WorldWideScience

Sample records for vision based 3d

  1. Stereo vision based 3D game interface

    Science.gov (United States)

    Lu, Peng; Chen, Yisong; Dong, Chao

    2009-10-01

    Currently, keyboards, mice, wands and joysticks are still the most popular interactive devices. While these devices are mostly adequate, they are so unnatural that they are unable to give players the feeling of immersiveness. Researchers have begun investigation into natural interfaces that are intuitively simple and unobtrusive to the user. Recent advances in various signal-processing technologies, coupled with an explosion in the available computing power, have given rise to a number of natural human computer interface (HCI) modalities: speech, vision-based gesture recognition, etc. In this paper we propose a natural three dimensional (3D) game interface, which uses the motion of the player fists in 3D space to achieve the control of sixd egree of freedom (DOFs). And we also propose a real-time 3D fist tracking algorithm, which is based on stereo vision and Bayesian network. Finally, a flying game is used to test our interface.

  2. Vision based error detection for 3D printing processes

    Directory of Open Access Journals (Sweden)

    Baumann Felix

    2016-01-01

    Full Text Available 3D printers became more popular in the last decade, partly because of the expiration of key patents and the supply of affordable machines. The origin is located in rapid prototyping. With Additive Manufacturing (AM it is possible to create physical objects from 3D model data by layer wise addition of material. Besides professional use for prototyping and low volume manufacturing they are becoming widespread amongst end users starting with the so called Maker Movement. The most prevalent type of consumer grade 3D printers is Fused Deposition Modelling (FDM, also Fused Filament Fabrication FFF. This work focuses on FDM machinery because of their widespread occurrence and large number of open problems like precision and failure. These 3D printers can fail to print objects at a statistical rate depending on the manufacturer and model of the printer. Failures can occur due to misalignment of the print-bed, the print-head, slippage of the motors, warping of the printed material, lack of adhesion or other reasons. The goal of this research is to provide an environment in which these failures can be detected automatically. Direct supervision is inhibited by the recommended placement of FDM printers in separate rooms away from the user due to ventilation issues. The inability to oversee the printing process leads to late or omitted detection of failures. Rejects effect material waste and wasted time thus lowering the utilization of printing resources. Our approach consists of a camera based error detection mechanism that provides a web based interface for remote supervision and early failure detection. Early failure detection can lead to reduced time spent on broken prints, less material wasted and in some cases salvaged objects.

  3. An automatic 3D reconstruction system based on binocular vision measurement

    Science.gov (United States)

    Liu, Shuangyin; Wang, Zhenwei; Fan, Fang

    2017-10-01

    With the rapid development of computer vision, vision measurement and 3D reconstruction have become a hot research trend. However, it is still a problem to reconstruct the weak texture surface in engineering. In this paper, we present the systematic design and implementation of an automatic measurement system based on binocular vision. The hardware configuration of the verification platform is presented, including CCD cameras, stepper motors, laser displacement sensors and so on. Binocular-vision algorithms including camera calibration, feature extraction, stereo match and 3D reconstruction are prompted to reconstruct the weak texture surface. An experiment demonstrates the effectiveness and feasibility of this platform.

  4. A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system

    Science.gov (United States)

    Ge, Zhuo; Zhu, Ying; Liang, Guanhao

    2017-01-01

    To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.

  5. Sketch on dynamic gesture tracking and analysis exploiting vision-based 3D interface

    Science.gov (United States)

    Woo, Woontack; Kim, Namgyu; Wong, Karen; Tadenuma, Makoto

    2000-12-01

    In this paper, we propose a vision-based 3D interface exploiting invisible 3D boxes, arranged in the personal space (i.e. reachable space by the body without traveling), which allows robust yet simple dynamic gesture tracking and analysis, without exploiting complicated sensor-based motion tracking systems. Vision-based gesture tracking and analysis is still a challenging problem, even though we have witnessed rapid advances in computer vision over the last few decades. The proposed framework consists of three main parts, i.e. (1) object segmentation without bluescreen and 3D box initialization with depth information, (2) movement tracking by observing how the body passes through the 3D boxes in the personal space and (3) movement feature extraction based on Laban's Effort theory and movement analysis by mapping features to meaningful symbols using time-delay neural networks. Obviously, exploiting depth information using multiview images improves the performance of gesture analysis by reducing the errors introduced by simple 2D interfaces In addition, the proposed box-based 3D interface lessens the difficulties in both tracking movement in 3D space and in extracting low-level features of the movement. Furthermore, the time-delay neural networks lessens the difficulties in movement analysis by training. Due to its simplicity and robustness, the framework will provide interactive systems, such as ATR I-cubed Tangible Music System or ATR Interactive Dance system, with improved quality of the 3D interface. The proposed simple framework also can be extended to other applications requiring dynamic gesture tracking and analysis on the fly.

  6. Development of 3D online contact measurement system for intelligent manufacturing based on stereo vision

    Science.gov (United States)

    Li, Peng; Chong, Wenyan; Ma, Yongjun

    2017-10-01

    In order to avoid shortcomings of low efficiency and restricted measuring range exsited in traditional 3D on-line contact measurement method for workpiece size, the development of a novel 3D contact measurement system is introduced, which is designed for intelligent manufacturing based on stereo vision. The developed contact measurement system is characterized with an intergarted use of a handy probe, a binocular stereo vision system, and advanced measurement software.The handy probe consists of six track markers, a touch probe and the associated elcetronics. In the process of contact measurement, the hand probe can be located by the use of the stereo vision system and track markers, and 3D coordinates of a space point on the workpiece can be mearsured by calculating the tip position of a touch probe. With the flexibility of the hand probe, the orientation, range, density of the 3D contact measurenent can be adptable to different needs. Applications of the developed contact measurement system to high-precision measurement and rapid surface digitization are experimentally demonstrated.

  7. Vision-based endoscope tracking for 3D ultrasound image-guided surgical navigation.

    Science.gov (United States)

    Yang, L; Wang, J; Ando, T; Kubota, A; Yamashita, H; Sakuma, I; Chiba, T; Kobayashi, E

    2015-03-01

    This work introduces a self-contained framework for endoscopic camera tracking by combining 3D ultrasonography with endoscopy. The approach can be readily incorporated into surgical workflows without installing external tracking devices. By fusing the ultrasound-constructed scene geometry with endoscopic vision, this integrated approach addresses issues related to initialization, scale ambiguity, and interest point inadequacy that may be faced by conventional vision-based approaches when applied to fetoscopic procedures. Vision-based pose estimations were demonstrated by phantom and ex vivo monkey placenta imaging. The potential contribution of this method may extend beyond fetoscopic procedures to include general augmented reality applications in minimally invasive procedures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Robust object tracking techniques for vision-based 3D motion analysis applications

    Science.gov (United States)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  9. 3D Vision Based Landing Control of a Small Scale Autonomous Helicopter

    Directory of Open Access Journals (Sweden)

    Zhenyu Yu

    2008-11-01

    Full Text Available Autonomous landing is a challenging but important task for Unmanned Aerial Vehicles (UAV to achieve high level of autonomy. The fundamental requirement for landing is the knowledge of the height above the ground, and a properly designed controller to govern the process. This paper presents our research results in the study of landing an autonomous helicopter. The abovetheground height sensing is based on a 3D vision system. We have designed a simple planefitting method for estimating the height over the ground. The method enables vibration free measurement with the camera rigidly attached on the helicopter without using complicated gimbal or active vision mechanism. The estimated height is used by the landing control loop. Considering the ground effect during landing, we have proposed a twostage landing procedure. Two controllers are designed for the two landing stages respectively. The sensing approach and control strategy has been verified in field flight test and has demonstrated satisfactory performance.

  10. Ground truth evaluation of computer vision based 3D reconstruction of synthesized and real plant images

    DEFF Research Database (Denmark)

    Nielsen, Michael; Andersen, Hans Jørgen; Slaughter, David

    2007-01-01

    There is an increasing interest in using 3D computer vision in precision agriculture. This calls for better quantitative evaluation and understanding of computer vision methods. This paper proposes a test framework using ray traced crop scenes that allows in-depth analysis of algorithm performance...

  11. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.

    Science.gov (United States)

    Ka, Hyun W; Chung, Cheng-Shiu; Ding, Dan; James, Khara; Cooper, Rory

    2017-03-22

    We developed a 3D vision-based semi-autonomous control interface for assistive robotic manipulators. It was implemented based on one of the most popular commercially available assistive robotic manipulator combined with a low-cost depth-sensing camera mounted on the robot base. To perform a manipulation task with the 3D vision-based semi-autonomous control interface, a user starts operating with a manual control method available to him/her. When detecting objects within a set range, the control interface automatically stops the robot, and provides the user with possible manipulation options through audible text output, based on the detected object characteristics. Then, the system waits until the user states a voice command. Once the user command is given, the control interface drives the robot autonomously until the given command is completed. In the empirical evaluations conducted with human subjects from two different groups, it was shown that the semi-autonomous control can be used as an alternative control method to enable individuals with impaired motor control to more efficiently operate the robot arms by facilitating their fine motion control. The advantage of semi-autonomous control was not so obvious for the simple tasks. But, for the relatively complex real-life tasks, the 3D vision-based semi-autonomous control showed significantly faster performance. Implications for Rehabilitation A 3D vision-based semi-autonomous control interface will improve clinical practice by providing an alternative control method that is less demanding physically as well cognitively. A 3D vision-based semi-autonomous control provides the user with task specific intelligent semiautonomous manipulation assistances. A 3D vision-based semi-autonomous control gives the user the feeling that he or she is still in control at any moment. A 3D vision-based semi-autonomous control is compatible with different types of new and existing manual control methods for ARMs.

  12. 3D Vision Based Landing Control of a Small Scale Autonomous Helicopter

    Directory of Open Access Journals (Sweden)

    Zhenyu Yu

    2007-03-01

    Full Text Available Autonomous landing is a challenging but important task for Unmanned Aerial Vehicles (UAV to achieve high level of autonomy. The fundamental requirement for landing is the knowledge of the height above the ground, and a properly designed controller to govern the process. This paper presents our research results in the study of landing an autonomous helicopter. The above-the-ground height sensing is based on a 3D vision system. We have designed a simple plane-fitting method for estimating the height over the ground. The method enables vibration free measurement with the camera rigidly attached on the helicopter without using complicated gimbal or active vision mechanism. The estimated height is used by the landing control loop. Considering the ground effect during landing, we have proposed a two-stage landing procedure. Two controllers are designed for the two landing stages respectively. The sensing approach and control strategy has been verified in field flight test and has demonstrated satisfactory performance.

  13. Robust Stereo-Vision Based 3D Object Reconstruction for the Assistive Robot FRIEND

    Directory of Open Access Journals (Sweden)

    COJBASIC, Z.

    2011-11-01

    Full Text Available A key requirement of assistive robot vision is the robust 3D object reconstruction in complex environments for reliable autonomous object manipulation. In this paper the idea is presented of achieving high robustness of a complete robot vision system against external influences such as variable illumination by including feedback control of the object segmentation in stereo images. The approach used is to change the segmentation parameters in closed-loop so that object features extraction is driven to a desired result. Reliable feature extraction is necessary to fully exploit a neuro-fuzzy classifier which is the core of the proposed 2D object recognition method, predecessor of 3D object reconstruction. Experimental results on the rehabilitation assistive robotic system FRIEND demonstrate the effectiveness of the proposed method.

  14. Real-time drogue recognition and 3D locating for UAV autonomous aerial refueling based on monocular machine vision

    OpenAIRE

    Wang Xufeng; Kong Xingwei; Zhi Jianhui; Chen Yong; Dong Xinmin

    2015-01-01

    Drogue recognition and 3D locating is a key problem during the docking phase of the autonomous aerial refueling (AAR). To solve this problem, a novel and effective method based on monocular vision is presented in this paper. Firstly, by employing computer vision with red-ring-shape feature, a drogue detection and recognition algorithm is proposed to guarantee safety and ensure the robustness to the drogue diversity and the changes in environmental conditions, without using a set of infrared l...

  15. Research on 3D reconstruction measurement and parameter of cavitation bubble based on stereo vision

    Science.gov (United States)

    Li, Shengyong; Ai, Xiaochuan; Wu, Ronghua; Cao, Jing

    2017-02-01

    The problems caused by the cavitation bubble and caused many adverse effects on the ship propeller, hydraulic machinery and equipment. In order to research the production mechanism of cavitation bubble under different conditions, cavitation bubble zone parameter fine measurement and analysis technology is indispensable, this paper adopts a non-contact measurement method of optical autonomous construction of binocular stereo vision measurement system according to the characteristics of cavitation bubble, the texture features are not clear, transparent and difficult to obtain, 3D imaging measurement of cavitation bubble using composite dynamic lighting, and 3D reconstruction of cavitation bubble region and obtained the characteristics of more accurate parameters, test results show that the cavitation bubble characteristics of the fine technology can obtain and analyze cavitation bubble region and instability.

  16. Stereo 3-D Vision in Teaching Physics

    Science.gov (United States)

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  17. Precision calibration method for binocular vision measurement systems based on arbitrary translations and 3D-connection information

    Science.gov (United States)

    Yang, Jinghao; Jia, Zhenyuan; Liu, Wei; Fan, Chaonan; Xu, Pengtao; Wang, Fuji; Liu, Yang

    2016-10-01

    Binocular vision systems play an important role in computer vision, and high-precision system calibration is a necessary and indispensable process. In this paper, an improved calibration method for binocular stereo vision measurement systems based on arbitrary translations and 3D-connection information is proposed. First, a new method for calibrating the intrinsic parameters of binocular vision system based on two translations with an arbitrary angle difference is presented, which reduces the effect of the deviation of the motion actuator on calibration accuracy. This method is simpler and more accurate than existing active-vision calibration methods and can provide a better initial value for the determination of extrinsic parameters. Second, a 3D-connection calibration and optimization method is developed that links the information of the calibration target in different positions, further improving the accuracy of the system calibration. Calibration experiments show that the calibration error can be reduced to 0.09%, outperforming traditional methods for the experiments of this study.

  18. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    Science.gov (United States)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  19. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.

    Science.gov (United States)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-12

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  20. Real-time drogue recognition and 3D locating for UAV autonomous aerial refueling based on monocular machine vision

    Directory of Open Access Journals (Sweden)

    Wang Xufeng

    2015-12-01

    Full Text Available Drogue recognition and 3D locating is a key problem during the docking phase of the autonomous aerial refueling (AAR. To solve this problem, a novel and effective method based on monocular vision is presented in this paper. Firstly, by employing computer vision with red-ring-shape feature, a drogue detection and recognition algorithm is proposed to guarantee safety and ensure the robustness to the drogue diversity and the changes in environmental conditions, without using a set of infrared light emitting diodes (LEDs on the parachute part of the drogue. Secondly, considering camera lens distortion, a monocular vision measurement algorithm for drogue 3D locating is designed to ensure the accuracy and real-time performance of the system, with the drogue attitude provided. Finally, experiments are conducted to demonstrate the effectiveness of the proposed method. Experimental results show the performances of the entire system in contrast with other methods, which validates that the proposed method can recognize and locate the drogue three dimensionally, rapidly and precisely.

  1. Field calibration of binocular stereo vision based on fast reconstruction of 3D control field

    Science.gov (United States)

    Zhang, Haijun; Liu, Changjie; Fu, Luhua; Guo, Yin

    2015-08-01

    Construction of high-speed railway in China has entered a period of rapid growth. To accurately and quickly obtain the dynamic envelope curve of high-speed vehicle is an important guarantee for safe driving. The measuring system is based on binocular stereo vision. Considering the difficulties in field calibration such as environmental changes and time limits, carried out a field calibration method based on fast reconstruction of three-dimensional control field. With the rapid assembly of pre-calibrated three-dimensional control field, whose coordinate accuracy is guaranteed by manufacture accuracy and calibrated by V-STARS, two cameras take a quick shot of it at the same time. The field calibration parameters are then solved by the method combining linear solution with nonlinear optimization. Experimental results showed that the measurement accuracy can reach up to +/- 0.5mm, and more importantly, in the premise of guaranteeing accuracy, the speed of the calibration and the portability of the devices have been improved considerably.

  2. Microvision system (MVS): a 3D computer graphic-based microrobot telemanipulation and position feedback by vision

    Science.gov (United States)

    Sulzmann, Armin; Breguet, Jean-Marc; Jacot, Jacques

    1995-12-01

    The aim of our project is to control the position in 3D-space of a micro robot with sub micron accuracy and manipulate Microsystems aided by a real time 3D computer graphics (virtual reality). As Microsystems and micro structures become smaller, it is necessary to build a micro robot ((mu) -robot) capable of manipulating these systems and structures with a precision of 1 micrometers or even higher. These movements have to be controlled and guided. The first part of our project was to develop a real time 3D computer graphics (virtual reality) environment man-machine interface to guide the newly developed robot similar to the environment we built in a macroscopic robotics. Secondly we want to evaluate measurement techniques to verify its position in the region of interest (workspace). A new type of microrobot has been developed for our purposed. Its simple and compact design is believed to be of promise in the microrobotics field. Stepping motion allows speed up to 4 mm/s. Resolution smaller than 10 nm is achievable. We also focus on the vision system and on the virtual reality interface of the complex system. Basically the user interacts with the virtual 3D microscope and sees the (mu) -robot as if he is looking through a real microscope. He is able to simulate the assembly of the missing parts, e.g. parts of the micrometer, beforehand in order to verify the assembly manipulation steps such assembly of the missing parts, e.g. parts of a micromotor, beforehand in order to verify the assembly manipulation steps such as measuring, moving the table to the right position or performing the manipulation. Micro manipulation is form of a teleoperation is then performed by the robot-unit and the position is controlled by vision. First results have shown, that a guided manipulations with submicronics absolute accuracy can be achieved. Key idea of this approach is to use the intuitiveness of immersed vision to perform robotics tasks in an environment where human has only access

  3. Development of a system based on 3D vision, interactive virtual environments, ergonometric signals and a humanoid for stroke rehabilitation.

    Science.gov (United States)

    Ibarra Zannatha, Juan Manuel; Tamayo, Alejandro Justo Malo; Sánchez, Angel David Gómez; Delgado, Jorge Enrique Lavín; Cheu, Luis Eduardo Rodríguez; Arévalo, Wilson Alexander Sierra

    2013-11-01

    This paper presents a stroke rehabilitation (SR) system for the upper limbs, developed as an interactive virtual environment (IVE) based on a commercial 3D vision system (a Microsoft Kinect), a humanoid robot (an Aldebaran's Nao), and devices producing ergonometric signals. In one environment, the rehabilitation routines, developed by specialists, are presented to the patient simultaneously by the humanoid and an avatar inside the IVE. The patient follows the rehabilitation task, while his avatar copies his gestures that are captured by the Kinect 3D vision system. The information of the patient movements, together with the signals obtained from the ergonometric measurement devices, is used also to supervise and to evaluate the rehabilitation progress. The IVE can also present an RGB image of the patient. In another environment, that uses the same base elements, four game routines--Touch the balls 1 and 2, Simon says, and Follow the point--are used for rehabilitation. These environments are designed to create a positive influence in the rehabilitation process, reduce costs, and engage the patient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. 3D pose estimation of large and complicated workpieces based on binocular stereo vision.

    Science.gov (United States)

    Luo, Zhifeng; Zhang, Ke; Wang, Zhigang; Zheng, Jian; Chen, Yixin

    2017-08-20

    A binocular stereo vision method is proposed for automatically locating the position and posture of workpieces, which is especially important when processing large, complicated structures, for example, the laser hardening and laser cladding of automotive die. First, a binocular stereo vision positioning system was designed and modeled, from which a method of background subtraction was proposed to extract the edge line of the foreground area. Furthermore, the intersection point of the workpiece contour line was taken as the characteristic point of the workpiece, and an algorithm that combines epipolar constraint with gray value similarity was proposed to quickly and accurately realize the feature points matching. Finally, experiments show that the workpiece can be positioned accurately, and that the precision of position recognition could be controlled within ±0.5  mm when the camera was 1 m away from the workpiece, meeting the requirement of robot processing.

  5. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    localization issues of 2D thermal image-based inspection, a new computer vision-based method is presented for automated 3D spatio-thermal modeling of building environments from images and localizing the thermal images into the 3D reconstructed scenes, which helps better characterize the as-is condition of existing buildings in 3D. By using these models, auditors can conduct virtual walk-through in buildings and explore the as-is condition of building geometry and the associated thermal conditions in 3D. Second, to address the challenges in qualitative and subjective interpretation of visual data, a new model-based method is presented to convert the 3D thermal profiles of building environments into their associated energy performance metrics. More specifically, the Energy Performance Augmented Reality (EPAR) models are formed which integrate the actual 3D spatio-thermal models ('as-is') with energy performance benchmarks ('as-designed') in 3D. In the EPAR models, the presence and location of potential energy problems in building environments are inferred based on performance deviations. The as-is thermal resistances of the building assemblies are also calculated at the level of mesh vertex in 3D. Then, based on the historical weather data reflecting energy load for space conditioning, the amount of heat transfer that can be saved by improving the as-is thermal resistances of the defective areas to the recommended level is calculated, and the equivalent energy cost for this saving is estimated. The outcome provides building practitioners with unique information that can facilitate energy efficient retrofit decision-makings. This is a major departure from offhand calculations that are based on historical cost data of industry best practices. Finally, to improve the reliability of BIM-based energy performance modeling and analysis for existing buildings, a new model-based automated method is presented to map actual thermal resistance measurements at the level of 3D vertexes to the

  6. Automatic Plant Annotation Using 3D Computer Vision

    DEFF Research Database (Denmark)

    Nielsen, Michael

    than using existing methods. In order to allow for spectral reflection sampling at designated spots on the plants it was necessary to find tips and bases of each leaf. The results were promising but could be refined using knowledge about surface normals. 2D computer vision research has been done...... in active shape modeling of weeds for weed detection. Occlusion and overlapping leaves were main problems for this kind of work. Using 3D computer vision it was possible to separate overlapping crop leaves from weed leaves using the 3D information from the disparity maps. The results of the 3D...... reconstruction in occluded areas. The trinocular setup was used for both window correlation based and energy minimization based algorithms. A novel adaption of symmetric multiple windows algorithm with trinocular vision was developed. The results were promising and allowed for better disparity estimations...

  7. Handbook of 3D machine vision optical metrology and imaging

    CERN Document Server

    Zhang, Song

    2013-01-01

    With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, Handbook of 3D Machine Vision: Optical Metrology and Imaging gives an extensive, in-depth look at the most popular 3D imaging techniques. It focuses on noninvasive, noncontact optical methods (optical metrology and imaging). The handbook begins with the well-studied method of stereo vision and

  8. Improving automated 3D reconstruction methods via vision metrology

    Science.gov (United States)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  9. 3D vision system for intelligent milking robot automation

    Science.gov (United States)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  10. Evaluation of vision training using 3D play game

    Science.gov (United States)

    Kim, Jung-Ho; Kwon, Soon-Chul; Son, Kwang-Chul; Lee, Seung-Hyun

    2015-03-01

    The present study aimed to examine the effect of the vision training, which is a benefit of watching 3D video images (3D video shooting game in this study), focusing on its accommodative facility and vergence facility. Both facilities, which are the scales used to measure human visual performance, are very important factors for man in leading comfortable and easy life. This study was conducted on 30 participants in their 20s through 30s (19 males and 11 females at 24.53 ± 2.94 years), who can watch 3D video images and play 3D game. Their accommodative and vergence facility were measured before and after they watched 2D and 3D game. It turned out that their accommodative facility improved after they played both 2D and 3D games and more improved right after they played 3D game than 2D game. Likewise, their vergence facility was proved to improve after they played both 2D and 3D games and more improved soon after they played 3D game than 2D game. In addition, it was demonstrated that their accommodative facility improved to greater extent than their vergence facility. While studies have been so far conducted on the adverse effects of 3D contents, from the perspective of human factor, on the imbalance of visual accommodation and convergence, the present study is expected to broaden the applicable scope of 3D contents by utilizing the visual benefit of 3D contents for vision training.

  11. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  12. An FPGA Implementation of a Robot Control System with an Integrated 3D Vision System

    National Research Council Canada - National Science Library

    Yi-Ting Chen; Ching-Long Shih; Guan-Ting Chen

    2015-01-01

    .... Position-based visual servo is a technique for vision-based robot control, which operates in the 3D workspace, uses real-time image processing to perform tasks of feature extraction, and returns...

  13. Glass Vision 3D: Digital Discovery for the Deaf

    Science.gov (United States)

    Parton, Becky Sue

    2017-01-01

    Glass Vision 3D was a grant-funded project focused on developing and researching a Google Glass app that would allowed young Deaf children to look at the QR code of an object in the classroom and see an augmented reality projection that displays an American Sign Language (ASL) related video. Twenty five objects and videos were prepared and tested…

  14. 3D Vision on Mars: Stereo processing and visualizations for NASA and ESA rover missions

    Science.gov (United States)

    Huber, Ben

    2016-07-01

    Three dimensional (3D) vision processing is an essential component of planetary rover mission planning and scientific data analysis. Standard ground vision processing products are digital terrain maps, panoramas, and virtual views of the environment. Such processing is currently developed for the PanCam instrument of ESA's ExoMars Rover mission by the PanCam 3D Vision Team under JOANNEUM RESEARCH coordination. Camera calibration, quality estimation of the expected results and the interfaces to other mission elements such as operations planning, rover navigation system and global Mars mapping are a specific focus of the current work. The main goals of the 3D Vision team in this context are: instrument design support & calibration processing: Development of 3D vision functionality Visualization: development of a 3D visualization tool for scientific data analysis. 3D reconstructions from stereo image data during the mission Support for 3D scientific exploitation to characterize the overall landscape geomorphology, processes, and the nature of the geologic record using the reconstructed 3D models. The developed processing framework PRoViP establishes an extensible framework for 3D vision processing in planetary robotic missions. Examples of processing products and capabilities are: Digital Terrain Models, Ortho images, 3D meshes, occlusion, solar illumination-, slope-, roughness-, and hazard-maps. Another important processing capability is the fusion of rover and orbiter based images with the support of multiple missions and sensors (e.g. MSL Mastcam stereo processing). For 3D visualization a tool called PRo3D has been developed to analyze and directly interpret digital outcrop models. Stereo image products derived from Mars rover data can be rendered in PRo3D, enabling the user to zoom, rotate and translate the generated 3D outcrop models. Interpretations can be digitized directly onto the 3D surface, and simple measurements of the outcrop and sedimentary features

  15. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    Science.gov (United States)

    Ilyas, Ismet P.

    2013-06-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  16. ACCURACY OF A 3D VISION SYSTEM FOR INSPECTION

    DEFF Research Database (Denmark)

    Carmignato, Simone; Savio, Enrico; De Chiffre, Leonardo

    2003-01-01

    ABSTRACT. This paper illustrates an experimental method to assess the accuracy of a three-dimensional (3D) vision system for the inspection of complex geometry. The aim is to provide a procedure to evaluate task related measurement uncertainty for virtually any measurement task. The key element...... for the purpose to establish traceability. Accuracy performances of optical digitisation systems are assessed on the basis of deviations existing between acquired cloud points and the CMM measurements. To demonstrate the feasibility of the proposed method, the procedure is applied to an industrial case study....

  17. Computer Vision Tools for 3D Modelling in Archaeology

    OpenAIRE

    Lo Brutto, M.; Meli, P.

    2013-01-01

    In archaeological Cultural Heritage study 3D modelling has become a very useful process to obtain indispensable data for documentation and visualization. Nowadays the continuous request to achieve photorealistic 3D models has led to testing different techniques and methodologies to speed up both data acquisition and the data processing phase. There are many examples of surveys conducted with the use of range-based and image-based techniques, but, in the last few years, the scientific research...

  18. An FPGA Implementation of a Robot Control System with an Integrated 3D Vision System

    Directory of Open Access Journals (Sweden)

    Yi-Ting Chen

    2015-05-01

    Full Text Available Robot decision making and motion control are commonly based on visual information in various applications. Position-based visual servo is a technique for vision-based robot control, which operates in the 3D workspace, uses real-time image processing to perform tasks of feature extraction, and returns the pose of the object for positioning control. In order to handle the computational burden at the vision sensor feedback, we design a FPGA-based motion-vision integrated system that employs dedicated hardware circuits for processing vision processing and motion control functions. This research conducts a preliminary study to explore the integration of 3D vision and robot motion control system design based on a single field programmable gate array (FPGA chip. The implemented motion-vision embedded system performs the following functions: filtering, image statistics, binary morphology, binary object analysis, object 3D position calculation, robot inverse kinematics, velocity profile generation, feedback counting, and multiple-axes position feedback control.

  19. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  20. Enhanced 3D face processing using an active vision system

    DEFF Research Database (Denmark)

    Lidegaard, Morten; Larsen, Rasmus; Kraft, Dirk

    2014-01-01

    We present an active face processing system based on 3D shape information extracted by means of stereo information. We use two sets of stereo cameras with different field of views (FOV): One with a wide FOV is used for face tracking, while the other with a narrow FOV is used for face identification...

  1. 3D Temperature Distribution Model Based on Thermal Infrared Image

    Directory of Open Access Journals (Sweden)

    Tong Jia

    2017-01-01

    Full Text Available This paper aims to study the construction of 3D temperature distribution reconstruction system based on binocular vision technology. Initially, a traditional calibration method cannot be directly used, because the thermal infrared camera is only sensitive to temperature. Therefore, the thermal infrared camera is calibrated separately. Belief propagation algorithm is also investigated and its smooth model is improved in terms of stereo matching to optimize mismatching rate. Finally, the 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model and has strong robustness.

  2. Inspection of microchip mounting tolerances by 3D vision

    Science.gov (United States)

    Behler, Stefan; von Arx, Martin

    2008-02-01

    We have designed and tested a 3D vision system for measuring microchip surface heights relative to a substrate. The microchip is mounted with an adhesive to the substrate. The goal is to check the thickness of the adhesive layer between microchip and substrate before it is encapsuled by a plastic mold compound. This thickness has a significant influence on the reliability and electrical performance of the microchip. The system consists of one camera, a telecentric lens and three semi-transparent mirrors (beamsplitters). Reference patterns on the microchip and the substrate are imaged and illuminated from opposite 45° angles. This yields sets of coordinates which are used to extract the orientation of the chip relative to the substrate. We found that the vertical resolution of the system is greatly influenced by the setup of the image processing system. In principle, the reference patterns are identical for all chips and substrates of a production lot. Thus, the reference needs to be learned only once on a particular chip. With this setup we achieved a resolution of 2 micrometer. On the other hand, if the reference pattern is learned for each chip individually, we achieved a higher resolution of 1 micrometer. However, learning the pattern for each chip individually is time-consuming and may not be applicable for an on-line production inspection system with 2 - 3 chips per second.

  3. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  4. 3D vision accelerates laparoscopic proficiency and skills are transferable to 2D conditions

    DEFF Research Database (Denmark)

    Sørensen, Stine Maya Dreier; Konge, Lars; Bjerrum, Flemming

    2017-01-01

    BACKGROUND: Laparoscopy is difficult to master, in part because surgeons operate in a three-dimensional (3D) space guided by two-dimensional (2D) images. This trial explores the effect of 3D vision during a laparoscopic training program, and examine whether it is possible to transfer skills acqui...... simulator. Furthermore, skills learned with 3D vision can be transferred to 2D vision conditions. Clinicaltrials.gov (NCT02361463)....

  5. Random-Profiles-Based 3D Face Recognition System

    Directory of Open Access Journals (Sweden)

    Joongrock Kim

    2014-03-01

    Full Text Available In this paper, a noble nonintrusive three-dimensional (3D face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation.

  6. 3-D Signal Processing in a Computer Vision System

    Science.gov (United States)

    Dongping Zhu; Richard W. Conners; Philip A. Araman

    1991-01-01

    This paper discusses the problem of 3-dimensional image filtering in a computer vision system that would locate and identify internal structural failure. In particular, a 2-dimensional adaptive filter proposed by Unser has been extended to 3-dimension. In conjunction with segmentation and labeling, the new filter has been used in the computer vision system to...

  7. Application of 3DHiVision: a system with a new 3D HD renderer

    Science.gov (United States)

    Sun, Peter; Nagata, Shojiro

    2006-02-01

    This paper discusses about some technology breakthroughs to help solve the difficulties that have been clogging the popularity of 3D Stereo. We name this 3DHiVision (3DHV) System Solution. With the advance in technology, modern projection systems and stereo LCD panels have made it possible for a lot more people to enjoy a 3D stereo video experience in a broader range of applications. However, the key limitations to more mainstream applications of 3D video have been the availability of 3D contents and the cost and the complexity of 3D video production, content management and playback systems. With the easy availability of the modern PC based video production tools, advance in the technology of the projection systems and the great interest highly increased in 3D applications, the 3D video industry still remains stagnant and restricted within a small scale. It is because the amount of the cost for the production and playback of high quality 3D video has always been to such an extent that it challenges the limitations of our imagination. Great as these difficulties seem to be, we have surmounted them all and created a complete end-to-end 3DHiVision (3DHV for short) Video system based on an embedded PC platform, which significantly reduces the cost and complexity of creating museum quality 3D video. With this achievement, professional film makers and amateurs as well will be able to easily create, distribute and playback 3D video contents. The HD-Renderer is the central component in our 3DHV solution line. It is a highly efficient software capable of decrypting, decoding, dynamically parallax adjusting and rendering HD video contents up to 1920x1080x2x30p in real-time on an embedded PC (for theaters) or any other home PC (for main stream) with the 3.0GHz P4 CPU / GeForce6600GT GPU hardware requirements or above. And the 1280x720x2x30p contents can be performed with great ease on a notebook with 1.7GHz P4Mobile CPU / GeForce6200 GPU at the time when this paper is written.

  8. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  9. Inverse problems in vision and 3D tomography

    CERN Document Server

    Mohamad-Djafari, Ali

    2013-01-01

    The concept of an inverse problem is a familiar one to most scientists and engineers, particularly in the field of signal and image processing, imaging systems (medical, geophysical, industrial non-destructive testing, etc.) and computer vision. In imaging systems, the aim is not just to estimate unobserved images, but also their geometric characteristics from observed quantities that are linked to these unobserved quantities through the forward problem. This book focuses on imagery and vision problems that can be clearly written in terms of an inverse problem where an estimate for the image a

  10. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision

    OpenAIRE

    Cao, Yongqiang; Grossberg, Stephen

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision ...

  11. Omnidirectional vision systems calibration, feature extraction and 3D information

    CERN Document Server

    Puig, Luis

    2013-01-01

    This work focuses on central catadioptric systems, from the early step of calibration to high-level tasks such as 3D information retrieval. The book opens with a thorough introduction to the sphere camera model, along with an analysis of the relation between this model and actual central catadioptric systems. Then, a new approach to calibrate any single-viewpoint catadioptric camera is described.  This is followed by an analysis of existing methods for calibrating central omnivision systems, and a detailed examination of hybrid two-view relations that combine images acquired with uncalibrated

  12. Image based 3D city modeling : Comparative study

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  13. Toward 3D reconstruction of outdoor scenes using an MMW radar and a monocular vision sensor.

    Science.gov (United States)

    Natour, Ghina El; Ait-Aider, Omar; Rouveure, Raphael; Berry, François; Faure, Patrice

    2015-10-14

    In this paper, we introduce a geometric method for 3D reconstruction of the exterior environment using a panoramic microwave radar and a camera. We rely on the complementarity of these two sensors considering the robustness to the environmental conditions and depth detection ability of the radar, on the one hand, and the high spatial resolution of a vision sensor, on the other. Firstly, geometric modeling of each sensor and of the entire system is presented. Secondly, we address the global calibration problem, which consists of finding the exact transformation between the sensors' coordinate systems. Two implementation methods are proposed and compared, based on the optimization of a non-linear criterion obtained from a set of radar-to-image target correspondences. Unlike existing methods, no special configuration of the 3D points is required for calibration. This makes the methods flexible and easy to use by a non-expert operator. Finally, we present a very simple, yet robust 3D reconstruction method based on the sensors' geometry. This method enables one to reconstruct observed features in 3D using one acquisition (static sensor), which is not always met in the state of the art for outdoor scene reconstruction. The proposed methods have been validated with synthetic and real data.

  14. Toward 3D Reconstruction of Outdoor Scenes Using an MMW Radar and a Monocular Vision Sensor

    Directory of Open Access Journals (Sweden)

    Ghina El Natour

    2015-10-01

    Full Text Available In this paper, we introduce a geometric method for 3D reconstruction of the exterior environment using a panoramic microwave radar and a camera. We rely on the complementarity of these two sensors considering the robustness to the environmental conditions and depth detection ability of the radar, on the one hand, and the high spatial resolution of a vision sensor, on the other. Firstly, geometric modeling of each sensor and of the entire system is presented. Secondly, we address the global calibration problem, which consists of finding the exact transformation between the sensors’ coordinate systems. Two implementation methods are proposed and compared, based on the optimization of a non-linear criterion obtained from a set of radar-to-image target correspondences. Unlike existing methods, no special configuration of the 3D points is required for calibration. This makes the methods flexible and easy to use by a non-expert operator. Finally, we present a very simple, yet robust 3D reconstruction method based on the sensors’ geometry. This method enables one to reconstruct observed features in 3D using one acquisition (static sensor, which is not always met in the state of the art for outdoor scene reconstruction. The proposed methods have been validated with synthetic and real data.

  15. The modeling of portable 3D vision coordinate measuring system

    Science.gov (United States)

    Liu, Shugui; Huang, Fengshan; Peng, Kai

    2005-02-01

    The portable three-dimensional vision coordinate measuring system, which consists of a light pen, a CCD camera and a laptop computer, can be widely applied in most coordinate measuring fields especially on the industrial spots. On the light pen there are at least three point-shaped light sources (LEDs) acting as the measured control characteristic points and a touch trigger probe with a spherical stylus which is used to contact the point to be measured. The most important character of this system is that three light sources and the probe stylus are aligned in one line with known positions. In building and studying this measuring system, how to construct the system"s mathematical model is the most key problem called perspective of three-collinear-points problem, which is a particular case of perspective of three-points problem (P3P). On the basis of P3P and spatial analytical geometry theory, the system"s mathematical model is established in this paper. What"s more, it is verified that perspective of three-collinear-points problem has a unique solution. And the analytical equations of the measured point"s coordinates are derived by using the system"s mathematical model and the restrict condition that three light sources and the probe stylus are aligned in one line. Finally, the effectiveness of the mathematical model is confirmed by experiments.

  16. How the Venetian Blind Percept Emergesfrom the Laminar Cortical Dynamics of 3D Vision

    OpenAIRE

    Stephen eGrossberg

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model shows how identified neurons that interact in hierarchically organized laminar circuits of the visual cortex can simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in s...

  17. 3D morphology reconstruction using linear array CCD binocular stereo vision imaging system

    Science.gov (United States)

    Pan, Yu; Wang, Jinjiang

    2018-01-01

    Binocular vision imaging system, which has a small field of view, cannot reconstruct the 3-D shape of the dynamic object. We found a linear array CCD binocular vision imaging system, which uses different calibration and reconstruct methods. On the basis of the binocular vision imaging system, the linear array CCD binocular vision imaging systems which has a wider field of view can reconstruct the 3-D morphology of objects in continuous motion, and the results are accurate. This research mainly introduces the composition and principle of linear array CCD binocular vision imaging system, including the calibration, capture, matching and reconstruction of the imaging system. The system consists of two linear array cameras which were placed in special arrangements and a horizontal moving platform that can pick up objects. The internal and external parameters of the camera are obtained by calibrating in advance. And then using the camera to capture images of moving objects, the results are then matched and 3-D reconstructed. The linear array CCD binocular vision imaging systems can accurately measure the 3-D appearance of moving objects, this essay is of great significance to measure the 3-D morphology of moving objects.

  18. Virtual reality 3D headset based on DMD light modulators

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-13

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  19. Ceramic Product Forming Technologies Research Based on 3D Printing

    National Research Council Canada - National Science Library

    Zhang, Mingchun; Yang, Ling

    2016-01-01

    This paper describes two ceramic-forming technologies based on 3-D printing. One technology forms the product with 3-D printing indirectly, while the other technology forms the product directly with 3-D printing...

  20. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  1. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    Science.gov (United States)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  2. On the use of orientation filters for 3D reconstruction in event-driven stereo vision.

    Science.gov (United States)

    Camuñas-Mesa, Luis A; Serrano-Gotarredona, Teresa; Ieng, Sio H; Benosman, Ryad B; Linares-Barranco, Bernabe

    2014-01-01

    The recently developed Dynamic Vision Sensors (DVS) sense visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, therefore increasing the number of constraints applied to the matching algorithm. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction.

  3. How the Venetian Blind Percept Emergesfrom the Laminar Cortical Dynamics of 3D Vision

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2014-08-01

    Full Text Available The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model shows how identified neurons that interact in hierarchically organized laminar circuits of the visual cortex can simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. The model describes how monocular and binocular oriented filtering interacts with later stages of 3D boundary formation and surface filling-in in the lateral geniculate nucleus (LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes enables computationally complementary boundary and surface formation properties to generate a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity

  4. [Digital modeling for the individual mandibular 3D mesh scaffold based on 3D printing technology].

    Science.gov (United States)

    Yan, Rongzeng; Luo, Danmei; Qin, Xiaoyu; Li, Runxin; Rong, Qiguo; Hu, Min

    2016-05-01

    To investigate an ideal modeling method of designing 3D mesh scaffold substitutes based on tissue engineering to restore mandibular bone defects. By analyzing the theoretical model from titanium scaffolds fabricated by 3D printing, the feasibility and effectiveness of the proposed methodology were verified. Based on the CT scanned data of a subject, the Mimics 15.0 and Geomagic studio 12.0 reverse engineering software were adopted to generate surface model of mandibular bone and the defect area was separated from the 3D model of bone. Then prosthesis was designed via mirror algorithm, in which outer shape was used as the external shape of scaffold. Unigraphics software NX 8.5 was applied on Boolean calculation of subtraction between prosthesis and regular microstructure structure and ANSYS 14.0 software was used to design the inner construction of 3D mesh scaffolds. The topological structure and the geometrical parameters of 3D mesh titanium scaffolds were adjusted according to the aim of optimized structure and maximal strength with minimal weight. The 3D mesh scaffolds solid model through two kinds of computer-aided methods was input into 3D printing equipment to fabricate titanium scaffolds. Individual scaffolds were designed successfully by two modeling methods. The finite element optimization made 10% decrease of the stress peak and volume decrease of 43%, and the porosity increased to 76.32%. This modeling method was validated by 3D printing titanium scaffold to be feasible and effective. 3D printing technology combined with finite element topology optimization to obtain the ideal mandibular 3D mesh scaffold is feasible and effective.

  5. UAV and Computer Vision in 3D Modeling of Cultural Heritage in Southern Italy

    Science.gov (United States)

    Barrile, Vincenzo; Gelsomino, Vincenzo; Bilotta, Giuliana

    2017-08-01

    On the Waterfront Italo Falcomatà of Reggio Calabria you can admire the most extensive tract of the walls of the Hellenistic period of ancient city of Rhegion. The so-called Greek Walls are one of the most significant and visible traces of the past linked to the culture of Ancient Greece in the site of Reggio Calabria territory. Over the years this stretch of wall has always been a part, to the reconstruction of Reggio after the earthquake of 1783, the outer walls at all times, restored countless times, to cope with the degradation of the time and the adjustments to the technical increasingly innovative and sophisticated siege. They were the subject of several studies on history, for the study of the construction techniques and the maintenance and restoration of the same. This note describes the methodology for the implementation of a three-dimensional model of the Greek Walls conducted by the Geomatics Laboratory, belonging to DICEAM Department of University “Mediterranea” of Reggio Calabria. 3D modeling we made is based on imaging techniques, such as Digital Photogrammetry and Computer Vision, by using a drone. The acquired digital images were then processed using commercial software Agisoft PhotoScan. The results denote the goodness of the technique used in the field of cultural heritage, attractive alternative to more expensive and demanding techniques such as laser scanning.

  6. Coronary Arteries Segmentation Based on the 3D Discrete Wavelet Transform and 3D Neutrosophic Transform

    Directory of Open Access Journals (Sweden)

    Shuo-Tsung Chen

    2015-01-01

    Full Text Available Purpose. Most applications in the field of medical image processing require precise estimation. To improve the accuracy of segmentation, this study aimed to propose a novel segmentation method for coronary arteries to allow for the automatic and accurate detection of coronary pathologies. Methods. The proposed segmentation method included 2 parts. First, 3D region growing was applied to give the initial segmentation of coronary arteries. Next, the location of vessel information, HHH subband coefficients of the 3D DWT, was detected by the proposed vessel-texture discrimination algorithm. Based on the initial segmentation, 3D DWT integrated with the 3D neutrosophic transformation could accurately detect the coronary arteries. Results. Each subbranch of the segmented coronary arteries was segmented correctly by the proposed method. The obtained results are compared with those ground truth values obtained from the commercial software from GE Healthcare and the level-set method proposed by Yang et al., 2007. Results indicate that the proposed method is better in terms of efficiency analyzed. Conclusion. Based on the initial segmentation of coronary arteries obtained from 3D region growing, one-level 3D DWT and 3D neutrosophic transformation can be applied to detect coronary pathologies accurately.

  7. Proposal of custom made wrist orthoses based on 3D modelling and 3D printing.

    Science.gov (United States)

    Abreu de Souza, Mauren; Schmitz, Cristiane; Marega Pinhel, Marcelo; Palma Setti, Joao A; Nohama, Percy

    2017-07-01

    Accessibility to three-dimensional (3D) technologies, such as 3D scanning systems and additive manufacturing (like 3D printers), allows a variety of 3D applications. For medical applications in particular, these modalities are gaining a lot of attention enabling several opportunities for healthcare applications. The literature brings several cases applying both technologies, but none of them focus on the spreading of how this technology could benefit the health segment. This paper proposes a new methodology, which employs both 3D modelling and 3D printing for building orthoses, which could better fit the demands of different patients. Additionally, there is an opportunity for sharing expertise, as it represents a trendy in terms of the maker-movement. Therefore, as a result of the proposed approach, we present a case study based on a volunteer who needs an immobilization orthosis, which was built for exemplification of the whole process. This proposal also employs freely available 3D models and software, having a strong social impact. As a result, it enables the implementation and effective usability for a variety of built to fit solutions, hitching useful and smarter technologies for the healthcare sector.

  8. Approaches for a 3D assessment of pavement evenness data based on 3D vehicle models

    Directory of Open Access Journals (Sweden)

    Andreas Ueckermann

    2015-04-01

    Full Text Available Pavements are 3D in their shape. They can be captured in three dimensions by modern road mapping equipment which allows for the assessment of pavement evenness in a more holistic way as opposed to current practice which divides into longitudinal and transversal evenness. It makes sense to use 3D vehicle models to simulate the effects of 3D surface data on certain functional criteria like pavement loading, cargo loading and driving comfort. In order to evaluate the three criteria mentioned two vehicle models have been created: a passenger car used to assess driving comfort and a truck-semitrailer submodel used to assess pavement and cargo loading. The vehicle models and their application to 3D surface data are presented. The results are well in line with existing single-track (planar models. Their advantage over existing 1D/2D models is demonstrated by the example of driving comfort evaluation. Existing “geometric” limit values for the assessment of longitudinal evenness in terms of the power spectral density could be used to establish corresponding limit values for the dynamic response, i.e. driving comfort, pavement loading and cargo loading. The limit values are well in line with existing limit values based on planar vehicle models. They can be used as guidelines for the proposal of future limit values. The investigations show that the use of 3D vehicle models is an appropriate and meaningful way of assessing 3D evenness data gathered by modern road mapping systems.

  9. Morphological features of the macerated cranial bones registered by the 3D vision system for potential use in forensic anthropology.

    Science.gov (United States)

    Skrzat, Janusz; Sioma, Andrzej; Kozerska, Magdalena

    2013-01-01

    In this paper we present potential usage of the 3D vision system for registering features of the macerated cranial bones. Applied 3D vision system collects height profiles of the object surface and from that data builds a three-dimensional image of the surface. This method appeared to be accurate enough to capture anatomical details of the macerated bones. With the aid of the 3D vision system we generated images of the surface of the human calvaria which was used for testing the system. Performed reconstruction visualized the imprints of the dural vascular system, cranial sutures, and the three-layer structure of the cranial bones observed in the cross-section. We figure out that the 3D vision system may deliver data which can enhance estimation of sex from the osteological material.

  10. Fractographic classification in metallic materials by using 3D processing and computer vision techniques

    Directory of Open Access Journals (Sweden)

    Maria Ximena Bastidas-Rodríguez

    2016-09-01

    Full Text Available Failure analysis aims at collecting information about how and why a failure is produced. The first step in this process is a visual inspection on the flaw surface that will reveal the features, marks, and texture, which characterize each type of fracture. This is generally carried out by personnel with no experience that usually lack the knowledge to do it. This paper proposes a classification method for three kinds of fractures in crystalline materials: brittle, fatigue, and ductile. The method uses 3D vision, and it is expected to support failure analysis. The features used in this work were: i Haralick’s features and ii the fractal dimension. These features were applied to 3D images obtained from a confocal laser scanning microscopy Zeiss LSM 700. For the classification, we evaluated two classifiers: Artificial Neural Networks and Support Vector Machine. The performance evaluation was made by extracting four marginal relations from the confusion matrix: accuracy, sensitivity, specificity, and precision, plus three evaluation methods: Receiver Operating Characteristic space, the Individual Classification Success Index, and the Jaccard’s coefficient. Despite the classification percentage obtained by an expert is better than the one obtained with the algorithm, the algorithm achieves a classification percentage near or exceeding the 60 % accuracy for the analyzed failure modes. The results presented here provide a good approach to address future research on texture analysis using 3D data.

  11. 3D Scene Reconstruction Using Omnidirectional Vision and LiDAR: A Hybrid Approach

    Directory of Open Access Journals (Sweden)

    Michiel Vlaminck

    2016-11-01

    Full Text Available In this paper, we propose a novel approach to obtain accurate 3D reconstructions of large-scale environments by means of a mobile acquisition platform. The system incorporates a Velodyne LiDAR scanner, as well as a Point Grey Ladybug panoramic camera system. It was designed with genericity in mind, and hence, it does not make any assumption about the scene or about the sensor set-up. The main novelty of this work is that the proposed LiDAR mapping approach deals explicitly with the inhomogeneous density of point clouds produced by LiDAR scanners. To this end, we keep track of a global 3D map of the environment, which is continuously improved and refined by means of a surface reconstruction technique. Moreover, we perform surface analysis on consecutive generated point clouds in order to assure a perfect alignment with the global 3D map. In order to cope with drift, the system incorporates loop closure by determining the pose error and propagating it back in the pose graph. Our algorithm was exhaustively tested on data captured at a conference building, a university campus and an industrial site of a chemical company. Experiments demonstrate that it is capable of generating highly accurate 3D maps in very challenging environments. We can state that the average distance of corresponding point pairs between the ground truth and estimated point cloud approximates one centimeter for an area covering approximately 4000 m 2 . To prove the genericity of the system, it was tested on the well-known Kitti vision benchmark. The results show that our approach competes with state of the art methods without making any additional assumptions.

  12. Augmented reality 3D display based on integral imaging

    Science.gov (United States)

    Deng, Huan; Zhang, Han-Le; He, Min-Yang; Wang, Qiong-Hua

    2017-02-01

    Integral imaging (II) is a good candidate for augmented reality (AR) display, since it provides various physiological depth cues so that viewers can freely change the accommodation and convergence between the virtual three-dimensional (3D) images and the real-world scene without feeling any visual discomfort. We propose two AR 3D display systems based on the theory of II. In the first AR system, a micro II display unit reconstructs a micro 3D image, and the mciro-3D image is magnified by a convex lens. The lateral and depth distortions of the magnified 3D image are analyzed and resolved by the pitch scaling and depth scaling. The magnified 3D image and real 3D scene are overlapped by using a half-mirror to realize AR 3D display. The second AR system uses a micro-lens array holographic optical element (HOE) as an image combiner. The HOE is a volume holographic grating which functions as a micro-lens array for the Bragg-matched light, and as a transparent glass for Bragg mismatched light. A reference beam can reproduce a virtual 3D image from one side and a reference beam with conjugated phase can reproduce the second 3D image from other side of the micro-lens array HOE, which presents double-sided 3D display feature.

  13. Vision-based interaction

    CERN Document Server

    Turk, Matthew

    2013-01-01

    In its early years, the field of computer vision was largely motivated by researchers seeking computational models of biological vision and solutions to practical problems in manufacturing, defense, and medicine. For the past two decades or so, there has been an increasing interest in computer vision as an input modality in the context of human-computer interaction. Such vision-based interaction can endow interactive systems with visual capabilities similar to those important to human-human interaction, in order to perceive non-verbal cues and incorporate this information in applications such

  14. Inclined nanoimprinting lithography-based 3D nanofabrication

    Science.gov (United States)

    Liu, Zhan; Bucknall, David G.; Allen, Mark G.

    2011-06-01

    We report a 'top-down' 3D nanofabrication approach combining non-conventional inclined nanoimprint lithography (INIL) with reactive ion etching (RIE), contact molding and 3D metal nanotransfer printing (nTP). This integration of processes enables the production and conformal transfer of 3D polymer nanostructures of varying heights to a variety of other materials including a silicon-based substrate, a silicone stamp and a metal gold (Au) thin film. The process demonstrates the potential of reduced fabrication cost and complexity compared to existing methods. Various 3D nanostructures in technologically useful materials have been fabricated, including symmetric and asymmetric nanolines, nanocircles and nanosquares. Such 3D nanostructures have potential applications such as angle-resolved photonic crystals, plasmonic crystals and biomimicking anisotropic surfaces. This integrated INIL-based strategy shows great promise for 3D nanofabrication in the fields of photonics, plasmonics and surface tribology.

  15. DEVELOPMENT OF 3D WOVEN FABRIC BASED PRESSURE SWITCH

    NARCIS (Netherlands)

    Maqsood, Muhammad

    2015-01-01

    This paper introduces a 3D woven fabric-based approach for the development of pressure switch. A fabric substrate, being elastic and extendable is very useful in addition to its high breaking strength and low cost. The developed resistive-type switch is based on the multilayer interlock 3D fabrics.

  16. Hamming Code Based Watermarking Scheme for 3D Model Verification

    OpenAIRE

    Jen-Tse Wang; Yi-Ching Chang; Chun-Yuan Yu; Shyr-Shen Yu

    2014-01-01

    Due to the explosive growth of the Internet and maturing of 3D hardware techniques, protecting 3D objects becomes a more and more important issue. In this paper, a public hamming code based fragile watermarking technique is proposed for 3D objects verification. An adaptive watermark is generated from each cover model by using the hamming code technique. A simple least significant bit (LSB) substitution technique is employed for watermark embedding. In the extraction stage, the hamming code ba...

  17. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    Directory of Open Access Journals (Sweden)

    Shanis Barnard

    Full Text Available Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is

  18. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    Science.gov (United States)

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  19. Fish body surface data measurement based on 3D digital image correlation

    Science.gov (United States)

    Jiang, Ming; Qian, Chen; Yang, Wenkai

    2016-01-01

    To film the moving fish in the glass tank, light will be bent at the interface of air and glass, glass and water. Based on binocular stereo vision and refraction principle, we establish a mathematical model of 3D image correlation to reconstruct the 3D coordinates of samples in the water. Marking speckle in fish surface, a series of real-time speckle images of swimming fish will be obtained by two high-speed cameras, and instantaneous 3D shape, strain, displacement etc. of fish will be reconstructed.

  20. Review: Polymeric-Based 3D Printing for Tissue Engineering.

    Science.gov (United States)

    Wu, Geng-Hsi; Hsu, Shan-Hui

    Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue engineering. There are advantages and limitations for each method. Future areas of interest and progress are the development of new 3D printing platforms, scaffold design software, and materials for tissue engineering applications.

  1. NoSQL Based 3D City Model Management System

    Science.gov (United States)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  2. Surgeon-Based 3D Printing for Microvascular Bone Flaps.

    Science.gov (United States)

    Taylor, Erin M; Iorio, Matthew L

    2017-07-01

    Background  Three-dimensional (3D) printing has developed as a revolutionary technology with the capacity to design accurate physical models in preoperative planning. We present our experience in surgeon-based design of 3D models, using home 3D software and printing technology for use as an adjunct in vascularized bone transfer. Methods  Home 3D printing techniques were used in the design and execution of vascularized bone flap transfers to the upper extremity. Open source imaging software was used to convert preoperative computed tomography scans and create 3D models. These were printed in the surgeon's office as 3D models for the planned reconstruction. Vascularized bone flaps were designed intraoperatively based on the 3D printed models. Results  Three-dimensional models were created for intraoperative use in vascularized bone flaps, including (1) medial femoral trochlea (MFT) flap for scaphoid avascular necrosis and nonunion, (2) MFT flap for lunate avascular necrosis and nonunion, (3) medial femoral condyle (MFC) flap for wrist arthrodesis, and (4) free fibula osteocutaneous flap for distal radius septic nonunion. Templates based on the 3D models allowed for the precise and rapid contouring of well-vascularized bone flaps in situ, prior to ligating the donor pedicle. Conclusions  Surgeon-based 3D printing is a feasible, innovative technology that allows for the precise and rapid contouring of models that can be created in various configurations for pre- and intraoperative planning. The technology is easy to use, convenient, and highly economical as compared with traditional send-out manufacturing. Surgeon-based 3D printing is a useful adjunct in vascularized bone transfer. Level of Evidence  Level IV. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Dynamic Frames Based Generation of 3D Scenes and Applications

    Directory of Open Access Journals (Sweden)

    Danijel Radošević

    2015-05-01

    Full Text Available Modern graphic/programming tools like Unity enables the possibility of creating 3D scenes as well as making 3D scene based program applications, including full physical model, motion, sounds, lightning effects etc. This paper deals with the usage of dynamic frames based generator in the automatic generation of 3D scene and related source code. The suggested model enables the possibility to specify features of the 3D scene in a form of textual specification, as well as exporting such features from a 3D tool. This approach enables higher level of code generation flexibility and the reusability of the main code and scene artifacts in a form of textual templates. An example of the generated application is presented and discussed.

  4. 3D Printing of Carbon Nanotubes-Based Microsupercapacitors.

    Science.gov (United States)

    Yu, Wei; Zhou, Han; Li, Ben Q; Ding, Shujiang

    2017-02-08

    A novel 3D printing procedure is presented for fabricating carbon-nanotubes (CNTs)-based microsupercapacitors. The 3D printer uses a CNTs ink slurry with a moderate solid content and prints a stream of continuous droplets. Appropriate control of a heated base is applied to facilitate the solvent removal and adhesion between printed layers and to improve the structure integrity without structure delamination or distortion upon drying. The 3D-printed electrodes for microsupercapacitors are characterized by SEM, laser scanning confocal microscope, and step profiler. Effect of process parameters on 3D printing is also studied. The final solid-state microsupercapacitors are assembled with the printed multilayer CNTs structures and poly(vinyl alcohol)-H3PO4 gel as the interdigitated microelectrodes and electrolyte. The electrochemical performance of 3D printed microsupercapacitors is also tested, showing a significant areal capacitance and excellent cycle stability.

  5. Novel egg white-based 3-D cell culture system.

    Science.gov (United States)

    Kaipparettu, Benny Abraham; Kuiatse, Isere; Tak-Yee Chan, Bonita; Benny Kaipparettu, Meju; Lee, Adrian V; Oesterreich, Steffi

    2008-08-01

    Although three dimensional (3-D) cell culture systems have numerous advantages over traditional monolayer culture, the currently available 3-D cell culture media are cost-prohibitive for regular use by the majority of research laboratories. Here we show a simple system based on avian egg white that supports growth of cells in 3-D, at a significantly decreased cost. Specifically, we show that growth of immortalized human breast epithelial cells (MCF10A) in egg white-based medium results in formation of acini with hollow lumens, apoptotic clearance of the cells in the lumen, and apicobasal polarization comparable to what has been described using established 3-D culture media such as reconstituted basement membrane preparations (BM). There was no significant difference in MCF10A proliferation and acinar size between egg white and BM. We also cultured different established cell lines, oncogene-transformed MCF10A, and mouse mammary epithelial cells in egg white and BM, and observed similar morphology. In summary, our data convincingly argue that egg white can be used as a suitable alternative model for 3-D cell culture studies. We strongly believe that this simple and inexpensive method should allow researchers to perform 3-D cell culture experiments on a regular basis, and result in a dramatic increase of use of the 3-D cell culture in research. Thus, this finding lays the foundation for significantly increased, cost-effective use of 3-D cultures in cell biology.

  6. 3D Printed Graphene Based Energy Storage Devices

    Science.gov (United States)

    Foster, Christopher W.; Down, Michael P.; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J.; Smith, Graham C.; Kelly, Peter J.; Banks, Craig E.

    2017-03-01

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices’ to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (-0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (-0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.

  7. Development of a 3D Parallel Mechanism Robot Arm with Three Vertical-Axial Pneumatic Actuators Combined with a Stereo Vision System

    Directory of Open Access Journals (Sweden)

    Hao-Ting Lin

    2011-12-01

    Full Text Available This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot’s end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H∞ tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end

  8. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    Science.gov (United States)

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  9. Terahertz Quantum Cascade Laser Based 3D Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — LongWave Photonics proposes a terahertz quantum-cascade laser based swept-source optical coherence tomography (THz SS-OCT) system for single-sided, 3D,...

  10. Seeing in 3-d with just one eye: stereopsis without binocular vision.

    Science.gov (United States)

    Vishwanath, Dhanraj; Hibbard, Paul B

    2013-09-01

    Humans can perceive depth when viewing with one eye, and even when viewing a two-dimensional picture of a three-dimensional scene. However, viewing a real scene with both eyes produces a more compelling three-dimensional experience of immersive space and tangible solid objects. A widely held belief is that this qualitative visual phenomenon (stereopsis) is a by-product of binocular vision. In the research reported here, we empirically established, for the first time, the qualitative characteristics associated with stereopsis to show that they can occur for static two-dimensional pictures without binocular vision. Critically, we show that stereopsis is a measurable qualitative attribute and that its induction while viewing pictures is not consistent with standard explanations based on depth-cue conflict or the perception of greater depth magnitude. These results challenge the conventional understanding of the underlying cause, variation, and functional role of stereopsis.

  11. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  12. Ontology of a scene based on Java 3D architecture.

    Directory of Open Access Journals (Sweden)

    Rubén González Crespo

    2009-12-01

    Full Text Available The present article seeks to make an approach to the class hierarchy of a scene built with the architecture Java 3D, to develop an ontology of a scene as from the semantic essential components for the semantic structuring of the Web3D. Java was selected because the language recommended by the W3C Consortium for the Development of the Web3D oriented applications as from X3D standard is Xj3D which compositionof their Schemas is based the architecture of Java3D In first instance identifies the domain and scope of the ontology, defining classes and subclasses that comprise from Java3D architecture and the essential elements of a scene, as its point of origin, the field of rotation, translation The limitation of the scene and the definition of shaders, then define the slots that are declared in RDF as a framework for describing the properties of the classes established from identifying thedomain and range of each class, then develops composition of the OWL ontology on SWOOP Finally, be perform instantiations of the ontology building for a Iconosphere object as from class expressions defined.

  13. 3D dictionary learning based iterative cone beam CT reconstruction

    Directory of Open Access Journals (Sweden)

    Ti Bai

    2014-03-01

    Full Text Available Purpose: This work is to develop a 3D dictionary learning based cone beam CT (CBCT reconstruction algorithm on graphic processing units (GPU to improve the quality of sparse-view CBCT reconstruction with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms of 3 × 3 × 3 was trained from a large number of blocks extracted from a high quality volume image. On the basis, we utilized cholesky decomposition based orthogonal matching pursuit algorithm to find the sparse representation of each block. To accelerate the time-consuming sparse coding in the 3D case, we implemented the sparse coding in a parallel fashion by taking advantage of the tremendous computational power of GPU. Conjugate gradient least square algorithm was adopted to minimize the data fidelity term. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with tight frame (TF by performing reconstructions on a subset data of 121 projections. Results: Compared to TF based CBCT reconstruction that shows good overall performance, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, remove more streaking artifacts and also induce less blocky artifacts. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppress the noise, and hence to achieve high quality reconstruction under the case of sparse view. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application.-------------------------------Cite this article as: Bai T, Yan H, Shi F, Jia X, Lou Y, Xu Q, Jiang S, Mou X. 3D dictionary learning based iterative cone beam CT reconstruction. Int J Cancer Ther Oncol 2014; 2(2:020240. DOI: 10

  14. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    Directory of Open Access Journals (Sweden)

    Chien-Lun Hou

    2011-02-01

    Full Text Available In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.

  15. Development of a stereo vision measurement system for a 3D three-axial pneumatic parallel mechanism robot arm.

    Science.gov (United States)

    Chiang, Mao-Hsiung; Lin, Hao-Ting; Hou, Chien-Lun

    2011-01-01

    In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.

  16. 2D-3D feature association via projective transform invariants for model-based 3D pose estimation

    Science.gov (United States)

    Gedik, O. Serdar; Alatan, A. Aydin

    2012-03-01

    The three dimensional (3D) tracking of rigid objects is required in many applications, such as 3D television (3DTV) and augmented reality. Accurate and robust pose estimates enable improved structure reconstructions for 3DTV and reduce jitter in augmented reality scenarios. On the other hand, reliable 2D-3D feature association is one of the most crucial requirements for obtaining high quality 3D pose estimates. In this paper, a 2D-3D registration method, which is based on projective transform invariants, is proposed. Due to the fact that projective transform invariants are highly dependent on 2D and 3D coordinates, the proposed method relies on pose consistencies in order to increase robustness of 2D-3D association. The reliability of the approach is shown by comparisons with RANSAC, perspective factorization and SoftPOSIT based methods on real and artificial data.

  17. 3D Cadastral Data Model Based on Conformal Geometry Algebra

    Directory of Open Access Journals (Sweden)

    Ji-yi Zhang

    2016-02-01

    Full Text Available Three-dimensional (3D cadastral data models that are based on Euclidean geometry (EG are incapable of providing a unified representation of geometry and topological relations for 3D spatial units in a cadastral database. This lack of unification causes problems such as complex expression structure and inefficiency in the updating of 3D cadastral objects. The inability of current cadastral data models to express cadastral objects in a unified manner can be attributed to the different expressions of dimensional objects. Because the hierarchical Grassmann structure corresponds to the hierarchical structure of dimensions in conformal geometric algebra (CGA, geometric objects in different dimensions can be constructed by outer products in a unified expression form, which enables the direct extension of two-dimensional (2D spatial representations to 3D spatial representations. The multivector structure in CGA can be employed to organize and store different dimensional objects in a multidimensional and unified manner. With the advantages of CGA in multidimensional expressions, a new 3D cadastral data model that is based on CGA is proposed in this paper. The geometries and topological relations of 3D spatial units can be represented in a unified form within the multivector structure. Detailed methods for 3D cadastral data model design based on CGA and data organization in CGA are introduced. The new cadastral data model is tested and analyzed with experimental data. The results indicate that the geometry and topological relations of 3D cadastral objects can be represented in a multidimensional manner with an intuitive topological structure and a unified dimensional expression.

  18. AR based ornament design system for 3D printing

    Directory of Open Access Journals (Sweden)

    Hiroshi Aoki

    2015-01-01

    Full Text Available In recent years, 3D printers have become popular as a means of outputting geometries designed on CAD or 3D graphics systems. However, the complex user interfaces of standard 3D software can make it difficult for ordinary consumers to design their own objects. Furthermore, models designed on 3D graphics software often have geometrical problems that make them impossible to output on a 3D printer. We propose a novel AR (augmented reality 3D modeling system with an air-spray like interface. We also propose a new data structure (octet voxel for representing designed models in such a way that the model is guaranteed to be a complete solid. The target shape is based on a regular polyhedron, and the octet voxel representation is suitable for designing geometrical objects having the same symmetries as the base regular polyhedron. Finally, we conducted a user test and confirmed that users can intuitively design their own ornaments in a short time with a simple user interface.

  19. DCT and DST Based Image Compression for 3D Reconstruction

    Science.gov (United States)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-03-01

    This paper introduces a new method for 2D image compression whose quality is demonstrated through accurate 3D reconstruction using structured light techniques and 3D reconstruction from multiple viewpoints. The method is based on two discrete transforms: (1) A one-dimensional Discrete Cosine Transform (DCT) is applied to each row of the image. (2) The output from the previous step is transformed again by a one-dimensional Discrete Sine Transform (DST), which is applied to each column of data generating new sets of high-frequency components followed by quantization of the higher frequencies. The output is then divided into two parts where the low-frequency components are compressed by arithmetic coding and the high frequency ones by an efficient minimization encoding algorithm. At decompression stage, a binary search algorithm is used to recover the original high frequency components. The technique is demonstrated by compressing 2D images up to 99% compression ratio. The decompressed images, which include images with structured light patterns for 3D reconstruction and from multiple viewpoints, are of high perceptual quality yielding accurate 3D reconstruction. Perceptual assessment and objective quality of compression are compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results show that the proposed compression method is superior to both JPEG and JPEG2000 concerning 3D reconstruction, and with equivalent perceptual quality to JPEG2000.

  20. Gelatin-Based Hydrogels for Organ 3D Bioprinting

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2017-08-01

    Full Text Available Three-dimensional (3D bioprinting is a family of enabling technologies that can be used to manufacture human organs with predefined hierarchical structures, material constituents and physiological functions. The main objective of these technologies is to produce high-throughput and/or customized organ substitutes (or bioartificial organs with heterogeneous cell types or stem cells along with other biomaterials that are able to repair, replace or restore the defect/failure counterparts. Gelatin-based hydrogels, such as gelatin/fibrinogen, gelatin/hyaluronan and gelatin/alginate/fibrinogen, have unique features in organ 3D bioprinting technologies. This article is an overview of the intrinsic/extrinsic properties of the gelatin-based hydrogels in organ 3D bioprinting areas with advanced technologies, theories and principles. The state of the art of the physical/chemical crosslinking methods of the gelatin-based hydrogels being used to overcome the weak mechanical properties is highlighted. A multicellular model made from adipose-derived stem cell proliferation and differentiation in the predefined 3D constructs is emphasized. Multi-nozzle extrusion-based organ 3D bioprinting technologies have the distinguished potential to eventually manufacture implantable bioartificial organs for purposes such as customized organ restoration, high-throughput drug screening and metabolic syndrome model establishment.

  1. e-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design.

    Science.gov (United States)

    Pihan, Emilie; Colliandre, Lionel; Guichou, Jean-François; Douguet, Dominique

    2012-06-01

    In the drug discovery field, new uses for old drugs, selective optimization of side activities and fragment-based drug design (FBDD) have proved to be successful alternatives to high-throughput screening. e-Drug3D is a database of 3D chemical structures of drugs that provides several collections of ready-to-screen SD files of drugs and commercial drug fragments. They are natural inputs in studies dedicated to drug repurposing and FBDD. e-Drug3D collections are freely available at http://chemoinfo.ipmc.cnrs.fr/e-drug3d.html either for download or for direct in silico web-based screenings.

  2. Hamming Code Based Watermarking Scheme for 3D Model Verification

    Directory of Open Access Journals (Sweden)

    Jen-Tse Wang

    2014-01-01

    Full Text Available Due to the explosive growth of the Internet and maturing of 3D hardware techniques, protecting 3D objects becomes a more and more important issue. In this paper, a public hamming code based fragile watermarking technique is proposed for 3D objects verification. An adaptive watermark is generated from each cover model by using the hamming code technique. A simple least significant bit (LSB substitution technique is employed for watermark embedding. In the extraction stage, the hamming code based watermark can be verified by using the hamming code checking without embedding any verification information. Experimental results shows that 100% vertices of the cover model can be watermarked, extracted, and verified. It also shows that the proposed method can improve security and achieve low distortion of stego object.

  3. AN IMAGE-BASED TECHNIQUE FOR 3D BUILDING RECONSTRUCTION USING MULTI-VIEW UAV IMAGES

    OpenAIRE

    F. Alidoost; H. Arefi

    2015-01-01

    Nowadays, with the development of the urban areas, the automatic reconstruction of the buildings, as an important objects of the city complex structures, became a challenging topic in computer vision and photogrammetric researches. In this paper, the capability of multi-view Unmanned Aerial Vehicles (UAVs) images is examined to provide a 3D model of complex building façades using an efficient image-based modelling workflow. The main steps of this work include: pose estimation, point cloud gen...

  4. Design and development of a 3D cadastral prototype based on the LADM and 3D topology

    NARCIS (Netherlands)

    Ying, S.; Guo, R.; Li, L.; Van Oosterom, P.J.M.; Ledoux, H.; Stoter, J.E.

    2011-01-01

    In this paper the design and development of a prototype 3D Cadastral system will be presented. The key aspects of this system are that the model is based on Land Administration Domain Model (LADM) and that the spatial profile is based on a full 3D topological structure. The prototype development

  5. Multicore-based 3D-DWT video encoder

    Science.gov (United States)

    Galiano, Vicente; López-Granado, Otoniel; Malumbres, Manuel P.; Migallón, Hector

    2013-12-01

    Three-dimensional wavelet transform (3D-DWT) encoders are good candidates for applications like professional video editing, video surveillance, multi-spectral satellite imaging, etc. where a frame must be reconstructed as quickly as possible. In this paper, we present a new 3D-DWT video encoder based on a fast run-length coding engine. Furthermore, we present several multicore optimizations to speed-up the 3D-DWT computation. An exhaustive evaluation of the proposed encoder (3D-GOP-RL) has been performed, and we have compared the evaluation results with other video encoders in terms of rate/distortion (R/D), coding/decoding delay, and memory consumption. Results show that the proposed encoder obtains good R/D results for high-resolution video sequences with nearly in-place computation using only the memory needed to store a group of pictures. After applying the multicore optimization strategies over the 3D DWT, the proposed encoder is able to compress a full high-definition video sequence in real-time.

  6. Descriptor Based Analysis of Digital 3D Shapes

    DEFF Research Database (Denmark)

    Welnicka, Katarzyna

    Analysis and processing of 3D digital shapes is a significant research area with numerous medical, industrial, and entertainment applications which has gained enormously in importance as optical scanning modalities have started to make acquired 3D geometry commonplace. The area holds many...... challenges. One such challenge, which is addressed in this thesis, is to develop computational methods for classifying shapes which are in agreement with the human way of understanding and classifying shapes. In this dissertation we first present a shape descriptor based on the process of diffusion...

  7. Applications of Alginate-Based Bioinks in 3D Bioprinting

    Science.gov (United States)

    Axpe, Eneko; Oyen, Michelle L.

    2016-01-01

    Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine. PMID:27898010

  8. GPU-based 3D lower tree wavelet video encoder

    Science.gov (United States)

    Galiano, Vicente; López-Granado, Otoniel; Malumbres, Manuel P.; Drummond, Leroy Anthony; Migallón, Hector

    2013-12-01

    The 3D-DWT is a mathematical tool of increasing importance in those applications that require an efficient processing of huge amounts of volumetric info. Other applications like professional video editing, video surveillance applications, multi-spectral satellite imaging, HQ video delivery, etc, would rather use 3D-DWT encoders to reconstruct a frame as fast as possible. In this article, we introduce a fast GPU-based encoder which uses 3D-DWT transform and lower trees. Also, we present an exhaustive analysis of the use of GPU memory. Our proposal shows good trade off between R/D, coding delay (as fast as MPEG-2 for High definition) and memory requirements (up to 6 times less memory than x264).

  9. Powder-based 3D printing for bone tissue engineering.

    Science.gov (United States)

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Image-Based 3D Face Modeling System

    Directory of Open Access Journals (Sweden)

    Vladimir Vezhnevets

    2005-08-01

    Full Text Available This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2∼3 minutes.

  11. Hydrogel-based reinforcement of 3D bioprinted constructs

    NARCIS (Netherlands)

    Melchels, Ferry P W; Blokzijl, Maarten M; Levato, Riccardo; Peiffer, Quentin C; Ruijter, Mylène de; Hennink, Wim E; Vermonden, Tina; Malda, Jos

    2016-01-01

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support

  12. Particle based 3D modeling of positive streamer inception

    NARCIS (Netherlands)

    H.J. Teunissen (Jannis)

    2012-01-01

    htmlabstractIn this report we present a particle based 3D model for the study of streamer inception near positive electrodes in air. The particle code is of the PIC-MCC type and an electrode is included using the charge simulation method. An algorithm for the adaptive creation of super-particles is

  13. 3D ear identification based on sparse representation.

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    Full Text Available Biometrics based personal authentication is an effective way for automatically recognizing, with a high confidence, a person's identity. Recently, 3D ear shape has attracted tremendous interests in research field due to its richness of feature and ease of acquisition. However, the existing ICP (Iterative Closet Point-based 3D ear matching methods prevalent in the literature are not quite efficient to cope with the one-to-many identification case. In this paper, we aim to fill this gap by proposing a novel effective fully automatic 3D ear identification system. We at first propose an accurate and efficient template-based ear detection method. By utilizing such a method, the extracted ear regions are represented in a common canonical coordinate system determined by the ear contour template, which facilitates much the following stages of feature extraction and classification. For each extracted 3D ear, a feature vector is generated as its representation by making use of a PCA-based local feature descriptor. At the stage of classification, we resort to the sparse representation based classification approach, which actually solves an l1-minimization problem. To the best of our knowledge, this is the first work introducing the sparse representation framework into the field of 3D ear identification. Extensive experiments conducted on a benchmark dataset corroborate the effectiveness and efficiency of the proposed approach. The associated Matlab source code and the evaluation results have been made publicly online available at http://sse.tongji.edu.cn/linzhang/ear/srcear/srcear.htm.

  14. Evaluation of Binocular Vision Therapy Efficacy by 3D Video-Oculography Measurement of Binocular Alignment and Motility.

    Science.gov (United States)

    Laria, Carlos; Pinero, David P

    2013-01-01

    To evaluate two cases of intermittent exotropia treated by vision therapy the efficacy of the treatment by complementing the clinical examination with a 3D videooculography to register and to evidence the potential applicability of this technology for such purpose. We report the binocular alignment changes occurring after vision therapy in a woman of 36 years with an intermittent exotropia of 25 prism diopters at far and 18 PD at near and a child of 10 years with 8 PD of intermittent exotropia in primary position associated to 6 PD of left eye hypotropia. Both patients presented good visual acuity with correction in both eyes. Instability of ocular deviation was evident by VOG analysis, revealing also the presence of vertical and torsional components. Binocular vision therapy was prescribed and performed including different types of vergence, accommodation, and consciousness of diplopia training. After therapy, excellent ranges of fusional vergence and a to-the-nose near point of convergence were obtained.The 3D VOG examination confirmed the compensation of the deviation with a high level of stability of binocular alignment. Significant improvement could be observed after therapy in the vertical and torsional components that were found to become more stable. Patients were very satisfied with the outcome obtained by vision therapy. 3D-VOG is a useful technique for providing an objective register of the compensation of the ocular deviation and the stability of the binocular alignment achieved after vision therapy in cases of intermittent exotropia, providing a detailed analysis of vertical and torsional improvements.

  15. Integrated optical 3D digital imaging based on DSP scheme

    Science.gov (United States)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  16. Using Multi-Modal 3D Contours and Their Relations for Vision and Robotics

    DEFF Research Database (Denmark)

    Baseski, Emre; Pugeault, Nicolas; Kalkan, Sinan

    2010-01-01

    . We show the potential of reasoning with global entities in the context of visual scene analysis for driver assistance, depth prediction, robotic grasping and grasp learning. We argue that, such 3D global reasoning processes complement widely-used 2D local approaches such as bag-of-features since 3D...... relations are invariant under camera transformations and 3D information can be directly linked to actions. We therefore stress the necessity of including both global and local features with different spatial dimensions within a representation. We also discuss the importance of an efficient use...

  17. 3D Reconstruction of Tree-Crown Based on the UAV Aerial Images

    Directory of Open Access Journals (Sweden)

    Chao Xu

    2015-01-01

    Full Text Available The algorithm for 3D reconstruction of tree-crown is presented with the UAV aerial images from a mountainous area in China. Considering the fact that the aerial images consist of little tree-crown texture and contour information, a feature area extraction method is proposed based on watershed segmentation, and the local area correlation coefficient is calculated to match the feature areas, in order to fully extract the characteristics that can reflect the structure of tree-crown. Then, the depth of feature points is calculated using the stereo vision theory. Finally, the L-system theory is applied to construct the 3D model of tree. The experiments are conducted with the tree-crown images from UAV aerial images manually. The experiment result showed that the method proposed in this paper can fully extract and match the feature points of tree-crown that can reconstruct the 3D model of the tree-crown correctly.

  18. UAV AND COMPUTER VISION, DETECTION OF INFRASTRUCTURE LOSSES AND 3D MODELING

    Directory of Open Access Journals (Sweden)

    V. Barrile

    2017-11-01

    Full Text Available The degradation of buildings, or rather the decline of their initial performances following external agents both natural (cold-thaw, earthquake, salt, etc. and artificial (industrial field, urban setting, etc., in the years lead to the necessity of developing Non-Destructive Testing (NDT intended to give useful information for an explanation of a potential deterioration without damaging the state of buildings. An accurate examination of damages, of the repeat of cracks in condition of similar stress, indicate the existence of principles that control the creation of these events. There is no doubt that a precise visual analysis is at the bottom of a correct evaluation of the building. This paper deals with the creation of 3D models based on the capture of digital images, through autopilot flight UAV, for civil buildings situated on the area of Reggio Calabria. The following elaboration is done thanks to the use of commercial software, based on specific algorithms of the Structure from Motion (SfM technique. SfM represents an important progress in the aerial and terrestrial survey field obtaining results, in terms of time and quality, comparable to those achievable through more traditional data capture methodologies.

  19. Uav and Computer Vision, Detection of Infrastructure Losses and 3d Modeling

    Science.gov (United States)

    Barrile, V.; Bilotta, G.; Nunnari, A.

    2017-11-01

    The degradation of buildings, or rather the decline of their initial performances following external agents both natural (cold-thaw, earthquake, salt, etc.) and artificial (industrial field, urban setting, etc.), in the years lead to the necessity of developing Non-Destructive Testing (NDT) intended to give useful information for an explanation of a potential deterioration without damaging the state of buildings. An accurate examination of damages, of the repeat of cracks in condition of similar stress, indicate the existence of principles that control the creation of these events. There is no doubt that a precise visual analysis is at the bottom of a correct evaluation of the building. This paper deals with the creation of 3D models based on the capture of digital images, through autopilot flight UAV, for civil buildings situated on the area of Reggio Calabria. The following elaboration is done thanks to the use of commercial software, based on specific algorithms of the Structure from Motion (SfM) technique. SfM represents an important progress in the aerial and terrestrial survey field obtaining results, in terms of time and quality, comparable to those achievable through more traditional data capture methodologies.

  20. Flight-appropriate 3D Terrain-rendering Toolkit for Synthetic Vision Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The TerraBlocksTM 3D terrain data format and terrain-block-rendering methodology provides an enabling basis for successful commercial deployment of...

  1. 3D face recognition with asymptotic cones based principal curvatures

    KAUST Repository

    Tang, Yinhang

    2015-05-01

    The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.

  2. Probabilistic reasoning for assembly-based 3D modeling

    KAUST Repository

    Chaudhuri, Siddhartha

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling is the identification of relevant components to be presented to the user. In this paper, we introduce a probabilistic reasoning approach to this problem. Given a repository of shapes, our approach learns a probabilistic graphical model that encodes semantic and geometric relationships among shape components. The probabilistic model is used to present components that are semantically and stylistically compatible with the 3D model that is being assembled. Our experiments indicate that the probabilistic model increases the relevance of presented components. © 2011 ACM.

  3. Influence of stereopsis and abnormal binocular vision on ocular and systemic discomfort while watching 3D television.

    Science.gov (United States)

    Kim, S-H; Suh, Y-W; Yun, C; Yoo, E-J; Yeom, J-H; Cho, Y A

    2013-11-01

    To evaluate the degree of three-dimensional (3D) perception and ocular and systemic discomfort in patients with abnormal binocular vision (ABV), and their relationship to stereoacuity while watching a 3D television (TV). Patients with strabismus, amblyopia, or anisometropia older than 9 years were recruited for the ABV group (98 subjects). Normal volunteers were enrolled in the control group (32 subjects). Best-corrected visual acuity, refractive errors, angle of strabismus, and stereoacuity were measured. After watching 3D TV for 20 min, a survey was conducted to evaluate the degree of 3D perception, and ocular and systemic discomfort while watching 3D TV. One hundred and thirty subjects were enrolled in this study. The ABV group included 49 patients with strabismus, 22 with amblyopia, and 27 with anisometropia. The ABV group showed worse stereoacuity at near and distant fixation (P<0.001). Ocular and systemic discomfort was, however, not different between the two groups. Fifty-three subjects in the ABV group and all subjects in the control group showed good stereopsis (60 s of arc or better at near), and they reported more dizziness, headache, eye fatigue, and pain (P<0.05) than the other 45 subjects with decreased stereopsis. The subjects with good stereopsis in the ABV group felt more eye fatigue than those in the control group (P=0.031). The subjects with decreased stereopsis showed more difficulty with 3D perception (P<0.001). The subjects with abnormal stereopsis showed decreased 3D perception while watching 3D TV. However, ocular and systemic discomfort was more closely related to better stereopsis.

  4. Automatic and rapid whole-body 3D shape measurement based on multinode 3D sensing and speckle projection.

    Science.gov (United States)

    Guo, Jiping; Peng, Xiang; Li, Ameng; Liu, Xiaoli; Yu, Jiping

    2017-11-01

    Automatic and rapid whole-body 3D shape measurement has attracted extensive attention in recent years and been widely used in many fields. Rapid 3D reconstruction, automatic 3D registration, and dedicated system layout are critical factors to enable an excellent 3D measurement system. In this paper, we present an automatic and rapid whole- body 3D measurement system that is based on multinode 3D sensors using speckle projection. A rapid algorithm for searching homologous point pairs is suggested, which takes advantage of the optimized projective rectification and simplified subpixel matching techniques, leading to an improved time efficiency of 3D reconstruction. Meanwhile, a low-cost automatic system with a flexible setup and an improved calibration strategy are proposed, where system parameters of each node sensor can be simultaneously estimated with the assistance of a cubic and a planar target. Furthermore, an automatic range data registration strategy by employing two aided cameras is investigated. Experiment results show that the presented approach can realize automatic whole-body 3D shape measurement with high efficiency and accuracy.

  5. 3-D model-based tracking for UAV indoor localization.

    Science.gov (United States)

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights.

  6. Making Things See 3D vision with Kinect, Processing, Arduino, and MakerBot

    CERN Document Server

    Borenstein, Greg

    2012-01-01

    This detailed, hands-on guide provides the technical and conceptual information you need to build cool applications with Microsoft's Kinect, the amazing motion-sensing device that enables computers to see. Through half a dozen meaty projects, you'll learn how to create gestural interfaces for software, use motion capture for easy 3D character animation, 3D scanning for custom fabrication, and many other applications. Perfect for hobbyists, makers, artists, and gamers, Making Things See shows you how to build every project with inexpensive off-the-shelf components, including the open source P

  7. A ToF-Camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera's performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  8. Target detect system in 3D using vision apply on plant reproduction by tissue culture

    Science.gov (United States)

    Vazquez Rueda, Martin G.; Hahn, Federico

    2001-03-01

    This paper presents the preliminary results for a system in tree dimension that use a system vision to manipulate plants in a tissue culture process. The system is able to estimate the position of the plant in the work area, first calculate the position and send information to the mechanical system, and recalculate the position again, and if it is necessary, repositioning the mechanical system, using an neural system to improve the location of the plant. The system use only the system vision to sense the position and control loop using a neural system to detect the target and positioning the mechanical system, the results are compared with an open loop system.

  9. 3D Visual SLAM Based on Multiple Iterative Closest Point

    Directory of Open Access Journals (Sweden)

    Chunguang Li

    2015-01-01

    Full Text Available With the development of novel RGB-D visual sensors, data association has been a basic problem in 3D Visual Simultaneous Localization and Mapping (VSLAM. To solve the problem, a VSLAM algorithm based on Multiple Iterative Closest Point (MICP is presented. By using both RGB and depth information obtained from RGB-D camera, 3D models of indoor environment can be reconstructed, which provide extensive knowledge for mobile robots to accomplish tasks such as VSLAM and Human-Robot Interaction. Due to the limited views of RGB-D camera, additional information about the camera pose is needed. In this paper, the motion of the RGB-D camera is estimated by a motion capture system after a calibration process. Based on the estimated pose, the MICP algorithm is used to improve the alignment. A Kinect mobile robot which is running Robot Operating System and the motion capture system has been used for experiments. Experiment results show that not only the proposed VSLAM algorithm achieved good accuracy and reliability, but also the 3D map can be generated in real time.

  10. Computer Vision Tracking Using Particle Filters for 3D Position Estimation

    Science.gov (United States)

    2014-03-27

    images taken over time. Currently photogrammetry and videogrammetry are used in a variety of fields from topographic mapping to film motion capture and...5 2.2 Photogrammetry ...focus on particle filters. 2.2 Photogrammetry Photogrammetry is the process of determining 3-D coordinates through images. The mathematical underpinnings

  11. In-line 3D print failure detection using computer vision

    DEFF Research Database (Denmark)

    Lyngby, Rasmus Ahrenkiel; Wilm, Jakob; Eiríksson, Eyþór Rúnar

    2017-01-01

    Here we present our findings on a novel real-time vision system that allows for automatic detection of failure conditions that are considered outside of nominal operation. These failure modes include warping, build plate delamination and extrusion failure. Our system consists of a calibrated camera...

  12. Stereo Vision and 3D Reconstruction on a Distributed Memory System

    NARCIS (Netherlands)

    Kuijpers, N.H.L.; Paar, G.; Lukkien, J.J.

    1996-01-01

    An important research topic in image processing is stereo vision. The objective is to compute a 3-dimensional representation of some scenery from two 2-dimensional digital images. Constructing a 3-dimensional representation involves finding pairs of pixels from the two images which correspond to the

  13. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    Science.gov (United States)

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  14. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration.

    Science.gov (United States)

    Gong, Yuanzheng; Seibel, Eric J

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  15. Applications of Alginate-Based Bioinks in 3D Bioprinting

    Directory of Open Access Journals (Sweden)

    Eneko Axpe

    2016-11-01

    Full Text Available Three-dimensional (3D bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine.

  16. Facial-paralysis diagnostic system based on 3D reconstruction

    Science.gov (United States)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  17. Intensity-based image registration for 3D spatial compounding using a freehand 3D ultrasound system

    Science.gov (United States)

    Pagoulatos, Niko; Haynor, David R.; Kim, Yongmin

    2002-04-01

    3D spatial compounding involves the combination of two or more 3D ultrasound (US) data sets, acquired under different insonation angles and windows, to form a higher quality 3D US data set. An important requirement for this method to succeed is the accurate registration between the US images used to form the final compounded image. We have developed a new automatic method for rigid and deformable registration of 3D US data sets, acquired using a freehand 3D US system. Deformation is provided by using a 3D thin-plate spline (TPS). Our method is fundamentally different from the previous ones in that the acquired scattered US 2D slices are registered and compounded directly into the 3D US volume. Our approach has several benefits over the traditional registration and spatial compounding methods: (i) we only peform one 3D US reconstruction, for the first acquired data set, therefore we save the computation time required to reconstruct subsequent acquired scans, (ii) for our registration we use (except for the first scan) the acquired high-resolution 2D US images rather than the 3D US reconstruction data which are of lower quality due to the interpolation and potential subsampling associated with 3D reconstruction, and (iii) the scans performed after the first one are not required to follow the typical 3D US scanning protocol, where a large number of dense slices have to be acquired; slices can be acquired in any fashion in areas where compounding is desired. We show that by taking advantage of the similar information contained in adjacent acquired 2D US slices, we can reduce the computation time of linear and nonlinear registrations by a factor of more than 7:1, without compromising registration accuracy. Furthermore, we implemented an adaptive approximation to the 3D TPS with local bilinear transformations allowing additional reduction of the nonlinear registration computation time by a factor of approximately 3.5. Our results are based on a commercially available

  18. Surface topography study of prepared 3D printed moulds via 3D printer for silicone elastomer based nasal prosthesis

    Science.gov (United States)

    Abdullah, Abdul Manaf; Din, Tengku Noor Daimah Tengku; Mohamad, Dasmawati; Rahim, Tuan Noraihan Azila Tuan; Akil, Hazizan Md; Rajion, Zainul Ahmad

    2016-12-01

    Conventional prosthesis fabrication is highly depends on the hand creativity of laboratory technologist. The development in 3D printing technology offers a great help in fabricating affordable and fast yet esthetically acceptable prostheses. This study was conducted to discover the potential of 3D printed moulds for indirect silicone elastomer based nasal prosthesis fabrication. Moulds were designed using computer aided design (CAD) software (Solidworks, USA) and converted into the standard tessellation language (STL) file. Three moulds with layer thickness of 0.1, 0.2 and 0.3mm were printed utilizing polymer filament based 3D printer (Makerbot Replicator 2X, Makerbot, USA). Another one mould was printed utilizing liquid resin based 3D printer (Objet 30 Scholar, Stratasys, USA) as control. The printed moulds were then used to fabricate maxillofacial silicone specimens (n=10)/mould. Surface profilometer (Surfcom Flex, Accretech, Japan), digital microscope (KH77000, Hirox, USA) and scanning electron microscope (Quanta FEG 450, Fei, USA) were used to measure the surface roughness as well as the topological properties of fabricated silicone. Statistical analysis of One-Way ANOVA was employed to compare the surface roughness of the fabricated silicone elastomer. Result obtained demonstrated significant differences in surface roughness of the fabricated silicone (p<0.01). Further post hoc analysis also revealed significant differences in silicone fabricated using different 3D printed moulds (p<0.01). A 3D printed mould was successfully prepared and characterized. With surface topography that could be enhanced, inexpensive and rapid mould fabrication techniques, polymer filament based 3D printer is potential for indirect silicone elastomer based nasal prosthesis fabrication.

  19. Quantitative quality measure based on light wave distribution to access 3D display

    Science.gov (United States)

    Sakamoto, Yuji; Okuyama, Fumio

    2011-02-01

    There are a lot of three-dimensional (3D) displaying methods such as stereoscopy, integral photography, holography, etc. These technologies have different 3D vision properties and 3D image qualities. Conventionally, biological responsiveness is measured by using an actual 3D display in order to evaluate image qualities of 3D displaying method. It is required quantitative quality measure for 3D images for quantitative evaluation, which are useful for comparing 3D image quality and a design of a new display system. In this paper, we propose quality measures for 3D images named volume signal to noise ratio (VSNR), which is a three-dimensionally extended signal to noise ratio (SNR). A 3D display produces light wave distributions in 3D space, which makes observers view 3D image illusions. The VSNR measures error of light wave distributions between generated by actual objects and produced by a 3D display. The light wave distribution is including various factors for 3D perception of human such as resolution of reconstructed images, visual fields, motion parallax, and depth of field. The VSNR evaluates these 3D perception factors totally. We were carried out the experiments to certificate the efficiency of the VSNR. 3D images represented electro-holographic display and integral photographic displays were evaluated by the VSNR. The results indicated that the electro-holographic display has better quality than integral photographic display, but speckle noise deteriorates the 3D image quality.

  20. 3D MODELLING AND INTERACTIVE WEB-BASED VISUALIZATION OF CULTURAL HERITAGE OBJECTS

    Directory of Open Access Journals (Sweden)

    M. N. Koeva

    2016-06-01

    Full Text Available Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria – a country with thousands of years of history and cultural heritage dating back to ancient civilizations. \\this motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1 image-based modelling using a non-metric hand-held camera; (2 3D visualization based on spherical panoramic images; (3 and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This

  1. 3D Printed Paper-Based Microfluidic Analytical Devices

    Directory of Open Access Journals (Sweden)

    Yong He

    2016-06-01

    Full Text Available As a pump-free and lightweight analytical tool, paper-based microfluidic analytical devices (μPADs attract more and more interest. If the flow speed of μPAD can be programmed, the analytical sequences could be designed and they will be more popular. This reports presents a novel μPAD, driven by the capillary force of cellulose powder, printed by a desktop three-dimensional (3D printer, which has some promising features, such as easy fabrication and programmable flow speed. First, a suitable size-scale substrate with open microchannels on its surface is printed. Next, the surface of the substrate is covered with a thin layer of polydimethylsiloxane (PDMS to seal the micro gap caused by 3D printing. Then, the microchannels are filled with a mixture of cellulose powder and deionized water in an appropriate proportion. After drying in an oven at 60 °C for 30 min, it is ready for use. As the different channel depths can be easily printed, which can be used to achieve the programmable capillary flow speed of cellulose powder in the microchannels. A series of microfluidic analytical experiments, including quantitative analysis of nitrite ion and fabrication of T-sensor were used to demonstrate its capability. As the desktop 3D printer (D3DP is very cheap and accessible, this device can be rapidly printed at the test field with a low cost and has a promising potential in the point-of-care (POC system or as a lightweight platform for analytical chemistry.

  2. Fast and flexible 3D object recognition solutions for machine vision applications

    Science.gov (United States)

    Effenberger, Ira; Kühnle, Jens; Verl, Alexander

    2013-03-01

    In automation and handling engineering, supplying work pieces between different stages along the production process chain is of special interest. Often the parts are stored unordered in bins or lattice boxes and hence have to be separated and ordered for feeding purposes. An alternative to complex and spacious mechanical systems such as bowl feeders or conveyor belts, which are typically adapted to the parts' geometry, is using a robot to grip the work pieces out of a bin or from a belt. Such applications are in need of reliable and precise computer-aided object detection and localization systems. For a restricted range of parts, there exists a variety of 2D image processing algorithms that solve the recognition problem. However, these methods are often not well suited for the localization of randomly stored parts. In this paper we present a fast and flexible 3D object recognizer that localizes objects by identifying primitive features within the objects. Since technical work pieces typically consist to a substantial degree of geometric primitives such as planes, cylinders and cones, such features usually carry enough information in order to determine the position of the entire object. Our algorithms use 3D best-fitting combined with an intelligent data pre-processing step. The capability and performance of this approach is shown by applying the algorithms to real data sets of different industrial test parts in a prototypical bin picking demonstration system.

  3. Triangulation Based 3D Laser Imaging for Fracture Orientation Analysis

    Science.gov (United States)

    Mah, J.; Claire, S.; Steve, M.

    2009-05-01

    Laser imaging has recently been identified as a potential tool for rock mass characterization. This contribution focuses on the application of triangulation based, short-range laser imaging to determine fracture orientation and surface texture. This technology measures the distance to the target by triangulating the projected and reflected laser beams, and also records the reflection intensity. In this study, we acquired 3D laser images of rock faces using the Laser Camera System (LCS), a portable instrument developed by Neptec Design Group (Ottawa, Canada). The LCS uses an infrared laser beam and is immune to the lighting conditions. The maximum image resolution is 1024 x 1024 volumetric image elements. Depth resolution is 0.5 mm at 5 m. An above ground field trial was conducted at a blocky road cut with well defined joint sets (Kingston, Ontario). An underground field trial was conducted at the Inco 175 Ore body (Sudbury, Ontario) where images were acquired in the dark and the joint set features were more subtle. At each site, from a distance of 3 m away from the rock face, a grid of six images (approximately 1.6 m by 1.6 m) was acquired at maximum resolution with 20% overlap between adjacent images. This corresponds to a density of 40 image elements per square centimeter. Polyworks, a high density 3D visualization software tool, was used to align and merge the images into a single digital triangular mesh. The conventional method of determining fracture orientations is by manual measurement using a compass. In order to be accepted as a substitute for this method, the LCS should be capable of performing at least to the capabilities of manual measurements. To compare fracture orientation estimates derived from the 3D laser images to manual measurements, 160 inclinometer readings were taken at the above ground site. Three prominent joint sets (strike/dip: 236/09, 321/89, 325/01) were identified by plotting the joint poles on a stereonet. Underground, two main joint

  4. COMPACT HANDHELD FRINGE PROJECTION BASED UNDERWATER 3D-SCANNER

    Directory of Open Access Journals (Sweden)

    C. Bräuer-Burchardt

    2015-04-01

    Full Text Available A new, fringe projection based compact handheld 3D scanner for the surface reconstruction of measurement objects under water is introduced. The weight of the scanner is about 10 kg and can be used in a water depth of maximal 40 metres. A measurement field of about 250 mm x 200 mm is covered under water, and the lateral resolution of the measured object points is about 150 μm. Larger measurement objects can be digitized in a unique geometric model by merging subsequently recorded datasets. The recording time for one 3D scan is a third of a second. The projection unit for the structured illumination of the scene as well as the computer for device control and measurement data analysis are included into the scanners housing. A display on the backside of the device realizes the graphical presentation of the current measurement data. It allows the user to evaluate the quality of the measurement result in real-time already during the recording of the measurement under water. For the calibration of the underwater scanner a combined method of air- and water-calibration was developed which needs only a few recorded underwater images of a plane surface and an object with known lengths. First measurement results obtained with the new scanner are presented.

  5. Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models

    Directory of Open Access Journals (Sweden)

    Hui Guo

    2016-07-01

    Full Text Available Evodiamine (EVO and rutaecarpine (RUT are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those obtained from 2D monolayers. The drugs’ IC50 values were significantly increased from the range of 6.4–44.1 μM in 2D monolayers to 21.8–138.0 μM in 3D multicellular spheroids, which may be due to enhanced mass barrier and reduced drug penetration in 3D models. The fluorescence of EVO and RUT was measured via fluorescence spectroscopy and the cellular uptake of both drugs was characterized in 2D tumor models. The results showed that the cellular uptake concentrations of RUT increased with increasing drug concentrations. However, the EVO concentrations uptaken by the cells showed only a small change with increasing drug concentrations, which may be due to the different solubility of EVO and Rut in solvents. Overall, this study provided a new vision of the anti-tumor activity of EVO and RUT via 3D multicellular spheroids and cellular uptake through the fluorescence of compounds.

  6. A Novel Identification Methodology for the Coordinate Relationship between a 3D Vision System and a Legged Robot

    Directory of Open Access Journals (Sweden)

    Xun Chai

    2015-04-01

    Full Text Available Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called “Octopus”, which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust.

  7. 3D Reconstruction of human bones based on dictionary learning.

    Science.gov (United States)

    Zhang, Binkai; Wang, Xiang; Liang, Xiao; Zheng, Jinjin

    2017-11-01

    An effective method for reconstructing a 3D model of human bones from computed tomography (CT) image data based on dictionary learning is proposed. In this study, the dictionary comprises the vertices of triangular meshes, and the sparse coefficient matrix indicates the connectivity information. For better reconstruction performance, we proposed a balance coefficient between the approximation and regularisation terms and a method for optimisation. Moreover, we applied a local updating strategy and a mesh-optimisation method to update the dictionary and the sparse matrix, respectively. The two updating steps are iterated alternately until the objective function converges. Thus, a reconstructed mesh could be obtained with high accuracy and regularisation. The experimental results show that the proposed method has the potential to obtain high precision and high-quality triangular meshes for rapid prototyping, medical diagnosis, and tissue engineering. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. 3D Senor-based Library Navigation System

    Directory of Open Access Journals (Sweden)

    Abdel-Mehsen Ahmad

    2017-06-01

    Full Text Available The discussed system in this paper uses the Kinect’s 3D input (acquired through IR projector and Camera to detect gestures and then based on these gestures perform certain tasks, and display certain results on an output screen. The programming language used here is the Processing open source software and a database was implemented to manage the data required within the system. The deigned system was created for a library but the system’s design is broad enough to allow its utilization in many more domains. Implementation, system screenshots, simulation and results are discussed along with testing the system in different condition of light and distance. Some simple additions have been added to this version of the program to facilitate the interaction between the user and the system further.

  9. The model and its solution's uniqueness of a portable 3D vision coordinate measuring system

    Science.gov (United States)

    Huang, Fengshan; Qian, Huifen

    2009-11-01

    The portable three-dimensional vision coordinate measuring system, which consists of a light pen, a CCD camera and a laptop computer, can be widely applied in most coordinate measuring fields especially on the industrial spots. On the light pen there are at least three point-shaped light sources (LEDs) acting as the measured control characteristic points and a touch trigger probe with a spherical stylus which is used to contact the point to be measured. The most important character of this system is that three light sources and the probe stylus are aligned in one line with known positions. In building and studying this measuring system, how to construct the system's mathematical model is the most key problem called Perspective of Three-Collinear-points Problem, which is a particular case of Perspective of Three-points Problem (P3P). On the basis of P3P and spatial analytical geometry theory, the system's mathematical model is established. What's more, it is verified that Perspective of Three-Collinear-points Problem has a unique solution. And the analytical equations of the measured point's coordinates are derived by using the system's mathematical model and the restrict condition that three light sources and the probe stylus are aligned in one line. Finally, the effectiveness of the mathematical model is confirmed by experiments.

  10. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    Science.gov (United States)

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2017-12-06

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  11. 3D model-based still image object categorization

    Science.gov (United States)

    Petre, Raluca-Diana; Zaharia, Titus

    2011-09-01

    This paper proposes a novel recognition scheme algorithm for semantic labeling of 2D object present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to infer the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Results obtained show promising performances, with recognition rate up to 84%, which opens interesting perspectives in terms of semantic metadata extraction from still images/videos.

  12. CLOUD BASED WEB 3D GIS TAIWAN PLATFORM

    Directory of Open Access Journals (Sweden)

    W.-F. Tsai

    2012-09-01

    Full Text Available This article presents the status of the web 3D GIS platform, which has been developed in the National Applied Research Laboratories. The purpose is to develop a global earth observation 3D GIS platform for applications to disaster monitoring and assessment in Taiwan. For quick response to preliminary and detailed assessment after a natural disaster occurs, the web 3D GIS platform is useful to access, transfer, integrate, display and analyze the multi-scale huge data following the international OGC standard. The framework of cloud service for data warehousing management and efficiency enhancement using VMWare is illustrated in this article.

  13. AN IMAGE-BASED TECHNIQUE FOR 3D BUILDING RECONSTRUCTION USING MULTI-VIEW UAV IMAGES

    Directory of Open Access Journals (Sweden)

    F. Alidoost

    2015-12-01

    Full Text Available Nowadays, with the development of the urban areas, the automatic reconstruction of the buildings, as an important objects of the city complex structures, became a challenging topic in computer vision and photogrammetric researches. In this paper, the capability of multi-view Unmanned Aerial Vehicles (UAVs images is examined to provide a 3D model of complex building façades using an efficient image-based modelling workflow. The main steps of this work include: pose estimation, point cloud generation, and 3D modelling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM is applied on UAV images and a dense point cloud is generated. Then, a mesh model of points is calculated using Delaunay 2.5D triangulation and refined to obtain an accurate model of building. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough details of building based on visual assessment.

  14. An Image-Based Technique for 3d Building Reconstruction Using Multi-View Uav Images

    Science.gov (United States)

    Alidoost, F.; Arefi, H.

    2015-12-01

    Nowadays, with the development of the urban areas, the automatic reconstruction of the buildings, as an important objects of the city complex structures, became a challenging topic in computer vision and photogrammetric researches. In this paper, the capability of multi-view Unmanned Aerial Vehicles (UAVs) images is examined to provide a 3D model of complex building façades using an efficient image-based modelling workflow. The main steps of this work include: pose estimation, point cloud generation, and 3D modelling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM) is applied on UAV images and a dense point cloud is generated. Then, a mesh model of points is calculated using Delaunay 2.5D triangulation and refined to obtain an accurate model of building. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough details of building based on visual assessment.

  15. Image-Based 3d Reconstruction and Analysis for Orthodontia

    Science.gov (United States)

    Knyaz, V. A.

    2012-08-01

    Among the main tasks of orthodontia are analysis of teeth arches and treatment planning for providing correct position for every tooth. The treatment plan is based on measurement of teeth parameters and designing perfect teeth arch curve which teeth are to create after treatment. The most common technique for teeth moving uses standard brackets which put on teeth and a wire of given shape which is clamped by these brackets for producing necessary forces to every tooth for moving it in given direction. The disadvantages of standard bracket technique are low accuracy of tooth dimensions measurements and problems with applying standard approach for wide variety of complex orthodontic cases. The image-based technique for orthodontic planning, treatment and documenting aimed at overcoming these disadvantages is proposed. The proposed approach provides performing accurate measurements of teeth parameters needed for adequate planning, designing correct teeth position and monitoring treatment process. The developed technique applies photogrammetric means for teeth arch 3D model generation, brackets position determination and teeth shifting analysis.

  16. Gis-Based Smart Cartography Using 3d Modeling

    Science.gov (United States)

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  17. Pavement Distress Evaluation Using 3D Depth Information from Stereo Vision

    Science.gov (United States)

    2012-07-01

    The focus of the current project funded by MIOH-UTC for the period 9/1/2010-8/31/2011 is to : enhance our earlier effort in providing a more robust image processing based pavement distress : detection and classification system. During the last few de...

  18. 3D Space Shift from CityGML LoD3-Based Multiple Building Elements to a 3D Volumetric Object

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2017-01-01

    Full Text Available In contrast with photorealistic visualizations, urban landscape applications, and building information system (BIM, 3D volumetric presentations highlight specific calculations and applications of 3D building elements for 3D city planning and 3D cadastres. Knowing the precise volumetric quantities and the 3D boundary locations of 3D building spaces is a vital index which must remain constant during data processing because the values are related to space occupation, tenure, taxes, and valuation. To meet these requirements, this paper presents a five-step algorithm for performing a 3D building space shift. This algorithm is used to convert multiple building elements into a single 3D volumetric building object while maintaining the precise volume of the 3D space and without changing the 3D locations or displacing the building boundaries. As examples, this study used input data and building elements based on City Geography Markup Language (CityGML LoD3 models. This paper presents a method for 3D urban space and 3D property management with the goal of constructing a 3D volumetric object for an integral building using CityGML objects, by fusing the geometries of various building elements. The resulting objects possess true 3D geometry that can be represented by solid geometry and saved to a CityGML file for effective use in 3D urban planning and 3D cadastres.

  19. Based on photogrammetry methodological sequence image 3D movement comparisons

    Science.gov (United States)

    Zhang, Chunsen; He, Shaojun

    2005-10-01

    The sequence image 3D movement analysis is method that estimates 3D movement parameter from 2D image sequence or 3D "image" (object side) sequence. In theory, monocular and binocular sequence image all can fulfill the three dimensions movement analyses, but there are distinctions in the complexity of computing and accuracy of computing result. In order to compare the accuracy of estimates 3D movement parameter from 2D image sequence or 3D "image" sequence, the article uses ideas of "relative orientation" and "space similitude transform" in photogrammetry for reference, presents an approach that connects the image data with real three dimensions space by making use of the result of calibration and other additional conditions to unify the computing result of monocular and binocular sequence image to object side coordinate system which origin point is one fixed point in object side, this make it possible to compare their results. The experiment results of real data, which use the method, are given.

  20. Towards autonomic computing in machine vision applications: techniques and strategies for in-line 3D reconstruction in harsh industrial environments

    Science.gov (United States)

    Molleda, Julio; Usamentiaga, Rubén; García, Daniel F.; Bulnes, Francisco G.

    2011-03-01

    Nowadays machine vision applications require skilled users to configure, tune, and maintain. Because such users are scarce, the robustness and reliability of applications are usually significantly affected. Autonomic computing offers a set of principles such as self-monitoring, self-regulation, and self-repair which can be used to partially overcome those problems. Systems which include self-monitoring observe their internal states, and extract features about them. Systems with self-regulation are capable of regulating their internal parameters to provide the best quality of service depending on the operational conditions and environment. Finally, self-repairing systems are able to detect anomalous working behavior and to provide strategies to deal with such conditions. Machine vision applications are the perfect field to apply autonomic computing techniques. This type of application has strong constraints on reliability and robustness, especially when working in industrial environments, and must provide accurate results even under changing conditions such as luminance, or noise. In order to exploit the autonomic approach of a machine vision application, we believe the architecture of the system must be designed using a set of orthogonal modules. In this paper, we describe how autonomic computing techniques can be applied to machine vision systems, using as an example a real application: 3D reconstruction in harsh industrial environments based on laser range finding. The application is based on modules with different responsibilities at three layers: image acquisition and processing (low level), monitoring (middle level) and supervision (high level). High level modules supervise the execution of low-level modules. Based on the information gathered by mid-level modules, they regulate low-level modules in order to optimize the global quality of service, and tune the module parameters based on operational conditions and on the environment. Regulation actions involve

  1. Validation of optical codes based on 3D nanostructures

    Science.gov (United States)

    Carnicer, Artur; Javidi, Bahram

    2017-05-01

    Image information encoding using random phase masks produce speckle-like noise distributions when the sample is propagated in the Fresnel domain. As a result, information cannot be accessed by simple visual inspection. Phase masks can be easily implemented in practice by attaching cello-tape to the plain-text message. Conventional 2D-phase masks can be generalized to 3D by combining glass and diffusers resulting in a more complex, physical unclonable function. In this communication, we model the behavior of a 3D phase mask using a simple approach: light is propagated trough glass using the angular spectrum of plane waves whereas the diffusor is described as a random phase mask and a blurring effect on the amplitude of the propagated wave. Using different designs for the 3D phase mask and multiple samples, we demonstrate that classification is possible using the k-nearest neighbors and random forests machine learning algorithms.

  2. TOWARDS A CROATIAN 3D CADASTRE BASED ON THE LADM

    Directory of Open Access Journals (Sweden)

    N. Vučić

    2017-11-01

    Full Text Available This paper presents a brief overview of the Land Administration Domain Model (ISO 19152 standard and studies the development of the LADM national profile of the Republic of Croatia. Suggestions for better registration of separate parts of property as well as for 3D visualization of buildings and their separate parts (apartments, office spaces, etc. are provided through use of case examples. A unique feature identifier of the separate parts of a property as well as volume registration of those separate parts is proposed as the preliminary basis for the Croatian 3D cadastre.

  3. Transforming 3D Coloured Pixels into Musical Instrument Notes for Vision Substitution Applications

    Directory of Open Access Journals (Sweden)

    Guido Bologna

    2007-08-01

    Full Text Available The goal of the See ColOr project is to achieve a noninvasive mobility aid for blind users that will use the auditory pathway to represent in real-time frontal image scenes. We present and discuss here two image processing methods that were experimented in this work: image simplification by means of segmentation, and guiding the focus of attention through the computation of visual saliency. A mean shift segmentation technique gave the best results, but for real-time constraints we simply implemented an image quantification method based on the HSL colour system. More particularly, we have developed two prototypes which transform HSL coloured pixels into spatialised classical instrument sounds lasting for 300 ms. Hue is sonified by the timbre of a musical instrument, saturation is one of four possible notes, and luminosity is represented by bass when luminosity is rather dark and singing voice when it is relatively bright. The first prototype is devoted to static images on the computer screen, while the second has been built up on a stereoscopic camera which estimates depth by triangulation. In the audio encoding, distance to objects was quantified into four duration levels. Six participants with their eyes covered by a dark tissue were trained to associate colours with musical instruments and then asked to determine on several pictures, objects with specific shapes and colours. In order to simplify the protocol of experiments, we used a tactile tablet, which took the place of the camera. Overall, colour was helpful for the interpretation of image scenes. Moreover, preliminary results with the second prototype consisting in the recognition of coloured balloons were very encouraging. Image processing techniques such as saliency could accelerate in the future the interpretation of sonified image scenes.

  4. Transforming 3D Coloured Pixels into Musical Instrument Notes for Vision Substitution Applications

    Directory of Open Access Journals (Sweden)

    Deville Benoît

    2007-01-01

    Full Text Available The goal of the See ColOr project is to achieve a noninvasive mobility aid for blind users that will use the auditory pathway to represent in real-time frontal image scenes. We present and discuss here two image processing methods that were experimented in this work: image simplification by means of segmentation, and guiding the focus of attention through the computation of visual saliency. A mean shift segmentation technique gave the best results, but for real-time constraints we simply implemented an image quantification method based on the HSL colour system. More particularly, we have developed two prototypes which transform HSL coloured pixels into spatialised classical instrument sounds lasting for 300 ms. Hue is sonified by the timbre of a musical instrument, saturation is one of four possible notes, and luminosity is represented by bass when luminosity is rather dark and singing voice when it is relatively bright. The first prototype is devoted to static images on the computer screen, while the second has been built up on a stereoscopic camera which estimates depth by triangulation. In the audio encoding, distance to objects was quantified into four duration levels. Six participants with their eyes covered by a dark tissue were trained to associate colours with musical instruments and then asked to determine on several pictures, objects with specific shapes and colours. In order to simplify the protocol of experiments, we used a tactile tablet, which took the place of the camera. Overall, colour was helpful for the interpretation of image scenes. Moreover, preliminary results with the second prototype consisting in the recognition of coloured balloons were very encouraging. Image processing techniques such as saliency could accelerate in the future the interpretation of sonified image scenes.

  5. Software-based geometry operations for 3D computer graphics

    NARCIS (Netherlands)

    Sima, M.; Iancu, D.; Glossner, J.; Schulte, M.; Mamidi, S.

    2006-01-01

    In order to support a broad dynamic range and a high degree of precision, many of 3D renderings fundamental algorithms have been traditionally performed in floating-point. However, fixed-point data representation is preferable over floatingpoint representation in graphics applications on embedded

  6. 3D base: a geometrical data base system for the analysis and visualisation of 3D-shapes obtained from parallel serial sections including three different geometrical representations

    NARCIS (Netherlands)

    Verbeek, F. J.; de Groot, M. M.; Huijsmans, D. P.; Lamers, W. H.; Young, I. T.

    1993-01-01

    In this paper we discuss a geometrical data base that includes three different geometrical representations of one and the same reconstructed 3D shape: the contour-pile, the voxel enumeration, and the triangulation of a surface. The data base is tailored for 3D shapes obtained from plan-parallel

  7. Enhanced imaging colonoscopy facilitates dense motion-based 3D reconstruction.

    Science.gov (United States)

    Alcantarilla, Pablo F; Bartoli, Adrien; Chadebecq, Francois; Tilmant, Christophe; Lepilliez, Vincent

    2013-01-01

    We propose a novel approach for estimating a dense 3D model of neoplasia in colonoscopy using enhanced imaging endoscopy modalities. Estimating a dense 3D model of neoplasia is important to make 3D measurements and to classify the superficial lesions in standard frameworks such as the Paris classification. However, it is challenging to obtain decent dense 3D models using computer vision techniques such as Structure-from-Motion due to the lack of texture in conventional (white light) colonoscopy. Therefore, we propose to use enhanced imaging endoscopy modalities such as Narrow Band Imaging and chromoendoscopy to facilitate the 3D reconstruction process. Thanks to the use of these enhanced endoscopy techniques, visualization is improved, resulting in more reliable feature tracks and 3D reconstruction results. We first build a sparse 3D model of neoplasia using Structure-from-Motion from enhanced endoscopy imagery. Then, the sparse reconstruction is densified using a Multi-View Stereo approach, and finally the dense 3D point cloud is transformed into a mesh by means of Poisson surface reconstruction. The obtained dense 3D models facilitate classification of neoplasia in the Paris classification, in which the 3D size and the shape of the neoplasia play a major role in the diagnosis.

  8. Auto-context and its application to high-level vision tasks and 3D brain image segmentation.

    Science.gov (United States)

    Tu, Zhuowen; Bai, Xiang

    2010-10-01

    The notion of using context information for solving high-level vision and medical image segmentation problems has been increasingly realized in the field. However, how to learn an effective and efficient context model, together with an image appearance model, remains mostly unknown. The current literature using Markov Random Fields (MRFs) and Conditional Random Fields (CRFs) often involves specific algorithm design in which the modeling and computing stages are studied in isolation. In this paper, we propose a learning algorithm, auto-context. Given a set of training images and their corresponding label maps, we first learn a classifier on local image patches. The discriminative probability (or classification confidence) maps created by the learned classifier are then used as context information, in addition to the original image patches, to train a new classifier. The algorithm then iterates until convergence. Auto-context integrates low-level and context information by fusing a large number of low-level appearance features with context and implicit shape information. The resulting discriminative algorithm is general and easy to implement. Under nearly the same parameter settings in training, we apply the algorithm to three challenging vision applications: foreground/background segregation, human body configuration estimation, and scene region labeling. Moreover, context also plays a very important role in medical/brain images where the anatomical structures are mostly constrained to relatively fixed positions. With only some slight changes resulting from using 3D instead of 2D features, the auto-context algorithm applied to brain MRI image segmentation is shown to outperform state-of-the-art algorithms specifically designed for this domain. Furthermore, the scope of the proposed algorithm goes beyond image analysis and it has the potential to be used for a wide variety of problems for structured prediction problems.

  9. 3D reconstruction of microminiature objects based on contour line

    Science.gov (United States)

    Li, Cailin; Wang, Qiang; Guo, Baoyun

    2009-10-01

    A new 3D automatic reconstruction method of micro solid of revolution is presented in this paper. In the implementation procedure of this method, image sequence of the solid of revolution of 360° is obtained, which rotation speed is controlled by motor precisely, in the rotate photographic mode of back light. Firstly, we need calibrate the height of turntable, the size of pixel and rotation axis of turntable. Then according to the calibration result of rotation axis, the height of turntable, rotation angle and the pixel size, the contour points of each image can be transformed into 3D points in the reference coordinate system to generate the point cloud model. Finally, the surface geometrical model of solid of revolution is obtained by using the relationship of two adjacent contours. Experimental results on real images are presented, which demonstrate the effectiveness of the Approach.

  10. Modeling Perception of 3D Forms Using Fuzzy Knowledge Bases

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed, Saeema

    2009-01-01

    the aesthetics of their products are likely to be perceived are of value. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object and the intended perception using fuzzy logic. 3D objects (shapes) created by design engineering students to evoke...... a certain perception were analysed. Three different fuzzy logic models, with different input variables, for evaluating massiveness and lightness in a form are proposed. The uthors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map...... the relationships between the fuzzy sets on each input premise and the output premise. In our case the output premise of the fuzzy logic model is the level of belonging to the design context (perception). An evaluation of how users perceived the shapes was conducted to validate the fuzzy logic models and showed...

  11. 3D Spatial Data Infrastructures for web-based Visualization

    OpenAIRE

    Schilling, Arne

    2014-01-01

    In this thesis, concepts for developing Spatial Data Infrastructures with an emphasis on visualizing 3D landscape and city models in distributed environments are discussed. Spatial Data Infrastructures are important for public authorities in order to perform tasks on a daily basis, and serve as research topic in geo-informatics. Joint initiatives at national and international level exist for harmonizing procedures and technologies. Interoperability is an important aspect in this context - as ...

  12. Status of the phenomena representation, 3D modeling, and cloud-based software architecture development

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kvarfordt, Kellie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sampath, Ram [Idaho National Lab. (INL), Idaho Falls, ID (United States); Larson, Katie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Early in 2013, researchers at the Idaho National Laboratory outlined a technical framework to support the implementation of state-of-the-art probabilistic risk assessment to predict the safety performance of advanced small modular reactors. From that vision of the advanced framework for risk analysis, specific tasks have been underway in order to implement the framework. This report discusses the current development of a several tasks related to the framework implementation, including a discussion of a 3D physics engine that represents the motion of objects (including collision and debris modeling), cloud-based analysis tools such as a Bayesian-inference engine, and scenario simulations. These tasks were performed during 2015 as part of the technical work associated with the Advanced Reactor Technologies Program.

  13. Automated pavement horizontal curve measurement methods based on inertial measurement unit and 3D profiling data

    Directory of Open Access Journals (Sweden)

    Wenting Luo

    2016-04-01

    Full Text Available Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU. The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with kinematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.

  14. Face recognition based on matching of local features on 3D dynamic range sequences

    Science.gov (United States)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  15. Mobile gaze-based screen interaction in 3D environments

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Witzner Hansen, Dan

    2011-01-01

    in the field of view of the user is also presented which can be applied in a general scenario in which multiple users can interact with multiple screens. A particular application of using this technique is implemented in a home environment with two big screens and a mobile phone. In this application a user......Head-mounted eye trackers can be used for mobile interaction as well as gaze estimation purposes. This paper presents a method that enables the user to interact with any planar digital display in a 3D environment using a head-mounted eye tracker. An effective method for identifying the screens...

  16. RONI-based steganographic method for 3D scene

    Science.gov (United States)

    Li, Xiao-Wei; Wang, Qiong-Hua

    2017-06-01

    Image steganography is one way of data hiding which provides data security in digital images. The aim is to embed and deliver secret data in digital images without any suspiciousness. However, most of the existing optical image hiding methods ignore the visual quality of the stego-image for improving the robustness of the secret image. To address this issue, in this paper, we present a Region of Non-Interest (RONI) steganographic algorithm to enhance the visual quality of the stego-image. In the proposed method, the carrier image is segmented into Region of Interest (ROI) and RONI. To enhance the visual quality, the 3D image information is embedded into the RONI of the digital images. In order to find appropriate regions for embedding, we use a visual attention model as a means of measuring the ROI of the digital images. The algorithm employs the computational integral imaging (CII) technique to hide the 3D scene in the carrier image. Comparison results show that the proposed technique performs better than some existing state of art techniques.

  17. 3D Printing-Based Integrated Water Quality Sensing System.

    Science.gov (United States)

    Banna, Muinul; Bera, Kaustav; Sochol, Ryan; Lin, Liwei; Najjaran, Homayoun; Sadiq, Rehan; Hoorfar, Mina

    2017-06-08

    The online and accurate monitoring of drinking water supply networks is critically in demand to rapidly detect the accidental or deliberate contamination of drinking water. At present, miniaturized water quality monitoring sensors developed in the laboratories are usually tested under ambient pressure and steady-state flow conditions; however, in Water Distribution Systems (WDS), both the pressure and the flowrate fluctuate. In this paper, an interface is designed and fabricated using additive manufacturing or 3D printing technology-material extrusion (Trade Name: fused deposition modeling, FDM) and material jetting-to provide a conduit for miniaturized sensors for continuous online water quality monitoring. The interface is designed to meet two main criteria: low pressure at the inlet of the sensors and a low flowrate to minimize the water bled (i.e., leakage), despite varying pressure from WDS. To meet the above criteria, a two-dimensional computational fluid dynamics model was used to optimize the geometry of the channel. The 3D printed interface, with the embedded miniaturized pH and conductivity sensors, was then tested at different temperatures and flowrates. The results show that the response of the pH sensor is independent of the flowrate and temperature. As for the conductivity sensor, the flowrate and temperature affect only the readings at a very low conductivity (4 µS/cm) and high flowrates (30 mL/min), and a very high conductivity (460 µS/cm), respectively.

  18. 3D Printing-Based Integrated Water Quality Sensing System

    Directory of Open Access Journals (Sweden)

    Muinul Banna

    2017-06-01

    Full Text Available The online and accurate monitoring of drinking water supply networks is critically in demand to rapidly detect the accidental or deliberate contamination of drinking water. At present, miniaturized water quality monitoring sensors developed in the laboratories are usually tested under ambient pressure and steady-state flow conditions; however, in Water Distribution Systems (WDS, both the pressure and the flowrate fluctuate. In this paper, an interface is designed and fabricated using additive manufacturing or 3D printing technology—material extrusion (Trade Name: fused deposition modeling, FDM and material jetting—to provide a conduit for miniaturized sensors for continuous online water quality monitoring. The interface is designed to meet two main criteria: low pressure at the inlet of the sensors and a low flowrate to minimize the water bled (i.e., leakage, despite varying pressure from WDS. To meet the above criteria, a two-dimensional computational fluid dynamics model was used to optimize the geometry of the channel. The 3D printed interface, with the embedded miniaturized pH and conductivity sensors, was then tested at different temperatures and flowrates. The results show that the response of the pH sensor is independent of the flowrate and temperature. As for the conductivity sensor, the flowrate and temperature affect only the readings at a very low conductivity (4 µS/cm and high flowrates (30 mL/min, and a very high conductivity (460 µS/cm, respectively.

  19. Endoscopic Laser-Based 3D Imaging for Functional Voice Diagnostics

    Directory of Open Access Journals (Sweden)

    Marion Semmler

    2017-06-01

    Full Text Available Recently, we reported on the in vivo application of a miniaturized measuring device for 3D visualization of the superior vocal fold vibrations from high-speed recordings in combination with a laser projection unit (LPU. As a long-term vision for this proof of principle, we strive to integrate the further developed laserendoscopy as a diagnostic method in daily clinical routine. The new LPU mainly comprises a Nd:YAG laser source (532 nm/CW/2 ω and a diffractive optical element (DOE generating a regular laser grid (31 × 31 laser points that is projected on the vocal folds. By means of stereo triangulation, the 3D coordinates of the laser points are reconstructed from the endoscopic high-speed footage. The new design of the laserendoscope constitutes a compromise between robust image processing and laser safety regulations. The algorithms for calibration and analysis are now optimized with respect to their overall duration and the number of required interactions, which is objectively assessed using binary classifiers. The sensitivity and specificity of the calibration procedure are increased by 40.1% and 22.3%, which is statistically significant. The overall duration for the laser point detection is reduced by 41.9%. The suggested semi-automatic reconstruction software represents an important stepping-stone towards potential real time processing and a comprehensive, objective diagnostic tool of evidence-based medicine.

  20. CAD-based intelligent robot system integrated with 3D scanning for shoe roughing and cementing

    National Research Council Canada - National Science Library

    Cheng-Chang Chiu; Wen-Teng Wang; Wan-Shan Yin

    2017-01-01

    ...-in program, integrated with real-time 3D scanning information to compensate the planned route, and then converted to working trajectory of robot arm to implement roughing and cementing. The proposed 3D CAD-based intelligent robot arm system integrated with 3D scanning for shoe roughing and cementing is realized and proved to be feasible.

  1. A Method for Content-Based Searching of 3D Model Databases

    Directory of Open Access Journals (Sweden)

    Jiale Wang

    2008-04-01

    Full Text Available With the development of computer graphics and digitalizing technologies, 3D model databases are becoming ubiquitous. This paper presents a method for content-based searching for similar 3D models in databases. To assess the similarity between 3D models, shape feature information of models must be extracted and compared. We propose a new 3D shape feature extraction algorithm. Experimental results show that the proposed method achieves good retrieval performance with short computation time.

  2. Development of 3D Slicer based film dosimetry analysis

    Science.gov (United States)

    Alexander, K. M.; Robinson, A.; Pinter, C.; Fichtinger, G.; Schreiner, L. J.

    2017-05-01

    Radiochromic film dosimetry has been widely adopted in the clinic as it is a convenient option for dose measurement and verification. Film dosimetry analysis is typically performed using expensive commercial software, or custom made scripts in Matlab. However, common clinical film analysis software is not transparent regarding what corrections/optimizations are running behind the scenes. In this work, an extension to the open-source medical imaging platform 3D Slicer was developed and implemented in our centre for film dosimetry analysis. This extension streamlines importing treatment planning system dose and film imaging data, film calibration, registration, and comparison of 2D dose distributions, enabling greater accessibility to film analysis and higher reliability.

  3. Neurally and ocularly informed graph-based models for searching 3D environments

    Science.gov (United States)

    Jangraw, David C.; Wang, Jun; Lance, Brent J.; Chang, Shih-Fu; Sajda, Paul

    2014-08-01

    Objective. As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions—our implicit ‘labeling’ of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. Approach. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the ‘similar’ objects it identifies. Main results. We show that by exploiting the subjects’ implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers’ inference of subjects’ implicit labeling. Significance. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user’s interests.

  4. Stereo Vision-Based Human Tracking for Robotic Follower

    Directory of Open Access Journals (Sweden)

    Emina Petrović

    2013-05-01

    Full Text Available Abstract This paper addresses the problem of real-time vision-based human tracking to enable mobile robots to follow a human co-worker. A novel approach to combine stereo vision-based human detection with human tracking using a modified Kalman filter is presented. Stereo vision-based detection combines features extracted from 2D stereo images with reconstructed 3D object features to detect humans in a robot's environment. For human tracking a modified Kalman filter recursively predicts and updates estimates of the 3D coordinates of a human in the robot's camera coordinate system. This prediction enables human detection to be performed on the image region of interest contributing to cost effective human tracking. The performance of the presented method was tested within a working scenario of a mobile robot intended to follow a human co-worker in indoor applications as well as in outdoor applications.

  5. 3D model retrieve based on K-means clustering

    Science.gov (United States)

    Jing, Hui; Huang, Meifa; Zhong, Yanru

    2007-11-01

    Owing to its fast speed, simple operation, and strong robustness, Shape Distribution is widely used in search engines. This method, however, only considers distances between the objects' shape distribution histograms and ignores the information included. Actually the information of the shape distribution histograms, such as the mean value, the standard deviation, the kurtosis and the skewness, can be used to map the 3D model. As a result, the retrieval precision of Shape Distribution is low. To enhance the retrieve efficiency, a novel method which employs the K-means clustering method is proposed in this paper. First, the models' shape distribution histograms are established by Shape Distribution method and are normalized as the proper format of K-means clustering method. Then, the objects' shape distribution histograms are served as inputs of K-means clustering method and are classified into certain groups by this algorithm. Last, all the models that belong to the classification of the query model are exported as the retrieval results. A case study is used to validate the proposed method. Experimental results show that the retrieval precision by using the proposed method is higher than that of the Shape Distribution method.

  6. An Overview of 3d Topology for Ladm-Based Objects

    Science.gov (United States)

    Zulkifli, N. A.; Rahman, A. A.; van Oosterom, P.

    2015-10-01

    This paper reviews 3D topology within Land Administration Domain Model (LADM) international standard. It is important to review characteristic of the different 3D topological models and to choose the most suitable model for certain applications. The characteristic of the different 3D topological models are based on several main aspects (e.g. space or plane partition, used primitives, constructive rules, orientation and explicit or implicit relationships). The most suitable 3D topological model depends on the type of application it is used for. There is no single 3D topology model best suitable for all types of applications. Therefore, it is very important to define the requirements of the 3D topology model. The context of this paper is a 3D topology for LADM-based objects.

  7. An Innovative 3D Ultrasonic Actuator with Multidegree of Freedom for Machine Vision and Robot Guidance Industrial Applications Using a Single Vibration Ring Transducer

    Directory of Open Access Journals (Sweden)

    M. Shafik

    2013-07-01

    Full Text Available This paper presents an innovative 3D piezoelectric ultrasonic actuator using a single flexural vibration ring transducer, for machine vision and robot guidance industrial applications. The proposed actuator is principally aiming to overcome the visual spotlight focus angle of digital visual data capture transducer, digital cameras and enhance the machine vision system ability to perceive and move in 3D. The actuator Design, structures, working principles and finite element analysis are discussed in this paper. A prototype of the actuator was fabricated. Experimental tests and measurements showed the ability of the developed prototype to provide 3D motions of Multidegree of freedom, with typical speed of movement equal to 35 revolutions per minute, a resolution of less than 5μm and maximum load of 3.5 Newton. These initial characteristics illustrate, the potential of the developed 3D micro actuator to gear the spotlight focus angle issue of digital visual data capture transducers and possible improvement that such technology could bring to the machine vision and robot guidance industrial applications.

  8. CAD-based intelligent robot system integrated with 3D scanning for shoe roughing and cementing

    Directory of Open Access Journals (Sweden)

    Chiu Cheng-Chang

    2017-01-01

    Full Text Available Roughing and cementing are very essential to the process of bonding shoe uppers and the corresponding soles; however, for shoes with complicated design, such as sport shoes, roughing and cementing greatly relied on manual operation. Recently, shoe industry is progressing to 3D design, thus 3D model of the shoe upper and sole will be created before launching into mass production. Taking advantage of the 3D model, this study developed a plug-in program on Rhino 3D CAD platform, which realized the complicated roughing and cementing route planning to be performed by the plug-in program, integrated with real-time 3D scanning information to compensate the planned route, and then converted to working trajectory of robot arm to implement roughing and cementing. The proposed 3D CAD-based intelligent robot arm system integrated with 3D scanning for shoe roughing and cementing is realized and proved to be feasible.

  9. Frameless neuronavigation based only on 3D digital subtraction angiography using surface-based facial registration.

    Science.gov (United States)

    Stidd, David A; Wewel, Joshua; Ghods, Ali J; Munich, Stephan; Serici, Anthony; Keigher, Kiffon M; Theessen, Heike; Moftakhar, Roham; Lopes, Demetrius K

    2014-09-01

    Cerebrovascular lesions can have complicated abnormal anatomy that is not completely characterized by CT or MR angiography. Although 3D rotational angiography provides superior spatial and temporal resolution, catheter angiograms are not easily registered to the patient, limiting the use of these images as a source for neuronavigation. However, 3D digital subtraction angiography (DSA) contains not only vascular anatomy but also facial surface anatomy data. The authors report a novel technique to register 3D DSA images by using only the surface anatomy contained within the data set without having to fuse the DSA image set to other imaging modalities or use fiducial markers. A cadaver model was first created to assess the accuracy of neuronavigation based on 3D DSA images registered by facial surface anatomy. A 3D DSA scan was obtained of a formalin-fixed cadaver head, with acquisitions of mask and contrast runs. The right common carotid artery was injected prior to the contrast run with a 45% contrast solution diluted with water-soluble red liquid latex. One week later, the head was registered to a neuronavigation system loaded with the 3D DSA images acquired earlier using facial surface anatomy. A right pterional craniotomy was performed and 10 different vascular landmarks were identified and measured for accuracy using the neuronavigation system. Neuronavigation based only on 3D DSA was then used to guide an open clipping procedure for a patient who presented with a ruptured distal lenticulostriate aneurysm. The accuracy of the measurements for the cadaver model was 0.71 ± 0.25 mm (mean ± SE), which is superior to the 1.8-5 mm reported for neuronavigation. The 3D DSA-based navigation-assisted surgery for the distal lenticulostriate aneurysm aided in localization, resulting in a small craniotomy and minimal brain dissection. This is the first example of frameless neuronavigation based on 3D catheter angiography registered by only the surface anatomy data

  10. Surface-Area-Based Attribute Filtering in 3D

    NARCIS (Netherlands)

    Kiwanuka, F.N.; Ouzounis, G.K.; Wilkinson, M.H.F.; Wilkinson, MHF; Roerdink, JBTM

    2009-01-01

    In this paper we describe a rotation-invariant attribute filter based on estimating the sphericity or roundness of objects by efficiently computing surface area and volume of connected components. The method is based on an efficient algorithm to compute all iso-surfaces of all nodes in a Max-Tree.

  11. Disparity pattern-based autostereoscopic 3D metrology system for in situ measurement of microstructured surfaces.

    Science.gov (United States)

    Li, Da; Cheung, Chi Fai; Ren, MingJun; Whitehouse, David; Zhao, Xing

    2015-11-15

    This paper presents a disparity pattern-based autostereoscopic (DPA) 3D metrology system that makes use of a microlens array to capture raw 3D information of the measured surface in a single snapshot through a CCD camera. Hence, a 3D digital model of the target surface with the measuring data is generated through a system-associated direct extraction of disparity information (DEDI) method. The DEDI method is highly efficient for performing the direct 3D mapping of the target surface based on tomography-like operation upon every depth plane with the defocused information excluded. Precise measurement results are provided through an error-elimination process based on statistical analysis. Experimental results show that the proposed DPA 3D metrology system is capable of measuring 3D microstructured surfaces with submicrometer measuring repeatability for high precision and in situ measurement of microstructured surfaces.

  12. A QUADTREE ORGANIZATION CONSTRUCTION AND SCHEDULING METHOD FOR URBAN 3D MODEL BASED ON WEIGHT

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.

  13. a Quadtree Organization Construction and Scheduling Method for Urban 3d Model Based on Weight

    Science.gov (United States)

    Yao, C.; Peng, G.; Song, Y.; Duan, M.

    2017-09-01

    The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.

  14. Streaming video-based 3D reconstruction method compatible with existing monoscopic and stereoscopic endoscopy systems

    Science.gov (United States)

    Bouma, Henri; van der Mark, Wannes; Eendebak, Pieter T.; Landsmeer, Sander H.; van Eekeren, Adam W. M.; ter Haar, Frank B.; Wieringa, F. Pieter; van Basten, Jean-Paul

    2012-06-01

    Compared to open surgery, minimal invasive surgery offers reduced trauma and faster recovery. However, lack of direct view limits space perception. Stereo-endoscopy improves depth perception, but is still restricted to the direct endoscopic field-of-view. We describe a novel technology that reconstructs 3D-panoramas from endoscopic video streams providing a much wider cumulative overview. The method is compatible with any endoscope. We demonstrate that it is possible to generate photorealistic 3D-environments from mono- and stereoscopic endoscopy. The resulting 3D-reconstructions can be directly applied in simulators and e-learning. Extended to real-time processing, the method looks promising for telesurgery or other remote vision-guided tasks.

  15. Future of photorefractive based holographic 3D display

    Science.gov (United States)

    Blanche, P.-A.; Bablumian, A.; Voorakaranam, R.; Christenson, C.; Lemieux, D.; Thomas, J.; Norwood, R. A.; Yamamoto, M.; Peyghambarian, N.

    2010-02-01

    The very first demonstration of our refreshable holographic display based on photorefractive polymer was published in Nature early 20081. Based on the unique properties of a new organic photorefractive material and the holographic stereography technique, this display addressed a gap between large static holograms printed in permanent media (photopolymers) and small real time holographic systems like the MIT holovideo. Applications range from medical imaging to refreshable maps and advertisement. Here we are presenting several technical solutions for improving the performance parameters of the initial display from an optical point of view. Full color holograms can be generated thanks to angular multiplexing, the recording time can be reduced from minutes to seconds with a pulsed laser, and full parallax hologram can be recorded in a reasonable time thanks to parallel writing. We also discuss the future of such a display and the possibility of video rate.

  16. Learning in 3-D Multiuser Virtual Environments: Exploring the Use of Unique 3-D Attributes for Online Problem-Based Learning

    Science.gov (United States)

    Omale, Nicholas; Hung, Wei-Chen; Luetkehans, Lara; Cooke-Plagwitz, Jessamine

    2009-01-01

    The purpose of this article is to present the results of a study conducted to investigate how the attributes of 3-D technology such as avatars, 3-D space, and comic style bubble dialogue boxes affect participants' social, cognitive, and teaching presences in a blended problem-based learning environment. The community of inquiry model was adopted…

  17. Depth-based Multi-View 3D Video Coding

    DEFF Research Database (Denmark)

    Zamarin, Marco

    on edge-preserving solutions. In a proposed scheme, texture-depth correlation is exploited to predict surface shapes in the depth signal. In this way depth coding performance can be improved in terms of both compression gain and edge-preservation. Another solution proposes a new intra coding mode targeted...... to depth blocks featuring arbitrarily-shaped edges. Edge information is encoded exploiting previously coded edge blocks. Integrated in H.264/AVC, the proposed mode allows significant bit rate savings compared with a number of state-of-the-art depth codecs. View synthesis performances are also improved......, both in terms of objective and visual evaluations. Depth coding based on standard H.264/AVC is explored for multi-view plus depth image coding. A single depth map is used to disparity-compensate multiple views and allow more efficient coding than H.264 MVC at low bit rates. Lossless coding of depth...

  18. ERROR DETECTION BY ANTICIPATION FOR VISION-BASED CONTROL

    Directory of Open Access Journals (Sweden)

    A ZAATRI

    2001-06-01

    Full Text Available A vision-based control system has been developed.  It enables a human operator to remotely direct a robot, equipped with a camera, towards targets in 3D space by simply pointing on their images with a pointing device. This paper presents an anticipatory system, which has been designed for improving the safety and the effectiveness of the vision-based commands. It simulates these commands in a virtual environment. It attempts to detect hard contacts that may occur between the robot and its environment, which can be caused by machine errors or operator errors as well.

  19. Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.

    Science.gov (United States)

    Xin, Pengfei; Yu, Hongbo; Cheng, Huanchong; Shen, Shunyao; Shen, Steve G F

    2013-09-01

    The aim of this study was to demonstrate the feasibility of building a craniofacial virtual reality model by image fusion of 3-dimensional (3D) CT models and 3 dMD stereophotogrammetric facial surface. A CT scan and stereophotography were performed. The 3D CT models were reconstructed by Materialise Mimics software, and the stereophotogrammetric facial surface was reconstructed by 3 dMD patient software. All 3D CT models were exported as Stereo Lithography file format, and the 3 dMD model was exported as Virtual Reality Modeling Language file format. Image registration and fusion were performed in Mimics software. Genetic algorithm was used for precise image fusion alignment with minimum error. The 3D CT models and the 3 dMD stereophotogrammetric facial surface were finally merged into a single file and displayed using Deep Exploration software. Errors between the CT soft tissue model and 3 dMD facial surface were also analyzed. Virtual model based on CT-3 dMD image fusion clearly showed the photorealistic face and bone structures. Image registration errors in virtual face are mainly located in bilateral cheeks and eyeballs, and the errors are more than 1.5 mm. However, the image fusion of whole point cloud sets of CT and 3 dMD is acceptable with a minimum error that is less than 1 mm. The ease of use and high reliability of CT-3 dMD image fusion allows the 3D virtual head to be an accurate, realistic, and widespread tool, and has a great benefit to virtual face model.

  20. A cross-platform solution for light field based 3D telemedicine.

    Science.gov (United States)

    Wang, Gengkun; Xiang, Wei; Pickering, Mark

    2016-03-01

    Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. 3D, wideband vibro-impacting-based piezoelectric energy harvester

    Directory of Open Access Journals (Sweden)

    Qiangmo Yu

    2015-04-01

    Full Text Available An impacting-based piezoelectric energy harvester was developed to address the limitations of the existing approaches in single-dimensional operation as well as a narrow working bandwidth. In the harvester, a spiral cylindrical spring rather than the conventional thin cantilever beam was utilized to extract the external vibration with arbitrary directions, which has the capability to impact the surrounding piezoelectric beams to generate electricity. And the introduced vibro-impacting between the spiral cylindrical spring and multi-piezoelectric-beams resulted in not only a three-dimensional response to external vibration, but also a bandwidth-broadening behavior. The experimental results showed that each piezoelectric beam exhibited a maximum bandwidth of 8 Hz and power of 41 μW with acceleration of 1 g (with g=9.8 ms−2 along the z-axis, and corresponding average values of 5 Hz and 45 μW with acceleration of 0.6 g in the x-y plane.

  2. 3D, wideband vibro-impacting-based piezoelectric energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qiangmo; Yang, Jin, E-mail: yangjin@cqu.edu.cn; Yue, Xihai; Yang, Aichao; Zhao, Jiangxin; Zhao, Nian; Wen, Yumei; Li, Ping [Department of Optoelectronic Engineering, Research Center of Sensors and Instruments, Chongqing University, Chongqing 400044 (China)

    2015-04-15

    An impacting-based piezoelectric energy harvester was developed to address the limitations of the existing approaches in single-dimensional operation as well as a narrow working bandwidth. In the harvester, a spiral cylindrical spring rather than the conventional thin cantilever beam was utilized to extract the external vibration with arbitrary directions, which has the capability to impact the surrounding piezoelectric beams to generate electricity. And the introduced vibro-impacting between the spiral cylindrical spring and multi-piezoelectric-beams resulted in not only a three-dimensional response to external vibration, but also a bandwidth-broadening behavior. The experimental results showed that each piezoelectric beam exhibited a maximum bandwidth of 8 Hz and power of 41 μW with acceleration of 1 g (with g=9.8 ms{sup −2}) along the z-axis, and corresponding average values of 5 Hz and 45 μW with acceleration of 0.6 g in the x-y plane. .

  3. Precise 3D Lug Pose Detection Sensor for Automatic Robot Welding Using a Structured-Light Vision System

    National Research Council Canada - National Science Library

    Park, Jae Byung; Lee, Seung Hun; Lee, Il Jae

    2009-01-01

    In this study, we propose a precise 3D lug pose detection sensor for automatic robot welding of a lug to a huge steel plate used in shipbuilding, where the lug is a handle to carry the huge steel plate...

  4. Indoor 3D Route Modeling Based On Estate Spatial Data

    Science.gov (United States)

    Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.

    2014-04-01

    Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.

  5. 3D Path Planning of UAV Based on Improved A * Algorithm

    Directory of Open Access Journals (Sweden)

    Tian Zhe-Tong

    2017-01-01

    Full Text Available A 3D path planning method based on A* algorithm is proposed. This method introduces the constraints of UAV and line-of-sight communication with ground stations, and it combines the UAV’s maneuverability, mission requirements and terrain information and other constraints together to avoid terrain and threat. The method of extending the child nodes to the 3D detailed position calculation is also provided. The simulation is realized by Unity 3D software, and the simulation results show that the proposed method can be used to plan the 3D path of UAV which meets UAV constraints.

  6. 3D Scan-Based Wavelet Transform and Quality Control for Video Coding

    OpenAIRE

    Parisot Christophe; Antonini Marc; Barlaud Michel

    2003-01-01

    Wavelet coding has been shown to achieve better compression than DCT coding and moreover allows scalability. 2D DWT can be easily extended to 3D and thus applied to video coding. However, 3D subband coding of video suffers from two drawbacks. The first is the amount of memory required for coding large 3D blocks; the second is the lack of temporal quality due to the sequence temporal splitting. In fact, 3D block-based video coders produce jerks. They appear at blocks temporal borders during v...

  7. A new multi-planar reconstruction method using voxel based beamforming for 3D ultrasound imaging

    Science.gov (United States)

    Ju, Hyunseok; Kang, Jinbum; Song, Ilseob; Yoo, Yangmo

    2015-03-01

    For multi-planar reconstruction in 3D ultrasound imaging, direct and separable 3D scan conversion (SC) have been used for transforming the ultrasound data acquired in the 3D polar coordinate system to the 3D Cartesian coordinate system. These 3D SC methods can visualize an arbitrary plane for 3D ultrasound volume data. However, they suffer from blurring and blocking artifacts due to resampling during SC. In this paper, a new multi-planar reconstruction method based on voxel based beamforming (VBF) is proposed for reducing blurring and blocking artifacts. In VBF, unlike direct and separable 3D SC, each voxel on an arbitrary imaging plane is directly reconstructed by applying the focusing delay to radio-frequency (RF) data so that the blurring and blocking artifacts can be removed. From the phantom study, the proposed VBF method showed the higher contrast and less blurring compared to the separable and direct 3D SC methods. This result is consistent with the measured information entropy contrast (IEC) values, i.e., 98.9 vs. 42.0 vs. 47.9, respectively. In addition, the 3D SC methods and VBF method were implemented on a high-end GPU by using CUDA programming. The execution times for the VBF and direct 3D SC methods are 1656.1ms, 1633.3ms and 1631.4ms, which are I/O bounded. These results indicate that the proposed VBF method can improve image quality of 3D ultrasound B-mode imaging by removing blurring and blocking artifacts associated with 3D scan conversion and show the feasibility of pseudo-real-time operation.

  8. Comprehensive evaluation of latest 2D/3D monitors and comparison to a custom-built 3D mirror-based display in laparoscopic surgery

    Science.gov (United States)

    Wilhelm, Dirk; Reiser, Silvano; Kohn, Nils; Witte, Michael; Leiner, Ulrich; Mühlbach, Lothar; Ruschin, Detlef; Reiner, Wolfgang; Feussner, Hubertus

    2014-03-01

    Though theoretically superior, 3D video systems did not yet achieve a breakthrough in laparoscopic surgery. Furthermore, visual alterations, such as eye strain, diplopia and blur have been associated with the use of stereoscopic systems. Advancements in display and endoscope technology motivated a re-evaluation of such findings. A randomized study on 48 test subjects was conducted to investigate whether surgeons can benefit from using most current 3D visualization systems. Three different 3D systems, a glasses-based 3D monitor, an autostereoscopic display and a mirror-based theoretically ideal 3D display were compared to a state-of-the-art 2D HD system. The test subjects split into a novice and an expert surgeon group, which high experience in laparoscopic procedures. Each of them had to conduct a well comparable laparoscopic suturing task. Multiple performance parameters like task completion time and the precision of stitching were measured and compared. Electromagnetic tracking provided information on the instruments path length, movement velocity and economy. The NASA task load index was used to assess the mental work load. Subjective ratings were added to assess usability, comfort and image quality of each display. Almost all performance parameters were superior for the 3D glasses-based display as compared to the 2D and the autostereoscopic one, but were often significantly exceeded by the mirror-based 3D display. Subjects performed the task at average 20% faster and with a higher precision. Work-load parameters did not show significant differences. Experienced and non-experienced laparoscopists profited equally from 3D. The 3D mirror system gave clear evidence for additional potential of 3D visualization systems with higher resolution and motion parallax presentation.

  9. Stereo vision calibration based on GMDH neural network.

    Science.gov (United States)

    Chen, Bingwen; Wang, Wenwei; Qin, Qianqing

    2012-03-01

    In order to improve the accuracy and stability of stereo vision calibration, a novel stereo vision calibration approach based on the group method of data handling (GMDH) neural network is presented. Three GMDH neural networks are utilized to build a spatial mapping relationship adaptively in individual dimension. In the process of modeling, the Levenberg-Marquardt optimization algorithm is introduced as an interior criterion to train each partial model, and the corrected Akaike's information criterion is introduced as an exterior criterion to evaluate these models. Experiments demonstrate that the proposed approach is stable and able to calibrate three-dimensional (3D) locations more accurately and learn the stereo mapping models adaptively. It is a convenient way to calibrate the stereo vision without specialized knowledge of stereo vision. © 2012 Optical Society of America

  10. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    Science.gov (United States)

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.

  11. a Smartphone-Based 3d Pipeline for the Creative Industry - the Replicate EU Project

    Science.gov (United States)

    Nocerino, E.; Lago, F.; Morabito, D.; Remondino, F.; Porzi, L.; Poiesi, F.; Rota Bulo, S.; Chippendale, P.; Locher, A.; Havlena, M.; Van Gool, L.; Eder, M.; Fötschl, A.; Hilsmann, A.; Kausch, L.; Eisert, P.

    2017-02-01

    During the last two decades we have witnessed great improvements in ICT hardware and software technologies. Three-dimensional content is starting to become commonplace now in many applications. Although for many years 3D technologies have been used in the generation of assets by researchers and experts, nowadays these tools are starting to become commercially available to every citizen. This is especially the case for smartphones, that are powerful enough and sufficiently widespread to perform a huge variety of activities (e.g. paying, calling, communication, photography, navigation, localization, etc.), including just very recently the possibility of running 3D reconstruction pipelines. The REPLICATE project is tackling this particular issue, and it has an ambitious vision to enable ubiquitous 3D creativity via the development of tools for mobile 3D-assets generation on smartphones/tablets. This article presents the REPLICATE project's concept and some of the ongoing activities, with particular attention being paid to advances made in the first year of work. Thus the article focuses on the system architecture definition, selection of optimal frames for 3D cloud reconstruction, automated generation of sparse and dense point clouds, mesh modelling techniques and post-processing actions. Experiments so far were concentrated on indoor objects and some simple heritage artefacts, however, in the long term we will be targeting a larger variety of scenarios and communities.

  12. 3D Printing Factors Important for the Fabrication of Polyvinylalcohol Filament-Based Tablets.

    Science.gov (United States)

    Tagami, Tatsuaki; Fukushige, Kaori; Ogawa, Emi; Hayashi, Naomi; Ozeki, Tetsuya

    2017-01-01

    Three-dimensional (3D) printers have been applied in many fields, including engineering and the medical sciences. In the pharmaceutical field, approval of the first 3D-printed tablet by the U.S. Food and Drug Administration in 2015 has attracted interest in the manufacture of tablets and drugs by 3D printing techniques as a means of delivering tailor-made drugs in the future. In current study, polyvinylalcohol (PVA)-based tablets were prepared using a fused-deposition-modeling-type 3D printer and the effect of 3D printing conditions on tablet production was investigated. Curcumin, a model drug/fluorescent marker, was loaded into PVA-filament. We found that several printing parameters, such as the rate of extruding PVA (flow rate), can affect the formability of the resulting PVA-tablets. The 3D-printing temperature is controlled by heating the print nozzle and was shown to affect the color of the tablets and their curcumin content. PVA-based infilled tablets with different densities were prepared by changing the fill density as a printing parameter. Tablets with lower fill density floated in an aqueous solution and their curcumin content tended to dissolve faster. These findings will be useful in developing drug-loaded PVA-based 3D objects and other polymer-based articles prepared using fused-deposition-modeling-type 3D printers.

  13. Novel Aerial 3D Mapping System Based on UAV Platforms and 2D Laser Scanners

    National Research Council Canada - National Science Library

    Roca, David; Martínez-Sánchez, Joaquín; Lagüela, Susana; Arias, Pedro

    2016-01-01

    .... This paper presents a novel Aerial 3D Mapping System based on a copter-type platform, where a 2D laser scanner is integrated with a GNSS sensor and an IMU for the generation of georeferenced 3D point clouds...

  14. Literary and Historical 3D Digital Game-Based Learning: Design Guidelines

    Science.gov (United States)

    Neville, David O.; Shelton, Brett E.

    2010-01-01

    As 3D digital game-based learning (3D-DGBL) for the teaching of literature and history gradually gains acceptance, important questions will need to be asked regarding its method of design, development, and deployment. This article offers a synthesis of contemporary pedagogical, instructional design, new media, and literary-historical theories to…

  15. Probabilistic View-based 3D Curve Skeleton Computation on the GPU

    NARCIS (Netherlands)

    Kustra, Jacek; Jalba, Andrei; Telea, Alexandru

    2013-01-01

    Computing curve skeletons of 3D shapes is a challenging task. Recently, a high-potential technique for this task was proposed, based on integrating medial information obtained from several 2D projections of a 3D shape. However effective, this technique is strongly influenced in terms of complexity

  16. Isotropic 3D cardiac cine MRI allows efficient sparse segmentation strategies based on 3D surface reconstruction.

    Science.gov (United States)

    Odille, Freddy; Bustin, Aurélien; Liu, Shufang; Chen, Bailiang; Vuissoz, Pierre-André; Felblinger, Jacques; Bonnemains, Laurent

    2017-10-02

    Segmentation of cardiac cine MRI data is routinely used for the volumetric analysis of cardiac function. Conventionally, 2D contours are drawn on short-axis (SAX) image stacks with relatively thick slices (typically 8 mm). Here, an acquisition/reconstruction strategy is used for obtaining isotropic 3D cine datasets; reformatted slices are then used to optimize the manual segmentation workflow. Isotropic 3D cine datasets were obtained from multiple 2D cine stacks (acquired during free-breathing in SAX and long-axis (LAX) orientations) using nonrigid motion correction (cine-GRICS method) and super-resolution. Several manual segmentation strategies were then compared, including conventional SAX segmentation, LAX segmentation in three views only, and combinations of SAX and LAX slices. An implicit B-spline surface reconstruction algorithm is proposed to reconstruct the left ventricular cavity surface from the sparse set of 2D contours. All tested sparse segmentation strategies were in good agreement, with Dice scores above 0.9 despite using fewer slices (3-6 sparse slices instead of 8-10 contiguous SAX slices). When compared to independent phase-contrast flow measurements, stroke volumes computed from four or six sparse slices had slightly higher precision than conventional SAX segmentation (error standard deviation of 5.4 mL against 6.1 mL) at the cost of slightly lower accuracy (bias of -1.2 mL against 0.2 mL). Functional parameters also showed a trend to improved precision, including end-diastolic volumes, end-systolic volumes, and ejection fractions). The postprocessing workflow of 3D isotropic cardiac imaging strategies can be optimized using sparse segmentation and 3D surface reconstruction. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. 3D-Lab: a collaborative web-based platform for molecular modeling.

    Science.gov (United States)

    Grebner, Christoph; Norrby, Magnus; Enström, Jonatan; Nilsson, Ingemar; Hogner, Anders; Henriksson, Jonas; Westin, Johan; Faramarzi, Farzad; Werner, Philip; Boström, Jonas

    2016-09-01

    The use of 3D information has shown impact in numerous applications in drug design. However, it is often under-utilized and traditionally limited to specialists. We want to change that, and present an approach making 3D information and molecular modeling accessible and easy-to-use 'for the people'. A user-friendly and collaborative web-based platform (3D-Lab) for 3D modeling, including a blazingly fast virtual screening capability, was developed. 3D-Lab provides an interface to automatic molecular modeling, like conformer generation, ligand alignments, molecular dockings and simple quantum chemistry protocols. 3D-Lab is designed to be modular, and to facilitate sharing of 3D-information to promote interactions between drug designers. Recent enhancements to our open-source virtual reality tool Molecular Rift are described. The integrated drug-design platform allows drug designers to instantaneously access 3D information and readily apply advanced and automated 3D molecular modeling tasks, with the aim to improve decision-making in drug design projects.

  18. 3D printing of intracranial artery stenosis based on the source images of magnetic resonance angiograph.

    Science.gov (United States)

    Xu, Wei-Hai; Liu, Jia; Li, Ming-Li; Sun, Zhao-Yong; Chen, Jie; Wu, Jian-Huang

    2014-08-01

    Three dimensional (3D) printing techniques for brain diseases have not been widely studied. We attempted to 'print' the segments of intracranial arteries based on magnetic resonance imaging. Three dimensional magnetic resonance angiography (MRA) was performed on two patients with middle cerebral artery (MCA) stenosis. Using scale-adaptive vascular modeling, 3D vascular models were constructed from the MRA source images. The magnified (ten times) regions of interest (ROI) of the stenotic segments were selected and fabricated by a 3D printer with a resolution of 30 µm. A survey to 8 clinicians was performed to evaluate the accuracy of 3D printing results as compared with MRA findings (4 grades, grade 1: consistent with MRA and provide additional visual information; grade 2: consistent with MRA; grade 3: not consistent with MRA; grade 4: not consistent with MRA and provide probable misleading information). If a 3D printing vessel segment was ideally matched to the MRA findings (grade 2 or 1), a successful 3D printing was defined. Seven responders marked "grade 1" to 3D printing results, while one marked "grade 4". Therefore, 87.5% of the clinicians considered the 3D printing were successful. Our pilot study confirms the feasibility of using 3D printing technique in the research field of intracranial artery diseases. Further investigations are warranted to optimize this technique and translate it into clinical practice.

  19. 3D modeling of geological anomalies based on segmentation of multiattribute fusion

    Science.gov (United States)

    Liu, Zhi-Ning; Song, Cheng-Yun; Li, Zhi-Yong; Cai, Han-Peng; Yao, Xing-Miao; Hu, Guang-Min

    2016-09-01

    3D modeling of geological bodies based on 3D seismic data is used to define the shape and volume of the bodies, which then can be directly applied to reservoir prediction, reserve estimation, and exploration. However, multiattributes are not effectively used in 3D modeling. To solve this problem, we propose a novel method for building of 3D model of geological anomalies based on the segmentation of multiattribute fusion. First, we divide the seismic attributes into edge- and region-based seismic attributes. Then, the segmentation model incorporating the edge- and region-based models is constructed within the levelset-based framework. Finally, the marching cubes algorithm is adopted to extract the zero level set based on the segmentation results and build the 3D model of the geological anomaly. Combining the edge-and region-based attributes to build the segmentation model, we satisfy the independence requirement and avoid the problem of insufficient data of single seismic attribute in capturing the boundaries of geological anomalies. We apply the proposed method to seismic data from the Sichuan Basin in southwestern China and obtain 3D models of caves and channels. Compared with 3D models obtained based on single seismic attributes, the results are better agreement with reality.

  20. 3D-TV System with Depth-Image-Based Rendering Architectures, Techniques and Challenges

    CERN Document Server

    Zhao, Yin; Yu, Lu; Tanimoto, Masayuki

    2013-01-01

    Riding on the success of 3D cinema blockbusters and advances in stereoscopic display technology, 3D video applications have gathered momentum in recent years. 3D-TV System with Depth-Image-Based Rendering: Architectures, Techniques and Challenges surveys depth-image-based 3D-TV systems, which are expected to be put into applications in the near future. Depth-image-based rendering (DIBR) significantly enhances the 3D visual experience compared to stereoscopic systems currently in use. DIBR techniques make it possible to generate additional viewpoints using 3D warping techniques to adjust the perceived depth of stereoscopic videos and provide for auto-stereoscopic displays that do not require glasses for viewing the 3D image.   The material includes a technical review and literature survey of components and complete systems, solutions for technical issues, and implementation of prototypes. The book is organized into four sections: System Overview, Content Generation, Data Compression and Transmission, and 3D V...

  1. Low-Complexity Multiple Description Coding of Video Based on 3D Block Transforms

    Directory of Open Access Journals (Sweden)

    Andrey Norkin

    2007-02-01

    Full Text Available The paper presents a multiple description (MD video coder based on three-dimensional (3D transforms. Two balanced descriptions are created from a video sequence. In the encoder, video sequence is represented in a form of coarse sequence approximation (shaper included in both descriptions and residual sequence (details which is split between two descriptions. The shaper is obtained by block-wise pruned 3D-DCT. The residual sequence is coded by 3D-DCT or hybrid, LOT+DCT, 3D-transform. The coding scheme is targeted to mobile devices. It has low computational complexity and improved robustness of transmission over unreliable networks. The coder is able to work at very low redundancies. The coding scheme is simple, yet it outperforms some MD coders based on motion-compensated prediction, especially in the low-redundancy region. The margin is up to 3 dB for reconstruction from one description.

  2. Embedded 3D Graphics Core for FPGA-based System-on-Chip Applications

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik

    2005-01-01

    This paper presents a 3D graphics accelerator core for an FPGA based system, and illustrates how to build a System-on-Chip containing a Xilinx MicroBlaze soft-core CPU and our 3D graphics accelerator core. The system is capable of running uClinux and hardware accelerated 3D graphics applications...... such as a VRML viewer. The 3D graphics core is connected to a PLB 64-bit on-chip bus, and can render graphics into an on-chip tile buffer, which is later copied, using bus-master DMA transfers, to the frame-buffer in external DDR SDRAM memory. This memory is shared between the CPU, the 3D graphics core...... consumption is reduced as well. We show how an FPGA based embedded system is capable of most tasks in a single chip solution, without requiring additional CPU or graphics chips....

  3. Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules.

    Science.gov (United States)

    Ahn, Geunseon; Min, Kyung-Hyun; Kim, Changhwan; Lee, Jeong-Seok; Kang, Donggu; Won, Joo-Yun; Cho, Dong-Woo; Kim, Jun-Young; Jin, Songwan; Yun, Won-Soo; Shim, Jin-Hyung

    2017-08-17

    Three-dimensional (3D) cell printing systems allow the controlled and precise deposition of multiple cells in 3D constructs. Hydrogel materials have been used extensively as printable bioinks owing to their ability to safely encapsulate living cells. However, hydrogel-based bioinks have drawbacks for cell printing, e.g. inappropriate crosslinking and liquid-like rheological properties, which hinder precise 3D shaping. Therefore, in this study, we investigated the influence of various factors (e.g. bioink concentration, viscosity, and extent of crosslinking) on cell printing and established a new 3D cell printing system equipped with heating modules for the precise stacking of decellularized extracellular matrix (dECM)-based 3D cell-laden constructs. Because the pH-adjusted bioink isolated from native tissue is safely gelled at 37 °C, our heating system facilitated the precise stacking of dECM bioinks by enabling simultaneous gelation during printing. We observed greater printability compared with that of a non-heating system. These results were confirmed by mechanical testing and 3D construct stacking analyses. We also confirmed that our heating system did not elicit negative effects, such as cell death, in the printed cells. Conclusively, these results hold promise for the application of 3D bioprinting to tissue engineering and drug development.

  4. Appearance-Based Vision and the Automatic Generation of Object Recognition Programs

    Science.gov (United States)

    1992-07-01

    rcess of identification and localizatio The BONSAI system of Flynn and Jain 71 identifies and localizes 3D objects in range images by comparing rela...Workshop on Directions In Automated CAD-Based Vision, pp. 3443 (1991). [71 Flynn, P J. and Jam, A. K. BONSAI : 3D object recognition using constrained

  5. The National 3-D Geospatial Information Web-Based Service of Korea

    Science.gov (United States)

    Lee, D. T.; Kim, C. W.; Kang, I. G.

    2013-09-01

    3D geospatial information systems should provide efficient spatial analysis tools and able to use all capabilities of the third dimension, and a visualization. Currently, many human activities make steps toward the third dimension like land use, urban and landscape planning, cadastre, environmental monitoring, transportation monitoring, real estate market, military applications, etc. To reflect this trend, the Korean government has been started to construct the 3D geospatial data and service platform. Since the geospatial information was introduced in Korea, the construction of geospatial information (3D geospatial information, digital maps, aerial photographs, ortho photographs, etc.) has been led by the central government. The purpose of this study is to introduce the Korean government-lead 3D geospatial information web-based service for the people who interested in this industry and we would like to introduce not only the present conditions of constructed 3D geospatial data but methodologies and applications of 3D geospatial information. About 15% (about 3,278.74 km2) of the total urban area's 3D geospatial data have been constructed by the national geographic information institute (NGII) of Korea from 2005 to 2012. Especially in six metropolitan cities and Dokdo (island belongs to Korea) on level of detail (LOD) 4 which is photo-realistic textured 3D models including corresponding ortho photographs were constructed in 2012. In this paper, we represented web-based 3D map service system composition and infrastructure and comparison of V-world with Google Earth service will be presented. We also represented Open API based service cases and discussed about the protection of location privacy when we construct 3D indoor building models. In order to prevent an invasion of privacy, we processed image blurring, elimination and camouflage. The importance of public-private cooperation and advanced geospatial information policy is emphasized in Korea. Thus, the progress of

  6. A new way of modeling 3D entities based on raster technique

    Science.gov (United States)

    Liu, Yining; Fei, Lifan; Lan, Qiuping

    2009-10-01

    In recent years, the study of 3D spatial models has been developed rapidly, but most of the models are applied to 3D visualization or orebody modeling. They can only provide limited functionality and operations of spatial analysis. To solve this problem, this paper firstly analyzes the characteristics of 3D entities and their demands of modeling, and proposes the method of modeling the exterior surfaces instead of the solid entities themselves using regular volume elements, hence it has offered a new way of modeling 3D entities, which is based on raster technique, in order to make promising preparations for 3D spatial analyses, such as the sunlight analysis. Through preliminary visualization experiments taking the entities with common geometric shapes, simpler and complexer buildings as examples, the feasibility of this modeling method has been proved.

  7. 3D Modeling of Transformer Substation Based on Mapping and 2D Images

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2016-01-01

    Full Text Available A new method for building 3D models of transformer substation based on mapping and 2D images is proposed in this paper. This method segments objects of equipment in 2D images by using k-means algorithm in determining the cluster centers dynamically to segment different shapes and then extracts feature parameters from the divided objects by using FFT and retrieves the similar objects from 3D databases and then builds 3D models by computing the mapping data. The method proposed in this paper can avoid the complex data collection and big workload by using 3D laser scanner. The example analysis shows the method can build coarse 3D models efficiently which can meet the requirements for hazardous area classification and constructions representations of transformer substation.

  8. 3D BUILDING MODELS SEGMENTATION BASED ON K-MEANS++ CLUSTER ANALYSIS

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2016-10-01

    Full Text Available 3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In this paper, we propose a method to segment Collada (a type of mesh model 3D building models into meaningful parts using cluster analysis. Common clustering methods segment 3D mesh models by K-means, whose performance heavily depends on randomized initial seed points (i.e., centroid and different randomized centroid can get quite different results. Therefore, we improved the existing method and used K-means++ clustering algorithm to solve this problem. Our experiments show that K-means++ improves both the speed and the accuracy of K-means, and achieve good and meaningful results.

  9. Verification of photon attenuation characteristics for 3D printer based small animal lung model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Ho; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Han, Su Chul; Park, Seung Woo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    Since it is difficult to measure absorbed dose to mice in vivo, replica mice are mostly used as alternative. In this study, realistic mouse phantom was fabricated by using 3D printer (object500 connex3, Stratasys, USA). Elemental inks as material of 3D printer were selected corresponding to mouse tissue. To represent lung, selected material was partially used with air layer. In order to verify material equivalent, super-flex bolus was simply compared to verify photon attenuation characteristics. In the case of lung, Hounsfield unit (HU) of the phantom were compared with a live mouse. In this study, we fabricated mouse phantom by using 3D printer, and practically verified photon attenuation characteristics. The fabricated phantom shows tissue equivalence as well as similar geometry with live mouse. As more and more growing of 3D printer technique, 3D printer based small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.

  10. 3D MODELLING AND VISUALIZATION BASED ON THE UNITY GAME ENGINE – ADVANTAGES AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    I. Buyuksalih

    2017-11-01

    Full Text Available 3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine as highlighted in this paper.

  11. The design and implementation of stereoscopic 3D scalable vector graphics based on WebKit

    Science.gov (United States)

    Liu, Zhongxin; Wang, Wenmin; Wang, Ronggang

    2014-03-01

    Scalable Vector Graphics (SVG), which is a language designed based on eXtensible Markup Language (XML), is used to describe basic shapes embedded in webpages, such as circles and rectangles. However, it can only depict 2D shapes. As a consequence, web pages using classical SVG can only display 2D shapes on a screen. With the increasing development of stereoscopic 3D (S3D) technology, binocular 3D devices have been widely used. Under this circumstance, we intend to extend the widely used web rendering engine WebKit to support the description and display of S3D webpages. Therefore, the extension of SVG is of necessity. In this paper, we will describe how to design and implement SVG shapes with stereoscopic 3D mode. Two attributes representing the depth and thickness are added to support S3D shapes. The elimination of hidden lines and hidden surfaces, which is an important process in this project, is described as well. The modification of WebKit is also discussed, which is made to support the generation of both left view and right view at the same time. As is shown in the result, in contrast to the 2D shapes generated by the Google Chrome web browser, the shapes got from our modified browser are in S3D mode. With the feeling of depth and thickness, the shapes seem to be real 3D objects away from the screen, rather than simple curves and lines as before.

  12. A Gaussian Mixture Model-Based Continuous Boundary Detection for 3D Sensor Networks

    Science.gov (United States)

    Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji

    2010-01-01

    This paper proposes a high precision Gaussian Mixture Model-based novel Boundary Detection 3D (BD3D) scheme with reasonable implementation cost for 3D cases by selecting a minimum number of Boundary sensor Nodes (BNs) in continuous moving objects. It shows apparent advantages in that two classes of boundary and non-boundary sensor nodes can be efficiently classified using the model selection techniques for finite mixture models; furthermore, the set of sensor readings within each sensor node’s spatial neighbors is formulated using a Gaussian Mixture Model; different from DECOMO [1] and COBOM [2], we also formatted a BN Array with an additional own sensor reading to benefit selecting Event BNs (EBNs) and non-EBNs from the observations of BNs. In particular, we propose a Thick Section Model (TSM) to solve the problem of transition between 2D and 3D. It is verified by simulations that the BD3D 2D model outperforms DECOMO and COBOM in terms of average residual energy and the number of BNs selected, while the BD3D 3D model demonstrates sound performance even for sensor networks with low densities especially when the value of the sensor transmission range (r) is larger than the value of Section Thickness (d) in TSM. We have also rigorously proved its correctness for continuous geometric domains and full robustness for sensor networks over 3D terrains. PMID:22163619

  13. A Gaussian Mixture Model-Based Continuous Boundary Detection for 3D Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mitsuji Matsumoto

    2010-08-01

    Full Text Available This paper proposes a high precision Gaussian Mixture Model-based novel Boundary Detection 3D (BD3D scheme with reasonable implementation cost for 3D cases by selecting a minimum number of Boundary sensor Nodes (BNs in continuous moving objects. It shows apparent advantages in that two classes of boundary and non-boundary sensor nodes can be efficiently classified using the model selection techniques for finite mixture models; furthermore, the set of sensor readings within each sensor node’s spatial neighbors is formulated using a Gaussian Mixture Model; different from DECOMO [1] and COBOM [2], we also formatted a BN Array with an additional own sensor reading to benefit selecting Event BNs (EBNs and non-EBNs from the observations of BNs. In particular, we propose a Thick Section Model (TSM to solve the problem of transition between 2D and 3D. It is verified by simulations that the BD3D 2D model outperforms DECOMO and COBOM in terms of average residual energy and the number of BNs selected, while the BD3D 3D model demonstrates sound performance even for sensor networks with low densities especially when the value of the sensor transmission range (r is larger than the value of Section Thickness (d in TSM. We have also rigorously proved its correctness for continuous geometric domains and full robustness for sensor networks over 3D terrains.

  14. UAV-based photogrammetric 3D modelling and surveillance of forest wildfires

    OpenAIRE

    Krukowski, Artur; Vogiatzaki, Emmanouela

    2017-01-01

    This article presents work performed in the frame of ongoing FP7-SEC project “Advanced Forest Fire Fighting” in areas of UAV-based 3D surveillance and 3D area mapping. Photogrammetric 3D scanning and modelling from H2020-SCAN4RECO project have been used for producing high-resolution models of incident areas from multi-spectral imaging. We also present a proprietary embedded sensor system used for detection of fire ignitions in the forest using near-infrared based scanner with weight and form ...

  15. 3D Wide FOV Scanning Measurement System Based on Multiline Structured-Light Sensors

    Directory of Open Access Journals (Sweden)

    He Gao

    2014-03-01

    Full Text Available Structured-light three-dimensional (3D vision measurement is currently one of the most common approaches to obtain 3D surface data. However, the existing structured-light scanning measurement systems are primarily constructed on the basis of single sensor, which inevitably generates three obvious problems: limited measurement range, blind measurement area, and low scanning efficiency. To solve these problems, we developed a novel 3D wide FOV scanning measurement system which adopted two multiline structured-light sensors. Each sensor is composed of a digital CCD camera and three line-structured-light projectors. During the measurement process, the measured object is scanned by the two sensors from two different angles at a certain speed. Consequently, the measurement range is expanded and the blind measurement area is reduced. More importantly, since six light stripes are simultaneously projected on the object surface, the scanning efficiency is greatly improved. The Multiline Structured-light Sensors Scanning Measurement System (MSSS is calibrated on site by a 2D pattern. The experimental results show that the RMS errors of the system for calibration and measurement are less than 0.092 mm and 0.168 mm, respectively, which proves that the MSSS is applicable for obtaining 3D object surface with high efficiency and accuracy.

  16. Preparation of 3D graphene-based architectures and their applications in supercapacitors

    Directory of Open Access Journals (Sweden)

    Zhuxian Yang

    2015-12-01

    Full Text Available Three dimensional (3D graphene-based architectures such as 3D graphene-based hydrogels, aerogels, foams, and sponges have attracted huge attention owing to the combination of the structural interconnectivities and the outstanding properties of graphene which offer these interesting structures with low density, high porosity, large surface area, stable mechanical properties, fast mass and electron transport. They have been extensively studied for a wide range of applications including capacitors, batteries, sensors, catalyst, etc. There are several reviews focusing on the 3D graphene-based architectures and their applications. In this work, we only summarise the latest development on the preparation of 3D graphene-based architectures and their applications in supercapacitors, with emphasis on the preparation strategies.

  17. Touch-based interfaces for interacting with 3D content in public exhibitions.

    Science.gov (United States)

    Hachet, Martin; de la Rivière, Jean-Baptiste; Laviole, Jérémy; Cohé, Aurélie; Cursan, Sébastien

    2013-01-01

    A museum exhibition on the Lascaux caves provides the opportunity to experiment with touch-based interfaces manipulating 3D virtual objects. The researchers targeted three tasks: observing rare objects, reassembling object fragments, and reproducing artwork.

  18. FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves.

    Science.gov (United States)

    Kan, Yingzhi; Zhu, Yongfeng; Tang, Liang; Fu, Qiang; Pei, Hucheng

    2016-09-19

    In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements.

  19. FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves

    Directory of Open Access Journals (Sweden)

    Yingzhi Kan

    2016-09-01

    Full Text Available In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D imaging is proposed that uses a two-dimensional (2-D plane antenna array. First, a two-dimensional fast Fourier transform (FFT is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT combined with 2-D inverse FFT (IFFT is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements.

  20. Nonrigid 3D Medical Image Registration and Fusion Based on Deformable Models

    OpenAIRE

    Peng Liu; Benjamin Eberhardt; Christian Wybranski; Jens Ricke; Lutz Lüdemann

    2013-01-01

    For coregistration of medical images, rigid methods often fail to provide enough freedom, while reliable elastic methods are available clinically for special applications only. The number of degrees of freedom of elastic models must be reduced for use in the clinical setting to archive a reliable result. We propose a novel geometry-based method of nonrigid 3D medical image registration and fusion. The proposed method uses a 3D surface-based deformable model as guidance. In our twofold approac...

  1. 3D RECONSTRUCTION WITH A COLLABORATIVE APPROACH BASED ON SMARTPHONES AND A CLOUD-BASED SERVER

    Directory of Open Access Journals (Sweden)

    E. Nocerino

    2017-11-01

    Full Text Available The paper presents a collaborative image-based 3D reconstruction pipeline to perform image acquisition with a smartphone and geometric 3D reconstruction on a server during concurrent or disjoint acquisition sessions. Images are selected from the video feed of the smartphone’s camera based on their quality and novelty. The smartphone’s app provides on-the-fly reconstruction feedback to users co-involved in the acquisitions. The server is composed of an incremental SfM algorithm that processes the received images by seamlessly merging them into a single sparse point cloud using bundle adjustment. Dense image matching algorithm can be lunched to derive denser point clouds. The reconstruction details, experiments and performance evaluation are presented and discussed.

  2. Nonrigid Motion Correction With 3D Image-Based Navigators for Coronary MR Angiography.

    Science.gov (United States)

    Luo, Jieying; Addy, Nii Okai; Ingle, R Reeve; Baron, Corey A; Cheng, Joseph Y; Hu, Bob S; Nishimura, Dwight G

    2017-05-01

    To develop a retrospective nonrigid motion-correction method based on 3D image-based navigators (iNAVs) for free-breathing whole-heart coronary magnetic resonance angiography (MRA). The proposed method detects global rigid-body motion and localized nonrigid motion from 3D iNAVs and compensates them with an autofocusing algorithm. To model the global motion, 3D rotation and translation are estimated from the 3D iNAVs. Two sets of localized nonrigid motions are obtained from deformation fields between 3D iNAVs and reconstructed binned images, respectively. A bank of motion-corrected images is generated and the final image is assembled pixel-by-pixel by selecting the best focused pixel from this bank. In vivo studies with six healthy volunteers were conducted to compare the performance of the proposed method with 3D translational motion correction and no correction. In vivo studies showed that compared to no correction, 3D translational motion correction and the proposed method increased the vessel sharpness by 13% ± 13% and 19% ± 16%, respectively. Out of 90 vessel segments, 75 segments showed improvement with the proposed method compared to 3D translational correction. We have developed a nonrigid motion-correction method based on 3D iNAVs and an autofocusing algorithm that improves the vessel sharpness of free-breathing whole-heart coronary MRA. Magn Reson Med 77:1884-1893, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. A novel 3D wavelet based filter for visualizing features in noisy biological data

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; Haase, S; Lyle, J M; Agard, D A; Sedat, J W

    2005-01-05

    We have developed a 3D wavelet-based filter for visualizing structural features in volumetric data. The only variable parameter is a characteristic linear size of the feature of interest. The filtered output contains only those regions that are correlated with the characteristic size, thus denoising the image. We demonstrate the use of the filter by applying it to 3D data from a variety of electron microscopy samples including low contrast vitreous ice cryogenic preparations, as well as 3D optical microscopy specimens.

  4. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.

    Science.gov (United States)

    Li, Qijun; Guan, Xiaoying; Cui, Mengsuo; Zhu, Zhihong; Chen, Kai; Wen, Haoyang; Jia, Danyang; Hou, Jian; Xu, Wenting; Yang, Xinggang; Pan, Weisan

    2018-01-15

    Three dimensional (3D) extrusion-based printing is a paste-based rapid prototyping process, which is capable of building complex 3D structures. The aim of this study was to explore the feasibility of 3D extrusion-based printing as a pharmaceutical manufacture technique for the fabrication of gastro-floating tablets. Novel low-density lattice internal structure gastro-floating tablets of dipyridamole were developed to prolong the gastric residence time in order to improve drug release rate and consequently, improve bioavailability and therapeutic efficacy. Excipients commonly employed in the pharmaceutical study could be efficiently applied in the room temperature 3D extrusion-based printing process. The tablets were designed with three kinds of infill percentage and prepared by hydroxypropyl methylcellulose (HPMC K4M) and hydroxypropyl methylcellulose (HPMC E15) as hydrophilic matrices and microcrystalline cellulose (MCC PH101) as extrusion molding agent. In vitro evaluation of the 3D printed gastro-floating tablets was performed by determining mechanical properties, content uniformity, and weight variation. Furthermore, re-floating ability, floating duration time, and drug release behavior were also evaluated. Dissolution profiles revealed the relationship between infill percentage and drug release behavior. The results of this study revealed the potential of 3D extrusion-based printing to fabricate gastro-floating tablets with more than 8h floating process with traditional pharmaceutical excipients and lattice internal structure design. Copyright © 2017. Published by Elsevier B.V.

  5. A 3D-video-based computerized analysis of social and sexual interactions in rats.

    Science.gov (United States)

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior.

  6. A 3D-video-based computerized analysis of social and sexual interactions in rats.

    Directory of Open Access Journals (Sweden)

    Jumpei Matsumoto

    Full Text Available A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior.

  7. Quantitative Analysis and Modeling of 3-D TSV-Based Power Delivery Architectures

    Science.gov (United States)

    He, Huanyu

    As 3-D technology enters the commercial production stage, it is critical to understand different 3-D power delivery architectures on the stacked ICs and packages with through-silicon vias (TSVs). Appropriate design, modeling, analysis, and optimization approaches of the 3-D power delivery system are of foremost significance and great practical interest to the semiconductor industry in general. Based on fundamental physics of 3-D integration components, the objective of this thesis work is to quantitatively analyze the power delivery for 3D-IC systems, develop appropriate physics-based models and simulation approaches, understand the key issues, and provide potential solutions for design of 3D-IC power delivery architectures. In this work, a hybrid simulation approach is adopted as the major approach along with analytical method to examine 3-D power networks. Combining electromagnetic (EM) tools and circuit simulators, the hybrid approach is able to analyze and model micrometer-scale components as well as centimeter-scale power delivery system with high accuracy and efficiency. The parasitic elements of the components on the power delivery can be precisely modeled by full-wave EM solvers. Stack-up circuit models for the 3-D power delivery networks (PDNs) are constructed through a partition and assembly method. With the efficiency advantage of the SPICE circuit simulation, the overall 3-D system power performance can be analyzed and the 3-D power delivery architectures can be evaluated in a short computing time. The major power delivery issues are the voltage drop (IR drop) and voltage noise. With a baseline of 3-D power delivery architecture, the on-chip PDNs of TSV-based chip stacks are modeled and analyzed for the IR drop and AC noise. The basic design factors are evaluated using the hybrid approach, such as the number of stacked chips, the number of TSVs, and the TSV arrangement. Analytical formulas are also developed to evaluate the IR drop in 3-D chip stack in

  8. MBE based HgCdTe APDs and 3D LADAR sensors

    Science.gov (United States)

    Jack, Michael; Asbrock, Jim; Bailey, Steven; Baley, Diane; Chapman, George; Crawford, Gina; Drafahl, Betsy; Herrin, Eileen; Kvaas, Robert; McKeag, William; Randall, Valerie; De Lyon, Terry; Hunter, Andy; Jensen, John; Roberts, Tom; Trotta, Patrick; Cook, T. Dean

    2007-04-01

    Raytheon is developing HgCdTe APD arrays and sensor chip assemblies (SCAs) for scanning and staring LADAR systems. The nonlinear characteristics of APDs operating in moderate gain mode place severe requirements on layer thickness and doping uniformity as well as defect density. MBE based HgCdTe APD arrays, engineered for high performance, meet the stringent requirements of low defects, excellent uniformity and reproducibility. In situ controls for alloy composition and substrate temperature have been implemented at HRL, LLC and Raytheon Vision Systems and enable consistent run to run results. The novel epitaxial designed using separate absorption-multiplication (SAM) architectures enables the realization of the unique advantages of HgCdTe including: tunable wavelength, low-noise, high-fill factor, low-crosstalk, and ambient operation. Focal planes built by integrating MBE detectors arrays processed in a 2 x 128 format have been integrated with 2 x 128 scanning ROIC designed. The ROIC reports both range and intensity and can detect multiple laser returns with each pixel autonomously reporting the return. FPAs show exceptionally good bias uniformity Missile Systems and Naval Air Warfare Center Weapons Division at China Lake. Excellent spatial and range resolution has been achieved with 3D imagery demonstrated both at short range and long range. Ongoing development under an Air Force Sponsored MANTECH program of high performance HgCdTe MBE APDs grown on large silicon wafers promise significant FPA cost reduction both by increasing the number of arrays on a given wafer and enabling automated processing.

  9. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    Science.gov (United States)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  10. 3D Scan-Based Wavelet Transform and Quality Control for Video Coding

    Directory of Open Access Journals (Sweden)

    Parisot Christophe

    2003-01-01

    Full Text Available Wavelet coding has been shown to achieve better compression than DCT coding and moreover allows scalability. 2D DWT can be easily extended to 3D and thus applied to video coding. However, 3D subband coding of video suffers from two drawbacks. The first is the amount of memory required for coding large 3D blocks; the second is the lack of temporal quality due to the sequence temporal splitting. In fact, 3D block-based video coders produce jerks. They appear at blocks temporal borders during video playback. In this paper, we propose a new temporal scan-based wavelet transform method for video coding combining the advantages of wavelet coding (performance, scalability with acceptable reduced memory requirements, no additional CPU complexity, and avoiding jerks. We also propose an efficient quality allocation procedure to ensure a constant quality over time.

  11. 3D Scan-Based Wavelet Transform and Quality Control for Video Coding

    Science.gov (United States)

    Parisot, Christophe; Antonini, Marc; Barlaud, Michel

    2003-12-01

    Wavelet coding has been shown to achieve better compression than DCT coding and moreover allows scalability. 2D DWT can be easily extended to 3D and thus applied to video coding. However, 3D subband coding of video suffers from two drawbacks. The first is the amount of memory required for coding large 3D blocks; the second is the lack of temporal quality due to the sequence temporal splitting. In fact, 3D block-based video coders produce jerks. They appear at blocks temporal borders during video playback. In this paper, we propose a new temporal scan-based wavelet transform method for video coding combining the advantages of wavelet coding (performance, scalability) with acceptable reduced memory requirements, no additional CPU complexity, and avoiding jerks. We also propose an efficient quality allocation procedure to ensure a constant quality over time.

  12. 3D Facial Similarity Measure Based on Geodesic Network and Curvatures

    Directory of Open Access Journals (Sweden)

    Junli Zhao

    2014-01-01

    Full Text Available Automated 3D facial similarity measure is a challenging and valuable research topic in anthropology and computer graphics. It is widely used in various fields, such as criminal investigation, kinship confirmation, and face recognition. This paper proposes a 3D facial similarity measure method based on a combination of geodesic and curvature features. Firstly, a geodesic network is generated for each face with geodesics and iso-geodesics determined and these network points are adopted as the correspondence across face models. Then, four metrics associated with curvatures, that is, the mean curvature, Gaussian curvature, shape index, and curvedness, are computed for each network point by using a weighted average of its neighborhood points. Finally, correlation coefficients according to these metrics are computed, respectively, as the similarity measures between two 3D face models. Experiments of different persons’ 3D facial models and different 3D facial models of the same person are implemented and compared with a subjective face similarity study. The results show that the geodesic network plays an important role in 3D facial similarity measure. The similarity measure defined by shape index is consistent with human’s subjective evaluation basically, and it can measure the 3D face similarity more objectively than the other indices.

  13. 3D face recognition based on multiple keypoint descriptors and sparse representation.

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    Full Text Available Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a 3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general approach to deal with the 3D face recognition problem by making use of multiple keypoint descriptors (MKD and the sparse representation-based classification (SRC. We call the proposed method 3DMKDSRC for short. Specifically, with 3DMKDSRC, each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT. Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at first and then its identity can be determined by using a multitask SRC. The proposed 3DMKDSRC approach does not require the pre-alignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions. Its superiority over the other leading 3D face recognition schemes has been corroborated by extensive experiments conducted on three benchmark databases, Bosphorus, GavabDB, and FRGC2.0. The Matlab source code for 3DMKDSRC and the related evaluation results are publicly available at http://sse.tongji.edu.cn/linzhang/3dmkdsrcface/3dmkdsrc.htm.

  14. Receptor-based 3D-QSAR in Drug Design: Methods and Applications in Kinase Studies.

    Science.gov (United States)

    Fang, Cheng; Xiao, Zhiyan

    2016-01-01

    Receptor-based 3D-QSAR strategy represents a superior integration of structure-based drug design (SBDD) and three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. It combines the accurate prediction of ligand poses by the SBDD approach with the good predictability and interpretability of statistical models derived from the 3D-QSAR approach. Extensive efforts have been devoted to the development of receptor-based 3D-QSAR methods and two alternative approaches have been exploited. One associates with computing the binding interactions between a receptor and a ligand to generate structure-based descriptors for QSAR analyses. The other concerns the application of various docking protocols to generate optimal ligand poses so as to provide reliable molecular alignments for the conventional 3D-QSAR operations. This review highlights new concepts and methodologies recently developed in the field of receptorbased 3D-QSAR, and in particular, covers its application in kinase studies.

  15. Low-Cost Impact Detection and Location for Automated Inspections of 3D Metallic Based Structures

    OpenAIRE

    Carlos Morón; Portilla, Marina P.; José A. Somolinos; Rafael Morales

    2015-01-01

    This paper describes a new low-cost means to detect and locate mechanical impacts (collisions) on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to deter...

  16. Towards real-time change detection in videos based on existing 3D models

    Science.gov (United States)

    Ruf, Boitumelo; Schuchert, Tobias

    2016-10-01

    Image based change detection is of great importance for security applications, such as surveillance and reconnaissance, in order to find new, modified or removed objects. Such change detection can generally be performed by co-registration and comparison of two or more images. However, existing 3d objects, such as buildings, may lead to parallax artifacts in case of inaccurate or missing 3d information, which may distort the results in the image comparison process, especially when the images are acquired from aerial platforms like small unmanned aerial vehicles (UAVs). Furthermore, considering only intensity information may lead to failures in detection of changes in the 3d structure of objects. To overcome this problem, we present an approach that uses Structure-from-Motion (SfM) to compute depth information, with which a 3d change detection can be performed against an existing 3d model. Our approach is capable of the change detection in real-time. We use the input frames with the corresponding camera poses to compute dense depth maps by an image-based depth estimation algorithm. Additionally we synthesize a second set of depth maps, by rendering the existing 3d model from the same camera poses as those of the image-based depth map. The actual change detection is performed by comparing the two sets of depth maps with each other. Our method is evaluated on synthetic test data with corresponding ground truth as well as on real image test data.

  17. Dental wear estimation using a digital intra-oral optical scanner and an automated 3D computer vision method.

    Science.gov (United States)

    Meireles, Agnes Batista; Vieira, Antonio Wilson; Corpas, Livia; Vandenberghe, Bart; Bastos, Flavia Souza; Lambrechts, Paul; Campos, Mario Montenegro; Las Casas, Estevam Barbosa de

    2016-01-01

    The objective of this work was to propose an automated and direct process to grade tooth wear intra-orally. Eight extracted teeth were etched with acid for different times to produce wear and scanned with an intra-oral optical scanner. Computer vision algorithms were used for alignment and comparison among models. Wear volume was estimated and visual scoring was achieved to determine reliability. Results demonstrated that it is possible to directly detect submillimeter differences in teeth surfaces with an automated method with results similar to those obtained by direct visual inspection. The investigated method proved to be reliable for comparison of measurements over time.

  18. FEASIBILITY COMPARISON OF AIRBORNE LASER SCANNING DATA AND 3D-POINT CLOUDS FORMED FROM UNMANNED AERIAL VEHICLE (UAV-BASED IMAGERY USED FOR 3D PROJECTING

    Directory of Open Access Journals (Sweden)

    I. I. Rilskiy

    2017-01-01

    Full Text Available New, innovative methods of aerial surveys have changed the approaches to information provision of projecting dramatically for the last 15 years. Nowadays there are at least two methods that claim to be the most efficient way for collecting geospatial data intended for projecting – the airborne laser scanning (LIDAR data and photogrammetrically processed unmanned aerial vehicle (UAV-based aerial imagery, forming 3D point clouds. But these materials are not identical to each other neither in precision, nor in completeness.Airborne laser scanning (LIDAR is normally being performed using manned aircrafts. LIDAR data are very precise, they allow us to achieve data about relief even overgrown with vegetation, or to collect laser reflections from wires, metal constructions and poles. UAV surveys are normally being performed using frame digital cameras (lightweight, full-frame, or mid-size. These cameras form images that are being processed using 3D photogrammetric software in automatic mode that allows one to generate 3D point cloud, which is used for building digital elevation models, surfaces, orthomosaics, etc.All these materials are traditionally being used for making maps and GIS data. LIDAR data have been popular in design work. Also there have been some attempts to use for the same purpose 3D-point clouds, formed by photogrammetric software from images acquired from UAVs.After comparison of the datasets from these two different types of surveying (surveys were made simultaneously on the same territory, it became possible to define some specific, typical for LIDAR or imagery-based 3D data. It can be mentioned that imagery-based 3D data (3D point clouds, formed in automatic mode using photogrammetry, are much worse than LIDAR data – both in terms of precision and completeness.The article highlights these differences and makes attempts at explaining the origin of these differences. 

  19. SEGMENTATION OF UAV-BASED IMAGES INCORPORATING 3D POINT CLOUD INFORMATION

    Directory of Open Access Journals (Sweden)

    A. Vetrivel

    2015-03-01

    Full Text Available Numerous applications related to urban scene analysis demand automatic recognition of buildings and distinct sub-elements. For example, if LiDAR data is available, only 3D information could be leveraged for the segmentation. However, this poses several risks, for instance, the in-plane objects cannot be distinguished from their surroundings. On the other hand, if only image based segmentation is performed, the geometric features (e.g., normal orientation, planarity are not readily available. This renders the task of detecting the distinct sub-elements of the building with similar radiometric characteristic infeasible. In this paper the individual sub-elements of buildings are recognized through sub-segmentation of the building using geometric and radiometric characteristics jointly. 3D points generated from Unmanned Aerial Vehicle (UAV images are used for inferring the geometric characteristics of roofs and facades of the building. However, the image-based 3D points are noisy, error prone and often contain gaps. Hence the segmentation in 3D space is not appropriate. Therefore, we propose to perform segmentation in image space using geometric features from the 3D point cloud along with the radiometric features. The initial detection of buildings in 3D point cloud is followed by the segmentation in image space using the region growing approach by utilizing various radiometric and 3D point cloud features. The developed method was tested using two data sets obtained with UAV images with a ground resolution of around 1-2 cm. The developed method accurately segmented most of the building elements when compared to the plane-based segmentation using 3D point cloud alone.

  20. Precise 3D Lug Pose Detection Sensor for Automatic Robot Welding Using a Structured-Light Vision System

    Directory of Open Access Journals (Sweden)

    Il Jae Lee

    2009-09-01

    Full Text Available In this study, we propose a precise 3D lug pose detection sensor for automatic robot welding of a lug to a huge steel plate used in shipbuilding, where the lug is a handle to carry the huge steel plate. The proposed sensor consists of a camera and four laser line diodes, and its design parameters are determined by analyzing its detectable range and resolution. For the lug pose acquisition, four laser lines are projected on both lug and plate, and the projected lines are detected by the camera. For robust detection of the projected lines against the illumination change, the vertical threshold, thinning, Hough transform and separated Hough transform algorithms are successively applied to the camera image. The lug pose acquisition is carried out by two stages: the top view alignment and the side view alignment. The top view alignment is to detect the coarse lug pose relatively far from the lug, and the side view alignment is to detect the fine lug pose close to the lug. After the top view alignment, the robot is controlled to move close to the side of the lug for the side view alignment. By this way, the precise 3D lug pose can be obtained. Finally, experiments with the sensor prototype are carried out to verify the feasibility and effectiveness of the proposed sensor.

  1. Precise 3D Lug Pose Detection Sensor for Automatic Robot Welding Using a Structured-Light Vision System.

    Science.gov (United States)

    Park, Jae Byung; Lee, Seung Hun; Lee, Il Jae

    2009-01-01

    In this study, we propose a precise 3D lug pose detection sensor for automatic robot welding of a lug to a huge steel plate used in shipbuilding, where the lug is a handle to carry the huge steel plate. The proposed sensor consists of a camera and four laser line diodes, and its design parameters are determined by analyzing its detectable range and resolution. For the lug pose acquisition, four laser lines are projected on both lug and plate, and the projected lines are detected by the camera. For robust detection of the projected lines against the illumination change, the vertical threshold, thinning, Hough transform and separated Hough transform algorithms are successively applied to the camera image. The lug pose acquisition is carried out by two stages: the top view alignment and the side view alignment. The top view alignment is to detect the coarse lug pose relatively far from the lug, and the side view alignment is to detect the fine lug pose close to the lug. After the top view alignment, the robot is controlled to move close to the side of the lug for the side view alignment. By this way, the precise 3D lug pose can be obtained. Finally, experiments with the sensor prototype are carried out to verify the feasibility and effectiveness of the proposed sensor.

  2. 3D shape reconstruction of bone from two x-ray images using 2D/3D non-rigid registration based on moving least-squares deformation

    Science.gov (United States)

    Cresson, T.; Branchaud, D.; Chav, R.; Godbout, B.; de Guise, J. A.

    2010-03-01

    Several studies based on biplanar radiography technologies are foreseen as great systems for 3D-reconstruction applications for medical diagnoses. This paper proposes a non-rigid registration method to estimate a 3D personalized shape of bone models from two planar x-ray images using an as-rigid-as-possible deformation approach based on a moving least-squares optimization method. Based on interactive deformation methods, the proposed technique has the ability to let a user improve readily and with simplicity a 3D reconstruction which is an important step in clinical applications. Experimental evaluations of six anatomical femur specimens demonstrate good performances of the proposed approach in terms of accuracy and robustness when compared to CT-scan.

  3. Microfluidics‐based 3D cell culture models: Utility in novel drug discovery and delivery research

    Science.gov (United States)

    Gupta, Nilesh; Liu, Jeffrey R.; Patel, Brijeshkumar; Solomon, Deepak E.; Vaidya, Bhuvaneshwar

    2016-01-01

    Abstract The implementation of microfluidic devices within life sciences has furthered the possibilities of both academic and industrial applications such as rapid genome sequencing, predictive drug studies, and single cell manipulation. In contrast to the preferred two‐dimensional cell‐based screening, three‐dimensional (3D) systems have more in vivo relevance as well as ability to perform as a predictive tool for the success or failure of a drug screening campaign. 3D cell culture has shown an adaptive response to the recent advancements in microfluidic technologies which has allowed better control over spheroid sizes and subsequent drug screening studies. In this review, we highlight the most significant developments in the field of microfluidic 3D culture over the past half‐decade with a special focus on their benefits and challenges down the lane. With the newer technologies emerging, implementation of microfluidic 3D culture systems into the drug discovery pipeline is right around the bend.

  4. Demonstration of three gorges archaeological relics based on 3D-visualization technology

    Science.gov (United States)

    Xu, Wenli

    2015-12-01

    This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.

  5. 3D printing of mineral-polymer bone substitutes based on sodium alginate and calcium phosphate.

    Science.gov (United States)

    Egorov, Aleksey A; Fedotov, Alexander Yu; Mironov, Anton V; Komlev, Vladimir S; Popov, Vladimir K; Zobkov, Yury V

    2016-01-01

    We demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the "ink"). The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 μm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions.

  6. Image quality improvement of multi-projection 3D display through tone mapping based optimization.

    Science.gov (United States)

    Wang, Peng; Sang, Xinzhu; Zhu, Yanhong; Xie, Songlin; Chen, Duo; Guo, Nan; Yu, Chongxiu

    2017-08-21

    An optical 3D screen usually shows a certain diffuse reflectivity or diffuse transmission, and the multi-projection 3D display suffers from decreased display local contrast due to the crosstalk of multi-projection contents. A tone mapping based optimizing method is innovatively proposed to suppress the crosstalk and improve the display contrast by minimizing the visible contrast distortions between the display light field and a targeted one with enhanced contrast. The contrast distortions are weighted according to the visibility predicted by the model of human visual system, and the distortions are minimized for the given multi-projection 3D display model that enforces constrains on the solution. Our proposed method can adjust parallax images or parallax video contents for the optimum 3D display image quality taking into account the display characteristics and ambient illumination. The validity of the method is evaluated and proved in experiments.

  7. 3D web based learning of medical equipment employed in intensive care units.

    Science.gov (United States)

    Cetin, Aydın

    2012-02-01

    In this paper, both synchronous and asynchronous web based learning of 3D medical equipment models used in hospital intensive care unit have been described over the moodle course management system. 3D medical equipment models were designed with 3ds Max 2008, then converted to ASE format and added interactivity displayed with Viewpoint-Enliven. 3D models embedded in a web page in html format with dynamic interactivity-rotating, panning and zooming by dragging a mouse over images-and descriptive information is embedded to 3D model by using xml format. A pilot test course having 15 h was applied to technicians who is responsible for intensive care unit at Medical Devices Repairing and Maintenance Center (TABOM) of Turkish High Specialized Hospital.

  8. A neural network based 3D/3D image registration quality evaluator for the head-and-neck patient setup in the absence of a ground truth.

    Science.gov (United States)

    Wu, Jian; Murphy, Martin J

    2010-11-01

    To develop a neural network based registration quality evaluator (RQE) that can identify unsuccessful 3D/3D image registrations for the head-and-neck patient setup in radiotherapy. A two-layer feed-forward neural network was used as a RQE to classify 3D/3D rigid registration solutions as successful or unsuccessful based on the features of the similarity surface near the point-of-solution. The supervised training and test data sets were generated by rigidly registering daily cone-beam CTs to the treatment planning fan-beam CTs of six patients with head-and-neck tumors. Two different similarity metrics (mutual information and mean-squared intensity difference) and two different types of image content (entire image versus bony landmarks) were used. The best solution for each registration pair was selected from 50 optimizing attempts that differed only by the initial transformation parameters. The distance from each individual solution to the best solution in the normalized parametrical space was compared to a user-defined error threshold to determine whether that solution was successful or not. The supervised training was then used to train the RQE. The performance of the RQE was evaluated using the test data set that consisted of registration results that were not used in training. The RQE constructed using the mutual information had very good performance when tested using the test data sets, yielding the sensitivity, the specificity, the positive predictive value, and the negative predictive value in the ranges of 0.960-1.000, 0.993-1.000, 0.983-1.000, and 0.909-1.000, respectively. Adding a RQE into a conventional 3D/3D image registration system incurs only about 10%-20% increase of the overall processing time. The authors' patient study has demonstrated very good performance of the proposed RQE when used with the mutual information in identifying unsuccessful 3D/3D registrations for daily patient setup. The classifier had very good generality and required only to

  9. ENHANCING CLOSE-UP IMAGE BASED 3D DIGITISATION WITH FOCUS STACKING

    Directory of Open Access Journals (Sweden)

    G. Kontogianni

    2017-08-01

    Full Text Available The 3D digitisation of small artefacts is a very complicated procedure because of their complex morphological feature structures, concavities, rich decorations, high frequency of colour changes in texture, increased accuracy requirements etc. Image-based methods present a low cost, fast and effective alternative because laser scanning does not meet the accuracy requirements in general. A shallow Depth of Field (DoF affects the image-based 3D reconstruction and especially the point matching procedure. This is visible not only in the total number of corresponding points but also in the resolution of the produced 3D model. The extension of the DoF is a very important task that should be incorporated in the data collection to attain a better quality of the image set and a better 3D model. An extension of the DoF can be achieved with many methods and especially with the use of the focus stacking technique. In this paper, the focus stacking technique was tested in a real-world experiment to digitise a museum artefact in 3D. The experiment conditions include the use of a full frame camera equipped with a normal lens (50mm, with the camera being placed close to the object. The artefact has already been digitised with a structured light system and that model served as the reference model in which 3D models were compared and the results were presented.

  10. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.

    Science.gov (United States)

    Kim, K; Lee, S

    2015-05-01

    Diagnosis of skin conditions is dependent on the assessment of skin surface properties that are represented by more tactile properties such as stiffness, roughness, and friction than visual information. Due to this reason, adding tactile feedback to existing vision based diagnosis systems can help dermatologists diagnose skin diseases or disorders more accurately. The goal of our research was therefore to develop a tactile rendering system for skin examinations by dynamic touch. Our development consists of two stages: converting a single image to a 3D haptic surface and rendering the generated haptic surface in real-time. Converting to 3D surfaces from 2D single images was implemented with concerning human perception data collected by a psychophysical experiment that measured human visual and haptic sensibility to 3D skin surface changes. For the second stage, we utilized real skin biomechanical properties found by prior studies. Our tactile rendering system is a standalone system that can be used with any single cameras and haptic feedback devices. We evaluated the performance of our system by conducting an identification experiment with three different skin images with five subjects. The participants had to identify one of the three skin surfaces by using a haptic device (Falcon) only. No visual cue was provided for the experiment. The results indicate that our system provides sufficient performance to render discernable tactile rendering with different skin surfaces. Our system uses only a single skin image and automatically generates a 3D haptic surface based on human haptic perception. Realistic skin interactions can be provided in real-time for the purpose of skin diagnosis, simulations, or training. Our system can also be used for other applications like virtual reality and cosmetic applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Advances in research on 2D and 3D graphene-based supercapacitors

    Science.gov (United States)

    Mensing, Johannes Ph.; Poochai, Chatwarin; Kerdpocha, Sadanan; Sriprachuabwong, Chakrit; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2017-09-01

    Graphene-based materials in two-dimensional (2D) and three-dimensional (3D) configurations are promising as electrode materials for supercapacitors due to their large surface area, excellent electrical conductivity, high electrochemical activity and high stability. In this article recent advances in research on 2D and 3D graphene-based materials for supercapacitor electrodes are reviewed extensively in aspects of fabrication methods and electrochemical performances. From the survey, the performance of 2D and 3D graphene-based materials could be significantly enhanced by employing nanostructures of metal oxides, metals and polymers as well as doping graphene with hetero atoms such as nitrogen and boron. In addition, the charge storage performances were found to depend greatly on materials, preparation method and structural configuration. With similar material components, 3D graphene-based networks tended to exhibit superior supercapacitive performances. Therefore, future research should be focusing on further development of 3D graphene-based materials for supercapacitor applications. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  12. 3D Web-based HMI with WebGL Rendering Performance

    Directory of Open Access Journals (Sweden)

    Muennoi Atitayaporn

    2016-01-01

    Full Text Available An HMI, or Human-Machine Interface, is a software allowing users to communicate with a machine or automation system. It usually serves as a display section in SCADA (Supervisory Control and Data Acquisition system for device monitoring and control. In this papper, a 3D Web-based HMI with WebGL (Web-based Graphics Library rendering performance is presented. The main purpose of this work is to attempt to reduce the limitations of traditional 3D web HMI using the advantage of WebGL. To evaluate the performance, frame rate and frame time metrics were used. The results showed 3D Web-based HMI can maintain the frame rate 60FPS for #cube=0.5K/0.8K, 30FPS for #cube=1.1K/1.6K when it was run on Internet Explorer and Chrome respectively. Moreover, the study found that 3D Web-based HMI using WebGL contains similar frame time in each frame even though the numbers of cubes are up to 5K. This indicated stuttering incurred less in the proposed 3D Web-based HMI compared to the chosen commercial HMI product.

  13. Development and implementation of a web-enabled 3D consultation tool for breast augmentation surgery based on 3D-image reconstruction of 2D pictures.

    Science.gov (United States)

    de Heras Ciechomski, Pablo; Constantinescu, Mihai; Garcia, Jaime; Olariu, Radu; Dindoyal, Irving; Le Huu, Serge; Reyes, Mauricio

    2012-02-03

    Producing a rich, personalized Web-based consultation tool for plastic surgeons and patients is challenging. (1) To develop a computer tool that allows individual reconstruction and simulation of 3-dimensional (3D) soft tissue from ordinary digital photos of breasts, (2) to implement a Web-based, worldwide-accessible preoperative surgical planning platform for plastic surgeons, and (3) to validate this tool through a quality control analysis by comparing 3D laser scans of the patients with the 3D reconstructions with this tool from original 2-dimensional (2D) pictures of the same patients. The proposed system uses well-established 2D digital photos for reconstruction into a 3D torso, which is then available to the user for interactive planning. The simulation is performed on dedicated servers, accessible via Internet. It allows the surgeon, together with the patient, to previsualize the impact of the proposed breast augmentation directly during the consultation before a surgery is decided upon. We retrospectively conduced a quality control assessment of available anonymized pre- and postoperative 2D digital photographs of patients undergoing breast augmentation procedures. The method presented above was used to reconstruct 3D pictures from 2D digital pictures. We used a laser scanner capable of generating a highly accurate surface model of the patient's anatomy to acquire ground truth data. The quality of the computed 3D reconstructions was compared with the ground truth data used to perform both qualitative and quantitative evaluations. We evaluated the system on 11 clinical cases for surface reconstructions and 4 clinical cases of postoperative simulations, using laser surface scan technologies showing a mean reconstruction error between 2 and 4 mm and a maximum outlier error of 16 mm. Qualitative and quantitative analyses from plastic surgeons demonstrate the potential of these new emerging technologies. We tested our tool for 3D, Web-based, patient

  14. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement.

    Science.gov (United States)

    Ripley, Beth; Kelil, Tatiana; Cheezum, Michael K; Goncalves, Alexandra; Di Carli, Marcelo F; Rybicki, Frank J; Steigner, Mike; Mitsouras, Dimitrios; Blankstein, Ron

    2016-01-01

    3D printing is a promising technique that may have applications in medicine, and there is expanding interest in the use of patient-specific 3D models to guide surgical interventions. To determine the feasibility of using cardiac CT to print individual models of the aortic root complex for transcatheter aortic valve replacement (TAVR) planning as well as to determine the ability to predict paravalvular aortic regurgitation (PAR). This retrospective study included 16 patients (9 with PAR identified on blinded interpretation of post-procedure trans-thoracic echocardiography and 7 age, sex, and valve size-matched controls with no PAR). 3D printed models of the aortic root were created from pre-TAVR cardiac computed tomography data. These models were fitted with printed valves and predictions regarding post-implant PAR were made using a light transmission test. Aortic root 3D models were highly accurate, with excellent agreement between annulus measurements made on 3D models and those made on corresponding 2D data (mean difference of -0.34 mm, 95% limits of agreement: ± 1.3 mm). The 3D printed valve models were within 0.1 mm of their designed dimensions. Examination of the fit of valves within patient-specific aortic root models correctly predicted PAR in 6 of 9 patients (6 true positive, 3 false negative) and absence of PAR in 5 of 7 patients (5 true negative, 2 false positive). Pre-TAVR 3D-printing based on cardiac CT provides a unique patient-specific method to assess the physical interplay of the aortic root and implanted valves. With additional optimization, 3D models may complement traditional techniques used for predicting which patients are more likely to develop PAR. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  15. A Service-oriented FPGA-based 3D Model Acquisition System

    Directory of Open Access Journals (Sweden)

    MACHIDON, O. M.

    2015-11-01

    Full Text Available This paper proposes a non-contact, low cost 3D scanning solution using laser striping. The solution is composed of two main parts: the hardware setup - used for acquiring the object's 3D surface information, and the software part - that processes the information and obtains the 3D model representation of the object. We propose two major improvements over the traditional scanning solutions: the 3D information acquisition is based on a reconfigurable hardware platform - a Xilinx Spartan 6 FPGA - which adds flexibility and scalability to the scanning process, while the 3D model reconstruction is remotely available "as a Service", by the means of a web interface that abstracts away the complexity of the underlying processes and improves the performance, while granting easy sharing between users. By separating data capture process from the 3D model reconstruction tasks the system gains in portability - a feature that is absent for most existing solutions. The service-oriented approach brings on a performance gain, since the computational intensive tasks are handled by dedicated servers and ease of use of the system, because the user does not have to bother managing and using the software tools locally.

  16. 3D finite element analysis of porous Ti-based alloy prostheses.

    Science.gov (United States)

    Mircheski, Ile; Gradišar, Marko

    2016-11-01

    In this paper, novel designs of porous acetabular cups are created and tested with 3D finite element analysis (FEA). The aim is to develop a porous acetabular cup with low effective radial stiffness of the structure, which will be near to the architectural and mechanical behavior of the natural bone. For the realization of this research, a 3D-scanner technology was used for obtaining a 3D-CAD model of the pelvis bone, a 3D-CAD software for creating a porous acetabular cup, and a 3D-FEA software for virtual testing of a novel design of the porous acetabular cup. The results obtained from this research reveal that a porous acetabular cup from Ti-based alloys with 60 ± 5% porosity has the mechanical behavior and effective radial stiffness (Young's modulus in radial direction) that meet and exceed the required properties of the natural bone. The virtual testing with 3D-FEA of a novel design with porous structure during the very early stage of the design and the development of orthopedic implants, enables obtaining a new or improved biomedical implant for a relatively short time and reduced price.

  17. 3D DATA ACQUISITION BASED ON OPENCV FOR CLOSE-RANGE PHOTOGRAMMETRY APPLICATIONS

    Directory of Open Access Journals (Sweden)

    L. Jurjević

    2017-05-01

    Full Text Available Development of the technology in the area of the cameras, computers and algorithms for 3D the reconstruction of the objects from the images resulted in the increased popularity of the photogrammetry. Algorithms for the 3D model reconstruction are so advanced that almost anyone can make a 3D model of photographed object. The main goal of this paper is to examine the possibility of obtaining 3D data for the purposes of the close-range photogrammetry applications, based on the open source technologies. All steps of obtaining 3D point cloud are covered in this paper. Special attention is given to the camera calibration, for which two-step process of calibration is used. Both, presented algorithm and accuracy of the point cloud are tested by calculating the spatial difference between referent and produced point clouds. During algorithm testing, robustness and swiftness of obtaining 3D data is noted, and certainly usage of this and similar algorithms has a lot of potential in the real-time application. That is the reason why this research can find its application in the architecture, spatial planning, protection of cultural heritage, forensic, mechanical engineering, traffic management, medicine and other sciences.

  18. Phase retrieval and 3D imaging in gold nanoparticles based fluorescence microscopy (Conference Presentation)

    Science.gov (United States)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh M.; Meir, Rinat; Zalevsky, Zeev

    2017-02-01

    Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold nanoparticles tagged sample using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is then further enhanced also for tracking of single fluorescent particles within a three dimensional (3D) cellular environment based on image processing algorithms that can significantly increases localization accuracy of the 3D point spread function in respect to regular Gaussian fitting. All proposed concepts are validated both on simulated data as well as experimentally.

  19. A 2D-View Depth Image- and CNN-Based 3D Model Identification Method

    Directory of Open Access Journals (Sweden)

    Yiyu Hong

    2017-09-01

    Full Text Available With the rapid development of three-dimensional (3D technology and an increase in the number of available models, issues with copyright protection of 3D models are inevitable. In this paper, we propose a 2D-view depth image- and convolutional neural network (CNN-based 3D model identification method. To identify a 3D model, we first need an adequate number of the modified versions that could be made by copyright infringers. Then, they can be represented by a number of 2D-view depth images that are captured from evenly distributed vertices on a regular convex polyhedron. Finally, a CNN is trained by these depth images to acquire the capability of identifying the 3D model. The experiment carried out with the dataset of Shape Retrieval Contest 2015 (SHREC’15: Non-Rigid 3D Shape Retrieval shows the practicability of our method, which yields 93.5% accuracy. The effectiveness of the proposed method is demonstrated via evaluation in the latest standard benchmark SHREC’17 Deformable Shape Retrieval with Missing Parts. It clearly shows superior or comparable performance to state-of-the-art methods, shown by the fact that it is in the top three of the 11 participating methods (without counting different runs.

  20. New maritime information browsing and service system based on 3D virtual Earth

    Science.gov (United States)

    Sui, Haigang; Gao, Xiaorong; Hua, Li; Zhang, Anmin

    2007-11-01

    Maritime information is very important to ensure traffic safety on the sea. In recent years the maritime information browsing and service system is widely used. However, most of the traditional systems are based on 2D electronic charts and are not satisfied with people's multi-dimension and multi-viewpoint way to observe the world. So it is necessary and urgent to research and develop the maritime information service in 3D virtual environment. Aiming at this, a new idea for maritime information browsing and service based on 3D virtual earth is presented in this paper. Corresponding key technologies including integrated creation of underwater and land terrain, creation of 3D maritime model based on the integration of GIS and CAD, spatial information extraction from nonspatial data, organization and management of terrain data and 3D maritime models, moving object management based on orbit positioning algorithm, 3D visualization of different information are discussed in detail. At last, a system named 3DMBINS is developed and obtained initial application in maritime administration.

  1. AN OPEN SOURCE LOW-COST AUTOMATIC SYSTEM FOR IMAGE-BASED 3D DIGITIZATION

    Directory of Open Access Journals (Sweden)

    F. Menna

    2017-11-01

    Full Text Available 3D digitization of heritage artefacts, reverse engineering of industrial components or rapid prototyping-driven design are key topics today. Indeed, millions of archaeological finds all over the world need to be surveyed in 3D either to allow convenient investigations by researchers or because they are inaccessible to visitors and scientists or, unfortunately, because they are seriously endangered by wars and terrorist attacks. On the other hand, in case of industrial and design components there is often the need of deformation analyses or physical replicas starting from reality-based 3D digitisations. The paper is aligned with these needs and presents the realization of the ORION (arduinO Raspberry pI rOtating table for image based 3D recostructioN prototype system, with its hardware and software components, providing critical insights about its modular design. ORION is an image-based 3D reconstruction system based on automated photogrammetric acquisitions and processing. The system is being developed under a collaborative educational project between FBK Trento, the University of Trento and internship programs with high school in the Trentino province (Italy.

  2. An Open Source Low-Cost Automatic System for Image-Based 3d Digitization

    Science.gov (United States)

    Menna, F.; Nocerino, E.; Morabito, D.; Farella, E. M.; Perini, M.; Remondino, F.

    2017-11-01

    3D digitization of heritage artefacts, reverse engineering of industrial components or rapid prototyping-driven design are key topics today. Indeed, millions of archaeological finds all over the world need to be surveyed in 3D either to allow convenient investigations by researchers or because they are inaccessible to visitors and scientists or, unfortunately, because they are seriously endangered by wars and terrorist attacks. On the other hand, in case of industrial and design components there is often the need of deformation analyses or physical replicas starting from reality-based 3D digitisations. The paper is aligned with these needs and presents the realization of the ORION (arduinO Raspberry pI rOtating table for image based 3D recostructioN) prototype system, with its hardware and software components, providing critical insights about its modular design. ORION is an image-based 3D reconstruction system based on automated photogrammetric acquisitions and processing. The system is being developed under a collaborative educational project between FBK Trento, the University of Trento and internship programs with high school in the Trentino province (Italy).

  3. Pairwise domain adaptation module for CNN-based 2-D/3-D registration.

    Science.gov (United States)

    Zheng, Jiannan; Miao, Shun; Jane Wang, Z; Liao, Rui

    2018-04-01

    Accurate two-dimensional to three-dimensional (2-D/3-D) registration of preoperative 3-D data and intraoperative 2-D x-ray images is a key enabler for image-guided therapy. Recent advances in 2-D/3-D registration formulate the problem as a learning-based approach and exploit the modeling power of convolutional neural networks (CNN) to significantly improve the accuracy and efficiency of 2-D/3-D registration. However, for surgery-related applications, collecting a large clinical dataset with accurate annotations for training can be very challenging or impractical. Therefore, deep learning-based 2-D/3-D registration methods are often trained with synthetically generated data, and a performance gap is often observed when testing the trained model on clinical data. We propose a pairwise domain adaptation (PDA) module to adapt the model trained on source domain (i.e., synthetic data) to target domain (i.e., clinical data) by learning domain invariant features with only a few paired real and synthetic data. The PDA module is designed to be flexible for different deep learning-based 2-D/3-D registration frameworks, and it can be plugged into any pretrained CNN model such as a simple Batch-Norm layer. The proposed PDA module has been quantitatively evaluated on two clinical applications using different frameworks of deep networks, demonstrating its significant advantages of generalizability and flexibility for 2-D/3-D medical image registration when a small number of paired real-synthetic data can be obtained.

  4. 3-D-CT reconstructions in fractures of the skull base and facial skeleton; 3-D-CT-Rekonstruktion bei Frakturen der Schaedelbasis und des Gesichtsschaedels

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, R. [Radiologische Universitaetsklinik, Bonn (Germany); Quade, R. [HNO-Universitaetsklinik, Bonn (Germany); Keppler, V. [Radiologische Universitaetsklinik, Bonn (Germany); Reiser, M. [Radiologische Universitaetsklinik, Bonn (Germany)

    1994-02-01

    3-D reconstructions of the skull base, temporal bone, and skull fractures were compared to 2-D CT to evaluate the diagnostic value in traumatized patients. 38 patients with 22 fractures of the facial skeleton (orbita, zygomatic, Le Fort), 12 temporal bone, and 4 skull fractures were investigated. Subjective grading was perfomed by two physicians (ENT/RAD) in respect of quality diagnostic validity and estimated clinical impact. The average image validity and quality were graded good. In the temporal bone the average information supplied by 3-D was of inferior value; here, the lack of information regarding the inner ear structures was responsible for the lack of clinical impact. In fractures of the facial skeleton and the skull base of good to very good image quality was seen and clinical relevance was high. 3-D CT is capable of demonstrating fractures, which is of little value in the temporal bone, but of high value in the skull base and the facial skeleton, especially if surfaces are involved or fragments are displaced. (orig.) [Deutsch] Aus computertomographischen Schichten wurden bei Frakturen des Schaedels 3-D-Rekonstruktionen angefertigt, um die diagnostische Aussage zu vergleichen. 38 Patienten wurden untersucht, es wurden 22 Gesichtsschaedel-, 4 Kalotten- und 12 Felsenbeinfrakturen bezueglich (1) Bildqualitaet, (2) diagnostischer Aussagekraft, (3) geschaetzter klinischer Wertigkeit bewertet. Die durchschnittlich erreichbare Bildqualitaet (Artefakte, Detailtreue) und diagnostische Aussagekraft wurden in der Gesamtauswertung als gut bewertet. Bei den Pyramidenfrakturen zeigte sich eine geringe diagnostische Wertigkeit, da die Beteiligung der Innenrohr- und Mittelohrstrukturen nicht abgrenzbar war. Die Gesichtsschaedel-, Jochbein- und Schaedelbasisfrakturen zeigten eine gute bis sehr gute Bildqualitaet und eine Wertung der 3-D-Rekonstruktionen als klinisch relevant. Bei den Felsenbeinfrakturen war die klinische Relevanz sehr eingeschraenkt, die 3-D

  5. QueryArch3D: Querying and Visualising 3D Models of a Maya Archaeological Site in a Web-Based Interface

    Directory of Open Access Journals (Sweden)

    Giorgio Agugiaro

    2011-12-01

    Full Text Available Constant improvements in the field of surveying, computing and distribution of digital-content are reshaping the way Cultural Heritage can be digitised and virtually accessed, even remotely via web. A traditional 2D approach for data access, exploration, retrieval and exploration may generally suffice, however more complex analyses concerning spatial and temporal features require 3D tools, which, in some cases, have not yet been implemented or are not yet generally commercially available. Efficient organisation and integration strategies applicable to the wide array of heterogeneous data in the field of Cultural Heritage represent a hot research topic nowadays. This article presents a visualisation and query tool (QueryArch3D conceived to deal with multi-resolution 3D models. Geometric data are organised in successive levels of detail (LoD, provided with geometric and semantic hierarchies and enriched with attributes coming from external data sources. The visualisation and query front-end enables the 3D navigation of the models in a virtual environment, as well as the interaction with the objects by means of queries based on attributes or on geometries. The tool can be used as a standalone application, or served through the web. The characteristics of the research work, along with some implementation issues and the developed QueryArch3D tool will be discussed and presented.

  6. 3D facial expression recognition based on histograms of surface differential quantities

    KAUST Repository

    Li, Huibin

    2011-01-01

    3D face models accurately capture facial surfaces, making it possible for precise description of facial activities. In this paper, we present a novel mesh-based method for 3D facial expression recognition using two local shape descriptors. To characterize shape information of the local neighborhood of facial landmarks, we calculate the weighted statistical distributions of surface differential quantities, including histogram of mesh gradient (HoG) and histogram of shape index (HoS). Normal cycle theory based curvature estimation method is employed on 3D face models along with the common cubic fitting curvature estimation method for the purpose of comparison. Based on the basic fact that different expressions involve different local shape deformations, the SVM classifier with both linear and RBF kernels outperforms the state of the art results on the subset of the BU-3DFE database with the same experimental setting. © 2011 Springer-Verlag.

  7. Interactive WebGL-based 3D visualizations for EAST experiment

    Energy Technology Data Exchange (ETDEWEB)

    Xia, J.Y., E-mail: jyxia@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui (China); Li, Dan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Wang, K.R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui (China)

    2016-11-15

    Highlights: • Developing a user-friendly interface to visualize the EAST experimental data and the device is important to scientists and engineers. • The Web3D visualization system is based on HTML5 and WebGL, which runs without the need for plug-ins or third party components. • The interactive WebGL-based 3D visualization system is a web-portal integrating EAST 3D models, experimental data and plasma videos. • The original CAD model was discretized into different layers with different simplification to enable realistic rendering and improve performance. - Abstract: In recent years EAST (Experimental Advanced Superconducting Tokamak) experimental data are being shared and analyzed by an increasing number of international collaborators. Developing a user-friendly interface to visualize the data, meta data and the relevant parts of the device is becoming more and more important to aid scientists and engineers. Compared with the previous virtual EAST system based on VRML/Java3D [1] (Li et al., 2014), a new technology is being adopted to create a 3D visualization system based on HTML5 and WebGL, which runs without the need for plug-ins or third party components. The interactive WebGL-based 3D visualization system is a web-portal integrating EAST 3D models, experimental data and plasma videos. It offers a highly interactive interface allowing scientists to roam inside EAST device and view the complex 3-D structure of the machine. It includes technical details of the device and various diagnostic components, and provides visualization of diagnostic metadata with a direct link to each signal name and its stored data. In order for the quick access to the device 3D model, the original CAD model was discretized into different layers with different simplification. It allows users to search for plasma videos in any experiment and analyze the video frame by frame. In this paper, we present the implementation details to enable realistic rendering and improve performance.

  8. 3D-SIFT-Flow for atlas-based CT liver image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan, E-mail: xuyan04@gmail.com [State Key Laboratory of Software Development Environment and Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100191, China and Research Institute of Beihang University in Shenzhen and Microsoft Research, Beijing 100080 (China); Xu, Chenchao, E-mail: chenchaoxu33@gmail.com; Kuang, Xiao, E-mail: kuangxiao.ace@gmail.com [School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China); Wang, Hongkai, E-mail: wang.hongkai@gmail.com [Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024 (China); Chang, Eric I-Chao, E-mail: eric.chang@microsoft.com [Microsoft Research, Beijing 100080 (China); Huang, Weimin, E-mail: wmhuang@i2r.a-star.edu.sg [Institute for Infocomm Research (I2R), Singapore 138632 (Singapore); Fan, Yubo, E-mail: yubofan@buaa.edu.cn [Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100191 (China)

    2016-05-15

    Purpose: In this paper, the authors proposed a new 3D registration algorithm, 3D-scale invariant feature transform (SIFT)-Flow, for multiatlas-based liver segmentation in computed tomography (CT) images. Methods: In the registration work, the authors developed a new registration method that takes advantage of dense correspondence using the informative and robust SIFT feature. The authors computed the dense SIFT features for the source image and the target image and designed an objective function to obtain the correspondence between these two images. Labeling of the source image was then mapped to the target image according to the former correspondence, resulting in accurate segmentation. In the fusion work, the 2D-based nonparametric label transfer method was extended to 3D for fusing the registered 3D atlases. Results: Compared with existing registration algorithms, 3D-SIFT-Flow has its particular advantage in matching anatomical structures (such as the liver) that observe large variation/deformation. The authors observed consistent improvement over widely adopted state-of-the-art registration methods such as ELASTIX, ANTS, and multiatlas fusion methods such as joint label fusion. Experimental results of liver segmentation on the MICCAI 2007 Grand Challenge are encouraging, e.g., Dice overlap ratio 96.27% ± 0.96% by our method compared with the previous state-of-the-art result of 94.90% ± 2.86%. Conclusions: Experimental results show that 3D-SIFT-Flow is robust for segmenting the liver from CT images, which has large tissue deformation and blurry boundary, and 3D label transfer is effective and efficient for improving the registration accuracy.

  9. A 3D model for thickness and diffusion capacitance of emitter-base ...

    African Journals Online (AJOL)

    Through this paper, we present n+-p-p+ solar cell. Mathematical relations describing the generated carriers' density are expressed, using among others a new approach involving both junction and back surface recombination velocities in a 3D modelling study. Based on the normalized carriers' density versus the base ...

  10. 3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum

    Science.gov (United States)

    Su,Chung-Ho; Cheng, Ching-Hsue

    2013-01-01

    The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning achievement. A…

  11. An Interactive Modeling Method of 3D Model Based on National Cultural Resource Database

    Directory of Open Access Journals (Sweden)

    Sun Chuan-Ming

    2017-01-01

    Full Text Available Aiming at solving the problems of low efficiency and complicated operation of 3D modeling in the process of virtual product development of national culture, this paper discusses a synthesis approach of surface geometry model based on data-driven. Firstly, a shape-based matching algorithm is used to retrieve the corresponding components in the database. Secondly, a new model will be generated through segmenting and assembling these components. Finally, this approach is applied to construct 3D model of scenes and characters in ancient Badong town. The application shows that this approach can generate the geometric model of characters and scenes efficiently and economically in cultural activities.

  12. A Low Cost 3D Acquiring System for Mushroom Robot Based on Webcam and Line Laser

    Directory of Open Access Journals (Sweden)

    Gang Sun

    2014-03-01

    Full Text Available This paper presents a low cost 3D acquiring system for mushroom robot based on webcam and line laser. The system comprises Webcam, semiconductor line laser, motion platform and data process unit. The system can get the 3D information of the Pleurotus eryngii in bottle based on structured light scanning theory. Field test shows the accuracy of the height is less than 2mm and it can be use to locate the buds in the bottle correctly. It has the potention to fulfill the requirement of the location of the mushroom for thinning bud robot.

  13. Rotate-and-Slant Projector for Fast LOR-Based Fully-3-D Iterative PET Reconstruction

    OpenAIRE

    Kadrmas, Dan J.

    2008-01-01

    One of the greatest challenges facing iterative fully-3-D positron emission tomography (PET) reconstruction is the issue of long reconstruction times due to the large number of measurements for 3-D mode as compared to 2-D mode. A rotate-and-slant projector has been developed that takes advantage of symmetries in the geometry to compute volumetric projections to multiple oblique sinograms in a computationally efficient manner. It is based upon the 2-D rotation-based projector using the three-p...

  14. Simultaneous Detection of Static and Dynamic Signals by a Flexible Sensor Based on 3D Graphene

    Directory of Open Access Journals (Sweden)

    Rongqing Xu

    2017-05-01

    Full Text Available A flexible acoustic pressure sensor was developed based on the change in electrical resistance of three-dimensional (3D graphene change under the acoustic waves action. The sensor was constructed by 3D graphene foam (GF wrapped in flexible polydimethylsiloxane (PDMS. Tuning forks and human physiological tests indicated that the acoustic pressure sensor can sensitively detect the deformation and the acoustic pressure in real time. The results are of significance to the development of graphene-based applications in the field of health monitoring, in vitro diagnostics, advanced therapies, and transient pressure detection.

  15. Learning to Grasp Unknown Objects Based on 3D Edge Information

    DEFF Research Database (Denmark)

    Bodenhagen, Leon; Kraft, Dirk; Popovic, Mila

    2010-01-01

    an offline or an online learning scheme. Both methods are implemented using a hybrid artificial neural network containing standard nodes with a sigmoid activation function and nodes with a radial basis function. We show that a significant performance improvement can be achieved.......In this work we refine an initial grasping behavior based on 3D edge information by learning. Based on a set of autonomously generated evaluated grasps and relations between the semi-global 3D edges, a prediction function is learned that computes a likelihood for the success of a grasp using either...

  16. 3D printing of weft knitted textile based structures by selective laser sintering of nylon powder

    Science.gov (United States)

    Beecroft, M.

    2016-07-01

    3D printing is a form of additive manufacturing whereby the building up of layers of material creates objects. The selective laser sintering process (SLS) uses a laser beam to sinter powdered material to create objects. This paper builds upon previous research into 3D printed textile based material exploring the use of SLS using nylon powder to create flexible weft knitted structures. The results show the potential to print flexible textile based structures that exhibit the properties of traditional knitted textile structures along with the mechanical properties of the material used, whilst describing the challenges regarding fineness of printing resolution. The conclusion highlights the potential future development and application of such pieces.

  17. A spectral CT denoising algorithm based on weighted block matching 3D filtering

    Science.gov (United States)

    Salehjahromi, Morteza; Zhang, Yanbo; Yu, Hengyong

    2017-09-01

    In spectral CT, an energy-resolving detector is capable of counting the number of received photons in different energy channels with appropriate post-processing steps. Because the received photon number in each energy channel is low in practice, the generated projections suffer from low signal-to-noise ratio. This poses a challenge to perform image reconstruction of spectral CT. Because the reconstructed multi-channel images are for the same object but in different energies, there is a high correlation among these images and one can make full use of this redundant information. In this work, we propose a weighted block-matching and three-dimensional (3-D) filtering (BM3D) based method for spectral CT denoising. It is based on denoising of small 3-D data arrays formed by grouping similar 2-D blocks from the whole 3-D data image. This method consists of the following two steps. First, a 2-D image is obtained using the filtered back-projection (FBP) in each energy channel. Second, the proposed weighted BM3D filtering is performed. It not only uses the spatial correlation within each channel image but also exploits the spectral correlation among the channel images. The proposed method is evaluated on both numerical simulation and realistic preclinical datasets, and its merits are demonstrated by the promising results.

  18. Capturing PM2.5 Emissions from 3D Printing via Nanofiber-based Air Filter.

    Science.gov (United States)

    Rao, Chengchen; Gu, Fu; Zhao, Peng; Sharmin, Nusrat; Gu, Haibing; Fu, Jianzhong

    2017-09-04

    This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, (3) generation and aggregation of particles from 3D printing can be divided into four stages: the PM2.5 concentration and particles size increase slowly (first stage), small particles are continuously generated and their concentration increases rapidly (second stage), small particles aggregate into more large particles and the growth of concentration slows down (third stage), the PM2.5 concentration and particle aggregation sizes increase rapidly (fourth stage), and (4) the ultrafine particles denoted as "building unit" act as the fundamentals of the aggregated particles. This work has tremendous implications in providing measures for controlling the particle emissions from 3D printing, which would facilitate the extensive application of 3D printing. In addition, this study provides a potential application scenario for nanofiber-based air filters other than laboratory theoretical investigation.

  19. New developments in EPID-based 3D dosimetry in The Netherlands Cancer Institute

    Science.gov (United States)

    Mijnheer, B.; Rozendaal, R.; Olaciregui-Ruiz, I.; González, P.; van Oers, R.; Mans, A.

    2017-05-01

    EPID-based offline 3D in vivo dosimetry is performed routinely in The Netherlands Cancer Institute for almost all RT treatments. The 3D dose distribution is reconstructed using the EPID primary dose in combination with a back-projection algorithm and compared with the planned dose distribution. Recently the method was adapted for real-time dose verification, performing 3D dose verification in less than 300 ms, which is faster than the current portal frame acquisition rate. In this way a possibility is created for halting the linac in case of large delivery errors. Furthermore, a new method for pre-treatment QA was developed in which the EPID primary dose behind a phantom or patient is predicted using the CT data of that phantom or patient in combination with in-air EPID measurements. This virtual EPID primary transit dose is then used to reconstruct the 3D dose distribution within the phantom or patient geometry using the same dose engine as applied offline. In order to assess the relevance of our clinically applied alert criteria, we investigated the sensitivity of our EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. This was done through simulation by modifying patient treatment plans, as well as experimentally by performing EPID measurements during the irradiation of an Alderson phantom, both after deliberately introducing errors during VMAT delivery. In this presentation these new developments will be elucidated.

  20. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.

    Science.gov (United States)

    Serra, Tiziano; Ortiz-Hernandez, Monica; Engel, Elisabeth; Planell, Josep A; Navarro, Melba

    2014-05-01

    Achieving high quality 3D-printed structures requires establishing the right printing conditions. Finding processing conditions that satisfy both the fabrication process and the final required scaffold properties is crucial. This work stresses the importance of studying the outcome of the plasticizing effect of PEG on PLA-based blends used for the fabrication of 3D-direct-printed scaffolds for tissue engineering applications. For this, PLA/PEG blends with 5, 10 and 20% (w/w) of PEG and PLA/PEG/bioactive CaP glass composites were processed in the form of 3D rapid prototyping scaffolds. Surface analysis and differential scanning calorimetry revealed a rearrangement of polymer chains and a topography, wettability and elastic modulus increase of the studied surfaces as PEG was incorporated. Moreover, addition of 10 and 20% PEG led to non-uniform 3D structures with lower mechanical properties. In vitro degradation studies showed that the inclusion of PEG significantly accelerated the degradation rate of the material. Results indicated that the presence of PEG not only improves PLA processing but also leads to relevant surface, geometrical and structural changes including modulation of the degradation rate of PLA-based 3D printed scaffolds. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Iterative observer based method for source localization problem for Poisson equation in 3D

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-10

    A state-observer based method is developed to solve point source localization problem for Poisson equation in a 3D rectangular prism with available boundary data. The technique requires a weighted sum of solutions of multiple boundary data estimation problems for Laplace equation over the 3D domain. The solution of each of these boundary estimation problems involves writing down the mathematical problem in state-space-like representation using one of the space variables as time-like. First, system observability result for 3D boundary estimation problem is recalled in an infinite dimensional setting. Then, based on the observability result, the boundary estimation problem is decomposed into a set of independent 2D sub-problems. These 2D problems are then solved using an iterative observer to obtain the solution. Theoretical results are provided. The method is implemented numerically using finite difference discretization schemes. Numerical illustrations along with simulation results are provided.

  2. Microchip-based 3D-Cell Culture Using Polymer Nanofibers Generated by Solution Blow Spinning.

    Science.gov (United States)

    Chen, Chengpeng; Townsend, Alexandra D; Sell, Scott A; Martin, R Scott

    2017-06-14

    Polymer nano/micro fibers have found many applications including 3D cell culture and the creation of wound dressings. The fibers can be produced by a variety of techniques that include electrospinning, the primary disadvantage of which include the requirement for a high voltage supply (which may cause issues such as polymer denaturation) and lack of portability. More recently, solution blow spinning, where a high velocity sheath gas is used instead of high voltage, has been used to generate polymer fibers. In this work, we used blow spinning to create nano/microfibers for microchip-based 3D cell culture. First, we thoroughly investigated fiber generation from a 3D printed gas sheath device using two polymers that are amenable to cell culture (polycaprolactone, PCL and polystyrene, PS) as well as the parameters that can affect PCL and PS fiber quality. Using the 3D printed sheath device, it was found that the pressure of the sheath N 2 and the concentration of polymer solutions determine if fibers can be produced as well as the resulting fiber morphology. In addition, we showed how these fibers can be used for 3D cell culture by directly depositing PCL fibers in petri dishes and well plates. It is shown the fibers have good compatibility with RAW 264.7 macrophages and the PCL fiber scaffold can be as thick as 178 ± 14 μm. PCL fibers created from solution blow spinning (with the 3D printed sheath device) were then integrated with a microfluidic device for the first time to fabricate a 3D cell culture scaffold with a flow component. After culturing and stimulating macrophages on the fluidic device, it was found that the integrated 3D fibrous scaffold is a better mimic of the extracellular matrix (as opposed to a flat, 2D substrate), with enhanced nitrite accumulation (product of nitric oxide release) from macrophages stimulated with lipopolysaccharide. PS fibers were also made and integrated in a microfluidic device for 3D culture of endothelial cells, which stayed

  3. Vision based systems for UAV applications

    CERN Document Server

    Kuś, Zygmunt

    2013-01-01

    This monograph is motivated by a significant number of vision based algorithms for Unmanned Aerial Vehicles (UAV) that were developed during research and development projects. Vision information is utilized in various applications like visual surveillance, aim systems, recognition systems, collision-avoidance systems and navigation. This book presents practical applications, examples and recent challenges in these mentioned application fields. The aim of the book is to create a valuable source of information for researchers and constructors of solutions utilizing vision from UAV. Scientists, researchers and graduate students involved in computer vision, image processing, data fusion, control algorithms, mechanics, data mining, navigation and IC can find many valuable, useful and practical suggestions and solutions. The latest challenges for vision based systems are also presented.

  4. Depth Camera-Based 3D Hand Gesture Controls with Immersive Tactile Feedback for Natural Mid-Air Gesture Interactions

    Directory of Open Access Journals (Sweden)

    Kwangtaek Kim

    2015-01-01

    Full Text Available Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user’s hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE, 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user’s gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  5. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions.

    Science.gov (United States)

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-08

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  6. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.

    Science.gov (United States)

    Lee, Youlee; Lee, Jong Min; Bae, Pan-Kee; Chung, Il Yup; Chung, Bong Hyun; Chung, Bong Geun

    2015-04-01

    We developed the photo-crosslinkable hydrogel-based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo-crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular-shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel-based 3D microfluidic device, showing that 53-75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo-crosslinkable hydrogel-based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Field lens multiplexing in holographic 3D displays by using Bragg diffraction based volume gratings

    Science.gov (United States)

    Fütterer, G.

    2016-11-01

    Applications, which can profit from holographic 3D displays, are the visualization of 3D data, computer-integrated manufacturing, 3D teleconferencing and mobile infotainment. However, one problem of holographic 3D displays, which are e.g. based on space bandwidth limited reconstruction of wave segments, is to realize a small form factor. Another problem is to provide a reasonable large volume for the user placement, which means to provide an acceptable freedom of movement. Both problems should be solved without decreasing the image quality of virtual and real object points, which are generated within the 3D display volume. A diffractive optical design using thick hologram gratings, which can be referred to as Bragg diffraction based volume gratings, can provide a small form factor and high definition natural viewing experience of 3D objects. A large collimated wave can be provided by an anamorphic backlight unit. The complex valued spatial light modulator add local curvatures to the wave field he is illuminated with. The modulated wave field is focused onto to the user plane by using a volume grating based field lens. Active type liquid crystal gratings provide 1D fine tracking of approximately +/- 8° deg. Diffractive multiplex has to be implemented for each color and for a set of focus functions providing coarse tracking. Boundary conditions of the diffractive multiplexing are explained. This is done in regards to the display layout and by using the coupled wave theory (CWT). Aspects of diffractive cross talk and its suppression will be discussed including longitudinal apodized volume gratings.

  8. PRIMITIVE-BASED 3D BUILDING RECONSTRUCTION METHOD TESTED BY REFERENCE AIRBORNE DATA

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2012-07-01

    Full Text Available Airborne LiDAR data and optical imagery are two datasets used for 3D building reconstruction. By study of the complementarities of these two datasets, we proposed a primitive-based 3D building reconstruction method, which can use LiDAR data and optical imagery at the same time. The proposed method comprises following steps: (1 recognize primitives from LiDAR point cloud and roughly measure primitives’ parameters as initial values, and (2 select primitives' features on the imagery, and (3 optimize primitives' parameters by the constraints of LiDAR point cloud and imagery, and (4 represent 3D building model by these optimized primitives. Compared with other model-based or CSG-based methods, the proposed method has some advantages. It is simpler, because it only uses the most straightforward features, i.e. planes of LiDAR point cloud and points of optical imagery. And it can tightly integrate LiDAR point cloud and optical imagery, that is to say, all primitives' parameters are optimized with all constraints in one step. Recently, an ISPRS Test Project on Urban Classification and 3D Building Reconstruction was launched, two datasets both with airborne LiDAR data and images are provided. The proposed method was applied to Area 3 of Dataset 1 Vaihingen, in which there are some buildings with plane roofs or gable roofs. The organizer of this test project evaluated the submitted reconstructed 3D model using reference data. The result shows the feasibility of the proposed 3D building reconstruction method.

  9. Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: Model, production and in vivo biocompatibility.

    Science.gov (United States)

    Bendali, Amel; Rousseau, Lionel; Lissorgues, Gaëlle; Scorsone, Emmanuel; Djilas, Milan; Dégardin, Julie; Dubus, Elisabeth; Fouquet, Stéphane; Benosman, Ryad; Bergonzo, Philippe; Sahel, José-Alain; Picaud, Serge

    2015-10-01

    Two retinal implants have recently received the CE mark and one has obtained FDA approval for the restoration of useful vision in blind patients. Since the spatial resolution of current vision prostheses is not sufficient for most patients to detect faces or perform activities of daily living, more electrodes with less crosstalk are needed to transfer complex images to the retina. In this study, we modelled planar and three-dimensional (3D) implants with a distant ground or a ground grid, to demonstrate greater spatial resolution with 3D structures. Using such flexible 3D implant prototypes, we showed that the degenerated retina could mould itself to the inside of the wells, thereby isolating bipolar neurons for specific, independent stimulation. To investigate the in vivo biocompatibility of diamond as an electrode or an isolating material, we developed a procedure for depositing diamond onto flexible 3D retinal implants. Taking polyimide 3D implants as a reference, we compared the number of neurones integrating the 3D diamond structures and their ratio to the numbers of all cells, including glial cells. Bipolar neurones were increased whereas there was no increase even a decrease in the total cell number. SEM examinations of implants confirmed the stability of the diamond after its implantation in vivo. This study further demonstrates the potential of 3D designs for increasing the resolution of retinal implants and validates the safety of diamond materials for retinal implants and neuroprostheses in general. Copyright © 2015. Published by Elsevier Ltd.

  10. Reduced Complexity Iterative Decoding of 3D-Product Block Codes Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Abdeslam Ahmadi

    2012-01-01

    Full Text Available Two iterative decoding algorithms of 3D-product block codes (3D-PBC based on genetic algorithms (GAs are presented. The first algorithm uses the Chase-Pyndiah SISO, and the second one uses the list-based SISO decoding algorithm (LBDA based on order- reprocessing. We applied these algorithms over AWGN channel to symmetric 3D-PBC constructed from BCH codes. The simulation results show that the first algorithm outperforms the Chase-Pyndiah one and is only 1.38 dB away from the Shannon capacity limit at BER of 10−5 for BCH (31, 21, 53 and 1.4 dB for BCH (16, 11, 43. The simulations of the LBDA-based GA on the BCH (16, 11, 43 show that its performances outperform the first algorithm and is about 1.33 dB from the Shannon limit. Furthermore, these algorithms can be applied to any arbitrary 3D binary product block codes, without the need of a hard-in hard-out decoder. We show also that the two proposed decoders are less complex than both Chase-Pyndiah algorithm for codes with large correction capacity and LBDA for large parameter. Those features make the decoders based on genetic algorithms efficient and attractive.

  11. A novel image encryption algorithm based on a 3D chaotic map

    Science.gov (United States)

    Kanso, A.; Ghebleh, M.

    2012-07-01

    Recently [Solak E, Çokal C, Yildiz OT Biyikoǧlu T. Cryptanalysis of Fridrich's chaotic image encryption. Int J Bifur Chaos 2010;20:1405-1413] cryptanalyzed the chaotic image encryption algorithm of [Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifur Chaos 1998;8(6):1259-1284], which was considered a benchmark for measuring security of many image encryption algorithms. This attack can also be applied to other encryption algorithms that have a structure similar to Fridrich's algorithm, such as that of [Chen G, Mao Y, Chui, C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 2004;21:749-761]. In this paper, we suggest a novel image encryption algorithm based on a three dimensional (3D) chaotic map that can defeat the aforementioned attack among other existing attacks. The design of the proposed algorithm is simple and efficient, and based on three phases which provide the necessary properties for a secure image encryption algorithm including the confusion and diffusion properties. In phase I, the image pixels are shuffled according to a search rule based on the 3D chaotic map. In phases II and III, 3D chaotic maps are used to scramble shuffled pixels through mixing and masking rules, respectively. Simulation results show that the suggested algorithm satisfies the required performance tests such as high level security, large key space and acceptable encryption speed. These characteristics make it a suitable candidate for use in cryptographic applications.

  12. A Scalable Multiple Description Scheme for 3D Video Coding Based on the Interlayer Prediction Structure

    Directory of Open Access Journals (Sweden)

    Lorenzo Favalli

    2010-01-01

    Full Text Available The most recent literature indicates multiple description coding (MDC as a promising coding approach to handle the problem of video transmission over unreliable networks with different quality and bandwidth constraints. Furthermore, following recent commercial availability of autostereoscopic 3D displays that allow 3D visual data to be viewed without the use of special headgear or glasses, it is anticipated that the applications of 3D video will increase rapidly in the near future. Moving from the concept of spatial MDC, in this paper we introduce some efficient algorithms to obtain 3D substreams that also exploit some form of scalability. These algorithms are then applied to both coded stereo sequences and to depth image-based rendering (DIBR. In these algorithms, we first generate four 3D subsequences by subsampling, and then two of these subsequences are jointly used to form each of the two descriptions. For each description, one of the original subsequences is predicted from the other one via some scalable algorithms, focusing on the inter layer prediction scheme. The proposed algorithms can be implemented as pre- and postprocessing of the standard H.264/SVC coder that remains fully compatible with any standard coder. The experimental results presented show that these algorithms provide excellent results.

  13. Design-for-test and test optimization techniques for TSV-based 3D stacked ICs

    CERN Document Server

    Noia, Brandon

    2014-01-01

    This book describes innovative techniques to address the testing needs of 3D stacked integrated circuits (ICs) that utilize through-silicon-vias (TSVs) as vertical interconnects.  The authors identify the key challenges facing 3D IC testing and present results that have emerged from cutting-edge research in this domain.  Coverage includes topics ranging from die-level wrappers, self-test circuits, and TSV probing to test-architecture design, test scheduling, and optimization.  Readers will benefit from an in-depth look at test-technology solutions that are needed to make 3D ICs a reality and commercially viable.   • Provides a comprehensive guide to the challenges and solutions for the testing of TSV-based 3D stacked ICs; • Includes in-depth explanation of key test and design-for-test technologies, emerging standards, and test- architecture and test-schedule optimizations; • Encompasses all aspects of test as related to 3D ICs, including pre-bond and post-bond test as well as the test optimizatio...

  14. Real-time 3D measurement based on structured light illumination considering camera lens distortion

    Science.gov (United States)

    Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, ShiLing

    2014-12-01

    Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. In traditional 3-D measurement system where the processing time is not a key factor, camera lens distortion correction is performed directly. However, for the time-critical high-speed applications, the time-consuming correction algorithm is inappropriate to be performed directly during the real-time process. To cope with this issue, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. And a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the merit of the LUT, the 3-D reconstruction can be achieved at 92.34 frames per second.

  15. Design of mulitlevel OLF approach ("V"-shaped decompressive laminoplasty) based on 3D printing technology.

    Science.gov (United States)

    Ling, Qinjie; He, Erxing; Ouyang, Hanbin; Guo, Jing; Yin, Zhixun; Huang, Wenhua

    2017-07-27

    To introduce a new surgical approach to the multilevel ossification of the ligamentum flavum (OLF) aided by three-dimensional (3D) printing technology. A multilevel OLF patient (male, 66 years) was scanned using computed tomography (CT). His saved DICOM format data were inputted to the Mimics14.0 3D reconstruction software (Materialise, Belgium). The resulting 3D model was used to observe the anatomical features of the multilevel OLF area and to design the surgical approach. At the base of the spinous process, two channels were created using an osteotomy bilaterally to create a "V" shape to remove the bone ligamentous complex (BLC). The decompressive laminoplasty using mini-plate fixation was simulated with the computer. The physical model was manufactured using 3D printing technology. The patient was subsequently treated using the designed surgery. The operation was completed successfully without any complications. The operative time was 90 min, and blood loss was 200 ml. One month after the operation, neurologic function was recovered well, and the JOA score was improved from 6 preoperatively to 10. Postoperative CT scanning showed that the OLF was totally removed, and the replanted BLC had not subsided. 3D printing technology is an effective, reliable, and minimally invasive method to design operations. The technique can be an option for multilevel OLF surgical treatment. This can provide sufficient decompression with minimum damage to the spine and other intact anatomical structures.

  16. Fusing Multiscale Charts into 3D ENC Systems Based on Underwater Topography and Remote Sensing Image

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2015-01-01

    Full Text Available The purpose of this study is to propose an approach to fuse multiscale charts into three-dimensional (3D electronic navigational chart (ENC systems based on underwater topography and remote sensing image. This is the first time that the fusion of multiscale standard ENCs in the 3D ENC system has been studied. First, a view-dependent visualization technology is presented for the determination of the display condition of a chart. Second, a map sheet processing method is described for dealing with the map sheet splice problem. A process order called “3D order” is designed to adapt to the characteristics of the chart. A map sheet clipping process is described to deal with the overlap between the adjacent map sheets. And our strategy for map sheet splice is proposed. Third, the rendering method for ENC objects in the 3D ENC system is introduced. Fourth, our picking-up method for ENC objects is proposed. Finally, we implement the above methods in our system: automotive intelligent chart (AIC 3D electronic chart display and information systems (ECDIS. And our method can handle the fusion problem well.

  17. Electro-bending characterization of adaptive 3D fiber reinforced plastics based on shape memory alloys

    Science.gov (United States)

    Ashir, Moniruddoza; Hahn, Lars; Kluge, Axel; Nocke, Andreas; Cherif, Chokri

    2016-03-01

    The industrial importance of fiber reinforced plastics (FRPs) is growing steadily in recent years, which are mostly used in different niche products, has been growing steadily in recent years. The integration of sensors and actuators in FRP is potentially valuable for creating innovative applications and therefore the market acceptance of adaptive FRP is increasing. In particular, in the field of highly stressed FRP, structural integrated systems for continuous component parts monitoring play an important role. This presented work focuses on the electro-mechanical characterization of adaptive three-dimensional (3D)FRP with integrated textile-based actuators. Here, the friction spun hybrid yarn, consisting of shape memory alloy (SMA) in wire form as core, serves as an actuator. Because of the shape memory effect, the SMA-hybrid yarn returns to its original shape upon heating that also causes the deformation of adaptive 3D FRP. In order to investigate the influences of the deformation behavior of the adaptive 3D FRP, investigations in this research are varied according to the structural parameters such as radius of curvature of the adaptive 3D FRP, fabric types and number of layers of the fabric in the composite. Results show that reproducible deformations can be realized with adaptive 3D FRP and that structural parameters have a significant impact on the deformation capability.

  18. MATCHING AERIAL IMAGES TO 3D BUILDING MODELS BASED ON CONTEXT-BASED GEOMETRIC HASHING

    Directory of Open Access Journals (Sweden)

    J. Jung

    2016-06-01

    Full Text Available In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs of a single image. This model-to-image matching process consists of three steps: 1 feature extraction, 2 similarity measure and matching, and 3 adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  19. Matching Aerial Images to 3d Building Models Based on Context-Based Geometric Hashing

    Science.gov (United States)

    Jung, J.; Bang, K.; Sohn, G.; Armenakis, C.

    2016-06-01

    In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs) of a single image. This model-to-image matching process consists of three steps: 1) feature extraction, 2) similarity measure and matching, and 3) adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  20. 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration

    KAUST Repository

    Bibi, Adel Aamer

    2016-12-13

    In this paper, we present a part-based sparse tracker in a particle filter framework where both the motion and appearance model are formulated in 3D. The motion model is adaptive and directed according to a simple yet powerful occlusion handling paradigm, which is intrinsically fused in the motion model. Also, since 3D trackers are sensitive to synchronization and registration noise in the RGB and depth streams, we propose automated methods to solve these two issues. Extensive experiments are conducted on a popular RGBD tracking benchmark, which demonstrate that our tracker can achieve superior results, outperforming many other recent and state-of-the-art RGBD trackers.

  1. Error Concealment for 3-D DWT Based Video Codec Using Iterative Thresholding

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Forchhammer, Søren; Codreanu, Marian

    2017-01-01

    Error concealment for video coding based on a 3-D discrete wavelet transform (DWT) is considered. We assume that the video sequence has a sparse representation in a known basis different from the DWT, e.g., in a 2-D discrete cosine transform basis. Then, we formulate the concealment problem as l1......-norm minimization and solve it utilizing an iterative thresholding algorithm. Comparing different thresholding operators, we show that video block-matching and 3-D filtering provide the best reconstruction by utilizing spatial similarity within a frame and temporal similarity between neighbor frames...

  2. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.

    Science.gov (United States)

    Fu, Kun; Wang, Yibo; Yan, Chaoyi; Yao, Yonggang; Chen, Yanan; Dai, Jiaqi; Lacey, Steven; Wang, Yanbin; Wan, Jiayu; Li, Tian; Wang, Zhengyang; Xu, Yue; Hu, Liangbing

    2016-04-06

    All-component 3D-printed lithium-ion batteries are fabricated by printing graphene-oxide-based composite inks and solid-state gel polymer electrolyte. An entirely 3D-printed full cell features a high electrode mass loading of 18 mg cm(-2) , which is normalized to the overall area of the battery. This all-component printing can be extended to the fabrication of multidimensional/multiscale complex-structures of more energy-storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interactive Cosmetic Makeup of a 3D Point-Based Face Model

    Science.gov (United States)

    Kim, Jeong-Sik; Choi, Soo-Mi

    We present an interactive system for cosmetic makeup of a point-based face model acquired by 3D scanners. We first enhance the texture of a face model in 3D space using low-pass Gaussian filtering, median filtering, and histogram equalization. The user is provided with a stereoscopic display and haptic feedback, and can perform simulated makeup tasks including the application of foundation, color makeup, and lip gloss. Fast rendering is achieved by processing surfels using the GPU, and we use a BSP tree data structure and a dynamic local refinement of the facial surface to provide interactive haptics. We have implemented a prototype system and evaluated its performance.

  4. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    Science.gov (United States)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  5. Edge-based intramode selection for depth-map coding in 3D-HEVC.

    Science.gov (United States)

    Park, Chun-Su

    2015-01-01

    The 3D video extension of High Efficiency Video Coding (3D-HEVC) is the state-of-the-art video coding standard for the compression of the multiview video plus depth format. In the 3D-HEVC design, new depth-modeling modes (DMMs) are utilized together with the existing intraprediction modes for depth intracoding. The DMMs can provide more accurate prediction signals and thereby achieve better compression efficiency. However, testing the DMMs in the intramode decision process causes a drastic increase in the computational complexity. In this paper, we propose a fast mode decision algorithm for depth intracoding. The proposed algorithm first performs a simple edge classification in the Hadamard transform domain. Then, based on the edge classification results, the proposed algorithm selectively omits unnecessary DMMs in the mode decision process. Experimental results demonstrate that the proposed algorithm speeds up the mode decision process by up to 37.65% with negligible loss of coding efficiency.

  6. 3D printed graphene-based electrodes with high electrochemical performance

    Science.gov (United States)

    Vernardou, D.; Vasilopoulos, K. C.; Kenanakis, G.

    2017-10-01

    Three-dimensional (3D) printed graphene pyramids were fabricated through a dual-extrusion FDM-type 3D printer using a commercially available PLA-based conductive graphene. Compared with flat printed graphene, a substantial enhancement in the electrochemical performance was clearly observed for the case of 3D printed graphene pyramids with 5.0 mm height. Additionally, the charge transfer of Li+ across the graphene pyramids/electrolyte interface was easier enhancing its performance presenting a specific discharge capacity of 265 mAh g-1 with retention of 93% after 1000 cycles. The importance of thickness control towards the printing of an electrode with good stability and effective electrochemical behavior is highlighted.

  7. A first approach of 3D Geostrophic Currents based on GOCE, altimetry and ARGO data

    Science.gov (United States)

    Sempere Beneyto, M. Dolores; Vigo, Isabel; Chao, Ben F.

    2016-04-01

    The most recent advances in the geoid determination, provided by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission, together with the continuous monitoring of the sea surface height by the altimeters on board of satellites and Argo data makes possible to estimate the ocean geostrophy in 3D. In this work, we present a first approach of the 3D geostrophic circulation for North Atlantic region, from the surface down to 1500 m depth. It has been computed for a 10 years period (2004-2014), using an observation-based approach that combines altimetry with temperature and salinity through the thermal wind equation gridded at one degree longitude and latitude resolution. For validation of the results, the estimated 3D geostrophic circulation is compared with Ocean Circulation Models simulations and/or in-situ data, showing in all cases similar patterns.

  8. Organ printing: computer-aided jet-based 3D tissue engineering.

    Science.gov (United States)

    Mironov, Vladimir; Boland, Thomas; Trusk, Thomas; Forgacs, Gabor; Markwald, Roger R

    2003-04-01

    Tissue engineering technology promises to solve the organ transplantation crisis. However, assembly of vascularized 3D soft organs remains a big challenge. Organ printing, which we define as computer-aided, jet-based 3D tissue-engineering of living human organs, offers a possible solution. Organ printing involves three sequential steps: pre-processing or development of "blueprints" for organs; processing or actual organ printing; and postprocessing or organ conditioning and accelerated organ maturation. A cell printer that can print gels, single cells and cell aggregates has been developed. Layer-by-layer sequentially placed and solidified thin layers of a thermo-reversible gel could serve as "printing paper". Combination of an engineering approach with the developmental biology concept of embryonic tissue fluidity enables the creation of a new rapid prototyping 3D organ printing technology, which will dramatically accelerate and optimize tissue and organ assembly.

  9. Computerized lung nodule detection using 3D feature extraction and learning based algorithms.

    Science.gov (United States)

    Ozekes, Serhat; Osman, Onur

    2010-04-01

    In this paper, a Computer Aided Detection (CAD) system based on three-dimensional (3D) feature extraction is introduced to detect lung nodules. First, eight directional search was applied in order to extract regions of interests (ROIs). Then, 3D feature extraction was performed which includes 3D connected component labeling, straightness calculation, thickness calculation, determining the middle slice, vertical and horizontal widths calculation, regularity calculation, and calculation of vertical and horizontal black pixel ratios. To make a decision for each ROI, feed forward neural networks (NN), support vector machines (SVM), naive Bayes (NB) and logistic regression (LR) methods were used. These methods were trained and tested via k-fold cross validation, and results were compared. To test the performance of the proposed system, 11 cases, which were taken from Lung Image Database Consortium (LIDC) dataset, were used. ROC curves were given for all methods and 100% detection sensitivity was reached except naive Bayes.

  10. Integrated fringe projection 3D scanning system for large-scale metrology based on laser tracker

    Science.gov (United States)

    Du, Hui; Chen, Xiaobo; Zhou, Dan; Guo, Gen; Xi, Juntong

    2017-10-01

    Large scale components exist widely in advance manufacturing industry,3D profilometry plays a pivotal role for the quality control. This paper proposes a flexible, robust large-scale 3D scanning system by integrating a robot with a binocular structured light scanner and a laser tracker. The measurement principle and system construction of the integrated system are introduced. And a mathematical model is established for the global data fusion. Subsequently, a flexible and robust method and mechanism is introduced for the establishment of the end coordination system. Based on this method, a virtual robot noumenon is constructed for hand-eye calibration. And then the transformation matrix between end coordination system and world coordination system is solved. Validation experiment is implemented for verifying the proposed algorithms. Firstly, hand-eye transformation matrix is solved. Then a car body rear is measured for 16 times for the global data fusion algorithm verification. And the 3D shape of the rear is reconstructed successfully.

  11. Single-pixel 3D imaging with time-based depth resolution

    CERN Document Server

    Sun, Ming-Jie; Gibson, Graham M; Sun, Baoqing; Radwell, Neal; Lamb, Robert; Padgett, Miles J

    2016-01-01

    Time-of-flight three dimensional imaging is an important tool for many applications, such as object recognition and remote sensing. Unlike conventional imaging approach using pixelated detector array, single-pixel imaging based on projected patterns, such as Hadamard patterns, utilises an alternative strategy to acquire information with sampling basis. Here we show a modified single-pixel camera using a pulsed illumination source and a high-speed photodiode, capable of reconstructing 128x128 pixel resolution 3D scenes to an accuracy of ~3 mm at a range of ~5 m. Furthermore, we demonstrate continuous real-time 3D video with a frame-rate up to 12 Hz. The simplicity of the system hardware could enable low-cost 3D imaging devices for precision ranging at wavelengths beyond the visible spectrum.

  12. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    Science.gov (United States)

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Elderly healthcare monitoring using an avatar-based 3D virtual environment.

    Science.gov (United States)

    Pouke, Matti; Häkkilä, Jonna

    2013-12-17

    Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients' preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI) design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand.

  14. 3D integration for NoC-based SoC architectures

    CERN Document Server

    Sheibanyrad, Abbas; Pétrot, Frédéric

    2011-01-01

    3D-Integration for NoC-based SoC Architectures gathers the recent advances in the whole domain by renowned experts in the field to build a comprehensive and consistent book around the hot topics of three-dimensional architectures and micro-architectures.

  15. Developing 2D and 3D cadastral registration system based on LADM : Illustrated with Malaysian cases

    NARCIS (Netherlands)

    Amalina Zulkifli, N.; Abdul Rahman, A.; Van Oosterom, P.J.M.

    2013-01-01

    This paper investigates several aspects of the Land Administration Domain Model (LADM, ISO 2012) associated to 2D and 3D cadastral situations within Malaysian cadastral registration system. Literature review shows that many countries propose their own profile based on the LADM such as The

  16. Elderly Healthcare Monitoring Using an Avatar-Based 3D Virtual Environment

    Directory of Open Access Journals (Sweden)

    Matti Pouke

    2013-12-01

    Full Text Available Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients’ preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand.

  17. Elderly Healthcare Monitoring Using an Avatar-Based 3D Virtual Environment

    Science.gov (United States)

    Pouke, Matti; Häkkilä, Jonna

    2013-01-01

    Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients’ preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI) design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand. PMID:24351747

  18. Heuristic 3D Object Shape Completion based on Symmetry and Scene Context

    Science.gov (United States)

    2016-12-01

    Heuristic 3D Object Shape Completion based on Symmetry and Scene Context David Schiebener, Andreas Schmidt, Nikolaus Vahrenkamp and Tamim Asfour...Focusing on the worst case, and probably the most common one, where only one side of the object was perceived, we propose robust heuristics that allow to

  19. Reproducibility study of 3D SSFP phase-based brain conductivity imaging

    NARCIS (Netherlands)

    Stehning, C.; Katscher, U.; Keupp, J.

    2012-01-01

    Noninvasive MR-based Electric Properties Tomography (EPT) forms a framework for an accurate determination of local SAR, and may providea diagnostic parameter in oncology. 3D SSFP sequences were found tobe a promising candidate for fast volumetric conductivity imaging. In this work, an in vivo study

  20. Computer-Controlled 3D Laser Scanning Microscope Based On Optical Disk Technology.

    Science.gov (United States)

    Schweizer, P.; Neveux, L.; Chiaramello, M.; Monteil, P.; Ostrowsky, D. B...

    1987-08-01

    We describe RASCALS* (RAster SCAn Laser System) a 2D and 3D scanning laser microscope and outline it's performance. This system, based on optical disk technology and a PC compatible computer offers an interesting cost/performance ratio compared to existing laser scanning microscopes.

  1. Computational tools for quantitative breast morphometry based on 3D scans.

    Science.gov (United States)

    Chen, D; Chittajallu, D R; Passalis, G; Kakadiaris, I A

    2010-05-01

    Quantitative analysis of breast morphometry is critical to breast plastic surgery. Recently, three-dimensional (3D) photography has emerged as a strong new alternative for breast morphometry analysis in comparison to other existing techniques. 3D photography enables the capture of the entire breast surface topology virtually in a single snapshot and without any direct contact with the patient, thus causing minimal discomfort. In this paper, we present a set of computational tools for the quantitative analysis of two key morphological properties of the breast that are of interest to breast plastic surgery based on 3D scans, namely breast shape and volume. The breast shape is modeled using a compact geometric model capable of capturing the global shape of the breast with very few parameters. Specifically, the shape model is deduced by applying a set of five global deformations to a geometric primitive. These deformations, defined using very intuitive parameters, closely model the key shape variables that surgeons inherently use to describe the overall shape of the breast. Patient-specific parameters of the breast shape model are automatically recovered by fitting a generic breast shape model to the 3D scan of the patient's breast using a physics-based deformable model framework. The mean error of fit between the automatically fitted shape model and the actual breast surface for 12 subjects varied between 0.9 and 2.6 mm. These results are very encouraging considering the fact that only 17 parameters are used to determine the shape of the breast. The breast volume is estimated automatically by first localizing the breast on a 3D scan of the patient's torso and then computing the volume enclosed between an interpolated breast-less torso surface and the actual breast. The volume estimated by the proposed method was found to be within the intra-operator variability among five segmentation trials performed manually by an expert on 3D torso scans of three subjects.

  2. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.

    Science.gov (United States)

    Markstedt, Kajsa; Escalante, Alfredo; Toriz, Guillermo; Gatenholm, Paul

    2017-11-22

    This paper presents a sustainable all-wood-based ink which can be used for 3D printing of constructs for a large variety of applications such as clothes, furniture, electronics, and health care products with a customized design and versatile gel properties. The 3D printing technologies where the material is dispensed in the form of liquids, so called inks, have proven suitable for 3D printing dispersions of cellulose nanofibrils (CNFs) because of their unique shear thinning properties. In this study, novel inks were developed with a biomimetic approach where the structural properties of cellulose and the cross-linking function of hemicelluloses that are found in the plant cell wall were utilized. The CNF was mixed with xylan, a hemicellulose extracted from spruce, to introduce cross-linking properties which are essential for the final stability of the printed ink. For xylan to be cross-linkable, it was functionalized with tyramine at different degrees. Evaluation of different ink compositions by rheology measurements and 3D printing tests showed that the degree of tyramine substitution and the ratio of CNFs to xylan-tyramine in the prepared inks influenced the printability and cross-linking density. Both two-layered gridded structures and more complex 3D constructs were printed. Similarly to conventional composites, the interactions between the components and their miscibility are important for the stability of the printed and cross-linked ink. Thus, the influence of tyramine on the adsorption of xylan to cellulose was studied with a quartz crystal microbalance to verify that the functionalization had little influence on xylan's adsorption to cellulose. Utilizing xylan-tyramine in the CNF dispersions resulted in all-wood-based inks which after 3D printing can be cross-linked to form freestanding gels while at the same time, the excellent printing properties of CNFs remain intact.

  3. STUDY ON CONSTRUCTION OF 3D BUILDING BASED ON UAV IMAGES

    Directory of Open Access Journals (Sweden)

    F. Xie

    2012-07-01

    Full Text Available Based on the characteristics of Unmanned Aerial Vehicle (UAV system for low altitude aerial photogrammetry and the need of three dimensional (3Dcity modeling, a method of fast 3D building modeling using the images from UAV carrying four-combined camera is studied. Firstly, by contrasting and analyzing the mosaic structures of the existing four-combined cameras, a new type of four-combined camera with special design of overlap images is designed, which improves the self-calibration function to achieve the high precision imaging by automatically eliminating the error of machinery deformation and the time lag with every exposure, and further reduce the weight of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of building surfaces and the texture extraction. Finally, two tests that are aerial photography with large scale mapping of 1:1000 and 3D building construction in Shandong University of Science and Technology and aerial photography with large scale mapping of 1:500 and 3D building construction in Henan University of Urban Construction, provide authentication model for construction of 3D building based on combined wide-angle camera images from UAV system. It is demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D building production, and the technology solution in this paper offers a new, fast and technical plan for the 3D expression of the city landscape, fine modeling and visualization.

  4. An Efficient Multimodal 2D + 3D Feature-based Approach to Automatic Facial Expression Recognition

    KAUST Repository

    Li, Huibin

    2015-07-29

    We present a fully automatic multimodal 2D + 3D feature-based facial expression recognition approach and demonstrate its performance on the BU-3DFE database. Our approach combines multi-order gradient-based local texture and shape descriptors in order to achieve efficiency and robustness. First, a large set of fiducial facial landmarks of 2D face images along with their 3D face scans are localized using a novel algorithm namely incremental Parallel Cascade of Linear Regression (iPar-CLR). Then, a novel Histogram of Second Order Gradients (HSOG) based local image descriptor in conjunction with the widely used first-order gradient based SIFT descriptor are used to describe the local texture around each 2D landmark. Similarly, the local geometry around each 3D landmark is described by two novel local shape descriptors constructed using the first-order and the second-order surface differential geometry quantities, i.e., Histogram of mesh Gradients (meshHOG) and Histogram of mesh Shape index (curvature quantization, meshHOS). Finally, the Support Vector Machine (SVM) based recognition results of all 2D and 3D descriptors are fused at both feature-level and score-level to further improve the accuracy. Comprehensive experimental results demonstrate that there exist impressive complementary characteristics between the 2D and 3D descriptors. We use the BU-3DFE benchmark to compare our approach to the state-of-the-art ones. Our multimodal feature-based approach outperforms the others by achieving an average recognition accuracy of 86.32%. Moreover, a good generalization ability is shown on the Bosphorus database.

  5. Automatic lameness detection based on consecutive 3D-video recordings

    NARCIS (Netherlands)

    Hertem, van T.; Viazzi, S.; Steensels, M.; Maltz, E.; Antler, A.; Alchanatis, V.; Schlageter-Tello, A.; Lokhorst, C.; Romanini, C.E.B.; Bahr, C.; Berckmans, D.; Halachmi, I.

    2014-01-01

    Manual locomotion scoring for lameness detection is a time-consuming and subjective procedure. Therefore, the objective of this study is to optimise the classification output of a computer vision based algorithm for automated lameness scoring. Cow gait recordings were made during four consecutive

  6. Obstacle Classification and 3D Measurement in Unstructured Environments Based on ToF Cameras

    Directory of Open Access Journals (Sweden)

    Hongshan Yu

    2014-06-01

    Full Text Available Inspired by the human 3D visual perception system, we present an obstacle detection and classification method based on the use of Time-of-Flight (ToF cameras for robotic navigation in unstructured environments. The ToF camera provides 3D sensing by capturing an image along with per-pixel 3D space information. Based on this valuable feature and human knowledge of navigation, the proposed method first removes irrelevant regions which do not affect robot’s movement from the scene. In the second step, regions of interest are detected and clustered as possible obstacles using both 3D information and intensity image obtained by the ToF camera. Consequently, a multiple relevance vector machine (RVM classifier is designed to classify obstacles into four possible classes based on the terrain traversability and geometrical features of the obstacles. Finally, experimental results in various unstructured environments are presented to verify the robustness and performance of the proposed approach. We have found that, compared with the existing obstacle recognition methods, the new approach is more accurate and efficient.

  7. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars

    Directory of Open Access Journals (Sweden)

    Shashidhar Patil

    2015-06-01

    Full Text Available In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor.

  8. Controllable 3D Display System Based on Frontal Projection Lenticular Screen

    Science.gov (United States)

    Feng, Q.; Sang, X.; Yu, X.; Gao, X.; Wang, P.; Li, C.; Zhao, T.

    2014-08-01

    A novel auto-stereoscopic three-dimensional (3D) projection display system based on the frontal projection lenticular screen is demonstrated. It can provide high real 3D experiences and the freedom of interaction. In the demonstrated system, the content can be changed and the dense of viewing points can be freely adjusted according to the viewers' demand. The high dense viewing points can provide smooth motion parallax and larger image depth without blurry. The basic principle of stereoscopic display is described firstly. Then, design architectures including hardware and software are demonstrated. The system consists of a frontal projection lenticular screen, an optimally designed projector-array and a set of multi-channel image processors. The parameters of the frontal projection lenticular screen are based on the demand of viewing such as the viewing distance and the width of view zones. Each projector is arranged on an adjustable platform. The set of multi-channel image processors are made up of six PCs. One of them is used as the main controller, the other five client PCs can process 30 channel signals and transmit them to the projector-array. Then a natural 3D scene will be perceived based on the frontal projection lenticular screen with more than 1.5 m image depth in real time. The control section is presented in detail, including parallax adjustment, system synchronization, distortion correction, etc. Experimental results demonstrate the effectiveness of this novel controllable 3D display system.

  9. Developing preference-based measures for diabetes: DHP-3D and DHP-5D.

    Science.gov (United States)

    Mulhern, B; Labeit, A; Rowen, D; Knowles, E; Meadows, K; Elliott, J; Brazier, J

    2017-09-01

    The aim of this study was to develop two diabetes-specific preference-based measures [the Diabetes Health Profile-3 Dimension (DHP-3D) and the Diabetes Health Profile-5 Dimension (DHP-5D)] for use in the calculation of Quality Adjusted Life Years, a key outcome in economic evaluation. These measures were based on the non-preference-based instrument the Diabetes Health Profile. For DHP-3D, psychometric and Rasch analyses were used to develop a health state classification system based on the Diabetes Health Profile-18 (DHP-18). The DHP-5D added two dimensions to the DHP-3D to extend the range of impacts measured. Each classification system was valued by 150 general public respondents in the United Kingdom using Time Trade Off (TTO). Multivariate regression was used to estimate utility value sets. The matched dimensions across each measure were compared using z-score tests. The DHP-3D included three dimensions defined as mood, eating and social limitations, and the DHP-5D added dimensions defined as hypoglycaemic attacks and vitality. For both, the random effects generalized least squares regression model produced consistent value sets, with the DHP-3D and DHP-5D ranging from 0.983 (best state) to 0.717 (worst state), and 0.979 to 0.618 respectively. The addition of the two extra dimensions leads to significant differences for the more severe levels of each matched dimension. We have developed two diabetes-specific preference-based measures that, subject to psychometric assessment, can be used to provide condition-specific utility values to complement generic utilities from more widely validated measures such as the EuroQol-5 Dimension. © 2017 Diabetes UK.

  10. Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds.

    Science.gov (United States)

    Terrasso, Ana Paula; Silva, Ana Carina; Filipe, Augusto; Pedroso, Pedro; Ferreira, Ana Lúcia; Alves, Paula Marques; Brito, Catarina

    Central nervous system drug development has registered high attrition rates, mainly due to the lack of efficacy of drug candidates, highlighting the low reliability of the models used in early-stage drug development and the need for new in vitro human cell-based models and assays to accurately identify and validate drug candidates. 3D human cell models can include different tissue cell types and represent the spatiotemporal context of the original tissue (co-cultures), allowing the establishment of biologically-relevant cell-cell and cell-extracellular matrix interactions. Nevertheless, exploitation of these 3D models for neuroprotection assessment has been limited due to the lack of data to validate such 3D co-culture approaches. In this work we combined a 3D human neuron-astrocyte co-culture with a cell viability endpoint for the implementation of a novel in vitro neuroprotection assay, over an oxidative insult. Neuroprotection assay robustness and specificity, and the applicability of Presto Blue, MTT and CytoTox-Glo viability assays to the 3D co-culture were evaluated. Presto Blue was the adequate endpoint as it is non-destructive and is a simpler and reliable assay. Semi-automation of the cell viability endpoint was performed, indicating that the assay setup is amenable to be transferred to automated screening platforms. Finally, the neuroprotection assay setup was applied to a series of 36 test compounds and several candidates with higher neuroprotective effect than the positive control, Idebenone, were identified. The robustness and simplicity of the implemented neuroprotection assay with the cell viability endpoint enables the use of more complex and reliable 3D in vitro cell models to identify and validate drug candidates. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Determination of Magnet Specification of 13 MeV Proton Cyclotron Based on Opera 3D

    Directory of Open Access Journals (Sweden)

    Taufik

    2014-08-01

    Full Text Available The magnet is one of the main components of a cyclotron, used to form a circular particle beam trajectories and to provide focusing of the beam. To support the mastery of 13-MeV proton cyclotron technologies, cyclotron magnet design must be done to satisfy cyclotron magnet requirements. This research was conducted by studying important parameters in designing the cyclotron magnet which is then used to determine the design requirements. The magnet design was based on the results of a 3D simulation using Opera 3D software. Opera 3D is a software developed by Cobham plc to solve physical problems in 3D such as magnetostatic using finite element methods. The simulation started by drawing a 3D model of the magnet using a modeler, followed by magnetic field calculations by Tosca module in the Opera 3D software. Simulation results were analyzed with the Genspeo software to determine whether the parameters of the cyclotron magnet have met design requirements. The results indicate that the magnet design satisfied the cyclotron magnet design requirement, that B in the median plane of the magnetic pole approached the isochronous curve, providing axial and radial focusing beam, crossing the resonance line at vr = 1 when the particle energy is low and the particle energy is more than 13 MeV, and lead to small enough phase shift of about 13°. The dimension of the cyclotron magnet is 1.96 m × 1.30 m × 1.21 m; its weight is 17.3 ton; its coil current is 88,024 ampere-turn; its center magnetic field is 1.27479 T; its maximum magnetic field is 1.942116 T; its minimum magnetic field is 0.7689 T; its valley gap is 120 mm; its hill gaps are 40 to 50.78 mm; and its hill angles are 35° to 44°.to 44°

  12. Binocular stereo vision system based on phase matching

    Science.gov (United States)

    Liu, Huixian; Huang, Shujun; Gao, Nan; Zhang, Zonghua

    2016-11-01

    Binocular stereo vision is an efficient way for three dimensional (3D) profile measurement and has broad applications. Image acquisition, camera calibration, stereo matching, and 3D reconstruction are four main steps. Among them, stereo matching is the most important step that has a significant impact on the final result. In this paper, a new stereo matching technique is proposed to combine the absolute fringe order and the unwrapped phase of every pixel. Different from traditional phase matching method, sinusoidal fringe in two perpendicular directions are projected. It can be realized through the following three steps. Firstly, colored sinusoidal fringe in both horizontal (red fringe) and vertical (blue fringe) are projected on the object to be measured, and captured by two cameras synchronously. The absolute fringe order and the unwrapped phase of each pixel along the two directions are calculated based on the optimum three-fringe numbers selection method. Then, based on the absolute fringe order of the left and right phase maps, stereo matching method is presented. In this process, the same absolute fringe orders in both horizontal and vertical directions are searched to find the corresponding point. Based on this technique, as many as possible pairs of homologous points between two cameras are found to improve the precision of the measurement result. Finally, a 3D measuring system is set up and the 3D reconstruction results are shown. The experimental results show that the proposed method can meet the requirements of high precision for industrial measurements.

  13. IMAGE-BASED AIRBORNE LiDAR POINT CLOUD ENCODING FOR 3D BUILDING MODEL RETRIEVAL

    Directory of Open Access Journals (Sweden)

    Y.-C. Chen

    2016-06-01

    Full Text Available With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show

  14. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-02-08

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency.

  15. A 3D Model Based Imdoor Navigation System for Hubei Provincial Museum

    Science.gov (United States)

    Xu, W.; Kruminaite, M.; Onrust, B.; Liu, H.; Xiong, Q.; Zlatanova, S.

    2013-11-01

    3D models are more powerful than 2D maps for indoor navigation in a complicate space like Hubei Provincial Museum because they can provide accurate descriptions of locations of indoor objects (e.g., doors, windows, tables) and context information of these objects. In addition, the 3D model is the preferred navigation environment by the user according to the survey. Therefore a 3D model based indoor navigation system is developed for Hubei Provincial Museum to guide the visitors of museum. The system consists of three layers: application, web service and navigation, which is built to support localization, navigation and visualization functions of the system. There are three main strengths of this system: it stores all data needed in one database and processes most calculations on the webserver which make the mobile client very lightweight, the network used for navigation is extracted semi-automatically and renewable, the graphic user interface (GUI), which is based on a game engine, has high performance of visualizing 3D model on a mobile display.

  16. A Hybrid 3D Learning-and-Interaction-based Segmentation Approach Applied on CT Liver Volumes

    Directory of Open Access Journals (Sweden)

    M. Danciu

    2013-04-01

    Full Text Available Medical volume segmentation in various imaging modalities using real 3D approaches (in contrast to slice-by-slice segmentation represents an actual trend. The increase in the acquisition resolution leads to large amount of data, requiring solutions to reduce the dimensionality of the segmentation problem. In this context, the real-time interaction with the large medical data volume represents another milestone. This paper addresses the twofold problem of the 3D segmentation applied to large data sets and also describes an intuitive neuro-fuzzy trained interaction method. We present a new hybrid semi-supervised 3D segmentation, for liver volumes obtained from computer tomography scans. This is a challenging medical volume segmentation task, due to the acquisition and inter-patient variability of the liver parenchyma. The proposed solution combines a learning-based segmentation stage (employing 3D discrete cosine transform and a probabilistic support vector machine classifier with a post-processing stage (automatic and manual segmentation refinement. Optionally, an optimization of the segmentation can be achieved by level sets, using as initialization the segmentation provided by the learning-based solution. The supervised segmentation is applied on elementary cubes in which the CT volume is decomposed by tilling, thus ensuring a significant reduction of the data to be classified by the support vector machine into liver/not liver. On real volumes, the proposed approach provides good segmentation accuracy, with a significant reduction in the computational complexity.

  17. A Depth Map Generation Algorithm Based on Saliency Detection for 2D to 3D Conversion

    Science.gov (United States)

    Yang, Yizhong; Hu, Xionglou; Wu, Nengju; Wang, Pengfei; Xu, Dong; Rong, Shen

    2017-09-01

    In recent years, 3D movies attract people's attention more and more because of their immersive stereoscopic experience. However, 3D movies is still insufficient, so estimating depth information for 2D to 3D conversion from a video is more and more important. In this paper, we present a novel algorithm to estimate depth information from a video via scene classification algorithm. In order to obtain perceptually reliable depth information for viewers, the algorithm classifies them into three categories: landscape type, close-up type, linear perspective type firstly. Then we employ a specific algorithm to divide the landscape type image into many blocks, and assign depth value by similar relative height cue with the image. As to the close-up type image, a saliency-based method is adopted to enhance the foreground in the image and the method combine it with the global depth gradient to generate final depth map. By vanishing line detection, the calculated vanishing point which is regarded as the farthest point to the viewer is assigned with deepest depth value. According to the distance between the other points and the vanishing point, the entire image is assigned with corresponding depth value. Finally, depth image-based rendering is employed to generate stereoscopic virtual views after bilateral filter. Experiments show that the proposed algorithm can achieve realistic 3D effects and yield satisfactory results, while the perception scores of anaglyph images lie between 6.8 and 7.8.

  18. 3D Inversion of Magnetic Data through Wavelet based Regularization Method

    Directory of Open Access Journals (Sweden)

    Maysam Abedi

    2015-06-01

    Full Text Available This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp boundaries of model parameters. A pre-selected basis namely wavelet can recover the region of smooth behaviour of susceptibility distribution while Haar or finite-difference (FD domains yield a solution with rough boundaries. Therefore, a regularizer function which can benefit from the advantages of both wavelets and Haar/FD operators in representation of the 3D magnetic susceptibility distributionwas chosen as a candidate for modeling magnetic anomalies. The optimum wavelet and parameter β which controls the weight of the two sparsifying operators were also considered. The algorithm assumed that there was no remanent magnetization and observed that magnetometry data represent only induced magnetization effect. The proposed approach is applied to a noise-corrupted synthetic data in order to demonstrate its suitability for 3D inversion of magnetic data. On obtaining satisfactory results, a case study pertaining to the ground based measurement of magnetic anomaly over a porphyry-Cu deposit located in Kerman providence of Iran. Now Chun deposit was presented to be 3D inverted. The low susceptibility in the constructed model coincides with the known location of copper ore mineralization.

  19. Feasibility of differential quantification of 3D temporomandibular kinematics during various oral activities using a cone-beam computed tomography-based 3D fluoroscopic method

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen

    2013-06-01

    Conclusion: A new CBCT-based 3D fluoroscopic method was proposed and shown to be capable of quantitatively differentiating TMJ movement patterns among complicated functional activities. It also enabled a complete description of the rigid-body mandibular motion and descriptions of as many reference points as needed for future clinical applications. It will be helpful for dental practice and for a better understanding of the functions of the TMJ.

  20. DTI template-based estimation of cardiac fiber orientations from 3D ultrasound.

    Science.gov (United States)

    Qin, Xulei; Fei, Baowei

    2015-06-01

    Cardiac muscle fibers directly affect the mechanical, physiological, and pathological properties of the heart. Patient-specific quantification of cardiac fiber orientations is an important but difficult problem in cardiac imaging research. In this study, the authors proposed a cardiac fiber orientation estimation method based on three-dimensional (3D) ultrasound images and a cardiac fiber template that was obtained from magnetic resonance diffusion tensor imaging (DTI). A DTI template-based framework was developed to estimate cardiac fiber orientations from 3D ultrasound images using an animal model. It estimated the cardiac fiber orientations of the target heart by deforming the fiber orientations of the template heart, based on the deformation field of the registration between the ultrasound geometry of the target heart and the MRI geometry of the template heart. In the experiments, the animal hearts were imaged by high-frequency ultrasound, T1-weighted MRI, and high-resolution DTI. The proposed method was evaluated by four different parameters: Dice similarity coefficient (DSC), target errors, acute angle error (AAE), and inclination angle error (IAE). Its ability of estimating cardiac fiber orientations was first validated by a public database. Then, the performance of the proposed method on 3D ultrasound data was evaluated by an acquired database. Their average values were 95.4% ± 2.0% for the DSC of geometric registrations, 21.0° ± 0.76° for AAE, and 19.4° ± 1.2° for IAE of fiber orientation estimations. Furthermore, the feasibility of this framework was also performed on 3D ultrasound images of a beating heart. The proposed framework demonstrated the feasibility of using 3D ultrasound imaging to estimate cardiac fiber orientation of in vivo beating hearts and its further improvements could contribute to understanding the dynamic mechanism of the beating heart and has the potential to help diagnosis and therapy of heart disease.

  1. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids

    Directory of Open Access Journals (Sweden)

    Chen Brian Y

    2008-01-01

    Full Text Available Abstract Background Structural genomics projects such as the Protein Structure Initiative (PSI yield many new structures, but often these have no known molecular functions. One approach to recover this information is to use 3D templates – structure-function motifs that consist of a few functionally critical amino acids and may suggest functional similarity when geometrically matched to other structures. Since experimentally determined functional sites are not common enough to define 3D templates on a large scale, this work tests a computational strategy to select relevant residues for 3D templates. Results Based on evolutionary information and heuristics, an Evolutionary Trace Annotation (ETA pipeline built templates for 98 enzymes, half taken from the PSI, and sought matches in a non-redundant structure database. On average each template matched 2.7 distinct proteins, of which 2.0 share the first three Enzyme Commission digits as the template's enzyme of origin. In many cases (61% a single most likely function could be predicted as the annotation with the most matches, and in these cases such a plurality vote identified the correct function with 87% accuracy. ETA was also found to be complementary to sequence homology-based annotations. When matches are required to both geometrically match the 3D template and to be sequence homologs found by BLAST or PSI-BLAST, the annotation accuracy is greater than either method alone, especially in the region of lower sequence identity where homology-based annotations are least reliable. Conclusion These data suggest that knowledge of evolutionarily important residues improves functional annotation among distant enzyme homologs. Since, unlike other 3D template approaches, the ETA method bypasses the need for experimental knowledge of the catalytic mechanism, it should prove a useful, large scale, and general adjunct to combine with other methods to decipher protein function in the structural proteome.

  2. 3D registration method based on scattered point cloud from B-model ultrasound image

    Science.gov (United States)

    Hu, Lei; Xu, Xiaojun; Wang, Lifeng; Guo, Na; Xie, Feng

    2017-01-01

    The paper proposes a registration method on 3D point cloud of the bone tissue surface extracted by B-mode ultrasound image and the CT model . The B-mode ultrasound is used to get two-dimensional images of the femur tissue . The binocular stereo vision tracker is used to obtain spatial position and orientation of the optical positioning device fixed on the ultrasound probe. The combining of the two kind of data generates 3D point cloud of the bone tissue surface. The pixel coordinates of the bone surface are automatically obtained from ultrasound image using an improved local phase symmetry (phase symmetry, PS) . The mapping of the pixel coordinates on the ultrasound image and 3D space is obtained through a series of calibration methods. In order to detect the effect of registration, six markers are implanted on a complete fresh pig femoral .The actual coordinates of the marks are measured with two methods. The first method is to get the coordinates with measuring tools under a coordinate system. The second is to measure the coordinates of the markers in the CT model registered with 3D point cloud using the ICP registration algorithm under the same coordinate system. Ten registration experiments are carried out in the same way. Error results are obtained by comparing the two sets of mark point coordinates obtained by two different methods. The results is that a minimum error is 1.34mm, the maximum error is 3.22mm,and the average error of 2.52mm; ICP registration algorithm calculates the average error of 0.89mm and a standard deviation of 0.62mm.This evaluation standards of registration accuracy is different from the average error obtained by the ICP registration algorithm. It can be intuitive to show the error caused by the operation of clinical doctors. Reference to the accuracy requirements of different operation in the Department of orthopedics, the method can be apply to the bone reduction and the anterior cruciate ligament surgery.

  3. Elderly Healthcare Monitoring Using an Avatar-Based 3D Virtual Environment

    OpenAIRE

    Matti Pouke; Jonna Häkkilä

    2013-01-01

    Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients’ preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI) design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We p...

  4. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  5. Unexpected Regularity in Swimming Behavior of Clausocalanus furcatus Revealed by a Telecentric 3D Computer Vision System.

    Directory of Open Access Journals (Sweden)

    Giuseppe Bianco

    Full Text Available Planktonic copepods display a large repertoire of motion behaviors in a three-dimensional environment. Two-dimensional video observations demonstrated that the small copepod Clausocalanus furcatus, one the most widely distributed calanoids at low to medium latitudes, presented a unique swimming behavior that was continuous and fast and followed notably convoluted trajectories. Furthermore, previous observations indicated that the motion of C. furcatus resembled a random process. We characterized the swimming behavior of this species in three-dimensional space using a video system equipped with telecentric lenses, which allow tracking of zooplankton without the distortion errors inherent in common lenses. Our observations revealed unexpected regularities in the behavior of C. furcatus that appear primarily in the horizontal plane and could not have been identified in previous observations based on lateral views. Our results indicate that the swimming behavior of C. furcatus is based on a limited repertoire of basic kinematic modules but exhibits greater plasticity than previously thought.

  6. 3D printing cement based ink, and it’s application within the construction industry

    Directory of Open Access Journals (Sweden)

    Jianchao Zhu

    2017-01-01

    Full Text Available The 3D printing technology is the engine key of the third industrial revolution, after introduction of the automation in the eighteenth century and the concept of mass production in early of twentieth century. 3D printing technology now offers the magic solution to balance both the benefits, and overcome the major associated problem with the previous concept which was the need of repetition. The 3D printing technology has two main critical success factors: the printing machine and the printing material (ink. This paper focusses on cementitious-based materials and the ability to utilize the technology in the construction industry. The research took a qualitative approach based on previous literature reviews as well as in-house research results carried out by the authors’ employer Research and Development Center. The paper summarizes the approach towards to an appropriate mix design which can achieve the requirement of the printing process, and overcome the current constraints which are hindering the wide application of 3D print in construction industry. The authors believe that the research topic and result will have great impact on pushing the construction industry forward towards achieving the UAE Government’s strategy and target to achieve twenty-five percent (25% of the buildings in Dubai by the year of 2030 relying on the 3D printing methodology. The research also concluded that even though the technology is adding a great value to the construction industry, it must be remembered that the technology is still in its infancy, and further research is required to achieve even higher strength printing materials that would be workable in multi-story buildings without the need of additional steel reinforcement.

  7. Towards a 3d Based Platform for Cultural Heritage Site Survey and Virtual Exploration

    Science.gov (United States)

    Seinturier, J.; Riedinger, C.; Mahiddine, A.; Peloso, D.; Boï, J.-M.; Merad, D.; Drap, P.

    2013-07-01

    This paper present a 3D platform that enables to make both cultural heritage site survey and its virtual exploration. It provides a single and easy way to use framework for merging multi scaled 3D measurements based on photogrammetry, documentation produced by experts and the knowledge of involved domains leaving the experts able to extract and choose the relevant information to produce the final survey. Taking into account the interpretation of the real world during the process of archaeological surveys is in fact the main goal of a survey. New advances in photogrammetry and the capability to produce dense 3D point clouds do not solve the problem of surveys. New opportunities for 3D representation are now available and we must to use them and find new ways to link geometry and knowledge. The new platform is able to efficiently manage and process large 3D data (points set, meshes) thanks to the implementation of space partition methods coming from the state of the art such as octrees and kd-trees and thus can interact with dense point clouds (thousands to millions of points) in real time. The semantisation of raw 3D data relies on geometric algorithms such as geodetic path computation, surface extraction from dense points cloud and geometrical primitive optimization. The platform provide an interface that enables expert to describe geometric representations of interesting objects like ashlar blocs, stratigraphic units or generic items (contour, lines, … ) directly onto the 3D representation of the site and without explicit links to underlying algorithms. The platform provide two ways for describing geometric representation. If oriented photographs are available, the expert can draw geometry on a photograph and the system computes its 3D representation by projection on the underlying mesh or the points cloud. If photographs are not available or if the expert wants to only use the 3D representation then he can simply draw objects shape on it. When 3D

  8. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    Science.gov (United States)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  9. 3D Maize Plant Reconstruction Based on Georeferenced Overlapping LiDAR Point Clouds

    Directory of Open Access Journals (Sweden)

    Miguel Garrido

    2015-12-01

    Full Text Available 3D crop reconstruction with a high temporal resolution and by the use of non-destructive measuring technologies can support the automation of plant phenotyping processes. Thereby, the availability of such 3D data can give valuable information about the plant development and the interaction of the plant genotype with the environment. This article presents a new methodology for georeferenced 3D reconstruction of maize plant structure. For this purpose a total station, an IMU, and several 2D LiDARs with different orientations were mounted on an autonomous vehicle. By the multistep methodology presented, based on the application of the ICP algorithm for point cloud fusion, it was possible to perform the georeferenced point clouds overlapping. The overlapping point cloud algorithm showed that the aerial points (corresponding mainly to plant parts were reduced to 1.5%–9% of the total registered data. The remaining were redundant or ground points. Through the inclusion of different LiDAR point of views of the scene, a more realistic representation of the surrounding is obtained by the incorporation of new useful information but also of noise. The use of georeferenced 3D maize plant reconstruction at different growth stages, combined with the total station accuracy could be highly useful when performing precision agriculture at the crop plant level.

  10. Topology Optimization Design of 3D Continuum Structure with Reserved Hole Based on Variable Density Method

    Directory of Open Access Journals (Sweden)

    Bai Shiye

    2016-05-01

    Full Text Available An objective function defined by minimum compliance of topology optimization for 3D continuum structure was established to search optimal material distribution constrained by the predetermined volume restriction. Based on the improved SIMP (solid isotropic microstructures with penalization model and the new sensitivity filtering technique, basic iteration equations of 3D finite element analysis were deduced and solved by optimization criterion method. All the above procedures were written in MATLAB programming language, and the topology optimization design examples of 3D continuum structure with reserved hole were examined repeatedly by observing various indexes, including compliance, maximum displacement, and density index. The influence of mesh, penalty factors, and filter radius on the topology results was analyzed. Computational results showed that the finer or coarser the mesh number was, the larger the compliance, maximum displacement, and density index would be. When the filtering radius was larger than 1.0, the topology shape no longer appeared as a chessboard problem, thus suggesting that the presented sensitivity filtering method was valid. The penalty factor should be an integer because iteration steps increased greatly when it is a noninteger. The above modified variable density method could provide technical routes for topology optimization design of more complex 3D continuum structures in the future.

  11. 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine.

    Science.gov (United States)

    Serra, Tiziano; Mateos-Timoneda, Miguel A; Planell, Josep A; Navarro, Melba

    2013-10-01

    Rapid prototyping (RP), also known as additive manufacturing (AM), has been well received and adopted in the biomedical field. The capacity of this family of techniques to fabricate customized 3D structures with complex geometries and excellent reproducibility has revolutionized implantology and regenerative medicine. In particular, nozzle-based systems allow the fabrication of high-resolution polylactic acid (PLA) structures that are of interest in regenerative medicine. These 3D structures find interesting applications in the regenerative medicine field where promising applications including biodegradable templates for tissue regeneration purposes, 3D in vitro platforms for studying cell response to different scaffolds conditions and for drug screening are considered among others. Scaffolds functionality depends not only on the fabrication technique, but also on the material used to build the 3D structure, the geometry and inner architecture of the structure, and the final surface properties. All being crucial parameters affecting scaffolds success. This Commentary emphasizes the importance of these parameters in scaffolds' fabrication and also draws the attention toward the versatility of these PLA scaffolds as a potential tool in regenerative medicine and other medical fields.

  12. Standardization based on human factors for 3D display: performance characteristics and measurement methods

    Science.gov (United States)

    Uehara, Shin-ichi; Ujike, Hiroyasu; Hamagishi, Goro; Taira, Kazuki; Koike, Takafumi; Kato, Chiaki; Nomura, Toshio; Horikoshi, Tsutomu; Mashitani, Ken; Yuuki, Akimasa; Izumi, Kuniaki; Hisatake, Yuzo; Watanabe, Naoko; Umezu, Naoaki; Nakano, Yoshihiko

    2010-02-01

    We are engaged in international standardization activities for 3D displays. We consider that for a sound development of 3D displays' market, the standards should be based on not only mechanism of 3D displays, but also human factors for stereopsis. However, we think that there is no common understanding on what the 3D display should be and that the situation makes developing the standards difficult. In this paper, to understand the mechanism and human factors, we focus on a double image, which occurs in some conditions on an autostereoscopic display. Although the double image is generally considered as an unwanted effect, we consider that whether the double image is unwanted or not depends on the situation and that there are some allowable double images. We tried to classify the double images into the unwanted and the allowable in terms of the display mechanism and visual ergonomics for stereopsis. The issues associated with the double image are closely related to performance characteristics for the autostereoscopic display. We also propose performance characteristics, measurement and analysis methods to represent interocular crosstalk and motion parallax.

  13. 3D printable highly conductive and mechanically strong thermoplastic-based nanocomposites

    Science.gov (United States)

    Tabiai, Ilyass; Therriault, Daniel

    Highly conductive 3D printable inks can be used to design electrical devices with various functionalities and geometries. We use the solvent evaporation assisted 3D-printing method to create high resolution structures made of poly(lactid) acid (PLA) reinforced with multi-walled carbon nanotube (MWCNTs). We characterize fibers with diameters ranging between 100 μm to 330 μm and reinforced with MWCNTs from 0.5 up to 40wt% here. Tensile test, shrinkage ratio, density and electrical conductivity measurements of the printed nanocomposite are presented. The material's electrical conductivity is strongly improved by adding MWCNTs (up to 3000S/m), this value was found to be higher than any 3D-printable carbon based material available in the literature. It is observed that MWCNTs significantly increase the material's strength and stiffness while reducing its ductility. The ink's density was also higher while still being in the range of polymers' densities. The presented nanocomposite is light weight, highly conductive, has good mechanical properties and can be printed in a freeform fashion at the micro scale. A myriad of low power consumption with less resistive heating sensors and devices can potentially be designed using it and integrated into other 3D printable products.

  14. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition

    Science.gov (United States)

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition. PMID:25942404

  15. GPU-Based Block-Wise Nonlocal Means Denoising for 3D Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Liu Li

    2013-01-01

    Full Text Available Speckle suppression plays an important role in improving ultrasound (US image quality. While lots of algorithms have been proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with 3D US denoising is that the computational complexity increases tremendously. The nonlocal means (NLM provides an effective method for speckle suppression in US images. In this paper, a programmable graphic-processor-unit- (GPU- based fast NLM filter is proposed for 3D ultrasound speckle reduction. A Gamma distribution noise model, which is able to reliably capture image statistics for Log-compressed ultrasound images, was used for the 3D block-wise NLM filter on basis of Bayesian framework. The most significant aspect of our method was the adopting of powerful data-parallel computing capability of GPU to improve the overall efficiency. Experimental results demonstrate that the proposed method can enormously accelerate the algorithm.

  16. Production and 3D printing processing of bio-based thermoplastic filament

    Directory of Open Access Journals (Sweden)

    Gkartzou Eleni

    2017-01-01

    Full Text Available In this work, an extrusion-based 3D printing technique was employed for processing of biobased blends of Poly(Lactic Acid (PLA with low-cost kraft lignin. In Fused Filament Fabrication (FFF 3D printing process, objects are built in a layer-by-layer fashion by melting, extruding and selectively depositing thermoplastic fibers on a platform. These fibers are used as building blocks for more complex structures with defined microarchitecture, in an automated, cost-effective process, with minimum material waste. A sustainable material consisting of lignin biopolymer blended with poly(lactic acid was examined for its physical properties and for its melt processability during the FFF process. Samples with different PLA/lignin weight ratios were prepared and their mechanical (tensile testing, thermal (Differential Scanning Calorimetry analysis and morphological (optical and scanning electron microscopy, SEM properties were studied. The composition with optimum properties was selected for the production of 3D-printing filament. Three process parameters, which contribute to shear rate and stress imposed on the melt, were examined: extrusion temperature, printing speed and fiber’s width varied and their effect on extrudates’ morphology was evaluated. The mechanical properties of 3D printed specimens were assessed with tensile testing and SEM fractography.

  17. 3D printed simulation models based on real patient situations for hands-on practice.

    Science.gov (United States)

    Kröger, E; Dekiff, M; Dirksen, D

    2017-11-01

    During the last few years, the curriculum of many dentistry schools in Germany has been reorganised. Two key aspects of the applied changes are the integration of up-to-date teaching methods and the promotion of interdisciplinarity. To support these efforts, an approach to fabricating individualised simulation models for hands-on courses employing 3D printing is presented. The models are based on real patients, thus providing students a more realistic preparation for real clinical situations. As a wide variety of dental procedures can be implemented, the simulation models can also contribute to a more interdisciplinary dental education. The data used for the construction of the models were acquired by 3D surface scanning. The data were further processed with 3D modelling software. Afterwards, the models were fabricated by 3D printing with the PolyJet technique. Three models serve as examples: a prosthodontic model for training veneer preparation, a conservative model for practicing dental bonding and an interdisciplinary model featuring carious teeth and an insufficient crown. The third model was evaluated in a hands-on course with 22 fourth-year dental students. The students answered a questionnaire and gave their personal opinion. Whilst the concept of the model received very positive feedback, some aspects of the implementation were criticised. We discuss these observations and suggest ways for further improvement. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. 3D animation of facial plastic surgery based on computer graphics

    Science.gov (United States)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  19. 3D virtual character reconstruction from projections: a NURBS-based approach

    Science.gov (United States)

    Triki, Olfa; Zaharia, Titus B.; Preteux, Francoise J.

    2004-05-01

    This work has been carried out within the framework of the industrial project, so-called TOON, supported by the French government. TOON aims at developing tools for automating the traditional 2D cartoon content production. This paper presents preliminary results of the TOON platform. The proposed methodology concerns the issues of 2D/3D reconstruction from a limited number of drawn projections, and 2D/3D manipulation/deformation/refinement of virtual characters. Specifically, we show that the NURBS-based modeling approach developed here offers a well-suited framework for generating deformable 3D virtual characters from incomplete 2D information. Furthermore, crucial functionalities such as animation and non-rigid deformation can be also efficiently handled and solved. Note that user interaction is enabled exclusively in 2D by achieving a multiview constraint specification method. This is fully consistent and compliant with the cartoon creator traditional practice and makes it possible to avoid the use of 3D modeling software packages which are generally complex to manipulate.

  20. A landmark-based method for the geometrical 3D calibration of scanning microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, M.

    2007-04-27

    This thesis presents a new strategy and a spatial method for the geometric calibration of 3D measurement devices at the micro-range, based on spatial reference structures with nanometersized landmarks (nanomarkers). The new method was successfully applied for the 3D calibration of scanning probe microscopes (SPM) and confocal laser scanning microscopes (CLSM). Moreover, the spatial method was also used for the photogrammetric self-calibration of scanning electron microscopes (SEM). In order to implement the calibration strategy to all scanning microscopes used, the landmark-based principle of reference points often applied at land survey or at close-range applications has been transferred to the nano- and micro-range in the form of nanomarker. In order to function as a support to the nanomarkers, slope-shaped step pyramids have been developed and fabricated by focused ion beam (FIB) induced metal deposition. These FIB produced 3D microstructures have been sized to embrace most of the measurement volume of the scanning microscopes. Additionally, their special design allows the homogenous distribution of the nanomarkers. The nanomarkers were applied onto the support and the plateaus of the slope-step pyramids by FIB etching (milling) as landmarks with as little as several hundreds of nanometers in diameter. The nanomarkers are either of point-, or ring-shaped design. They are optimized so that they can be spatially measured by SPM and CLSM, and, imaged and photogrammetrically analyzed on the basis of SEM data. The centre of the each nanomarker serves as reference point in the measurement data or images. By applying image processing routines, the image (2D) or object (3D) coordinates of each nanomarker has been determined with subpixel accuracy. The correlative analysis of the SPM, CLSM and photogrammetric SEM measurement data after 3D calibration resulted in mean residues in the measured coordinates of as little as 13 nm. Without the coupling factors the mean

  1. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications.

    Science.gov (United States)

    Placone, Jesse K; Engler, Adam J

    2017-12-28

    Additive manufacturing, or 3D printing, has become significantly more commonplace in tissue engineering over the past decade, as a variety of new printing materials have been developed. In extrusion-based printing, materials are used for applications that range from cell free printing to cell-laden bioinks that mimic natural tissues. Beyond single tissue applications, multi-material extrusion based printing has recently been developed to manufacture scaffolds that mimic tissue interfaces. Despite these advances, some material limitations prevent wider adoption of the extrusion-based 3D printers currently available. This progress report provides an overview of this commonly used printing strategy, as well as insight into how this technique can be improved. As such, it is hoped that the prospective report guides the inclusion of more rigorous material characterization prior to printing, thereby facilitating cross-platform utilization and reproducibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A topology-based strategy for 3D reconstruction of complicated buildings

    Science.gov (United States)

    Shao, Zhenfeng; Li, Deren; Cheng, Qimin; Ye, Huanzhuo

    2004-04-01

    In this paper, a topology-based strategy for 3D reconstruction of complicated buildings from stereo image pair is put forward. It comes from our investigation on the applicability of topology analysis and a strongly topology-driven process that combines different levels of geometrical description with different levels of topological abstraction. The authors emphasize the topology-based strategy on different levels of geometrical description: Firstly a topology-based 3D data model is presented in which the topological relationships within a building or between geometrical objects are described implicitly or explicitly. Secondly based on description of vertexes level, interested vertexes are collected from stereo image pair and saturated attribute of each interior vertex is defined, furthermore an adjacency table is defined to store the connection attributes of verges automatically. Thirdly surfaces are looked on as polygons with closed verges on the basis of bi-directional querying of the adjacency table. Finally complicated buildings are described as graphs with interior and exterior topological attributes. Based on the strategy mentioned above, a software platform for 3D reconstruction of complicated buildings is built up. The efficiency of suggested method is examined through practical experiments.

  3. Depth-based coding of MVD data for 3D video extension of H.264/AVC

    Science.gov (United States)

    Rusanovskyy, Dmytro; Hannuksela, Miska M.; Su, Wenyi

    2013-06-01

    This paper describes a novel approach of using depth information for advanced coding of associated video data in Multiview Video plus Depth (MVD)-based 3D video systems. As a possible implementation of this conception, we describe two coding tools that have been developed for H.264/AVC based 3D Video Codec as response to Moving Picture Experts Group (MPEG) Call for Proposals (CfP). These tools are Depth-based Motion Vector Prediction (DMVP) and Backward View Synthesis Prediction (BVSP). Simulation results conducted under JCT-3V/MPEG 3DV Common Test Conditions show, that proposed in this paper tools reduce bit rate of coded video data by 15% of average delta bit rate reduction, which results in 13% of bit rate savings on total for the MVD data over the state-of-the-art MVC+D coding. Moreover, presented in this paper conception of depth-based coding of video has been further developed by MPEG 3DV and JCT-3V and this work resulted in even higher compression efficiency, bringing about 20% of delta bit rate reduction on total for coded MVD data over the reference MVC+D coding. Considering significant gains, proposed in this paper coding approach can be beneficial for development of new 3D video coding standards. [Figure not available: see fulltext.

  4. A web-based solution for 3D medical image visualization

    Science.gov (United States)

    Hou, Xiaoshuai; Sun, Jianyong; Zhang, Jianguo

    2015-03-01

    In this presentation, we present a web-based 3D medical image visualization solution which enables interactive large medical image data processing and visualization over the web platform. To improve the efficiency of our solution, we adopt GPU accelerated techniques to process images on the server side while rapidly transferring images to the HTML5 supported web browser on the client side. Compared to traditional local visualization solution, our solution doesn't require the users to install extra software or download the whole volume dataset from PACS server. By designing this web-based solution, it is feasible for users to access the 3D medical image visualization service wherever the internet is available.

  5. Stereovision-based 3D field recognition for automatic guidance system of off-road vehicle

    Science.gov (United States)

    Zhang, Fangming; Ying, Yibin; Shen, Chuan; Jiang, Huanyu; Zhang, Qin

    2005-11-01

    A stereovision-based disparity evaluation algorithm was developed for rice crop field recognition. The gray level intensities and the correlation relation were integrated to produce the disparities of stereo-images. The surface of ground and rice were though as two rough planes, but their disparities waved in a narrow range. The cut/uncut edges of rice crops were first detected and track through the images. We used a step model to locate those edge positions. The points besides the edges were matched respectively to get disparity values using area correlation method. The 3D camera coordinates were computed based on those disparities. The vehicle coordinates were obtained by multiplying the 3D camera coordinates with a transform formula. It has been implemented on an agricultural robot and evaluated in rice crop field with straight rows. The results indicated that the developed stereovision navigation system is capable of reconstructing the field image.

  6. 3D Reconstruction of NMR Images

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  7. Virtual-reality-based 3D simulation for ship steering and sea wave

    Science.gov (United States)

    Xu, Lili; Guo, Chen

    2004-03-01

    A typical Virtual Reality (VR) based ship steering simulation structure, which is helpful to test and modify control algorithms and parameters, is proposed in this paper. The 6-order mathematical model of ship steering is given. This paper focuses on how to develop the 3-D simulation system for ship steering and sea wave, which is essential to interactive visual simulation. A simulation scene including autopilot, rudder, propeller and other marine power plants is presented.

  8. Stream-based Active Learning for Efficient and Adaptive Classification of 3D Objects

    OpenAIRE

    Narr, Alexander; Triebel, Rudolph; Cremers, Daniel

    2016-01-01

    We present a new Active Learning approach for classifying objects from streams of 3D point cloud data. The major problems here are the non-uniform occurence of class instances and the unbalanced numbers of samples per class. We show that standard online learning methods based on decision trees perform comparably bad for such data streams, which are however particularly relevant for mobile robots that need to learn semantics persistently. To address this, we use Mondrian forests (MF), a recent...

  9. Correlation-based discrimination between cardiac tissue and blood for segmentation of 3D echocardiographic images

    Science.gov (United States)

    Saris, Anne E. C. M.; Nillesen, Maartje M.; Lopata, Richard G. P.; de Korte, Chris L.

    2013-03-01

    Automated segmentation of 3D echocardiographic images in patients with congenital heart disease is challenging, because the boundary between blood and cardiac tissue is poorly defined in some regions. Cardiologists mentally incorporate movement of the heart, using temporal coherence of structures to resolve ambiguities. Therefore, we investigated the merit of temporal cross-correlation for automated segmentation over the entire cardiac cycle. Optimal settings for maximum cross-correlation (MCC) calculation, based on a 3D cross-correlation based displacement estimation algorithm, were determined to obtain the best contrast between blood and myocardial tissue over the entire cardiac cycle. Resulting envelope-based as well as RF-based MCC values were used as additional external force in a deformable model approach, to segment the left-ventricular cavity in entire systolic phase. MCC values were tested against, and combined with, adaptive filtered, demodulated RF-data. Segmentation results were compared with manually segmented volumes using a 3D Dice Similarity Index (3DSI). Results in 3D pediatric echocardiographic images sequences (n = 4) demonstrate that incorporation of temporal information improves segmentation. The use of MCC values, either alone or in combination with adaptive filtered, demodulated RF-data, resulted in an increase of the 3DSI in 75% of the cases (average 3DSI increase: 0.71 to 0.82). Results might be further improved by optimizing MCC-contrast locally, in regions with low blood-tissue contrast. Reducing underestimation of the endocardial volume due to MCC processing scheme (choice of window size) and consequential border-misalignment, could also lead to more accurate segmentations. Furthermore, increasing the frame rate will also increase MCC-contrast and thus improve segmentation.

  10. AUTOMATED FEATURE BASED TLS DATA REGISTRATION FOR 3D BUILDING MODELING

    OpenAIRE

    Kitamura, K.; Kochi, N.; Kaneko, S.

    2012-01-01

    In this paper we present a novel method for the registration of point cloud data obtained using terrestrial laser scanner (TLS). The final goal of our investigation is the automated reconstruction of CAD drawings and the 3D modeling of objects surveyed by TLS. Because objects are scanned from multiple positions, individual point cloud need to be registered to the same coordinate system. We propose in this paper an automated feature based registration procedure. Our proposed method does not re...

  11. An Eccentricity Based Data Routing Protocol with Uniform Node Distribution in 3D WSN

    Directory of Open Access Journals (Sweden)

    A. S. M. Sanwar Hosen

    2017-09-01

    Full Text Available Due to nonuniform node distribution, the energy consumption of nodes are imbalanced in clustering-based wireless sensor networks (WSNs. It might have more impact when nodes are deployed in a three-dimensional (3D environment. In this regard, we propose the eccentricity based data routing (EDR protocol in a 3D WSN with uniform node distribution. It includes network partitions called 3D subspaces/clusters of equal member nodes, an energy-efficient routing centroid (RC nodes election and data routing algorithm. The RC nodes election conducts in a quasi-static nature until a certain period unlike the periodic cluster heads election of typical clustering-based routing. It not only reduces the energy consumption of nodes during the election phase, but also in intra-communication. At the same time, the routing algorithm selects a forwarding node in such a way that balances the energy consumption among RC nodes and reduces the number of hops towards the sink. The simulation results validate and ensure the performance supremacy of the EDR protocol compared to existing protocols in terms of various metrics such as steady state and network lifetime in particular. Meanwhile, the results show the EDR is more robust in uniform node distribution compared to nonuniform.

  12. Geo3DML: A standard-based exchange format for 3D geological models

    Science.gov (United States)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Wang, Xianghong

    2018-01-01

    A geological model (geomodel) in three-dimensional (3D) space is a digital representation of the Earth's subsurface, recognized by geologists and stored in resultant geological data (geodata). The increasing demand for data management and interoperable applications of geomodelscan be addressed by developing standard-based exchange formats for the representation of not only a single geological object, but also holistic geomodels. However, current standards such as GeoSciML cannot incorporate all the geomodel-related information. This paper presents Geo3DML for the exchange of 3D geomodels based on the existing Open Geospatial Consortium (OGC) standards. Geo3DML is based on a unified and formal representation of structural models, attribute models and hierarchical structures of interpreted resultant geodata in different dimensional views, including drills, cross-sections/geomaps and 3D models, which is compatible with the conceptual model of GeoSciML. Geo3DML aims to encode all geomodel-related information integrally in one framework, including the semantic and geometric information of geoobjects and their relationships, as well as visual information. At present, Geo3DML and some supporting tools have been released as a data-exchange standard by the China Geological Survey (CGS).

  13. Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology

    Science.gov (United States)

    Töpperwien, Mareike; Krenkel, Martin; Quade, Felix; Salditt, Tim

    2016-09-01

    Due to the large penetration depth and small wavelength hard x-rays offer a unique potential for 3D biomedical and biological imaging, combining capabilities of high resolution and large sample volume. However, in classical absorption-based computed tomography, soft tissue only shows a weak contrast, limiting the actual resolution. With the advent of phase-contrast methods, the much stronger phase shift induced by the sample can now be exploited. For high resolution, free space propagation behind the sample is particularly well suited to make the phase shift visible. Contrast formation is based on the self-interference of the transmitted beam, resulting in object-induced intensity modulations in the detector plane. As this method requires a sufficiently high degree of spatial coherence, it was since long perceived as a synchrotron-based imaging technique. In this contribution we show that by combination of high brightness liquid-metal jet microfocus sources and suitable sample preparation techniques, as well as optimized geometry, detection and phase retrieval, excellent three-dimensional image quality can be obtained, revealing the anatomy of a cobweb spider in high detail. This opens up new opportunities for 3D virtual histology of small organisms. Importantly, the image quality is finally augmented to a level accessible to automatic 3D segmentation.

  14. An Eccentricity Based Data Routing Protocol with Uniform Node Distribution in 3D WSN.

    Science.gov (United States)

    Hosen, A S M Sanwar; Cho, Gi Hwan; Ra, In-Ho

    2017-09-16

    Due to nonuniform node distribution, the energy consumption of nodes are imbalanced in clustering-based wireless sensor networks (WSNs). It might have more impact when nodes are deployed in a three-dimensional (3D) environment. In this regard, we propose the eccentricity based data routing (EDR) protocol in a 3D WSN with uniform node distribution. It includes network partitions called 3D subspaces/clusters of equal member nodes, an energy-efficient routing centroid (RC) nodes election and data routing algorithm. The RC nodes election conducts in a quasi-static nature until a certain period unlike the periodic cluster heads election of typical clustering-based routing. It not only reduces the energy consumption of nodes during the election phase, but also in intra-communication. At the same time, the routing algorithm selects a forwarding node in such a way that balances the energy consumption among RC nodes and reduces the number of hops towards the sink. The simulation results validate and ensure the performance supremacy of the EDR protocol compared to existing protocols in terms of various metrics such as steady state and network lifetime in particular. Meanwhile, the results show the EDR is more robust in uniform node distribution compared to nonuniform.

  15. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.

    Science.gov (United States)

    Rocha, Victoria G; García-Tuñón, Esther; Botas, Cristina; Markoulidis, Foivos; Feilden, Ezra; D'Elia, Eleonora; Ni, Na; Shaffer, Milo; Saiz, Eduardo

    2017-10-25

    The current lifestyles, increasing population, and limited resources result in energy research being at the forefront of worldwide grand challenges, increasing the demand for sustainable and more efficient energy devices. In this context, additive manufacturing brings the possibility of making electrodes and electrical energy storage devices in any desired three-dimensional (3D) shape and dimensions, while preserving the multifunctional properties of the active materials in terms of surface area and conductivity. This paves the way to optimized and more efficient designs for energy devices. Here, we describe how three-dimensional (3D) printing will allow the fabrication of bespoke devices, with complex geometries, tailored to fit specific requirements and applications, by designing water-based thermoresponsive inks to 3D-print different materials in one step, for example, printing the active material precursor (reduced chemically modified graphene (rCMG)) and the current collector (copper) for supercapacitors or anodes for lithium-ion batteries. The formulation of thermoresponsive inks using Pluronic F127 provides an aqueous-based, robust, flexible, and easily upscalable approach. The devices are designed to provide low resistance interface, enhanced electrical properties, mechanical performance, packing of rCMG, and low active material density while facilitating the postprocessing of the multicomponent 3D-printed structures. The electrode materials are selected to match postprocessing conditions. The reduction of the active material (rCMG) and sintering of the current collector (Cu) take place simultaneously. The electrochemical performance of the rCMG-based self-standing binder-free electrode and the two materials coupled rCMG/Cu printed electrode prove the potential of multimaterial printing in energy applications.

  16. 3-D ultrasonic strain imaging based on a linear scanning system.

    Science.gov (United States)

    Huang, Qinghua; Xie, Bo; Ye, Pengfei; Chen, Zhaohong

    2015-02-01

    This paper introduces a 3-D strain imaging method based on a freehand linear scanning mode. We designed a linear sliding track with a position sensor and a height-adjustable holder to constrain the movement of an ultrasound probe in a freehand manner. When moving the probe along the sliding track, the corresponding positional measures for the probe are transmitted via a wireless communication module based on Bluetooth in real time. In a single examination, the probe is scanned in two sweeps in which the height of the probe is adjusted by the holder to collect the pre- and postcompression radio-frequency echoes, respectively. To generate a 3-D strain image, a volume cubic in which the voxels denote relative strains for tissues is defined according to the range of the two sweeps. With respect to the post-compression frames, several slices in the volume are determined and the pre-compression frames are re-sampled to precisely correspond to the post-compression frames. Thereby, a strain estimation method based on minimizing a cost function using dynamic programming is used to obtain the 2-D strain image for each pair of frames from the re-sampled pre-compression sweep and the post-compression sweep, respectively. A software system is developed for volume reconstruction, visualization, and measurement of the 3-D strain images. The experimental results show that high-quality 3-D strain images of phantom and human tissues can be generated by the proposed method, indicating that the proposed system can be applied for real clinical applications (e.g., musculoskeletal assessments).

  17. MO-FG-303-03: Demonstration of Universal Knowledge-Based 3D Dose Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, S; Moore, K L [University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To demonstrate a knowledge-based 3D dose prediction methodology that can accurately predict achievable radiotherapy distributions. Methods: Using previously treated plans as input, an artificial neural network (ANN) was trained to predict 3D dose distributions based on 14 patient-specific anatomical parameters including the distance (r) to planning target volume (PTV) boundary, organ-at-risk (OAR) boundary distances, and angular position ( θ,φ). 23 prostate and 49 stereotactic radiosurgery (SRS) cases with ≥1 nearby OARs were studied. All were planned with volumetric-modulated arc therapy (VMAT) to prescription doses of 81Gy for prostate and 12–30Gy for SRS. Site-specific ANNs were trained using all prostate 23 plans and using a 24 randomly-selected subset for the SRS model. The remaining 25 SRS plans were used to validate the model. To quantify predictive accuracy, the dose difference between the clinical plan and prediction were calculated on a voxel-by-voxel basis δD(r,θ,φ)=Dclin(r,θ,φ)-Dpred(r, θ,φ). Grouping voxels by boundary distance, the mean <δ Dr>=(1/N)Σ -θ,φ D(r,θ,φ) and inter-quartile range (IQR) quantified the accuracy of this method for deriving DVH estimations. The standard deviation (σ) of δ D quantified the 3D dose prediction error on a voxel-by-voxel basis. Results: The ANNs were highly accurate in predictive ability for both prostate and SRS plans. For prostate, <δDr> ranged from −0.8% to +0.6% (max IQR=3.8%) over r=0–32mm, while 3D dose prediction accuracy averaged from σ=5–8% across the same range. For SRS, from r=0–34mm the training set <δDr> ranged from −3.7% to +1.5% (max IQR=4.4%) while the validation set <δDr> ranged from −2.2% to +5.8% (max IQR=5.3%). 3D dose prediction accuracy averaged σ=2.5% for the training set and σ=4.0% over the same interval. Conclusion: The study demonstrates this technique’s ability to predict achievable 3D dose distributions for VMAT SRS and prostate. Future

  18. Automated Clustering Analysis of Immunoglobulin Sequences in Chronic Lymphocytic Leukemia Based on 3D Structural Descriptors

    DEFF Research Database (Denmark)

    Marcatili, Paolo; Mochament, Konstantinos; Agathangelidis, Andreas

    2016-01-01

    similarity between the 3D models. The Fast Point Feature Histograms descriptors derived from the structurally aligned parts are used to compute a distance matrix, which is then used as input for the clustering procedure. Clustering analysis on the data is performed through the application......Imunoglobulins (Igs) are crucial for the defense against pathogens, but they are also important in many clinical and biotechnological applications. Their characteristics, and ultimately their function, depend on their three-dimensional (3D) structure; however, the procedures to experimentally...... determine it are extremely laborious and demanding. Hence, the ability to gain insight into the structure of Igs at large relies on the availability of tools and algorithms for producing accurate Ig structural models based on their primary sequence alone. These models can then be used to determine...

  19. Analysis of dielectrophoresis based 3D-focusing in microfluidic devices with planar electrodes.

    Science.gov (United States)

    Hilal-Alnaqbi, Ali; Alazzam, Anas; Dagher, Sawsan; Mathew, Bobby

    2017-07-01

    This article models a dielectrophoresis based approach for achieving 3D focusing, of micro-scale objects, in microfluidic devices. The microfluidic device employs four planar electrodes; two electrodes each on the top and bottom surface of the microchannel and each slightly protrude into the microchannel. Each electrode establishes electric field with the neighboring electrode on the same and opposite surfaces. The dielectrophoretic force pushes the micro-scale objects both the directions transverse to the flow direction to achieve the desired 3D focusing. The developed model accounts for various forces such as that associated with inertia, sedimentation, drag, and dielectrophoresis. Finite difference method is used for calculating the electric field and dielectrophoretic force as well as the displacements of micro-scale objects in the microchannel. Several geometric and operating parameters influence the trajectory of micro-scale objects. There exists a threshold voltage beyond which there is no increase in levitation height.

  20. PDBlocal: A web-based tool for local inspection of biological macromolecular 3D structures

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2018-03-01

    Full Text Available Functional research on biological macromolecules must focus on specific local regions. PDBlocal is a web-based tool developed to overcome the limitations of traditional molecular visualization tools for three-dimensional (3D inspection of local regions. PDBlocal provides an intuitive and easy-to-manipulate web page interface and some new useful functions. It can keep local regions flashing, display sequence text that is dynamically consistent with the 3D structure in local appearance under multiple local manipulations, use two scenes to help users inspect the same local region with different statuses, list all historical manipulation statuses with a tree structure, allow users to annotate regions of interest, and save all historical statuses and other data to a web server for future research. PDBlocal has met expectations and shown satisfactory performance for both expert and novice users. This tool is available at http://labsystem.scuec.edu.cn/pdblocal/.

  1. Backbone cup – a structure design competition based on topology optimization and 3D printing

    Directory of Open Access Journals (Sweden)

    Zhu Ji-Hong

    2016-01-01

    Full Text Available This paper addresses a structure design competition based on topology optimization and 3D Printing, and proposes an experimental approach to efficiently and quickly measure the mechanical performance of the structures designed using topology optimization. Since the topology optimized structure designs are prone to be geometrically complex, it is extremely inconvenient to fabricate these designs with traditional machining. In this study, we not only fabricated the topology optimized structure designs using one kind of 3D Printing technology known as stereolithography (SLA, but also tested the mechanical performance of the produced prototype parts. The finite element method is used to analyze the structure responses, and the consistent results of the numerical simulations and structure experiments prove the validity of this new structure testing approach. This new approach will not only provide a rapid access to topology optimized structure designs verifying, but also cut the turnaround time of structure design significantly.

  2. Synesthetic art through 3-D projection: The requirements of a computer-based supermedium

    Science.gov (United States)

    Mallary, Robert

    1989-01-01

    A computer-based form of multimedia art is proposed that uses the computer to fuse aspects of painting, sculpture, dance, music, film, and other media into a one-to-one synthesia of image and sound for spatially synchronous 3-D projection. Called synesthetic art, this conversion of many varied media into an aesthetically unitary experience determines the character and requirements of the system and its software. During the start-up phase, computer stereographic systems are unsuitable for software development. Eventually, a new type of illusory-projective supermedium will be required to achieve the needed combination of large-format projection and convincing real life presence, and to handle the vast amount of 3-D visual and acoustic information required. The influence of the concept on the author's research and creative work is illustrated through two examples.

  3. 3-D shape measurement based on complementary Gray-code light

    Science.gov (United States)

    Zhang, Qican; Su, Xianyu; Xiang, Liqun; Sun, Xuezhen

    2012-04-01

    A combination of phase-shift with Gray-code light projection into a three-dimensional (3-D) measurement system has been exploited to digitalize 3-D shape information of a tested object, even with a discontinuous surface. Unfortunately, the phase unwrapping will fall into an error, when an improper value of Gray coding is caused by mistake at the partial boundary of two adjacent binary words. To this end, a new complementary Gray-code method is proposed in this paper as well as the corresponding phase-unwrapping method. This problem of phase unwrapping could be cleverly solved by projecting an additional Gray-code pattern to extend this code and using the different and complementary boundary locations of the traditional and additional codes. The results of computer simulation and experiment confirm that this proposed method based on complementary Gray-code can reliably reconstruct the nature phase distribution of the tested object with only one extra fringe pattern.

  4. M-OTDR sensing system based on 3D encoded microstructures.

    Science.gov (United States)

    Sun, Qizhen; Ai, Fan; Liu, Deming; Cheng, Jianwei; Luo, Hongbo; Peng, Kuan; Luo, Yiyang; Yan, Zhijun; Shum, Perry Ping

    2017-01-20

    In this work, a quasi-distributed sensing scheme named as microstructured OTDR (M-OTDR) by introducing ultra-weak microstructures along the fiber is proposed. Owing to its relative higher reflectivity compared with the backscattered coefficient in fiber and three dimensional (3D) i.e. wavelength/frequency/time encoded property, the M-OTDR system exhibits the superiorities of high signal to noise ratio (SNR), high spatial resolution of millimeter level and high multiplexing capacity up to several ten thousands theoretically. A proof-of-concept system consisting of 64 sensing units is constructed to demonstrate the feasibility and sensing performance. With the help of the demodulation method based on 3D analysis and spectrum reconstruction of the signal light, quasi-distributed temperature sensing with a spatial resolution of 20 cm as well as a measurement resolution of 0.1 °C is realized.

  5. 3D Road Scene Monitoring Based on Real-Time Panorama

    Directory of Open Access Journals (Sweden)

    Yuezhou Wu

    2014-01-01

    Full Text Available Road monitoring helps to control the regional traffic situation so as to adjust the traffic flow. Real-time panorama is conducive to timely treat traffic accidents and to greatly improve traffic capacity. This paper designs a 3D road scene monitoring framework based on real-time panorama. The system is the combination of large scale panorama, satellite map textures, and 3D scene model, in which users can ramble freely. This paper has the following contributions. Firstly, land-points were extracted followed by motion detection, then comotion algorithm was applied to land-points from adjacent cameras, and homography matrix was constructed. Secondly, reference camera was chosen and transformed to overhead viewpoint; subsequently multiviews were morphed to the same viewpoint and stitched to panorama. Finally, the registration based on high-precision GPS information between 2D road panorama and 3D scene model was also proposed. The proposed framework has been successfully applied to a large road intersection monitoring. Experimental results are furnished at the end of the paper.

  6. 3D virtual human rapid modeling method based on top-down modeling mechanism

    Directory of Open Access Journals (Sweden)

    LI Taotao

    2017-01-01

    Full Text Available Aiming to satisfy the vast custom-made character demand of 3D virtual human and the rapid modeling in the field of 3D virtual reality, a new virtual human top-down rapid modeling method is put for-ward in this paper based on the systematic analysis of the current situation and shortage of the virtual hu-man modeling technology. After the top-level realization of virtual human hierarchical structure frame de-sign, modular expression of the virtual human and parameter design for each module is achieved gradu-al-level downwards. While the relationship of connectors and mapping restraints among different modules is established, the definition of the size and texture parameter is also completed. Standardized process is meanwhile produced to support and adapt the virtual human top-down rapid modeling practice operation. Finally, the modeling application, which takes a Chinese captain character as an example, is carried out to validate the virtual human rapid modeling method based on top-down modeling mechanism. The result demonstrates high modelling efficiency and provides one new concept for 3D virtual human geometric mod-eling and texture modeling.

  7. Determining the mechanical properties of a radiochromic silicone-based 3D dosimeter

    Science.gov (United States)

    Kaplan, L. P.; Høye, E. M.; Balling, P.; Muren, L. P.; Petersen, J. B. B.; Poulsen, P. R.; Yates, E. S.; Skyt, P. S.

    2017-07-01

    New treatment modalities in radiotherapy (RT) enable delivery of highly conformal dose distributions in patients. This creates a need for precise dose verification in three dimensions (3D). A radiochromic silicone-based 3D dosimetry system has recently been developed. Such a dosimeter can be used for dose verification in deformed geometries, which requires knowledge of the dosimeter’s mechanical properties. In this study we have characterized the dosimeter’s elastic behaviour under tensile and compressive stress. In addition, the dose response under strain was determined. It was found that the dosimeter behaved as an incompressible hyperelastic material with a non-linear stress/strain curve and with no observable hysteresis or plastic deformation even at high strains. The volume was found to be constant within a 2% margin at deformations up to 60%. Furthermore, it was observed that the dosimeter returned to its original geometry within a 2% margin when irradiated under stress, and that the change in optical density per centimeter was constant regardless of the strain during irradiation. In conclusion, we have shown that this radiochromic silicone-based dosimeter’s mechanical properties make it a viable candidate for dose verification in deformable 3D geometries.

  8. On the security of 3D Cat map based symmetric image encryption scheme

    Energy Technology Data Exchange (ETDEWEB)

    Wang Kai [Department of Radio Engineering, Southeast University, Nanjing 210096 (China); Pei, W.-J. [Department of Radio Engineering, Southeast University, Nanjing 210096 (China)]. E-mail: wjpei@seu.edu.cn; Zou, Liuhua [Department of Radio Engineering, Southeast University, Nanjing 210096 (China); Song Aiguo [Department of Instrument Science and Engineering, Southeast University, Nanjing 210096 (China); He Zhenya [Department of Radio Engineering, Southeast University, Nanjing 210096 (China)

    2005-08-22

    A 3D Cat map based symmetric image encryption algorithm, which significantly increases the resistance against statistical and differential attacks, has been proposed recently. It employs a 3D Cat map to shuffle the positions of image pixels and uses the Logistic map to diffuse the relationship between the cipher-image and the plain-image. Based on the factor that it is sufficient to break this cryptosystem only with the equivalent control parameters, some fundamental weaknesses of the cryptosystem are pointed out. With the knowledge of symbolic dynamics and some specially designed plain-images, we can calculate the equivalent initial condition of diffusion process and rebuild a valid equivalent 3D Cat matrix. In this Letter, we will propose a successful chosen-plain-text cryptanalytic attack, which is composed of two mutually independent procedures: the cryptanalysis of the diffusion process and the cryptanalysis of the spatial permutation process. Both theoretical and experimental results show that the lack of security discourages the use of these cryptosystems for practical applications.

  9. Protection for structures in extreme earthquakes: Full Base Isolation (3-D) by the Swiss Seismafloat System

    Energy Technology Data Exchange (ETDEWEB)

    Staudacher, K.

    1985-02-01

    Full Base Isolation (FBI, 3-D), an antiseismic concept for structures, adds vertical flexibility to horizontal base isolation (HBI, 2-D). Extensive experimental testing at the Swiss Federal Institute of Technology and the University of California, Berkeley, has shown FBI to be a practicable way to reach the final goal of earthquake protection, i.e. elastic behavior of the structural frame in extreme earthquakes. Swiss engineers pioneered base isolation by the construction of the Pestalozzi School at Skopje in 1968. Further development has made Integral Earthquake Protection possible for structures and their contents. (orig.).

  10. Robust control of CPG-based 3D neuromusculoskeletal walking model.

    Science.gov (United States)

    Kim, Youngwoo; Tagawa, Yusuke; Obinata, Goro; Hase, Kazunori

    2011-10-01

    This paper proposes a method for enhancing the robustness of the central pattern generator (CPG)-based three-dimensional (3D) neuromusculoskeletal walking controller. The CPG has been successfully applied to walking controllers and controllers for walking robots. However, the robustness of walking motion with the CPG-based controller is not sufficient, especially when subjected to external forces or environmental variations. To achieve a realistic and stable walking motion of the controller, we propose the use of an attracting controller in parallel with the CPG-based controller. The robustness of the proposed controller is confirmed through simulation results.

  11. Technique: imaging earliest tooth development in 3D using a silver-based tissue contrast agent.

    Science.gov (United States)

    Raj, Muhammad T; Prusinkiewicz, Martin; Cooper, David M L; George, Belev; Webb, M Adam; Boughner, Julia C

    2014-02-01

    Looking in microscopic detail at the 3D organization of initiating teeth within the embryonic jaw has long-proved technologically challenging because of the radio-translucency of these tiny un-mineralized oral tissues. Yet 3D image data showing changes in the physical relationships among developing tooth and jaw tissues are vital to understand the coordinated morphogenesis of vertebrate teeth and jaws as an animal grows and as species evolve. Here, we present a new synchrotron-based scanning solution to image odontogenesis in 3D and in histological detail using a silver-based contrast agent. We stained fixed, intact wild-type mice aged embryonic (E) day 10 to birth with 1% Protargol-S at 37°C for 12-32 hr. Specimens were scanned at 4-10 µm pixel size at 28 keV, just above the silver K-edge, using micro-computed tomography (µCT) at the Canadian Light Source synchrotron. Synchrotron µCT scans of silver-stained embryos showed even the earliest visible stages of tooth initiation, as well as many other tissue types and structures, in histological detail. Silver stain penetration was optimal for imaging structures in intact embryos E15 and younger. This silver stain method offers a powerful yet straightforward approach to visualize at high-resolution and in 3D the earliest stages of odontogenesis in situ, and demonstrates the important of studying the tooth organ in all three planes of view. Copyright © 2013 Wiley Periodicals, Inc.

  12. Dual optimization based prostate zonal segmentation in 3D MR images.

    Science.gov (United States)

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron

    2014-05-01

    Efficient and accurate segmentation of the prostate and two of its clinically meaningful sub-regions: the central gland (CG) and peripheral zone (PZ), from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, a novel multi-region segmentation approach is proposed to simultaneously segment the prostate and its two major sub-regions from only a single 3D T2-weighted (T2w) MR image, which makes use of the prior spatial region consistency and incorporates a customized prostate appearance model into the segmentation task. The formulated challenging combinatorial optimization problem is solved by means of convex relaxation, for which a novel spatially continuous max-flow model is introduced as the dual optimization formulation to the studied convex relaxed optimization problem with region consistency constraints. The proposed continuous max-flow model derives an efficient duality-based algorithm that enjoys numerical advantages and can be easily implemented on GPUs. The proposed approach was validated using 18 3D prostate T2w MR images with a body-coil and 25 images with an endo-rectal coil. Experimental results demonstrate that the proposed method is capable of efficiently and accurately extracting both the prostate zones: CG and PZ, and the whole prostate gland from the input 3D prostate MR images, with a mean Dice similarity coefficient (DSC) of 89.3±3.2% for the whole gland (WG), 82.2±3.0% for the CG, and 69.1±6.9% for the PZ in 3D body-coil MR images; 89.2±3.3% for the WG, 83.0±2.4% for the CG, and 70.0±6.5% for the PZ in 3D endo-rectal coil MR images. In addition, the experiments of intra- and inter-observer variability introduced by user initialization indicate a good reproducibility of the proposed approach in terms of volume difference (VD) and coefficient-of-variation (CV) of DSC. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices

    OpenAIRE

    Munteanu, Cristian Robert

    2014-01-01

    Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices, German Conference on Bioinformatics (GCB), Potsdam, Germany (September, 2007)

  14. [Rapid 2D-3D medical image registration based on CUDA].

    Science.gov (United States)

    Li, Lingzhi; Zou, Beiji

    2014-08-01

    The medical image registration between preoperative three-dimensional (3D) scan data and intraoperative two-dimensional (2D) image is a key technology in the surgical navigation. Most previous methods need to generate 2D digitally reconstructed radiographs (DRR) images from the 3D scan volume data, then use conventional image similarity function for comparison. This procedure includes a large amount of calculation and is difficult to archive real-time processing. In this paper, with using geometric feature and image density mixed characteristics, we proposed a new similarity measure function for fast 2D-3D registration of preoperative CT and intraoperative X-ray images. This algorithm is easy to implement, and the calculation process is very short, while the resulting registration accuracy can meet the clinical use. In addition, the entire calculation process is very suitable for highly parallel numerical calculation by using the algorithm based on CUDA hardware acceleration to satisfy the requirement of real-time application in surgery.

  15. Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments.

    Science.gov (United States)

    Cao, Xiang; Zhu, Daqi; Yang, Simon X

    2016-11-01

    Target search in 3-D underwater environments is a challenge in multiple autonomous underwater vehicles (multi-AUVs) exploration. This paper focuses on an effective strategy for multi-AUV target search in the 3-D underwater environments with obstacles. First, the Dempster-Shafer theory of evidence is applied to extract information of environment from the sonar data to build a grid map of the underwater environments. Second, a topologically organized bioinspired neurodynamics model based on the grid map is constructed to represent the dynamic environment. The target globally attracts the AUVs through the dynamic neural activity landscape of the model, while the obstacles locally push the AUVs away to avoid collision. Finally, the AUVs plan their search path to the targets autonomously by a steepest gradient descent rule. The proposed algorithm deals with various situations, such as static targets search, dynamic targets search, and one or several AUVs break down in the 3-D underwater environments with obstacles. The simulation results show that the proposed algorithm is capable of guiding multi-AUV to achieve search task of multiple targets with higher efficiency and adaptability compared with other algorithms.

  16. 3D Image Acquisition System Based on Shape from Focus Technique

    Directory of Open Access Journals (Sweden)

    Pierre Gouton

    2013-04-01

    Full Text Available This paper describes the design of a 3D image acquisition system dedicated to natural complex scenes composed of randomly distributed objects with spatial discontinuities. In agronomic sciences, the 3D acquisition of natural scene is difficult due to the complex nature of the scenes. Our system is based on the Shape from Focus technique initially used in the microscopic domain. We propose to adapt this technique to the macroscopic domain and we detail the system as well as the image processing used to perform such technique. The Shape from Focus technique is a monocular and passive 3D acquisition method that resolves the occlusion problem affecting the multi-cameras systems. Indeed, this problem occurs frequently in natural complex scenes like agronomic scenes. The depth information is obtained by acting on optical parameters and mainly the depth of field. A focus measure is applied on a 2D image stack previously acquired by the system. When this focus measure is performed, we can create the depth map of the scene.

  17. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    Directory of Open Access Journals (Sweden)

    Sungdae Sim

    2012-12-01

    Full Text Available Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  18. A 3D optical deformation measurement system supported by knowledge-based and learning techniques

    Science.gov (United States)

    Reiterer, Alexander; Lehmann, Martin; Miljanovic, Milos; Ali, Haider; Paar, Gerhard; Egly, Uwe; Eiter, Thomas; Kahmen, Heribert

    2009-03-01

    High accuracy 3D representation and monitoring of objects is receiving increasing interest both in science and industrial applications. Up to now tasks like monitoring of building displacements or deformations were solved by means of artificial targets on the objects of interest, although mature optical 3D measurement and laser scanning techniques are available. Such systems can perform their measurements even without targeting. This paper presents a new optical 3D measurement system, based on the fusion between a geodetic image sensor and a laser scanner. The main goal of its development was the automation of the whole measurement process, including the tasks of point identification and measurement, deformation analysis, and interpretation. This was only possible by means of new methods and techniques originally developed in the area of Artificial Intelligence; both point detection and deformation analysis are supported by decision systems that use such techniques. The resulting complex multi-sensor system is able to measure and analyse the deformation of objects, as shown in experiments. In this article we focus on specific key components and novel techniques that have been developed, and briefly report on the current stage of the whole system.

  19. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution

    Science.gov (United States)

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing

    2016-12-01

    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3+/- 4.5 , yielding a mean Dice similarity coefficient of 97.25+/- 0.65 % , and an average symmetric surface distance of 0.84+/- 0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  20. Ring Closure To Form Metal Chelates in 3D Fragment-Based de Novo Design.

    Science.gov (United States)

    Foscato, Marco; Houghton, Benjamin J; Occhipinti, Giovanni; Deeth, Robert J; Jensen, Vidar R

    2015-09-28

    We describe a method for the design of multicyclic compounds from three-dimensional (3D) molecular fragments. The 3D building blocks are assembled in a controlled fashion, and closable chains of such fragments are identified. Next, the ring-closing conformations of such formally closable chains are identified, and the 3D model of a cyclic or multicyclic molecule is built. Embedding this method in an evolutionary algorithm results in a de novo design tool capable of altering the number and nature of cycles in species such as transition metal compounds with multidentate ligands in terms of, for example, ligand denticity, type and length of bridges, identity of bridgehead terms, and substitution pattern. An application of the method to the design of multidentate nitrogen-based ligands for Fe(II) spin-crossover (SCO) compounds is presented. The best candidates display multidentate skeletons new to the field of Fe(II) SCO yet resembling ligands deployed in other fields of chemistry, demonstrating the capability of the approach to explore structural variation and to suggest unexpected and realistic molecules, including structures with cycles not found in the building blocks.

  1. Context-Aware AAL Services through a 3D Sensor-Based Platform

    Directory of Open Access Journals (Sweden)

    Alessandro Leone

    2013-01-01

    Full Text Available The main goal of Ambient Assisted Living solutions is to provide assistive technologies and services in smart environments allowing elderly people to have high quality of life. Since 3D sensing technologies are increasingly investigated as monitoring solution able to outperform traditional approaches, in this work a noninvasive monitoring platform based on 3D sensors is presented providing a wide-range solution suitable in several assisted living scenarios. Detector nodes are managed by low-power embedded PCs in order to process 3D streams and extract postural features related to person’s activities. The feature level of details is tuned in accordance with the current context in order to save bandwidth and computational resources. The platform architecture is conceived as a modular system suitable to be integrated into third-party middleware to provide monitoring functionalities in several scenarios. The event detection capabilities were validated by using both synthetic and real datasets collected in controlled and real-home environments. Results show the soundness of the presented solution to adapt to different application requirements, by correctly detecting events related to four relevant AAL services.

  2. PACS-based interface for 3D anatomical structure visualization and surgical planning

    Science.gov (United States)

    Koehl, Christophe; Soler, Luc; Marescaux, Jacques

    2002-05-01

    The interpretation of radiological image is routine but it remains a rather difficult task for physicians. It requires complex mental processes, that permit translation from 2D slices into 3D localization and volume determination of visible diseases. An easier and more extensive visualization and exploitation of medical images can be reached through the use of computer-based systems that provide real help from patient admission to post-operative followup. In this way, we have developed a 3D visualization interface linked to a PACS database that allows manipulation and interaction on virtual organs delineated from CT-scan or MRI. This software provides the 3D real-time surface rendering of anatomical structures, an accurate evaluation of volumes and distances and the improvement of radiological image analysis and exam annotation through a negatoscope tool. It also provides a tool for surgical planning allowing the positioning of an interactive laparoscopic instrument and the organ resection. The software system could revolutionize the field of computerized imaging technology. Indeed, it provides a handy and portable tool for pre-operative and intra-operative analysis of anatomy and pathology in various medical fields. This constitutes the first step of the future development of augmented reality and surgical simulation systems.

  3. A 3-D high accuracy positioning system based on visible light communication with novel positioning algorithm

    Science.gov (United States)

    Zheng, Huanhuan; Xu, Zhaowen; Yu, Changyuan; Gurusamy, Mohan

    2017-08-01

    A novel indoor positioning system (IPS) with high positioning precision, based on visible light communication (VLC), is proposed and demonstrated with the dimensions of 100 cm×118.5 cm×128.7 cm. The average positioning distance error is 1.72 cm using the original 2-D positioning algorithm. However, at the corners of the test-bed, the positioning errors are relatively larger than other places. Thus, an error correcting algorithm (ECA) is applied at the corners in order to improve the positioning accuracy. The average positioning errors of four corners decrease from 3.67 cm to 1.55 cm. Then, a 3-D positioning algorithm is developed and the average positioning error of 1.90 cm in space is achieved. Four altitude levels are chosen and on each receiver plane with different heights, four points are picked up to test the positioning error. The average positioning errors in 3-D space are all within 3 cm on these four levels and the performance on each level is similar. A random track is also drawn to show that in 3-D space, the positioning error of random point is within 3 cm.

  4. Advantages and drawbacks of Thiol-ene based resins for 3D-printing

    Science.gov (United States)

    Leonards, Holger; Engelhardt, Sascha; Hoffmann, Andreas; Pongratz, Ludwig; Schriever, Sascha; Bläsius, Jana; Wehner, Martin; Gillner, Arnold

    2015-03-01

    The technology of 3D printing is conquering the world and awakens the interest of many users in the most varying of applications. New formulation approaches for photo-sensitive thiol-ene resins in combination with various printing technologies, like stereolithography (SLA), projection based printing/digital light processing (DLP) or two-photon polymerization (TPP) are presented. Thiol-ene polymerizations are known for its fast and quantitative reaction and to form highly homogeneous polymer networks. As the resins are locally and temporally photo-curable the polymerization type is very promising for 3D-printing. By using suitable wavelengths, photoinitiator-free fabrication is feasible for single- and two photon induced polymerization. In this paper divinyl ethers of polyethylene glycols in combination with star-shaped tetrathiols were used to design a simple test-system for photo-curable thiol-ene resins. In order to control and improve curing depth and lateral resolution in 3D-polymerization processes, either additives in chemical formulation or process parameters can be changed. The achieved curing depth and resolution limits depend on the applied fabrication method. While two-/multiphoton induced lithography offers the possibility of micron- to sub-micron resolution it lacks in built-up speed. Hence single-photon polymerization is a fast alternative with optimization potential in sub-10-micron resolution. Absorber- and initiator free compositions were developed in order to avoid aging, yellowing and toxicity of resulting products. They can be cured with UV-laser radiation below 300 nm. The development at Fraunhofer ILT is focusing on new applications in the field of medical products and implants, technical products with respect to mechanical properties or optical properties of 3D-printed objects. Recent process results with model system (polyethylene glycol divinylether/ Pentaerithrytol tetrakis (3-mercaptopropionat), Raman measurements of polymer conversion

  5. On the comparison of visual discomfort generated by S3D and 2D content based on eye-tracking features

    Science.gov (United States)

    Iatsun, Iana; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine

    2014-03-01

    The changing of TV systems from 2D to 3D mode is the next expected step in the telecommunication world. Some works have already been done to perform this progress technically, but interaction of the third dimension with humans is not yet clear. Previously, it was found that any increased load of visual system can create visual fatigue, like prolonged TV watching, computer work or video gaming. But watching S3D can cause another nature of visual fatigue, since all S3D technologies creates illusion of the third dimension based on characteristics of binocular vision. In this work we propose to evaluate and compare the visual fatigue from watching 2D and S3D content. This work shows the difference in accumulation of visual fatigue and its assessment for two types of content. In order to perform this comparison eye-tracking experiments using six commercially available movies were conducted. Healthy naive participants took part into the test and gave their answers feeling the subjective evaluation. It was found that watching stereo 3D content induce stronger feeling of visual fatigue than conventional 2D, and the nature of video has an important effect on its increase. Visual characteristics obtained by using eye-tracking were investigated regarding their relation with visual fatigue.

  6. EEG based evaluation of stereoscopic 3D displays for viewer discomfort.

    Science.gov (United States)

    Malik, Aamir Saeed; Khairuddin, Raja Nur Hamizah Raja; Amin, Hafeez Ullah; Smith, Mark Llewellyn; Kamel, Nidal; Abdullah, Jafri Malin; Fawzy, Samar Mohammad; Shim, Seongo

    2015-03-11

    Consumer preference is rapidly changing from 2D to 3D movies due to the sensational effects of 3D scenes, like those in Avatar and The Hobbit. Two 3D viewing technologies are available: active shutter glasses and passive polarized glasses. However, there are consistent reports of discomfort while viewing in 3D mode where the discomfort may refer to dizziness, headaches, nausea or simply not being able to see in 3D continuously. In this paper, we propose a theory that 3D technology which projects the two images (required for 3D perception) alternatively, cannot provide true 3D visual experience while the 3D technology projecting the two images simultaneously is closest to the human visual system for depth perception. Then we validate our theory by conducting experiments with 40 subjects and analyzing the EEG results of viewing 3D movie clips with passive polarized glasses while the images are projected simultaneously compared to 2D viewing. In addition, subjective feedback of the subjects was also collected and analyzed. A higher theta and alpha band absolute power is observed across various areas including the occipital lobe for 3D viewing. We also found that the complexity of the signal, e.g. variations in EEG samples over time, increases in 3D as compared to 2D. Various results conclude that working memory, as well as, attention is increased in 3D viewing because of the processing of more data in 3D as compared to 2D. From subjective feedback analysis, 75% of subjects felt comfortable with 3D passive polarized while 25% preferred 3D active shutter technology. We conclude that 3D passive polarized technology provides more comfortable visualization than 3D active shutter technology. Overall, 3D viewing is more attractive than 2D due to stereopsis which may cause of high attention and involvement of working memory manipulations.

  7. Fast 3D dosimetric verifications based on an electronic portal imaging device using a GPU calculation engine

    OpenAIRE

    Zhu, Jinhan; Chen, Lixin; Chen, Along; Luo, Guangwen; Deng, Xiaowu; Liu, Xiaowei

    2015-01-01

    Purpose To use a graphic processing unit (GPU) calculation engine to implement a fast 3D pre-treatment dosimetric verification procedure based on an electronic portal imaging device (EPID). Methods The GPU algorithm includes the deconvolution and convolution method for the fluence-map calculations, the collapsed-cone convolution/superposition (CCCS) algorithm for the 3D dose calculations and the 3D gamma evaluation calculations. The results of the GPU-based CCCS algorithm were compared to tho...

  8. Assessing the limits of restraint-based 3D modeling of genomes and genomic domains

    Science.gov (United States)

    Trussart, Marie; Serra, François; Baù, Davide; Junier, Ivan; Serrano, Luís; Marti-Renom, Marc A.

    2015-01-01

    Restraint-based modeling of genomes has been recently explored with the advent of Chromosome Conformation Capture (3C-based) experiments. We previously developed a reconstruction method to resolve the 3D architecture of both prokaryotic and eukaryotic genomes using 3C-based data. These models were congruent with fluorescent imaging validation. However, the limits of such methods have not systematically been assessed. Here we propose the first evaluation of a mean-field restraint-based reconstruction of genomes by considering diverse chromosome architectures and different levels of data noise and structural variability. The results show that: first, current scoring functions for 3D reconstruction correlate with the accuracy of the models; second, reconstructed models are robust to noise but sensitive to structural variability; third, the local structure organization of genomes, such as Topologically Associating Domains, results in more accurate models; fourth, to a certain extent, the models capture the intrinsic structural variability in the input matrices and fifth, the accuracy of the models can be a priori predicted by analyzing the properties of the interaction matrices. In summary, our work provides a systematic analysis of the limitations of a mean-field restrain-based method, which could be taken into consideration in further development of methods as well as their applications. PMID:25800747

  9. Creating photorealistic virtual model with polarization-based vision system

    Science.gov (United States)

    Shibata, Takushi; Takahashi, Toru; Miyazaki, Daisuke; Sato, Yoichi; Ikeuchi, Katsushi

    2005-08-01

    Recently, 3D models are used in many fields such as education, medical services, entertainment, art, digital archive, etc., because of the progress of computational time and demand for creating photorealistic virtual model is increasing for higher reality. In computer vision field, a number of techniques have been developed for creating the virtual model by observing the real object in computer vision field. In this paper, we propose the method for creating photorealistic virtual model by using laser range sensor and polarization based image capture system. We capture the range and color images of the object which is rotated on the rotary table. By using the reconstructed object shape and sequence of color images of the object, parameter of a reflection model are estimated in a robust manner. As a result, then, we can make photorealistic 3D model in consideration of surface reflection. The key point of the proposed method is that, first, the diffuse and specular reflection components are separated from the color image sequence, and then, reflectance parameters of each reflection component are estimated separately. In separation of reflection components, we use polarization filter. This approach enables estimation of reflectance properties of real objects whose surfaces show specularity as well as diffusely reflected lights. The recovered object shape and reflectance properties are then used for synthesizing object images with realistic shading effects under arbitrary illumination conditions.

  10. Clinical evaluation of 3D/3D MRI-CBCT automatching on brain tumors for online patient setup verification - A step towards MRI-based treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, Sune K.; Kristensen, Brian H.; Behrens, Claus F. (Dept. of Oncology, Copenhagen Univ. Hospital, DK-2730 Herlev (Denmark)), E-mail: sukrbu01@heh.regionh.dk; Duun-Christensen, Anne K. (Dept. of Informatics and Mathematical Modeling, Technical Univ. of Denmark, DK-2800 Kgs. Lyngby (Denmark))

    2010-10-15

    Background. Magnetic Resonance Imaging (MRI) is often used in modern day radiotherapy (RT) due to superior soft tissue contrast. However, treatment planning based solely on MRI is restricted due to e.g. the limitations of conducting online patient setup verification using MRI as reference. In this study 3D/3D MRI-Cone Beam CT (CBCT) automatching for online patient setup verification was investigated. Material and methods. Initially, a multi-modality phantom was constructed and used for a quantitative comparison of CT-CBCT and MRI-CBCT automatching. Following the phantom experiment three patients undergoing postoperative radiotherapy for malignant brain tumors received a weekly CBCT. In total 18 scans was matched with both CT and MRI as reference. The CBCT scans were acquired using a Clinac iX 2300 linear accelerator (Varian Medical Systems) with an On-Board Imager (OBI). Results. For the phantom experiment CT-CBCT and MRI-CBCT automatching resulted in similar results. A significant difference was observed only in the longitudinal direction where MRI-CBCT resulted in the best match (mean and standard deviations of 1.85+-2.68 mm for CT and -0.05+-2.55 mm for MRI). For the clinical experiment the absolute difference in couch shift coordinates acquired from MRI-CBCT and CT-CBCT automatching, were =2 mm in the vertical direction and =3 mm in the longitudinal and lateral directions. For yaw rotation differences up to 3.3 degrees were observed. Mean values and standard deviations were 0.8+-0.6 mm, 1.5+-1.2 mm and 1.2+-1.2 mm for the vertical, longitudinal and lateral directions, respectively and 1.95+-1.12 degrees for the rotation (n=17). Conclusion. It is feasible to use MRI as reference when conducting 3D/3D CBCT automatching for online patient setup verification. For both the phantom and clinical experiment MRI-CBCT performed similar to CT-CBCT automatching and significantly better in the longitudinal direction for the phantom experiment.

  11. Cup Implant Planning Based on 2-D/3-D Radiographic Pelvis Reconstruction-First Clinical Results.

    Science.gov (United States)

    Schumann, Steffen; Sato, Yoshinobu; Nakanishi, Yuki; Yokota, Futoshi; Takao, Masaki; Sugano, Nobuhiko; Zheng, Guoyan

    2015-11-01

    In the following, we will present a newly developed X-ray calibration phantom and its integration for 2-D/3-D pelvis reconstruction and subsequent automatic cup planning. Two different planning strategies were applied and evaluated with clinical data. Two different cup planning methods were investigated: The first planning strategy is based on a combined pelvis and cup statistical atlas. Thereby, the pelvis part of the combined atlas is matched to the reconstructed pelvis model, resulting in an optimized cup planning. The second planning strategy analyzes the morphology of the reconstructed pelvis model to determine the best fitting cup implant. The first planning strategy was compared to 3-D CT-based planning. Digitally reconstructed radiographs of THA patients with differently severe pathologies were used to evaluate the accuracy of predicting the cup size and position. Within a discrepancy of one cup size, the size was correctly identified in 100% of the cases for Crowe type I datasets and in 77.8% of the cases for Crowe type II, III, and IV datasets. The second planning strategy was analyzed with respect to the eventually implanted cup size. In seven patients, the estimated cup diameter was correct within one cup size, while the estimation for the remaining five patients differed by two cup sizes. While both planning strategies showed the same prediction rate with a discrepancy of one cup size (87.5%), the prediction of the exact cup size was increased for the statistical atlas-based strategy (56%) in contrast to the anatomically driven approach (37.5%). The proposed approach demonstrated the clinical validity of using 2-D/3-D reconstruction technique for cup planning.

  12. 3D constitutive model of anisotropic damage for unidirectional ply based on physical failure mechanisms

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2010-01-01

    A 3D anisotropic continuum damage model is developed for the computational analysis of the elastic–brittle behaviour of fibre-reinforced composite. The damage model is based on a set of phenomenological failure criteria for fibre-reinforced composite, which can distinguish the matrix and fibre...... failure under tensile and compressive loading. The homogenized continuum theory is adopted for the anisotropic elastic damage constitutive model. The damage modes occurring in the longitudinal and transverse directions of a ply are represented by a damage vector. The elastic damage model is implemented...

  13. A Novel Registration-Based Approach for 3D Assessment of Posttraumatic Distal Humeral Deformities.

    Science.gov (United States)

    Vlachopoulos, Lazaros; Carrillo, Fabio; Gerber, Christian; Székely, Gábor; Fürnstahl, Philipp

    2017-12-06

    With current 3-dimensional (3D) computer-based methods for the assessment of deformities, a surface registration method is applied to superimpose a computer model of the pathological bone onto a mirrored computer model of the contralateral side. However, because of bilateral differences, especially in humeral torsion, such template-based approaches may introduce bias in the assessment of a distal humeral deformity. We hypothesized that a novel registration approach might prove superior to the current approach in reducing such bias, thus yielding improved accuracy of 3D assessment of distal humeral deformities. Three-dimensional triangular surface models were generated from computed tomographic (CT) data of 100 paired humeri without a pathological condition. Humeral segments of varying, predetermined lengths, excluding the distal part of the humerus, were defined. A surface registration algorithm was applied to superimpose the humeral models of both sides based on each selected segment. Humeral contralateral registration (HCR) errors, defined as the residual differences in apparent 3D orientation between the distal parts, were evaluated. The mean HCR error (and standard deviation) using the distal-most humeral shaft segment to assess the angular orientation was 2.3° ± 1.1 (range, 0.5° to 5.8°). Including the humeral head in the surface registration algorithm, however, as is done currently, resulted in a higher HCR error (p 10° in 20% of the cases and between 5° and 10° in an additional 50% of the cases. By comparison, using the proposed distal-most humeral shaft segment, the HCR error was between 5° and 10° in only 2% of cases, and was never >10°. The proximal segments are nevertheless used in the proposed method for registering humeral length. The proposed new approach yields a deformity assessment that is less prone to bias arising from inherent bilateral differences and therefore is more accurate than current surface registration approaches. Accurate 3D

  14. A joint multi-view plus depth image coding scheme based on 3D-warping

    DEFF Research Database (Denmark)

    Zamarin, Marco; Zanuttigh, Pietro; Milani, Simone

    2011-01-01

    Free viewpoint video applications and autostereoscopic displays require the transmission of multiple views of a scene together with depth maps. Current compression and transmission solutions just handle these two data streams as separate entities. However, depth maps contain key information...... on the scene structure that can be effectively exploited to improve the performance of multi-view coding schemes. In this paper we introduce a novel coding architecture that replaces the inter-view motion prediction operation with a 3D warping approach based on depth information to improve the coding...

  15. 3D-silicon- and recognition-based logic: enabling the road to HAL

    Science.gov (United States)

    Carson, John C.

    2000-11-01

    HAL, the disembodied robotic voice ever present in the Arthur C. Clark movie 2001, A Space Odyssey, is the archetype for artificial intelligence. What will it take to achieve HAL? Trillions of highly interconnected arithmetic units in very close proximity is mandatory. Moore's Law and 3D SILICON will get that part done. Linguistic articulation of experience and direction of action is the other missing piece. The human version's neural circuits are basically just multiply-and-add template matchers and yet verbalization of experience is the apparently automatic result. We call this recognition based logic and by embedding it in a properly interconnected processor network, the capabilities of HAL will be achieved.

  16. A virtual erection simulation system for a steel structure based on 3-D measurement data

    Science.gov (United States)

    Kim, Deok Eun; Chen, Tuo Han

    2012-03-01

    The virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.

  17. Validation of SPAMM Tagged MRI Based Measurement of 3D Soft Tissue Deformation

    CERN Document Server

    Moerman, Kevin M; Simms, Ciaran K; Lamerichs, Rolf M; Stoker, Jaap; Nederveen, Aart J

    2016-01-01

    This study presents and validates a novel (non-ECG-triggered) MRI sequence based on SPAtial Modulation of the Magnetization (SPAMM) to non-invasively measure 3D (quasi-static) soft tissue deformations using only six acquisitions (three static and three indentations). In current SPAMM tagged MRI approaches data is typically constructed from many repeated motion cycles. This has so far restricted its application to the measurement of highly repeatable and periodic movements (e.g. cardiac deformation). In biomechanical applications where soft tissue deformation is artificially induced, often by indentation, significant repeatability constraints exist and, for clinical applications, discomfort and health issues generally preclude a large number of repetitions.

  18. Closed-loop SRME based on 3D L1-norm sparse inversion

    Science.gov (United States)

    Wang, Tiexing; Wang, Deli; Sun, Jing; Hu, Bin; Liu, Chengming

    2017-11-01

    In many situations, the quality of seismic imaging is largely determined by a proper multiple attenuation as preprocessing step. Despite the widespread application of surface-related multiple elimination (SRME) and estimation of primaries by sparse inversion (EPSI) for the removal of multiples, there still exist some limitations in the process of prediction and subtraction (SRME) or inversion (EPSI), which make the efficiency of multiple attenuation less satisfactory. To solve these problems, a new fully data-driven method called closed-loop SRME was proposed, which combines the robustness of SRME and the multi-dimensional inversion strategy of EPSI. Due to the selection of inversion approach and constraint, primary estimation by closed-loop SRME may fall into a local optimum during the solving process, which lowers the accuracy of deep information and weakens the continuity of seismic events. To avoid these shortcomings, we first modified the solving method for closed-loop SRME to an L1 norm-based bi-convex optimization method, which stabilizes the solution. Meanwhile, in the L1 norm constraint-based optimization process, the 3D sparsifying transform, being a 2D Curvelet-1D wavelet transform, is brought in as a 3D sparse constraint. In the 3D sparsifying domain, the data become sparser, thus making the result of optimization more accurate, the information of seismic events more continuous and the resolution higher. Examples on both synthetic and field data demonstrate that the method proposed in this paper, compared with the traditional SRME and closed-loop SRME, have an excellent effect on primary estimation and suppress multiples effectively.

  19. Performance Characterization of Micromachined Inductive Suspensions Based on 3D Wire-Bonded Microcoils

    Directory of Open Access Journals (Sweden)

    Zhiqiu Lu

    2014-12-01

    Full Text Available We present a comprehensive experimental investigation of a micromachined inductive suspension (MIS based on 3D wire-bonded microcoils. A theoretical model has been developed to predict the levitation height of the disc-shaped proof mass (PM, which has good agreement with the experimental results. The 3D MIS consists of two coaxial wire-bonded coils, the inner coil being used for levitation, while the outer coil for the stabilization of the PM. The levitation behavior is mapped with respect to the input parameters of the excitation currents applied to the levitation and stabilization coil, respectively: amplitude and frequency. At the same time, the levitation is investigated with respect to various thickness values (12.5 to 50 μm and two materials (Al and Cu of the proof mass. An important characteristic of an MIS, which determines its suitability for various applications, such as, e.g., micro-motors, is the dynamics in the lateral direction. We experimentally study the lateral stabilization force acting on the PM as a function of the linear displacement. The analysis of this dependency allows us to define a transition between stable and unstable levitation behavior. From an energetic point of view, this transition corresponds to the local maximum of the MIS potential energy. 2D simulations of the potential energy help us predict the location of this maximum, which is proven to be in good agreement with the experiment. Additionally, we map the temperature distribution for the coils, as well as for the PM levitated at 120 μm, which confirms the significant reduction of the heat dissipation in the MIS based on 3D microcoils compared to the planar topology.

  20. Closed-loop SRME based on 3D L1-norm sparse inversion

    Science.gov (United States)

    Wang, Tiexing; Wang, Deli; Sun, Jing; Hu, Bin; Liu, Chengming

    2017-12-01

    In many situations, the quality of seismic imaging is largely determined by a proper multiple attenuation as preprocessing step. Despite the widespread application of surface-related multiple elimination (SRME) and estimation of primaries by sparse inversion (EPSI) for the removal of multiples, there still exist some limitations in the process of prediction and subtraction (SRME) or inversion (EPSI), which make the efficiency of multiple attenuation less satisfactory. To solve these problems, a new fully data-driven method called closed-loop SRME was proposed, which combines the robustness of SRME and the multi-dimensional inversion strategy of EPSI. Due to the selection of inversion approach and constraint, primary estimation by closed-loop SRME may fall into a local optimum during the solving process, which lowers the accuracy of deep information and weakens the continuity of seismic events. To avoid these shortcomings, we first modified the solving method for closed-loop SRME to an L1 norm-based bi-convex optimization method, which stabilizes the solution. Meanwhile, in the L1 norm constraint-based optimization process, the 3D sparsifying transform, being a 2D Curvelet-1D wavelet transform, is brought in as a 3D sparse constraint. In the 3D sparsifying domain, the data become sparser, thus making the result of optimization more accurate, the information of seismic events more continuous and the resolution higher. Examples on both synthetic and field data demonstrate that the method proposed in this paper, compared with the traditional SRME and closed-loop SRME, have an excellent effect on primary estimation and suppress multiples effectively.

  1. Patient-specific pediatric silicone heart valve models based on 3D ultrasound

    Science.gov (United States)

    Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.

  2. Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection

    Science.gov (United States)

    Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-07-01

    In recent years, tremendous progress has been made in 3D measurement techniques, contributing to the realization of faster and more accurate 3D measurement. As a representative of these techniques, fringe projection profilometry (FPP) has become a commonly used method for real-time 3D measurement, such as real-time quality control and online inspection. To date, most related research has been concerned with macroscopic 3D measurement, but microscopic 3D measurement, especially real-time microscopic 3D measurement, is rarely reported. However, microscopic 3D measurement plays an important role in 3D metrology and is indispensable in some applications in measuring micro scale objects like the accurate metrology of MEMS components of the final devices to ensure their proper performance. In this paper, we proposed a method which effectively combines optimized binary structured patterns with a number-theoretical phase unwrapping algorithm to realize real-time microscopic 3D measurement. A slight defocusing of our optimized binary patterns can considerably alleviate the measurement error based on four-step phase-shifting FPP, providing the binary patterns with a comparable performance to ideal sinusoidal patterns. The static measurement accuracy can reach 8 μm, and the experimental results of a vibrating earphone diaphragm reveal that our system can successfully realize real-time 3D measurement of 120 frames per second (FPS) with a measurement range of 8~\\text{mm}× 6~\\text{mm} in lateral and 8 mm in depth.

  3. A novel window based method for approximating the Hausdorff in 3D range imagery.

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Mark William

    2004-10-01

    Matching a set of 3D points to another set of 3D points is an important part of any 3D object recognition system. The Hausdorff distance is known for it robustness in the face of obscuration, clutter, and noise. We show how to approximate the 3D Hausdorff fraction with linear time complexity and quadratic space complexity. We empirically demonstrate that the approximation is very good when compared to actual Hausdorff distances.

  4. Why3D? : the need for solution based modeling in a national geoscience organization

    OpenAIRE

    Terrington, Ricky Luke; Napier, Bruce; Howard, Andrew; Ford, Jonathan Richard; Hatton, William

    2008-01-01

    In recent years national geoscience organizations have increasingly utilized 3D model data as an output to the stakeholder community. Advances in both software and hardware have led to an increasing use of 3D depictions of geoscience data alongside the standard 2D data formats such as maps and GIS data. By characterizing geoscience data in 3D, knowledge transfer between geoscientists and stakeholders is improved as the mindset and thought processes are communicated more effectively in a 3D mo...

  5. Improved intracranial lesion characterization by tissue segmentation based on a 3D feature map.

    Science.gov (United States)

    Vinitski, S; Gonzalez, C; Mohamed, F; Iwanaga, T; Knobler, R L; Khalili, K; Mack, J

    1997-03-01

    Our aim was to develop an accurate multispectral tissue segmentation method based on 3D feature maps. We utilized proton density (PD), T2-weighted fast spin-echo (FSE), and T1-weighted spin-echo images as inputs for segmentation. Phantom constructs, cadaver brains, an animal brain tumor model and both normal human brains and those from patients with either multiple sclerosis (MS) or primary brain tumors were analyzed with this technique. Initially, misregistration, RF inhomogeneity and image noise problems were addressed. Next, a qualified observer identified samples representing the tissues of interest. Finally, k-nearest neighbor algorithm (k-NN) was utilized to create a stack of color-coded segmented images. The inclusion of T1 based images, as a third input, produced significant improvement in the delineation of tissues. In MS, our 3D technique was found to be far superior to that based on any combination of 2D feature maps (P lesions within the same MS plaque, representing different stages of the disease process. Further, we obtained the regional distribution of MS lesion burden and followed its changes over time. Neuropsychological aberrations were the clinical counterpart of the structural changes detected in segmentation. We could also delineate the margins of benign brain tumors. In malignant tumors, up to four abnormal tissues were identified: 1) a solid tumor core, 2) a cystic component, 3) edema in the white matter, and 4) areas of necrosis and hemorrhage. Subsequent neurosurgical exploration confirmed the distribution of tissues as predicted by this analysis.

  6. OpenCL-based vicinity computation for 3D multiresolution mesh compression

    Science.gov (United States)

    Hachicha, Soumaya; Elkefi, Akram; Ben Amar, Chokri

    2017-03-01

    3D multiresolution mesh compression systems are still widely addressed in many domains. These systems are more and more requiring volumetric data to be processed in real-time. Therefore, the performance is becoming constrained by material resources usage and an overall reduction in the computational time. In this paper, our contribution entirely lies on computing, in real-time, triangles neighborhood of 3D progressive meshes for a robust compression algorithm based on the scan-based wavelet transform(WT) technique. The originality of this latter algorithm is to compute the WT with minimum memory usage by processing data as they are acquired. However, with large data, this technique is considered poor in term of computational complexity. For that, this work exploits the GPU to accelerate the computation using OpenCL as a heterogeneous programming language. Experiments demonstrate that, aside from the portability across various platforms and the flexibility guaranteed by the OpenCL-based implementation, this method can improve performance gain in speedup factor of 5 compared to the sequential CPU implementation.

  7. Virtual Boutique: a 3D modeling and content-based management approach to e-commerce

    Science.gov (United States)

    Paquet, Eric; El-Hakim, Sabry F.

    2000-12-01

    The Virtual Boutique is made out of three modules: the decor, the market and the search engine. The decor is the physical space occupied by the Virtual Boutique. It can reproduce any existing boutique. For this purpose, photogrammetry is used. A set of pictures of a real boutique or space is taken and a virtual 3D representation of this space is calculated from them. Calculations are performed with software developed at NRC. This representation consists of meshes and texture maps. The camera used in the acquisition process determines the resolution of the texture maps. Decorative elements are added like painting, computer generated objects and scanned objects. The objects are scanned with laser scanner developed at NRC. This scanner allows simultaneous acquisition of range and color information based on white laser beam triangulation. The second module, the market, is made out of all the merchandises and the manipulators, which are used to manipulate and compare the objects. The third module, the search engine, can search the inventory based on an object shown by the customer in order to retrieve similar objects base don shape and color. The items of interest are displayed in the boutique by reconfiguring the market space, which mean that the boutique can be continuously customized according to the customer's needs. The Virtual Boutique is entirely written in Java 3D and can run in mono and stereo mode and has been optimized in order to allow high quality rendering.

  8. 3D wavelet-based codec for lossy compression of pre-scan-converted ultrasound video

    Science.gov (United States)

    Andrew, Rex K.; Stewart, Brent K.; Langer, Steven G.; Stegbauer, Keith C.

    1999-05-01

    We present a wavelet-based video codec based on a 3D wavelet transformer, a uniform quantizer/dequantizer and an arithmetic encoder/decoder. The wavelet transformer uses biorthogonal Antonini wavelets in the two spatial dimensions and Haar wavelets in the time dimensions. Multiple levels of decomposition are supported. The codec has been applied to pre-scan-converted ultrasound image data and does not produce the type of blocking artifacts that occur in MPEG- compressed video. The PSNR at a given compression rate increases with the number of levels of decomposition: for our data at 50:1 compression, the PSNR increases from 18.4 dB at one level to 24.0 dB at four levels of decomposition. Our 3D wavelet-based video codec provides the high compression rates required to transmit diagnostic ultrasound video over existing low bandwidth links without introducing the blocking artifacts which have been demonstrated to diminish clinical utility.

  9. Image-based 3D scene analysis for navigation of autonomous airborne systems

    Science.gov (United States)

    Jaeger, Klaus; Bers, Karl-Heinz

    2001-10-01

    In this paper we describe a method for automatic determination of sensor pose (position and orientation) related to a 3D landmark or scene model. The method is based on geometrical matching of 2D image structures with projected elements of the associated 3D model. For structural image analysis and scene interpretation, a blackboard-based production system is used resulting in a symbolic description of image data. Knowledge of the approximated sensor pose measured for example by IMU or GPS enables to estimate an expected model projection used for solving the correspondence problem of image structures and model elements. These correspondences are presupposed for pose computation carried out by nonlinear numerical optimization algorithms. We demonstrate the efficiency of the proposed method by navigation update approaching a bridge scenario and flying over urban area, whereas data were taken with airborne infrared sensors in high oblique view. In doing so we simulated image-based navigation for target engagement and midcourse guidance suited for the concepts of future autonomous systems like missiles and drones.

  10. An overview of 3D topology for LADM-based objects

    NARCIS (Netherlands)

    Zulkifli, N.A.; Rahman, A.A.; Van Oosterom, P.J.M.

    2015-01-01

    This paper reviews 3D topology within Land Administration Domain Model (LADM) international standard. It is important to review characteristic of the different 3D topological models and to choose the most suitable model for certain applications. The characteristic of the different 3D topological

  11. Fusion of likelihood ratio classifier with ICP-based matcher for 3D face recognition

    NARCIS (Netherlands)

    Tjalkens, Tjalling; Gökberk, B.; Willens, Frans; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    Three-dimensional (3D) face recognition systems have started to become popular in biometric systems recently. This is due to several factors: i) facial shape characteristics contain discriminative information, ii) availability of practical 3D acquisition devices, and iii) invariance of 3D facial

  12. Influence of 3D printing on transport : a theory and experts judgment based conceptual model

    NARCIS (Netherlands)

    Boon, Wouter; Van Wee, Bert

    2017-01-01

    Consumer 3D printing is on the rise and has the potential to significantly change the transport and logistics sector. Current literature on 3D printing and transport studies does not provide a systematic model of the impact of 3D printing on transport and related (policy relevant) areas, such as

  13. Modeling and Analysis of 3d Printing Ws-Bpel Business Processes Based on Servicenet

    Directory of Open Access Journals (Sweden)

    Zhang Cheng-Lei

    2017-01-01

    Full Text Available To solve the problem that whether the described Web service by business process execution language were interactive compatible, a method of WS-BPEL(Web Services Business Process Execution Language parsing and execution was proposed. The service compatibility checking algorithm based on the Mediation model, which can provide multi-level service checking compatibility, and realize the goal of Service Cooperation or the demand of Value-Added Services. Based on BPMN specification, a task modeling and management tool was proposed to support the service components for assembly component. It supports both Web service automatic retrieval and service content analysis based on QoS information, and the task execution model between the BPMN specification task descriptions was transformed into the BPEL specification task description model. Finally, a model transformation strategy based on meta-model mapping was put forward. The algorithm was designed and examples were given to demonstrate the efficiency of 3D Printing WS-BPEL.

  14. Web-based three-dimensional Virtual Body Structures: W3D-VBS.

    Science.gov (United States)

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it.

  15. Optical stimulator for vision-based sensors

    DEFF Research Database (Denmark)

    Rössler, Dirk; Pedersen, David Arge Klevang; Benn, Mathias

    2014-01-01

    We have developed an optical stimulator system for vision-based sensors. The stimulator is an efficient tool for stimulating a camera during on-ground testing with scenes representative of spacecraft flights. Such scenes include starry sky, planetary objects, and other spacecraft. The optical...

  16. Underwater 3D Reconstruction Based on Geometric Transformation of Sonar and Depth Information

    Science.gov (United States)

    Dong, Mingjie; Chou, Wusheng; Yao, Guodong

    2017-10-01

    3D reconstruction is of vital importance to detect and monitor the underwater environment. A method based on geometric transformation of mechanical scanning sonar and depth information is proposed, in which the point cloud data from sonar and depth gauge are acquired to reconstruct the underwater 3D environment. However, noise and interference can affect the measurement of sonar, and movement of sonar during measurement can lead to distortion of the received data. Meanwhile, translation and rotation movement of sonar head may happen when ROV dives which can lead to different body reference coordinates of different scanning. To solve this, pre-processing and motion compensation are implemented at first, and underwater matching correction algorithm is used to calculate the translation and rotation of the sonar head. Then the inverse operation is implemented to convert the scan data of every depth into the same coordinate reference system. Finally, surface reconstruction of point clouds from sonar the depth information are used to reconstruct underwater environment based on MLS (Moving Least Square Method) using PCL (Point Cloud Library). Water tank experiments verify the effectiveness of the proposed method.

  17. Dictionary learning-based spatiotemporal regularization for 3D dense speckle tracking

    Science.gov (United States)

    Lu, Allen; Zontak, Maria; Parajuli, Nripesh; Stendahl, John C.; Boutagy, Nabil; Eberle, Melissa; O'Donnell, Matthew; Sinusas, Albert J.; Duncan, James S.

    2017-03-01

    Speckle tracking is a common method for non-rigid tissue motion analysis in 3D echocardiography, where unique texture patterns are tracked through the cardiac cycle. However, poor tracking often occurs due to inherent ultrasound issues, such as image artifacts and speckle decorrelation; thus regularization is required. Various methods, such as optical flow, elastic registration, and block matching techniques have been proposed to track speckle motion. Such methods typically apply spatial and temporal regularization in a separate manner. In this paper, we propose a joint spatiotemporal regularization method based on an adaptive dictionary representation of the dense 3D+time Lagrangian motion field. Sparse dictionaries have good signal adaptive and noise-reduction properties; however, they are prone to quantization errors. Our method takes advantage of the desirable noise suppression, while avoiding the undesirable quantization error. The idea is to enforce regularization only on the poorly tracked trajectories. Specifically, our method 1.) builds data-driven 4-dimensional dictionary of Lagrangian displacements using sparse learning, 2.) automatically identifies poorly tracked trajectories (outliers) based on sparse reconstruction errors, and 3.) performs sparse reconstruction of the outliers only. Our approach can be applied on dense Lagrangian motion fields calculated by any method. We demonstrate the effectiveness of our approach on a baseline block matching speckle tracking and evaluate performance of the proposed algorithm using tracking and strain accuracy analysis.

  18. 3D DC Resistivity Inversion with Topography Based on Regularized Conjugate Gradient Method

    Directory of Open Access Journals (Sweden)

    Jian-ke Qiang

    2013-01-01

    Full Text Available During the past decades, we observed a strong interest in 3D DC resistivity inversion and imaging with complex topography. In this paper, we implemented 3D DC resistivity inversion based on regularized conjugate gradient method with FEM. The Fréchet derivative is assembled with the electric potential in order to speed up the inversion process based on the reciprocity theorem. In this study, we also analyzed the sensitivity of the electric potential on the earth’s surface to the conductivity in each cell underground and introduced an optimized weighting function to produce new sensitivity matrix. The synthetic model study shows that this optimized weighting function is helpful to improve the resolution of deep anomaly. By incorporating topography into inversion, the artificial anomaly which is actually caused by topography can be eliminated. As a result, this algorithm potentially can be applied to process the DC resistivity data collected in mountain area. Our synthetic model study also shows that the convergence and computation speed are very stable and fast.

  19. 3-D model-based frame interpolation for distributed video coding of static scenes.

    Science.gov (United States)

    Maitre, Matthieu; Guillemot, Christine; Morin, Luce

    2007-05-01

    This paper addresses the problem of side information extraction for distributed coding of videos captured by a camera moving in a 3-D static environment. Examples of targeted applications are augmented reality, remote-controlled robots operating in hazardous environments, or remote exploration by drones. It explores the benefits of the structure-from-motion paradigm for distributed coding of this type of video content. Two interpolation methods constrained by the scene geometry, based either on block matching along epipolar lines or on 3-D mesh fitting, are first developed. These techniques are based on a robust algorithm for sub-pel matching of feature points, which leads to semi-dense correspondences between key frames. However, their rate-distortion (RD) performances are limited by misalignments between the side information and the actual Wyner-Ziv (WZ) frames due to the assumption of linear motion between key frames. To cope with this problem, two feature point tracking techniques are introduced, which recover the camera parameters of the WZ frames. A first technique, in which the frames remain encoded separately, performs tracking at the decoder and leads to significant RD performance gains. A second technique further improves the RD performances by allowing a limited tracking at the encoder. As an additional benefit, statistics on tracks allow the encoder to adapt the key frame frequency to the video motion content.

  20. Reconstruction for 3D PET Based on Total Variation Constrained Direct Fourier Method.

    Directory of Open Access Journals (Sweden)

    Haiqing Yu

    Full Text Available This paper presents a total variation (TV regularized reconstruction algorithm for 3D positron emission tomography (PET. The proposed method first employs the Fourier rebinning algorithm (FORE, rebinning the 3D data into a stack of ordinary 2D data sets as sinogram data. Then, the resulted 2D sinogram are ready to be reconstructed by conventional 2D reconstruction algorithms. Given the locally piece-wise constant nature of PET images, we introduce the total variation (TV based reconstruction schemes. More specifically, we formulate the 2D PET reconstruction problem as an optimization problem, whose objective function consists of TV norm of the reconstructed image and the data fidelity term measuring the consistency between the reconstructed image and sinogram. To solve the resulting minimization problem, we apply an efficient methods called the Bregman operator splitting algorithm with variable step size (BOSVS. Experiments based on Monte Carlo simulated data and real data are conducted as validations. The experiment results show that the proposed method produces higher accuracy than conventional direct Fourier (DF (bias in BOSVS is 70% of ones in DF, variance of BOSVS is 80% of ones in DF.

  1. VOXEL- AND GRAPH-BASED POINT CLOUD SEGMENTATION OF 3D SCENES USING PERCEPTUAL GROUPING LAWS

    Directory of Open Access Journals (Sweden)

    Y. Xu

    2017-05-01

    Full Text Available Segmentation is the fundamental step for recognizing and extracting objects from point clouds of 3D scene. In this paper, we present a strategy for point cloud segmentation using voxel structure and graph-based clustering with perceptual grouping laws, which allows a learning-free and completely automatic but parametric solution for segmenting 3D point cloud. To speak precisely, two segmentation methods utilizing voxel and supervoxel structures are reported and tested. The voxel-based data structure can increase efficiency and robustness of the segmentation process, suppressing the negative effect of noise, outliers, and uneven points densities. The clustering of voxels and supervoxel is carried out using graph theory on the basis of the local contextual information, which commonly conducted utilizing merely pairwise information in conventional clustering algorithms. By the use of perceptual laws, our method conducts the segmentation in a pure geometric way avoiding the use of RGB color and intensity information, so that it can be applied to more general applications. Experiments using different datasets have demonstrated that our proposed methods can achieve good results, especially for complex scenes and nonplanar surfaces of objects. Quantitative comparisons between our methods and other representative segmentation methods also confirms the effectiveness and efficiency of our proposals.

  2. Gaussian mixture models based 2D-3D registration of bone shapes for orthopedic surgery planning.

    Science.gov (United States)

    Valenti, Marta; Ferrigno, Giancarlo; Martina, Dario; Yu, Weimin; Zheng, Guoyan; Shandiz, Mohsen Akbari; Anglin, Carolyn; De Momi, Elena

    2016-11-01

    In orthopedic surgery, precise kinematics assessment helps the diagnosis and the planning of the intervention. The correct placement of the prosthetic component in the case of knee replacement is necessary to ensure a correct load distribution and to avoid revision of the implant. 3D reconstruction of the knee kinematics under weight-bearing conditions becomes fundamental to understand existing in vivo loads and improve the joint motion tracking. Existing methods rely on the semiautomatic positioning of a shape previously segmented from a CT or MRI on a sequence of fluoroscopic images acquired during knee flexion. We propose a method based on statistical shape models (SSM) automatically superimposed on a sequence of fluoroscopic datasets. Our method is based on Gaussian mixture models, and the core of the algorithm is the maximization of the likelihood of the association between the projected silhouette and the extracted contour from the fluoroscopy image. We evaluated the algorithm using digitally reconstructed radiographies of both healthy and diseased subjects, with a CT-extracted shape and a SSM as the 3D model. In vivo tests were done with fluoroscopically acquired images and subject-specific CT shapes. The results obtained are in line with the literature, but the computational time is substantially reduced.

  3. Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors

    Directory of Open Access Journals (Sweden)

    Nannan Zhou

    2015-06-01

    Full Text Available The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson’s correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor. Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors.

  4. Multimodal human verification using stereo-based 3D inforamtion, IR, and speech

    Science.gov (United States)

    Park, Changhan

    2007-04-01

    In this paper, we propose a personal verification method using 3D face information, infrared (IR), and speech to improve the rate of single biometric authentication. False acceptance rate (FAR) and false rejection rate (FRR) have been a fundamental bottleneck of real-time personal verification. Proposed method uses principal component analysis (PCA) for face recognition and hidden markov model (HMM) for speech recognition based on stereo acquisition system with IR imagery. 3D face information acquires face's depth and distance using a stereo system. The proposed system consists of eye detection, facial pose direction estimation, and PCA modules. An IR image of the human face presents its unique heat-signature and can be used for recognition. IR images use only for decision whether human face or not. It also uses fuzzy logic for the final decision of personal verification. Based on experimental results, the proposed system can reduce FAR which provides that the proposed method overcomes the limitation of single biometric system and provides stable person authentication in real-time.

  5. - and Graph-Based Point Cloud Segmentation of 3d Scenes Using Perceptual Grouping Laws

    Science.gov (United States)

    Xu, Y.; Hoegner, L.; Tuttas, S.; Stilla, U.

    2017-05-01

    Segmentation is the fundamental step for recognizing and extracting objects from point clouds of 3D scene. In this paper, we present a strategy for point cloud segmentation using voxel structure and graph-based clustering with perceptual grouping laws, which allows a learning-free and completely automatic but parametric solution for segmenting 3D point cloud. To speak precisely, two segmentation methods utilizing voxel and supervoxel structures are reported and tested. The voxel-based data structure can increase efficiency and robustness of the segmentation process, suppressing the negative effect of noise, outliers, and uneven points densities. The clustering of voxels and supervoxel is carried out using graph theory on the basis of the local contextual information, which commonly conducted utilizing merely pairwise information in conventional clustering algorithms. By the use of perceptual laws, our method conducts the segmentation in a pure geometric way avoiding the use of RGB color and intensity information, so that it can be applied to more general applications. Experiments using different datasets have demonstrated that our proposed methods can achieve good results, especially for complex scenes and nonplanar surfaces of objects. Quantitative comparisons between our methods and other representative segmentation methods also confirms the effectiveness and efficiency of our proposals.

  6. Design for low-cost gas metal arc weld-based aluminum 3-D printing

    Science.gov (United States)

    Haselhuhn, Amberlee S.

    Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.

  7. Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride.

    Science.gov (United States)

    Ruzmetov, Dmitry; Zhang, Kehao; Stan, Gheorghe; Kalanyan, Berc; Bhimanapati, Ganesh R; Eichfeld, Sarah M; Burke, Robert A; Shah, Pankaj B; O'Regan, Terrance P; Crowne, Frank J; Birdwell, A Glen; Robinson, Joshua A; Davydov, Albert V; Ivanov, Tony G

    2016-03-22

    When designing semiconductor heterostructures, it is expected that epitaxial alignment will facilitate low-defect interfaces and efficient vertical transport. Here, we report lattice-matched epitaxial growth of molybdenum disulfide (MoS2) directly on gallium nitride (GaN), resulting in high-quality, unstrained, single-layer MoS2 with strict registry to the GaN lattice. These results present a promising path toward the implementation of high-performance electronic devices based on 2D/3D vertical heterostructures, where each of the 3D and 2D semiconductors is both a template for subsequent epitaxial growth and an active component of the device. The MoS2 monolayer triangles average 1 μm along each side, with monolayer blankets (merged triangles) exhibiting properties similar to that of single-crystal MoS2 sheets. Photoluminescence, Raman, atomic force microscopy, and X-ray photoelectron spectroscopy analyses identified monolayer MoS2 with a prominent 20-fold enhancement of photoluminescence in the center regions of larger triangles. The MoS2/GaN structures are shown to electrically conduct in the out-of-plane direction, confirming the potential of directly synthesized 2D/3D semiconductor heterostructures for vertical current flow. Finally, we estimate a MoS2/GaN contact resistivity to be less than 4 Ω·cm(2) and current spreading in the MoS2 monolayer of approximately 1 μm in diameter.

  8. 3D modeling method for computer animate based on modified weak structured light method

    Science.gov (United States)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2010-11-01

    A simple and affordable 3D scanner is designed in this paper. Three-dimensional digital models are playing an increasingly important role in many fields, such as computer animate, industrial design, artistic design and heritage conservation. For many complex shapes, optical measurement systems are indispensable to acquiring the 3D information. In the field of computer animate, such an optical measurement device is too expensive to be widely adopted, and on the other hand, the precision is not as critical a factor in that situation. In this paper, a new cheap 3D measurement system is implemented based on modified weak structured light, using only a video camera, a light source and a straight stick rotating on a fixed axis. For an ordinary weak structured light configuration, one or two reference planes are required, and the shadows on these planes must be tracked in the scanning process, which destroy the convenience of this method. In the modified system, reference planes are unnecessary, and size range of the scanned objects is expanded widely. A new calibration procedure is also realized for the proposed method, and points cloud is obtained by analyzing the shadow strips on the object. A two-stage ICP algorithm is used to merge the points cloud from different viewpoints to get a full description of the object, and after a series of operations, a NURBS surface model is generated in the end. A complex toy bear is used to verify the efficiency of the method, and errors range from 0.7783mm to 1.4326mm comparing with the ground truth measurement.

  9. Intensity-based 2D-3D spine image registration incorporating a single fiducial marker.

    Science.gov (United States)

    Russakoff, Daniel B; Rohlfing, Torsten; Adler, John R; Maurer, Calvin R

    2005-01-01

    The two-dimensional (2D)-three dimensional (3D) registration of a computed tomography image to one or more x-ray projection images has a number of image-guided therapy applications. In general, fiducial marker-based methods are fast, accurate, and robust, but marker implantation is not always possible, often is considered too invasive to be clinically acceptable, and entails risk. There also is the unresolved issue of whether it is acceptable to leave markers permanently implanted. Intensity-based registration methods do not require the use of markers and can be automated because such geometric features as points and surfaces do not need to be segmented from the images. However, for spine images, intensity-based methods are susceptible to local optima in the cost function and thus need initial transformations that are close to the correct transformation. In this report, we propose a hybrid similarity measure for 2D-3D registration that is a weighted combination of an intensity-based similarity measure (mutual information) and a point-based measure using one fiducial marker. We evaluate its registration accuracy and robustness by using gold-standard clinical spine image data from four patients. Mean registration errors for successful registrations for the four patients were 1.3 and 1.1 mm for the intensity-based and hybrid similarity measures, respectively. Whereas the percentage of successful intensity-based registrations (registration error registrations more than 99% of the time independent of the initial transformation. The use of one fiducial marker reduces 2D-3D spine image registration error slightly and improves robustness substantially. The findings are potentially relevant for image-guided therapy. If one marker is sufficient to obtain clinically acceptable registration accuracy and robustness, as the preliminary results using the proposed hybrid similarity measure suggest, the marker can be placed on a spinous process, which could be accomplished without

  10. [Internal fixation surgery planning for complex tibial plateau fracture based on digital design and 3D printing].

    Science.gov (United States)

    Huang, Huajun; Zhang, Guodong; Ouyang, Hanbin; Yang, Yang; Wu, ZhangLin; Xu, Jing; Xie, Pusheng; Huang, Wenhua

    2015-02-01

    To investigate the application of 3D printing and digital technology in preoperative assessment and planning of internal fixation surgery for complex tibial plateau fracture. Complex tibial plateau fractures and commonly used plates for tibial plateau were imaged using computed tomography (CT) to reconstruct the 3D fracture and plate models. The 3D models were used to perform virtual reduction and preoperative planning of internal fixation surgery with the most appropriate plates assisted by the 3D library of plates. According to the optimal plan, the 3D physical models of tibial plateau fractures and plates were 3D printed to simulate internal fixation operation. The effects of internal fixation were compared between the virtual surgery and the simulated surgery based on the 3D models. The effects of internal fixation in the simulated surgery based on the 3D models were consistent with those of the virtual surgery. No significant difference was found in the screw length between the two surgeries. The combination of 3D printing and digital design can improve the effects of internal fixation for complex tibial plateau fractures.

  11. A geographic information system-based 3D city estate modeling and simulation system

    Science.gov (United States)

    Chong, Xiaoli; Li, Sha

    2015-12-01

    This paper introduces a 3D city simulation system which is based on geographic information system (GIS), covering all commercial housings of the city. A regional- scale, GIS-based approach is used to capture, describe, and track the geographical attributes of each house in the city. A sorting algorithm of "Benchmark + Parity Rate" is developed to cluster houses with similar spatial and construction attributes. This system is applicable for digital city modeling, city planning, housing evaluation, housing monitoring, and visualizing housing transaction. Finally, taking Jingtian area of Shenzhen as an example, the each unit of 35,997 houses in the area could be displayed, tagged, and easily tracked by the GIS-based city modeling and simulation system. The match market real conditions well and can be provided to house buyers as reference.

  12. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    Science.gov (United States)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  13. A novel mesh processing based technique for 3D plant analysis

    Directory of Open Access Journals (Sweden)

    Paproki Anthony

    2012-05-01

    Full Text Available Abstract Background In recent years, imaging based, automated, non-invasive, and non-destructive high-throughput plant phenotyping platforms have become popular tools for plant biology, underpinning the field of plant phenomics. Such platforms acquire and record large amounts of raw data that must be accurately and robustly calibrated, reconstructed, and analysed, requiring the development of sophisticated image understanding and quantification algorithms. The raw data can be processed in different ways, and the past few years have seen the emergence of two main approaches: 2D image processing and 3D mesh processing algorithms. Direct image quantification methods (usually 2D dominate the current literature due to comparative simplicity. However, 3D mesh analysis provides the tremendous potential to accurately estimate specific morphological features cross-sectionally and monitor them over-time. Result In this paper, we present a novel 3D mesh based technique developed for temporal high-throughput plant phenomics and perform initial tests for the analysis of Gossypium hirsutum vegetative growth. Based on plant meshes previously reconstructed from multi-view images, the methodology involves several stages, including morphological mesh segmentation, phenotypic parameters estimation, and plant organs tracking over time. The initial study focuses on presenting and validating the accuracy of the methodology on dicotyledons such as cotton but we believe the approach will be more broadly applicable. This study involved applying our technique to a set of six Gossypium hirsutum (cotton plants studied over four time-points. Manual measurements, performed for each plant at every time-point, were used to assess the accuracy of our pipeline and quantify the error on the morphological parameters estimated. Conclusion By directly comparing our automated mesh based quantitative data with manual measurements of individual stem height, leaf width and leaf length

  14. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology.

    Science.gov (United States)

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-04-18

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor's operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel