestibular, and proprioceptive manipulations on mediolateral balance are reduced by explicit visual feedback on mediolateral sway of the body center of mass and by the presence of visual information. We manipulated sensory inputs of the somatos...

  17. Active training and driving-specific feedback improve older drivers' visual search prior to lane changes.

    Science.gov (United States)

    Lavallière, Martin; Simoneau, Martin; Tremblay, Mathieu; Laurendeau, Denis; Teasdale, Normand

    2012-03-02

    Driving retraining classes may offer an opportunity to attenuate some effects of aging that may alter driving skills. Unfortunately, there is evidence that classroom programs (driving refresher courses) do not improve the driving performance of older drivers. The aim of the current study was to evaluate if simulator training sessions with video-based feedback can modify visual search behaviors of older drivers while changing lanes in urban driving. In order to evaluate the effectiveness of the video-based feedback training, 10 older drivers who received a driving refresher course and feedback about their driving performance were tested with an on-road standardized evaluation before and after participating to a simulator training program (Feedback group). Their results were compared to a Control group (12 older drivers) who received the same refresher course and in-simulator active practice as the Feedback group without receiving driving-specific feedback. After attending the training program, the Control group showed no increase in the frequency of the visual inspection of three regions of interests (rear view and left side mirrors, and blind spot). In contrast, for the Feedback group, combining active training and driving-specific feedbacks increased the frequency of blind spot inspection by 100% (32.3 to 64.9% of verification before changing lanes). These results suggest that simulator training combined with driving-specific feedbacks helped older drivers to improve their visual inspection strategies, and that in-simulator training transferred positively to on-road driving. In order to be effective, it is claimed that driving programs should include active practice sessions with driving-specific feedbacks. Simulators offer a unique environment for developing such programs adapted to older drivers' needs.

  18. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    Science.gov (United States)

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  19. Feeling touch on the own hand restores the capacity to visually discriminate it from someone else' hand: Pathological embodiment receding in brain-damaged patients.

    Science.gov (United States)

    Fossataro, Carlotta; Bruno, Valentina; Gindri, Patrizia; Pia, Lorenzo; Berti, Anna; Garbarini, Francesca

    2017-06-23

    The sense of body ownership, i.e., the belief that a specific body part belongs to us, can be selectively impaired in brain-damaged patients. Recently, a pathological form of embodiment has been described in patients who, when the examiner's hand is located in a body-congruent position, systematically claim that it is their own hand (E+ patients). This paradoxical behavior suggests that, in these patients, the altered sense of body ownership also affects their capacity of visually discriminating the body-identity details of the own and the alien hand, even when both hands are clearly visible on the table. Here, we investigated whether, in E+ patients with spared tactile sensibility, a coherent body ownership could be restored by introducing a multisensory conflict between what the patients feel on the own hand and what they see on the alien hand. To this aim, we asked the patients to rate their sense of body ownership over the alien hand, either after segregated tactile stimulations of the own hand (out of view) and of the alien hand (visible) or after synchronous and asynchronous tactile stimulations of both hands, as in the rubber hand illusion set-up. Our results show that, when the tactile sensation perceived on the patient's own hand was in conflict with visual stimuli observed on the examiner's hand, E+ patients noticed the conflict and spontaneously described visual details of the (visible) examiner's hand (e.g., the fingers length, the nails shape, the skin color…), to conclude that it was not their own hand. These data represent the first evidence that, in E+ patients, an incongruent visual-tactile stimulation of the own and of the alien hand reduces, at least transitorily, the delusional body ownership over the alien hand, by restoring the access to the perceptual self-identity system, where visual body identity details are stored. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of biased feedback on motor imagery learning in BCI-teleoperation system

    Directory of Open Access Journals (Sweden)

    Maryam eAlimardani

    2014-04-01

    Full Text Available Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users’ BC performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects’ performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects’ BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects’ online performance, evaluation of brain activity patterns revealed that subjects’ self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects’ motor imagery skills.

  1. Active training and driving-specific feedback improve older drivers' visual search prior to lane changes

    Directory of Open Access Journals (Sweden)

    Lavallière Martin

    2012-03-01

    Full Text Available Abstract Background Driving retraining classes may offer an opportunity to attenuate some effects of aging that may alter driving skills. Unfortunately, there is evidence that classroom programs (driving refresher courses do not improve the driving performance of older drivers. The aim of the current study was to evaluate if simulator training sessions with video-based feedback can modify visual search behaviors of older drivers while changing lanes in urban driving. Methods In order to evaluate the effectiveness of the video-based feedback training, 10 older drivers who received a driving refresher course and feedback about their driving performance were tested with an on-road standardized evaluation before and after participating to a simulator training program (Feedback group. Their results were compared to a Control group (12 older drivers who received the same refresher course and in-simulator active practice as the Feedback group without receiving driving-specific feedback. Results After attending the training program, the Control group showed no increase in the frequency of the visual inspection of three regions of interests (rear view and left side mirrors, and blind spot. In contrast, for the Feedback group, combining active training and driving-specific feedbacks increased the frequency of blind spot inspection by 100% (32.3 to 64.9% of verification before changing lanes. Conclusions These results suggest that simulator training combined with driving-specific feedbacks helped older drivers to improve their visual inspection strategies, and that in-simulator training transferred positively to on-road driving. In order to be effective, it is claimed that driving programs should include active practice sessions with driving-specific feedbacks. Simulators offer a unique environment for developing such programs adapted to older drivers' needs.

  2. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke.

    Science.gov (United States)

    Secoli, Riccardo; Milot, Marie-Helene; Rosati, Giulio; Reinkensmeyer, David J

    2011-04-23

    Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task. Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error. Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke. Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for the hemiparetic arm, suggesting that the increased demands associated

  3. Real-Time Knee Adduction Moment Feedback for Gait Retraining Through Visual and Tactile Displays

    KAUST Repository

    Wheeler, Jason W.; Shull, Pete B.; Besier, Thor F.

    2011-01-01

    The external knee adduction moment (KAM) measured during gait is an indicator of tibiofemoral joint osteoarthritis progression and various strategies have been proposed to lower it. Gait retraining has been shown to be an effective, noninvasive approach for lowering the KAM. We present a new gait retraining approach in which the KAM is fed back to subjects in real-time during ambulation. A study was conducted in which 16 healthy subjects learned to alter gait patterns to lower the KAM through visual or tactile (vibration) feedback. Participants converged on a comfortable gait in just a few minutes by using the feedback to iterate on various kinematic modifications. All subjects adopted altered gait patterns with lower KAM compared with normal ambulation (average reduction of 20.7%). Tactile and visual feedbacks were equally effective for real-time training, although subjects using tactile feedback took longer to converge on an acceptable gait. This study shows that real-time feedback of the KAM can greatly increase the effectiveness and efficiency of subject-specific gait retraining compared with conventional methods. © 2011 American Society of Mechanical Engineers.

  4. Short structured feedback training is equivalent to a mechanical feedback device in two-rescuer BLS: a randomised simulation study.

    Science.gov (United States)

    Pavo, Noemi; Goliasch, Georg; Nierscher, Franz Josef; Stumpf, Dominik; Haugk, Moritz; Breckwoldt, Jan; Ruetzler, Kurt; Greif, Robert; Fischer, Henrik

    2016-05-13

    Resuscitation guidelines encourage the use of cardiopulmonary resuscitation (CPR) feedback devices implying better outcomes after sudden cardiac arrest. Whether effective continuous feedback could also be given verbally by a second rescuer ("human feedback") has not been investigated yet. We, therefore, compared the effect of human feedback to a CPR feedback device. In an open, prospective, randomised, controlled trial, we compared CPR performance of three groups of medical students in a two-rescuer scenario. Group "sCPR" was taught standard BLS without continuous feedback, serving as control. Group "mfCPR" was taught BLS with mechanical audio-visual feedback (HeartStart MRx with Q-CPR-Technology™). Group "hfCPR" was taught standard BLS with human feedback. Afterwards, 326 medical students performed two-rescuer BLS on a manikin for 8 min. CPR quality parameters, such as "effective compression ratio" (ECR: compressions with correct hand position, depth and complete decompression multiplied by flow-time fraction), and other compression, ventilation and time-related parameters were assessed for all groups. ECR was comparable between the hfCPR and the mfCPR group (0.33 vs. 0.35, p = 0.435). The hfCPR group needed less time until starting chest compressions (2 vs. 8 s, p feedback or by using a mechanical audio-visual feedback device was similar. Further studies should investigate whether extended human feedback training could further increase CPR quality at comparable costs for training.

  5. Real-time vision, tactile cues, and visual form agnosia in pantomimed grasping: removing haptic feedback induces a switch from natural to pantomime-like grasps

    Directory of Open Access Journals (Sweden)

    Robert Leslie Whitwell

    2015-05-01

    Full Text Available Investigators study the kinematics of grasping movements (prehension under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. When patient DF, who suffers from visual form agnosia, performs natural grasps, her in-flight hand aperture is scaled to the widths of targets ('grip scaling' that she cannot discriminate amongst. In contrast, when DF's pantomime grasps are based on a memory of a previewed object, her grip scaling is very poor. Her failure on this task has been interpreted as additional support for the dissociation between the use of object vision for action and object vision for perception. Curiously, however, when DF directs her pantomimed grasps towards a displaced imagined copy of a visible object where her fingers make contact with the surface of the table, her grip scaling does not appear to be particularly poor. In the first of two experiments, we revisit this previous work and show that her grip scaling in this real-time pantomime grasping task does not differ from controls, suggesting that terminal tactile feedback from a proxy of the target can maintain DF's grip scaling. In a second experiment with healthy participants, we tested a recent variant of a grasping task in which no tactile feedback is available (i.e. no haptic feedback by comparing the kinematics of target-directed grasps with and without haptic feedback to those of real-time pantomime grasps without haptic feedback. Compared to natural grasps, removing haptic feedback increased RT, slowed the velocity of the reach, reduced grip aperture, sharpened the slopes relating grip aperture to target width, and reduced the final grip aperture. All of these effects were also observed in the pantomime grasping task. Taken together, these results provide compelling support for the view that removing haptic feedback induces a switch from real-time visual control to one that depends more on visual perception and cognitive supervision.

  6. Visual feedback training using WII Fit improves balance in Parkinson's disease.

    Science.gov (United States)

    Zalecki, Tomasz; Gorecka-Mazur, Agnieszka; Pietraszko, Wojciech; Surowka, Artur D; Novak, Pawel; Moskala, Marek; Krygowska-Wajs, Anna

    2013-01-01

    Postural instability including imbalance is the most disabling long term problem in Parkinson's disease (PD) that does not respond to pharmacotherapy. This study aimed at investigating the effectiveness of a novel visual-feedback training method, using Wii Fit balance board in improving balance in patients with PD. Twenty four patients with moderate PD were included in the study which comprised of a 6-week home-based balance training program using Nintendo Wii Fit and balance board. The PD patients significantly improved their results in Berg Balance Scale, Tinnet's Performance-Oriented Mobility Assessment, Timed Up-and-Go, Sit-to-stand test, 10-Meter Walk test and Activities-specific Balance Confidence scale at the end of the programme. This study suggests that visual feedback training using Wii-Fit with balance board could improve dynamic and functional balance as well as motor disability in PD patients.

  7. Technology-Assisted Rehabilitation of Writing Skills in Parkinson’s Disease: Visual Cueing versus Intelligent Feedback

    Directory of Open Access Journals (Sweden)

    Evelien Nackaerts

    2017-01-01

    Full Text Available Recent research showed that visual cueing can have both beneficial and detrimental effects on handwriting of patients with Parkinson’s disease (PD and healthy controls depending on the circumstances. Hence, using other sensory modalities to deliver cueing or feedback may be a valuable alternative. Therefore, the current study compared the effects of short-term training with either continuous visual cues or intermittent intelligent verbal feedback. Ten PD patients and nine healthy controls were randomly assigned to one of these training modes. To assess transfer of learning, writing performance was assessed in the absence of cueing and feedback on both trained and untrained writing sequences. The feedback pen and a touch-sensitive writing tablet were used for testing. Both training types resulted in improved writing amplitudes for the trained and untrained sequences. In conclusion, these results suggest that the feedback pen is a valuable tool to implement writing training in a tailor-made fashion for people with PD. Future studies should include larger sample sizes and different subgroups of PD for long-term training with the feedback pen.

  8. Attainment and retention of force moderation following laparoscopic resection training with visual force feedback.

    Science.gov (United States)

    Hernandez, Rafael; Onar-Thomas, Arzu; Travascio, Francesco; Asfour, Shihab

    2017-11-01

    Laparoscopic training with visual force feedback can lead to immediate improvements in force moderation. However, the long-term retention of this kind of learning and its potential decay are yet unclear. A laparoscopic resection task and force sensing apparatus were designed to assess the benefits of visual force feedback training. Twenty-two male university students with no previous experience in laparoscopy underwent relevant FLS proficiency training. Participants were randomly assigned to either a control or treatment group. Both groups trained on the task for 2 weeks as follows: initial baseline, sixteen training trials, and post-test immediately after. The treatment group had visual force feedback during training, whereas the control group did not. Participants then performed four weekly test trials to assess long-term retention of training. Outcomes recorded were maximum pulling and pushing forces, completion time, and rated task difficulty. Extreme maximum pulling force values were tapered throughout both the training and retention periods. Average maximum pushing forces were significantly lowered towards the end of training and during retention period. No significant decay of applied force learning was found during the 4-week retention period. Completion time and rated task difficulty were higher during training, but results indicate that the difference eventually fades during the retention period. Significant differences in aptitude across participants were found. Visual force feedback training improves on certain aspects of force moderation in a laparoscopic resection task. Results suggest that with enough training there is no significant decay of learning within the first month of the retention period. It is essential to account for differences in aptitude between individuals in this type of longitudinal research. This study shows how an inexpensive force measuring system can be used with an FLS Trainer System after some retrofitting. Surgical

  9. A real-time articulatory visual feedback approach with target presentation for second language pronunciation learning.

    Science.gov (United States)

    Suemitsu, Atsuo; Dang, Jianwu; Ito, Takayuki; Tiede, Mark

    2015-10-01

    Articulatory information can support learning or remediating pronunciation of a second language (L2). This paper describes an electromagnetic articulometer-based visual-feedback approach using an articulatory target presented in real-time to facilitate L2 pronunciation learning. This approach trains learners to adjust articulatory positions to match targets for a L2 vowel estimated from productions of vowels that overlap in both L1 and L2. Training of Japanese learners for the American English vowel /æ/ that included visual training improved its pronunciation regardless of whether audio training was also included. Articulatory visual feedback is shown to be an effective method for facilitating L2 pronunciation learning.

  10. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke

    Directory of Open Access Journals (Sweden)

    Reinkensmeyer David J

    2011-04-01

    Full Text Available Abstract Background Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task. Methods Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error. Results Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke. Conclusions Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for

  11. Advantages of externally powered prosthesis with feedback system using pseudo-cineplasty.

    Science.gov (United States)

    Nambu, Seiji; Ikebuchi, Mitsuhiko; Taniguchi, Masashi; Park, Choong Sik; Kitagawa, Takahiro; Nakajima, Shigeyoshi; Koike, Tatsuya

    2014-01-01

    Externally powered upper-limb prostheses are difficult to use because of the lack of sensory feedback. Neuroprostheses have recently been developed for people with upper-limb amputation but are complicated, expensive, and still developing. We therefore designed a simple system by combining pseudo-cineplasty with extended physiological proprioception to provide sensory feedback to the body. We penetrated the palmaris longus tendon percutaneously with a metal ring, similar to that used in body piercing, in a nondisabled subject as a pseudo-cineplasty. The tendon and ring were connected to the system, and a sensory feedback experiment was performed. We investigated the ability of the user to determine the size of an object grasped by the prosthetic hand without visual information. The subject could distinguish between large and small objects with 100% accuracy and between small, medium, and large objects with 80% accuracy. In pseudo-cineplasty, control and sensory feedback are natural because the prosthetic hand is controlled by muscle contraction. Tension transmitted from the prosthetic hand is sensed via muscle spindles and skin sensors. This technique allows only partial sensory feedback but appears to offer several advantages over other human-machine interfaces.

  12. Online visual feedback during error-free channel trials leads to active unlearning of movement dynamics: evidence for adaptation to trajectory prediction errors.

    Directory of Open Access Journals (Sweden)

    Angel Lago-Rodriguez

    2016-09-01

    Full Text Available Prolonged exposure to movement perturbations leads to creation of motor memories which decay towards previous states when the perturbations are removed. However, it remains unclear whether this decay is due only to a spontaneous and passive recovery of the previous state. It has recently been reported that activation of reinforcement-based learning mechanisms delays the onset of the decay. This raises the question whether other motor learning mechanisms may also contribute to the retention and/or decay of the motor memory. Therefore, we aimed to test whether mechanisms of error-based motor adaptation are active during the decay of the motor memory. Forty-five right-handed participants performed point-to-point reaching movements under an external dynamic perturbation. We measured the expression of the motor memory through error-clamped (EC trials, in which lateral forces constrained movements to a straight line towards the target. We found greater and faster decay of the motor memory for participants who had access to full online visual feedback during these EC trials (Cursor group, when compared with participants who had no EC feedback regarding movement trajectory (Arc group. Importantly, we did not find between-group differences in adaptation to the external perturbation. In addition, we found greater decay of the motor memory when we artificially increased feedback errors through the manipulation of visual feedback (Augmented-Error group. Our results then support the notion of an active decay of the motor memory, suggesting that adaptive mechanisms are involved in correcting for the mismatch between predicted movement trajectories and actual sensory feedback, which leads to greater and faster decay of the motor memory.

  13. Promoting Increased Pitch Variation in Oral Presentations with Transient Visual Feedback

    Directory of Open Access Journals (Sweden)

    Rebecca Hincks

    2009-10-01

    Full Text Available This paper investigates learner response to a novel kind of intonation feedback generated from speech analysis. Instead of displays of pitch curves, our feedback is flashing lights that show how much pitch variation the speaker has produced. The variable used to generate the feedback is the standard deviation of fundamental frequency as measured in semitones. Flat speech causes the system to show yellow lights, while more expressive speech that has used pitch to give focus to any part of an utterance generates green lights. Participants in the study were 14 Chinese students of English at intermediate and advanced levels. A group that received visual feedback was compared with a group that received audio feedback. Pitch variation was measured at four stages: in a baseline oral presentation; for the first and second halves of three hours of training; and finally in the production of a new oral presentation. Both groups increased their pitch variation with training, and the effect lasted after the training had ended. The test group showed a significantly higher increase than the control group, indicating that the feedback is effective. These positive results imply that the feedback could be beneficially used in a system for practicing oral presentations.

  14. Initial experience with visualizing hand and foot tendons by dual-energy computed tomography.

    Science.gov (United States)

    Deng, Kai; Sun, Cong; Liu, Cheng; Ma, Rui

    2009-01-01

    To assess the feasibility of visualizing hand and foot tendons by dual-energy computed tomography (CT). Twenty patients who suffered from hand or feet pains were scanned on dual-source CT (Definition, Forchheim, Germany) with dual-energy mode at tube voltages of 140 and 80 kV and a corresponding ratio of 1:4 between tube currents. The reconstructed images were postprocessed by volume rendering techniques (VRT) and multiplanar reconstruction (MPR). All of the suspected lesions were confirmed by surgery or follow-up studies. Twelve patients (total of 24 hands and feet, respectively) were found to be normal and the other eight patients (total of nine hands and feet, respectively) were found abnormal. Dual-energy techniques are very useful in visualizing tendons of the hands and feet, such as flexor pollicis longus tendon, flexor digitorum superficialis/profundus tendon, Achilles tendon, extensor hallucis longus tendon, and extensor digitorum longus tendon, etc. It can depict the whole shape of the tendons and their fixation points clearly. Peroneus longus tendon in the sole of the foot was not displayed very well. The distal ends of metacarpophalangeal joints with extensor digitoium tendon and extensor pollicis longus tendon were poorly shown. The lesions of tendons such as the circuitry, thickening, and adherence were also shown clearly. Dual-energy CT offers a new method to visualize tendons of the hand and foot. It could clearly display both anatomical structures and pathologic changes of hand and foot tendons.

  15. Hand based visual intent recognition algorithm for wheelchair motion

    CSIR Research Space (South Africa)

    Luhandjula, T

    2010-05-01

    Full Text Available This paper describes an algorithm for a visual human-machine interface that infers a person’s intention from the motion of the hand. Work in progress shows a proof of concept tested on static images. The context for which this solution is intended...

  16. Enhancement of hand hygiene compliance among health care workers from a hemodialysis unit using video-monitoring feedback.

    Science.gov (United States)

    Sánchez-Carrillo, Laura Arelí; Rodríguez-López, Juan Manuel; Galarza-Delgado, Dionisio Ángel; Baena-Trejo, Laura; Padilla-Orozco, Magaly; Mendoza-Flores, Lidia; Camacho-Ortiz, Adrián

    2016-08-01

    The importance of hand hygiene in the prevention of health care-associated infection is well known. Experience with hand hygiene compliance (HHC) evaluation in hemodialysis units is scarce. This study was a 3-phase, prospective longitudinal intervention study during a 5-month period in a 13-bed hemodialysis unit at a university hospital in Northern Mexico. The unit performs an average of 1,150 hemodialysis procedures per month. Compliance was evaluated by a direct observer and a video assisted observer. Feedback was given to health care workers in the form of educational sessions and confidential reports and video analysis of compliance and noncompliance. A total of 5,402 hand hygiene opportunities were registered; 5,201 during 7,820 minutes of video footage and 201 by direct observation during 1,180 minutes. Lower compliance during the baseline evaluation was observed by video monitoring compared with direct observation (P hand hygiene compliance. Video-assisted monitoring of hand hygiene is an excellent method for the evaluation of HHC in a hemodialysis unit; enhanced HHC can be achieved through a feedback program to the hemodialysis staff that includes video examples and confidential reports. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. Haptic feedback for enhancing realism of walking simulations.

    Science.gov (United States)

    Turchet, Luca; Burelli, Paolo; Serafin, Stefania

    2013-01-01

    In this paper, we describe several experiments whose goal is to evaluate the role of plantar vibrotactile feedback in enhancing the realism of walking experiences in multimodal virtual environments. To achieve this goal we built an interactive and a noninteractive multimodal feedback system. While during the use of the interactive system subjects physically walked, during the use of the noninteractive system the locomotion was simulated while subjects were sitting on a chair. In both the configurations subjects were exposed to auditory and audio-visual stimuli presented with and without the haptic feedback. Results of the experiments provide a clear preference toward the simulations enhanced with haptic feedback showing that the haptic channel can lead to more realistic experiences in both interactive and noninteractive configurations. The majority of subjects clearly appreciated the added feedback. However, some subjects found the added feedback unpleasant. This might be due, on one hand, to the limits of the haptic simulation and, on the other hand, to the different individual desire to be involved in the simulations. Our findings can be applied to the context of physical navigation in multimodal virtual environments as well as to enhance the user experience of watching a movie or playing a video game.

  18. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    Science.gov (United States)

    Leving, Marika T; Vegter, Riemer J K; Hartog, Johanneke; Lamoth, Claudine J C; de Groot, Sonja; van der Woude, Lucas H V

    2015-01-01

    It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear

  19. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    Directory of Open Access Journals (Sweden)

    Marika T Leving

    Full Text Available It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process.17 Participants received visual feedback-based practice (feedback group and 15 participants received regular practice (natural learning group. Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block and optimize it in the prescribed direction (2nd 4-min block. To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability.The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group.These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not

  20. Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study.

    Science.gov (United States)

    Irimia, Danut C; Cho, Woosang; Ortner, Rupert; Allison, Brendan Z; Ignat, Bogdan E; Edlinger, Guenter; Guger, Christoph

    2017-11-01

    Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. This work presents the recoveriX system, a hardware and software platform that combines a motor imagery (MI)-based brain-computer interface (BCI), functional electrical stimulation (FES), and visual feedback technologies for a complete sensorimotor closed-loop therapy system for poststroke rehabilitation. The proposed system was tested on two chronic stroke patients in a clinical environment. The patients were instructed to imagine the movement of either the left or right hand in random order. During these two MI tasks, two types of feedback were provided: a bar extending to the left or right side of a monitor as visual feedback and passive hand opening stimulated from FES as proprioceptive feedback. Both types of feedback relied on the BCI classification result achieved using common spatial patterns and a linear discriminant analysis classifier. After 10 sessions of recoveriX training, one patient partially regained control of wrist extension in her paretic wrist and the other patient increased the range of middle finger movement by 1 cm. A controlled group study is planned with a new version of the recoveriX system, which will have several improvements. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Virtual environment to evaluate multimodal feedback strategies for augmented navigation of the visually impaired.

    Science.gov (United States)

    Hara, Masayuki; Shokur, Solaiman; Yamamoto, Akio; Higuchi, Toshiro; Gassert, Roger; Bleuler, Hannes

    2010-01-01

    This paper proposes a novel experimental environment to evaluate multimodal feedback strategies for augmented navigation of the visually impaired. The environment consists of virtual obstacles and walls, an optical tracking system and a simple device with audio and vibrotactile feedback that interacts with the virtual environment, and presents many advantages in terms of safety, flexibility, control over experimental parameters and cost. The subject can freely move in an empty room, while the position of head and arm are tracked in real time. A virtual environment (walls, obstacles) is randomly generated, and audio and vibrotactile feedback are given according to the distance from the subjects arm to the virtual walls/objects. We investigate the applicability of our environment using a simple, commercially available feedback device. Experiments with unimpaired subjects show that it is possible to use the setup to "blindly" navigate in an unpredictable virtual environment. This validates the environment as a test platform to investigate navigation and exploration strategies of the visually impaired, and to evaluate novel technologies for augmented navigation.

  2. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    Full Text Available Abstract Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video, to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel

  3. The Sense of Agency Is More Sensitive to Manipulations of Outcome than Movement-Related Feedback Irrespective of Sensory Modality.

    Directory of Open Access Journals (Sweden)

    Nicole David

    Full Text Available The sense of agency describes the ability to experience oneself as the agent of one's own actions. Previous studies of the sense of agency manipulated the predicted sensory feedback related either to movement execution or to the movement's outcome, for example by delaying the movement of a virtual hand or the onset of a tone that resulted from a button press. Such temporal sensorimotor discrepancies reduce the sense of agency. It remains unclear whether movement-related feedback is processed differently than outcome-related feedback in terms of agency experience, especially if these types of feedback differ with respect to sensory modality. We employed a mixed-reality setup, in which participants tracked their finger movements by means of a virtual hand. They performed a single tap, which elicited a sound. The temporal contingency between the participants' finger movements and (i the movement of the virtual hand or (ii the expected auditory outcome was systematically varied. In a visual control experiment, the tap elicited a visual outcome. For each feedback type and participant, changes in the sense of agency were quantified using a forced-choice paradigm and the Method of Constant Stimuli. Participants were more sensitive to delays of outcome than to delays of movement execution. This effect was very similar for visual or auditory outcome delays. Our results indicate different contributions of movement- versus outcome-related sensory feedback to the sense of agency, irrespective of the modality of the outcome. We propose that this differential sensitivity reflects the behavioral importance of assessing authorship of the outcome of an action.

  4. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system

    Science.gov (United States)

    Born, Jannis; Stringer, Simon M.

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning

  5. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    Science.gov (United States)

    Born, Jannis; Galeazzi, Juan M; Stringer, Simon M

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning

  6. Improving motor performance without training: the effect of combining mirror visual feedback with transcranial direct current stimulation.

    Science.gov (United States)

    von Rein, Erik; Hoff, Maike; Kaminski, Elisabeth; Sehm, Bernhard; Steele, Christopher J; Villringer, Arno; Ragert, Patrick

    2015-04-01

    Mirror visual feedback (MVF) during motor training has been shown to improve motor performance of the untrained hand. Here we thought to determine if MVF-induced performance improvements of the left hand can be augmented by upregulating plasticity in right primary motor cortex (M1) by means of anodal transcranial direct current stimulation (a-tDCS) while subjects trained with the right hand. Participants performed a ball-rotation task with either their left (untrained) or right (trained) hand on two consecutive days (days 1 and 2). During training with the right hand, MVF was provided concurrent with two tDCS conditions: group 1 received a-tDCS over right M1 (n = 10), whereas group 2 received sham tDCS (s-tDCS, n = 10). On day 2, performance was reevaluated under the same experimental conditions compared with day 1 but without tDCS. While baseline performance of the left hand (day 1) was not different between groups, a-tDCS exhibited stronger MVF-induced performance improvements compared with s-tDCS. Similar results were observed for day 2 (without tDCS application). A control experiment (n = 8) with a-tDCS over right M1 as outlined above but without MVF revealed that left hand improvement was significantly less pronounced than that induced by combined a-tDCS and MVF. Based on these results, we provide novel evidence that upregulating activity in the untrained M1 by means of a-tDCS is capable of augmenting MVF-induced performance improvements in young normal volunteers. Our findings suggest that concurrent MVF and tDCS might have synergistic and additive effects on motor performance of the untrained hand, a result of relevance for clinical approaches in neurorehabilitation and/or exercise science. Copyright © 2015 the American Physiological Society.

  7. Peripheral visual feedback: a powerful means of supporting effective attention allocation in event-driven, data-rich environments.

    Science.gov (United States)

    Nikolic, M I; Sarter, N B

    2001-01-01

    Breakdowns in human-automation coordination in data-rich, event-driven domains such as aviation can be explained in part by a mismatch between the high degree of autonomy yet low observability of modern technology. To some extent, the latter is the result of an increasing reliance in feedback design on foveal vision--an approach that fails to support pilots in tracking system-induced changes and events in parallel with performing concurrent flight-related tasks. One possible solution to the problem is the distribution of tasks and information across sensory modalities and processing channels. A simulator study is presented that compared the effectiveness of current foveal feedback and two implementations of peripheral visual feedback for keeping pilots informed about uncommanded changes in the status of an automated cockpit system. Both peripheral visual displays resulted in higher detection rates and faster response times, without interfering with the performance of concurrent visual tasks any more than does currently available automation feedback. Potential applications include improved display designs that support effective attention allocation in a variety of complex dynamic environments, such as aviation, process control, and medicine.

  8. Enhance students’ motivation to learn programming by using direct visual feed-back

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; Reng, Lars

    2011-01-01

    The technical subjects chosen are within programming. Using image-processing algorithms as means to provide direct visual feedback for learning basic C/C++. The pedagogical approach is within a PBL framework and is based on dialogue and collaborative learning. At the same time the intention...... was to establish a community of practice among the students and the teachers. A direct visual feedback and a higher level of merging between the artistic, creative, and technical lectures have been the focus of motivation as well as a complete restructuring of the elements of the technical lectures. The paper...... abilities and enhanced balance between the interdisciplinary disciplines of the study are analyzed. The conclusion is that the technical courses have got a higher status for the students. The students now see it as a very important basis for their further study, and their learning results have improved...

  9. Interface Prostheses With Classifier-Feedback-Based User Training.

    Science.gov (United States)

    Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai

    2017-11-01

    It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well

  10. The Two Visual Systems Hypothesis: new challenges and insights from visual form agnosic patient DF

    Directory of Open Access Journals (Sweden)

    Robert Leslie Whitwell

    2014-12-01

    Full Text Available Patient DF, who developed visual form agnosia following carbon monoxide poisoning, is still able to use vision to adjust the configuration of her grasping hand to the geometry of a goal object. This striking dissociation between perception and action in DF provided a key piece of evidence for the formulation of Goodale and Milner’s Two Visual Systems Hypothesis (TVSH. According to the TVSH, the ventral stream plays a critical role in constructing our visual percepts, whereas the dorsal stream mediates the visual control of action, such as visually guided grasping. In this review, we discuss recent studies of DF that provide new insights into the functional organization of the dorsal and ventral streams. We confirm recent evidence that DF has dorsal as well as ventral brain damage – and that her dorsal-stream lesions and surrounding atrophy have increased in size since her first published brain scan. We argue that the damage to DF’s dorsal stream explains her deficits in directing actions at targets in the periphery. We then focus on DF’s ability to accurately adjust her in-flight hand aperture to changes in the width of goal objects (grip scaling whose dimensions she cannot explicitly report. An examination of several studies of DF’s grip scaling under natural conditions reveals a modest though significant deficit. Importantly, however, she continues to show a robust dissociation between form vision for perception and form vision for action. We also review recent studies that explore the role of online visual feedback and terminal haptic feedback in the programming and control of her grasping. These studies make it clear that DF is no more reliant on visual or haptic feedback than are neurologically-intact individuals. In short, we argue that her ability to grasp objects depends on visual feedforward processing carried out by visuomotor networks in her dorsal stream that function in the much the same way as they do in neurologically

  11. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    Directory of Open Access Journals (Sweden)

    Jannis Born

    Full Text Available A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior

  12. Effect of visual feedback on the occipito-parietal-motor network in Parkinson's disease patients with freezing of gait

    Directory of Open Access Journals (Sweden)

    Priya D Velu

    2014-01-01

    Full Text Available Freezing of gait (FOG is an elusive phenomenon that debilitates a large number of Parkinson’s disease (PD patients regardless of stage of disease, medication status, or DBS implantation. Sensory cues, especially visual feedback cues, have been shown to alleviate FOG episodes or prevent episodes from even occurring. Here, we examine cortical information flow between occipital, parietal, and motor areas during the pre-movement stage of gait in a PD-with-FOG patient that had a strong positive behavioral response to visual cues, a PD-with-FOG patient without any behavioral response to visual cues, and an age-matched healthy control, before and after training with visual feedback. Results for this case study show differences in cortical information flow between the responding PD-with-FOG patient and the other two subjects, notably, an increased information flow in the beta range. Tentatively suggesting the formation of an alternative cortical sensory-motor pathway during training with visual feedback, these results are proposed as subject for further verification employing larger cohorts of patients.

  13. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback.

    Science.gov (United States)

    Kurzynski, Marek; Jaskolska, Anna; Marusiak, Jaroslaw; Wolczowski, Andrzej; Bierut, Przemyslaw; Szumowski, Lukasz; Witkowski, Jerzy; Kisiel-Sajewicz, Katarzyna

    2017-08-01

    One of the biggest problems of upper limb transplantation is lack of certainty as to whether a patient will be able to control voluntary movements of transplanted hands. Based on findings of the recent research on brain cortex plasticity, a premise can be drawn that mental training supported with visual and sensory feedback can cause structural and functional reorganization of the sensorimotor cortex, which leads to recovery of function associated with the control of movements performed by the upper limbs. In this study, authors - based on the above observations - propose the computer-aided training (CAT) system, which generating visual and sensory stimuli, should enhance the effectiveness of mental training applied to humans before upper limb transplantation. The basis for the concept of computer-aided training system is a virtual hand whose reaching and grasping movements the trained patient can observe on the VR headset screen (visual feedback) and whose contact with virtual objects the patient can feel as a touch (sensory feedback). The computer training system is composed of three main components: (1) the system generating 3D virtual world in which the patient sees the virtual limb from the perspective as if it were his/her own hand; (2) sensory feedback transforming information about the interaction of the virtual hand with the grasped object into mechanical vibration; (3) the therapist's panel for controlling the training course. Results of the case study demonstrate that mental training supported with visual and sensory stimuli generated by the computer system leads to a beneficial change of the brain activity related to motor control of the reaching in the patient with bilateral upper limb congenital transverse deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hand placement near the visual stimulus improves orientation selectivity in V2 neurons

    Science.gov (United States)

    Sergio, Lauren E.; Crawford, J. Douglas; Fallah, Mazyar

    2015-01-01

    Often, the brain receives more sensory input than it can process simultaneously. Spatial attention helps overcome this limitation by preferentially processing input from a behaviorally-relevant location. Recent neuropsychological and psychophysical studies suggest that attention is deployed to near-hand space much like how the oculomotor system can deploy attention to an upcoming gaze position. Here we provide the first neuronal evidence that the presence of a nearby hand enhances orientation selectivity in early visual processing area V2. When the hand was placed outside the receptive field, responses to the preferred orientation were significantly enhanced without a corresponding significant increase at the orthogonal orientation. Consequently, there was also a significant sharpening of orientation tuning. In addition, the presence of the hand reduced neuronal response variability. These results indicate that attention is automatically deployed to the space around a hand, improving orientation selectivity. Importantly, this appears to be optimal for motor control of the hand, as opposed to oculomotor mechanisms which enhance responses without sharpening orientation selectivity. Effector-based mechanisms for visual enhancement thus support not only the spatiotemporal dissociation of gaze and reach, but also the optimization of vision for their separate requirements for guiding movements. PMID:25717165

  15. Changes in Pain Modulation Occur Soon After Whiplash Trauma but are not Related to Altered Perception of Distorted Visual Feedback.

    Science.gov (United States)

    Daenen, Liesbeth; Nijs, Jo; Cras, Patrick; Wouters, Kristien; Roussel, Nathalie

    2014-09-01

    Widespread sensory hypersensitivity has been observed in acute whiplash associated disorders (WAD). Changes in descending pain modulation take part in central sensitization. However, endogenous pain modulation has never been investigated in acute WAD. Altered perception of distorted visual feedback has been observed in WAD. Both mechanisms (ie, pain modulation and perception of distorted visual feedback) may be different components of one integrated system orchestrated by the brain. This study evaluated conditioned pain modulation (CPM) in acute WAD. Secondly, we investigated whether changes in CPM are associated with altered perception of distorted visual feedback. Thirty patients with acute WAD, 35 patients with chronic WAD and 31 controls were subjected to an experiment evaluating CPM and a coordination task inducing visual mediated changes between sensory feedback and motor output. A significant CPM effect was observed in acute WAD (P = 0.012 and P = 0.006), which was significantly lower compared to controls (P = 0.004 and P = 0.020). No obvious differences in CPM were found between acute and chronic WAD (P = 0.098 and P = 0.041). Changes in CPM were unrelated to altered perception of distorted visual feedback (P > 0.01). Changes in CPM were observed in acute WAD, suggesting less efficient pain modulation. The results suggest that central pain and sensorimotor processing underlie distinctive mechanisms. © 2013 World Institute of Pain.

  16. A dual visual-local feedback model of the vergence eye movement system

    NARCIS (Netherlands)

    Erkelens, C.J.

    2011-01-01

    Pure vergence movements are the eye movements that we make when we change our binocular fixation between targets differing in distance but not in direction relative to the head. Pure vergence is slow and controlled by visual feedback. Saccades are the rapid eye movements that we make between targets

  17. Integrating sentiment analysis and term associations with geo-temporal visualizations on customer feedback streams

    Science.gov (United States)

    Hao, Ming; Rohrdantz, Christian; Janetzko, Halldór; Keim, Daniel; Dayal, Umeshwar; Haug, Lars-Erik; Hsu, Mei-Chun

    2012-01-01

    Twitter currently receives over 190 million tweets (small text-based Web posts) and manufacturing companies receive over 10 thousand web product surveys a day, in which people share their thoughts regarding a wide range of products and their features. A large number of tweets and customer surveys include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for determining customer sentiments. To explore high-volume customer feedback streams, we integrate three time series-based visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel idea of term associations that identify attributes, verbs, and adjectives frequently occurring together; and (3) new pixel cell-based sentiment calendars, geo-temporal map visualizations and self-organizing maps to identify co-occurring and influential opinions. We have combined these techniques into a well-fitted solution for an effective analysis of large customer feedback streams such as for movie reviews (e.g., Kung-Fu Panda) or web surveys (buyers).

  18. Evaluating the effectiveness of real-time feedback on the bedside hand hygiene behaviors of nursing students.

    Science.gov (United States)

    Ott, Lora K; Irani, Vida R

    2015-05-01

    Traditional hand hygiene teaching methods lack long-term effectiveness. A longitudinal, within-subject design explored the influence of real-time hand microbe feedback and a critical-thinking decision exercise on nursing student hand hygiene behaviors. In three community hospitals, the students' (n = 68) hand swabs were tested for normal flora, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus at three time points. Students completed the Partnering to Heal (PTH) online exercise on hospital-acquired infection prevention decisions. Normal flora colony counts decreased across the semester and MRSA-positive cultures increased in frequency and colony counts. MRSA-positive cultures were not associated with caring for patients in isolation precautions. Significantly higher colony counts were noted in the students who completed the PTH than those who did not complete the PTH. This study explores innovative pedagogy bringing the nonvisible microbial risk to the consciousness of nursing students in an attempt to change hand hygiene behaviors. Copyright 2015, SLACK Incorporated.

  19. Haptic Feedback in Motor Hand Virtual Therapy Increases Precision and Generates Less Mental Workload

    Directory of Open Access Journals (Sweden)

    Cristina Ramírez-Fernández

    2015-10-01

    Full Text Available In this work we show that haptic feedback in upper limb motor therapy improves performance and generates a lower mental workload. To demonstrate this, two groups of participants (healthy adults and elders with hand motor problems used a low-cost haptic device (Novint Falcon and a non-robotic device (Leap Motion Controller. Participants conducted the same rehabilitation task by using a non-immersive virtual environment. Results show significant differences for all participants regarding precision on the use of the haptic feedback device. Additionally, participants in the older adult group demonstrated a lower mental workload while using the haptic device (Novint Falcon. Finally, qualitative results show that participants preferred to conduct their therapy exercises by using the haptic device, as they found it more useful, easier to use and easier to learn

  20. 3D Visual Sensing of the Human Hand for the Remote Operation of a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Pablo Gil

    2014-02-01

    Full Text Available New low cost sensors and open free libraries for 3D image processing are making important advances in robot vision applications possible, such as three-dimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a novel method for recognizing and tracking the fingers of a human hand is presented. This method is based on point clouds from range images captured by a RGBD sensor. It works in real time and it does not require visual marks, camera calibration or previous knowledge of the environment. Moreover, it works successfully even when multiple objects appear in the scene or when the ambient light is changed. Furthermore, this method was designed to develop a human interface to control domestic or industrial devices, remotely. In this paper, the method was tested by operating a robotic hand. Firstly, the human hand was recognized and the fingers were detected. Secondly, the movement of the fingers was analysed and mapped to be imitated by a robotic hand.

  1. Thoracic ROM measurement system with visual bio-feedback: system design and biofeedback evaluation.

    Science.gov (United States)

    Ando, Takeshi; Kawamura, Kazuya; Fujitani, Junko; Koike, Tomokazu; Fujimoto, Masashi; Fujie, Masakatsu G

    2011-01-01

    Patients with diseases such as chronic obstructive pulmonary disease (COPD) need to improve their thorax mobility. Thoracic ROM is one of the simplest and most useful indexes to evaluate the respiratory function. In this paper, we have proposed the prototype of a simple thoracic ROM measurement system with real-time visual bio-feedback in the chest expansion test. In this system, the thoracic ROM is measured using a wire-type linear encoder whose wire is wrapped around the thorax. In this paper, firstly, the repeatability and reliability of measured thoracic ROM was confirmed as a first report of the developed prototype. Secondly, we analyzed the effect of the bio-feedback system on the respiratory function. The result of the experiment showed that it was easier to maintain a large and stable thoracic ROM during deep breathing by using the real-time visual biofeedback system of the thoracic ROM.

  2. "Slight" of hand: the processing of visually degraded gestures with speech.

    Science.gov (United States)

    Kelly, Spencer D; Hansen, Bruce C; Clark, David T

    2012-01-01

    Co-speech hand gestures influence language comprehension. The present experiment explored what part of the visual processing system is optimized for processing these gestures. Participants viewed short video clips of speech and gestures (e.g., a person saying "chop" or "twist" while making a chopping gesture) and had to determine whether the two modalities were congruent or incongruent. Gesture videos were designed to stimulate the parvocellular or magnocellular visual pathways by filtering out low or high spatial frequencies (HSF versus LSF) at two levels of degradation severity (moderate and severe). Participants were less accurate and slower at processing gesture and speech at severe versus moderate levels of degradation. In addition, they were slower for LSF versus HSF stimuli, and this difference was most pronounced in the severely degraded condition. However, exploratory item analyses showed that the HSF advantage was modulated by the range of motion and amount of motion energy in each video. The results suggest that hand gestures exploit a wide range of spatial frequencies, and depending on what frequencies carry the most motion energy, parvocellular or magnocellular visual pathways are maximized to quickly and optimally extract meaning.

  3. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.

    Science.gov (United States)

    Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K

    2013-01-01

    Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.

  4. The influence of verbal training and visual feedback on manual wheelchair propulsion.

    Science.gov (United States)

    DeGroot, Keri K; Hollingsworth, Holly H; Morgan, Kerri A; Morris, Carrie L; Gray, David B

    2009-03-01

    To determine if verbal training with visual feedback improved manual wheelchair propulsion; to examine propulsion differences between an individual with paraplegia and an individual with tetraplegia. Quasi-experimental study: Nine manual wheelchair-using adults participated in propulsion assessments and training. Baseline propulsion performance was measured on several tasks on different surfaces. Participants were trained on a wheelchair treadmill with verbal and visual feedback to increase push length, reduce push frequency and to modify propulsion pattern. Handrim biomechanics were measured with an instrumented wheel. Changes in propulsion were assessed. Differences in propulsion characteristics between a participant with paraplegia and a participant with tetraplegia were examined. Push length increased (p propulsion characteristics between a participant with paraplegia and a participant with tetraplegia. Verbal training may produce changes in push biomechanics of manual wheelchair users. Longer training periods may be needed to sustain propulsion changes. Findings from this study support other studies that have shown propulsion differences between people with tetraplegia and paraplegia. Propulsion training for populations with upper-extremity impairments warrants further study.

  5. Task-dependent vestibular feedback responses in reaching.

    Science.gov (United States)

    Keyser, Johannes; Medendorp, W Pieter; Selen, Luc P J

    2017-07-01

    When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is unknown whether vestibular feedback is specifically processed dependent on the behavioral goal. Here, we studied whether vestibular signals evoke fixed responses with the aim to preserve the hand trajectory in space or are processed more flexibly, correcting trajectories only in task-relevant spatial dimensions. We used galvanic vestibular stimulation to perturb reaching movements toward a narrow or a wide target. Results show that the same vestibular stimulation led to smaller trajectory corrections to the wide than the narrow target. We interpret this reduced compensation as a task-dependent modulation of vestibular feedback responses, tuned to minimally intervene with the task-irrelevant dimension of the reach. These task-dependent vestibular feedback corrections are in accordance with a central prediction of optimal feedback control theory and mirror the sophistication seen in feedback responses to mechanical and visual perturbations of the upper limb. NEW & NOTEWORTHY Correcting limb movements for external perturbations is a hallmark of flexible sensorimotor behavior. While visual and mechanical perturbations are corrected in a task-dependent manner, it is unclear whether a vestibular perturbation, naturally arising when the body moves, is selectively processed in reach control. We show, using galvanic vestibular stimulation, that reach corrections to vestibular perturbations are task dependent, consistent with a prediction of optimal feedback control theory. Copyright © 2017 the American Physiological Society.

  6. Hand movement deviations in a visual search task with cross modal cuing

    Directory of Open Access Journals (Sweden)

    Hürol Aslan

    2007-01-01

    Full Text Available The purpose of this study is to demonstrate the cross-modal effects of an auditory organization on a visual search task and to investigate the influence of the level of detail in instructions describing or hinting at the associations between auditory stimuli and the possible locations of a visual target. In addition to measuring the participants’ reaction times, we paid special attention to tracking the hand movements toward the target. According to the results, the auditory stimuli unassociated with the target locations slightly –but significantly- increased the deviation of the hand movement from the path leading to the target location. The increase in the deviation depended on the degree of association between auditory stimuli and target locations, albeit not on the level of detail in the instructions about the task.

  7. Can explicit visual feedback of postural sway efface the effects of sensory manipulations on mediolateral balance performance?

    NARCIS (Netherlands)

    Cofre Lizama, L.E.; Pijnappels, M.A.G.M.; Reeves, N.P.; Verschueren, S.M.; van Dieen, J.H.

    2016-01-01

    Explicit visual feedback on postural sway is often used in balance assessment and training. However, up-weighting of visual information may mask impairments of other sensory systems. We therefore aimed to determine whether the effects of somatosensory, vestibular, and proprioceptive manipulations on

  8. "Like the palm of my hands": Motor imagery enhances implicit and explicit visual recognition of one's own hands.

    Science.gov (United States)

    Conson, Massimiliano; Volpicella, Francesco; De Bellis, Francesco; Orefice, Agnese; Trojano, Luigi

    2017-10-01

    A key point in motor imagery literature is that judging hands in palm view recruits sensory-motor information to a higher extent than judging hands in back view, due to the greater biomechanical complexity implied in rotating hands depicted from palm than from back. We took advantage from this solid evidence to test the nature of a phenomenon known as self-advantage, i.e. the advantage in implicitly recognizing self vs. others' hand images. The self-advantage has been actually found when implicitly but not explicitly judging self-hands, likely due to dissociation between implicit and explicit body representations. However, such a finding might be related to the extent to which motor imagery is recruited during implicit and explicit processing of hand images. We tested this hypothesis in two behavioural experiments. In Experiment 1, right-handed participants judged laterality of either self or others' hands, whereas in Experiment 2, an explicit recognition of one's own hands was required. Crucially, in both experiments participants were randomly presented with hand images viewed from back or from palm. The main result of both experiments was the self-advantage when participants judged hands from palm view. This novel finding demonstrate that increasing the "motor imagery load" during processing of self vs. others' hands can elicit a self-advantage in explicit recognition tasks as well. Future studies testing the possible dissociation between implicit and explicit visual body representations should take into account the modulatory effect of motor imagery load on self-hand processing. Copyright © 2017. Published by Elsevier B.V.

  9. Vibrotactile Feedback for Brain-Computer Interface Operation

    Directory of Open Access Journals (Sweden)

    Febo Cincotti

    2007-01-01

    Full Text Available To be correctly mastered, brain-computer interfaces (BCIs need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury, we compared vibrotactile and visual feedback, addressing: (I the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II the compatibility of this form of feedback in presence of a visual distracter; (III the performance in presence of a complex visual task on the same (visual or different (tactile sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users.

  10. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.

    Science.gov (United States)

    Batcho, C S; Gagné, M; Bouyer, L J; Roy, J S; Mercier, C

    2016-11-19

    When subjects learn a novel motor task, several sources of feedback (proprioceptive, visual or auditory) contribute to the performance. Over the past few years, several studies have investigated the role of visual feedback in motor learning, yet evidence remains conflicting. The aim of this study was therefore to investigate the role of online visual feedback (VFb) on the acquisition and retention stages of motor learning associated with training in a reaching task. Thirty healthy subjects made ballistic reaching movements with their dominant arm toward two targets, on 2 consecutive days using a robotized exoskeleton (KINARM). They were randomly assigned to a group with (VFb) or without (NoVFb) VFb of index position during movement. On day 1, the task was performed before (baseline) and during the application of a velocity-dependent resistive force field (adaptation). To assess retention, participants repeated the task with the force field on day 2. Motor learning was characterized by: (1) the final endpoint error (movement accuracy) and (2) the initial angle (iANG) of deviation (motor planning). Even though both groups showed motor adaptation, the NoVFb-group exhibited slower learning and higher final endpoint error than the VFb-group. In some condition, subjects trained without visual feedback used more curved initial trajectories to anticipate for the perturbation. This observation suggests that learning to reach targets in a velocity-dependent resistive force field is possible even when feedback is limited. However, the absence of VFb leads to different strategies that were only apparent when reaching toward the most challenging target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Hand rim wheelchair propulsion training using biomechanical real-time visual feedback based on motor learning theory principles.

    Science.gov (United States)

    Rice, Ian; Gagnon, Dany; Gallagher, Jere; Boninger, Michael

    2010-01-01

    As considerable progress has been made in laboratory-based assessment of manual wheelchair propulsion biomechanics, the necessity to translate this knowledge into new clinical tools and treatment programs becomes imperative. The objective of this study was to describe the development of a manual wheelchair propulsion training program aimed to promote the development of an efficient propulsion technique among long-term manual wheelchair users. Motor learning theory principles were applied to the design of biomechanical feedback-based learning software, which allows for random discontinuous real-time visual presentation of key spatiotemporal and kinetic parameters. This software was used to train a long-term wheelchair user on a dynamometer during 3 low-intensity wheelchair propulsion training sessions over a 3-week period. Biomechanical measures were recorded with a SmartWheel during over ground propulsion on a 50-m level tile surface at baseline and 3 months after baseline. Training software was refined and administered to a participant who was able to improve his propulsion technique by increasing contact angle while simultaneously reducing stroke cadence, mean resultant force, peak and mean moment out of plane, and peak rate of rise of force applied to the pushrim after training. The proposed propulsion training protocol may lead to favorable changes in manual wheelchair propulsion technique. These changes could limit or prevent upper limb injuries among manual wheelchair users. In addition, many of the motor learning theory-based techniques examined in this study could be applied to training individuals in various stages of rehabilitation to optimize propulsion early on.

  12. Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation.

    Science.gov (United States)

    Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R

    2017-07-05

    The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Feedback Intervention Trial (FIT) — Improving Hand-Hygiene Compliance in UK Healthcare Workers: A Stepped Wedge Cluster Randomised Controlled Trial

    Science.gov (United States)

    Fuller, Christopher; Michie, Susan; Savage, Joanne; McAteer, John; Besser, Sarah; Charlett, Andre; Hayward, Andrew; Cookson, Barry D.; Cooper, Ben S.; Duckworth, Georgia; Jeanes, Annette; Roberts, Jenny; Teare, Louise; Stone, Sheldon

    2012-01-01

    Introduction Achieving a sustained improvement in hand-hygiene compliance is the WHO’s first global patient safety challenge. There is no RCT evidence showing how to do this. Systematic reviews suggest feedback is most effective and call for long term well designed RCTs, applying behavioural theory to intervention design to optimise effectiveness. Methods Three year stepped wedge cluster RCT of a feedback intervention testing hypothesis that the intervention was more effective than routine practice in 16 English/Welsh Hospitals (16 Intensive Therapy Units [ITU]; 44 Acute Care of the Elderly [ACE] wards) routinely implementing a national cleanyourhands campaign). Intervention-based on Goal & Control theories. Repeating 4 week cycle (20 mins/week) of observation, feedback and personalised action planning, recorded on forms. Computer-generated stepwise entry of all hospitals to intervention. Hospitals aware only of own allocation. Primary outcome: direct blinded hand hygiene compliance (%). Results All 16 trusts (60 wards) randomised, 33 wards implemented intervention (11 ITU, 22 ACE). Mixed effects regression analysis (all wards) accounting for confounders, temporal trends, ward type and fidelity to intervention (forms/month used). Intention to Treat Analysis Estimated odds ratio (OR) for hand hygiene compliance rose post randomisation (1.44; 95% CI 1.18, 1.76;phand-hygiene compliance, in wards implementing a national hand-hygiene campaign. Further implementation studies are needed to maximise the intervention’s effect in different settings. Trial Registration Controlled-Trials.com ISRCTN65246961 PMID:23110040

  14. Hand-eye coordinative remote maintenance in a tokamak vessel

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Qiang, E-mail: qiu6401@sjtu.edu.cn; Gu, Kai, E-mail: gukai0707@sjtu.edu.cn; Wang, Pengfei, E-mail: wpf790714@163.com; Bai, Weibang, E-mail: 654253204@qq.com; Cao, Qixin, E-mail: qxcao@sjtu.edu.cn

    2016-03-15

    Highlights: • If there is not rotation between the visual coordinate frame (O{sub e}X{sub e}Y{sub e}) and hand coordinate frame (O{sub h}X{sub h}Y{sub h}), a person can coordinate the movement between hand and eye easily. • We establish an alignment between the movement of the operator's hand and the visual scene of the end-effector as displayed on the monitor. • A potential function is set up in a simplified vacuum vessel model to provide a fast collision checking, and the alignment between repulsive force and Omega 7 feedback force is accomplished. • We carry out an experiment to evaluate its performance in a remote handling task. - Abstract: The reliability is vitally important for the remote maintenance in a tokamak vessel. In order to establish a more accurate and safer remote handling system, a hand-eye coordination method and an artificial potential function based collision avoidance method were proposed in this paper. At the end of this paper, these methods were implemented to a bolts tightening maintenance task, which was carried out in our 1/10 scale tokamak model. Experiment results have verified the value of the hand-eye coordination method and the collision avoidance method.

  15. Hand-eye coordinative remote maintenance in a tokamak vessel

    International Nuclear Information System (INIS)

    Qiu, Qiang; Gu, Kai; Wang, Pengfei; Bai, Weibang; Cao, Qixin

    2016-01-01

    Highlights: • If there is not rotation between the visual coordinate frame (O_eX_eY_e) and hand coordinate frame (O_hX_hY_h), a person can coordinate the movement between hand and eye easily. • We establish an alignment between the movement of the operator's hand and the visual scene of the end-effector as displayed on the monitor. • A potential function is set up in a simplified vacuum vessel model to provide a fast collision checking, and the alignment between repulsive force and Omega 7 feedback force is accomplished. • We carry out an experiment to evaluate its performance in a remote handling task. - Abstract: The reliability is vitally important for the remote maintenance in a tokamak vessel. In order to establish a more accurate and safer remote handling system, a hand-eye coordination method and an artificial potential function based collision avoidance method were proposed in this paper. At the end of this paper, these methods were implemented to a bolts tightening maintenance task, which was carried out in our 1/10 scale tokamak model. Experiment results have verified the value of the hand-eye coordination method and the collision avoidance method.

  16. Hand proximity differentially affects visual working memory for color and orientation in a binding task.

    Science.gov (United States)

    Kelly, Shane P; Brockmole, James R

    2014-01-01

    Observers determined whether two sequentially presented arrays of six lines were the same or different. Differences, when present, involved either a swap in the color of two lines or a swap in the orientation of two lines. Thus, accurate change detection required the binding of color and orientation information for each line within visual working memory. Holding viewing distance constant, the proximity of the arrays to the hands was manipulated. Placing the hands near the to-be-remembered array decreased participants' ability to remember color information, but increased their ability to remember orientation information. This pair of results indicates that hand proximity differentially affects the processing of various types of visual information, a conclusion broadly consistent with functional and anatomical differences in the magnocellular and parvocellular pathways. It further indicates that hand proximity affects the likelihood that various object features will be encoded into integrated object files.

  17. Hand Proximity Differentially Affects Visual Working Memory for Color and Orientation in a Binding Task

    Directory of Open Access Journals (Sweden)

    Shane P. Kelly

    2014-04-01

    Full Text Available Observers determined whether two sequentially presented arrays of six lines were the same or different. Differences, when present, involved either a swap in the color of two lines or a swap in the orientation of two lines. Thus, accurate change detection required the binding of color and orientation information for each line within visual working memory. Holding viewing distance constant, the proximity of the arrays to the hands was manipulated. Placing the hands near the to-be-remembered array decreased participants’ ability to remember color information, but increased their ability to remember orientation information. This pair of results indicates that hand proximity differentially affects the processing of various types of visual information, a conclusion broadly consistent with functional and anatomical differences in the magnocellular and parvocellular pathways. It further indicates that hand proximity affects the likelihood that various object features will be encoded into integrated object files.

  18. Altered visual strategies and attention are related to increased force fluctuations during a pinch grip task in older adults.

    Science.gov (United States)

    Keenan, Kevin G; Huddleston, Wendy E; Ernest, Bradley E

    2017-11-01

    The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 yr) were monitored during a low-force pinch grip task while subjects viewed three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5 times greater force fluctuations in those that exhibited saccades compared with those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated ( r s = 0.6; P = 0.002) with fewer saccades during the pursuit task. Also, decreased low-frequency (attention z scores. Comparison of these results with our previously published results in young subjects indicates that saccadic eye movements and attention are related to force control in older adults. NEW & NOTEWORTHY The significant contributions of the study are the addition of eye movement data and an attention task to explain differences in hand motor control across different visual displays in older adults. Older participants used different visual strategies across varying feedback displays, and saccadic eye movements were related with motor performance. In addition, those older individuals with deficits in attention had impaired motor performance on two different hand motor control tasks, including

  19. Experimental System for Investigation of Visual Sensory Input in Postural Feedback Control

    Directory of Open Access Journals (Sweden)

    Jozef Pucik

    2012-01-01

    Full Text Available The human postural control system represents a biological feedback system responsible for maintenance of upright stance. Vestibular, proprioceptive and visual sensory inputs provide the most important information into the control system, which controls body centre of mass (COM in order to stabilize the human body resembling an inverted pendulum. The COM can be measured indirectly by means of a force plate as the centre of pressure (COP. Clinically used measurement method is referred to as posturography. In this paper, the conventional static posturography is extended by visual stimulation, which provides insight into a role of visual information in balance control. Visual stimuli have been designed to induce body sway in four specific directions – forward, backward, left and right. Stabilograms were measured using proposed single-PC based system and processed to calculate velocity waveforms and posturographic parameters. The parameters extracted from pre-stimulus and on-stimulus periods exhibit statistically significant differences.

  20. Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback

    Directory of Open Access Journals (Sweden)

    Andrés Cela

    2012-12-01

    Full Text Available The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system.

  1. The Use of Visual Feedback during Signing: Evidence from Signers with Impaired Vision

    Science.gov (United States)

    Emmorey, Karen; Korpics, Franco; Petronio, Karen

    2009-01-01

    The role of visual feedback during the production of American Sign Language was investigated by comparing the size of signing space during conversations and narrative monologues for normally sighted signers, signers with tunnel vision due to Usher syndrome, and functionally blind signers. The interlocutor for all groups was a normally sighted deaf…

  2. Manipulating the fidelity of lower extremity visual feedback to identify obstacle negotiation strategies in immersive virtual reality.

    Science.gov (United States)

    Kim, Aram; Zhou, Zixuan; Kretch, Kari S; Finley, James M

    2017-07-01

    The ability to successfully navigate obstacles in our environment requires integration of visual information about the environment with estimates of our body's state. Previous studies have used partial occlusion of the visual field to explore how information about the body and impending obstacles are integrated to mediate a successful clearance strategy. However, because these manipulations often remove information about both the body and obstacle, it remains to be seen how information about the lower extremities alone is utilized during obstacle crossing. Here, we used an immersive virtual reality (VR) interface to explore how visual feedback of the lower extremities influences obstacle crossing performance. Participants wore a head-mounted display while walking on treadmill and were instructed to step over obstacles in a virtual corridor in four different feedback trials. The trials involved: (1) No visual feedback of the lower extremities, (2) an endpoint-only model, (3) a link-segment model, and (4) a volumetric multi-segment model. We found that the volumetric model improved success rate, placed their trailing foot before crossing and leading foot after crossing more consistently, and placed their leading foot closer to the obstacle after crossing compared to no model. This knowledge is critical for the design of obstacle negotiation tasks in immersive virtual environments as it may provide information about the fidelity necessary to reproduce ecologically valid practice environments.

  3. The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning.

    Science.gov (United States)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-01-01

    Brain computer interfaces (BCIs) have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery) and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects' performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android's hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training.

  4. The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning.

    Directory of Open Access Journals (Sweden)

    Maryam Alimardani

    Full Text Available Brain computer interfaces (BCIs have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects' performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android's hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training.

  5. Use of visual CO2 feedback as a retrofit solution for improving classroom air quality

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Da Silva, Nuno Alexandre Faria

    2015-01-01

    Carbon dioxide (CO2) sensors that provide a visual indication were installed in classrooms during normal school operation. During 2-week periods, teachers and students were instructed to open the windows in response to the visual CO2 feedback in 1week and open them, as they would normally do, wit...

  6. Changing the size of a mirror-reflected hand moderates the experience of embodiment but not proprioceptive drift: a repeated measures study on healthy human participants.

    Science.gov (United States)

    Wittkopf, Priscilla G; Lloyd, Donna M; Johnson, Mark I

    2017-06-01

    Mirror visual feedback is used for reducing pain and visually distorting the size of the reflection may improve efficacy. The findings of studies investigating size distortion are inconsistent. The influence of the size of the reflected hand on embodiment of the mirror reflection is not known. The aim of this study was to compare the effect of magnifying and minifying mirror reflections of the hand on embodiment measured using an eight-item questionnaire and on proprioceptive drift. During the experiment, participants (n = 45) placed their right hand behind a mirror and their left hand in front of a mirror. Participants watched a normal-sized, a magnified and a minified reflection of the left hand while performing synchronised finger movements for 3 min (adaptive phase). Measurements of embodiment were taken before (pre) and after (post) synchronous movements of the fingers of both hands (embodiment adaptive phase). Results revealed larger proprioceptive drift post-adaptive phase (p = 0.001). Participants agreed more strongly with questionnaire items associated with location, ownership and agency of the reflection of the hand post-adaptive phase (p embodiment of the reflection of the hand. Magnifying and minifying the reflection of the hand has little effect on proprioceptive drift, but it weakens the subjective embodiment experience. Such factors need to be taken into account in future studies using this technique, particularly when assessing mirror visual feedback for pain management.

  7. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.

    Science.gov (United States)

    van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R

    2014-10-07

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.

  8. Visual feedback attenuates mean concentric barbell velocity loss, and improves motivation, competitiveness, and perceived workload in male adolescent athletes.

    Science.gov (United States)

    Weakley, Jonathon Js; Wilson, Kyle M; Till, Kevin; Read, Dale B; Darrall-Jones, Joshua; Roe, Gregory; Phibbs, Padraic J; Jones, Ben

    2017-07-12

    It is unknown whether instantaneous visual feedback of resistance training outcomes can enhance barbell velocity in younger athletes. Therefore, the purpose of this study was to quantify the effects of visual feedback on mean concentric barbell velocity in the back squat, and to identify changes in motivation, competitiveness, and perceived workload. In a randomised-crossover design (Feedback vs. Control) feedback of mean concentric barbell velocity was or was not provided throughout a set of 10 repetitions in the barbell back squat. Magnitude-based inferences were used to assess changes between conditions, with almost certainly greater differences in mean concentric velocity between the Feedback (0.70 ±0.04 m·s) and Control (0.65 ±0.05 m·s) observed. Additionally, individual repetition mean concentric velocity ranged from possibly (repetition number two: 0.79 ±0.04 vs. 0.78 ±0.04 m·s) to almost certainly (repetition number 10: 0.58 ±0.05 vs. 0.49 ±0.05 m·s) greater when provided feedback, while almost certain differences were observed in motivation, competitiveness, and perceived workload, respectively. Providing adolescent male athletes with visual kinematic information while completing resistance training is beneficial for the maintenance of barbell velocity during a training set, potentially enhancing physical performance. Moreover, these improvements were observed alongside increases in motivation, competitiveness and perceived workload providing insight into the underlying mechanisms responsible for the performance gains observed. Given the observed maintenance of barbell velocity during a training set, practitioners can use this technique to manipulate training outcomes during resistance training.

  9. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot

    Directory of Open Access Journals (Sweden)

    Emmanuele eTidoni

    2014-06-01

    Full Text Available Advancement in brain computer interfaces (BCI technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent representation of the world. Cognitive neuroscience studies demonstrate that multisensory integration may imply a gain with respect to a single modality and ultimately improve the overall sensorimotor performance. For example, reactivity to simultaneous visual and auditory stimuli may be higher than to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet, knowledge about whether audio-visual integration may improve the control of a surrogate is meager. To explore this issue, we provided human footstep sounds as audio feedback to BCI users while controlling a humanoid robot. Participants were asked to steer their robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that audio-visual synchrony between footsteps sound and actual humanoid’s walk reduces the time required for steering the robot. Thus, auditory feedback congruent with the humanoid actions may improve motor decisions of the BCI’s user and help in the feeling of control over it. Our results shed light on the possibility to increase robot’s control through the combination of multisensory feedback to a BCI user.

  10. Force Maintenance Accuracy Using a Tool: Effects of Magnitude and Feedback.

    Science.gov (United States)

    Wang, Dangxiao; Jiao, Jian; Yang, Gaofeng; Zhang, Yuru

    2016-01-01

    The ability to precisely produce a force via a hand-held tool is crucial in fine manipulations. In this paper, we study the error in maintaining a target force ranging from 0.5 to 5 N under two concurrent feedback conditions: pure haptic feedback (H), and visual plus haptic feedback (V + H). The results show that absolute error (AE) increases along with the increasing force magnitudes under both feedback conditions. For target forces ranging from 1.5 to 5 N, the relative error (RE) is approximately constant under both feedback conditions, while the RE significantly increases for the small target forces of 0.5 and 1 N. The effect of force magnitude on the coefficient of variation (CoV) is not significant for target forces ranging from 1.5 to 5 N. For both the RE and the CoV, the values under the H condition are significantly larger than those under the V + H condition. The effect of manipulation mode (i.e., a hand-held tool or a fingertip) on force maintenance accuracy is complex, i.e., its effect on RE is not significant while its effect on CoV is significant. Only for the magnitude of 0.5 N, the RE of using the tool was significantly greater than that of using the fingertip under both feedback conditions. For both the RE and the CoV, no interaction effect exists between manipulation mode, force magnitude and feedback condition.

  11. Augmented visual feedback of movement performance to enhance walking recovery after stroke: study protocol for a pilot randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Thikey Heather

    2012-09-01

    Full Text Available Abstract Background Increasing evidence suggests that use of augmented visual feedback could be a useful approach to stroke rehabilitation. In current clinical practice, visual feedback of movement performance is often limited to the use of mirrors or video. However, neither approach is optimal since cognitive and self-image issues can distract or distress patients and their movement can be obscured by clothing or limited viewpoints. Three-dimensional motion capture has the potential to provide accurate kinematic data required for objective assessment and feedback in the clinical environment. However, such data are currently presented in numerical or graphical format, which is often impractical in a clinical setting. Our hypothesis is that presenting this kinematic data using bespoke visualisation software, which is tailored for gait rehabilitation after stroke, will provide a means whereby feedback of movement performance can be communicated in a more meaningful way to patients. This will result in increased patient understanding of their rehabilitation and will enable progress to be tracked in a more accessible way. Methods The hypothesis will be assessed using an exploratory (phase II randomised controlled trial. Stroke survivors eligible for this trial will be in the subacute stage of stroke and have impaired walking ability (Functional Ambulation Classification of 1 or more. Participants (n = 45 will be randomised into three groups to compare the use of the visualisation software during overground physical therapy gait training against an intensity-matched and attention-matched placebo group and a usual care control group. The primary outcome measure will be walking speed. Secondary measures will be Functional Ambulation Category, Timed Up and Go, Rivermead Visual Gait Assessment, Stroke Impact Scale-16 and spatiotemporal parameters associated with walking. Additional qualitative measures will be used to assess the participant

  12. The Effects of Visual Feedback on CPR Skill Retention in Graduate Student Athletic Trainers

    Directory of Open Access Journals (Sweden)

    Michael G. Miller

    2015-09-01

    Full Text Available Context: Studies examining the effectiveness of cardiopulmonary resuscitation (CPR chest compressions have found compression depth and rate to be less than optimal and recoil to full release to be incomplete. Objective: To determine if visual feedback affects the rate and depth of chest compressions and chest recoil values during CPR training of athletic trainers and to determine retention of proficiency over time. Design: Pre-test, post-test. Setting: Medical simulation laboratory. Participants: Eleven females and one male (23.08+.51 years old, from an Athletic Training Graduate Program. All participants were Certified Athletic Trainers (1.12+.46 years of experience and certified in CPR for the Professional Rescuer. Interventions: Participants completed a pre-test, practice sessions, and a post-test on a SimMan® (Laerdal Medical manikin with visual feedback of skills in real time. After the pre-test, participants received feedback by the investigators. Participants completed practice sessions as needed (range=1-4 sessions, until they reached 100% skill proficiency. After achieving proficiency, participants returned 8 weeks later to perform the CPR skills. Main Outcome Measures: The average of all compression outcome measures (rate, depth, recoil was captured every 10 seconds (6x per min. All participants performed 5 cycles of 30 compressions. A two-tailed paired samples t-test (pre to post was used to compare rate of chest compressions, depth of chest compressions, and recoil of the chest. Significance was set a priori at pResults: There was a significant difference between pre and post-test compression depth average, p=.002. The pre-depth average was 41mm + 9.83mm compared to the post-depth average of 52.26mm + 5mm. There were no significant differences between pre and post-test chest compression rates and recoil. Conclusions: The use of a simulated manikin with visual feedback facilitated participants to reach the recommended compression

  13. Object discrimination using electrotactile feedback.

    Science.gov (United States)

    Arakeri, Tapas J; Hasse, Brady A; Fuglevand, Andrew J

    2018-04-09

    A variety of bioengineering systems are being developed to restore tactile sensations in individuals who have lost somatosensory feedback because of spinal cord injury, stroke, or amputation. These systems typically detect tactile force with sensors placed on an insensate hand (or prosthetic hand in the case of amputees) and deliver touch information by electrically or mechanically stimulating sensate skin above the site of injury. Successful object manipulation, however, also requires proprioceptive feedback representing the configuration and movements of the hand and digits. Therefore, we developed a simple system that simultaneously provides information about tactile grip force and hand aperture using current amplitude-modulated electrotactile feedback. We evaluated the utility of this system by testing the ability of eight healthy human subjects to distinguish among 27 objects of varying sizes, weights, and compliances based entirely on electrotactile feedback. The feedback was modulated by grip-force and hand-aperture sensors placed on the hand of an experimenter (not visible to the subject) grasping and lifting the test objects. We were also interested to determine the degree to which subjects could learn to use such feedback when tested over five consecutive sessions. The average percentage correct identifications on day 1 (28.5%  ±  8.2% correct) was well above chance (3.7%) and increased significantly with training to 49.2%  ±  10.6% on day 5. Furthermore, this training transferred reasonably well to a set of novel objects. These results suggest that simple, non-invasive methods can provide useful multisensory feedback that might prove beneficial in improving the control over prosthetic limbs.

  14. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity.

    Science.gov (United States)

    Takeda, Kenta; Mani, Hiroki; Hasegawa, Naoya; Sato, Yuki; Tanaka, Shintaro; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-07-19

    The benefit of visual feedback of the center of pressure (COP) on quiet standing is still debatable. This study aimed to investigate the adaptation effects of visual feedback training using both the COP and center of gravity (COG) during quiet standing. Thirty-four healthy young adults were divided into three groups randomly (COP + COG, COP, and control groups). A force plate was used to calculate the coordinates of the COP in the anteroposterior (COP AP ) and mediolateral (COP ML ) directions. A motion analysis system was used to calculate the coordinates of the center of mass (COM) in both directions (COM AP and COM ML ). The coordinates of the COG in the AP direction (COG AP ) were obtained from the force plate signals. Augmented visual feedback was presented on a screen in the form of fluctuation circles in the vertical direction that moved upward as the COP AP and/or COG AP moved forward and vice versa. The COP + COG group received the real-time COP AP and COG AP feedback simultaneously, whereas the COP group received the real-time COP AP feedback only. The control group received no visual feedback. In the training session, the COP + COG group was required to maintain an even distance between the COP AP and COG AP and reduce the COG AP fluctuation, whereas the COP group was required to reduce the COP AP fluctuation while standing on a foam pad. In test sessions, participants were instructed to keep their standing posture as quiet as possible on the foam pad before (pre-session) and after (post-session) the training sessions. In the post-session, the velocity and root mean square of COM AP in the COP + COG group were lower than those in the control group. In addition, the absolute value of the sum of the COP - COM distances in the COP + COG group was lower than that in the COP group. Furthermore, positive correlations were found between the COM AP velocity and COP - COM parameters. The results suggest that the novel visual feedback

  15. Guideline implementation in clinical practice: Use of statistical process control charts as visual feedback devices

    Directory of Open Access Journals (Sweden)

    Fahad A Al-Hussein

    2009-01-01

    Conclusions: A process of audits in the context of statistical process control is necessary for any improvement in the implementation of guidelines in primary care. Statistical process control charts are an effective means of visual feedback to the care providers.

  16. Visual Search and Target Cueing: A Comparison of Head-Mounted Versus Hand-Held Displays on the Allocation of Visual Attention

    National Research Council Canada - National Science Library

    Yeh, Michelle; Wickens, Christopher D

    1998-01-01

    We conducted a study to examine the effects of target cueing and conformality with a hand-held or head-mounted display to determine their effects on visual search tasks requiring focused and divided attention...

  17. Proprioception contributes to the sense of agency during visual observation of hand movements: evidence from temporal judgments of action

    DEFF Research Database (Denmark)

    Balslev, Daniela; Cole, Jonathan; Miall, R Chris

    2007-01-01

    The ability to recognize visually one's own movement is important for motor control and, through attribution of agency, for social interactions. Agency of actions may be decided by comparisons of visual feedback, efferent signals, and proprioceptive inputs. Because the ability to identify one's own...

  18. Response shift in severity assessment of hand eczema with visual analogue scales

    DEFF Research Database (Denmark)

    Mollerup, Annette; Johansen, Jeanne D

    2015-01-01

    BACKGROUND: Hand eczema is a common and fluctuating disease. Visual analogue scales (VASs) are used to assess disease severity, both currently and when at its worst. However, such patient-reported outcomes may be at risk of being flawed owing to recall bias or response shifts. OBJECTIVE: To explore...

  19. Reproducibility of The Abdominal and Chest Wall Position by Voluntary Breath-Hold Technique Using a Laser-Based Monitoring and Visual Feedback System

    International Nuclear Information System (INIS)

    Nakamura, Katsumasa; Shioyama, Yoshiyuki; Nomoto, Satoru; Ohga, Saiji; Toba, Takashi; Yoshitake, Tadamasa; Anai, Shigeo; Terashima, Hiromi; Honda, Hiroshi

    2007-01-01

    Purpose: The voluntary breath-hold (BH) technique is a simple method to control the respiration-related motion of a tumor during irradiation. However, the abdominal and chest wall position may not be accurately reproduced using the BH technique. The purpose of this study was to examine whether visual feedback can reduce the fluctuation in wall motion during BH using a new respiratory monitoring device. Methods and Materials: We developed a laser-based BH monitoring and visual feedback system. For this study, five healthy volunteers were enrolled. The volunteers, practicing abdominal breathing, performed shallow end-expiration BH (SEBH), shallow end-inspiration BH (SIBH), and deep end-inspiration BH (DIBH) with or without visual feedback. The abdominal and chest wall positions were measured at 80-ms intervals during BHs. Results: The fluctuation in the chest wall position was smaller than that of the abdominal wall position. The reproducibility of the wall position was improved by visual feedback. With a monitoring device, visual feedback reduced the mean deviation of the abdominal wall from 2.1 ± 1.3 mm to 1.5 ± 0.5 mm, 2.5 ± 1.9 mm to 1.1 ± 0.4 mm, and 6.6 ± 2.4 mm to 2.6 ± 1.4 mm in SEBH, SIBH, and DIBH, respectively. Conclusions: Volunteers can perform the BH maneuver in a highly reproducible fashion when informed about the position of the wall, although in the case of DIBH, the deviation in the wall position remained substantial

  20. Non-invasive brain stimulation of motor cortex induces embodiment when integrated with virtual reality feedback.

    Science.gov (United States)

    Bassolino, M; Franza, M; Bello Ruiz, J; Pinardi, M; Schmidlin, T; Stephan, M A; Solcà, M; Serino, A; Blanke, O

    2018-04-01

    Previous evidence highlighted the multisensory-motor origin of embodiment - that is, the experience of having a body and of being in control of it - and the possibility of experimentally manipulating it. For instance, an illusory feeling of embodiment towards a fake hand can be triggered by providing synchronous visuo-tactile stimulation to the hand of participants and to a fake hand or by asking participants to move their hand and observe a fake hand moving accordingly (rubber hand illusion). Here, we tested whether it is possible to manipulate embodiment not through stimulation of the participant's hand, but by directly tapping into the brain's hand representation via non-invasive brain stimulation. To this aim, we combined transcranial magnetic stimulation (TMS), to activate the hand corticospinal representation, with virtual reality (VR), to provide matching (as contrasted to non-matching) visual feedback, mimicking involuntary hand movements evoked by TMS. We show that the illusory embodiment occurred when TMS pulses were temporally matched with VR feedback, but not when TMS was administered outside primary motor cortex, (over the vertex) or when stimulating motor cortex at a lower intensity (that did not activate peripheral muscles). Behavioural (questionnaires) and neurophysiological (motor-evoked-potentials, TMS-evoked-movements) measures further indicated that embodiment was not explained by stimulation per se, but depended on the temporal coherence between TMS-induced activation of hand corticospinal representation and the virtual bodily feedback. This reveals that non-invasive brain stimulation may replace the application of external tactile hand cues and motor components related to volition, planning and anticipation. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability.

    Science.gov (United States)

    Nam, Seung-Min; Kim, Kyoung; Lee, Do Youn

    2018-01-01

    [Purpose] This study examined the effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability. [Subjects and Methods] Twenty eight adults with functional ankle instability, divided randomly into an experimental group, which performed visual feedback balance training for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Bio rescue was used for balance ability. It measured limit of stability at one minute. For ankle instability was measured using Cumberland ankle instability tool (CAIT). This measure was performed before and after the experiments in each group. [Results] The experimental group had significant increase in the Limit of Stability and CAIT score. The control group had significant increase in CAIT score. While the Limit of Stability increased without significance. [Conclusion] In conclusion, visual feedback balance training can be recommended as a treatment method for patients with functional ankle instability.

  2. Enhanced performance feedback and patient participation to improve hand hygiene compliance of health-care workers in the setting of established multimodal promotion: a single-centre, cluster randomised controlled trial.

    Science.gov (United States)

    Stewardson, Andrew James; Sax, Hugo; Gayet-Ageron, Angèle; Touveneau, Sylvie; Longtin, Yves; Zingg, Walter; Pittet, Didier

    2016-12-01

    Hand hygiene compliance of health-care workers remains suboptimal despite standard multimodal promotion, and evidence for the effectiveness of novel interventions is urgently needed. We aimed to assess the effect of enhanced performance feedback and patient participation on hand hygiene compliance in the setting of multimodal promotion. We did a single-centre, cluster randomised controlled trial at University of Geneva Hospitals (Geneva, Switzerland). All wards hosting adult, lucid patients, and all health-care workers and patients in these wards, were eligible. After a 15-month baseline period, eligible wards were assigned by computer-generated block randomisation (1:1:1), stratified by the type of ward, to one of three groups: control, enhanced performance feedback, or enhanced performance feedback plus patient participation. Standard multimodal hand hygiene promotion was done hospital-wide throughout the study. The primary outcome was hand hygiene compliance of health-care workers (according to the WHO Five Moments of Hand Hygiene) at the opportunity level, measured by direct observation (20-min sessions) by 12 validated infection control nurses, with each ward audited at least once every 3 months. This trial is registered with ISRCTN, number ISRCTN43599478. We randomly assigned 67 wards to the control group (n=21), enhanced performance feedback (n=24), or enhanced performance feedback plus patient participation (n=22) on May 19, 2010. One ward in the control group became a high-dependency unit and was excluded from analysis. During 1367 observation sessions, 12 579 hand hygiene opportunities were recorded. Between the baseline period (April 1, 2009, to June 30, 2010) and the intervention period (July 1, 2010, to June 30, 2012), mean hand hygiene compliance increased from 66% (95% CI 62-70) to 73% (70-77) in the control group (odds ratio [OR] 1·41, 95% CI 1·21-1·63), from 65% (62-69) to 75% (72-77) in the enhanced performance feedback group (1·61, 1·41-1

  3. Data-driven security analysis, visualization and dashboards

    CERN Document Server

    Jacobs, Jay

    2014-01-01

    Uncover hidden patterns of data and respond with countermeasures Security professionals need all the tools at their disposal to increase their visibility in order to prevent security breaches and attacks. This careful guide explores two of the most powerful ? data analysis and visualization. You'll soon understand how to harness and wield data, from collection and storage to management and analysis as well as visualization and presentation. Using a hands-on approach with real-world examples, this book shows you how to gather feedback, measure the effectiveness of your security methods, and ma

  4. Proprioceptive feedback and brain computer interface (BCI based neuroprostheses.

    Directory of Open Access Journals (Sweden)

    Ander Ramos-Murguialday

    Full Text Available Brain computer interface (BCI technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1 motor imagery of the hand movement without any overt movement and without feedback, (2 motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3 passive (the orthosis passively opens and closes the hand without imagery and (4 active (overt movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants. Group 1 (n = 9 received contingent positive feedback (participants' sensorimotor rhythm (SMR desynchronization was directly linked to hand orthosis movements, group 2 (n = 8 contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements and group 3 (n = 7 sham feedback (no link between brain oscillations and orthosis movements. We observed that proprioceptive feedback (feeling and seeing hand movements improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and

  5. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.

    Science.gov (United States)

    Ramos-Murguialday, Ander; Schürholz, Markus; Caggiano, Vittorio; Wildgruber, Moritz; Caria, Andrea; Hammer, Eva Maria; Halder, Sebastian; Birbaumer, Niels

    2012-01-01

    Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive

  6. Left, right, left, right, eyes to the front! Müller-Lyer bias in grasping is not a function of hand used, hand preferred or visual hemifield, but foveation does matter.

    Science.gov (United States)

    van der Kamp, John; de Wit, Matthieu M; Masters, Rich S W

    2012-04-01

    We investigated whether the control of movement of the left hand is more likely to involve the use of allocentric information than movements performed with the right hand. Previous studies (Gonzalez et al. in J Neurophys 95:3496-3501, 2006; De Grave et al. in Exp Br Res 193:421-427, 2009) have reported contradictory findings in this respect. In the present study, right-handed participants (N = 12) and left-handed participants (N = 12) made right- and left-handed grasps to foveated objects and peripheral, non-foveated objects that were located in the right or left visual hemifield and embedded within a Müller-Lyer illusion. They were also asked to judge the size of the object by matching their hand aperture to its length. Hand apertures did not show significant differences in illusory bias as a function of hand used, handedness or visual hemifield. However, the illusory effect was significantly larger for perception than for action, and for the non-foveated compared to foveated objects. No significant illusory biases were found for reach movement times. These findings are consistent with the two-visual system model that holds that the use of allocentric information is more prominent in perception than in movement control. We propose that the increased involvement of allocentric information in movements toward peripheral, non-foveated objects may be a consequence of more awkward, less automatized grasps of nonfoveated than foveated objects. The current study does not support the conjecture that the control of left-handed and right-handed grasps is predicated on different sources of information.

  7. Hand hygiene strategies

    OpenAIRE

    Yazaji, Eskandar Alex

    2011-01-01

    Hand hygiene is one of the major players in preventing healthcare associated infections. However, healthcare workers compliance with hand hygiene continues to be a challenge. This article will address strategies to help improving hand hygiene compliance. Keywords: hand hygiene; healthcare associated infections; multidisciplinary program; system change; accountability; education; feedback(Published: 18 July 2011)Citation: Journal of Community Hospital Internal Medicine Perspectives 2011, 1: 72...

  8. Uncertainty of feedback and state estimation determines the speed of motor adaptation

    Directory of Open Access Journals (Sweden)

    Kunlin Wei

    2010-05-01

    Full Text Available Humans can adapt their motor behaviors to deal with ongoing changes. To achieve this, the nervous system needs to estimate central variables for our movement based on past knowledge and new feedback, both of which are uncertain. In the Bayesian framework, rates of adaptation characterize how noisy feedback is in comparison to the uncertainty of the state estimate. The predictions of Bayesian models are intuitive: the nervous system should adapt slower when sensory feedback is more noisy and faster when its state estimate is more uncertain. Here we want to quantitatively understand how uncertainty in these two factors affects motor adaptation. In a hand reaching experiment we measured trial-by-trial adaptation to a randomly changing visual perturbation to characterize the way the nervous system handles uncertainty in state estimation and feedback. We found both qualitative predictions of Bayesian models confirmed. Our study provides evidence that the nervous system represents and uses uncertainty in state estimate and feedback during motor adaptation.

  9. Utility of electronic hand hygiene counting devices for measuring physicians' hand hygiene adherence applied to outpatient settings.

    Science.gov (United States)

    Arai, Akie; Tanabe, Masaki; Nakamura, Akiko; Yamasaki, Daisuke; Muraki, Yuichi; Kaneko, Toshihiro; Kadowaki, Ayako; Ito, Masaaki

    2016-12-01

    Our objectives were to evaluate the utility of electronic hand hygiene counting devices in outpatient settings and the impact of results feedback on physicians' hand hygiene behaviors. We installed 130 electronic hand hygiene counting devices in our redesigned outpatient department. We remotely monitored physicians' hand hygiene practices during outpatient examinations and calculated the adherence rate as follows: number of hand hygiene counts divided by the number of outpatients examined multiplied by 100. Physician individual adherence rates were also classified into 4 categories. Two hundred and eighty physicians from 28 clinical departments were monitored for 3 months. The overall hand hygiene adherence rate was 10.7% at baseline, which improved significantly after feedback to 18.2% in the third month. Of the clinical departments, 78.6% demonstrated significant improvement in hand hygiene compliance. The change in the percentage of physicians in each category before and after feedback were as follows: very low (84.3% to 72.1%), low (8.6% to 14.3%), moderate (2.9% to 8.9%), and high (4.3% to 4.6%), from the first to third month, respectively. Based on category assessment, 17.1% of physicians were classified as responders. Physicians' adherence to hand hygiene practices during outpatient examinations was successfully monitored remotely using electronic counting devices. Audit and feedback of adherence data may have a positive impact on physicians' hand hygiene compliance. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  10. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.

    Science.gov (United States)

    Roosink, Meyke; Robitaille, Nicolas; McFadyen, Bradford J; Hébert, Luc J; Jackson, Philip L; Bouyer, Laurent J; Mercier, Catherine

    2015-01-05

    Virtual reality (VR) provides interactive multimodal sensory stimuli and biofeedback, and can be a powerful tool for physical and cognitive rehabilitation. However, existing systems have generally not implemented realistic full-body avatars and/or a scaling of visual movement feedback. We developed a "virtual mirror" that displays a realistic full-body avatar that responds to full-body movements in all movement planes in real-time, and that allows for the scaling of visual feedback on movements in real-time. The primary objective of this proof-of-concept study was to assess the ability of healthy subjects to detect scaled feedback on trunk flexion movements. The "virtual mirror" was developed by integrating motion capture, virtual reality and projection systems. A protocol was developed to provide both augmented and reduced feedback on trunk flexion movements while sitting and standing. The task required reliance on both visual and proprioceptive feedback. The ability to detect scaled feedback was assessed in healthy subjects (n = 10) using a two-alternative forced choice paradigm. Additionally, immersion in the VR environment and task adherence (flexion angles, velocity, and fluency) were assessed. The ability to detect scaled feedback could be modelled using a sigmoid curve with a high goodness of fit (R2 range 89-98%). The point of subjective equivalence was not significantly different from 0 (i.e. not shifted), indicating an unbiased perception. The just noticeable difference was 0.035 ± 0.007, indicating that subjects were able to discriminate different scaling levels consistently. VR immersion was reported to be good, despite some perceived delays between movements and VR projections. Movement kinematic analysis confirmed task adherence. The new "virtual mirror" extends existing VR systems for motor and pain rehabilitation by enabling the use of realistic full-body avatars and scaled feedback. Proof-of-concept was demonstrated for the assessment of

  11. The visual development of hand-centered receptive fields in a neural network model of the primate visual system trained with experimentally recorded human gaze changes.

    Science.gov (United States)

    Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M

    2016-01-01

    Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.

  12. Safe Local Navigation for Visually Impaired Users With a Time-of-Flight and Haptic Feedback Device.

    Science.gov (United States)

    Katzschmann, Robert K; Araki, Brandon; Rus, Daniela

    2018-03-01

    This paper presents ALVU (Array of Lidars and Vibrotactile Units), a contactless, intuitive, hands-free, and discreet wearable device that allows visually impaired users to detect low- and high-hanging obstacles, as well as physical boundaries in their immediate environment. The solution allows for safe local navigation in both confined and open spaces by enabling the user to distinguish free space from obstacles. The device presented is composed of two parts: a sensor belt and a haptic strap. The sensor belt is an array of time-of-flight distance sensors worn around the front of a user's waist, and the pulses of infrared light provide reliable and accurate measurements of the distances between the user and surrounding obstacles or surfaces. The haptic strap communicates the measured distances through an array of vibratory motors worn around the user's upper abdomen, providing haptic feedback. The linear vibration motors are combined with a point-loaded pretensioned applicator to transmit isolated vibrations to the user. We validated the device's capability in an extensive user study entailing 162 trials with 12 blind users. Users wearing the device successfully walked through hallways, avoided obstacles, and detected staircases.

  13. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    CERN Document Server

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  14. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback.

    Science.gov (United States)

    D'Anna, Edoardo; Petrini, Francesco M; Artoni, Fiorenzo; Popovic, Igor; Simanić, Igor; Raspopovic, Stanisa; Micera, Silvestro

    2017-09-07

    According to amputees, sensory feedback is amongst the most important features lacking from commercial prostheses. Although restoration of touch by means of implantable neural interfaces has been achieved, these approaches require surgical interventions, and their long-term usability still needs to be fully investigated. Here, we developed a non-invasive alternative which maintains some of the advantages of invasive approaches, such as a somatotopic sensory restitution scheme. We used transcutaneous electrical nerve stimulation (TENS) to induce referred sensations to the phantom hand of amputees. These sensations were characterized in four amputees over two weeks. Although the induced sensation was often paresthesia, the location corresponded to parts of the innervation regions of the median and ulnar nerves, and electroencephalographic (EEG) recordings confirmed the presence of appropriate responses in relevant cortical areas. Using these sensations as feedback during bidirectional prosthesis control, the patients were able to perform several functional tasks that would not be possible otherwise, such as applying one of three levels of force on an external sensor. Performance during these tasks was high, suggesting that this approach could be a viable alternative to the more invasive solutions, offering a trade-off between the quality of the sensation, and the invasiveness of the intervention.

  15. A feedback model of visual attention.

    Science.gov (United States)

    Spratling, M W; Johnson, M H

    2004-03-01

    Feedback connections are a prominent feature of cortical anatomy and are likely to have a significant functional role in neural information processing. We present a neural network model of cortical feedback that successfully simulates neurophysiological data associated with attention. In this domain, our model can be considered a more detailed, and biologically plausible, implementation of the biased competition model of attention. However, our model is more general as it can also explain a variety of other top-down processes in vision, such as figure/ground segmentation and contextual cueing. This model thus suggests that a common mechanism, involving cortical feedback pathways, is responsible for a range of phenomena and provides a unified account of currently disparate areas of research.

  16. Randomized crossover trial of a pressure sensing visual feedback system to improve mask fitting in noninvasive ventilation.

    Science.gov (United States)

    Brill, Anne-Kathrin; Moghal, Mohammad; Morrell, Mary J; Simonds, Anita K

    2017-10-01

    A good mask fit, avoiding air leaks and pressure effects on the skin are key elements for a successful noninvasive ventilation (NIV). However, delivering practical training for NIV is challenging, and it takes time to build experience and competency. This study investigated whether a pressure sensing system with real-time visual feedback improved mask fitting. During an NIV training session, 30 healthcare professionals (14 trained in mask fitting and 16 untrained) performed two mask fittings on the same healthy volunteer in a randomized order: one using standard mask-fitting procedures and one with additional visual feedback on mask pressure on the nasal bridge. Participants were required to achieve a mask fit with low mask pressure and minimal air leak (mask fit and staff- confidence were measured. Compared with standard mask fitting, a lower pressure was exerted on the nasal bridge using the feedback system (71.1 ± 17.6 mm Hg vs 63.2 ± 14.6 mm Hg, P mask-fitting training, resulted in a lower pressure on the skin and better mask fit for the volunteer, with increased staff confidence. © 2017 Asian Pacific Society of Respirology.

  17. Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness.

    Science.gov (United States)

    Leib, Raz; Rubin, Inbar; Nisky, Ilana

    2018-05-16

    Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people's estimation of these properties using stiffness estimation as a test case. We recorded participants' responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants' force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus, these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.

  18. Visual capture of action, experience of ownership, and the illusion of self-touch: a new rubber hand paradigm.

    Science.gov (United States)

    Aimola Davies, Anne M; White, Rebekah C; Thew, Graham; Aimola, Natalie M V; Davies, Martin

    2010-01-01

    A new rubber hand paradigm evokes an illusion with three conceptually distinct components: (i) the participant experiences her/his hidden right hand as administering touch at the location of the examiner's viewed administering hand (visual capture of action); (ii) the participant experiences the examiner's administering hand as being the participant's own hand (experience of ownership); and (iii) the participant experiences her/his two hands as being in contact, as if she/he were touching her/his own hand (illusion of self-touch). The presence of these illusory experiences was confirmed by questionnaire responses and proprioceptive drift data.

  19. Man-systems evaluation of moving base vehicle simulation motion cues. [human acceleration perception involving visual feedback

    Science.gov (United States)

    Kirkpatrick, M.; Brye, R. G.

    1974-01-01

    A motion cue investigation program is reported that deals with human factor aspects of high fidelity vehicle simulation. General data on non-visual motion thresholds and specific threshold values are established for use as washout parameters in vehicle simulation. A general purpose similator is used to test the contradictory cue hypothesis that acceleration sensitivity is reduced during a vehicle control task involving visual feedback. The simulator provides varying acceleration levels. The method of forced choice is based on the theory of signal detect ability.

  20. Adaptive learning in a compartmental model of visual cortex—how feedback enables stable category learning and refinement

    Science.gov (United States)

    Layher, Georg; Schrodt, Fabian; Butz, Martin V.; Neumann, Heiko

    2014-01-01

    The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations

  1. Breath-hold monitoring and visual feedback for radiotherapy using a charge-coupled device camera and a head-mounted display. System development and feasibility

    International Nuclear Information System (INIS)

    Yoshitake, Tadamasa; Nakamura, Katsumasa; Shioyama, Yoshiyuki

    2008-01-01

    The aim of this study was to present the technical aspects of the breath-hold technique with respiratory monitoring and visual feedback and to evaluate the feasibility of this system in healthy volunteers. To monitor respiration, the vertical position of the fiducial marker placed on the patient's abdomen was tracked by a machine vision system with a charge-coupled device camera. A monocular head-mounted display was used to provide the patient with visual feedback about the breathing trace. Five healthy male volunteers were enrolled in this study. They held their breath at the end-inspiration and the end-expiration phases. They performed five repetitions of the same type of 15-s breath-holds with and without a head-mounted display, respectively. A standard deviation of five mean positions of the fiducial marker during a 15-s breath-hold in each breath-hold type was used as the reproducibility value of breath-hold. All five volunteers well tolerated the breath-hold maneuver. For the inspiration breath-hold, the standard deviations with and without visual feedback were 1.74 mm and 0.84 mm, respectively (P=0.20). For the expiration breath-hold, the standard deviations with and without visual feedback were 0.63 mm and 0.96 mm, respectively (P=0.025). Our newly developed system might help the patient achieve improved breath-hold reproducibility. (author)

  2. Delayed action does not always require the ventral stream: a study on a patient with visual form agnosia.

    Science.gov (United States)

    Hesse, Constanze; Schenk, Thomas

    2014-05-01

    It has been suggested that while movements directed at visible targets are processed within the dorsal stream, movements executed after delay rely on the visual representations of the ventral stream (Milner & Goodale, 2006). This interpretation is supported by the observation that a patient with ventral stream damage (D.F.) has trouble performing accurate movements after a delay, but performs normally when the target is visible during movement programming. We tested D.F.'s visuomotor performance in a letter-posting task whilst varying the amount of visual feedback available. Additionally, we also varied whether D.F. received tactile feedback at the end of each trial (posting through a letter box vs posting on a screen) and whether environmental cues were available during the delay period (removing the target only vs suppressing vision completely with shutter glasses). We found that in the absence of environmental cues patient D.F. was unaffected by the introduction of delay and performed as accurately as healthy controls. However, when environmental cues and vision of the moving hand were available during and after the delay period, D.F.'s visuomotor performance was impaired. Thus, while healthy controls benefit from the availability of environmental landmarks and/or visual feedback of the moving hand, such cues seem less beneficial to D.F. Taken together our findings suggest that ventral stream damage does not always impact the ability to make delayed movements but compromises the ability to use environmental landmarks and visual feedback efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Hand proximity differentially affects visual working memory for color and orientation in a binding task

    OpenAIRE

    Kelly, Shane P.; Brockmole, James R.

    2014-01-01

    Observers determined whether two sequentially presented arrays of six lines were the same or different. Differences, when present, involved either a swap in the color of two lines or a swap in the orientation of two lines. Thus, accurate change detection required the binding of color and orientation information for each line within visual working memory. Holding viewing distance constant, the proximity of the arrays to the hands was manipulated. Placing the hands near the to-be-remembered...

  4. It is all me: the effect of viewpoint on visual-vestibular recalibration.

    Science.gov (United States)

    Schomaker, Judith; Tesch, Joachim; Bülthoff, Heinrich H; Bresciani, Jean-Pierre

    2011-09-01

    Participants performed a visual-vestibular motor recalibration task in virtual reality. The task consisted of keeping the extended arm and hand stable in space during a whole-body rotation induced by a robotic wheelchair. Performance was first quantified in a pre-test in which no visual feedback was available during the rotation. During the subsequent adaptation phase, optical flow resulting from body rotation was provided. This visual feedback was manipulated to create the illusion of a smaller rotational movement than actually occurred, hereby altering the visual-vestibular mapping. The effects of the adaptation phase on hand stabilization performance were measured during a post-test that was identical to the pre-test. Three different groups of subjects were exposed to different perspectives on the visual scene, i.e., first-person, top view, or mirror view. Sensorimotor adaptation occurred for all three viewpoint conditions, performance in the post-test session showing a marked under-compensation relative to the pre-test performance. In other words, all viewpoints gave rise to a remapping between vestibular input and the motor output required to stabilize the arm. Furthermore, the first-person and mirror view adaptation induced a significant decrease in variability of the stabilization performance. Such variability reduction was not observed for the top view adaptation. These results suggest that even if all three viewpoints can evoke substantial adaptation aftereffects, the more naturalistic first-person view and the richer mirror view should be preferred when reducing motor variability constitutes an important issue.

  5. Cerebral Activations Related to Writing and Drawing with Each Hand

    Science.gov (United States)

    Potgieser, Adriaan R. E.; van der Hoorn, Anouk; de Jong, Bauke M.

    2015-01-01

    Background Writing is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing. Methods Sixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM). Results Writing and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca’s area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation. Discussion The audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a

  6. Cerebral activations related to writing and drawing with each hand.

    Science.gov (United States)

    Potgieser, Adriaan R E; van der Hoorn, Anouk; de Jong, Bauke M

    2015-01-01

    Writing is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing. Sixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM). Writing and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca's area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation. The audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a common mechanism by which such visually

  7. The use of real-time feedback via wireless technology to improve hand hygiene compliance.

    Science.gov (United States)

    Marra, Alexandre R; Sampaio Camargo, Thiago Zinsly; Magnus, Thyago Pereira; Blaya, Rosangela Pereira; Dos Santos, Gilson Batista; Guastelli, Luciana Reis; Rodrigues, Rodrigo Dias; Prado, Marcelo; Victor, Elivane da Silva; Bogossian, Humberto; Monte, Julio Cesar Martins; dos Santos, Oscar Fernando Pavão; Oyama, Carlos Kazume; Edmond, Michael B

    2014-06-01

    Hand hygiene (HH) is widely regarded as the most effective preventive measure for health care-associated infection. However, there is little robust evidence on the best interventions to improve HH compliance or whether a sustained increase in compliance can reduce rates of health care-associated infection. To evaluate the effectiveness of a real-time feedback to improve HH compliance in the inpatient setting, we used a quasiexperimental study comparing the effect of real-time feedback using wireless technology on compliance with HH. The study was conducted in two 20-bed step-down units at a private tertiary care hospital. Phase 1 was a 3-month baseline period in which HH counts were performed by electronic handwash counters. After a 1-month washout period, a 7-month intervention was performed in one step-down unit while the other unit served as a control. HH, as measured by dispensing episodes, was significantly higher in the intervention unit (90.1 vs 73.1 dispensing episodes/patient-day, respectively, P = .001). When the intervention unit was compared with itself before and after implementation of the wireless technology, there was also a significant increase in HH after implementation (74.5 vs 90.1 episodes/patient-day, respectively, P = .01). There was also an increase in mean alcohol-based handrub consumption between the 2 phases (68.9 vs 103.1 mL/patient-day, respectively, P = .04) in the intervention unit. We demonstrated an improvement in alcohol gel usage via implementation of real-time feedback via wireless technology. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  8. The Rubber Hand Illusion in Children with Autism Spectrum Disorders: Delayed Influence of Combined Tactile and Visual Input on Proprioception

    Science.gov (United States)

    Cascio, Carissa J.; Foss-Feig, Jennifer H.; Burnette, Courtney P.; Heacock, Jessica L.; Cosby, Akua A.

    2012-01-01

    In the rubber hand illusion, perceived hand ownership can be transferred to a rubber hand after synchronous visual and tactile stimulation. Perceived body ownership and self-other relation are foundational for development of self-awareness, imitation, and empathy, which are all affected in autism spectrum disorders (ASD). We examined the rubber…

  9. Real-time feedback for improving compliance to hand sanitization among healthcare workers in an open layout ICU using radiofrequency identification.

    Science.gov (United States)

    Radhakrishna, Kedar; Waghmare, Abijeet; Ekstrand, Maria; Raj, Tony; Selvam, Sumithra; Sreerama, Sai Madhukar; Sampath, Sriram

    2015-06-01

    The aim of this study is to increase hand sanitizer usage among healthcare workers by developing and implementing a low-cost intervention using RFID and wireless mesh networks to provide real-time alarms for increasing hand hygiene compliance during opportune moments in an open layout Intensive Care Unit (ICU). A wireless, RFID based system was developed and implemented in the ICU. The ICU beds were divded into an intervention arm (n = 10) and a control arm (n = 14). Passive RFID tags were issued to the doctors, nurses and support staff of the ICU. Long range RFID readers were positioned strategically. Sensors were placed beneath the hand sanitizers to record sanitizer usage. The system would alert the HCWs by flashing a light if an opportune moment for hand sanitization was detected. A significant increase in hand sanitizer use was noted in the intervention arm. Usage was highest during the early part of the workday and decreased as the day progressed. Hand wash events per person hour was highest among the ancilliary staff followed by the doctors and nurses. Real-time feedback has potential to increase hand hygiene compliance among HCWs. The system demonstrates the possibility of automating compliance monitoring in an ICU with an open layout.

  10. A new visual feedback-based magnetorheological haptic master for robot-assisted minimally invasive surgery

    Science.gov (United States)

    Choi, Seung-Hyun; Kim, Soomin; Kim, Pyunghwa; Park, Jinhyuk; Choi, Seung-Bok

    2015-06-01

    In this study, we developed a novel four-degrees-of-freedom haptic master using controllable magnetorheological (MR) fluid. We also integrated the haptic master with a vision device with image processing for robot-assisted minimally invasive surgery (RMIS). The proposed master can be used in RMIS as a haptic interface to provide the surgeon with a sense of touch by using both kinetic and kinesthetic information. The slave robot, which is manipulated with a proportional-integrative-derivative controller, uses a force sensor to obtain the desired forces from tissue contact, and these desired repulsive forces are then embodied through the MR haptic master. To verify the effectiveness of the haptic master, the desired force and actual force are compared in the time domain. In addition, a visual feedback system is implemented in the RMIS experiment to distinguish between the tumor and organ more clearly and provide better visibility to the operator. The hue-saturation-value color space is adopted for the image processing since it is often more intuitive than other color spaces. The image processing and haptic feedback are realized on surgery performance. In this work, tumor-cutting experiments are conducted under four different operating conditions: haptic feedback on, haptic feedback off, image processing on, and image processing off. The experimental realization shows that the performance index, which is a function of pixels, is different in the four operating conditions.

  11. Econophysical visualization of Adam Smith’s invisible hand

    Science.gov (United States)

    Cohen, Morrel H.; Eliazar, Iddo I.

    2013-02-01

    Consider a complex system whose macrostate is statistically observable, but yet whose operating mechanism is an unknown black-box. In this paper we address the problem of inferring, from the system’s macrostate statistics, the system’s intrinsic force yielding the observed statistics. The inference is established via two diametrically opposite approaches which result in the very same intrinsic force: a top-down approach based on the notion of entropy, and a bottom-up approach based on the notion of Langevin dynamics. The general results established are applied to the problem of visualizing the intrinsic socioeconomic force-Adam Smith’s invisible hand-shaping the distribution of wealth in human societies. Our analysis yields quantitative econophysical representations of figurative socioeconomic forces, quantitative definitions of “poor” and “rich”, and a quantitative characterization of the “poor-get-poorer” and the “rich-get-richer” phenomena.

  12. The integration of temporally shifted visual feedback in a synchronization task: The role of perceptual stability in a visuo-proprioceptive conflict situation.

    Science.gov (United States)

    Ceux, Tanja; Montagne, Gilles; Buekers, Martinus J

    2010-12-01

    The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Improved Hand Hygiene Compliance is Associated with the Change of Perception toward Hand Hygiene among Medical Personnel

    OpenAIRE

    Lee, Seung Soon; Park, Se Jeong; Chung, Moon Joo; Lee, Ju Hee; Kang, Hyun Joo; Lee, Jeong-a; Kim, Yong Kyun

    2014-01-01

    Background Hand hygiene compliance has improved significantly through hand hygiene promotion programs that have included poster campaign, monitoring and performance feedback, and education with special attentions to perceived subjective norms. We investigated factors associated with improved hand hygiene compliance, focusing on whether the improvement of hand hygiene compliance is associated with changed perception toward hand hygiene among medical personnel. Materials and Methods Hand hygien...

  14. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.

    Science.gov (United States)

    Lemole, G Michael; Banerjee, P Pat; Luciano, Cristian; Neckrysh, Sergey; Charbel, Fady T

    2007-07-01

    Mastery of the neurosurgical skill set involves many hours of supervised intraoperative training. Convergence of political, economic, and social forces has limited neurosurgical resident operative exposure. There is need to develop realistic neurosurgical simulations that reproduce the operative experience, unrestricted by time and patient safety constraints. Computer-based, virtual reality platforms offer just such a possibility. The combination of virtual reality with dynamic, three-dimensional stereoscopic visualization, and haptic feedback technologies makes realistic procedural simulation possible. Most neurosurgical procedures can be conceptualized and segmented into critical task components, which can be simulated independently or in conjunction with other modules to recreate the experience of a complex neurosurgical procedure. We use the ImmersiveTouch (ImmersiveTouch, Inc., Chicago, IL) virtual reality platform, developed at the University of Illinois at Chicago, to simulate the task of ventriculostomy catheter placement as a proof-of-concept. Computed tomographic data are used to create a virtual anatomic volume. Haptic feedback offers simulated resistance and relaxation with passage of a virtual three-dimensional ventriculostomy catheter through the brain parenchyma into the ventricle. A dynamic three-dimensional graphical interface renders changing visual perspective as the user's head moves. The simulation platform was found to have realistic visual, tactile, and handling characteristics, as assessed by neurosurgical faculty, residents, and medical students. We have developed a realistic, haptics-based virtual reality simulator for neurosurgical education. Our first module recreates a critical component of the ventriculostomy placement task. This approach to task simulation can be assembled in a modular manner to reproduce entire neurosurgical procedures.

  15. Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain.

    Science.gov (United States)

    Deconinck, Frederik J A; Smorenburg, Ana R P; Benham, Alex; Ledebt, Annick; Feltham, Max G; Savelsbergh, Geert J P

    2015-05-01

    Mirror visual feedback (MVF), a phenomenon where movement of one limb is perceived as movement of the other limb, has the capacity to alleviate phantom limb pain or promote motor recovery of the upper limbs after stroke. The tool has received great interest from health professionals; however, a clear understanding of the mechanisms underlying the neural recovery owing to MVF is lacking. We performed a systematic review to assess the effect of MVF on brain activation during a motor task. We searched PubMed, CINAHL, and EMBASE databases for neuroimaging studies investigating the effect of MVF on the brain. Key details for each study regarding participants, imaging methods, and results were extracted. The database search yielded 347 article, of which we identified 33 suitable for inclusion. Compared with a control condition, MVF increases neural activity in areas involved with allocation of attention and cognitive control (dorsolateral prefrontal cortex, posterior cingulate cortex, S1 and S2, precuneus). Apart from activation in the superior temporal gyrus and premotor cortex, there is little evidence that MVF activates the mirror neuron system. MVF increases the excitability of the ipsilateral primary motor cortex (M1) that projects to the "untrained" hand/arm. There is also evidence for ipsilateral projections from the contralateral M1 to the untrained/affected hand as a consequence of training with MVF. MVF can exert a strong influence on the motor network, mainly through increased cognitive penetration in action control, though the variance in methodology and the lack of studies that shed light on the functional connectivity between areas still limit insight into the actual underlying mechanisms. © The Author(s) 2014.

  16. A multifaceted approach to education, observation, and feedback in a successful hand hygiene campaign.

    Science.gov (United States)

    Doron, Shira I; Kifuji, Kayoko; Hynes, Brooke Tyson; Dunlop, Dan; Lemon, Tricia; Hansjosten, Karen; Cheung, Teresa; Curley, Barbara; Snydman, David R; Fairchild, David G

    2011-01-01

    Prevention of health care-associated infections starts with scrupulous hand hygiene (HH). Improving HH compliance is a major target for the World Health Organization Patient Safety Challenge and is one of The Joint Commission's National Patient Safety Goals. Yet, adherence to HH protocols is generally poor for health care professionals, despite interventions designed to improve compliance. At Tufts Medical Center (Boston), HH compliance rates were consistently low despite the presence of a traditional HH campaign that used communication and education. A comprehensive program incorporated strong commitment by hospital leadership-who were actively involved in responsibilities previously only performed by infection preventionists and quality and patient safety staff-dedication of financial resources, including securing a grant; collaborating with a private advertising firm in a marketing campaign; and employing a multifaceted approach to education, observation, and feedback. This campaign resulted in a rapid and sustained improvement in HH compliance: Compared with the mean HH compliance rate for the six months before the campaign (72%), postcampaign HH compliance (mean = 94%) was significantly greater (p marketing campaign to fit this academic medical center's particular culture, strong support from the medical center leadership, a multifaceted educational approach, and monthly feedback on HH compliance. A comprehensive campaign resulted in rapid and sustained improvement in HH compliance at an academic medical center after traditional communication and education strategies failed to improve HH performance.

  17. GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses

    Science.gov (United States)

    Markovic, Marko; Karnal, Hemanth; Graimann, Bernhard; Farina, Dario; Dosen, Strahinja

    2017-06-01

    Objective. Providing sensory feedback to the user of the prosthesis is an important challenge. The common approach is to use tactile stimulation, which is easy to implement but requires training and has limited information bandwidth. In this study, we propose an alternative approach based on augmented reality. Approach. We have developed the GLIMPSE, a Google Glass application which connects to the prosthesis via a Bluetooth interface and renders the prosthesis states (EMG signals, aperture, force and contact) using augmented reality (see-through display) and sound (bone conduction transducer). The interface was tested in healthy subjects that used the prosthesis with (FB group) and without (NFB group) feedback during a modified clothespins test that allowed us to vary the difficulty of the task. The outcome measures were the number of unsuccessful trials, the time to accomplish the task, and the subjective ratings of the relevance of the feedback. Main results. There was no difference in performance between FB and NFB groups in the case of a simple task (basic, same-color clothespins test), but the feedback significantly improved the performance in a more complex task (pins of different resistances). Importantly, the GLIMPSE feedback did not increase the time to accomplish the task. Therefore, the supplemental feedback might be useful in the tasks which are more demanding, and thereby less likely to benefit from learning and feedforward control. The subjects integrated the supplemental feedback with the intrinsic sources (vision and muscle proprioception), developing their own idiosyncratic strategies to accomplish the task. Significance. The present study demonstrates a novel self-contained, ready-to-deploy, wearable feedback interface. The interface was successfully tested and was proven to be feasible and functionally beneficial. The GLIMPSE can be used as a practical solution but also as a general and flexible instrument to investigate closed-loop prosthesis

  18. Differences in context and feedback result in different trajectories and adaptation strategies in reaching.

    Directory of Open Access Journals (Sweden)

    Fritzie Arce

    Full Text Available Computational models of motor control have often explained the straightness of horizontal planar reaching movements as a consequence of optimal control. Departure from rectilinearity is thus regarded as sub-optimal. Here we examine if subjects may instead select to make curved trajectories following adaptation to force fields and visuomotor rotations. Separate subjects adapted to force fields with or without visual feedback of their hand trajectory and were retested after 24 hours. Following adaptation, comparable accuracies were achieved in two ways: with visual feedback, adapted trajectories in force fields were straight whereas without it, they remained curved. The results suggest that trajectory shape is not always straight, but is also influenced by the calibration of available feedback signals for the state estimation required by the task. In a follow-up experiment, where additional subjects learned a visuomotor rotation immediately after force field, the trajectories learned in force fields (straight or curved were transferred when directions of the perturbations were similar but not when directions were opposing. This demonstrates a strong bias by prior experience to keep using a recently acquired control policy that continues to produce successful performance inspite of differences in tasks and feedback conditions. On relearning of force fields on the second day, facilitation by intervening visuomotor rotations occurred only when required motor adjustments and calibration of feedback signals were similar in both tasks. These results suggest that both the available feedback signals and prior history of learning influence the choice and maintenance of control policy during adaptations.

  19. Crossmodal representation of a functional robotic hand arises after extensive training in healthy participants.

    Science.gov (United States)

    Marini, Francesco; Tagliabue, Chiara F; Sposito, Ambra V; Hernandez-Arieta, Alejandro; Brugger, Peter; Estévez, Natalia; Maravita, Angelo

    2014-01-01

    The way in which humans represent their own bodies is critical in guiding their interactions with the environment. To achieve successful body-space interactions, the body representation is strictly connected with that of the space immediately surrounding it through efficient visuo-tactile crossmodal integration. Such a body-space integrated representation is not fixed, but can be dynamically modulated by the use of external tools. Our study aims to explore the effect of using a complex tool, namely a functional prosthesis, on crossmodal visuo-tactile spatial interactions in healthy participants. By using the crossmodal visuo-tactile congruency paradigm, we found that prolonged training with a mechanical hand capable of distal hand movements and providing sensory feedback induces a pattern of interference, which is not observed after a brief training, between visual stimuli close to the prosthesis and touches on the body. These results suggest that after extensive, but not short, training the functional prosthesis acquires a visuo-tactile crossmodal representation akin to real limbs. This finding adds to previous evidence for the embodiment of functional prostheses in amputees, and shows that their use may also improve the crossmodal combination of somatosensory feedback delivered by the prosthesis with visual stimuli in the space around it, thus effectively augmenting the patients' visuomotor abilities. © 2013 Published by Elsevier Ltd.

  20. A new visual feedback-based magnetorheological haptic master for robot-assisted minimally invasive surgery

    International Nuclear Information System (INIS)

    Choi, Seung-Hyun; Kim, Soomin; Kim, Pyunghwa; Park, Jinhyuk; Choi, Seung-Bok

    2015-01-01

    In this study, we developed a novel four-degrees-of-freedom haptic master using controllable magnetorheological (MR) fluid. We also integrated the haptic master with a vision device with image processing for robot-assisted minimally invasive surgery (RMIS). The proposed master can be used in RMIS as a haptic interface to provide the surgeon with a sense of touch by using both kinetic and kinesthetic information. The slave robot, which is manipulated with a proportional-integrative-derivative controller, uses a force sensor to obtain the desired forces from tissue contact, and these desired repulsive forces are then embodied through the MR haptic master. To verify the effectiveness of the haptic master, the desired force and actual force are compared in the time domain. In addition, a visual feedback system is implemented in the RMIS experiment to distinguish between the tumor and organ more clearly and provide better visibility to the operator. The hue-saturation-value color space is adopted for the image processing since it is often more intuitive than other color spaces. The image processing and haptic feedback are realized on surgery performance. In this work, tumor-cutting experiments are conducted under four different operating conditions: haptic feedback on, haptic feedback off, image processing on, and image processing off. The experimental realization shows that the performance index, which is a function of pixels, is different in the four operating conditions. (paper)

  1. Utility estimation of the application of auditory-visual-tactile sense feedback in respiratory gated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jung Hun; KIm, Byeong Jin; Roh, Shi Won; Lee, Hyeon Chan; Jang, Hyeong Jun; Kim, Hoi Nam [Dept. of Radiation Oncology, Biomedical Engineering, Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Song, Jae Hoon [Dept. of Biomedical Engineering, Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Kim, Young Jae [Dept. of Radiological Technology, Gwang Yang Health Collage, Gwangyang (Korea, Republic of)

    2013-03-15

    The purpose of this study was to evaluate the possibility to optimize the gated treatment delivery time and maintenance of stable respiratory by the introduction of breath with the assistance of auditory-visual-tactile sense. The experimenter's respiration were measured by ANZAI 4D system. We obtained natural breathing signal, monitor-induced breathing signal, monitor and ventilator-induced breathing signal, and breath-hold signal using real time monitor during 10 minutes beam-on-time. In order to check the stability of respiratory signals distributed in each group were compared with means, standard deviation, variation value, beam{sub t}ime of the respiratory signal. The stability of each respiratory was measured in consideration of deviation change studied in each respiratory time lapse. As a result of an analysis of respiratory signal, all experimenters has showed that breathing signal used both Real time monitor and Ventilator was the most stable and shortest time. In this study, it was evaluated that respiratory gated radiation therapy with auditory-visual-tactual sense and without auditory-visual-tactual sense feedback. The study showed that respiratory gated radiation therapy delivery time could significantly be improved by the application of video feedback when this is combined with audio-tactual sense assistance. This delivery technique did prove its feasibility to limit the tumor motion during treatment delivery for all patients to a defined value while maintaining the accuracy and proved the applicability of the technique in a conventional clinical schedule.

  2. Utility estimation of the application of auditory-visual-tactile sense feedback in respiratory gated radiation therapy

    International Nuclear Information System (INIS)

    Jo, Jung Hun; KIm, Byeong Jin; Roh, Shi Won; Lee, Hyeon Chan; Jang, Hyeong Jun; Kim, Hoi Nam; Song, Jae Hoon; Kim, Young Jae

    2013-01-01

    The purpose of this study was to evaluate the possibility to optimize the gated treatment delivery time and maintenance of stable respiratory by the introduction of breath with the assistance of auditory-visual-tactile sense. The experimenter's respiration were measured by ANZAI 4D system. We obtained natural breathing signal, monitor-induced breathing signal, monitor and ventilator-induced breathing signal, and breath-hold signal using real time monitor during 10 minutes beam-on-time. In order to check the stability of respiratory signals distributed in each group were compared with means, standard deviation, variation value, beam t ime of the respiratory signal. The stability of each respiratory was measured in consideration of deviation change studied in each respiratory time lapse. As a result of an analysis of respiratory signal, all experimenters has showed that breathing signal used both Real time monitor and Ventilator was the most stable and shortest time. In this study, it was evaluated that respiratory gated radiation therapy with auditory-visual-tactual sense and without auditory-visual-tactual sense feedback. The study showed that respiratory gated radiation therapy delivery time could significantly be improved by the application of video feedback when this is combined with audio-tactual sense assistance. This delivery technique did prove its feasibility to limit the tumor motion during treatment delivery for all patients to a defined value while maintaining the accuracy and proved the applicability of the technique in a conventional clinical schedule

  3. Hand-held dynamic visual noise reduces naturally occurring food cravings and craving-related consumption.

    Science.gov (United States)

    Kemps, Eva; Tiggemann, Marika

    2013-09-01

    This study demonstrated the applicability of the well-established laboratory task, dynamic visual noise, as a technique for reducing naturally occurring food cravings and subsequent food intake. Dynamic visual noise was delivered on a hand-held computer device. Its effects were assessed within the context of a diary study. Over a 4-week period, 48 undergraduate women recorded their food cravings and consumption. Following a 2-week baseline, half the participants watched the dynamic visual noise display whenever they experienced a food craving. Compared to a control group, these participants reported less intense cravings. They were also less likely to eat following a craving and consequently consumed fewer total calories following craving. These findings hold promise for curbing unwanted food cravings and craving-driven consumption in real-world settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Processing reafferent and exafferent visual information for action and perception.

    Science.gov (United States)

    Reichenbach, Alexandra; Diedrichsen, Jörn

    2015-01-01

    A recent study suggests that reafferent hand-related visual information utilizes a privileged, attention-independent processing channel for motor control. This process was termed visuomotor binding to reflect its proposed function: linking visual reafferences to the corresponding motor control centers. Here, we ask whether the advantage of processing reafferent over exafferent visual information is a specific feature of the motor processing stream or whether the improved processing also benefits the perceptual processing stream. Human participants performed a bimanual reaching task in a cluttered visual display, and one of the visual hand cursors could be displaced laterally during the movement. We measured the rapid feedback responses of the motor system as well as matched perceptual judgments of which cursor was displaced. Perceptual judgments were either made by watching the visual scene without moving or made simultaneously to the reaching tasks, such that the perceptual processing stream could also profit from the specialized processing of reafferent information in the latter case. Our results demonstrate that perceptual judgments in the heavily cluttered visual environment were improved when performed based on reafferent information. Even in this case, however, the filtering capability of the perceptual processing stream suffered more from the increasing complexity of the visual scene than the motor processing stream. These findings suggest partly shared and partly segregated processing of reafferent information for vision for motor control versus vision for perception.

  5. The human hand as an inspiration for robot hand development

    CERN Document Server

    Santos, Veronica

    2014-01-01

    “The Human Hand as an Inspiration for Robot Hand Development” presents an edited collection of authoritative contributions in the area of robot hands. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities. The twenty-four chapters discuss the field of robotic grasping and manipulation viewed in light of the human hand’s capabilities and push the state-of-the-art in robot hand design and control. Topics discussed include human hand biomechanics, neural control, sensory feedback and perception, and robotic grasp and manipulation. This book will be useful for researchers from diverse areas such as robotics, biomechanics, neuroscience, and anthropologists.

  6. Spatial limits on the nonvisual self-touch illusion and the visual rubber hand illusion: subjective experience of the illusion and proprioceptive drift.

    Science.gov (United States)

    Aimola Davies, Anne M; White, Rebekah C; Davies, Martin

    2013-06-01

    The nonvisual self-touch rubber hand paradigm elicits the compelling illusion that one is touching one's own hand even though the two hands are not in contact. In four experiments, we investigated spatial limits of distance (15 cm, 30 cm, 45 cm, 60 cm) and alignment (0°, 90° anti-clockwise) on the nonvisual self-touch illusion and the well-known visual rubber hand illusion. Common procedures (synchronous and asynchronous stimulation administered for 60s with the prosthetic hand at body midline) and common assessment methods were used. Subjective experience of the illusion was assessed by agreement ratings for statements on a questionnaire and time of illusion onset. The nonvisual self-touch illusion was diminished though never abolished by distance and alignment manipulations, whereas the visual rubber hand illusion was more robust against these manipulations. We assessed proprioceptive drift, and implications of a double dissociation between subjective experience of the illusion and proprioceptive drift are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback.

    Science.gov (United States)

    Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter

    2015-01-01

    In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.

  8. [Hand hygiene technique assessment using electronic equipment in 26 Hungarian healthcare institutions].

    Science.gov (United States)

    Lehotsky, Ákos; Morvai, Júlia; Szilágyi, László; Bánsághi, Száva; Benkó, Alíz; Haidegger, Tamás

    2017-07-01

    Hand hygiene is probably the most effective tool of nosocomial infection prevention, however, proper feedback and control is needed to develop the individual hand hygiene practice. Assessing the efficiency of modern education tools, and digital demonstration and verification equipment during their wide-range deployment. 1269 healthcare workers took part in a training organized by our team. The training included the assessment of the participants' hand hygiene technique to identify the most often missed areas. The hand hygiene technique was examined by a digital device. 33% of the participants disinfected their hands incorrectly. The most often missed sites are the fingertips (33% on the left hand, 37% on the right hand) and the thumbs (42% on the left hand, 32% on the right hand). The feedback has a fundamental role in the development of the hand hygiene technique. With the usage of electronic devices feedback can be provided efficiently and simply. Orv Hetil. 2017; 158(29): 1143-1148.

  9. The Effects of Task Clarification, Visual Prompts, and Graphic Feedback on Customer Greeting and Up-Selling in a Restaurant

    Science.gov (United States)

    Squires, James; Wilder, David A.; Fixsen, Amanda; Hess, Erica; Rost, Kristen; Curran, Ryan; Zonneveld, Kimberly

    2007-01-01

    An intervention consisting of task clarification, visual prompts, and graphic feedback was evaluated to increase customer greeting and up-selling in a restaurant. A combination multiple baseline and reversal design was used to evaluate intervention effects. Although all interventions improved performance over baseline, the delivery of graphic…

  10. Clean Hands Count

    Medline Plus

    Full Text Available ... Washing Video from CDC called "Put Your Hands Together" - Duration: 3:40. Patrick Boshell 27,834 views ... Policy & Safety Send feedback Test new features Loading... Working... Sign in to add this to Watch Later ...

  11. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept

    NARCIS (Netherlands)

    Roosink, M.; Robitaille, N.; McFadyen, B.J.; Hebert, L.J.; Jackson, P.L.; Bouyer, L.J.; Mercier, C.

    2015-01-01

    BACKGROUND: Virtual reality (VR) provides interactive multimodal sensory stimuli and biofeedback, and can be a powerful tool for physical and cognitive rehabilitation. However, existing systems have generally not implemented realistic full-body avatars and/or a scaling of visual movement feedback.

  12. Using Arrays of Microelectrodes Implanted in Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis

    Science.gov (United States)

    2015-10-01

    extended that work by investigating multiple aspects important for developing future bidirectional neural prostheses based on high-count microelectrode...Fan J M, Kao J C, Stavisky S D, Ryu S and Shenoy K 2012 A recurrent neural network for closed-loop intracortical brain-machine interface decoders J...Peripheral Nerve Interface, Prosthetic Hand, Neural Prosthesis, Sensory Feedback, Micro-stimulation, Electrophysiology, Action Potentials, Micro

  13. Clean Hands Count

    Medline Plus

    Full Text Available ... myths and misperceptions about hand hygiene and empower patients to play a role in their care by ... Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign ...

  14. Clean Hands Count

    Medline Plus

    Full Text Available ... 14. Lake Health 14,415 views 3:14 Safety Demo: The Importance of Hand Washing - Duration: 2: ... Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign ...

  15. Clean Hands Count

    Medline Plus

    Full Text Available ... 52 Hand Sanitizers and Soaps Put to the Test - Duration: 2:26. ABC News 42,006 views ... Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign in to add ...

  16. Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum.

    Science.gov (United States)

    Mizelle, J C; Oparah, Alexis; Wheaton, Lewis A

    2016-01-01

    The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.

  17. Analysis of Feedback in after Action Reviews

    Science.gov (United States)

    1987-06-01

    CONNTSM Page INTRODUCTIUN . . . . . . . . . . . . . . . . . . . A Perspective on Feedback. . ....... • • ..... • 1 Overviev of %,•urrent Research...part of their training program . The AAR is in marked contrast to the critique method of feedback which is often used in military training. The AAR...feedback is task-inherent feedback. Task-inherent feedback refers to human-machine interacting systems, e.g., computers , where in a visual tracking task

  18. Advanced Maintenance Simulation by Means of Hand-Based Haptic Interfaces

    Science.gov (United States)

    Nappi, Michele; Paolino, Luca; Ricciardi, Stefano; Sebillo, Monica; Vitiello, Giuliana

    Aerospace industry has been involved in virtual simulation for design and testing since the birth of virtual reality. Today this industry is showing a growing interest in the development of haptic-based maintenance training applications, which represent the most advanced way to simulate maintenance and repair tasks within a virtual environment by means of a visual-haptic approach. The goal is to allow the trainee to experiment the service procedures not only as a workflow reproduced at a visual level but also in terms of the kinaesthetic feedback involved with the manipulation of tools and components. This study, conducted in collaboration with aerospace industry specialists, is aimed to the development of an immersive virtual capable of immerging the trainees into a virtual environment where mechanics and technicians can perform maintenance simulation or training tasks by directly manipulating 3D virtual models of aircraft parts while perceiving force feedback through the haptic interface. The proposed system is based on ViRstperson, a virtual reality engine under development at the Italian Center for Aerospace Research (CIRA) to support engineering and technical activities such as design-time maintenance procedure validation, and maintenance training. This engine has been extended to support haptic-based interaction, enabling a more complete level of interaction, also in terms of impedance control, and thus fostering the development of haptic knowledge in the user. The user’s “sense of touch” within the immersive virtual environment is simulated through an Immersion CyberForce® hand-based force-feedback device. Preliminary testing of the proposed system seems encouraging.

  19. The effect of feedback regarding coping strategies and illness behavior on hand surgery patient satisfaction and communication: a randomized controlled trial.

    Science.gov (United States)

    Mellema, Jos J; O'Connor, Casey M; Overbeek, Celeste L; Hageman, Michiel G; Ring, David

    2015-09-01

    Patients and surgeons can feel uncomfortable discussing coping strategies, psychological distress, and stressful circumstances. It has been suggested that patient-reported outcome measures (PROMs) facilitate the discussion of factors associated with increased symptoms and disability. This study assessed the effect of providing feedback to patients regarding their coping strategy and illness behavior on patient satisfaction and patient-physician communication in orthopedic surgery. In a prospective study, 136 orthopedic patients were randomly assigned to either receive feedback about the Patient-Reported Outcomes Measurement Information System (PROMIS) Pain Interference computer-adaptive test (CAT) prior to the visit with the hand surgeon or not. The primary outcome was patient satisfaction with the consultation and secondary outcomes involved patient-physician communication. Bivariate and multivariable analyses were performed to determine the influence of the feedback on patient satisfaction and communication. There was no significant difference in patient satisfaction between patients who received feedback and patients who did not (P = 0.70). Feedback was associated with more frequent discussion of coping strategies (P = 0.045) in bivariate analysis but was not independently associated: in multivariable analysis, only PROMIS Pain Interference CAT and age were identified as independent predictors (odds ratio (OR) 1.1; 95 % confidence interval (CI) 1.0-1.1, P = 0.013, and OR 0.97, 95 % CI 0.94-0.99, P = 0.032, respectively). No factors were associated with discussion of stressors. Discussion of circumstances was independently associated with increased PROMIS Pain Interference CAT, marital status, and work status. We found that feedback regarding coping strategies and illness behavior using the PROMIS Pain Interference CAT did not affect patient satisfaction. Although feedback was associated with increased discussion of illness behavior in bivariate

  20. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    Science.gov (United States)

    Li, Min; Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.

  1. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.

  2. Does Top-Down Feedback Modulate the Encoding of Orthographic Representations During Visual-Word Recognition?

    Science.gov (United States)

    Perea, Manuel; Marcet, Ana; Vergara-Martínez, Marta

    2016-09-01

    In masked priming lexical decision experiments, there is a matched-case identity advantage for nonwords, but not for words (e.g., ERTAR-ERTAR words when top-down feedback is minimized. We employed a task that taps prelexical orthographic processes: the masked prime same-different task. For "same" trials, results showed faster response times for targets when preceded by a briefly presented matched-case identity prime than when preceded by a mismatched-case identity prime. Importantly, this advantage was similar in magnitude for nonwords and words. This finding constrains the interplay of bottom-up versus top-down mechanisms in models of visual-word identification.

  3. [Influence of "prehistory" of sequential movements of the right and the left hand on reproduction: coding of positions, movements and sequence structure].

    Science.gov (United States)

    Bobrova, E V; Liakhovetskiĭ, V A; Borshchevskaia, E R

    2011-01-01

    The dependence of errors during reproduction of a sequence of hand movements without visual feedback on the previous right- and left-hand performance ("prehistory") and on positions in space of sequence elements (random or ordered by the explicit rule) was analyzed. It was shown that the preceding information about the ordered positions of the sequence elements was used during right-hand movements, whereas left-hand movements were performed with involvement of the information about the random sequence. The data testify to a central mechanism of the analysis of spatial structure of sequence elements. This mechanism activates movement coding specific for the left hemisphere (vector coding) in case of an ordered sequence structure and positional coding specific for the right hemisphere in case of a random sequence structure.

  4. Adaptive learning in a compartmental model of visual cortex - how feedback enables stable category learning and refinement

    Directory of Open Access Journals (Sweden)

    Georg eLayher

    2014-12-01

    Full Text Available The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, but both belong to the category of felines. In other words, tigers and leopards are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in the computational neurosciences. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of (sub- category representations. We demonstrate the temporal evolution of such learning and show how the approach successully establishes category and subcategory

  5. Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators

    Science.gov (United States)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2013-08-01

    Operators of a pair of robotic hands report ownership for those hands when they hold image of a grasp motion and watch the robot perform it. We present a novel body ownership illusion that is induced by merely watching and controlling robot's motions through a brain machine interface. In past studies, body ownership illusions were induced by correlation of such sensory inputs as vision, touch and proprioception. However, in the presented illusion none of the mentioned sensations are integrated except vision. Our results show that during BMI-operation of robotic hands, the interaction between motor commands and visual feedback of the intended motions is adequate to incorporate the non-body limbs into one's own body. Our discussion focuses on the role of proprioceptive information in the mechanism of agency-driven illusions. We believe that our findings will contribute to improvement of tele-presence systems in which operators incorporate BMI-operated robots into their body representations.

  6. A review of invasive and non-invasive sensory feedback in upper limb prostheses.

    Science.gov (United States)

    Svensson, Pamela; Wijk, Ulrika; Björkman, Anders; Antfolk, Christian

    2017-06-01

    The constant challenge to restore sensory feedback in prosthetic hands has provided several research solutions, but virtually none has reached clinical fruition. A prosthetic hand with sensory feedback that closely imitates an intact hand and provides a natural feeling may induce the prosthetic hand to be included in the body image and also reinforces the control of the prosthesis. Areas covered: This review presents non-invasive sensory feedback systems such as mechanotactile, vibrotactile, electrotactile and combinational systems which combine the modalities; multi-haptic feedback. Invasive sensory feedback has been tried less, because of the inherent risk, but it has successfully shown to restore some afferent channels. In this review, invasive methods are also discussed, both extraneural and intraneural electrodes, such as cuff electrodes and transverse intrafascicular multichannel electrodes. The focus of the review is on non-invasive methods of providing sensory feedback to upper-limb amputees. Expert commentary: Invoking embodiment has shown to be of importance for the control of prosthesis and acceptance by the prosthetic wearers. It is a challenge to provide conscious feedback to cover the lost sensibility of a hand, not be overwhelming and confusing for the user, and to integrate technology within the constraint of a wearable prosthesis.

  7. A Systematic Review of the Literature on Parenting of Young Children with Visual Impairments and the Adaptions for Video-Feedback Intervention to Promote Positive Parenting (VIPP)

    NARCIS (Netherlands)

    van den Broek, Ellen G. C.; van Eijden, Ans J P M; Overbeek, Mathilde M.; Kef, Sabina; Sterkenburg, Paula S.; Schuengel, Carlo

    Secure parent-child attachment may help children to overcome the challenges of growing up with a visual or visual-and-intellectual impairment. A large literature exists that provides a blueprint for interventions that promote parental sensitivity and secure attachment. The Video-feedback

  8. Muscle involvement during intermittent contraction patterns with different target force feedback modes

    DEFF Research Database (Denmark)

    Sjøgaard, G; Jørgensen, L V; Ekner, D

    2000-01-01

    and following 30 min of intermittent contractions showed larger fatigue development with proprioceptive feedback than visual feedback. Also rating of perceived exertion increased more during proprioceptive feedback than visual feedback. This may in part be explained by small differences in the mechanics during......: Feedback mode significantly effects the muscle involvement and fatigue during intermittent contractions. RelevanceIntermittent contractions are common in many work places and various feedback modes are being given regarding work requirements. The choice of feedback may significantly affect the muscle load...... and consequently the development muscle fatigue and disorders....

  9. Restoring natural sensory feedback in real-time bidirectional hand prostheses

    DEFF Research Database (Denmark)

    Raspopovic, Stanisa; Capogrosso, Marco; Petrini, Francesco Maria

    2014-01-01

    Hand loss is a highly disabling event that markedly affects the quality of life. To achieve a close to natural replacement for the lost hand, the user should be provided with the rich sensations that we naturally perceive when grasping or manipulating an object. Ideal bidirectional hand prosthese...

  10. Keeping Pace with Your Eating: Visual Feedback Affects Eating Rate in Humans.

    Directory of Open Access Journals (Sweden)

    Laura L Wilkinson

    Full Text Available Deliberately eating at a slower pace promotes satiation and eating quickly has been associated with a higher body mass index. Therefore, understanding factors that affect eating rate should be given high priority. Eating rate is affected by the physical/textural properties of a food, by motivational state, and by portion size and palatability. This study explored the prospect that eating rate is also influenced by a hitherto unexplored cognitive process that uses ongoing perceptual estimates of the volume of food remaining in a container to adjust intake during a meal. A 2 (amount seen; 300 ml or 500 ml x 2 (amount eaten; 300 ml or 500 ml between-subjects design was employed (10 participants in each condition. In two 'congruent' conditions, the same amount was seen at the outset and then subsequently consumed (300 ml or 500 ml. To dissociate visual feedback of portion size and actual amount consumed, food was covertly added or removed from a bowl using a peristaltic pump. This created two additional 'incongruent' conditions, in which 300 ml was seen but 500 ml was eaten or vice versa. We repeated these conditions using a savoury soup and a sweet dessert. Eating rate (ml per second was assessed during lunch. After lunch we assessed fullness over a 60-minute period. In the congruent conditions, eating rate was unaffected by the actual volume of food that was consumed (300 ml or 500 ml. By contrast, we observed a marked difference across the incongruent conditions. Specifically, participants who saw 300 ml but actually consumed 500 ml ate at a faster rate than participants who saw 500 ml but actually consumed 300 ml. Participants were unaware that their portion size had been manipulated. Nevertheless, when it disappeared faster or slower than anticipated they adjusted their rate of eating accordingly. This suggests that the control of eating rate involves visual feedback and is not a simple reflexive response to orosensory stimulation.

  11. Keeping Pace with Your Eating: Visual Feedback Affects Eating Rate in Humans.

    Science.gov (United States)

    Wilkinson, Laura L; Ferriday, Danielle; Bosworth, Matthew L; Godinot, Nicolas; Martin, Nathalie; Rogers, Peter J; Brunstrom, Jeffrey M

    2016-01-01

    Deliberately eating at a slower pace promotes satiation and eating quickly has been associated with a higher body mass index. Therefore, understanding factors that affect eating rate should be given high priority. Eating rate is affected by the physical/textural properties of a food, by motivational state, and by portion size and palatability. This study explored the prospect that eating rate is also influenced by a hitherto unexplored cognitive process that uses ongoing perceptual estimates of the volume of food remaining in a container to adjust intake during a meal. A 2 (amount seen; 300 ml or 500 ml) x 2 (amount eaten; 300 ml or 500 ml) between-subjects design was employed (10 participants in each condition). In two 'congruent' conditions, the same amount was seen at the outset and then subsequently consumed (300 ml or 500 ml). To dissociate visual feedback of portion size and actual amount consumed, food was covertly added or removed from a bowl using a peristaltic pump. This created two additional 'incongruent' conditions, in which 300 ml was seen but 500 ml was eaten or vice versa. We repeated these conditions using a savoury soup and a sweet dessert. Eating rate (ml per second) was assessed during lunch. After lunch we assessed fullness over a 60-minute period. In the congruent conditions, eating rate was unaffected by the actual volume of food that was consumed (300 ml or 500 ml). By contrast, we observed a marked difference across the incongruent conditions. Specifically, participants who saw 300 ml but actually consumed 500 ml ate at a faster rate than participants who saw 500 ml but actually consumed 300 ml. Participants were unaware that their portion size had been manipulated. Nevertheless, when it disappeared faster or slower than anticipated they adjusted their rate of eating accordingly. This suggests that the control of eating rate involves visual feedback and is not a simple reflexive response to orosensory stimulation.

  12. Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.

    Science.gov (United States)

    Gibson, Alison; Artemiadis, Panagiotis

    2014-01-01

    As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.

  13. The effects of spatially displaced visual feedback on remote manipulator performance

    Science.gov (United States)

    Smith, Randy L.; Stuart, Mark A.

    1993-01-01

    The results of this evaluation have important implications for the arrangement of remote manipulation worksites and the design of workstations for telerobot operations. This study clearly illustrates the deleterious effects that can accompany the performance of remote manipulator tasks when viewing conditions are less than optimal. Future evaluations should emphasize telerobot camera locations and the use of image/graphical enhancement techniques in an attempt to lessen the adverse effects of displaced visual feedback. An important finding in this evaluation is the extent to which results from previously performed direct manipulation studies can be generalized to remote manipulation studies. Even though the results obtained were very similar to those of the direct manipulation evaluations, there were differences as well. This evaluation has demonstrated that generalizations to remote manipulation applications based upon the results of direct manipulation studies are quite useful, but they should be made cautiously.

  14. Vibrotactile Feedback for Brain-Computer Interface Operation

    OpenAIRE

    Cincotti, Febo; Kauhanen, Laura; Aloise, Fabio; Palomäki, Tapio; Caporusso, Nicholas; Jylänki, Pasi; Mattia, Donatella; Babiloni, Fabio; Vanacker, Gerolf; Nuttin, Marnix; Marciani, Maria Grazia; Millán, José del R.

    2007-01-01

    To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (i...

  15. Studies on hand-held visual communication device for the deaf and speech-impaired 2. Keyboard design.

    Science.gov (United States)

    Thurlow, W R

    1980-01-01

    Experiments with keyboard arrangements of letters show that simple alphabetic letter-key sequences with 4 to 5 letters in a row lead to most rapid visual search performance. Such arrangements can be used on keyboards operated by the index finger of one hand. Arrangement of letters in words offers a promising alternative because these arrangements can be readily memorized and can result in small interletter distances on the keyboard for frequently occurring letter sequences. Experiments on operation of keyboards show that a space or shift key operated by the left hand (which also holds the communication device) results in faster keyboard operation than when space or shift keys on the front of the keyboard (operated by right hand) are used. Special problems of the deaf-blind are discussed. Keyboard arrangements are investigated, and matching tactual codes are suggested.

  16. Accuracy and confidence of visual short-term memory do not go hand-in-hand: behavioral and neural dissociations.

    Directory of Open Access Journals (Sweden)

    Silvia Bona

    Full Text Available Currently influential models of working memory posit that memory content is highly accessible to conscious inspection. These models predict that metacognition of memory performance should go hand-in-hand with the accuracy of the underlying memory representation. To test this view, we investigated how visual information presented during the maintenance period affects VSTM accuracy and confidence. We used a delayed cue-target orientation discrimination task in which participants were asked to hold in memory a grating, and during the maintenance period a second memory cue could be presented. VSTM accuracy of the first memory cue was impaired when the orientation of the second memory cue was sufficiently different. However, participants' response confidence was reduced whenever the second memory cue was presented; thus VSTM accuracy and confidence were dissociated. In a second experiment, we applied transcranial direct current stimulation (tDCS over the right dorsolateral prefrontal cortex (DLPFC to investigate the causal role of this region in VSTM metacognition. Relative to the sham condition, anodal tDCS induced a general reduction in confidence ratings but did not affect VSTM accuracy. Overall, these results indicate that our metacognition of memory performance is influenced by factors other than the accuracy of the underlying memory representation.

  17. Accuracy and Confidence of Visual Short-Term Memory Do Not Go Hand-In-Hand: Behavioral and Neural Dissociations

    Science.gov (United States)

    Bona, Silvia; Silvanto, Juha

    2014-01-01

    Currently influential models of working memory posit that memory content is highly accessible to conscious inspection. These models predict that metacognition of memory performance should go hand-in-hand with the accuracy of the underlying memory representation. To test this view, we investigated how visual information presented during the maintenance period affects VSTM accuracy and confidence. We used a delayed cue–target orientation discrimination task in which participants were asked to hold in memory a grating, and during the maintenance period a second memory cue could be presented. VSTM accuracy of the first memory cue was impaired when the orientation of the second memory cue was sufficiently different. However, participants' response confidence was reduced whenever the second memory cue was presented; thus VSTM accuracy and confidence were dissociated. In a second experiment, we applied transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (DLPFC) to investigate the causal role of this region in VSTM metacognition. Relative to the sham condition, anodal tDCS induced a general reduction in confidence ratings but did not affect VSTM accuracy. Overall, these results indicate that our metacognition of memory performance is influenced by factors other than the accuracy of the underlying memory representation. PMID:24663094

  18. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.

    Science.gov (United States)

    Kitagawa, Masaya; Dokko, Daniell; Okamura, Allison M; Yuh, David D

    2005-01-01

    Direct haptic (force or tactile) feedback is not yet available in commercial robotic surgical systems. Previous work by our group and others suggests that haptic feedback might significantly enhance the execution of surgical tasks requiring fine suture manipulation, specifically those encountered in cardiothoracic surgery. We studied the effects of substituting direct haptic feedback with visual and auditory cues to provide the operating surgeon with a representation of the forces he or she is applying with robotic telemanipulators. Using the robotic da Vinci surgical system (Intuitive Surgical, Inc, Sunnyvale, Calif), we compared applied forces during a standardized surgical knot-tying task under 4 different sensory-substitution scenarios: no feedback, auditory feedback, visual feedback, and combined auditory-visual feedback. The forces applied with these sensory-substitution modes more closely approximate suture tensions achieved under ideal haptic conditions (ie, hand ties) than forces applied without such sensory feedback. The consistency of applied forces during robot-assisted suture tying aided by visual feedback or combined auditory-visual feedback sensory substitution is superior to that achieved with hand ties. Robot-assisted ties aided with auditory feedback revealed levels of consistency that were generally equivalent or superior to those attained with hand ties. Visual feedback and auditory feedback improve the consistency of robotically applied forces. Sensory substitution, in the form of visual feedback, auditory feedback, or both, confers quantifiable advantages in applied force accuracy and consistency during the performance of a simple surgical task.

  19. Promoting smoke-free homes: a novel behavioral intervention using real-time audio-visual feedback on airborne particle levels.

    Directory of Open Access Journals (Sweden)

    Neil E Klepeis

    Full Text Available Interventions are needed to protect the health of children who live with smokers. We pilot-tested a real-time intervention for promoting behavior change in homes that reduces second hand tobacco smoke (SHS levels. The intervention uses a monitor and feedback system to provide immediate auditory and visual signals triggered at defined thresholds of fine particle concentration. Dynamic graphs of real-time particle levels are also shown on a computer screen. We experimentally evaluated the system, field-tested it in homes with smokers, and conducted focus groups to obtain general opinions. Laboratory tests of the monitor demonstrated SHS sensitivity, stability, precision equivalent to at least 1 µg/m(3, and low noise. A linear relationship (R(2 = 0.98 was observed between the monitor and average SHS mass concentrations up to 150 µg/m(3. Focus groups and interviews with intervention participants showed in-home use to be acceptable and feasible. The intervention was evaluated in 3 homes with combined baseline and intervention periods lasting 9 to 15 full days. Two families modified their behavior by opening windows or doors, smoking outdoors, or smoking less. We observed evidence of lower SHS levels in these homes. The remaining household voiced reluctance to changing their smoking activity and did not exhibit lower SHS levels in main smoking areas or clear behavior change; however, family members expressed receptivity to smoking outdoors. This study established the feasibility of the real-time intervention, laying the groundwork for controlled trials with larger sample sizes. Visual and auditory cues may prompt family members to take immediate action to reduce SHS levels. Dynamic graphs of SHS levels may help families make decisions about specific mitigation approaches.

  20. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.

    Science.gov (United States)

    Botzer, Lior; Karniel, Amir

    2013-07-01

    It has been suggested that the brain and in particular the cerebellum and motor cortex adapt to represent the environment during reaching movements under various visuomotor perturbations. It is well known that significant delay is present in neural conductance and processing; however, the possible representation of delay and adaptation to delayed visual feedback has been largely overlooked. Here we investigated the control of reaching movements in human subjects during an imposed visuomotor delay in a virtual reality environment. In the first experiment, when visual feedback was unexpectedly delayed, the hand movement overshot the end-point target, indicating a vision-based feedback control. Over the ensuing trials, movements gradually adapted and became accurate. When the delay was removed unexpectedly, movements systematically undershot the target, demonstrating that adaptation occurred within the vision-based feedback control mechanism. In a second experiment designed to broaden our understanding of the underlying mechanisms, we revealed similar after-effects for rhythmic reversal (out-and-back) movements. We present a computational model accounting for these results based on two adapted forward models, each tuned for a specific modality delay (proprioception or vision), and a third feedforward controller. The computational model, along with the experimental results, refutes delay representation in a pure forward vision-based predictor and suggests that adaptation occurred in the forward vision-based predictor, and concurrently in the state-based feedforward controller. Understanding how the brain compensates for conductance and processing delays is essential for understanding certain impairments concerning these neural delays as well as for the development of brain-machine interfaces. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.

    Science.gov (United States)

    Revina, Yulia; Petro, Lucy S; Muckli, Lars

    2017-09-22

    Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Noisy visual feedback training impairs detection of self-generated movement error: implications for anosognosia for hemiplegia

    Directory of Open Access Journals (Sweden)

    Catherine ePreston

    2014-06-01

    Full Text Available Anosognosia for hemiplegia (AHP is characterised as a disorder in which patients are unaware of their contralateral motor deficit. Many current theories for unawareness in AHP are based on comparator model accounts of the normal experience of agency. According to such models, while small mismatches between predicted and actual feedback allow unconscious fine-tuning of normal actions, mismatches that surpass an inherent threshold reach conscious awareness and inform judgements of agency (whether a given movement is produced by the self or another agent. This theory depends on a threshold for consciousness that is greater than the intrinsic noise in the system to reduce the occurrence of incorrect rejections of self-generated movements and maintain a fluid experience of agency. Pathological increases to this threshold could account for reduced motor awareness following brain injury, including AHP. The current experiment tested this hypothesis in healthy controls by exposing them to training in which noise was applied the visual feedback of their normal reaches. Subsequent self/other attribution tasks without noise revealed a decrease in the ability to detect manipulated (other feedback compared to training without noise. This suggests a slackening of awareness thresholds in the comparator model that may help to explain clinical observations of decreased action awareness following stroke.

  3. Interação de variáveis biomecânicas na composição de "feedback" visual aumentado para o ensino do ciclismo Interacción de variables biomecánicas en la composición de feedback visual aumentado para el enseñanza del ciclismo Interaction of biomechanical variables in the composition of visual augmented feedback for learning cycling

    Directory of Open Access Journals (Sweden)

    Guilherme Garcia Holderbaum

    2012-12-01

    Full Text Available O objetivo deste estudo foi testar uma metodologia para o ensino da técnica da pedalada do ciclismo utilizando variáveis biomecánicas para desenvolver um sistema de "feedback" visual aumentado (FVA. Participaram do estudo 19 indivíduos, sem experiência no ciclismo , divididos em grupo experimental (n = 10 e controle (n = 9. Inicialmente foi realizado um pré-teste para determinar o consumo máximo de oxigênio (VO2máx bem como a carga de trabalho utilizada nas sessões práticas que correspondeu a 60% do VO2máx. Em seguida foram realizadas sete sessões de prática. O grupo experimental foi submetido ao FVA e o grupo controle ao "feedback" aumentado (FA. O teste de retenção mostrou um aumento de 21 % na média do índice de efetividade (IE do grupo experimental quando comparado ao grupo controle. Os resultados mostraram que variáveis biomecánicas são apropriadas para o desenvolvimento de FVA e podem contribuir no processo de ensino-aprendizagem da técnica da pedalada do ciclismo.El objetivo de este estudio fue probar una metodología para enseñar la técnica de el ciclismo mediante la utilización de variables biomecánicas para desarrollar un sistema de feedback visual aumentado (FVA. Fue aplicado en 19 personas sin experiencia en el ciclismo, divididos en dos grupos (experimental = 10 y control = 9. Inicialmente se realizó un pre-test para determinar el consumo máximo de oxígeno (VO2max y la carga de trabajo utilizada en las sesiones de práctica que correspondía al 60% del VO2máx. El grupo experimental fue sometido a la FVA y el control a la feedback aumentado (FA. El ensayo de retención mostró un aumento del 21% en la media del índice de eficacia (IE en el grupo experimental en comparación con el grupo control. Los resultados mostraron que las variables biomecánicas son apropiadas para el desarrollo de la FVA y puede contribuir al proceso de enseñanza y aprendizaje del ciclismo.The aim of this study was to test a

  4. A virtual reality-based method of decreasing transmission time of visual feedback for a tele-operative robotic catheter operating system.

    Science.gov (United States)

    Guo, Jin; Guo, Shuxiang; Tamiya, Takashi; Hirata, Hideyuki; Ishihara, Hidenori

    2016-03-01

    An Internet-based tele-operative robotic catheter operating system was designed for vascular interventional surgery, to afford unskilled surgeons the opportunity to learn basic catheter/guidewire skills, while allowing experienced physicians to perform surgeries cooperatively. Remote surgical procedures, limited by variable transmission times for visual feedback, have been associated with deterioration in operability and vascular wall damage during surgery. At the patient's location, the catheter shape/position was detected in real time and converted into three-dimensional coordinates in a world coordinate system. At the operation location, the catheter shape was reconstructed in a virtual-reality environment, based on the coordinates received. The data volume reduction significantly reduced visual feedback transmission times. Remote transmission experiments, conducted over inter-country distances, demonstrated the improved performance of the proposed prototype. The maximum error for the catheter shape reconstruction was 0.93 mm and the transmission time was reduced considerably. The results were positive and demonstrate the feasibility of remote surgery using conventional network infrastructures. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Illusory body ownership of an invisible body interpolated between virtual hands and feet via visual-motor synchronicity.

    Science.gov (United States)

    Kondo, Ryota; Sugimoto, Maki; Minamizawa, Kouta; Hoshi, Takayuki; Inami, Masahiko; Kitazaki, Michiteru

    2018-05-15

    Body ownership can be modulated through illusory visual-tactile integration or visual-motor synchronicity/contingency. Recently, it has been reported that illusory ownership of an invisible body can be induced by illusory visual-tactile integration from a first-person view. We aimed to test whether a similar illusory ownership of the invisible body could be induced by the active method of visual-motor synchronicity and if the illusory invisible body could be experienced in front of and facing away from the observer. Participants observed left and right white gloves and socks in front of them, at a distance of 2 m, in a virtual room through a head-mounted display. The white gloves and socks were synchronized with the observers' actions. In the experiments, we tested the effect of synchronization, and compared this to a whole-body avatar, measuring self-localization drift. We observed that visual hands and feet were sufficient to induce illusory body ownership, and this effect was as strong as using a whole-body avatar.

  6. Online body schema adaptation based on internal mental simulation and multisensory feedback

    Directory of Open Access Journals (Sweden)

    Pedro eVicente

    2016-03-01

    Full Text Available In this paper, we describe a novel approach to obtain automatic adaptation of the robot body schema and to improve the robot perceptual and motor skills based on this body knowledge. Predictions obtained through a mental simulation of the body are combined with the real sensory feedback to achieve two objectives simultaneously: body schema adaptation and markerless 6D hand pose estimation. The body schema consists of a computer graphics simulation of the robot, which includes the arm and head kinematics (adapted online during the movements and an appearance model of the hand shape and texture. The mental simulation process generates predictions on how the hand will appear in the robot camera images, based on the body schema and the proprioceptive information (i.e. motor encoders. These predictions are compared to the actual images using Sequential Monte Carlo techniques to feed a particle-based Bayesian estimation method to estimate the parameters of the body schema. The updated body schema will improve the estimates of the 6D hand pose, which is thenused in a closed-loop control scheme (i.e. visual servoing, enabling precise reaching. We report experiments with the iCub humanoid robot that support the validity of our approach. A number of simulations with precise ground-truth were performed to evaluate the estimation capabilities of the proposed framework. Then, we show how the use of high-performance GPU programming and an edge-based algorithm for visual perception allow for real-time implementation in real world scenarios.

  7. Learning receptive fields using predictive feedback.

    Science.gov (United States)

    Jehee, Janneke F M; Rothkopf, Constantin; Beck, Jeffrey M; Ballard, Dana H

    2006-01-01

    Previously, it was suggested that feedback connections from higher- to lower-level areas carry predictions of lower-level neural activities, whereas feedforward connections carry the residual error between the predictions and the actual lower-level activities [Rao, R.P.N., Ballard, D.H., 1999. Nature Neuroscience 2, 79-87.]. A computational model implementing the hypothesis learned simple cell receptive fields when exposed to natural images. Here, we use predictive feedback to explain tuning properties in medial superior temporal area (MST). We implement the hypothesis using a new, biologically plausible, algorithm based on matching pursuit, which retains all the features of the previous implementation, including its ability to efficiently encode input. When presented with natural images, the model developed receptive field properties as found in primary visual cortex. In addition, when exposed to visual motion input resulting from movements through space, the model learned receptive field properties resembling those in MST. These results corroborate the idea that predictive feedback is a general principle used by the visual system to efficiently encode natural input.

  8. Visual narratives : free-hand sketch for visual search and navigation of video.

    OpenAIRE

    James, Stuart

    2016-01-01

    Humans have an innate ability to communicate visually; the earliest forms of communication were cave drawings, and children can communicate visual descriptions of scenes through drawings well before they can write. Drawings and sketches offer an intuitive and efficient means for communicating visual concepts. Today, society faces a deluge of digital visual content driven by a surge in the generation of video on social media and the online availability of video archives. Mobile devices are...

  9. The effect of hand position on perceived finger orientation in left- and right-handers.

    Science.gov (United States)

    Fraser, Lindsey E; Harris, Laurence R

    2017-12-01

    In the absence of visual feedback, the perceived orientation of the fingers is systematically biased. In right-handers these biases are asymmetrical between the left and right hands in the horizontal plane and may reflect common functional postures for the two hands. Here we compared finger orientation perception in right- and left-handed participants for both hands, across various hand positions in the horizontal plane. Participants rotated a white line on a screen optically superimposed over their hand to indicate the perceived position of the finger that was rotated to one of seven orientations with the hand either aligned with the body midline, aligned with the shoulder, or displaced by twice the shoulder-to-midline distance from the midline. We replicated the asymmetric pattern of biases previously reported in right-handed participants (left hand biased towards an orientation ~30° inward, right hand ~10° inward). However, no such asymmetry was found for left-handers, suggesting left-handers may use different strategies when mapping proprioception to body or space coordinates and/or have less specialization of function between the hands. Both groups' responses rotated further outward as distance of the hand from the body midline increased, consistent with other research showing spatial orientation estimates diverge outward in the periphery. Finally, for right-handers, precision of responses was best when the hand was aligned with the shoulder compared to the other two conditions. These results highlight the unique role of hand dominance and hand position in perception of finger orientation, and provide insight into the proprioceptive position sense of the upper limbs.

  10. Deep Visual Attributes vs. Hand-Crafted Audio Features on Multidomain Speech Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Michalis Papakostas

    2017-06-01

    Full Text Available Emotion recognition from speech may play a crucial role in many applications related to human–computer interaction or understanding the affective state of users in certain tasks, where other modalities such as video or physiological parameters are unavailable. In general, a human’s emotions may be recognized using several modalities such as analyzing facial expressions, speech, physiological parameters (e.g., electroencephalograms, electrocardiograms etc. However, measuring of these modalities may be difficult, obtrusive or require expensive hardware. In that context, speech may be the best alternative modality in many practical applications. In this work we present an approach that uses a Convolutional Neural Network (CNN functioning as a visual feature extractor and trained using raw speech information. In contrast to traditional machine learning approaches, CNNs are responsible for identifying the important features of the input thus, making the need of hand-crafted feature engineering optional in many tasks. In this paper no extra features are required other than the spectrogram representations and hand-crafted features were only extracted for validation purposes of our method. Moreover, it does not require any linguistic model and is not specific to any particular language. We compare the proposed approach using cross-language datasets and demonstrate that it is able to provide superior results vs. traditional ones that use hand-crafted features.

  11. Prosthetic hand sensor placement: Analysis of touch perception during the grasp

    Directory of Open Access Journals (Sweden)

    Mirković Bojana

    2014-01-01

    Full Text Available Humans rely on their hands to perform everyday tasks. The hand is used as a tool, but also as the interface to “sense” the world. Current prosthetic hands are based on sophisticated multi-fingered structures, and include many sensors which counterpart natural proprioceptors and exteroceptors. The sensory information is used for control, but not sent to the user of the hand (amputee. Grasping without sensing is not good enough. This research is part of the development of the sensing interface for amputees, specifically addressing the analysis of human perception while grasping. The goal is to determine the small number of preferred positions of sensors on the prosthetic hand. This task has previously been approached by trying to replicate a natural sensory system characteristic for healthy humans, resulting in a multitude of redundant sensors and basic inability to make the patient aware of the sensor readings on the subconscious level. We based our artificial perception system on the reported sensations of humans when grasping various objects without seeing the objects (obstructed visual feedback. Subjects, with no known sensory deficits, were asked to report on the touch sensation while grasping. The analysis included objects of various sizes, weights, textures and temperatures. Based on this data we formed a map of the preferred positions for the sensors that is appropriate for five finger human-like robotic hand. The final map was intentionally minimized in size (number of sensors.

  12. Effect of visuomotor-map uncertainty on visuomotor adaptation.

    Science.gov (United States)

    Saijo, Naoki; Gomi, Hiroaki

    2012-03-01

    Vision and proprioception contribute to generating hand movement. If a conflict between the visual and proprioceptive feedback of hand position is given, reaching movement is disturbed initially but recovers after training. Although previous studies have predominantly investigated the adaptive change in the motor output, it is unclear whether the contributions of visual and proprioceptive feedback controls to the reaching movement are modified by visuomotor adaptation. To investigate this, we focused on the change in proprioceptive feedback control associated with visuomotor adaptation. After the adaptation to gradually introduce visuomotor rotation, the hand reached the shifted position of the visual target to move the cursor to the visual target correctly. When the cursor feedback was occasionally eliminated (probe trial), the end point of the hand movement was biased in the visual-target direction, while the movement was initiated in the adapted direction, suggesting the incomplete adaptation of proprioceptive feedback control. Moreover, after the learning of uncertain visuomotor rotation, in which the rotation angle was randomly fluctuated on a trial-by-trial basis, the end-point bias in the probe trial increased, but the initial movement direction was not affected, suggesting a reduction in the adaptation level of proprioceptive feedback control. These results suggest that the change in the relative contribution of visual and proprioceptive feedback controls to the reaching movement in response to the visuomotor-map uncertainty is involved in visuomotor adaptation, whereas feedforward control might adapt in a manner different from that of the feedback control.

  13. An Enhanced Intelligent Handheld Instrument with Visual Servo Control for 2-DOF Hand Motion Error Compensation

    Directory of Open Access Journals (Sweden)

    Yan Naing Aye

    2013-10-01

    Full Text Available The intelligent handheld instrument, ITrem2, enhances manual positioning accuracy by cancelling erroneous hand movements and, at the same time, provides automatic micromanipulation functions. Visual data is acquired from a high speed monovision camera attached to the optical surgical microscope and acceleration measurements are acquired from the inertial measurement unit (IMU on board ITrem2. Tremor estimation and canceling is implemented via Band-limited Multiple Fourier Linear Combiner (BMFLC filter. The piezoelectric actuated micromanipulator in ITrem2 generates the 3D motion to compensate erroneous hand motion. Preliminary bench-top 2-DOF experiments have been conducted. The error motions simulated by a motion stage is reduced by 67% for multiple frequency oscillatory motions and 56.16% for pre-conditioned recorded physiological tremor.

  14. Duration reproduction with sensory feedback delay: Differential involvement of perception and action time

    Directory of Open Access Journals (Sweden)

    Stephanie eGanzenmüller

    2012-10-01

    Full Text Available Previous research has shown that voluntary action can attract subsequent, delayed feedback events towards the action, and adaptation to the sensorimotor delay can even reverse motor-sensory temporal-order judgments. However, whether and how sensorimotor delay affects duration reproduction is still unclear. To investigate this, we injected an onset- or offset-delay to the sensory feedback signal from a duration reproduction task. We compared duration reproductions within (visual, auditory modality and across audiovisual modalities with feedback signal onset- and offset-delay manipulations. We found that the reproduced duration was lengthened in both visual and auditory feedback signal onset-delay conditions. The lengthening effect was evident immediately, on the first trial with the onset delay. However, when the onset of the feedback signal was prior to the action, the lengthening effect was diminished. In contrast, a shortening effect was found with feedback signal offset-delay, though the effect was weaker and manifested only in the auditory offset-delay condition. These findings indicate that participants tend to mix the onset of action and the feedback signal more when the feedback is delayed, and they heavily rely on motor-stop signals for the duration reproduction. Furthermore, auditory duration was overestimated compared to visual duration in crossmodal feedback conditions, and the overestimation of auditory duration (or the underestimation of visual duration was independent of the delay manipulation.

  15. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs

    OpenAIRE

    Revina, Yulia; Petro, Lucy S.; Muckli, Lars

    2017-01-01

    Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested i...

  16. Using Screencasts to Enhance Assessment Feedback: Students' Perceptions and Preferences

    Science.gov (United States)

    Marriott, Pru; Teoh, Lim Keong

    2012-01-01

    In the UK, assessment and feedback have been regularly highlighted by the National Student Survey as critical aspects that require improvement. An innovative approach to delivering feedback that has proved successful in non-business-related disciplines is the delivery of audio and visual feedback using screencast technology. The feedback on…

  17. Visual information transfer. 1: Assessment of specific information needs. 2: The effects of degraded motion feedback. 3: Parameters of appropriate instrument scanning behavior

    Science.gov (United States)

    Comstock, J. R., Jr.; Kirby, R. H.; Coates, G. D.

    1984-01-01

    Pilot and flight crew assessment of visually displayed information is examined as well as the effects of degraded and uncorrected motion feedback, and instrument scanning efficiency by the pilot. Computerized flight simulation and appropriate physiological measurements are used to collect data for standardization.

  18. Microcontroller-based Feedback Control Laboratory Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2014-06-01

    Full Text Available this paper is a result of the implementation of the recommendations on enhancing hands-on experience of control engineering education using single chip, small scale computers such as microcontrollers. A set of microcontroller-based feedback control experiments was developed for the Electrical Engineering curriculum at the University of North Florida. These experiments provided hands-on techniques that students can utilize in the development of complete solutions for a number of servo control problems. Significant effort was devoted to software development of feedback controllers and the associated signal conditioning circuits interfacing between the microcontroller and the physical plant. These experiments have stimulated the interest of our students in control engineering.

  19. Investigating the role of feedback and motivation in clinical reaction time assessment.

    Science.gov (United States)

    Eckner, James T; Chandran, Srikrishna; Richardson, James K

    2011-12-01

    To investigate the influence of performance feedback and motivation during 2 tests of simple visuomotor reaction time (RT). Cross-sectional, observational study. Outpatient academic physiatry clinic. Thirty-one healthy adults (mean [SD], 54 ± 15 years). Participants completed a clinical test of RT (RT(clin)) and a computerized test of RT with and without performance feedback (RT(compFB) and RT(compNoFB), respectively) in randomly assigned order. They then ranked their degree of motivation during each test. RT(clin) measured the time required to catch a suspended vertical shaft by hand closure after release of the shaft by the examiner. RT(compFB) and RT(compNoFB) both measured the time required to press a computer key in response to a visual cue displayed on a computer monitor. Performance feedback (visual display of the previous trial and summary results) was provided for RT(compFB), but not for RT(compNoFB). Means and standard deviations of RT(clin), RT(compFB), and RT(compNoFB) and participants' self-reported motivation on a 5-point Likert scale for each test. There were significant differences in both the means and standard deviations of RT(clin), RT(compFB), and RT(compNoFB) (F(2,60) = 81.66, P motivation between RT(clin) and RT(compFB), both of which were reported to be more motivating than RT(compNoFB). The stronger correlation between RT(clin) and RT(compFB) as well as the higher reported motivation during RT(clin) and RT(compFB) testing suggest that performance feedback is a positive motivating factor that is inherent to RT(clin) testing. RT(clin) is a simple, inexpensive technique for measuring RT and appears to be an intrinsically motivating task. This motivation may promote faster, more consistent RT performance compared with currently available computerized programs, which do not typically provide performance feedback. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  20. Ownership and Agency of an Independent Supernumerary Hand Induced by an Imitation Brain-Computer Interface.

    Science.gov (United States)

    Bashford, Luke; Mehring, Carsten

    2016-01-01

    To study body ownership and control, illusions that elicit these feelings in non-body objects are widely used. Classically introduced with the Rubber Hand Illusion, these illusions have been replicated more recently in virtual reality and by using brain-computer interfaces. Traditionally these illusions investigate the replacement of a body part by an artificial counterpart, however as brain-computer interface research develops it offers us the possibility to explore the case where non-body objects are controlled in addition to movements of our own limbs. Therefore we propose a new illusion designed to test the feeling of ownership and control of an independent supernumerary hand. Subjects are under the impression they control a virtual reality hand via a brain-computer interface, but in reality there is no causal connection between brain activity and virtual hand movement but correct movements are observed with 80% probability. These imitation brain-computer interface trials are interspersed with movements in both the subjects' real hands, which are in view throughout the experiment. We show that subjects develop strong feelings of ownership and control over the third hand, despite only receiving visual feedback with no causal link to the actual brain signals. Our illusion is crucially different from previously reported studies as we demonstrate independent ownership and control of the third hand without loss of ownership in the real hands.

  1. Interação de variáveis biomecânicas na composição de "feedback" visual aumentado para o ensino do ciclismo Interacción de variables biomecánicas en la composición de feedback visual aumentado para el enseñanza del ciclismo Interaction of biomechanical variables in the composition of visual augmented feedback for learning cycling

    OpenAIRE

    Guilherme Garcia Holderbaum; Ricardo Demétrio de Souza Petersen; Antônio Carlos Stringhini Guimarães

    2012-01-01

    O objetivo deste estudo foi testar uma metodologia para o ensino da técnica da pedalada do ciclismo utilizando variáveis biomecánicas para desenvolver um sistema de "feedback" visual aumentado (FVA). Participaram do estudo 19 indivíduos, sem experiência no ciclismo , divididos em grupo experimental (n = 10) e controle (n = 9). Inicialmente foi realizado um pré-teste para determinar o consumo máximo de oxigênio (VO2máx) bem como a carga de trabalho utilizada nas sessões práticas que correspond...

  2. Skill learning from kinesthetic feedback.

    Science.gov (United States)

    Pinzon, David; Vega, Roberto; Sanchez, Yerly Paola; Zheng, Bin

    2017-10-01

    It is important for a surgeon to perform surgical tasks under appropriate guidance from visual and kinesthetic feedback. However, our knowledge on kinesthetic (muscle) memory and its role in learning motor skills remains elementary. To discover the effect of exclusive kinesthetic training on kinesthetic memory in both performance and learning. In Phase 1, a total of twenty participants duplicated five 2 dimensional movements of increasing complexity via passive kinesthetic guidance, without visual or auditory stimuli. Five participants were asked to repeat the task in the Phase 2 over a period of three weeks, for a total of nine sessions. Subjects accurately recalled movement direction using kinesthetic memory, but recalling movement length was less precise. Over the nine training sessions, error occurrence dropped after the sixth session. Muscle memory constructs the foundation for kinesthetic training. Knowledge gained helps surgeons learn skills from kinesthetic information in the condition where visual feedback is limited. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Body Context and Posture Affect Mental Imagery of Hands

    Science.gov (United States)

    Ionta, Silvio; Perruchoud, David; Draganski, Bogdan; Blanke, Olaf

    2012-01-01

    Different visual stimuli have been shown to recruit different mental imagery strategies. However the role of specific visual stimuli properties related to body context and posture in mental imagery is still under debate. Aiming to dissociate the behavioural correlates of mental processing of visual stimuli characterized by different body context, in the present study we investigated whether the mental rotation of stimuli showing either hands as attached to a body (hands-on-body) or not (hands-only), would be based on different mechanisms. We further examined the effects of postural changes on the mental rotation of both stimuli. Thirty healthy volunteers verbally judged the laterality of rotated hands-only and hands-on-body stimuli presented from the dorsum- or the palm-view, while positioning their hands on their knees (front postural condition) or behind their back (back postural condition). Mental rotation of hands-only, but not of hands-on-body, was modulated by the stimulus view and orientation. Additionally, only the hands-only stimuli were mentally rotated at different speeds according to the postural conditions. This indicates that different stimulus-related mechanisms are recruited in mental rotation by changing the bodily context in which a particular body part is presented. The present data suggest that, with respect to hands-only, mental rotation of hands-on-body is less dependent on biomechanical constraints and proprioceptive input. We interpret our results as evidence for preferential processing of visual- rather than kinesthetic-based mechanisms during mental transformation of hands-on-body and hands-only, respectively. PMID:22479618

  4. Tactile Feedback for Above-Device Gesture Interfaces

    OpenAIRE

    Freeman, Euan; Brewster, Stephen; Lantz, Vuokko

    2014-01-01

    Above-device gesture interfaces let people interact in the space above mobile devices using hand and finger movements. For example, users could gesture over a mobile phone or wearable without having to use the touchscreen. We look at how above-device interfaces can also give feedback in the space over the device. Recent haptic and wearable technologies give new ways to provide tactile feedback while gesturing, letting touchless gesture interfaces give touch feedback. In this paper we take a f...

  5. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics.

    Science.gov (United States)

    Boulet, Jason; Balasubramaniam, Ramesh; Daffertshofer, Andreas; Longtin, André

    2010-01-28

    We report on experiments and modelling involving the 'visuo-postural control loop' in the upright stance. We experimentally manipulated an artificial delay to the visual feedback during standing, presented at delays ranging from 0 to 1 s in increments of 250 ms. Using stochastic delay differential equations, we explicitly modelled the centre-of-pressure (COP) and centre-of-mass (COM) dynamics with two independent delay terms for vision and proprioception. A novel 'drifting fixed point' hypothesis was used to describe the fluctuations of the COM with the COP being modelled as a faster, corrective process of the COM. The model was in good agreement with the data in terms of probability density functions, power spectral densities, short- and long-term correlations (Hurst exponents) as well the critical time between the two ranges. This journal is © 2010 The Royal Society

  6. Sensory feedback in upper limb prosthetics.

    Science.gov (United States)

    Antfolk, Christian; D'Alonzo, Marco; Rosén, Birgitta; Lundborg, Göran; Sebelius, Fredrik; Cipriani, Christian

    2013-01-01

    One of the challenges facing prosthetic designers and engineers is to restore the missing sensory function inherit to hand amputation. Several different techniques can be employed to provide amputees with sensory feedback: sensory substitution methods where the recorded stimulus is not only transferred to the amputee, but also translated to a different modality (modality-matched feedback), which transfers the stimulus without translation and direct neural stimulation, which interacts directly with peripheral afferent nerves. This paper presents an overview of the principal works and devices employed to provide upper limb amputees with sensory feedback. The focus is on sensory substitution and modality matched feedback; the principal features, advantages and disadvantages of the different methods are presented.

  7. Contact pressure measurement in hand tool evaluation studies

    NARCIS (Netherlands)

    Kuijt-Evers, L.F.M.; Bosch, T.

    2006-01-01

    In hand tool evaluation studies, several objective measurements are used. Grip force distribution and grip force are important as they give feedback about the force which has to be performed with the hand on the handle. A measurement technique -which is related to grip force measurement- is contact

  8. Effects of acoustic feedback training in elite-standard Para-Rowing.

    Science.gov (United States)

    Schaffert, Nina; Mattes, Klaus

    2015-01-01

    Assessment and feedback devices have been regularly used in technique training in high-performance sports. Biomechanical analysis is mainly visually based and so can exclude athletes with visual impairments. The aim of this study was to examine the effects of auditory feedback on mean boat speed during on-water training of visually impaired athletes. The German National Para-Rowing team (six athletes, mean ± s, age 34.8 ± 10.6 years, body mass 76.5 ± 13.5 kg, stature 179.3 ± 8.6 cm) participated in the study. Kinematics included boat acceleration and distance travelled, collected with Sofirow at two intensities of training. The boat acceleration-time traces were converted online into acoustic feedback and presented via speakers during rowing (sections with and without alternately). Repeated-measures within-participant factorial ANOVA showed greater boat speed with acoustic feedback than baseline (0.08 ± 0.01 m·s(-1)). The time structure of rowing cycles was improved (extended time of positive acceleration). Questioning of athletes showed acoustic feedback to be a supportive training aid as it provided important functional information about the boat motion independent of vision. It gave access for visually impaired athletes to biomechanical analysis via auditory information. The concept for adaptive athletes has been successfully integrated into the preparation for the Para-Rowing World Championships and Paralympics.

  9. Automated monitoring: a potential solution for achieving sustainable improvement in hand hygiene practices.

    Science.gov (United States)

    Levchenko, Alexander I; Boscart, Veronique M; Fernie, Geoff R

    2014-08-01

    Adequate hand hygiene is often considered as the most effective method of reducing the rates of hospital-acquired infections, which are one of the major causes of increased cost, morbidity, and mortality in healthcare. Electronic monitoring technologies provide a promising direction for achieving sustainable hand hygiene improvement by introducing the elements of automated feedback and creating the possibility to automatically collect individual hand hygiene performance data. The results of the multiphase testing of an automated hand hygiene reminding and monitoring system installed in a complex continuing care setting are presented. The study included a baseline Phase 1, with the system performing automated data collection only, a preintervention Phase 2 with hand hygiene status indicator enabled, two intervention Phases 3 and 4 with the system generating hand hygiene reminding signals and periodic performance feedback sessions provided, and a postintervention Phase 5 with only hand hygiene status indicator enabled and no feedback sessions provided. A significant increase in hand hygiene performance observed during the first intervention Phase 3 was sustained over the second intervention Phase 4, with the postintervention phase also indicating higher hand hygiene activity rates compared with the preintervention and baseline phases. The overall trends observed during the multiphase testing, the factors affecting acceptability of the automated hand hygiene monitoring system, and various strategies of technology deployment are discussed.

  10. The positive effect of mirror visual feedback on arm control in children with Spastic hemiparetic cerebral palsy is dependent on which arm is viewed

    NARCIS (Netherlands)

    Smorenburg, A; Ledebt, A.; Feltham, M.; Deconinck, F.; Savelsbergh, G.J.P.

    2011-01-01

    Mirror visual feedback has previously been found to reduce disproportionate interlimb variability and neuromuscular activity in the arm muscles in children with Spastic Hemiparetic Cerebral Palsy (SHCP). The aim of the current study was to determine whether these positive effects are generated by

  11. Corticocortical feedback increases the spatial extent of normalization.

    Science.gov (United States)

    Nassi, Jonathan J; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.

  12. Stimulus-dependent modulation of visual neglect in a touch-screen cancellation task.

    Science.gov (United States)

    Keller, Ingo; Volkening, Katharina; Garbacenkaite, Ruta

    2015-05-01

    Patients with left-sided neglect frequently show omissions and repetitive behavior on cancellation tests. Using a touch-screen-based cancellation task, we tested how visual feedback and distracters influence the number of omissions and perseverations. Eighteen patients with left-sided visual neglect and 18 healthy controls performed four different cancellation tasks on an iPad touch screen: no feedback (the display did not change during the task), visual feedback (touched targets changed their color from black to green), visual feedback with distracters (20 distracters were evenly embedded in the display; detected targets changed their color from black to green), vanishing targets (touched targets disappeared from the screen). Except for the condition with vanishing targets, neglect patients had significantly more omissions and perseverations than healthy controls in the remaining three subtests. Both conditions providing feedback by changing the target color showed the highest number of omissions. Erasure of targets nearly diminished omissions completely. The highest rate of perseverations was observed in the no-feedback condition. The implementation of distracters led to a moderate number of perseverations. Visual feedback without distracters and vanishing targets abolished perseverations nearly completely. Visual feedback and the presence of distracters aggravated hemispatial neglect. This finding is compatible with impaired disengagement from the ipsilesional side as an important factor of visual neglect. Improvement of cancellation behavior with vanishing targets could have therapeutic implications. (c) 2015 APA, all rights reserved).

  13. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model

    OpenAIRE

    Li, M.; Konstantinova, J.; Xu, G.; He, B.; Aminzadeh, V.; Xie, J.; Wurdemann, H.; Althoefer, K.

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by slidin...

  14. Evaluation of Augmented Reality Feedback in Surgical Training Environment.

    Science.gov (United States)

    Zahiri, Mohsen; Nelson, Carl A; Oleynikov, Dmitry; Siu, Ka-Chun

    2018-02-01

    Providing computer-based laparoscopic surgical training has several advantages that enhance the training process. Self-evaluation and real-time performance feedback are 2 of these advantages, which avoid dependency of trainees on expert feedback. The goal of this study was to investigate the use of a visual time indicator as real-time feedback correlated with the laparoscopic surgical training. Twenty novices participated in this study working with (and without) different presentations of time indicators. They performed a standard peg transfer task, and their completion times and muscle activity were recorded and compared. Also of interest was whether the use of this type of feedback induced any side effect in terms of motivation or muscle fatigue. Of the 20 participants, 15 (75%) preferred using a time indicator in the training process rather than having no feedback. However, time to task completion showed no significant difference in performance with the time indicator; furthermore, no significant differences in muscle activity or muscle fatigue were detected with/without time feedback. The absence of significant difference between task performance with/without time feedback shows that using visual real-time feedback can be included in surgical training based on user preference. Trainees may benefit from this type of feedback in the form of increased motivation. The extent to which this can influence training frequency leading to performance improvement is a question for further study.

  15. Hand hygiene compliance in a universal gloving setting.

    Science.gov (United States)

    Kuruno, Noriko; Kasahara, Kei; Mikasa, Keiichi

    2017-08-01

    The use of gloves for every patient contact (ie, universal gloving) has been suggested as an infection prevention adjunct and alternative to contact precautions. However, gloves may carry organisms unless they are changed properly. In addition, hand hygiene is required before donning and after removing gloves, and there are scarce data regarding glove changing and hand hygiene in a universal gloving setting. This nonrandomized observational before-after study evaluated the effect of education and feedback regarding hand hygiene. Compliance with hand hygiene and glove use was directly observed in a universal gloving setting at a 10-bed intensive care unit in a Japanese tertiary care university teaching hospital. A total of 6,050 hand hygiene opportunities were identified. Overall, hand hygiene compliance steadily increased from study period 1 (16.1%) to period 5 (56.8%), although there were indication-specific differences in the baseline compliance, the degree of improvement, and the reasons for noncompliance. There were decreases in the compliance with universal gloving and the incidence of methicillin-resistant Staphylococcus aureus. It is difficult to properly perform glove use and hand hygiene in a universal gloving setting, given its complexity. Direct observation with specific feedback and education may be effective in improving compliance. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Generalization of unconstrained reaching with hand-weight changes.

    Science.gov (United States)

    Yan, Xiang; Wang, Qining; Lu, Zhengchuan; Stevenson, Ian H; Körding, Konrad; Wei, Kunlin

    2013-01-01

    Studies of motor generalization usually perturb hand reaches by distorting visual feedback with virtual reality or by applying forces with a robotic manipulandum. Whereas such perturbations are useful for studying how the central nervous system adapts and generalizes to novel dynamics, they are rarely encountered in daily life. The most common perturbations that we experience are changes in the weights of objects that we hold. Here, we use a center-out, free-reaching task, in which we can manipulate the weight of a participant's hand to examine adaptation and generalization following naturalistic perturbations. In both trial-by-trial paradigms and block-based paradigms, we find that learning converges rapidly (on a timescale of approximately two trials), and this learning generalizes mostly to movements in nearby directions with a unimodal pattern. However, contrary to studies using more artificial perturbations, we find that the generalization has a strong global component. Furthermore, the generalization is enhanced with repeated exposure of the same perturbation. These results suggest that the familiarity of a perturbation is a major factor in movement generalization and that several theories of the neural control of movement, based on perturbations applied by robots or in virtual reality, may need to be extended by incorporating prior influence that is characterized by the familiarity of the perturbation.

  17. The SmartHand transradial prosthesis

    Directory of Open Access Journals (Sweden)

    Carrozza Maria Chiara

    2011-05-01

    Full Text Available Abstract Background Prosthetic components and control interfaces for upper limb amputees have barely changed in the past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be inappropriate if/when a large bandwidth human-machine interface for control and perception would be available, due to either their limited (or inexistent sensorization or limited dexterity. SmartHand tackles this issue as is meant to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their effectiveness. This paper presents the design and on bench evaluation of the SmartHand. Methods SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was designed with the aim of delivering significant afferent information to the user through adequate interfaces. Results SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4 motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a customized embedded controller both employed for implementing automatic grasp control and for potentially delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point the index. The weight (530 g and speed (closing time: 1.5 seconds are comparable to actual commercial prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects. Conclusions Due to its unique embedded features and human-size, the SmartHand holds the promise to be experimentally fitted on transradial

  18. Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination.

    Science.gov (United States)

    Wiemers, Michael; Fischer, Martin H

    2016-01-01

    Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The "modulated visual pathways" hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.'s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al. (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space.

  19. Myoelectric intuitive control and transcutaneous electrical stimulation of the forearm for vibrotactile sensation feedback applied to a 3D printed prosthetic hand.

    Science.gov (United States)

    Germany, Enrique I; Pino, Esteban J; Aqueveque, Pablo E

    2016-08-01

    This paper presents the development of a myoelectric prosthetic hand based on a 3D printed model. A myoelectric control strategy based on artificial neural networks is implemented on a microcontroller for online position estimation. Position estimation performance achieves a correlation index of 0.78. Also a study involving transcutaneous electrical stimulation was performed to provide tactile feedback. A series of stimulations with controlled parameters were tested on five able-body subjects. A single channel stimulator was used, positioning the electrodes 8 cm on the wrist over the ulnar and median nerve. Controlling stimulation parameters such as intensity, frequency and pulse width, the subjects were capable of distinguishing different sensations over the palm of the hand. Three main sensations where achieved: tickling, pressure and pain. Tickling and pressure were discretized into low, moderate and high according to the magnitude of the feeling. The parameters at which each sensation was obtained are further discussed in this paper.

  20. Corticocortical feedback increases the spatial extent of normalization

    Science.gov (United States)

    Nassi, Jonathan J.; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T.

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a “normalization pool.” Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing. PMID:24910596

  1. Software Development and Feedback from Usability Evaluations

    DEFF Research Database (Denmark)

    Høegh, Rune Thaarup

    2008-01-01

    This paper presents a study of the strengths and weaknesses of written, multimedia and oral feedback from usability evaluations to developers. The strengths and weaknesses are related to how well the feedback supports the developers in addressing usability problems in a software system. The study...... concludes that using the traditional written usability report, as the only form of feedback from usability evaluations is associated with problems related to the report not supporting the process of addressing the usability problems. The report is criticized for representing an overwhelming amount...... of information, while still not offering the required information to address usability problems. Other forms of feedback, such as oral or multimedia feedback helps the developer in understanding the usability problems better, but are on the other hand less cost-effective than a written description....

  2. Defective imitation of finger configurations in patients with damage in the right or left hemispheres: An integration disorder of visual and somatosensory information?

    Science.gov (United States)

    Okita, Manabu; Yukihiro, Takashi; Miyamoto, Kenzo; Morioka, Shu; Kaba, Hideto

    2017-04-01

    To explore the mechanism underlying the imitation of finger gestures, we devised a simple imitation task in which the patients were instructed to replicate finger configurations in two conditions: one in which they could see their hand (visual feedback: VF) and one in which they could not see their hand (non-visual feedback: NVF). Patients with left brain damage (LBD) or right brain damage (RBD), respectively, were categorized into two groups based on their scores on the imitation task in the NVF condition: the impaired imitation groups (I-LBD and I-RBD) who failed two or more of the five patterns and the control groups (C-LBD and C-RBD) who made one or no errors. We also measured the movement-production times for imitation. The I-RBD group performed significantly worse than the C-RBD group even in the VF condition. In contrast, the I-LBD group was selectively impaired in the NVF condition. The I-LBD group performed the imitations at a significantly slower rate than the C-LBD group in both the VF and NVF conditions. These results suggest that impaired imitation in patients with LBD is partly due to an abnormal integration of visual and somatosensory information based on the task specificity of the NVF condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Differential contributions of the superior and inferior parietal cortex to feedback versus feedforward control of tools.

    Science.gov (United States)

    Macuga, Kristen L; Frey, Scott H

    2014-05-15

    Damage to the superior and/or inferior parietal lobules (SPL, IPL) (Sirigu et al., 1996) or cerebellum (Grealy and Lee, 2011) can selectively disrupt motor imagery, motivating the hypothesis that these regions participate in predictive (i.e., feedforward) control. If so, then the SPL, IPL, and cerebellum should show greater activity as the demands on feedforward control increase from visually-guided execution (closed-loop) to execution without visual feedback (open-loop) to motor imagery. Using fMRI and a Fitts' reciprocal aiming task with tools directed at targets in far space, we found that the SPL and cerebellum exhibited greater activity during closed-loop control. Conversely, open-loop and imagery conditions were associated with increased activity within the IPL and prefrontal areas. These results are consistent with a superior-to-inferior gradient in the representation of feedback-to-feedforward control within the posterior parietal cortex. Additionally, the anterior SPL displayed greater activity when aiming movements were performed with a stick vs. laser pointer. This may suggest that it is involved in the remapping of far into near (reachable) space (Maravita and Iriki, 2004), or in distalization of the end-effector from hand to stick (Arbib et al., 2009). Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Non-retinotopic motor-visual recalibration to temporal lag

    Directory of Open Access Journals (Sweden)

    Masaki eTsujita

    2012-11-01

    Full Text Available Temporal order judgment between the voluntary motor action and its perceptual feedback is important in distinguishing between a sensory feedback which is caused by observer’s own action and other stimulus, which are irrelevant to that action. Prolonged exposure to fixed temporal lag between motor action and visual feedback recalibrates motor-visual temporal relationship, and consequently shifts the point of subjective simultaneity (PSS. Previous studies on the audio-visual temporal recalibration without voluntary action revealed that both low and high level processing are involved. However, it is not clear how the low and high level processings affect the recalibration to constant temporal lag between voluntary action and visual feedback. This study examined retinotopic specificity of the motor-visual temporal recalibration. During the adaptation phase, observers repeatedly pressed a key, and visual stimulus was presented in left or right visual field with a fixed temporal lag (0 or 200 ms. In the test phase, observers performed a temporal order judgment for observer’s voluntary keypress and test stimulus, which was presented in the same as or opposite to the visual field in which the stimulus was presented in the adaptation phase. We found that the PSS was shifted toward the exposed lag in both visual fields. These results suggest that the low visual processing, which is retinotopically specific, has minor contribution to the multimodal adaptation, and that the adaptation to shift the PSS mainly depends upon the high level processing such as attention to specific properties of the stimulus.

  5. Manual command component with tactile and/or kinesthetic feedback

    International Nuclear Information System (INIS)

    Foumier, R.

    1995-01-01

    The invention concerns a manual command component designed to be use by a human hand in order to control a slave system, with a tactile and/or kinesthetic feedback. It is composed by a handle and by piece(s) for the feedback. The handle contains a captor to signalize the move and the speed. The signals are transmitted to the slave system. The later send feedbacks which are transformed in a couple for the handle. (TEC)

  6. Combined induction of rubber-hand illusion and out-of-body experiences

    Directory of Open Access Journals (Sweden)

    Isadora eOlivé

    2012-05-01

    Full Text Available The emergence of self-consciousness depends on several processes: those of body ownership, attributing self-identity to the body, and those of self-location, localizing our sense of self. Studies of phenomena like the rubber hand illusion (RHi and out-of-body experience (OBE investigate these processes, respectively for representations of a body-part and the full-body. It is supposed that RHi only target processes related to body-part representations, while OBE only relates to full-body representations. The fundamental question whether the body-part and the full-body illusions relate to each other is nevertheless insufficiently investigated. In search for a link between body-part and full-body illusions in the brain we developed a behavioural task combining adapted versions of the RHi and OBE. Furthermore, for the investigation of this putative link we investigated the role of sensory and motor cues. We established a spatial dissociation between visual and proprioceptive feedback of a hand perceived through virtual reality in rest or action. Two experimental measures were introduced: one for the body-part illusion, the proprioceptive drift of the perceived localisation of the hand, and one for the full-body illusion, the shift in subjective-straight-ahead. In the rest and action conditions it was observed that the proprioceptive drift of the left hand and the shift in subjective-straight-ahead towards the manipulation side are equivalent. The combined effect was dependent on the manipulation of the visual representation of body-parts, rejecting any main or even modulatory role for relevant motor programs. Our study demonstrates for the first time that there is a systematic relationship between the body-part illusion and the full-body illusion, as shown by our measures. This suggests a link between the representations in the brain of a body-part and the full-body, and consequently a common mechanism underpinning both forms of ownership and self-location.

  7. Environmental Feedback and Spatial Conditioning

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Poulsen, Esben Skouboe

    2010-01-01

    with structural integrity, where thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparancy altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening and application....

  8. The visual attention network untangled

    NARCIS (Netherlands)

    Nieuwenhuis, S.; Donner, T.H.

    2011-01-01

    Goals are represented in prefrontal cortex and modulate sensory processing in visual cortex. A new study combines TMS, fMRI and EEG to understand how feedback improves retention of behaviorally relevant visual information.

  9. Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex

    Science.gov (United States)

    Markov, Nikola T; Vezoli, Julien; Chameau, Pascal; Falchier, Arnaud; Quilodran, René; Huissoud, Cyril; Lamy, Camille; Misery, Pierre; Giroud, Pascale; Ullman, Shimon; Barone, Pascal; Dehay, Colette; Knoblauch, Kenneth; Kennedy, Henry

    2013-01-01

    The laminar location of the cell bodies and terminals of interareal connections determines the hierarchical structural organization of the cortex and has been intensively studied. However, we still have only a rudimentary understanding of the connectional principles of feedforward (FF) and feedback (FB) pathways. Quantitative analysis of retrograde tracers was used to extend the notion that the laminar distribution of neurons interconnecting visual areas provides an index of hierarchical distance (percentage of supragranular labeled neurons [SLN]). We show that: 1) SLN values constrain models of cortical hierarchy, revealing previously unsuspected areal relations; 2) SLN reflects the operation of a combinatorial distance rule acting differentially on sets of connections between areas; 3) Supragranular layers contain highly segregated bottom-up and top-down streams, both of which exhibit point-to-point connectivity. This contrasts with the infragranular layers, which contain diffuse bottom-up and top-down streams; 4) Cell filling of the parent neurons of FF and FB pathways provides further evidence of compartmentalization; 5) FF pathways have higher weights, cross fewer hierarchical levels, and are less numerous than FB pathways. Taken together, the present results suggest that cortical hierarchies are built from supra- and infragranular counterstreams. This compartmentalized dual counterstream organization allows point-to-point connectivity in both bottom-up and top-down directions. PMID:23983048

  10. Alpha-contingent EEG feedback reduces SPECT rCBF variability

    DEFF Research Database (Denmark)

    McLaughlin, Thomas; Steinberg, Bruce; Mulholland, Thomas

    2005-01-01

    EEG feedback methods, which link the occurrence of alpha to the presentation of repeated visual stimuli, reduce the relative variability of subsequent, alpha-blocking event durations. The temporal association between electro-cortical field activation and regional cerebral blood flow (rCBF) led us...... to investigate whether the reduced variability of alpha-blocking durations with feedback is associated with a reduction in rCBF variability. Reduced variability in the rCBF response domain under EEG feedback control might have methodological implications for future brain-imaging studies. Visual stimuli were...... to quantify the variance-reducing effects of ACS across multiple, distributed areas of the brain. Both EEG and rCBF measures demonstrated decreased variability under ACS. This improved control was seen for localized as well as anatomically distributed rCBF measures....

  11. Preference for orientations commonly viewed for one's own hand in the anterior intraparietal cortex.

    Directory of Open Access Journals (Sweden)

    Regine Zopf

    Full Text Available Brain regions in the intraparietal and the premotor cortices selectively process visual and multisensory events near the hands (peri-hand space. Visual information from the hand itself modulates this processing potentially because it is used to estimate the location of one's own body and the surrounding space. In humans specific occipitotemporal areas process visual information of specific body parts such as hands. Here we used an fMRI block-design to investigate if anterior intraparietal and ventral premotor 'peri-hand areas' exhibit selective responses to viewing images of hands and viewing specific hand orientations. Furthermore, we investigated if the occipitotemporal 'hand area' is sensitive to viewed hand orientation. Our findings demonstrate increased BOLD responses in the left anterior intraparietal area when participants viewed hands and feet as compared to faces and objects. Anterior intraparietal and also occipitotemporal areas in the left hemisphere exhibited response preferences for viewing right hands with orientations commonly viewed for one's own hand as compared to uncommon own hand orientations. Our results indicate that both anterior intraparietal and occipitotemporal areas encode visual limb-specific shape and orientation information.

  12. Traffic Visualization

    DEFF Research Database (Denmark)

    Picozzi, Matteo; Verdezoto, Nervo; Pouke, Matti

    2013-01-01

    In this paper, we present a space-time visualization to provide city's decision-makers the ability to analyse and uncover important "city events" in an understandable manner for city planning activities. An interactive Web mashup visualization is presented that integrates several visualization...... techniques to give a rapid overview of traffic data. We illustrate our approach as a case study for traffic visualization systems, using datasets from the city of Oulu that can be extended to other city planning activities. We also report the feedback of real users (traffic management employees, traffic police...

  13. Immediate and 1-year chest compression quality: effect of instantaneous feedback in simulated cardiac arrest.

    Science.gov (United States)

    Griffin, Peter; Cooper, Clayton; Glick, Joshua; Terndrup, Thomas E

    2014-08-01

    Several studies have demonstrated subpar chest compression (CC) performance by trained health care professionals. The objective of this study was to determine the immediate and sustained effect of instantaneous audiovisual feedback on CC quality. A prospective, randomized, crossover study measuring the effect of audiovisual feedback training on the performance of CCs by health care providers and medical students in a simulated cardiopulmonary arrest scenario was performed. Compression rate, hand placement, depth, and recoil were collected using 60-second epochs of CC on a simulation mannequin. Data from 200 initial enrollments and 100 tested 1 year later were analyzed by evaluators using standard criterion. At initial testing, feedback trainees demonstrated significantly improved depth compliance, recoil compliance, and accuracy of hand placement. One year later, the previous year's control group now receiving feedback demonstrated immediate improvement in depth, hand placement, and rate. In the feedback group, the only statistically significant improvement from initial baseline to the baseline 1 year later was an 18% improvement in depth compliance. However, the same improvement rate was seen in the control group. Improved depth compliance performance was correlated to the number of cardiopulmonary resuscitation training sessions received external to the study. Instantaneous audiovisual feedback training on CC quality produces immediate improvements in compression rate, hand placement, as well as depth and recoil compliance. These improvements, however, are not retained 1 year later. Improved depth performance may be correlated to an increased training frequency.

  14. The impact of feedback on phonological awareness development

    OpenAIRE

    Maria N. Kazakou; Spyros Soulis

    2014-01-01

    The utilization of Information and Communication Technologies (ICT) in educational practice is indispensable, while it becomes imperative in the education of individuals with special educational needs, as it promotes the application of Individualized Education Programs. Feedback in digital activities aiming at phonological awareness development is the topic under consideration in the present paper. The study has two objectives. On the one hand to study feedback as a differentiating factor for...

  15. Entropic Movement Complexity Reflects Subjective Creativity Rankings of Visualized Hand Motion Trajectories

    Science.gov (United States)

    Peng, Zhen; Braun, Daniel A.

    2015-01-01

    In a previous study we have shown that human motion trajectories can be characterized by translating continuous trajectories into symbol sequences with well-defined complexity measures. Here we test the hypothesis that the motion complexity individuals generate in their movements might be correlated to the degree of creativity assigned by a human observer to the visualized motion trajectories. We asked participants to generate 55 novel hand movement patterns in virtual reality, where each pattern had to be repeated 10 times in a row to ensure reproducibility. This allowed us to estimate a probability distribution over trajectories for each pattern. We assessed motion complexity not only by the previously proposed complexity measures on symbolic sequences, but we also propose two novel complexity measures that can be directly applied to the distributions over trajectories based on the frameworks of Gaussian Processes and Probabilistic Movement Primitives. In contrast to previous studies, these new methods allow computing complexities of individual motion patterns from very few sample trajectories. We compared the different complexity measures to how a group of independent jurors rank ordered the recorded motion trajectories according to their personal creativity judgment. We found three entropic complexity measures that correlate significantly with human creativity judgment and discuss differences between the measures. We also test whether these complexity measures correlate with individual creativity in divergent thinking tasks, but do not find any consistent correlation. Our results suggest that entropic complexity measures of hand motion may reveal domain-specific individual differences in kinesthetic creativity. PMID:26733896

  16. Robust exponential stabilization of nonholonomic wheeled mobile robots with unknown visual parameters

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The visual servoing stabilization of nonholonomic mobile robot with unknown camera parameters is investigated.A new kind of uncertain chained model of nonholonomic kinemetic system is obtained based on the visual feedback and the standard chained form of type (1,2) mobile robot.Then,a novel time-varying feedback controller is proposed for exponentially stabilizing the position and orientation of the robot using visual feedback and switching strategy when the camera parameters are not known.The exponential s...

  17. A Haptic Feedback Scheme to Accurately Position a Virtual Wrist Prosthesis Using a Three-Node Tactor Array.

    Directory of Open Access Journals (Sweden)

    Andrew Erwin

    Full Text Available In this paper, a novel haptic feedback scheme, used for accurately positioning a 1DOF virtual wrist prosthesis through sensory substitution, is presented. The scheme employs a three-node tactor array and discretely and selectively modulates the stimulation frequency of each tactor to relay 11 discrete haptic stimuli to the user. Able-bodied participants were able to move the virtual wrist prosthesis via a surface electromyography based controller. The participants evaluated the feedback scheme without visual or audio feedback and relied solely on the haptic feedback alone to correctly position the hand. The scheme was evaluated through both normal (perpendicular and shear (lateral stimulations applied on the forearm. Normal stimulations were applied through a prototype device previously developed by the authors while shear stimulations were generated using an ubiquitous coin motor vibrotactor. Trials with no feedback served as a baseline to compare results within the study and to the literature. The results indicated that using normal and shear stimulations resulted in accurately positioning the virtual wrist, but were not significantly different. Using haptic feedback was substantially better than no feedback. The results found in this study are significant since the feedback scheme allows for using relatively few tactors to relay rich haptic information to the user and can be learned easily despite a relatively short amount of training. Additionally, the results are important for the haptic community since they contradict the common conception in the literature that normal stimulation is inferior to shear. From an ergonomic perspective normal stimulation has the potential to benefit upper limb amputees since it can operate at lower frequencies than shear-based vibrotactors while also generating less noise. Through further tuning of the novel haptic feedback scheme and normal stimulation device, a compact and comfortable sensory substitution

  18. The Impact of Simultaneously Applying Normal Stress and Vibrotactile Stimulation for Feedback of Exteroceptive Information.

    Science.gov (United States)

    Reza Motamedi, M; Otis, Martin; Duchaine, Vincent

    2017-06-01

    Commercially available prosthetic hands do not convey any tactile information, forcing amputees to rely solely on visual attention. A promising solution to this problem is haptics, which could lead to new prostheses in which tactile information is conveyed between the amputee and the artificial limb. However, the haptic feedback must be optimized so that amputees can use it effectively; and although several studies have examined how specific haptic feedback systems can transmit certain types of tactile information, there has not yet been much research on the effects of superposing two or more types of feedback at the same location, which might prove to be more effective than using a single type of feedback alone. This paper investigates how the simultaneous application of two different types of haptic feedback-vibration and normal stress-impacts the human sensory perception of each separate feedback type. These stimuli were applied to glabrous skin on the forearms of 14 participants. Our experiments tested whether participants experienced more accurate sensory perception, compared to vibration or normal stress alone, when vibration was applied at the same time as the normal stress, at either the same location, or at a different location 6 cm away. Results indicate that although participants' perception of the normal stress diminished when vibration was applied at the same location, the same combination improved their perception of the vibration. Apparently, vibration has a negative impact upon the ability to perceive normal stress, whether applied at the same or a different location; whereas the opposite is true for the effect of normal stress upon the perception of vibration.

  19. Visual Tracking of Deformation and Classification of Non-Rigid Objects with Robot Hand Probing

    Directory of Open Access Journals (Sweden)

    Fei Hui

    2017-03-01

    Full Text Available Performing tasks with a robot hand often requires a complete knowledge of the manipulated object, including its properties (shape, rigidity, surface texture and its location in the environment, in order to ensure safe and efficient manipulation. While well-established procedures exist for the manipulation of rigid objects, as well as several approaches for the manipulation of linear or planar deformable objects such as ropes or fabric, research addressing the characterization of deformable objects occupying a volume remains relatively limited. The paper proposes an approach for tracking the deformation of non-rigid objects under robot hand manipulation using RGB-D data. The purpose is to automatically classify deformable objects as rigid, elastic, plastic, or elasto-plastic, based on the material they are made of, and to support recognition of the category of such objects through a robotic probing process in order to enhance manipulation capabilities. The proposed approach combines advantageously classical color and depth image processing techniques and proposes a novel combination of the fast level set method with a log-polar mapping of the visual data to robustly detect and track the contour of a deformable object in a RGB-D data stream. Dynamic time warping is employed to characterize the object properties independently from the varying length of the tracked contour as the object deforms. The proposed solution achieves a classification rate over all categories of material of up to 98.3%. When integrated in the control loop of a robot hand, it can contribute to ensure stable grasp, and safe manipulation capability that will preserve the physical integrity of the object.

  20. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback.

    Directory of Open Access Journals (Sweden)

    Ing-Shiou Hwang

    Full Text Available Discharge patterns from a population of motor units (MUs were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF. In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13-35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the β-band.

  1. Synchrony of hand-foot coupled movements: is it attained by mutual feedback entrainment or by independent linkage of each limb to a common rhythm generator?

    Directory of Open Access Journals (Sweden)

    Esposti Roberto

    2006-10-01

    Full Text Available Abstract Background Synchrony of coupled oscillations of ipsilateral hand and foot may be achieved by controlling the interlimb phase difference through a crossed kinaesthetic feedback between the two limbs, or by an independent linkage of each limb cycle to a common clock signal. These alternative models may be experimentally challenged by comparing the behaviour of the two limbs when they oscillate following an external time giver, either alone or coupled together. Results Ten subjects oscillated their right hand and foot both alone and coupled (iso- or antidirectionally, paced by a metronome. Wrist and ankle angular position and Electromyograms (EMG from the respective flexor and extensor muscles were recorded. Three phase delays were measured: i the clk-mov delay, between the clock (metronome beat and the oscillation peak; ii the neur (neural delay, between the clock and the motoneurone excitatory input, as inferred from the EMG onset; and iii the mech (mechanical delay between the EMG onset and the corresponding point of the limb oscillation. During uncoupled oscillations (0.4 Hz to 3.0 Hz, the mech delay increased from -7° to -111° (hand and from -4° to -83° (foot. In contrast, the clk-mov delay remained constant and close to zero in either limb since a progressive advance of the motoneurone activation on the pacing beat (neur advance compensated for the increasing mech delay. Adding an inertial load to either extremity induced a frequency dependent increase of the limb mechanical delay that could not be completely compensated by the increase of the neural phase advance, resulting in a frequency dependent increment of clk-mov delay of the hampered limb. When limb oscillations were iso- or antidirectionally coupled, either in the loaded or unloaded condition, the three delays did not significantly change with respect to values measured when limbs were moved separately. Conclusion The absence of any significant effect of limb coupling on

  2. Using high-technology to enforce low-technology safety measures: the use of third-party remote video auditing and real-time feedback in healthcare.

    Science.gov (United States)

    Armellino, Donna; Hussain, Erfan; Schilling, Mary Ellen; Senicola, William; Eichorn, Ann; Dlugacz, Yosef; Farber, Bruce F

    2012-01-01

    Hand hygiene is a key measure in preventing infections. We evaluated healthcare worker (HCW) hand hygiene with the use of remote video auditing with and without feedback. The study was conducted in an 17-bed intensive care unit from June 2008 through June 2010. We placed cameras with views of every sink and hand sanitizer dispenser to record hand hygiene of HCWs. Sensors in doorways identified when an individual(s) entered/exited. When video auditors observed a HCW performing hand hygiene upon entering/exiting, they assigned a pass; if not, a fail was assigned. Hand hygiene was measured during a 16-week period of remote video auditing without feedback and a 91-week period with feedback of data. Performance feedback was continuously displayed on electronic boards mounted within the hallways, and summary reports were delivered to supervisors by electronic mail. During the 16-week prefeedback period, hand hygiene rates were less than 10% (3933/60 542) and in the 16-week postfeedback period it was 81.6% (59 627/73 080). The increase was maintained through 75 weeks at 87.9% (262 826/298 860). The data suggest that remote video auditing combined with feedback produced a significant and sustained improvement in hand hygiene.

  3. Intensive treatment with ultrasound visual feedback for speech sound errors in childhood apraxia

    Directory of Open Access Journals (Sweden)

    Jonathan L Preston

    2016-08-01

    Full Text Available Ultrasound imaging is an adjunct to traditional speech therapy that has shown to be beneficial in the remediation of speech sound errors. Ultrasound biofeedback can be utilized during therapy to provide clients additional knowledge about their tongue shapes when attempting to produce sounds that are in error. The additional feedback may assist children with childhood apraxia of speech in stabilizing motor patterns, thereby facilitating more consistent and accurate productions of sounds and syllables. However, due to its specialized nature, ultrasound visual feedback is a technology that is not widely available to clients. Short-term intensive treatment programs are one option that can be utilized to expand access to ultrasound biofeedback. Schema-based motor learning theory suggests that short-term intensive treatment programs (massed practice may assist children in acquiring more accurate motor patterns. In this case series, three participants ages 10-14 diagnosed with childhood apraxia of speech attended 16 hours of speech therapy over a two-week period to address residual speech sound errors. Two participants had distortions on rhotic sounds, while the third participant demonstrated lateralization of sibilant sounds. During therapy, cues were provided to assist participants in obtaining a tongue shape that facilitated a correct production of the erred sound. Additional practice without ultrasound was also included. Results suggested that all participants showed signs of acquisition of sounds in error. Generalization and retention results were mixed. One participant showed generalization and retention of sounds that were treated; one showed generalization but limited retention; and the third showed no evidence of generalization or retention. Individual characteristics that may facilitate generalization are discussed. Short-term intensive treatment programs using ultrasound biofeedback may result in the acquisition of more accurate motor

  4. Hand-eye calibration for rigid laparoscopes using an invariant point.

    Science.gov (United States)

    Thompson, Stephen; Stoyanov, Danail; Schneider, Crispin; Gurusamy, Kurinchi; Ourselin, Sébastien; Davidson, Brian; Hawkes, David; Clarkson, Matthew J

    2016-06-01

    Laparoscopic liver resection has significant advantages over open surgery due to less patient trauma and faster recovery times, yet it can be difficult due to the restricted field of view and lack of haptic feedback. Image guidance provides a potential solution but one current challenge is in accurate "hand-eye" calibration, which determines the position and orientation of the laparoscope camera relative to the tracking markers. In this paper, we propose a simple and clinically feasible calibration method based on a single invariant point. The method requires no additional hardware, can be constructed by theatre staff during surgical setup, requires minimal image processing and can be visualised in real time. Real-time visualisation allows the surgical team to assess the calibration accuracy before use in surgery. In addition, in the laboratory, we have developed a laparoscope with an electromagnetic tracking sensor attached to the camera end and an optical tracking marker attached to the distal end. This enables a comparison of tracking performance. We have evaluated our method in the laboratory and compared it to two widely used methods, "Tsai's method" and "direct" calibration. The new method is of comparable accuracy to existing methods, and we show RMS projected error due to calibration of 1.95 mm for optical tracking and 0.85 mm for EM tracking, versus 4.13 and 1.00 mm respectively, using existing methods. The new method has also been shown to be workable under sterile conditions in the operating room. We have proposed a new method of hand-eye calibration, based on a single invariant point. Initial experience has shown that the method provides visual feedback, satisfactory accuracy and can be performed during surgery. We also show that an EM sensor placed near the camera would provide significantly improved image overlay accuracy.

  5. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    Science.gov (United States)

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  6. Body schema and corporeal self-recognition in the alien hand syndrome.

    Science.gov (United States)

    Olgiati, Elena; Maravita, Angelo; Spandri, Viviana; Casati, Roberta; Ferraro, Francesco; Tedesco, Lucia; Agostoni, Elio Clemente; Bolognini, Nadia

    2017-07-01

    The alien hand syndrome (AHS) is a rare neuropsychological disorder characterized by involuntary, yet purposeful, hand movements. Patients with the AHS typically complain about a loss of agency associated with a feeling of estrangement for actions performed by the affected limb. The present study explores the integrity of the body representation in AHS, focusing on 2 main processes: multisensory integration and visual self-recognition of body parts. Three patients affected by AHS following a right-hemisphere stroke, with clinical symptoms akin to the posterior variant of AHS, were tested and their performance was compared with that of 18 age-matched healthy controls. AHS patients and controls underwent 2 experimental tasks: a same-different visual matching task for body postures, which assessed the ability of using your own body schema for encoding others' body postural changes (Experiment 1), and an explicit self-hand recognition task, which assessed the ability to visually recognize your own hands (Experiment 2). As compared to controls, all AHS patients were unable to access a reliable multisensory representation of their alien hand and use it for decoding others' postural changes; however, they could rely on an efficient multisensory representation of their intact (ipsilesional) hand. Two AHS patients also presented with a specific impairment in the visual self-recognition of their alien hand, but normal recognition of their intact hand. This evidence suggests that the AHS following a right-hemisphere stroke may involve a disruption of the multisensory representation of the alien limb; instead, self-hand recognition mechanisms may be spared. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Is that graspable? Let your right hand be the judge.

    Science.gov (United States)

    Netelenbos, Nicole; Gonzalez, Claudia L R

    2015-02-01

    A right-hand preference for visually-guided grasping has been shown on numerous accounts. Grasping an object requires the integration of both visual and motor components of visuomotor processing. It has been suggested that the left hemisphere plays an integral role in visuomotor functions. The present study serves to investigate whether the visual processing of graspable objects, without any actual reaching or grasping movements, yields a right-hand (left-hemisphere) advantage. Further, we aim to address whether such an advantage is automatically evoked by motor affordances. Two groups of right-handed participants were asked to categorize objects presented on a computer monitor by responding on a keypad. The first group was asked to categorize visual stimuli as graspable (e.g. apple) or non-graspable (e.g. car). A second group categorized the same stimuli but as nature-made (e.g. apple) or man-made (e.g. car). Reaction times were measured in response to the visually presented stimuli. Results showed a right-hand advantage for graspable objects only when participants were asked to respond to the graspable/non-graspable categorization. When participants were asked to categorize objects as nature-made or man-made, a right-hand advantage for graspable objects did not emerge. The results suggest that motor affordances may not always be automatic and might require conscious representations that are appropriate for object interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Coding the presence of visual objects in a recurrent neural network of visual cortex.

    Science.gov (United States)

    Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard

    2007-01-01

    Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.

  9. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder.

    Science.gov (United States)

    Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A

    2015-02-04

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.

  10. The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System

    Science.gov (United States)

    Shadmehr, Reza

    2016-01-01

    When we experience an error during a movement, we update our motor commands to partially correct for this error on the next trial. How does experience of error produce the improvement in the subsequent motor commands? During the course of an erroneous reaching movement, proprioceptive and visual sensory pathways not only sense the error, but also engage feedback mechanisms, resulting in corrective motor responses that continue until the hand arrives at its goal. One possibility is that this feedback response is co-opted by the learning system and used as a template to improve performance on the next attempt. Here we used electromyography (EMG) to compare neural correlates of learning and feedback to test the hypothesis that the feedback response to error acts as a template for learning. We designed a task in which mixtures of error-clamp and force-field perturbation trials were used to deconstruct EMG time courses into error-feedback and learning components. We observed that the error-feedback response was composed of excitation of some muscles, and inhibition of others, producing a complex activation/deactivation pattern during the reach. Despite this complexity, across muscles the learning response was consistently a scaled version of the error-feedback response, but shifted 125 ms earlier in time. Across people, individuals who produced a greater feedback response to error, also learned more from error. This suggests that the feedback response to error serves as a teaching signal for the brain. Individuals who learn faster have a better teacher in their feedback control system. SIGNIFICANCE STATEMENT Our sensory organs transduce errors in behavior. To improve performance, we must generate better motor commands. How does the nervous system transform an error in sensory coordinates into better motor commands in muscle coordinates? Here we show that when an error occurs during a movement, the reflexes transform the sensory representation of error into motor

  11. A Control Strategy with Tactile Perception Feedback for EMG Prosthetic Hand

    Directory of Open Access Journals (Sweden)

    Changcheng Wu

    2015-01-01

    Full Text Available To improve the control effectiveness and make the prosthetic hand not only controllable but also perceivable, an EMG prosthetic hand control strategy was proposed in this paper. The control strategy consists of EMG self-learning motion recognition, backstepping controller with stiffness fuzzy observation, and force tactile representation. EMG self-learning motion recognition is used to reduce the influence on EMG signals caused by the uncertainty of the contacting position of the EMG sensors. Backstepping controller with stiffness fuzzy observation is used to realize the position control and grasp force control. Velocity proportional control in free space and grasp force tracking control in restricted space can be realized by the same controller. The force tactile representation helps the user perceive the states of the prosthetic hand. Several experiments were implemented to verify the effect of the proposed control strategy. The results indicate that the proposed strategy has effectiveness. During the experiments, the comments of the participants show that the proposed strategy is a better choice for amputees because of the improved controllability and perceptibility.

  12. Feedback from visual cortical area 7 to areas 17 and 18 in cats: How neural web is woven during feedback.

    Science.gov (United States)

    Yang, X; Ding, H; Lu, J

    2016-01-15

    To investigate the feedback effect from area 7 to areas 17 and 18, intrinsic signal optical imaging combined with pharmacological, morphological methods and functional magnetic resonance imaging (fMRI) was employed. A spatial frequency-dependent decrease in response amplitude of orientation maps was observed in areas 17 and 18 when area 7 was inactivated by a local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The pattern of orientation maps of areas 17 and 18 after the inactivation of area 7, if they were not totally blurred, paralleled the normal one. In morphological experiments, after one point at the shallow layers within the center of the cat's orientation column of area 17 was injected electrophoretically with HRP (horseradish peroxidase), three sequential patches in layers 1, 2 and 3 of area 7 were observed. Employing fMRI it was found that area 7 feedbacks mainly to areas 17 and 18 on ipsilateral hemisphere. Therefore, our conclusions are: (1) feedback from area 7 to areas 17 and 18 is spatial frequency modulated; (2) feedback from area 7 to areas 17 and 18 occurs mainly ipsilaterally; (3) histological feedback pattern from area 7 to area 17 is weblike. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Factors Affecting Hand Hygiene Adherence at a Private Hospital in Turkey.

    Science.gov (United States)

    Teker, Bahri; Ogutlu, Aziz; Gozdas, Hasan Tahsin; Ruayercan, Saliha; Hacialioglu, Gulizar; Karabay, Oguz

    2015-10-01

    Nosocomial infections are the main problems rising morbidity and mortality in health care settings. Hand hygiene is the most effective method for preventing these infections. In this study, we aimed to investigate the factors related with hand hygiene adherence at a private hospital in Turkey. This study was conducted between March and June 2010 at a private hospital in Turkey. During the observation period, employees were informed about training, then posters and images were hanged in specific places of the hospital. After the initial observation, training on nosocomial infections and hand hygiene was provided to the hospital staff in March 2010. Contacts were classified according to occupational groups and whether invasive or not. These observations were evaluated in terms of compatibility with hand hygiene guidelines. Hand hygiene adherence rate of trained doctors was higher than untrained ones before patient contact and after environment contact [48% (35/73) versus 82% (92/113) pHand hygiene adherence rate of trained nurses was higher than untrained ones before patient contact [63% (50/79) versus 76% (37/49) pHand hygiene adherence rate of trained assistant health personnel was higher than untrained ones before asepsis [20% (2/10) versus 73% (16/22) phand antiseptics were used when hand washing was not possible. The increase at the rate of hand washing after training reveals the importance of feedback of the observations, as well as the training. One of the most important ways of preventing nosocomial infections is hand hygiene training that should be continued with feedbacks.

  14. Hand/Eye Coordination For Fine Robotic Motion

    Science.gov (United States)

    Lokshin, Anatole M.

    1992-01-01

    Fine motions of robotic manipulator controlled with help of visual feedback by new method reducing position errors by order of magnitude. Robotic vision subsystem includes five cameras: three stationary ones providing wide-angle views of workspace and two mounted on wrist of auxiliary robot arm. Stereoscopic cameras on arm give close-up views of object and end effector. Cameras measure errors between commanded and actual positions and/or provide data for mapping between visual and manipulator-joint-angle coordinates.

  15. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    Science.gov (United States)

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2014-10-01

    Objective. Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. Approach. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide ‘tactile’ sensation to a non-human primate. Main result. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Significance. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  16. Vibrotactile sensory substitution elicits feeling of ownership of an alien hand.

    Directory of Open Access Journals (Sweden)

    Marco D'Alonzo

    Full Text Available Tactile feedback plays a key role in the attribution of a limb to the self and in the motor control of grasping and manipulation. However, due to technological limits, current prosthetic hands do not provide amputees with cutaneous touch feedback. Recent findings showed that amputees can be tricked into experiencing an alien rubber hand as part of their own body, by applying synchronous touches to the stump which is out of view, and to the rubber hand in full view. It was suggested that similar effects could be achieved by using a prosthesis with touch sensors that provides synchronous cutaneous feedback through an array of tactile stimulators on the stump. Such a prosthesis holds the potential to be easily incorporated within one's body scheme, because it would reproduce the perceptual illusion in everyday usage. We propose to use sensory substitution--specifically vibrotactile--to address this issue, as current haptic technology is still too bulky and inefficient. In this basic study we addressed the fundamental question of whether visuo-tactile modality mismatch promotes self-attribution of a limb, and to what extent compared to a modality-matched paradigm, on normally-limbed subjects. We manipulated visuo-tactile stimulations, comprising combinations of modality matched, modality mismatched, synchronous and asynchronous stimulations, in a set of experiments fashioned after the Rubber Hand Illusion. Modality mismatched stimulation was provided using a keypad-controlled vibrotactile display. Results from three independent measures of embodiment (questionnaires, pointing tests and skin conductance responses indicate that vibrotactile sensory substitution can be used to induce self-attribution of a rubber hand when synchronous but modality-conflicting visuo-tactile stimulation is delivered to the biological finger pads and to the equivalent rubber hand phalanges.

  17. Scientific visualization uncertainty, multifield, biomedical, and scalable visualization

    CERN Document Server

    Chen, Min; Johnson, Christopher; Kaufman, Arie; Hagen, Hans

    2014-01-01

    Based on the seminar that took place in Dagstuhl, Germany in June 2011, this contributed volume studies the four important topics within the scientific visualization field: uncertainty visualization, multifield visualization, biomedical visualization and scalable visualization. • Uncertainty visualization deals with uncertain data from simulations or sampled data, uncertainty due to the mathematical processes operating on the data, and uncertainty in the visual representation, • Multifield visualization addresses the need to depict multiple data at individual locations and the combination of multiple datasets, • Biomedical is a vast field with select subtopics addressed from scanning methodologies to structural applications to biological applications, • Scalability in scientific visualization is critical as data grows and computational devices range from hand-held mobile devices to exascale computational platforms. Scientific Visualization will be useful to practitioners of scientific visualization, ...

  18. An introduction to programming using visual basic 2012(wvisual studio 2012 express edition dvd) (9th edition)

    CERN Document Server

    Schneider, David I.

    2013-01-01

    An Introduction to Programming Using Visual Basic 2012, Ninth Edition —consistently praised by both students and instructors — is designed for readers with no prior computer programming experience. Now updated for Visual Basic 2012, Schneider focuses on teaching problem-solving skills and sustainable programming skills. A broad range of real-world examples, section-ending exercises, case studies, and programming projects gives readers more hands-on experience than any other Visual Basic book on the market. NEW! This edition is available with MyProgrammingLab, an innovative online homework and assessment tool. Through the power of practice and immediate personalized feedback, MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of programming. Note: If you are purchasing the standalone text or electronic version, MyProgrammingLab does not come automatically packaged with the text. To purchase MyProgrammingLab, please visit: myprogramminglab.com or you can purchase a...

  19. Smartphone text message service to foster hand hygiene compliance in health care workers.

    Science.gov (United States)

    Kerbaj, Jad; Toure, Youssoupha; Soto Aladro, Alberto; Boudjema, Sophia; Giorgi, Roch; Dufour, Jean Charles; Brouqui, Philippe

    2017-03-01

    Health care-associated infections are a major worldwide public health issue. Hand hygiene is a major component in the prevention of pathogen transmission in hospitals, and hand hygiene adherence by health care workers is low in many studies. We report an intervention using text messages as reminders and feedback to improve hand hygiene adherence. The study is a historical comparison proof-of-concept study. Eighteen health care workers were monitored during 12 months by a radiofrequency identification system. Afterward we sent 2 types of text messages, congratulation or encouragement, and we studied the evolution of hand hygiene adherence. We recorded 15,723 hand hygiene opportunities, 8,973 before intervention and 6,750 during and after the intervention. Using a multilevel logistic regression analysis, we found a significant increase in hand hygiene adherence during the intervention (odds ratio, 1.68) compared with the historical period. Despite limitations due to the type of study, a text message encouraging personnel to be more vigilant is effective in increasing hand hygiene adherence in health care workers. Text message feedback should be incorporated into multimodal approaches for improving hand hygiene compliance. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Premotor activations in response to visually presented single letters depend on the hand used to write: a study on left-handers.

    Science.gov (United States)

    Longcamp, Marieke; Anton, Jean-Luc; Roth, Muriel; Velay, Jean-Luc

    2005-01-01

    In a previous fMRI study on right-handers (Rhrs), we reported that part of the left ventral premotor cortex (BA6) was activated when alphabetical characters were passively observed and that the same region was also involved in handwriting [Longcamp, M., Anton, J. L., Roth, M., & Velay, J. L. (2003). Visual presentation of single letters activates a premotor area involved in writing. NeuroImage, 19, 1492-1500]. We therefore suggested that letter-viewing may induce automatic involvement of handwriting movements. In the present study, in order to confirm this hypothesis, we carried out a similar fMRI experiment on a group of left-handed subjects (Lhrs). We reasoned that if the above assumption was correct, visual perception of letters by Lhrs might automatically activate cortical motor areas coding for left-handed writing movements, i.e., areas located in the right hemisphere. The visual stimuli used here were either single letters, single pseudoletters, or a control stimulus. The subjects were asked to watch these stimuli attentively, and no response was required. The results showed that a ventral premotor cortical area (BA6) in the right hemisphere was specifically activated when Lhrs looked at letters and not at pseudoletters. This right area was symmetrically located with respect to the left one activated under the same circumstances in Rhrs. This finding supports the hypothesis that visual perception of written language evokes covert motor processes. In addition, a bilateral area, also located in the premotor cortex (BA6), but more ventrally and medially, was found to be activated in response to both letters and pseudoletters. This premotor region, which was not activated correspondingly in Rhrs, might be involved in the processing of graphic stimuli, whatever their degree of familiarity.

  1. Visual and Haptic Mental Rotation

    Directory of Open Access Journals (Sweden)

    Satoshi Shioiri

    2011-10-01

    Full Text Available It is well known that visual information can be retained in several types of memory systems. Haptic information can also be retained in a memory because we can repeat a hand movement. There may be a common memory system for vision and action. On the one hand, it may be convenient to have a common system for acting with visual information. On the other hand, different modalities may have their own memory and use retained information without transforming specific to the modality. We compared memory properties of visual and haptic information. There is a phenomenon known as mental rotation, which is possibly unique to visual representation. The mental rotation is a phenomenon where reaction time increases with the angle of visual target (eg,, a letter to identify. The phenomenon is explained by the difference in time to rotate the representation of the target in the visual sytem. In this study, we compared the effect of stimulus angle on visual and haptic shape identification (two-line shapes were used. We found that a typical effect of mental rotation for the visual stimulus. However, no such effect was found for the haptic stimulus. This difference cannot be explained by the modality differences in response because similar difference was found even when haptical response was used for visual representation and visual response was used for haptic representation. These results indicate that there are independent systems for visual and haptic representations.

  2. Self-Controlled Feedback for a Complex Motor Task

    Directory of Open Access Journals (Sweden)

    Wolf Peter

    2011-12-01

    Full Text Available Self-controlled augmented feedback enhances learning of simple motor tasks. Thereby, learners tend to request feedback after trials that were rated as good by themselves. Feedback after good trials promotes positive reinforcement, which enhances motor learning. The goal of this study was to investigate when naïve learners request terminal visual feedback in a complex motor task, as conclusions drawn on simple tasks can hardly be transferred to complex tasks. Indeed, seven of nine learners stated to have intended to request feedback predominantly after good trials, but in contrast to their intention, kinematic analysis showed that feedback was rather requested randomly (23% after good, 44% after intermediate, 33% after bad trials. Moreover, requesting feedback after good trials did not correlate with learning success. It seems that self-estimation of performance in complex tasks is challenging. As a consequence, learners might have focused on certain movement aspects rather than on the overall movement. Further studies should assess the current focus of the learner in detail to gain more insight in self-estimation capabilities during complex motor task learning.

  3. Googling your hand hygiene data: Using Google Forms, Google Sheets, and R to collect and automate analysis of hand hygiene compliance monitoring.

    Science.gov (United States)

    Wiemken, Timothy L; Furmanek, Stephen P; Mattingly, William A; Haas, Janet; Ramirez, Julio A; Carrico, Ruth M

    2018-06-01

    Hand hygiene is one of the most important interventions in the quest to eliminate healthcare-associated infections, and rates in healthcare facilities are markedly low. Since hand hygiene observation and feedback are critical to improve adherence, we created an easy-to-use, platform-independent hand hygiene data collection process and an automated, on-demand reporting engine. A 3-step approach was used for this project: 1) creation of a data collection form using Google Forms, 2) transfer of data from the form to a spreadsheet using Google Spreadsheets, and 3) creation of an automated, cloud-based analytics platform for report generation using R and RStudio Shiny software. A video tutorial of all steps in the creation and use of this free tool can be found on our YouTube channel: https://www.youtube.com/watch?v=uFatMR1rXqU&t. The on-demand reporting tool can be accessed at: https://crsp.louisville.edu/shiny/handhygiene. This data collection and automated analytics engine provides an easy-to-use environment for evaluating hand hygiene data; it also provides rapid feedback to healthcare workers. By reducing some of the data management workload required of the infection preventionist, more focused interventions may be instituted to increase global hand hygiene rates and reduce infection. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Improved Hand Hygiene Compliance is Associated with the Change of Perception toward Hand Hygiene among Medical Personnel

    Science.gov (United States)

    Park, Se Jeong; Chung, Moon Joo; Lee, Ju Hee; Kang, Hyun Joo; Lee, Jeong-a; Kim, Yong Kyun

    2014-01-01

    Background Hand hygiene compliance has improved significantly through hand hygiene promotion programs that have included poster campaign, monitoring and performance feedback, and education with special attentions to perceived subjective norms. We investigated factors associated with improved hand hygiene compliance, focusing on whether the improvement of hand hygiene compliance is associated with changed perception toward hand hygiene among medical personnel. Materials and Methods Hand hygiene compliance and perceptions toward hand hygiene among medical personnel were compared between the second quarter of 2009 (before the start of a hand hygiene promotion program) and the second quarter of 2012. We assessed adherence to hand hygiene among medical personnel quarterly according to the WHO recommended method for direct observation. Also, we used a modified self-report questionnaire to collect perception data. Results Hand hygiene compliance among physicians and nurses improved significantly from 19.0% in 2009 to 74.5% in 2012 (P Hand hygiene compliance among the medical personnel continued to improve, with a slight decline in 2013. Perceptions toward hand hygiene improved significantly between 2009 and 2012. Specifically, improvements were evident in intention to adhere to hand hygiene, knowledge about hand hygiene methods, knowledge about hand hygiene indications including care of a dirty and a clean body site on the same patient, perceived behavioral and subjective norms, positive attitude toward hand hygiene promotion campaign, perception of difficulty in adhering to hand hygiene, and motivation to improve adherence to hand hygiene. Conclusions The examined hand hygiene promotion program resulted in improved hand hygiene compliance and perception toward hand hygiene among medical personnel. The improved perception increased hand hygiene compliance. Especially, the perception of being a role model for other colleagues is very important to improve hand hygiene

  5. Effects of hand orientation on motor imagery--event related potentials suggest kinesthetic motor imagery to solve the hand laterality judgment task.

    Science.gov (United States)

    Jongsma, Marijtje L A; Meulenbroek, Ruud G J; Okely, Judith; Baas, C Marjolein; van der Lubbe, Rob H J; Steenbergen, Bert

    2013-01-01

    Motor imagery (MI) refers to the process of imagining the execution of a specific motor action without actually producing an overt movement. Two forms of MI have been distinguished: visual MI and kinesthetic MI. To distinguish between these forms of MI we employed an event related potential (ERP) study to measure interference effects induced by hand orientation manipulations in a hand laterality judgement task. We hypothesized that this manipulation should only affect kinesthetic MI but not visual MI. The ERPs elicited by rotated hand stimuli contained the classic rotation related negativity (RRN) with respect to palm view stimuli. We observed that laterally rotated stimuli led to a more marked RRN than medially rotated stimuli. This RRN effect was observed when participants had their hands positioned in either a straight (control) or an inward rotated posture, but not when their hands were positioned in an outward rotated posture. Posture effects on the ERP-RRN have not previously been studied. Apparently, a congruent hand posture (hands positioned in an outward rotated fashion) facilitates the judgement of the otherwise more demanding laterally rotated hand stimuli. These ERP findings support a kinesthetic interpretation of MI involved in solving the hand laterality judgement task. The RRN may be used as a non-invasive marker for kinesthetic MI and seems useful in revealing the covert behavior of MI in e.g. rehabilitation programs.

  6. Evaluating User Response to In-Car Haptic Feedback Touchscreens Using the Lane Change Test

    Directory of Open Access Journals (Sweden)

    Matthew J. Pitts

    2012-01-01

    Full Text Available Touchscreen interfaces are widely used in modern technology, from mobile devices to in-car infotainment systems. However, touchscreens impose significant visual workload demands on the user which have safety implications for use in cars. Previous studies indicate that the application of haptic feedback can improve both performance of and affective response to user interfaces. This paper reports on and extends the findings of a 2009 study conducted to evaluate the effects of different combinations of touchscreen visual, audible, and haptic feedback on driving and task performance, affective response, and subjective workload; the initial findings of which were originally published in (M. J. Pitts et al., 2009. A total of 48 non-expert users completed the study. A dual-task approach was applied, using the Lane Change Test as the driving task and realistic automotive use case touchscreen tasks. Results indicated that, while feedback type had no effect on driving or task performance, preference was expressed for multimodal feedback over visual alone. Issues relating to workload and cross-modal interaction were also identified.

  7. Visual and visuomotor processing of hands and tools as a case study of cross talk between the dorsal and ventral streams.

    Science.gov (United States)

    Almeida, Jorge; Amaral, Lénia; Garcea, Frank E; Aguiar de Sousa, Diana; Xu, Shan; Mahon, Bradford Z; Martins, Isabel Pavão

    2018-05-24

    A major principle of organization of the visual system is between a dorsal stream that processes visuomotor information and a ventral stream that supports object recognition. Most research has focused on dissociating processing across these two streams. Here we focus on how the two streams interact. We tested neurologically-intact and impaired participants in an object categorization task over two classes of objects that depend on processing within both streams-hands and tools. We measured how unconscious processing of images from one of these categories (e.g., tools) affects the recognition of images from the other category (i.e., hands). Our findings with neurologically-intact participants demonstrated that processing an image of a hand hampers the subsequent processing of an image of a tool, and vice versa. These results were not present in apraxic patients (N = 3). These findings suggest local and global inhibitory processes working in tandem to co-register information across the two streams.

  8. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat.

    Science.gov (United States)

    Huang, Luoxiu; Chen, Xin; Shou, Tiande

    2004-02-20

    The feedback effect of activity of area 21a on orientation maps of areas 17 and 18 was investigated in cats using intrinsic signal optical imaging. A spatial frequency-dependent decrease in response amplitude of orientation maps to grating stimuli was observed in areas 17 and 18 when area 21a was inactivated by local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The decrease in response amplitude of orientation maps of areas 17 and 18 after the area 21a inactivation paralleled the normal response without the inactivation. Application in area 21a of bicuculline, a GABAa receptor antagonist caused an increase in response amplitude of orientation maps of area 17. The results indicate a positive feedback from high-order visual cortical area 21a to lower-order areas underlying a spatial frequency-dependent mechanism.

  9. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  10. Hand-assisted laparoscopic surgery and its applications in gynecology

    Directory of Open Access Journals (Sweden)

    Yueqian Wu

    2016-02-01

    Full Text Available Laparoscopic surgery has been used extensively since it was first applied in the 1980s. The advantages are generally accepted and include less pain, smaller incisions, faster recovery, and shorter hospital stays. However, several limitations associated with standard laparoscopic surgery (SLS have become apparent and include the loss of tactile sensation, problems with the removal of bulky and intact specimens, and the restriction of visualization of the entire operating field. These problems with SLS helped to inspire the development of laparoscopically assisted surgery followed by hand-assisted laparoscopic surgery (HALS. In a hand-assisted laparoscopic procedure, an incision is made in the patient’s abdomen. Then, a uniquely designed appliance is introduced into the abdominal cavity through the incision to maintain pneumoperitoneum. With the inserting hand, surgeons can provide manual exposure, traction, palpation, and dissection because of the feedback of tactile sensation. HALS has gained acceptance for a wide range of abdominal procedures in general surgery and urology and is now feasible for complicated surgeries such as splenectomy, nephroureterectomy, and colectomy. It has been demonstrated in numerous specialties that HALS is a safe and efficacious technique that combines the benefits of laparoscopy with the advantages of a conventional laparotomy. Standard laparoscopic surgery also has limitations in gynecological surgery. A patient may have high risks with conventional laparoscopic surgery when she has deep invasive endometriosis, multiple or massive myoma, or dense pelvic adhesions from prior surgery. HALS overcomes many of the aforementioned limitations, has less conversion to open surgery, and broadens the indications for minimally invasive surgery, not only for benign tumors but also for pelvic malignancies.

  11. Systematic tracking, visualizing, and interpreting of consumer feedback for drinking water quality.

    Science.gov (United States)

    Dietrich, Andrea M; Phetxumphou, Katherine; Gallagher, Daniel L

    2014-12-01

    Consumer feedback and complaints provide utilities with useful data about consumer perceptions of aesthetic water quality in the distribution system. This research provides a systematic approach to interpret consumer complaint water quality data provided by four water utilities that recorded consumer complaints, but did not routinely process the data. The utilities tended to write down a myriad of descriptors that were too numerous or contained a variety of spellings so that electronic "harvesting" was not possible and much manual labor was required to categorize the complaints into majors areas, such as suggested by the Drinking Water Taste and Odor Wheel or existing check-sheets. When the consumer complaint data were categorized and visualized using spider (or radar) and run-time plots, major taste, odor, and appearance patterns emerged that clarified the issue and could provide guidance to the utility on the nature and extent of the problem. A caveat is that while humans readily identify visual issues with the water, such as color, cloudiness, or rust, describing specific tastes and odors in drinking water is acknowledged to be much more difficult for humans to achieve without training. This was demonstrated with two utility groups and a group of consumers identifying the odors of orange, 2-methylisoborneol, and dimethyl trisulfide. All three groups readily and succinctly identified the familiar orange odor. The two utility groups were much more able to identify the musty odor of 2-methylisoborneol, which was likely familiar to them from their work with raw and finished water. Dimethyl trisulfide, a garlic-onion odor associated with sulfur compounds in drinking water, was the least familiar to all three groups, although the laboratory staff did best. These results indicate that utility personnel should be tolerant of consumers who can assuredly say the water is different, but cannot describe the problem. Also, it indicates that a T&O program at a utility would

  12. Direct Visual Editing of Node Attributes in Graphs

    Directory of Open Access Journals (Sweden)

    Christian Eichner

    2016-10-01

    Full Text Available There are many expressive visualization techniques for analyzing graphs. Yet, there is only little research on how existing visual representations can be employed to support data editing. An increasingly relevant task when working with graphs is the editing of node attributes. We propose an integrated visualize-and-edit approach to editing attribute values via direct interaction with the visual representation. The visualize part is based on node-link diagrams paired with attribute-dependent layouts. The edit part is as easy as moving nodes via drag-and-drop gestures. We present dedicated interaction techniques for editing quantitative as well as qualitative attribute data values. The benefit of our novel integrated approach is that one can directly edit the data while the visualization constantly provides feedback on the implications of the data modifications. Preliminary user feedback indicates that our integrated approach can be a useful complement to standard non-visual editing via external tools.

  13. Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex.

    Science.gov (United States)

    Gonchar, Yuri; Burkhalter, Andreas

    2003-11-26

    Processing of visual information is performed in different cortical areas that are interconnected by feedforward (FF) and feedback (FB) pathways. Although FF and FB inputs are excitatory, their influences on pyramidal neurons also depend on the outputs of GABAergic neurons, which receive FF and FB inputs. Rat visual cortex contains at least three different families of GABAergic neurons that express parvalbumin (PV), calretinin (CR), and somatostatin (SOM) (Gonchar and Burkhalter, 1997). To examine whether pathway-specific inhibition (Shao and Burkhalter, 1996) is attributable to distinct connections with GABAergic neurons, we traced FF and FB inputs to PV, CR, and SOM neurons in layers 1-2/3 of area 17 and the secondary lateromedial area in rat visual cortex. We found that in layer 2/3 maximally 2% of FF and FB inputs go to CR and SOM neurons. This contrasts with 12-13% of FF and FB inputs onto layer 2/3 PV neurons. Unlike inputs to layer 2/3, connections to layer 1, which contains CR but lacks SOM and PV somata, are pathway-specific: 21% of FB inputs go to CR neurons, whereas FF inputs to layer 1 and its CR neurons are absent. These findings suggest that FF and FB influences on layer 2/3 pyramidal neurons mainly involve disynaptic connections via PV neurons that control the spike outputs to axons and proximal dendrites. Unlike FF input, FB input in addition makes a disynaptic link via CR neurons, which may influence the excitability of distal pyramidal cell dendrites in layer 1.

  14. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    OpenAIRE

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    This paper presents the design and verification of a swing reducing controller for helicopter slung load systems usingintentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integra...

  15. Cortical Asymmetries during Hand Laterality Task Vary with Hand Laterality: A fMRI Study in 295 Participants

    Science.gov (United States)

    Mellet, Emmanuel; Mazoyer, Bernard; Leroux, Gaelle; Joliot, Marc; Tzourio-Mazoyer, Nathalie

    2016-01-01

    The aim of this study was to characterize, using fMRI, the functional asymmetries of hand laterality task (HLT) in a sample of 295 participants balanced for handedness. During HLT, participants have to decide whether the displayed picture of a hand represent a right or a left hand. Pictures of hands’ back view were presented for 150 ms in the right or left hemifield. At the whole hemisphere level, we evidenced that the laterality of the hand and of the hemifield in which the picture was displayed combined their effects on the hemispheric asymmetry in an additive way. We then identified a set of 17 functional homotopic regions of interest (hROIs) including premotor, motor, somatosensory and parietal regions, whose activity and asymmetry varied with the laterality of the presented hands. When the laterality of a right hand had to be evaluated, these areas showed stronger leftward asymmetry, the hROI located in the primary motor area showing a significant larger effect than all other hROIs. In addition a subset of six parietal regions involved in visuo-motor integration together with two postcentral areas showed a variation in asymmetry with hemifield of presentation. Finally, while handedness had no effect at the hemispheric level, two regions located in the parietal operculum and intraparietal sulcus exhibited larger leftward asymmetry with right handedness independently of the hand of presentation. The present results extend those of previous works in showing a shift of asymmetries during HLT according to the hand presented in sensorimotor areas including primary motor cortex. This shift was not affected by manual preference. They also demonstrate that the coordination of visual information and handedness identification of hands relied on the coexistence of contralateral motor and visual representations in the superior parietal lobe and the postcentral gyrus. PMID:27999536

  16. Learning through hand- or typewriting influences visual recognition of new graphic shapes: behavioral and functional imaging evidence.

    Science.gov (United States)

    Longcamp, Marieke; Boucard, Céline; Gilhodes, Jean-Claude; Anton, Jean-Luc; Roth, Muriel; Nazarian, Bruno; Velay, Jean-Luc

    2008-05-01

    Fast and accurate visual recognition of single characters is crucial for efficient reading. We explored the possible contribution of writing memory to character recognition processes. We evaluated the ability of adults to discriminate new characters from their mirror images after being taught how to produce the characters either by traditional pen-and-paper writing or with a computer keyboard. After training, we found stronger and longer lasting (several weeks) facilitation in recognizing the orientation of characters that had been written by hand compared to those typed. Functional magnetic resonance imaging recordings indicated that the response mode during learning is associated with distinct pathways during recognition of graphic shapes. Greater activity related to handwriting learning and normal letter identification was observed in several brain regions known to be involved in the execution, imagery, and observation of actions, in particular, the left Broca's area and bilateral inferior parietal lobules. Taken together, these results provide strong arguments in favor of the view that the specific movements memorized when learning how to write participate in the visual recognition of graphic shapes and letters.

  17. Visual appearance of a virtual upper limb modulates the temperature of the real hand: a thermal imaging study in Immersive Virtual Reality.

    Science.gov (United States)

    Tieri, Gaetano; Gioia, Annamaria; Scandola, Michele; Pavone, Enea F; Aglioti, Salvatore M

    2017-05-01

    To explore the link between Sense of Embodiment (SoE) over a virtual hand and physiological regulation of skin temperature, 24 healthy participants were immersed in virtual reality through a Head Mounted Display and had their real limb temperature recorded by means of a high-sensitivity infrared camera. Participants observed a virtual right upper limb (appearing either normally, or with the hand detached from the forearm) or limb-shaped non-corporeal control objects (continuous or discontinuous wooden blocks) from a first-person perspective. Subjective ratings of SoE were collected in each observation condition, as well as temperatures of the right and left hand, wrist and forearm. The observation of these complex, body and body-related virtual scenes resulted in increased real hand temperature when compared to a baseline condition in which a 3d virtual ball was presented. Crucially, observation of non-natural appearances of the virtual limb (discontinuous limb) and limb-shaped non-corporeal objects elicited high increase in real hand temperature and low SoE. In contrast, observation of the full virtual limb caused high SoE and low temperature changes in the real hand with respect to the other conditions. Interestingly, the temperature difference across the different conditions occurred according to a topographic rule that included both hands. Our study sheds new light on the role of an external hand's visual appearance and suggests a tight link between higher-order bodily self-representations and topographic regulation of skin temperature. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. How a smiley protects health: A pilot intervention to improve hand hygiene in hospitals by activating injunctive norms through emoticons

    Science.gov (United States)

    Tsivrikos, Dimitrios; Dollinger, Daniel; Lermer, Eva

    2018-01-01

    Hand hygiene practice in hospitals is unfortunately still widely insufficient, even though it is known that transmitting pathogens via hands is the leading cause of healthcare-associated infections. Previous research has shown that improving knowledge, providing feedback on past behaviour and targeting social norms are promising approaches to improve hand hygiene practices. The present field experiment was designed to direct people on when to perform hand hygiene and prevent forgetfulness. This intervention is the first to examine the effect of inducing injunctive social norms via an emoticon-based feedback system on hand hygiene behaviour. Electronic monitoring and feedback devices were installed in hospital patient rooms on top of hand-rub dispensers, next to the doorway, for a period of 17 weeks. In the emoticon condition, screens at the devices activated whenever a person entered or exited the room. Before using the alcohol-based hand-rub dispenser, a frowny face was displayed, indicating that hand hygiene should be performed. If the dispenser was subsequently used, this picture changed to a smiley face to positively reinforce the correct behaviour. Hand hygiene behaviour in the emoticon rooms significantly outperformed the behaviour in three other tested conditions. The strong effect in this field experiment indicates that activating injunctive norms may be a promising approach to improve hand hygiene behaviour. Theoretical and practical implications of these findings are discussed. PMID:29782516

  19. Verifying elementary ITER maintenance actions with the MS2 benchmark product

    International Nuclear Information System (INIS)

    Heemskerk, C.J.M.; Elzendoorn, B.S.Q.; Magielsen, A.J.; Schropp, G.Y.R.

    2011-01-01

    A new facility has been taken in operation to investigate the influence of visual and haptic feedback on the performance of remotely executed ITER RH maintenance tasks. A reference set of representative ITER remote handling maintenance tasks was included the master slave manipulator system (MS2) benchmark product. The benchmark product was used in task performance tests in a representative two-handed dexterous manipulation test bed at NRG. In the setup, the quality of visual feedback was varied by exchanging direct view with indirect view setups in which visual feedback is provided via video cameras. Interaction forces were measured via an integrated force sensor. The impact of feedback quality on the performance of maintenance tasks at the level of handling individual parts was measured and analysed. Remote execution of the maintenance actions took roughly 3-5 times more time than hands-on. Visual feedback was identified as the dominant factor, including aspects like (lack of) operator control over camera placement, pan, tilt and zoom, lack of 3D perception, image quality, and latency. Haptic feedback was found to be important, but only in specific contact transition and constrained motion tasks.

  20. Eye-hand laterality and right thoracic idiopathic scoliosis.

    Science.gov (United States)

    Catanzariti, Jean-François; Guyot, Marc-Alexandre; Agnani, Olivier; Demaille, Samantha; Kolanowski, Elisabeth; Donze, Cécile

    2014-06-01

    The adolescent idiopathic scoliosis (AIS) pathogenesis remains unknown. Certain studies have shown that there is a correlation between manual laterality and scoliotic deviation. A full study of manual laterality needs to be paired with one for visual dominance. With the aim of physiopathological research, we have evaluated the manual and visual laterality in AIS. A retrospective study from prospective data collection is used to evaluate the distribution of eye-hand laterality (homogeneous or crossed) of 65 right thoracic AIS (mean age 14.8 ± 1.8 years; mean Cobb angle: 32.8°) and a control group of 65 sex and age-matched (mean age 14.6 ± 1.8 years). The manual laterality was defined by the modified Edinburgh Handedness Inventory. The evaluation of the visual laterality is done using three tests (kaleidoscope test, hole-in-the-card test, distance-hole-in-the-card test). The group of right thoracic AIS presents a significantly higher frequency of crossed eye-hand laterality (63 %) than the control group (63 vs. 29.2 %; p laterality is "right hand dominant-left eye dominant" (82.9 %). There is no relationship with the Cobb angle. Those with right thoracic AIS show a higher occurrence of crossed eye-hand laterality. This could point physiopathological research of AIS towards functional abnormality of the optic chiasma through underuse of cross visual pathways, and in particular accessory optic pathways. It would be useful to explore this by carrying out research on AISs through neuroimaging and neurofunctional exploration.

  1. Mastoidectomy simulation with combined visual and haptic feedback.

    Science.gov (United States)

    Agus, Marco; Giachetti, Andrea; Gobbetti, Enrico; Zanetti, Gianluigi; Zorcolo, Antonio; John, Nigel W; Stone, Robert J

    2002-01-01

    Mastoidectomy is one of the most common surgical procedures relating to the petrous bone. In this paper we describe our preliminary results in the realization of a virtual reality mastoidectomy simulator. Our system is designed to work on patient-specific volumetric object models directly derived from 3D CT and MRI images. The paper summarizes the detailed task analysis performed in order to define the system requirements, introduces the architecture of the prototype simulator, and discusses the initial feedback received from selected end users.

  2. OCT-based angiography in real time with hand-held probe

    Science.gov (United States)

    Gelikonov, Grigory V.; Moiseev, Alexander A.; Ksenofontov, Sergey Y.; Terpelov, Dmitry A.; Gelikonov, Valentine M.

    2018-03-01

    This work is dedicated to development of the OCT system capable to visualize blood vessel network for everyday clinical use. Following problems were solved during the development: compensation of specific natural tissue displacements, induced by contact scanning mode and physiological motion of patients (e.g. respiratory and cardiac motions) and on-line visualization of vessel net to provide the feedback for system operator.

  3. Myoelectric hand prosthesis force control through servo motor current feedback.

    Science.gov (United States)

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  4. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Yeo

    2016-12-01

    Full Text Available Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  5. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    Science.gov (United States)

    Yeo, Sang-Hoon; Franklin, David W; Wolpert, Daniel M

    2016-12-01

    Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  6. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.

    Science.gov (United States)

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Nahavandi, Saeid; Smith, Julian

    2014-06-01

    Robotic assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic procedures but also restore the surgeon's hand-eye coordination and improve the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Several research efforts have already attempted to restore this feature and study the effects of force feedback in robotic systems. The proposed methods and studies have some shortcomings. The main focus of this research is to overcome some of these limitations and to study the effects of force feedback in palpation in a more realistic fashion. A parallel robot assisted minimally invasive surgery system (PRAMiSS) with force feedback capabilities was employed to study the effects of realistic force feedback in palpation of artificial tissue samples. PRAMiSS is capable of actually measuring the tip/tissue interaction forces directly from the surgery site. Four sets of experiments using only vision feedback, only force feedback, simultaneous force and vision feedback and direct manipulation were conducted to evaluate the role of sensory feedback from sideways tip/tissue interaction forces with a scale factor of 100% in characterising tissues of varying stiffness. Twenty human subjects were involved in the experiments for at least 1440 trials. Friedman and Wilcoxon signed-rank tests were employed to statistically analyse the experimental results. Providing realistic force feedback in robotic assisted surgery systems improves the quality of tissue characterization procedures. Force feedback capability also increases the certainty of characterizing soft tissues compared with direct palpation using the lateral sides of index fingers. The force feedback capability can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations.

  7. Feedback enhances feedforward figure-ground segmentation by changing firing mode.

    Science.gov (United States)

    Supèr, Hans; Romeo, August

    2011-01-01

    In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforward spiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses with the responses to a homogenous texture. We propose that feedback controls figure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons.

  8. Feedback enhances feedforward figure-ground segmentation by changing firing mode.

    Directory of Open Access Journals (Sweden)

    Hans Supèr

    Full Text Available In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforward spiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses with the responses to a homogenous texture. We propose that feedback controls figure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons.

  9. Feedback Enhances Feedforward Figure-Ground Segmentation by Changing Firing Mode

    Science.gov (United States)

    Supèr, Hans; Romeo, August

    2011-01-01

    In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforwardspiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses withthe responses to a homogenous texture. We propose that feedback controlsfigure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons. PMID:21738747

  10. Relationship between the Short-Term Visual Memory and IQ in the Right-and Left-Handed Subjects Trained in Different Educational Programs: I-General Assessment

    Science.gov (United States)

    Yilmaz, Yavuz; Yetkin, Yalçin

    2014-01-01

    The relationship between mean intelligence quotient (IQ), hand preferences and visual memory (VM) were investigated on (N = 612) males and females students trained in different educational programs in viewpoint of laterality. IQ was assessed by cattle's culture Fair intelligence test-A (CCFIT-A). The laterality of the one side of the body was…

  11. Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership.

    Directory of Open Access Journals (Sweden)

    Shoko Kanaya

    Full Text Available Although visual information seems to affect thermal perception (e.g. red color is associated with heat, previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI wherein an individual feels that a prosthetic (rubber hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.

  12. Is Hand Selection Modulated by Cognitive-perceptual Load?

    Science.gov (United States)

    Liang, Jiali; Wilkinson, Krista; Sainburg, Robert L

    2018-01-15

    Previous studies proposed that selecting which hand to use for a reaching task appears to be modulated by a factor described as "task difficulty". However, what features of a task might contribute to greater or lesser "difficulty" in the context of hand selection decisions has yet to be determined. There has been evidence that biomechanical and kinematic factors such as movement smoothness and work can predict patterns of selection across the workspace, suggesting a role of predictive cost analysis in hand-selection. We hypothesize that this type of prediction for hand-selection should recruit substantial cognitive resources and thus should be influenced by cognitive-perceptual loading. We test this hypothesis by assessing the role of cognitive-perceptual loading on hand selection decisions, using a visual search task that presents different levels of difficulty (cognitive-perceptual load), as established in previous studies on overall response time and efficiency of visual search. Although the data are necessarily preliminary due to small sample size, our data suggested an influence of cognitive-perceptual load on hand selection, such that the dominant hand was selected more frequently as cognitive load increased. Interestingly, cognitive-perceptual loading also increased cross-midline reaches with both hands. Because crossing midline is more costly in terms of kinematic and kinetic factors, our findings suggest that cognitive processes are normally engaged to avoid costly actions, and that the choice not-to-cross midline requires cognitive resources. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Eye-hand exercise: new variant in amblyopia management.

    Science.gov (United States)

    Svĕrák, J; Peregrin, J; Juran, J

    1990-01-01

    A total of 50 children with unilateral amblyopia was treated by short term 10 minute-lasting weekly occlusions of visually well eye. During the occlusion the child is providing the intensive detailed activities under patient's supervision. After an approximately half-a-year lasting interval, the "eye-hand" exercise resulted in the mean improvement of visual acuity for 2.44 normalised lines. The visual motor factor is involved in amblyopia treatment.

  14. BrailleEasy: One-handed Braille Keyboard for Smartphones.

    Science.gov (United States)

    Šepić, Barbara; Ghanem, Abdurrahman; Vogel, Stephan

    2015-01-01

    The evolution of mobile technology is moving at a very fast pace. Smartphones are currently considered a primary communication platform where people exchange voice calls, text messages and emails. The human-smartphone interaction, however, is generally optimized for sighted people through the use of visual cues on the touchscreen, e.g., typing text by tapping on a visual keyboard. Unfortunately, this interaction scheme renders smartphone technology largely inaccessible to visually impaired people as it results in slow typing and higher error rates. Apple and some third party applications provide solutions specific to blind people which enables them to use Braille on smartphones. These applications usually require both hands for typing. However, Brailling with both hands while holding the phone is not very comfortable. Furthermore, two-handed Brailling is not possible on smartwatches, which will be used more pervasively in the future. Therefore, we develop a platform for one-handed Brailing consisting of a custom keyboard called BrailleEasy to input Arabic or English Braille codes within any application, and a BrailleTutor application for practicing. Our platform currently supports Braille grade 1, and will be extended to support contractions, spelling correction, and more languages. Preliminary analysis of user studies for blind participants showed that after less than two hours of practice, participants were able to type significantly faster with the BrailleEasy keyboard than with the standard QWERTY keyboard.

  15. Tracking and Classification of In-Air Hand Gesture Based on Thermal Guided Joint Filter.

    Science.gov (United States)

    Kim, Seongwan; Ban, Yuseok; Lee, Sangyoun

    2017-01-17

    The research on hand gestures has attracted many image processing-related studies, as it intuitively conveys the intention of a human as it pertains to motional meaning. Various sensors have been used to exploit the advantages of different modalities for the extraction of important information conveyed by the hand gesture of a user. Although many works have focused on learning the benefits of thermal information from thermal cameras, most have focused on face recognition or human body detection, rather than hand gesture recognition. Additionally, the majority of the works that take advantage of multiple modalities (e.g., the combination of a thermal sensor and a visual sensor), usually adopting simple fusion approaches between the two modalities. As both thermal sensors and visual sensors have their own shortcomings and strengths, we propose a novel joint filter-based hand gesture recognition method to simultaneously exploit the strengths and compensate the shortcomings of each. Our study is motivated by the investigation of the mutual supplementation between thermal and visual information in low feature level for the consistent representation of a hand in the presence of varying lighting conditions. Accordingly, our proposed method leverages the thermal sensor's stability against luminance and the visual sensors textural detail, while complementing the low resolution and halo effect of thermal sensors and the weakness against illumination of visual sensors. A conventional region tracking method and a deep convolutional neural network have been leveraged to track the trajectory of a hand gesture and to recognize the hand gesture, respectively. Our experimental results show stability in recognizing a hand gesture against varying lighting conditions based on the contribution of the joint kernels of spatial adjacency and thermal range similarity.

  16. Real-time feedback enhances forward propulsion during walking in old adults.

    Science.gov (United States)

    Franz, Jason R; Maletis, Michela; Kram, Rodger

    2014-01-01

    Reduced propulsive function during the push-off phase of walking plays a central role in the deterioration of walking ability with age. We used real-time propulsive feedback to test the hypothesis that old adults have an underutilized propulsive reserve available during walking. 8 old adults (mean [SD], age: 72.1 [3.9] years) and 11 young adults (age: 21.0 [1.5] years) participated. For our primary aim, old subjects walked: 1) normally, 2) with visual feedback of their peak propulsive ground reaction forces, and 3) with visual feedback of their medial gastrocnemius electromyographic activity during push-off. We asked those subjects to match a target set to 20% and 40% greater propulsive force or push-off muscle activity than normal walking. We tested young subjects walking normally only to provide reference ground reaction force values. Walking normally, old adults exerted 12.5% smaller peak propulsive forces than young adults (Ppush-off muscle activities when we provided propulsive feedback. Most notably, force feedback elicited propulsive forces that were equal to or 10.5% greater than those of young adults (+20% target, P=0.87; +40% target, P=0.02). With electromyographic feedback, old adults significantly increased their push-off muscle activities but without increasing their propulsive forces. Old adults with propulsive deficits have a considerable and underutilized propulsive reserve available during level walking. Further, real-time propulsive feedback represents a promising therapeutic strategy to improve the forward propulsion of old adults and thus maintain their walking ability and independence. © 2013.

  17. Preparing to reach: selecting an adaptive long-latency feedback controller

    OpenAIRE

    Ahmadi-Pajouh, Mohammad Ali; Towhidkhah, Farzad; Shadmehr, Reza

    2012-01-01

    In a voluntary movement, the nervous system specifies not only the motor commands, but also the gains associated with reaction to sensory feedback. For example, suppose that during reaching a perturbation tends to push the hand to the left. With practice, the brain not only learns to produce commands that predictively compensate for the perturbation, but also increases the long-latency reflex gain associated with leftward displacements of the arm. That is, the brain learns a feedback controll...

  18. An automated hand hygiene training system improves hand hygiene technique but not compliance.

    Science.gov (United States)

    Kwok, Yen Lee Angela; Callard, Michelle; McLaws, Mary-Louise

    2015-08-01

    The hand hygiene technique that the World Health Organization recommends for cleansing hands with soap and water or alcohol-based handrub consists of 7 poses. We used an automated training system to improve clinicians' hand hygiene technique and test whether this affected hospitalwide hand hygiene compliance. Seven hundred eighty-nine medical and nursing staff volunteered to participate in a self-directed training session using the automated training system. The proportion of successful first attempts was reported for each of the 7 poses. Hand hygiene compliance was collected according to the national requirement and rates for 2011-2014 were used to determine the effect of the training system on compliance. The highest pass rate was for pose 1 (palm to palm) at 77% (606 out of 789), whereas pose 6 (clean thumbs) had the lowest pass rate at 27% (216 out of 789). One hundred volunteers provided feedback to 8 items related to satisfaction with the automated training system and most (86%) expressed a high degree of satisfaction and all reported that this method was time-efficient. There was no significant change in compliance rates after the introduction of the automated training system. Observed compliance during the posttraining period declined but increased to 82% in response to other strategies. Technology for training clinicians in the 7 poses played an important education role but did not affect compliance rates. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  19. Time-optimal feedback control for linear systems

    International Nuclear Information System (INIS)

    Mirica, S.

    1976-01-01

    The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)

  20. Electroencephalographic (eeg coherence between visual and motor areas of the left and the right brain hemisphere while performing visuomotor task with the right and the left hand

    Directory of Open Access Journals (Sweden)

    Simon Brežan

    2007-09-01

    Full Text Available Background: Unilateral limb movements are based on the activation of contralateral primary motor cortex and the bilateral activation of premotor cortices. Performance of a visuomotor task requires a visuomotor integration between motor and visual cortical areas. The functional integration (»binding« of different brain areas, is probably mediated by the synchronous neuronal oscillatory activity, which can be determined by electroencephalographic (EEG coherence analysis. We introduced a new method of coherence analysis and compared coherence and power spectra in the left and right hemisphere for the right vs. left hand visuomotor task, hypothesizing that the increase in coherence and decrease in power spectra while performing the task would be greater in the contralateral hemisphere.Methods: We analyzed 6 healthy subjects and recorded their electroencephalogram during visuomotor task with the right or the left hand. For data analysis, a special Matlab computer programme was designed. The results were statistically analysed by a two-way analysis of variance, one-way analysis of variance and post-hoc t-tests with Bonferroni correction.Results: We demonstrated a significant increase in coherence (p < 0.05 for the visuomotor task compared to control tasks in alpha (8–13 Hz in beta 1 (13–20 Hz frequency bands between visual and motor electrodes. There were no significant differences in coherence nor power spectra depending on the hand used. The changes of coherence and power spectra between both hemispheres were symmetrical.Conclusions: In previous studies, a specific increase of coherence and decrease of power spectra for the visuomotor task was found, but we found no conclusive asymmetries when performing the task with right vs. left hand. This could be explained in a way that increases in coherence and decreases of power spectra reflect symmetrical activation and cooperation between more complex visual and motor brain areas.

  1. Force control in the absence of visual and tactile feedback

    NARCIS (Netherlands)

    Mugge, W.; Abbink, D.A.; Schouten, Alfred Christiaan; van der Helm, F.C.T.; Arendzen, J.H.; Meskers, C.G.M.

    2013-01-01

    Motor control tasks like stance or object handling require sensory feedback from proprioception, vision and touch. The distinction between tactile and proprioceptive sensors is not frequently made in dynamic motor control tasks, and if so, mostly based on signal latency. We previously found that

  2. Perception of CPR quality: Influence of CPR feedback, Just-in-Time CPR training and provider role.

    Science.gov (United States)

    Cheng, Adam; Overly, Frank; Kessler, David; Nadkarni, Vinay M; Lin, Yiqun; Doan, Quynh; Duff, Jonathan P; Tofil, Nancy M; Bhanji, Farhan; Adler, Mark; Charnovich, Alex; Hunt, Elizabeth A; Brown, Linda L

    2015-02-01

    Many healthcare providers rely on visual perception to guide cardiopulmonary resuscitation (CPR), but little is known about the accuracy of provider perceptions of CPR quality. We aimed to describe the difference between perceived versus measured CPR quality, and to determine the impact of provider role, real-time visual CPR feedback and Just-in-Time (JIT) CPR training on provider perceptions. We conducted secondary analyses of data collected from a prospective, multicenter, randomized trial of 324 healthcare providers who participated in a simulated cardiac arrest scenario between July 2012 and April 2014. Participants were randomized to one of four permutations of: JIT CPR training and real-time visual CPR feedback. We calculated the difference between perceived and measured quality of CPR and reported the proportion of subjects accurately estimating the quality of CPR within each study arm. Participants overestimated achieving adequate chest compression depth (mean difference range: 16.1-60.6%) and rate (range: 0.2-51%), and underestimated chest compression fraction (0.2-2.9%) across all arms. Compared to no intervention, the use of real-time feedback and JIT CPR training (alone or in combination) improved perception of depth (pCPR quality was poor for chest compression depth (0-13%), rate (5-46%) and chest compression fraction (60-63%). Perception of depth is more accurate in CPR providers versus team leaders (27.8% vs. 7.4%; p=0.043) when using real-time feedback. Healthcare providers' visual perception of CPR quality is poor. Perceptions of CPR depth are improved by using real-time visual feedback and with prior JIT CPR training. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.

    Science.gov (United States)

    Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A

    2013-01-01

    Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.

  4. Improving lower limb weight distribution asymmetry during the squat using Nintendo Wii Balance Boards and real-time feedback.

    Science.gov (United States)

    McGough, Rian; Paterson, Kade; Bradshaw, Elizabeth J; Bryant, Adam L; Clark, Ross A

    2012-01-01

    Weight-bearing asymmetry (WBA) may be detrimental to performance and could increase the risk of injury; however, detecting and reducing it is difficult in a field setting. This study assessed whether a portable and simple-to-use system designed with multiple Nintendo Wii Balance Boards (NWBBs) and customized software can be used to evaluate and improve WBA. Fifteen elite Australian Rules Footballers and 32 age-matched, untrained participants were tested for measures of WBA while squatting. The NWBB and customized software provided real-time visual feedback of WBA during half of the trials. Outcome measures included the mean mass difference (MMD) between limbs, interlimb symmetry index (SI), and percentage of time spent favoring a single limb (TFSL). Significant reductions in MMD (p = 0.028) and SI (p = 0.007) with visual feedback were observed for the entire group data. Subgroup analysis revealed significant reductions in MMD (p = 0.047) and SI (p = 0.026) with visual feedback in the untrained sample; however, the reductions in the trained sample were nonsignificant. The trained group showed significantly less WBA for TFSL under both visual conditions (no feedback: p = 0.015, feedback: p = 0.017). Correlation analysis revealed that participants with high levels of WBA had the greatest response to feedback (p professional athletes do not possess the same magnitude of WBA. Inexpensive, portable, and widely available gaming technology may be used to evaluate and improve WBA in clinical and sporting settings.

  5. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.

    Science.gov (United States)

    Liu, Ying; Hu, Huijing; Jones, Jeffery A; Guo, Zhiqiang; Li, Weifeng; Chen, Xi; Liu, Peng; Liu, Hanjun

    2015-08-01

    Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalisations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up two semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when participants attended to the auditory stimuli compared to when they attended to the visual stimuli, and compared to when they were not explicitly told to attend to either the visual or auditory stimuli. By contrast, dividing attention between the auditory and visual modalities caused suppressed P2 responses relative to all the other conditions and caused enhanced N1 responses relative to the control condition. These findings provide strong evidence for the influence of attention on the mechanisms underlying the auditory-vocal integration in the processing of pitch feedback errors. In addition, selective attention and divided attention appear to modulate the neurobehavioral processing of pitch feedback errors in different ways. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis

    Directory of Open Access Journals (Sweden)

    Matrone Giulia C

    2012-06-01

    Full Text Available Abstract Background In spite of the advances made in the design of dexterous anthropomorphic hand prostheses, these sophisticated devices still lack adequate control interfaces which could allow amputees to operate them in an intuitive and close-to-natural way. In this study, an anthropomorphic five-fingered robotic hand, actuated by six motors, was used as a prosthetic hand emulator to assess the feasibility of a control approach based on Principal Components Analysis (PCA, specifically conceived to address this problem. Since it was demonstrated elsewhere that the first two principal components (PCs can describe the whole hand configuration space sufficiently well, the controller here employed reverted the PCA algorithm and allowed to drive a multi-DoF hand by combining a two-differential channels EMG input with these two PCs. Hence, the novelty of this approach stood in the PCA application for solving the challenging problem of best mapping the EMG inputs into the degrees of freedom (DoFs of the prosthesis. Methods A clinically viable two DoFs myoelectric controller, exploiting two differential channels, was developed and twelve able-bodied participants, divided in two groups, volunteered to control the hand in simple grasp trials, using forearm myoelectric signals. Task completion rates and times were measured. The first objective (assessed through one group of subjects was to understand the effectiveness of the approach; i.e., whether it is possible to drive the hand in real-time, with reasonable performance, in different grasps, also taking advantage of the direct visual feedback of the moving hand. The second objective (assessed through a different group was to investigate the intuitiveness, and therefore to assess statistical differences in the performance throughout three consecutive days. Results Subjects performed several grasp, transport and release trials with differently shaped objects, by operating the hand with the myoelectric

  7. The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?

    Science.gov (United States)

    Bach, Benjamin; Sicat, Ronell; Beyer, Johanna; Cordeil, Maxime; Pfister, Hanspeter

    2018-01-01

    We report on a controlled user study comparing three visualization environments for common 3D exploration. Our environments differ in how they exploit natural human perception and interaction capabilities. We compare an augmented-reality head-mounted display (Microsoft HoloLens), a handheld tablet, and a desktop setup. The novel head-mounted HoloLens display projects stereoscopic images of virtual content into a user's real world and allows for interaction in-situ at the spatial position of the 3D hologram. The tablet is able to interact with 3D content through touch, spatial positioning, and tangible markers, however, 3D content is still presented on a 2D surface. Our hypothesis is that visualization environments that match human perceptual and interaction capabilities better to the task at hand improve understanding of 3D visualizations. To better understand the space of display and interaction modalities in visualization environments, we first propose a classification based on three dimensions: perception, interaction, and the spatial and cognitive proximity of the two. Each technique in our study is located at a different position along these three dimensions. We asked 15 participants to perform four tasks, each task having different levels of difficulty for both spatial perception and degrees of freedom for interaction. Our results show that each of the tested environments is more effective for certain tasks, but that generally the desktop environment is still fastest and most precise in almost all cases.

  8. The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?

    KAUST Repository

    Bach, Benjamin

    2017-08-29

    We report on a controlled user study comparing three visualization environments for common 3D exploration. Our environments differ in how they exploit natural human perception and interaction capabilities. We compare an augmented-reality head-mounted display (Microsoft HoloLens), a handheld tablet, and a desktop setup. The novel head-mounted HoloLens display projects stereoscopic images of virtual content into a user\\'s real world and allows for interaction in-situ at the spatial position of the 3D hologram. The tablet is able to interact with 3D content through touch, spatial positioning, and tangible markers, however, 3D content is still presented on a 2D surface. Our hypothesis is that visualization environments that match human perceptual and interaction capabilities better to the task at hand improve understanding of 3D visualizations. To better understand the space of display and interaction modalities in visualization environments, we first propose a classification based on three dimensions: perception, interaction, and the spatial and cognitive proximity of the two. Each technique in our study is located at a different position along these three dimensions. We asked 15 participants to perform four tasks, each task having different levels of difficulty for both spatial perception and degrees of freedom for interaction. Our results show that each of the tested environments is more effective for certain tasks, but that generally the desktop environment is still fastest and most precise in almost all cases.

  9. Interactive balance training integrating sensor-based visual feedback of movement performance: a pilot study in older adults.

    Science.gov (United States)

    Schwenk, Michael; Grewal, Gurtej S; Honarvar, Bahareh; Schwenk, Stefanie; Mohler, Jane; Khalsa, Dharma S; Najafi, Bijan

    2014-12-13

    Wearable sensor technology can accurately measure body motion and provide incentive feedback during exercising. The aim of this pilot study was to evaluate the effectiveness and user experience of a balance training program in older adults integrating data from wearable sensors into a human-computer interface designed for interactive training. Senior living community residents (mean age 84.6) with confirmed fall risk were randomized to an intervention (IG, n = 17) or control group (CG, n = 16). The IG underwent 4 weeks (twice a week) of balance training including weight shifting and virtual obstacle crossing tasks with visual/auditory real-time joint movement feedback using wearable sensors. The CG received no intervention. Outcome measures included changes in center of mass (CoM) sway, ankle and hip joint sway measured during eyes open (EO) and eyes closed (EC) balance test at baseline and post-intervention. Ankle-hip postural coordination was quantified by a reciprocal compensatory index (RCI). Physical performance was quantified by the Alternate-Step-Test (AST), Timed-up-and-go (TUG), and gait assessment. User experience was measured by a standardized questionnaire. After the intervention sway of CoM, hip, and ankle were reduced in the IG compared to the CG during both EO and EC condition (p = .007-.042). Improvement was obtained for AST (p = .037), TUG (p = .024), fast gait speed (p = . 010), but not normal gait speed (p = .264). Effect sizes were moderate for all outcomes. RCI did not change significantly. Users expressed a positive training experience including fun, safety, and helpfulness of sensor-feedback. Results of this proof-of-concept study suggest that older adults at risk of falling can benefit from the balance training program. Study findings may help to inform future exercise interventions integrating wearable sensors for guided game-based training in home- and community environments. Future studies should evaluate the

  10. Kinematic feedback control laws for generating natural arm movements

    International Nuclear Information System (INIS)

    Kim, Donghyun; Jang, Cheongjae; Park, Frank C

    2014-01-01

    We propose a stochastic optimal feedback control law for generating natural robot arm motions. Our approach, inspired by the minimum variance principle of Harris and Wolpert (1998 Nature 394 780–4) and the optimal feedback control principles put forth by Todorov and Jordan (2002 Nature Neurosci. 5 1226–35) for explaining human movements, differs in two crucial respects: (i) the endpoint variance is minimized in joint space rather than Cartesian hand space, and (ii) we ignore the dynamics and instead consider only the second-order differential kinematics. The feedback control law generating the motions can be straightforwardly obtained by backward integration of a set of ordinary differential equations; these equations are obtained exactly, without any linear–quadratic approximations. The only parameters to be determined a priori are the variance scale factors, and for both the two-DOF planar arm and the seven-DOF spatial arm, a table of values is constructed based on the given initial and final arm configurations; these values are determined via an optimal fitting procedure, and consistent with existing findings about neuromuscular motor noise levels of human arm muscles. Experiments conducted with a two-link planar arm and a seven-DOF spatial arm verify that the trajectories generated by our feedback control law closely resemble human arm motions, in the sense of producing nearly straight-line hand trajectories, having bell-shaped velocity profiles, and satisfying Fitts Law. (paper)

  11. Referral of sensation to an advanced humanoid robotic hand prosthesis.

    Science.gov (United States)

    Rosén, Birgitta; Ehrsson, H Henrik; Antfolk, Christian; Cipriani, Christian; Sebelius, Fredrik; Lundborg, Göran

    2009-01-01

    Hand prostheses that are currently available on the market are used by amputees to only a limited extent, partly because of lack of sensory feedback from the artificial hand. We report a pilot study that showed how amputees can experience a robot-like advanced hand prosthesis as part of their own body. We induced a perceptual illusion by which touch applied to the stump of the arm was experienced from the artificial hand. This illusion was elicited by applying synchronous tactile stimulation to the hidden amputation stump and the robotic hand prosthesis in full view. In five people who had had upper limb amputations this stimulation caused referral touch sensation from the stump to the artificial hand, and the prosthesis was experienced more like a real hand. We also showed that this illusion can work when the amputee controls the movements of the artificial hand by recordings of the arm muscle activity with electromyograms. These observations indicate that the previously described "rubber hand illusion" is also valid for an advanced hand prosthesis, even when it has a robotic-like appearance.

  12. Attention to Color Sharpens Neural Population Tuning via Feedback Processing in the Human Visual Cortex Hierarchy.

    Science.gov (United States)

    Bartsch, Mandy V; Loewe, Kristian; Merkel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Tsotsos, John K; Hopf, Jens-Max

    2017-10-25

    Attention can facilitate the selection of elementary object features such as color, orientation, or motion. This is referred to as feature-based attention and it is commonly attributed to a modulation of the gain and tuning of feature-selective units in visual cortex. Although gain mechanisms are well characterized, little is known about the cortical processes underlying the sharpening of feature selectivity. Here, we show with high-resolution magnetoencephalography in human observers (men and women) that sharpened selectivity for a particular color arises from feedback processing in the human visual cortex hierarchy. To assess color selectivity, we analyze the response to a color probe that varies in color distance from an attended color target. We find that attention causes an initial gain enhancement in anterior ventral extrastriate cortex that is coarsely selective for the target color and transitions within ∼100 ms into a sharper tuned profile in more posterior ventral occipital cortex. We conclude that attention sharpens selectivity over time by attenuating the response at lower levels of the cortical hierarchy to color values neighboring the target in color space. These observations support computational models proposing that attention tunes feature selectivity in visual cortex through backward-propagating attenuation of units less tuned to the target. SIGNIFICANCE STATEMENT Whether searching for your car, a particular item of clothing, or just obeying traffic lights, in everyday life, we must select items based on color. But how does attention allow us to select a specific color? Here, we use high spatiotemporal resolution neuromagnetic recordings to examine how color selectivity emerges in the human brain. We find that color selectivity evolves as a coarse to fine process from higher to lower levels within the visual cortex hierarchy. Our observations support computational models proposing that feature selectivity increases over time by attenuating the

  13. Multisensory Integration in the Virtual Hand Illusion with Active Movement.

    Science.gov (United States)

    Choi, Woong; Li, Liang; Satoh, Satoru; Hachimura, Kozaburo

    2016-01-01

    Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality.

  14. A Systematic Review of the Literature on Parenting of Young Children with Visual Impairments and the Adaptions for Video-Feedback Intervention to Promote Positive Parenting (VIPP).

    Science.gov (United States)

    van den Broek, Ellen G C; van Eijden, Ans J P M; Overbeek, Mathilde M; Kef, Sabina; Sterkenburg, Paula S; Schuengel, Carlo

    2017-01-01

    Secure parent-child attachment may help children to overcome the challenges of growing up with a visual or visual-and-intellectual impairment. A large literature exists that provides a blueprint for interventions that promote parental sensitivity and secure attachment. The Video-feedback Intervention to promote Positive Parenting (VIPP) is based on that blueprint. While it has been adapted to several specific at risk populations, children with visual impairment may require additional adjustments. This study aimed to identify the themes that should be addressed in adapting VIPP and similar interventions. A Delphi-consultation was conducted with 13 professionals in the field of visual impairment to select the themes for relationship-focused intervention. These themes informed a systematic literature search. Interaction, intersubjectivity, joint attention, exploration, play and specific behavior were the themes mentioned in the Delphi-group. Paired with visual impairment or vision disorders, infants or young children (and their parents) the search yielded 74 articles, making the six themes for intervention adaptation more specific and concrete. The rich literature on six visual impairment specific themes was dominated by the themes interaction, intersubjectivity, and joint attention. These themes need to be addressed in adapting intervention programs developed for other populations, such as VIPP which currently focuses on higher order constructs of sensitivity and attachment.

  15. Factors influencing hand/eye synchronicity in the computer age.

    Science.gov (United States)

    Grant, A H

    1992-09-01

    In using a computer, the relation of vision to hand/finger actuated keyboard usage in performing fine motor-coordinated functions is influenced by the physical location, size, and collective placement of the keys. Traditional nonprehensile flat/rectangular keyboard applications usually require a high and nearly constant level of visual attention. Biometrically shaped keyboards would allow for prehensile hand-posturing, thus affording better tactile familiarity with the keys, requiring less intense and less constant level of visual attention to the task, and providing a greater measure of freedom from having to visualize the key(s). Workpace and related physiological changes, aging, onset of monocularization (intermittent lapsing of binocularity for near vision) that accompanies presbyopia, tool colors, and background contrast are factors affecting constancy of visual attention to task performance. Capitas extension, excessive excyclotorsion, and repetitive strain injuries (such as carpal tunnel syndrome) are common and debilitating concomitants to computer usage. These problems can be remedied by improved keyboard design. The salutary role of mnemonics in minimizing visual dependency is discussed.

  16. User Interface Aspects of a Human-Hand Simulation System

    Directory of Open Access Journals (Sweden)

    Beifang Yi

    2005-10-01

    Full Text Available This paper describes the user interface design for a human-hand simulation system, a virtual environment that produces ground truth data (life-like human hand gestures and animations and provides visualization support for experiments on computer vision-based hand pose estimation and tracking. The system allows users to save time in data generation and easily create any hand gestures. We have designed and implemented this user interface with the consideration of usability goals and software engineering issues.

  17. Visual-haptic integration with pliers and tongs: signal ‘weights’ take account of changes in haptic sensitivity caused by different tools

    Directory of Open Access Journals (Sweden)

    Chie eTakahashi

    2014-02-01

    Full Text Available When we hold an object while looking at it, estimates from visual and haptic cues to size are combined in a statistically optimal fashion, whereby the ‘weight’ given to each signal reflects their relative reliabilities. This allows object properties to be estimated more precisely than would otherwise be possible. Tools such as pliers and tongs systematically perturb the mapping between object size and the hand opening. This could complicate visual-haptic integration because it may alter the reliability of the haptic signal, thereby disrupting the determination of appropriate signal weights. To investigate this we first measured the reliability of haptic size estimates made with virtual pliers-like tools (created using a stereoscopic display and force-feedback robots with different ‘gains’ between hand opening and object size. Haptic reliability in tool use was straightforwardly determined by a combination of sensitivity to changes in hand opening and the effects of tool geometry. The precise pattern of sensitivity to hand opening, which violated Weber’s law, meant that haptic reliability changed with tool gain. We then examined whether the visuo-motor system accounts for these reliability changes. We measured the weight given to visual and haptic stimuli when both were available, again with different tool gains, by measuring the perceived size of stimuli in which visual and haptic sizes were varied independently. The weight given to each sensory cue changed with tool gain in a manner that closely resembled the predictions of optimal sensory integration. The results are consistent with the idea that different tool geometries are modelled by the brain, allowing it to calculate not only the distal properties of objects felt with tools, but also the certainty with which those properties are known. These findings highlight the flexibility of human sensory integration and tool-use, and potentially provide an approach for optimising the

  18. Contribution of execution noise to arm movement variability in three-dimensional space.

    Science.gov (United States)

    Apker, Gregory A; Buneo, Christopher A

    2012-01-01

    Reaching movements are subject to noise associated with planning and execution, but precisely how these noise sources interact to determine patterns of endpoint variability in three-dimensional space is not well understood. For frontal plane movements, variability is largest along the depth axis (the axis along which visual planning noise is greatest), with execution noise contributing to this variability along the movement direction. Here we tested whether these noise sources interact in a similar way for movements directed in depth. Subjects performed sequences of two movements from a single starting position to targets that were either both contained within a frontal plane ("frontal sequences") or where the first was within the frontal plane and the second was directed in depth ("depth sequences"). For both sequence types, movements were performed with or without visual feedback of the hand. When visual feedback was available, endpoint distributions for frontal and depth sequences were generally anisotropic, with the principal axes of variability being strongly aligned with the depth axis. Without visual feedback, endpoint distributions for frontal sequences were relatively isotropic and movement direction dependent, while those for depth sequences were similar to those with visual feedback. Overall, the results suggest that in the presence of visual feedback, endpoint variability is dominated by uncertainty associated with planning and updating visually guided movements. In addition, the results suggest that without visual feedback, increased uncertainty in hand position estimation effectively unmasks the effect of execution-related noise, resulting in patterns of endpoint variability that are highly movement direction dependent.

  19. How vision is shaped by language comprehension--top-down feedback based on low-spatial frequencies.

    Science.gov (United States)

    Hirschfeld, Gerrit; Zwitserlood, Pienie

    2011-03-04

    Effects of language comprehension on visual processing have been extensively studied within the embodied-language framework. However, it is unknown whether these effects are caused by passive repetition suppression in visual processing areas, or depend on active feedback, based on partial input, from prefrontal regions. Based on a model of top-down feedback during visual recognition, we predicted diminished effects when low-spatial frequencies were removed from targets. We compared low-pass and high-pass filtered pictures in a sentence-picture-verification task. Target pictures matched or mismatched the implied shape of an object mentioned in a preceding sentence, or were unrelated to the sentences. As predicted, there was a large match advantage when the targets contained low-spatial frequencies, but no effect of linguistic context when these frequencies were filtered out. The proposed top-down feedback model is superior to repetition suppression in explaining the current results, as well as earlier results about the lateralization of this effect, and peculiar color match effects. We discuss these findings in the context of recent general proposals of prediction and top-down feedback. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. A unified framework for image retrieval using keyword and visual features.

    Science.gov (United States)

    Jing, Feng; Li, Mingling; Zhang, Hong-Jiang; Zhang, Bo

    2005-07-01

    In this paper, a unified image retrieval framework based on both keyword annotations and visual features is proposed. In this framework, a set of statistical models are built based on visual features of a small set of manually labeled images to represent semantic concepts and used to propagate keywords to other unlabeled images. These models are updated periodically when more images implicitly labeled by users become available through relevance feedback. In this sense, the keyword models serve the function of accumulation and memorization of knowledge learned from user-provided relevance feedback. Furthermore, two sets of effective and efficient similarity measures and relevance feedback schemes are proposed for query by keyword scenario and query by image example scenario, respectively. Keyword models are combined with visual features in these schemes. In particular, a new, entropy-based active learning strategy is introduced to improve the efficiency of relevance feedback for query by keyword. Furthermore, a new algorithm is proposed to estimate the keyword features of the search concept for query by image example. It is shown to be more appropriate than two existing relevance feedback algorithms. Experimental results demonstrate the effectiveness of the proposed framework.

  1. Vicariously touching products through observing others' hand actions increases purchasing intention, and the effect of visual perspective in this process: An fMRI study.

    Science.gov (United States)

    Liu, Yi; Zang, Xuelian; Chen, Lihan; Assumpção, Leonardo; Li, Hong

    2018-01-01

    The growth of online shopping increases consumers' dependence on vicarious sensory experiences, such as observing others touching products in commercials. However, empirical evidence on whether observing others' sensory experiences increases purchasing intention is still scarce. In the present study, participants observed others interacting with products in the first- or third-person perspective in video clips, and their neural responses were measured with functional magnetic resonance imaging (fMRI). We investigated (1) whether and how vicariously touching certain products affected purchasing intention, and the neural correlates of this process; and (2) how visual perspective interacts with vicarious tactility. Vicarious tactile experiences were manipulated by hand actions touching or not touching the products, while the visual perspective was manipulated by showing the hand actions either in first- or third-person perspective. During the fMRI scanning, participants watched the video clips and rated their purchasing intention for each product. The results showed that, observing others touching (vs. not touching) the products increased purchasing intention, with vicarious neural responses found in mirror neuron systems (MNS) and lateral occipital complex (LOC). Moreover, the stronger neural activities in MNS was associated with higher purchasing intention. The effects of visual perspectives were found in left superior parietal lobule (SPL), while the interaction of tactility and visual perspective was shown in precuneus and precuneus-LOC connectivity. The present study provides the first evidence that vicariously touching a given product increased purchasing intention and the neural activities in bilateral MNS, LOC, left SPL and precuneus are involved in this process. Hum Brain Mapp 39:332-343, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Tracking and Classification of In-Air Hand Gesture Based on Thermal Guided Joint Filter

    Directory of Open Access Journals (Sweden)

    Seongwan Kim

    2017-01-01

    Full Text Available The research on hand gestures has attracted many image processing-related studies, as it intuitively conveys the intention of a human as it pertains to motional meaning. Various sensors have been used to exploit the advantages of different modalities for the extraction of important information conveyed by the hand gesture of a user. Although many works have focused on learning the benefits of thermal information from thermal cameras, most have focused on face recognition or human body detection, rather than hand gesture recognition. Additionally, the majority of the works that take advantage of multiple modalities (e.g., the combination of a thermal sensor and a visual sensor, usually adopting simple fusion approaches between the two modalities. As both thermal sensors and visual sensors have their own shortcomings and strengths, we propose a novel joint filter-based hand gesture recognition method to simultaneously exploit the strengths and compensate the shortcomings of each. Our study is motivated by the investigation of the mutual supplementation between thermal and visual information in low feature level for the consistent representation of a hand in the presence of varying lighting conditions. Accordingly, our proposed method leverages the thermal sensor’s stability against luminance and the visual sensors textural detail, while complementing the low resolution and halo effect of thermal sensors and the weakness against illumination of visual sensors. A conventional region tracking method and a deep convolutional neural network have been leveraged to track the trajectory of a hand gesture and to recognize the hand gesture, respectively. Our experimental results show stability in recognizing a hand gesture against varying lighting conditions based on the contribution of the joint kernels of spatial adjacency and thermal range similarity.

  3. The European Urology Residents Education Programme Hands-on Training Format: 4 Years of Hands-on Training Improvements from the European School of Urology.

    Science.gov (United States)

    Somani, Bhaskar K; Van Cleynenbreugel, Ben; Gozen, Ali; Palou, Jaun; Barmoshe, Sas; Biyani, Shekhar; Gaya, Josep M; Hellawell, Giles; Pini, Gio; Oscar, Faba R; Sanchez Salas, Rafael; Macek, Petr; Skolarikos, Andreas; Wagner, Christian; Eret, Viktor; Haensel, Stephen; Siena, Giampaolo; Schmidt, Marek; Klitsch, Max; Vesely, Stepan; Ploumidis, Achilles; Proietti, Silvia; Kamphuis, Guido; Tokas, Theodore; Geraghty, Rob; Veneziano, Dominico

    2018-03-14

    The European School of Urology (ESU) started the European Urology Residents Education Programme (EUREP) in 2003 for final year urology residents, with hands-on training (HOT) added later in 2007. To assess the geographical reach of EUREP, trainee demographics, and individual quality feedback in relation to annual methodology improvements in HOT. From September 2014 to October 2017 (four EUREP courses) several new features have been applied to the HOT format of the EUREP course: 1:1 training sessions (2015), fixed 60-min time slots (2016), and standardised teaching methodology (2017). The resulting EUREP HOT format was verified by collecting and prospectively analysing the following data: total number of participants attending different HOT courses; participants' age; country of origin; and feedback obtained annually. A total of 796 participants from 54 countries participated in 1450 HOT sessions over the last 4 yr. This included 294 (20%) ureteroscopy (URS) sessions, 237 (16.5%) transurethral resection (TUR) sessions, 840 (58%) basic laparoscopic sessions, and 79 (5.5%) intermediate laparoscopic sessions. While 712 residents (89%) were from Europe, 84 (11%) were from non-European nations. Of the European residents, most came from Italy (16%), Germany (15%), Spain (15%), and Romania (8%). Feedback for the basic laparoscopic session showed a constant improvement in scores over the last 4 yr, with the highest scores achieved last year. This included feedback on improvements in tutor rating (p=0.017), organisation (ptraining curriculum with wet laboratory or cadaveric courses in this format, although these could be performed in other training centres in conjunction with EUREP. The EUREP trainee demographics show that the purpose of the course is being achieved, with excellent feedback reported. While European trainees dominate the demographics, participation from a number of non-European countries suggests continued ESU collaboration with other national societies and

  4. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    Science.gov (United States)

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.

  5. Sensory feedback for upper limb prostheses.

    Science.gov (United States)

    Hsiao, Steven S; Fettiplace, Michael; Darbandi, Bejan

    2011-01-01

    In this chapter, we discuss the neurophysiological basis of how to provide sensory feedback to users with an upper limb prosthesis and discuss some of the theoretical issues that need to be considered when directly stimulating neurons in the somatosensory system. We focus on technologies that are currently available and discuss approaches that are most likely to succeed in providing natural perception from the artificial hand to the user. First, we discuss the advantages and disadvantages of providing feedback by stimulating directly the remaining afferents that originally innervated the arm and hand. In particular, we pay close attention to the normal functional roles that the peripheral afferents play in perception. What are the consequences and implications of stimulating these afferents? We then discuss whether it is reasonable to stimulate neurons in the ascending pathways that carry the information from the afferents to the cortex or directly in neurons in the primary somatosensory cortex. We show that for some modalities there are advantages for stimulating in the spinal cord, while for others it is advantageous to stimulate directly in the somatosensory cortex. Finally, we discuss results from a current experiment in which we used electrical stimuli in primary somatosensory cortex to restore the percept of the intensity of a mechanical probe indented into the hand. The results suggest that the simple percept of stimulus intensity can be provided to the animal from a single finger using four electrodes. We propose that significantly more electrodes will be needed to reproduce more complex aspects of tactile perception. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Multisensory Integration in the Virtual Hand Illusion with Active Movement

    Directory of Open Access Journals (Sweden)

    Woong Choi

    2016-01-01

    Full Text Available Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality.

  7. Effects of feedback reliability on feedback-related brain activity: A feedback valuation account.

    Science.gov (United States)

    Ernst, Benjamin; Steinhauser, Marco

    2018-04-06

    Adaptive decision making relies on learning from feedback. Because feedback sometimes can be misleading, optimal learning requires that knowledge about the feedback's reliability be utilized to adjust feedback processing. Although previous research has shown that feedback reliability indeed influences feedback processing, the underlying mechanisms through which this is accomplished remain unclear. Here we propose that feedback processing is adjusted by the adaptive, top-down valuation of feedback. We assume that unreliable feedback is devalued relative to reliable feedback, thus reducing the reward prediction errors that underlie feedback-related brain activity and learning. A crucial prediction of this account is that the effects of feedback reliability are susceptible to contrast effects. That is, the effects of feedback reliability should be enhanced when both reliable and unreliable feedback are experienced within the same context, as compared to when only one level of feedback reliability is experienced. To evaluate this prediction, we measured the event-related potentials elicited by feedback in two experiments in which feedback reliability was varied either within or between blocks. We found that the fronto-central valence effect, a correlate of reward prediction errors during reinforcement learning, was reduced for unreliable feedback. But this result was obtained only when feedback reliability was varied within blocks, thus indicating a contrast effect. This suggests that the adaptive valuation of feedback is one mechanism underlying the effects of feedback reliability on feedback processing.

  8. Pantomime-grasping: Advance knowledge of haptic feedback availability supports an absolute visuo-haptic calibration

    Directory of Open Access Journals (Sweden)

    Shirin eDavarpanah Jazi

    2016-05-01

    Full Text Available An emerging issue in movement neurosciences is whether haptic feedback influences the nature of the information supporting a simulated grasping response (i.e., pantomime-grasping. In particular, recent work by our group contrasted pantomime-grasping responses performed with (i.e., PH+ trials and without (i.e., PH- trials terminal haptic feedback in separate blocks of trials. Results showed that PH- trials were mediated via relative visual information. In contrast, PH+ trials showed evidence of an absolute visuo-haptic calibration – a finding attributed to an error signal derived from a comparison between expected and actual haptic feedback (i.e., an internal forward model. The present study examined whether advanced knowledge of haptic feedback availability influences the aforementioned calibration process. To that end, PH- and PH+ trials were completed in separate blocks (i.e., the feedback schedule used in our group’s previous study and a block wherein PH- and PH+ trials were randomly interleaved on a trial-by-trial basis (i.e., random feedback schedule. In other words, the random feedback schedule precluded participants from predicting whether haptic feedback would be available at the movement goal location. We computed just-noticeable-difference (JND values to determine whether responses adhered to, or violated, the relative psychophysical principles of Weber’s law. Results for the blocked feedback schedule replicated our group’s previous work, whereas in the random feedback schedule PH- and PH+ trials were supported via relative visual information. Accordingly, we propose that a priori knowledge of haptic feedback is necessary to support an absolute visuo-haptic calibration. Moreover, our results demonstrate that the presence and expectancy of haptic feedback is an important consideration in contrasting the behavioral and neural properties of natural and stimulated (i.e., pantomime-grasping grasping.

  9. Position calibration of a 3-DOF hand-controller with hybrid structure

    Science.gov (United States)

    Zhu, Chengcheng; Song, Aiguo

    2017-09-01

    A hand-controller is a human-robot interactive device, which measures the 3-DOF (Degree of Freedom) position of the human hand and sends it as a command to control robot movement. The device also receives 3-DOF force feedback from the robot and applies it to the human hand. Thus, the precision of 3-DOF position measurements is a key performance factor for hand-controllers. However, when using a hybrid type 3-DOF hand controller, various errors occur and are considered originating from machining and assembly variations within the device. This paper presents a calibration method to improve the position tracking accuracy of hybrid type hand-controllers by determining the actual size of the hand-controller parts. By re-measuring and re-calibrating this kind of hand-controller, the actual size of the key parts that cause errors is determined. Modifying the formula parameters with the actual sizes, which are obtained in the calibrating process, improves the end position tracking accuracy of the device.

  10. Revisiting the link between body and agency: visual movement congruency enhances intentional binding but is not body-specific.

    Science.gov (United States)

    Zopf, Regine; Polito, Vince; Moore, James

    2018-01-09

    Embodiment and agency are key aspects of how we perceive ourselves that have typically been associated with independent mechanisms. Recent work, however, has suggested that these mechanisms are related. The sense of agency arises from recognising a causal influence on the external world. This influence is typically realised through bodily movements and thus the perception of the bodily self could also be crucial for agency. We investigated whether a key index of agency - intentional binding - was modulated by body-specific information. Participants judged the interval between pressing a button and a subsequent tone. We used virtual reality to manipulate two aspects of movement feedback. First, form: participants viewed a virtual hand or sphere. Second, movement congruency: the viewed object moved congruently or incongruently with the participant's hidden hand. Both factors, form and movement congruency, significantly influenced embodiment. However, only movement congruency influenced intentional binding. Binding was increased for congruent compared to incongruent movement feedback irrespective of form. This shows that the comparison between viewed and performed movements provides an important cue for agency, whereas body-specific visual form does not. We suggest that embodiment and agency mechanisms both depend on comparisons across sensorimotor signals but that they are influenced by distinct factors.

  11. Comparative Visual Analysis of Large Customer Feedback Based on Self-Organizing Sentiment Maps

    OpenAIRE

    Janetzko, Halldór; Jäckle, Dominik; Schreck, Tobias

    2013-01-01

    Textual customer feedback data, e.g., received by surveys or incoming customer email notifications, can be a rich source of information with many applications in Customer Relationship Management (CRM). Nevertheless, to date this valuable source of information is often neglected in practice, as service managers would have to read manually through potentially large amounts of feedback text documents to extract actionable information. As in many cases, a purely manual approach is not feasible, w...

  12. A joint, multilateral approach to improve compliance with hand hygiene in 4 countries within the Baltic region using the World Health Organization's SAVE LIVES: Clean Your Hands model.

    Science.gov (United States)

    Lytsy, Birgitta; Melbarde-Kelmere, Agita; Hambraeus, Anna; Liubimova, Anna; Aspevall, Olov

    2016-11-01

    The aim of this prospective multicenter study was to explore the usefulness of a modified World Health Organization (WHO) hand hygiene program to increase compliance with hand hygiene among health care workers (HCWs) in Latvia, Lithuania, Saint Petersburg (Russia), and Sweden and to provide a basis for continuing promotion of hand hygiene in these countries. The study was carried out in 2012. Thirteen hospitals participated, including 38 wards. Outcome data were handrub consumption, compliance with hand hygiene measured with a modified WHO method, and assessment of knowledge among HCWs. Interventions were education of the nursing staff, posters and reminders in strategic places in the wards, and feedback of the results to nursing staff in ward meetings. Feedback of results was an effective tool for education at the ward level. The most useful outcome measurement was handrub consumption, which increased by at least 50% in 30% of the wards. In spite of this, handrub consumption remained at a low level in many of the wards. There are several reasons for this, and the most important were self-reported nursing staff shortage and fear of adverse effects from using alcoholic handrub and verified skin irritation. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Using Augmented Feedback to Decrease Patellofemoral Pain in Runners: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Lauren M. Cornwell

    2016-05-01

    Full Text Available Objective: Patellofemoral pain (PFP is a common injury in running. The cause of patellofemoral pain is multifactorial in nature, which results varied treatment approaches for this disorder. Many studies have examined the effect of using strengthening protocols targeted at subjects’ hip and quadriceps strength. Although these studies have resulted in a reduction in short-term PFP for runners, many continue to experience PFP after undergoing these treatment strategies. A more recent theory regarding the treatment of PFP in runners involves the use of augmented verbal and visual feedback. This treatment strategy involves giving the runner scheduled visual feedback to adapt their running strategies in hopes of reducing their PFP. Much of this research has been done with experienced runners in the age range of 18-22 years old. The purpose of this study was to examine the effects of augmented verbal and real-time visual feedback on patellofemoral pain. The hypothesis was that training with the use of auditory and visual feedback would improve patellofemoral pain in this runner. In clinical practice, auditory and visual feedback to change hip and knee mechanics while running may be used as a treatment strategy for patellofemoral pain. Design and Setting: The study was conducted in a controlled laboratory setting and was an experimental design including a single-subject. Participants: The subject was a recreational female runner that was 22 years of age. The subject was recruited via a flyer distributed on campus. Once the individual agreed to participate, they were given a date to begin the study. This study was approved by the Institutional Review Board at the institution. When the subject arrived at the first meeting, the informed consent was reviewed and signed by the subject. Intervention: At the first visit, the subject was given a PFP questionnaire to determine if they were eligible for the study. For this study, the subject was classified as

  14. Perceptual learning increases the strength of the earliest signals in visual cortex.

    Science.gov (United States)

    Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A

    2010-11-10

    Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.

  15. Vibrotactile Feedbacks System for Assisting the Physically Impaired Persons for Easy Navigation

    Science.gov (United States)

    Safa, M.; Geetha, G.; Elakkiya, U.; Saranya, D.

    2018-04-01

    NAYAN architecture is for a visually impaired person to help for navigation. As well known, all visually impaired people desperately requires special requirements even to access services like the public transportation. This prototype system is a portable device; it is so easy to carry in any conduction to travel through a familiar and unfamiliar environment. The system consists of GPS receiver and it can get NEMA data through the satellite and it is provided to user's Smartphone through Arduino board. This application uses two vibrotactile feedbacks that will be placed in the left and right shoulder for vibration feedback, which gives information about the current location. The ultrasonic sensor is used for obstacle detection which is found in front of the visually impaired person. The Bluetooth modules connected with Arduino board is to send information to the user's mobile phone which it receives from GPS.

  16. Rubber Hands Feel Touch, but Not in Blind Individuals

    Science.gov (United States)

    Ehrsson, H. Henrik

    2012-01-01

    Psychology and neuroscience have a long-standing tradition of studying blind individuals to investigate how visual experience shapes perception of the external world. Here, we study how blind people experience their own body by exposing them to a multisensory body illusion: the somatic rubber hand illusion. In this illusion, healthy blindfolded participants experience that they are touching their own right hand with their left index finger, when in fact they are touching a rubber hand with their left index finger while the experimenter touches their right hand in a synchronized manner (Ehrsson et al. 2005). We compared the strength of this illusion in a group of blind individuals (n = 10), all of whom had experienced severe visual impairment or complete blindness from birth, and a group of age-matched blindfolded sighted participants (n = 12). The illusion was quantified subjectively using questionnaires and behaviorally by asking participants to point to the felt location of the right hand. The results showed that the sighted participants experienced a strong illusion, whereas the blind participants experienced no illusion at all, a difference that was evident in both tests employed. A further experiment testing the participants' basic ability to localize the right hand in space without vision (proprioception) revealed no difference between the two groups. Taken together, these results suggest that blind individuals with impaired visual development have a more veridical percept of self-touch and a less flexible and dynamic representation of their own body in space compared to sighted individuals. We speculate that the multisensory brain systems that re-map somatosensory signals onto external reference frames are less developed in blind individuals and therefore do not allow efficient fusion of tactile and proprioceptive signals from the two upper limbs into a single illusory experience of self-touch as in sighted individuals. PMID:22558268

  17. Rubber hands feel touch, but not in blind individuals.

    Directory of Open Access Journals (Sweden)

    Valeria I Petkova

    Full Text Available Psychology and neuroscience have a long-standing tradition of studying blind individuals to investigate how visual experience shapes perception of the external world. Here, we study how blind people experience their own body by exposing them to a multisensory body illusion: the somatic rubber hand illusion. In this illusion, healthy blindfolded participants experience that they are touching their own right hand with their left index finger, when in fact they are touching a rubber hand with their left index finger while the experimenter touches their right hand in a synchronized manner (Ehrsson et al. 2005. We compared the strength of this illusion in a group of blind individuals (n = 10, all of whom had experienced severe visual impairment or complete blindness from birth, and a group of age-matched blindfolded sighted participants (n = 12. The illusion was quantified subjectively using questionnaires and behaviorally by asking participants to point to the felt location of the right hand. The results showed that the sighted participants experienced a strong illusion, whereas the blind participants experienced no illusion at all, a difference that was evident in both tests employed. A further experiment testing the participants' basic ability to localize the right hand in space without vision (proprioception revealed no difference between the two groups. Taken together, these results suggest that blind individuals with impaired visual development have a more veridical percept of self-touch and a less flexible and dynamic representation of their own body in space compared to sighted individuals. We speculate that the multisensory brain systems that re-map somatosensory signals onto external reference frames are less developed in blind individuals and therefore do not allow efficient fusion of tactile and proprioceptive signals from the two upper limbs into a single illusory experience of self-touch as in sighted individuals.

  18. Rubber hands feel touch, but not in blind individuals.

    Science.gov (United States)

    Petkova, Valeria I; Zetterberg, Hedvig; Ehrsson, H Henrik

    2012-01-01

    Psychology and neuroscience have a long-standing tradition of studying blind individuals to investigate how visual experience shapes perception of the external world. Here, we study how blind people experience their own body by exposing them to a multisensory body illusion: the somatic rubber hand illusion. In this illusion, healthy blindfolded participants experience that they are touching their own right hand with their left index finger, when in fact they are touching a rubber hand with their left index finger while the experimenter touches their right hand in a synchronized manner (Ehrsson et al. 2005). We compared the strength of this illusion in a group of blind individuals (n = 10), all of whom had experienced severe visual impairment or complete blindness from birth, and a group of age-matched blindfolded sighted participants (n = 12). The illusion was quantified subjectively using questionnaires and behaviorally by asking participants to point to the felt location of the right hand. The results showed that the sighted participants experienced a strong illusion, whereas the blind participants experienced no illusion at all, a difference that was evident in both tests employed. A further experiment testing the participants' basic ability to localize the right hand in space without vision (proprioception) revealed no difference between the two groups. Taken together, these results suggest that blind individuals with impaired visual development have a more veridical percept of self-touch and a less flexible and dynamic representation of their own body in space compared to sighted individuals. We speculate that the multisensory brain systems that re-map somatosensory signals onto external reference frames are less developed in blind individuals and therefore do not allow efficient fusion of tactile and proprioceptive signals from the two upper limbs into a single illusory experience of self-touch as in sighted individuals.

  19. Intermittently-visual Tracking Experiments Reveal the Roles of Error-correction and Predictive Mechanisms in the Human Visual-motor Control System

    Science.gov (United States)

    Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji

    Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.

  20. Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells.

    Directory of Open Access Journals (Sweden)

    Pablo Martínez-Cañada

    2018-01-01

    Full Text Available Despite half-a-century of research since the seminal work of Hubel and Wiesel, the role of the dorsal lateral geniculate nucleus (dLGN in shaping the visual signals is not properly understood. Placed on route from retina to primary visual cortex in the early visual pathway, a striking feature of the dLGN circuit is that both the relay cells (RCs and interneurons (INs not only receive feedforward input from retinal ganglion cells, but also a prominent feedback from cells in layer 6 of visual cortex. This feedback has been proposed to affect synchronicity and other temporal properties of the RC firing. It has also been seen to affect spatial properties such as the center-surround antagonism of thalamic receptive fields, i.e., the suppression of the response to very large stimuli compared to smaller, more optimal stimuli. Here we explore the spatial effects of cortical feedback on the RC response by means of a a comprehensive network model with biophysically detailed, single-compartment and multicompartment neuron models of RCs, INs and a population of orientation-selective layer 6 simple cells, consisting of pyramidal cells (PY. We have considered two different arrangements of synaptic feedback from the ON and OFF zones in the visual cortex to the dLGN: phase-reversed ('push-pull' and phase-matched ('push-push', as well as different spatial extents of the corticothalamic projection pattern. Our simulation results support that a phase-reversed arrangement provides a more effective way for cortical feedback to provide the increased center-surround antagonism seen in experiments both for flashing spots and, even more prominently, for patch gratings. This implies that ON-center RCs receive direct excitation from OFF-dominated cortical cells and indirect inhibitory feedback from ON-dominated cortical cells. The increased center-surround antagonism in the model is accompanied by spatial focusing, i.e., the maximum RC response occurs for smaller stimuli

  1. Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells

    Science.gov (United States)

    Martínez-Cañada, Pablo; Halnes, Geir; Fyhn, Marianne

    2018-01-01

    Despite half-a-century of research since the seminal work of Hubel and Wiesel, the role of the dorsal lateral geniculate nucleus (dLGN) in shaping the visual signals is not properly understood. Placed on route from retina to primary visual cortex in the early visual pathway, a striking feature of the dLGN circuit is that both the relay cells (RCs) and interneurons (INs) not only receive feedforward input from retinal ganglion cells, but also a prominent feedback from cells in layer 6 of visual cortex. This feedback has been proposed to affect synchronicity and other temporal properties of the RC firing. It has also been seen to affect spatial properties such as the center-surround antagonism of thalamic receptive fields, i.e., the suppression of the response to very large stimuli compared to smaller, more optimal stimuli. Here we explore the spatial effects of cortical feedback on the RC response by means of a a comprehensive network model with biophysically detailed, single-compartment and multicompartment neuron models of RCs, INs and a population of orientation-selective layer 6 simple cells, consisting of pyramidal cells (PY). We have considered two different arrangements of synaptic feedback from the ON and OFF zones in the visual cortex to the dLGN: phase-reversed (‘push-pull’) and phase-matched (‘push-push’), as well as different spatial extents of the corticothalamic projection pattern. Our simulation results support that a phase-reversed arrangement provides a more effective way for cortical feedback to provide the increased center-surround antagonism seen in experiments both for flashing spots and, even more prominently, for patch gratings. This implies that ON-center RCs receive direct excitation from OFF-dominated cortical cells and indirect inhibitory feedback from ON-dominated cortical cells. The increased center-surround antagonism in the model is accompanied by spatial focusing, i.e., the maximum RC response occurs for smaller stimuli when

  2. Low-cost design and fabrication of an anthropomorphic robotic hand.

    Science.gov (United States)

    Junaid, Ali Bin; Tahir, Sanan; Rasheed, Tahir; Ahmed, Sharjeel; Sohail, Mehreen; Afzal, Muhammad Raheel; Ali, Muzaffar; Kim, Yoonsoo

    2014-10-01

    Human hand signifies a magnificent and challenging example for scientists and engineers trying to replicate its complex structure and functionality. This paper proposes a bio-mechatronic approach for the design of an anthropomorphic artificial hand capable of performing basic human hand motions with fundamental gripping functionality. The dexterity of the artificial hand is exhibited by imitating the natural motion of the human fingers. Imitation is produced according to the data acquired from the flex sensors attached to the human fingers. In order to have proper gripping, closed-loop control is implemented using the tactile sensors. Feedback for the closed-loop control is provided by force sensing resistors (FSRs), attached on the fingertips of the robotic hand. These sensors also enable handling of fragile objects. The mathematical model is derived using forward kinematics and also simulated on MATLAB to ascertain the position of robotic fingers in 3D space.

  3. Persuasive performance feedback: the effect of framing on self-efficacy.

    Science.gov (United States)

    Choe, Eun Kyoung; Lee, Bongshin; Munson, Sean; Pratt, Wanda; Kientz, Julie A

    2013-01-01

    Self-monitoring technologies have proliferated in recent years as they offer excellent potential for promoting healthy behaviors. Although these technologies have varied ways of providing real-time feedback on a user's current progress, we have a dearth of knowledge of the framing effects on the performance feedback these tools provide. With an aim to create influential, persuasive performance feedback that will nudge people toward healthy behaviors, we conducted an online experiment to investigate the effect of framing on an individual's self-efficacy. We identified 3 different types of framing that can be applicable in presenting performance feedback: (1) the valence of performance (remaining vs. achieved framing), (2) presentation type (text-only vs. text with visual), and (3) data unit (raw vs. percentage). Results show that the achieved framing could lead to an increased perception of individual's performance capabilities. This work provides empirical guidance for creating persuasive performance feedback, thereby helping people designing self-monitoring technologies to promote healthy behaviors.

  4. Persuasive Performance Feedback: The Effect of Framing on Self-Efficacy

    Science.gov (United States)

    Choe, Eun Kyoung; Lee, Bongshin; Munson, Sean; Pratt, Wanda; Kientz, Julie A.

    2013-01-01

    Self-monitoring technologies have proliferated in recent years as they offer excellent potential for promoting healthy behaviors. Although these technologies have varied ways of providing real-time feedback on a user’s current progress, we have a dearth of knowledge of the framing effects on the performance feedback these tools provide. With an aim to create influential, persuasive performance feedback that will nudge people toward healthy behaviors, we conducted an online experiment to investigate the effect of framing on an individual’s self-efficacy. We identified 3 different types of framing that can be applicable in presenting performance feedback: (1) the valence of performance (remaining vs. achieved framing), (2) presentation type (text-only vs. text with visual), and (3) data unit (raw vs. percentage). Results show that the achieved framing could lead to an increased perception of individual’s performance capabilities. This work provides empirical guidance for creating persuasive performance feedback, thereby helping people designing self-monitoring technologies to promote healthy behaviors. PMID:24551378

  5. Prolonged disengagement from distractors near the hands

    Directory of Open Access Journals (Sweden)

    Daniel B Vatterott

    2013-08-01

    Full Text Available Because items near our hands are often more important than items far from our hands, the brain processes visual items near our hands differently than items far from our hands. Multiple experiments have attributed this processing difference to spatial attention, but the exact mechanism behind how spatial attention near our hands changes is still under investigation. The current experiments sought to differentiate between two of the proposed mechanisms: a prioritization of the space near the hands and a prolonged disengagement of spatial attention near the hands. To differentiate between these two accounts, we used the additional singleton paradigm in which observers searched for a shape singleton among homogenously shaped distractors. On half the trials, one of the distractors was a different color. Both the prioritization and disengagement accounts predict differently colored distractors near the hands will slow target responses more than differently colored distractors far from the hands, but the prioritization account also predicts faster responses to targets near the hands than far from the hands. The disengagement account does not make this prediction, because attention does not need to be disengaged when the target appears near the hand. We found support for the disengagement account: Salient distractors near the hands slowed responses more than those far from the hands, yet observers did not respond faster to targets near the hands.

  6. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.

    Science.gov (United States)

    De Nunzio, Alessandro Marco; Dosen, Strahinja; Lemling, Sabrina; Markovic, Marko; Schweisfurth, Meike Annika; Ge, Nan; Graimann, Bernhard; Falla, Deborah; Farina, Dario

    2017-08-01

    Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not

  7. UNO STUDIO DI CASO SULL’ELABORAZIONE E L’UTILIZZO DEL FEEDBACK SCRITTO IN APPRENDENTI DI ITALIANO L2

    Directory of Open Access Journals (Sweden)

    Livia Alberti

    2015-02-01

    Full Text Available Attraverso uno studio di caso che coinvolge due studentesse di italiano L2 di livello elementare/intermedio, si prendono in esame alcuni dei fattori che possono influire sull’utilizzo del feedback scritto da parte degli apprendenti. La raccolta dei dati si è svolta in tre giornate: nella prima le partecipanti hanno scritto un testo collaborativo a partire da una storia per immagini; nella seconda i testi, corretti con un intervento di feedback implicito, sono stati riconsegnati e la coppia ha prima analizzato le segnalazioni ricevute e poi riscritto il testo; nella terza le apprendenti hanno prodotto testi individuali a partire dallo stesso stimolo visivo. Oltre a confrontare le diverse stesure del testo, si analizzano le interazioni avvenute tra le apprendenti durante il lavoro di coppia finalizzato a utilizzare il feedback per produrre il secondo testo collaborativo. I risultati mostrano da un lato che un elevato livello di coinvolgimento nell’elaborazione del feedback non ne garantisce un utilizzo efficace, dall’altro che hanno un peso non trascurabile anche fattori più “personali” come le convinzioni sulla lingua bersaglio e l’atteggiamento nei confronti del lavoro di coppia.  A case study on the development and use of written feedback in Italian L2 learners  Through a case study involving two female elementary/intermediate Italian L2 students, we examine some of the factors that may affect the use of written feedback by the learners. Data collection took place over three days: on the first day, the participants wrote a collaborative text from a picture story; on the second the texts, corrected using implicit feedback, were returned, and the students first analyzed the reports received and then rewrote the text; on the third day the learners produced individual texts from the same visual stimulus. In addition to comparing the various drafts of the text, we analyzed the interactions between the learners during pair work aimed

  8. Approaching Stan Laurel's illusion: the self-induced rubber hand phenomenon.

    Science.gov (United States)

    Neuf, Hartmut; Hamburger, Kai

    2013-01-01

    The classical rubber hand illusion is induced by an experimenter (eg stimulation with a brush) and usually realized with some sort of visual occlusion. Here, we demonstrate a new phenomenon: the self-induced rubber hand illusion. It is possible to elicit the feeling of a third hand without any help from an experimenter and under conditions of no occlusion. The findings are discussed within the context of neural plasticity.

  9. Interventions to improve hand hygiene compliance in patient care.

    Science.gov (United States)

    Gould, Dinah J; Moralejo, Donna; Drey, Nicholas; Chudleigh, Jane H; Taljaard, Monica

    2017-09-01

    Health care-associated infection is a major cause of morbidity and mortality. Hand hygiene is regarded as an effective preventive measure. This is an update of a previously published review. To assess the short- and long-term success of strategies to improve compliance to recommendations for hand hygiene, and to determine whether an increase in hand hygiene compliance can reduce rates of health care-associated infection. We conducted electronic searches of the Cochrane Register of Controlled Trials, PubMed, Embase, and CINAHL. We conducted the searches from November 2009 to October 2016. We included randomised trials, non-randomised trials, controlled before-after studies, and interrupted time series analyses (ITS) that evaluated any intervention to improve compliance with hand hygiene using soap and water or alcohol-based hand rub (ABHR), or both. Two review authors independently screened citations for inclusion, extracted data, and assessed risks of bias for each included study. Meta-analysis was not possible, as there was substantial heterogeneity across studies. We assessed the certainty of evidence using the GRADE approach and present the results narratively in a 'Summary of findings' table. This review includes 26 studies: 14 randomised trials, two non-randomised trials and 10 ITS studies. Most studies were conducted in hospitals or long-term care facilities in different countries, and collected data from a variety of healthcare workers. Fourteen studies assessed the success of different combinations of strategies recommended by the World Health Organization (WHO) to improve hand hygiene compliance. Strategies consisted of the following: increasing the availability of ABHR, different types of education for staff, reminders (written and verbal), different types of performance feedback, administrative support, and staff involvement. Six studies assessed different types of performance feedback, two studies evaluated education, three studies evaluated cues such

  10. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Miriam eZacksenhouse

    2015-05-01

    Full Text Available Recent experiments with brain-machine-interfaces (BMIs indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  11. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces.

    Science.gov (United States)

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  12. Social Cognition as Reinforcement Learning: Feedback Modulates Emotion Inference.

    Science.gov (United States)

    Zaki, Jamil; Kallman, Seth; Wimmer, G Elliott; Ochsner, Kevin; Shohamy, Daphna

    2016-09-01

    Neuroscientific studies of social cognition typically employ paradigms in which perceivers draw single-shot inferences about the internal states of strangers. Real-world social inference features much different parameters: People often encounter and learn about particular social targets (e.g., friends) over time and receive feedback about whether their inferences are correct or incorrect. Here, we examined this process and, more broadly, the intersection between social cognition and reinforcement learning. Perceivers were scanned using fMRI while repeatedly encountering three social targets who produced conflicting visual and verbal emotional cues. Perceivers guessed how targets felt and received feedback about whether they had guessed correctly. Visual cues reliably predicted one target's emotion, verbal cues predicted a second target's emotion, and neither reliably predicted the third target's emotion. Perceivers successfully used this information to update their judgments over time. Furthermore, trial-by-trial learning signals-estimated using two reinforcement learning models-tracked activity in ventral striatum and ventromedial pFC, structures associated with reinforcement learning, and regions associated with updating social impressions, including TPJ. These data suggest that learning about others' emotions, like other forms of feedback learning, relies on domain-general reinforcement mechanisms as well as domain-specific social information processing.

  13. Learning Arm/Hand Coordination with an Altered Visual Input

    Directory of Open Access Journals (Sweden)

    Simona Denisia Iftime Nielsen

    2010-01-01

    Full Text Available The focus of this study was to test a novel tool for the analysis of motor coordination with an altered visual input. The altered visual input was created using special glasses that presented the view as recorded by a video camera placed at various positions around the subject. The camera was positioned at a frontal (F, lateral (L, or top (T position with respect to the subject. We studied the differences between the arm-end (wrist trajectories while grasping an object between altered vision (F, L, and T conditions and normal vision (N in ten subjects. The outcome measures from the analysis were the trajectory errors, the movement parameters, and the time of execution. We found substantial trajectory errors and an increased execution time at the baseline of the study. We also found that trajectory errors decreased in all conditions after three days of practice with the altered vision in the F condition only for 20 minutes per day, suggesting that recalibration of the visual systems occurred relatively quickly. These results indicate that this recalibration occurs via movement training in an altered condition. The results also suggest that recalibration is more difficult to achieve for altered vision in the F and L conditions compared to the T condition. This study has direct implications on the design of new rehabilitation systems.

  14. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    International Nuclear Information System (INIS)

    Sejas, Sergio A; Albert, Oriene S; Cai, Ming; Deng, Yi

    2014-01-01

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heat flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Therefore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea. (letter)

  15. Neuroticism and responsiveness to error feedback: adaptive self-regulation versus affective reactivity.

    Science.gov (United States)

    Robinson, Michael D; Moeller, Sara K; Fetterman, Adam K

    2010-10-01

    Responsiveness to negative feedback has been seen as functional by those who emphasize the value of reflecting on such feedback in self-regulating problematic behaviors. On the other hand, the very same responsiveness has been viewed as dysfunctional by its link to punishment sensitivity and reactivity. The present 4 studies, involving 203 undergraduate participants, sought to reconcile such discrepant views in the context of the trait of neuroticism. In cognitive tasks, individuals were given error feedback when they made mistakes. It was found that greater tendencies to slow down following error feedback were associated with higher levels of accuracy at low levels of neuroticism but lower levels of accuracy at high levels of neuroticism. Individual differences in neuroticism thus appear crucial in understanding whether behavioral alterations following negative feedback reflect proactive versus reactive mechanisms and processes. Implications for understanding the processing basis of neuroticism and adaptive self-regulation are discussed.

  16. Illusory movement perception improves motor control for prosthetic hands

    Science.gov (United States)

    Marasco, Paul D.; Hebert, Jacqueline S.; Sensinger, Jon W.; Shell, Courtney E.; Schofield, Jonathon S.; Thumser, Zachary C.; Nataraj, Raviraj; Beckler, Dylan T.; Dawson, Michael R.; Blustein, Dan H.; Gill, Satinder; Mensh, Brett D.; Granja-Vazquez, Rafael; Newcomb, Madeline D.; Carey, Jason P.; Orzell, Beth M.

    2018-01-01

    To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement’s progress. This largely non-conscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. Here we report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. PMID:29540617

  17. Trade typhoon over Japan: Turbulence metaphor and spatial production cycles feedback loops of the Japanese economy, 1980–85–90

    Directory of Open Access Journals (Sweden)

    M. Sonis

    2002-01-01

    Full Text Available This paper deals with the turbulence similitude between whirlpool structure of atmosphere disturbances and the spatial production cycles. Such an analogy leads to the production cycles feedback loops superposition analysis of trade feedbacks reflecting the economic phenomena of horizontal and vertical trade specifications. Moreover, the visualization of this process is achieved with the help of coloring the different permutation matrices presenting the hierarchy of production cycles feedback loops. In this manner the qualitative presentation of Japan inter-regional and inter-industry trade, 1980–85–90, is visualized and interpreted.

  18. Attentional effects in the visual pathways

    DEFF Research Database (Denmark)

    Bundesen, Claus; Larsen, Axel; Kyllingsbæk, Søren

    2002-01-01

    nucleus. Frontal activations were found in a region that seems implicated in visual short-term memory (posterior parts of the superior sulcus and the middle gyrus). The reverse, color-shape comparison showed bilateral increases in rCBF in the anterior cingulate gyri, superior frontal gyri, and superior...... and middle temporal gyri. The attentional effects found by the shape-color comparison in the thalamus and the primary visual cortex may have been generated by feedback signals preserving visual representations of selected stimuli in short-term memory....

  19. Noise destroys feedback enhanced figure-ground segmentation but not feedforward figure-ground segmentation

    Science.gov (United States)

    Romeo, August; Arall, Marina; Supèr, Hans

    2012-01-01

    Figure-ground (FG) segmentation is the separation of visual information into background and foreground objects. In the visual cortex, FG responses are observed in the late stimulus response period, when neurons fire in tonic mode, and are accompanied by a switch in cortical state. When such a switch does not occur, FG segmentation fails. Currently, it is not known what happens in the brain on such occasions. A biologically plausible feedforward spiking neuron model was previously devised that performed FG segmentation successfully. After incorporating feedback the FG signal was enhanced, which was accompanied by a change in spiking regime. In a feedforward model neurons respond in a bursting mode whereas in the feedback model neurons fired in tonic mode. It is known that bursts can overcome noise, while tonic firing appears to be much more sensitive to noise. In the present study, we try to elucidate how the presence of noise can impair FG segmentation, and to what extent the feedforward and feedback pathways can overcome noise. We show that noise specifically destroys the feedback enhanced FG segmentation and leaves the feedforward FG segmentation largely intact. Our results predict that noise produces failure in FG perception. PMID:22934028

  20. Motor Training: Comparison of Visual and Auditory Coded Proprioceptive Cues

    Directory of Open Access Journals (Sweden)

    Philip Jepson

    2012-05-01

    Full Text Available Self-perception of body posture and movement is achieved through multi-sensory integration, particularly the utilisation of vision, and proprioceptive information derived from muscles and joints. Disruption to these processes can occur following a neurological accident, such as stroke, leading to sensory and physical impairment. Rehabilitation can be helped through use of augmented visual and auditory biofeedback to stimulate neuro-plasticity, but the effective design and application of feedback, particularly in the auditory domain, is non-trivial. Simple auditory feedback was tested by comparing the stepping accuracy of normal subjects when given a visual spatial target (step length and an auditory temporal target (step duration. A baseline measurement of step length and duration was taken using optical motion capture. Subjects (n=20 took 20 ‘training’ steps (baseline ±25% using either an auditory target (950 Hz tone, bell-shaped gain envelope or visual target (spot marked on the floor and were then asked to replicate the target step (length or duration corresponding to training with all feedback removed. Visual cues (mean percentage error=11.5%; SD ± 7.0%; auditory cues (mean percentage error = 12.9%; SD ± 11.8%. Visual cues elicit a high degree of accuracy both in training and follow-up un-cued tasks; despite the novelty of the auditory cues present for subjects, the mean accuracy of subjects approached that for visual cues, and initial results suggest a limited amount of practice using auditory cues can improve performance.

  1. Deep learning-based artificial vision for grasp classification in myoelectric hands

    Science.gov (United States)

    Ghazaei, Ghazal; Alameer, Ali; Degenaar, Patrick; Morgan, Graham; Nazarpour, Kianoush

    2017-06-01

    Objective. Computer vision-based assistive technology solutions can revolutionise the quality of care for people with sensorimotor disorders. The goal of this work was to enable trans-radial amputees to use a simple, yet efficient, computer vision system to grasp and move common household objects with a two-channel myoelectric prosthetic hand. Approach. We developed a deep learning-based artificial vision system to augment the grasp functionality of a commercial prosthesis. Our main conceptual novelty is that we classify objects with regards to the grasp pattern without explicitly identifying them or measuring their dimensions. A convolutional neural network (CNN) structure was trained with images of over 500 graspable objects. For each object, 72 images, at {{5}\\circ} intervals, were available. Objects were categorised into four grasp classes, namely: pinch, tripod, palmar wrist neutral and palmar wrist pronated. The CNN setting was first tuned and tested offline and then in realtime with objects or object views that were not included in the training set. Main results. The classification accuracy in the offline tests reached 85 % for the seen and 75 % for the novel objects; reflecting the generalisability of grasp classification. We then implemented the proposed framework in realtime on a standard laptop computer and achieved an overall score of 84 % in classifying a set of novel as well as seen but randomly-rotated objects. Finally, the system was tested with two trans-radial amputee volunteers controlling an i-limb UltraTM prosthetic hand and a motion controlTM prosthetic wrist; augmented with a webcam. After training, subjects successfully picked up and moved the target objects with an overall success of up to 88 % . In addition, we show that with training, subjects’ performance improved in terms of time required to accomplish a block of 24 trials despite a decreasing level of visual feedback. Significance. The proposed design constitutes a substantial

  2. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Gema Chamorro-Moriana

    2018-01-01

    Full Text Available This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%, orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Conclusion: Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback.

  3. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.

    Science.gov (United States)

    Ben-Tzvi, Pinhas; Ma, Zhou

    2015-11-01

    This paper presents the design, implementation and experimental validation of a novel robotic haptic exoskeleton device to measure the user's hand motion and assist hand motion while remaining portable and lightweight. The device consists of a five-finger mechanism actuated with miniature DC motors through antagonistically routed cables at each finger, which act as both active and passive force actuators. The SAFE Glove is a wireless and self-contained mechatronic system that mounts over the dorsum of a bare hand and provides haptic force feedback to each finger. The glove is adaptable to a wide variety of finger sizes without constraining the range of motion. This makes it possible to accurately and comfortably track the complex motion of the finger and thumb joints associated with common movements of hand functions, including grip and release patterns. The glove can be wirelessly linked to a computer for displaying and recording the hand status through 3D Graphical User Interface (GUI) in real-time. The experimental results demonstrate that the SAFE Glove is capable of reliably modeling hand kinematics, measuring finger motion and assisting hand grasping motion. Simulation and experimental results show the potential of the proposed system in rehabilitation therapy and virtual reality applications.

  4. Continuous Auditory Feedback of Eye Movements: An Exploratory Study toward Improving Oculomotor Control

    Directory of Open Access Journals (Sweden)

    Eric O. Boyer

    2017-04-01

    Full Text Available As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM can be endogenously generated. In particular, we used a visual paradigm which enables to generate and control SPEM in the absence of a moving visual target. We investigated whether real-time auditory feedback of eye movement dynamics might improve learning in both tasks, through a training protocol over 8 days. The results indicate that real-time sonification of eye movements can actually modify the oculomotor behavior, and reinforce intrinsic oculomotor perception. Nevertheless, large inter-individual differences were observed preventing us from reaching a strong conclusion on sensorimotor learning improvements.

  5. Identification of neural structures involved in stuttering using vibrotactile feedback.

    Science.gov (United States)

    Cheadle, Oliver; Sorger, Clarissa; Howell, Peter

    Feedback delivered over auditory and vibratory afferent pathways has different effects on the fluency of people who stutter (PWS). These features were exploited to investigate the neural structures involved in stuttering. The speech signal vibrated locations on the body (vibrotactile feedback, VTF). Eleven PWS read passages under VTF and control (no-VTF) conditions. All combinations of vibration amplitude, synchronous or delayed VTF and vibrator position (hand, sternum or forehead) were presented. Control conditions were performed at the beginning, middle and end of test sessions. Stuttering rate, but not speaking rate, differed between the control and VTF conditions. Notably, speaking rate did not change between when VTF was delayed versus when it was synchronous in contrast with what happens with auditory feedback. This showed that cerebellar mechanisms, which are affected when auditory feedback is delayed, were not implicated in the fluency-enhancing effects of VTF, suggesting that there is a second fluency-enhancing mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Body ownership and the four-hand illusion.

    Science.gov (United States)

    Chen, Wen-Yeo; Huang, Hsu-Chia; Lee, Yen-Tung; Liang, Caleb

    2018-02-01

    Recent studies of the rubber hand illusion (RHI) have shown that the sense of body ownership is constrained by several factors and yet is still very flexible. However, exactly how flexible is our sense of body ownership? In this study, we address this issue by investigating the following question: is it possible that one may have the illusory experience of owning four hands? Under visual manipulation, the participant adopted the experimenter's first-person perspective (1PP) as if it was his/her own. Sitting face to face, the participant saw four hands-the experimenter's two hands from the adopted 1PP together with the subject's own two hands from the adopted third-person perspective (3PP). We found that: (1) the four-hand illusion did not occur in the passive four-hand condition. (2) In the active four-hand condition, the participants tapped their index fingers, imitated by the experimenter. When tactile stimulations were not provided, the key illusion was not induced, either. (3) Strikingly, once all four hands began to act with the same pattern and received synchronous tactile stimulations at the same time, many participants felt as if they had two more hands. These results show that the sense of body ownership is much more flexible than most researchers have suggested.

  7. An Empirical Study on Using Visual Embellishments in Visualization.

    Science.gov (United States)

    Borgo, R; Abdul-Rahman, A; Mohamed, F; Grant, P W; Reppa, I; Floridi, L; Chen, Min

    2012-12-01

    In written and spoken communications, figures of speech (e.g., metaphors and synecdoche) are often used as an aid to help convey abstract or less tangible concepts. However, the benefits of using rhetorical illustrations or embellishments in visualization have so far been inconclusive. In this work, we report an empirical study to evaluate hypotheses that visual embellishments may aid memorization, visual search and concept comprehension. One major departure from related experiments in the literature is that we make use of a dual-task methodology in our experiment. This design offers an abstraction of typical situations where viewers do not have their full attention focused on visualization (e.g., in meetings and lectures). The secondary task introduces "divided attention", and makes the effects of visual embellishments more observable. In addition, it also serves as additional masking in memory-based trials. The results of this study show that visual embellishments can help participants better remember the information depicted in visualization. On the other hand, visual embellishments can have a negative impact on the speed of visual search. The results show a complex pattern as to the benefits of visual embellishments in helping participants grasp key concepts from visualization.

  8. A Randomized Control Trial of Cardiopulmonary Feedback Devices and Their Impact on Infant Chest Compression Quality: A Simulation Study.

    Science.gov (United States)

    Austin, Andrea L; Spalding, Carmen N; Landa, Katrina N; Myer, Brian R; Donald, Cure; Smith, Jason E; Platt, Gerald; King, Heather C

    2017-10-27

    In effort to improve chest compression quality among health care providers, numerous feedback devices have been developed. Few studies, however, have focused on the use of cardiopulmonary resuscitation feedback devices for infants and children. This study evaluated the quality of chest compressions with standard team-leader coaching, a metronome (MetroTimer by ONYX Apps), and visual feedback (SkillGuide Cardiopulmonary Feedback Device) during simulated infant cardiopulmonary resuscitation. Seventy voluntary health care providers who had recently completed Pediatric Advanced Life Support or Basic Life Support courses were randomized to perform simulated infant cardiopulmonary resuscitation into 1 of 3 groups: team-leader coaching alone (control), coaching plus metronome, or coaching plus SkillGuide for 2 minutes continuously. Rate, depth, and frequency of complete recoil during cardiopulmonary resuscitation were recorded by the Laerdal SimPad device for each participant. American Heart Association-approved compression techniques were randomized to either 2-finger or encircling thumbs. The metronome was associated with more ideal compression rate than visual feedback or coaching alone (104/min vs 112/min and 113/min; P = 0.003, 0.019). Visual feedback was associated with more ideal depth than auditory (41 mm vs 38.9; P = 0.03). There were no significant differences in complete recoil between groups. Secondary outcomes of compression technique revealed a difference of 1 mm. Subgroup analysis of male versus female showed no difference in mean number of compressions (221.76 vs 219.79; P = 0.72), mean compression depth (40.47 vs 39.25; P = 0.09), or rate of complete release (70.27% vs 64.96%; P = 0.54). In the adult literature, feedback devices often show an increase in quality of chest compressions. Although more studies are needed, this study did not demonstrate a clinically significant improvement in chest compressions with the addition of a metronome or visual

  9. Sensor-Based Interactive Balance Training with Visual Joint Movement Feedback for Improving Postural Stability in Diabetics with Peripheral Neuropathy: A Randomized Controlled Trial.

    Science.gov (United States)

    Grewal, Gurtej Singh; Schwenk, Michael; Lee-Eng, Jacqueline; Parvaneh, Saman; Bharara, Manish; Menzies, Robert A; Talal, Talal K; Armstrong, David G; Najafi, Bijan

    2015-01-01

    Individuals with diabetic peripheral neuropathy (DPN) have deficits in sensory and motor skills leading to inadequate proprioceptive feedback, impaired postural balance and higher fall risk. This study investigated the effect of sensor-based interactive balance training on postural stability and daily physical activity in older adults with diabetes. Thirty-nine older adults with DPN were enrolled (age 63.7 ± 8.2 years, BMI 30.6 ± 6, 54% females) and randomized to either an intervention (IG) or a control (CG) group. The IG received sensor-based interactive exercise training tailored for people with diabetes (twice a week for 4 weeks). The exercises focused on shifting weight and crossing virtual obstacles. Body-worn sensors were implemented to acquire kinematic data and provide real-time joint visual feedback during the training. Outcome measurements included changes in center of mass (CoM) sway, ankle and hip joint sway measured during a balance test while the eyes were open and closed at baseline and after the intervention. Daily physical activities were also measured during a 48-hour period at baseline and at follow-up. Analysis of covariance was performed for the post-training outcome comparison. Compared with the CG, the patients in the IG showed a significantly reduced CoM sway (58.31%; p = 0.009), ankle sway (62.7%; p = 0.008) and hip joint sway (72.4%; p = 0.017) during the balance test with open eyes. The ankle sway was also significantly reduced in the IG group (58.8%; p = 0.037) during measurements while the eyes were closed. The number of steps walked showed a substantial but nonsignificant increase (+27.68%; p = 0.064) in the IG following training. The results of this randomized controlled trial demonstrate that people with DPN can significantly improve their postural balance with diabetes-specific, tailored, sensor-based exercise training. The results promote the use of wearable technology in exercise training; however, future studies comparing this

  10. The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation.

    Science.gov (United States)

    Kim, Aram; Kretch, Kari S; Zhou, Zixuan; Finley, James M

    2018-05-09

    Successful negotiation of obstacles during walking relies on the integration of visual information about the environment with ongoing locomotor commands. When information about the body and environment are removed through occlusion of the lower visual field, individuals increase downward head pitch angle, reduce foot placement precision, and increase safety margins during crossing. However, whether these effects are mediated by loss of visual information about the lower extremities, the obstacle, or both remains to be seen. Here, we used a fully immersive, virtual obstacle negotiation task to investigate how visual information about the lower extremities is integrated with information about the environment to facilitate skillful obstacle negotiation. Participants stepped over virtual obstacles while walking on a treadmill with one of three types of visual feedback about the lower extremities: no feedback, end-point feedback, or a link-segment model. We found that absence of visual information about the lower extremities led to an increase in the variability of leading foot placement after crossing. The presence of a visual representation of the lower extremities promoted greater downward head pitch angle during the approach to and subsequent crossing of an obstacle. In addition, having greater downward head pitch was associated with closer placement of the trailing foot to the obstacle, further placement of the leading foot after the obstacle, and higher trailing foot clearance. These results demonstrate that the fidelity of visual information about the lower extremities influences both feed-forward and feedback aspects of visuomotor coordination during obstacle negotiation.

  11. Fusion of hard and soft control strategies for the robotic hand

    CERN Document Server

    Chen, Cheng-Hung

    2018-01-01

    Long considered the stuff of science fiction, a prosthetic hand capable of fully replicating all of that appendage's various functions is closer to becoming reality than ever before. This book provides a comprehensive report on exciting recent developments in hybrid control techniques—one of the most crucial hurdles to be overcome in creating smart prosthetic hands. Coauthored by two of the world's foremost pioneering experts in the field, Fusion of Hard and Soft Control Strategies for the Robotic Hand treats robotic hands for multiple applications. It begins with an overview of advances in main control techniques that have been made over the past decade before addressing the military context for affordable robotic hand technology with tactile and/or proprioceptive feedback for hand amputees. Kinematics, homogene us transformations, inverse and differential kinematics, trajectory planning, and dynamic models of two-link thumb and three-link index finger are discussed in detail. The remainder of the book is...

  12. Task-space sensory feedback control of robot manipulators

    CERN Document Server

    Cheah, Chien Chern

    2015-01-01

    This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity i...

  13. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    of swing. The design of the delayed feedback controller is presented as an optimization problem which gives the possibility of an automated design process. Simulations and flight test verifications of the control system on two different autonomous helicopters are presented and it is shown how a significant......This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous...... helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integration with a feedforward control scheme based on input shaping for concurrent avoidance and dampening...

  14. Looking at the ventriloquist: visual outcome of eye movements calibrates sound localization.

    Directory of Open Access Journals (Sweden)

    Daniel S Pages

    Full Text Available A general problem in learning is how the brain determines what lesson to learn (and what lessons not to learn. For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a 'guess and check' heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain's reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.

  15. Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback.

    Science.gov (United States)

    Pacchierotti, Claudio; Abayazid, Momen; Misra, Sarthak; Prattichizzo, Domenico

    2014-01-01

    Needle insertion in soft-tissue is a minimally invasive surgical procedure that demands high accuracy. In this respect, robotic systems with autonomous control algorithms have been exploited as the main tool to achieve high accuracy and reliability. However, for reasons of safety and responsibility, autonomous robotic control is often not desirable. Therefore, it is necessary to focus also on techniques enabling clinicians to directly control the motion of the surgical tools. In this work, we address that challenge and present a novel teleoperated robotic system able to steer flexible needles. The proposed system tracks the position of the needle using an ultrasound imaging system and computes needle's ideal position and orientation to reach a given target. The master haptic interface then provides the clinician with mixed kinesthetic-vibratory navigation cues to guide the needle toward the computed ideal position and orientation. Twenty participants carried out an experiment of teleoperated needle insertion into a soft-tissue phantom, considering four different experimental conditions. Participants were provided with either mixed kinesthetic-vibratory feedback or mixed kinesthetic-visual feedback. Moreover, we considered two different ways of computing ideal position and orientation of the needle: with or without set-points. Vibratory feedback was found more effective than visual feedback in conveying navigation cues, with a mean targeting error of 0.72 mm when using set-points, and of 1.10 mm without set-points.

  16. Object-based processes in the planning of goal-directed hand movements

    NARCIS (Netherlands)

    Bekkering, H.; Pratt, J.

    2004-01-01

    Theories in motor control suggest that the parameters specified during the planning of goal-directed hand movements to a visual target are defined in spatial parameters like direction and amplitude. Recent findings in the visual attention literature, however, argue widely for early object-based

  17. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    OpenAIRE

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environme...

  18. Virtual Reality Feedback Cues for Improvement of Gait in Patients with Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Samih Badarny

    2014-03-01

    Full Text Available Background: Our aim was to study the effects of visual feedback cues, responding dynamically to patient's self‐motion and provided through a portable see‐through virtual reality apparatus, on the walking abilities of patients with Parkinson's disease.Methods: Twenty patients participated. On‐line and residual effects on walking speed and stride length were measured. Results Attaching the visual feedback device to the patient with the display turned off showed a negligible effect of about 2%. With the display turned on, 56% of the patients improved either their walking speed, or their stride length, or both, by over 20%. After device removal, and waiting for 15 minutes, the patients were instructed to walk again: 68% of the patients showed over 20% improvement in either walking speed or stride length or both. One week after participating in the first test, 36% of the patients showed over 20% improvement in baseline performance with respect to the previous test. Some of the patients reported that they still walked on the tiles in their minds.Discussion: Improvements in walking abilities were measured in patients with Parkinson's disease using virtual reality visual feedback cues. Residual effects suggest the examination of this approach in a comprehensive therapy program.

  19. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    Science.gov (United States)

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.

  20. Hand Hygiene Improvement and Sustainability: Assessing a Breakthrough Collaborative in Western Switzerland.

    Science.gov (United States)

    Staines, Anthony; Amherdt, Isabelle; Lécureux, Estelle; Petignat, Christiane; Eggimann, Philippe; Schwab, Marcos; Pittet, Didier

    2017-12-01

    OBJECTIVE To assess hand hygiene improvement and sustainability associated with a Breakthrough Collaborative. DESIGN Multicenter analysis of hand hygiene compliance through direct observation by trained observers. SETTING A total of 5 publicly funded hospitals in 14 locations, with a total of 1,152 beds, in the County of Vaud, Switzerland. PARTICIPANTS Clinical staff. INTERVENTIONS In total, 59,272 opportunities for hand hygiene were monitored for the duration of the study, for an average of 5,921 per audit (range, 5,449-6,852). An 18-month Hand Hygiene Breakthrough Collaborative was conducted to implement the WHO multimodal promotional strategy including improved access to alcohol-based hand rub, education, performance measurement and feedback, reminders and communication, leadership engagement, and safety culture. RESULTS Overall hand hygiene compliance improved from 61.9% to 88.3% (Pstrategy for content and measurement was associated with significant and substantial improvement in compliance across all professions, all hand hygiene indications, and all participating hospitals. Infect Control Hosp Epidemiol 2017;38:1420-1427.

  1. Interactive Visual Analysis for Organic Photovoltaic Solar Cells

    KAUST Repository

    Abouelhassan, Amal A.

    2017-12-05

    Organic Photovoltaic (OPV) solar cells provide a promising alternative for harnessing solar energy. However, the efficient design of OPV materials that achieve better performance requires support by better-tailored visualization tools than are currently available, which is the goal of this thesis. One promising approach in the OPV field is to control the effective material of the OPV device, which is known as the Bulk-Heterojunction (BHJ) morphology. The BHJ morphology has a complex composition. Current BHJ exploration techniques deal with the morphologies as black boxes with no perception of the photoelectric current in the BHJ morphology. Therefore, this method depends on a trial-and-error approach and does not efficiently characterize complex BHJ morphologies. On the other hand, current state-of-the-art methods for assessing the performance of BHJ morphologies are based on the global quantification of morphological features. Accordingly, scientists in OPV research are still lacking a sufficient understanding of the best material design. To remove these limitations, we propose a new approach for knowledge-assisted visual exploration and analysis in the OPV domain. We develop new techniques for enabling efficient OPV charge transport path analysis. We employ, adapt, and develop techniques from scientific visualization, geometric modeling, clustering, and visual interaction to obtain new designs of visualization tools that are specifically tailored for the needs of OPV scientists. At the molecular scale, the user can use semantic rules to define clusters of atoms with certain geometric properties. At the nanoscale, we propose a novel framework for visual characterization and exploration of local structure-performance correlations. We also propose a new approach for correlating structural features to performance bottlenecks. We employ a visual feedback strategy that allows scientists to make intuitive choices about fabrication parameters. We furthermore propose a

  2. Design of a 3-DOF Parallel Hand-Controller

    Directory of Open Access Journals (Sweden)

    Chengcheng Zhu

    2017-01-01

    Full Text Available Hand-controllers, as human-machine-interface (HMI devices, can transfer the position information of the operator’s hands into the virtual environment to control the target objects or a real robot directly. At the same time, the haptic information from the virtual environment or the sensors on the real robot can be displayed to the operator. It helps human perceive haptic information more truly with feedback force. A parallel hand-controller is designed in this paper. It is simplified from the traditional delta haptic device. The swing arms in conventional delta devices are replaced with the slider rail modules. The base consists of two hexagons and several links. For the use of the linear sliding modules instead of swing arms, the arc movement is replaced by linear movement. So that, the calculating amount of the position positive solution and the force inverse solution is reduced for the simplification of the motion. The kinematics, static mechanics, and dynamic mechanics are analyzed in this paper. What is more, two demonstration applications are developed to verify the performance of the designed hand-controller.

  3. Climatic feedbacks between stationary and transient eddies

    International Nuclear Information System (INIS)

    Branscome, L.E.

    1994-01-01

    Stationary eddies make a significant contribution to poleward heat transport during Northern Hemisphere winter, equaling the transport by transient eddies. On the other hand, stationary eddy transport during the summer is negligible. The effect of topography on time-mean stationary waves and low-frequency variability has been widely studied. In contrast, little attention has been given to the climatic feedbacks associated with stationary eddies. Furthermore, the relationship between stationary and transient eddies in the context of global and regional climate is not well understood. The response of the climate system to anthropogenic forcing is likely to have some dependence on stationary wave transport and its interaction with transient eddies. Some early GCM simulations and observational analyses indicate a strong feedback between the meridional heat fluxes of stationary and transient eddies

  4. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    Directory of Open Access Journals (Sweden)

    Teresa eSollfrank

    2015-08-01

    Full Text Available A repetitive movement practice by motor imagery (MI can influence motor cortical excitability in the electroencephalogram (EEG. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007. This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during motor imagery. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronisation (ERD of the upper alpha band (10-12 Hz over the sensorimotor cortices thereby potentially improving MI based BCI protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb motor imagery present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (2D vs. 3D. The largest upper alpha band power decrease was obtained during motor imagery after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D visualization modality group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during MI. Realistic visual feedback, consistent with the participant’s motor imagery, might be helpful for accomplishing successful motor imagery and the use of such feedback may assist in making BCI a more natural interface for motor imagery based BCI rehabilitation.

  5. Temporary Nerve Block at Selected Digits Revealed Hand Motor Deficits in Grasping Tasks

    Directory of Open Access Journals (Sweden)

    Aude Carteron

    2016-11-01

    Full Text Available Peripheral sensory feedback plays a crucial role in ensuring correct motor execution throughout hand grasp control. Previous studies utilized local anesthesia to deprive somatosensory feedback in the digits or hand, observations included sensorimotor deficits at both corticospinal and peripheral levels. However, the questions of how the disturbed and intact sensory input integrate and interact with each other to assist the motor program execution, and whether the motor coordination based on motor output variability between affected and non-affected elements (e.g., digits becomes interfered by the local sensory deficiency, have not been answered. The current study aims to investigate the effect of peripheral deafferentation through digital nerve blocks at selective digits on motor performance and motor coordination in grasp control. Our results suggested that the absence of somatosensory information induced motor deficits in hand grasp control, as evidenced by reduced maximal force production ability in both local and non-local digits, impairment of force and moment control during object lift and hold, and attenuated motor synergies in stabilizing task performance variables, namely the tangential force and moment of force. These findings implied that individual sensory input is shared across all the digits and the disturbed signal from local sensory channel(s has a more comprehensive impact on the process of the motor output execution in the sensorimotor integration process. Additionally, a feedback control mechanism with a sensation-based component resides in the formation process for the motor covariation structure.

  6. Visuo-proprioceptive interactions during adaptation of the human reach.

    Science.gov (United States)

    Judkins, Timothy; Scheidt, Robert A

    2014-02-01

    We examined whether visual and proprioceptive estimates of transient (midreach) target capture errors contribute to motor adaptation according to the probabilistic rules of information integration used for perception. Healthy adult humans grasped and moved a robotic handle between targets in the horizontal plane while the robot generated springlike loads that varied unpredictably from trial to trial. For some trials, a visual cursor faithfully tracked hand motion. In others, the handle's position was locked and subjects viewed motion of a point-mass cursor driven by hand forces. In yet other trials, cursor feedback was dissociated from hand motion or altogether eliminated. We used time- and frequency-domain analyses to characterize how sensorimotor memories influence performance on subsequent reaches. When the senses were used separately, subjects were better at rejecting physical disturbances applied to the hand than virtual disturbances applied to the cursor. In part, this observation reflected differences in how participants used sensorimotor memories to adapt to perturbations when performance feedback was limited to only proprioceptive or visual information channels. When both vision and proprioception were available to guide movement, subjects processed memories in a manner indistinguishable from the vision-only condition, regardless of whether the cursor tracked the hand faithfully or whether we experimentally dissociated motions of the hand and cursor. This was true even though, on average, perceptual uncertainty in the proprioceptive estimation of movement extent exceeded that of visual estimation by just 47%. In contrast to perceptual tasks wherein vision and proprioception both contribute to an optimal estimate of limb state, our findings support a switched-input, multisensory model of predictive load compensation wherein visual feedback of transient performance errors overwhelmingly dominates proprioception in determining adaptive reach performance.

  7. Electrotactile feedback improves performance and facilitates learning in the routine grasping task

    Directory of Open Access Journals (Sweden)

    Milica Isaković

    2016-06-01

    Full Text Available Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels. First (baseline and the last (validation session were performed in open loop, while the second and the third session (training included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  8. Electrotactile Feedback Improves Performance and Facilitates Learning in the Routine Grasping Task.

    Science.gov (United States)

    Isaković, Milica; Belić, Minja; Štrbac, Matija; Popović, Igor; Došen, Strahinja; Farina, Dario; Keller, Thierry

    2016-06-13

    Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels). First (baseline) and the last (validation) session were performed in open loop, while the second and the third session (training) included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  9. How Do Batters Use Visual, Auditory, and Tactile Information about the Success of a Baseball Swing?

    Science.gov (United States)

    Gray, Rob

    2009-01-01

    Bat/ball contact produces visual (the ball leaving the bat), auditory (the "crack" of the bat), and tactile (bat vibration) feedback about the success of the swing. We used a batting simulation to investigate how college baseball players use visual, tactile, and auditory feedback. In Experiment 1, swing accuracy (i.e., the lateral separation…

  10. Piloting the feasibility of head-mounted video technology to augment student feedback during simulated clinical decision-making: An observational design pilot study.

    Science.gov (United States)

    Forbes, Helen; Bucknall, Tracey K; Hutchinson, Alison M

    2016-04-01

    Clinical decision-making is a complex activity that is critical to patient safety. Simulation, augmented by feedback, affords learners the opportunity to learn critical clinical decision-making skills. More detailed feedback following simulation exercises has the potential to further enhance student learning, particularly in relation to developing improved clinical decision-making skills. To investigate the feasibility of head-mounted video camera recordings, to augment feedback, following acute patient deterioration simulations. Pilot study using an observational design. Ten final-year nursing students participated in three simulation exercises, each focussed on detection and management of patient deterioration. Two observers collected behavioural data using an adapted version of Gaba's Clinical Simulation Tool, to provide verbal feedback to each participant, following each simulation exercise. Participants wore a head-mounted video camera during the second simulation exercise only. Video recordings were replayed to participants to augment feedback, following the second simulation exercise. Data were collected on: participant performance (observed and perceived); participant perceptions of feedback methods; and head-mounted video camera recording feasibility and capability for detailed audio-visual feedback. Management of patient deterioration improved for six participants (60%). Increased perceptions of confidence (70%) and competence (80%), were reported by the majority of participants. Few participants (20%) agreed that the video recording specifically enhanced their learning. The visual field of the head-mounted video camera was not always synchronised with the participant's field of vision, thus affecting the usefulness of some recordings. The usefulness of the video recordings, to enhance verbal feedback to participants on detection and management of simulated patient deterioration, was inconclusive. Modification of the video camera glasses, to improve

  11. Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.

    Science.gov (United States)

    Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard

    2018-01-01

    The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.

  12. Negative body image associated with changes in the visual body appearance increases pain perception.

    Directory of Open Access Journals (Sweden)

    Michihiro Osumi

    Full Text Available Changing the visual body appearance by use of as virtual reality system, funny mirror, or binocular glasses has been reported to be helpful in rehabilitation of pain. However, there are interindividual differences in the analgesic effect of changing the visual body image. We hypothesized that a negative body image associated with changing the visual body appearance causes interindividual differences in the analgesic effect although the relationship between the visual body appearance and analgesic effect has not been clarified. We investigated whether a negative body image associated with changes in the visual body appearance increased pain. Twenty-five healthy individuals participated in this study. To evoke a negative body image, we applied the method of rubber hand illusion. We created an "injured rubber hand" to evoke unpleasantness associated with pain, a "hairy rubber hand" to evoke unpleasantness associated with embarrassment, and a "twisted rubber hand" to evoke unpleasantness associated with deviation from the concept of normality. We also created a "normal rubber hand" as a control. The pain threshold was measured while the participant observed the rubber hand using a device that measured pain caused by thermal stimuli. Body ownership experiences were elicited by observation of the injured rubber hand and hairy rubber hand as well as the normal rubber hand. Participants felt more unpleasantness by observing the injured rubber hand and hairy rubber hand than the normal rubber hand and twisted rubber hand (p<0.001. The pain threshold was lower under the injured rubber hand condition than with the other conditions (p<0.001. We conclude that a negative body appearance associated with pain can increase pain sensitivity.

  13. TacTool: a tactile rapid prototyping tool for visual interfaces

    NARCIS (Netherlands)

    Keyson, D.V.; Tang, H.K.; Anzai, Y.; Ogawa, K.; Mori, H.

    1995-01-01

    This paper describes the TacTool development tool and input device for designing and evaluating visual user interfaces with tactile feedback. TacTool is currently supported by the IPO trackball with force feedback in the x and y directions. The tool is designed to enable both the designer and the

  14. Trunk motion visual feedback during walking improves dynamic balance in older adults: Assessor blinded randomized controlled trial.

    Science.gov (United States)

    Anson, Eric; Ma, Lei; Meetam, Tippawan; Thompson, Elizabeth; Rathore, Roshita; Dean, Victoria; Jeka, John

    2018-05-01

    Virtual reality and augmented feedback have become more prevalent as training methods to improve balance. Few reports exist on the benefits of providing trunk motion visual feedback (VFB) during treadmill walking, and most of those reports only describe within session changes. To determine whether trunk motion VFB treadmill walking would improve over-ground balance for older adults with self-reported balance problems. 40 adults (75.8 years (SD 6.5)) with self-reported balance difficulties or a history of falling were randomized to a control or experimental group. Everyone walked on a treadmill at a comfortable speed 3×/week for 4 weeks in 2 min bouts separated by a seated rest. The control group was instructed to look at a stationary bulls-eye target while the experimental group also saw a moving cursor superimposed on the stationary bulls-eye that represented VFB of their walking trunk motion. The experimental group was instructed to keep the cursor in the center of the bulls-eye. Somatosensory (monofilaments and joint position testing) and vestibular function (canal specific clinical head impulses) was evaluated prior to intervention. Balance and mobility were tested before and after the intervention using Berg Balance Test, BESTest, mini-BESTest, and Six Minute Walk. There were no significant differences between groups before the intervention. The experimental group significantly improved on the BESTest (p = 0.031) and the mini-BEST (p = 0.019). The control group did not improve significantly on any measure. Individuals with more profound sensory impairments had a larger improvement on dynamic balance subtests of the BESTest. Older adults with self-reported balance problems improve their dynamic balance after training using trunk motion VFB treadmill walking. Individuals with worse sensory function may benefit more from trunk motion VFB during walking than individuals with intact sensory function. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Nickel deposited on the skin-visualization by DMG test.

    Science.gov (United States)

    Julander, Anneli; Skare, Lizbet; Vahter, Marie; Lidén, Carola

    2011-03-01

    Nickel is the most common cause of contact allergy and an important risk factor for hand eczema. Visualization techniques may be powerful in showing exposures. The dimethylglyoxime (DMG) test might be used to establish skin exposure to nickel. To develop and evaluate methods for visualization of nickel on the skin by the DMG test and hand imprints. Nickel solutions at different concentrations were applied in duplicate on the hands in healthy subjects (n = 5). The DMG test and acid wipe sampling for quantification were then performed. Hand imprints were taken after manipulation of nickel-releasing tools (n = 1), and in workers performing their normal tasks (n = 7). The imprints were developed by the DMG test. The DMG test on hands gave positive results in all subjects. The lowest concentration giving rise to a colour change was set to 0.13 µg/cm(2) for DMG testing on skin. DMG test-developed imprints worked well except when hands were heavily contaminated by other particles/dust. The DMG test may be used as a simple and powerful tool for visualization of nickel on skin. DMG test-developed hand imprints may, in the future, be used for semi-quantitative or quantitative exposure assessment. © 2011 John Wiley & Sons A/S.

  16. Evaluation of visual skills in sedentary and active work environments ...

    African Journals Online (AJOL)

    motor skills. Visual-motor skills encompass three essential ocular motor skills, namely focusing, eye-hand coordination and tracking. The aspects of the visual perceptual process include visual memory and visualization. This study aims to ...

  17. Self-Management of Patient Body Position, Pose, and Motion Using Wide-Field, Real-Time Optical Measurement Feedback: Results of a Volunteer Study

    International Nuclear Information System (INIS)

    Parkhurst, James M.; Price, Gareth J.; Sharrock, Phil J.; Jackson, Andrew S.N.; Stratford, Julie; Moore, Christopher J.

    2013-01-01

    Purpose: We present the results of a clinical feasibility study, performed in 10 healthy volunteers undergoing a simulated treatment over 3 sessions, to investigate the use of a wide-field visual feedback technique intended to help patients control their pose while reducing motion during radiation therapy treatment. Methods and Materials: An optical surface sensor is used to capture wide-area measurements of a subject's body surface with visualizations of these data displayed back to them in real time. In this study we hypothesize that this active feedback mechanism will enable patients to control their motion and help them maintain their setup pose and position. A capability hierarchy of 3 different level-of-detail abstractions of the measured surface data is systematically compared. Results: Use of the device enabled volunteers to increase their conformance to a reference surface, as measured by decreased variability across their body surfaces. The use of visual feedback also enabled volunteers to reduce their respiratory motion amplitude to 1.7 ± 0.6 mm compared with 2.7 ± 1.4 mm without visual feedback. Conclusions: The use of live feedback of their optically measured body surfaces enabled a set of volunteers to better manage their pose and motion when compared with free breathing. The method is suitable to be taken forward to patient studies

  18. Demo : an embedded vision system for high frame rate visual servoing

    NARCIS (Netherlands)

    Ye, Z.; He, Y.; Pieters, R.S.; Mesman, B.; Corporaal, H.; Jonker, P.P.

    2011-01-01

    The frame rate of commercial off-the-shelf industrial cameras is breaking the threshold of 1000 frames-per-second, the sample rate required in high performance motion control systems. On the one hand, it enables computer vision as a cost-effective feedback source; On the other hand, it imposes

  19. The addition of voice prompts to audiovisual feedback and debriefing does not modify CPR quality or outcomes in out of hospital cardiac arrest--a prospective, randomized trial.

    Science.gov (United States)

    Bohn, Andreas; Weber, Thomas P; Wecker, Sascha; Harding, Ulf; Osada, Nani; Van Aken, Hugo; Lukas, Roman P

    2011-03-01

    Chest compression quality is a determinant of survival from out-of-hospital cardiac arrest (OHCA). ERC 2005 guidelines recommend the use of technical devices to support rescuers giving compressions. This prospective randomized study reviewed influence of different feedback configurations on survival and compression quality. 312 patients suffering an OHCA were randomly allocated to two different feedback configurations. In the limited feedback group a metronome and visual feedback was used. In the extended feedback group voice prompts were added. A training program was completed prior to implementation, performance debriefing was conducted throughout the study. Survival did not differ between the extended and limited feedback groups (47.8% vs 43.9%, p = 0.49). Average compression depth (mean ± SD: 4.74 ± 0.86 cm vs 4.84 ± 0.93 cm, p = 0.31) was similar in both groups. There were no differences in compression rate (103 ± 7 vs 102 ± 5 min(-1), p=0.74) or hands-off fraction (16.16% ± 0.07 to 17.04% ± 0.07, p = 0.38). Bystander CPR, public arrest location, presenting rhythm and chest compression depth were predictors of short term survival (ROSC to ED). Even limited CPR-feedback combined with training and ongoing debriefing leads to high chest compression quality. Bystander CPR, location, rhythm and chest compression depth are determinants of survival from out of hospital cardiac arrest. Addition of voice prompts does neither modify CPR quality nor outcome in OHCA. CC depth significantly influences survival and therefore more focus should be put on correct delivery. Further studies are needed to examine the best configuration of feedback to improve CPR quality and survival. ClinicalTrials.gov (NCT00449969), http://www.clinicalTrials.gov. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Adipokine hormones and hand osteoarthritis: radiographic severity and pain.

    Directory of Open Access Journals (Sweden)

    Mei Massengale

    Full Text Available Obesity's association with hand osteoarthritis cannot be fully explained by mechanical loading. We examined the relationship between adipokines and radiographic hand osteoarthritis severity and pain.In a pilot study of 44 hand osteoarthritis patients (39 women and 5 men, serum adipokine concentrations and hand x-ray Kallman-scores were analyzed using linear regression models. Secondary analyses examined correlates of hand pain.The cohort had a mean age of 63.5 years for women and 72.6 for men; mean (standard deviation Kallman-scores were 43.3(17.4 for women and 46.2(10.8 for men. Mean body-mass-index was 30 kg/m(2 for women and men. Mean leptin concentration was 32.2 ng/ml (women and 18.5 ng/ml (men; mean adiponectin-total was 7.9 ng/ml (women and 5.3 ng/ml (men; mean resistin was 7.3 ng/ml (women and 9.4 ng/ml (men. No association was found between Kallman-scores and adipokine concentrations (R(2 = 0.00-0.04 unadjusted analysis, all p-values>0.22. Secondary analyses showed mean visual-analog-scale pain of 4.8(2.4 for women and 6.6(0.9 for men. Leptin, BMI, and history of coronary artery disease were found to be associated with visual-analog-scale scores for chronic hand pain (R(2 = 0.36 unadjusted analysis, p-values≤0.04.In this pilot study, we found that adipokine serum concentrations were not associated with hand osteoarthritis radiographic severity; the most important correlates of joint damage were age and disease duration. Leptin serum concentration, BMI, and coronary artery disease were associated with the intensity of chronic hand OA pain.