WorldWideScience

Sample records for visible light photons

  1. High visibility two-photon interference with classical light.

    Science.gov (United States)

    Hong, Peilong; Xu, Lei; Zhai, Zhaohui; Zhang, Guoquan

    2013-06-17

    Two-photon interference with independent classical sources, in which superposition of two indistinguishable two-photon paths plays a key role, is of limited visibility with a maximum value of 50%. By using a random-phase grating to modulate the wavefront of a coherent light, we introduce superposition of multiple indistinguishable two-photon paths, which enhances the two-photon interference effect with a signature of visibility exceeding 50%. The result shows the importance of phase control in the control of high-order coherence of classical light.

  2. Visible light Laue diffraction from woodpile photonic crystals.

    Science.gov (United States)

    Brüser, Björn; Staude, Isabelle; von Freymann, Georg; Wegener, Martin; Pietsch, Ullrich

    2012-10-01

    Bragg diffraction is often used as a tool to assess the structural quality of two-dimensional and three-dimensional (3D) photonic crystals. However, direct conclusions from the Laue diagrams to the underlying crystals structure cannot be drawn, as multiple scattering due to the high index contrast takes place. Here we systematically study the scattering of visible light by 3D woodpile photonic crystals with varying internal refractive index contrast Δn, to determine the limits of the single (kinematic) scattering approach. We aim to describe the intensity distribution of diffracting Bragg peaks with analytic expressions similarly to x-ray scattering at electronic crystals. Measured scattering curves of selected Bragg reflections are classified in terms of Δn. We find that the kinematic approach describes the shape and intensity distribution of experimental scattering curves in acceptable accuracy as long as Δn<0.15. The transition between single and multiple scattering is observed for Δn≈0.16-0.25 before multiple scattering dominates for larger Δn. The classification of the scattering regimes is confirmed by simulations in terms of numerical solution of Maxwell's equations.

  3. Development and characterisation of a visible light photon counting imaging detector system

    CERN Document Server

    Barnstedt, J

    2002-01-01

    We report on the development of a visible light photon counting imaging detector system. The detector concept is based on standard 25 mm diameter microchannel plate image intensifiers made by Proxitronic in Bensheim (Germany). Modifications applied to these image intensifiers are the use of three microchannel plates instead of two and a high resistance ceramics plate used instead of the standard phosphor output screen. A wedge and strip anode mounted directly behind the high resistance ceramics plate was used as a read out device. This wedge and strip anode picks up the image charge of electron clouds emerging from the microchannel plates. The charge pulses are fed into four charge amplifiers and subsequently into a digital position decoding electronics, achieving a position resolution of up to 1024x1024 pixels. Mounting the anode outside the detector tube is a new approach and has the great advantage of avoiding electrical feedthroughs from the anode so that the standard image intensifier fabrication process...

  4. RuBi-Glutamate: Two-photon and visible-light photoactivation of neurons and dendritic spines

    Directory of Open Access Journals (Sweden)

    Elodie Fino

    2009-05-01

    Full Text Available We describe neurobiological applications of RuBi-Glutamate, a novel caged-glutamate compound based on ruthenium photochemistry. RuBi-Glutamate can be excited with visible wavelengths and releases glutamate after one- or two-photon excitation. It has high quantum efficiency and can be used at low concentrations, partly avoiding the blockade of GABAergic transmission present with other caged compounds. Two-photon uncaging of RuBi-glutamate has a high spatial resolution and generates excitatory responses in individual dendritic spines with physiological kinetics. With laser beam multiplexing, RuBi-Glutamate uncaging can also be used to depolarize and fire pyramidal neurons with single-cell resolution. RuBi-Glutamate therefore enables the photo-activation of neuronal dendrites and circuits with visible or two-photon light sources, achieving single spine, or single cell, precision.

  5. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2013-01-09

    A visible light responsive plasmonic photocatalytic composite material is designed by rationally selecting Au nanocrystals and assembling them with the TiO2-based photonic crystal substrate. The selection of the Au nanocrystals is so that their surface plasmonic resonance (SPR) wavelength matches the photonic band gap of the photonic crystal and thus that the SPR of the Au receives remarkable assistance from the photonic crystal substrate. The design of the composite material is expected to significantly increase the Au SPR intensity and consequently boost the hot electron injection from the Au nanocrystals into the conduction band of TiO2, leading to a considerably enhanced water splitting performance of the material under visible light. A proof-of-concept example is provided by assembling 20 nm Au nanocrystals, with a SPR peak at 556 nm, onto the photonic crystal which is seamlessly connected on TiO2 nanotube array. Under visible light illumination (>420 nm), the designed material produced a photocurrent density of ∼150 μA cm-2, which is the highest value ever reported in any plasmonic Au/TiO2 system under visible light irradiation due to the photonic crystal-assisted SPR. This work contributes to the rational design of the visible light responsive plasmonic photocatalytic composite material based on wide band gap metal oxides for photoelectrochemical applications. © 2012 American Chemical Society.

  6. Cross-Linked Graphitic Carbon Nitride with Photonic Crystal Structure for Efficient Visible-Light-Driven Photocatalysis.

    Science.gov (United States)

    Sun, Lu; Hong, Wei; Liu, Jing; Yang, Meijia; Lin, Wensheng; Chen, Guojian; Yu, Dingshan; Chen, Xudong

    2017-12-27

    Highly cross-linked graphitic carbon nitride has been prepared by a thermal copolymerization of dicyanodiamide with tetramethylammonium salts. The cross-linking can be evidenced by (i) increased C/N ratio without new carbon species, (ii) decreased specific surface area, and (iii) Tyndall effect after dissolution in concentrated sulfuric acid. The cross-linked graphitic carbon nitride with photonic crystal structure has highly efficient photocatalytic activity for water splitting under visible light due to the synergistic enhancement by the greatly suppressed photoluminescence, red-shifted absorption edges, strong inner reflections, and effective PCs stop band overlaps. It exhibits an enhanced photodegradation kinetic of methyl orange and a high visible-light-driven hydrogen-evolution rate of 166.9 μmol h-1 (25 times higher than that of the pristine graphitic carbon nitride counterpart). This work presents a facile method for designing and developing high-performance graphitic carbon nitride photocatalysts, providing a broad range of application prospects in the fields of electronics and energy conversion.

  7. III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light Communication

    KAUST Repository

    Shen, Chao

    2017-04-01

    The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the GaN-based LDs, which is free from efficiency droop, outperform LEDs as a viable high-power light source. Conventionally, the InGaN-based LDs are grown on polar, c-plane GaN substrates. However, a relatively low differential gain limited the device performance due to a significant polarization field in the active region. Therefore, the LDs grown on nonpolar m-plane and semipolar (2021)-plane GaN substrates are posed to deliver high-efficiency owing to the entirely or partially eliminated polarization field. To date, the smart lighting and VLC functionalities have been demonstrated based on discrete devices, such as LDs, transverse-transmission modulators, and waveguide photodetectors. The integration of III-nitride photonic components, including the light emitter, modulator, absorber, amplifier, and photodetector, towards the realization of III-nitride photonic integrated circuit (PIC) offers the advantages of small-footprint, high-speed, and low power consumption, which has yet to be investigated. This dissertation presents the design, fabrication, and characterization of the multi-section InGaN laser diodes with integrated functionalities on semipolar (2021)-plane GaN substrates for enabling such photonic integration. The blue-emitting integrated waveguide modulator-laser diode (IWM-LD) exhibits a high modulation efficiency of 2.68 dB/V. A large extinction ratio of 11.3 dB is measured in the violet-emitting IWM-LD. Utilizing an integrated absorber, a high optical power (250mW), droop-free, speckle-free, and large modulation bandwidth (560MHz) blue-emitting superluminescent diode is reported. An integrated short-wavelength semiconductor optical amplifier with the laser diode at ~404 nm is demonstrated with a large gain of 5

  8. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  9. Visible Lasers and Emerging Color Converters for Lighting and Visible Light Communications

    KAUST Repository

    Shen, Chao

    2017-10-30

    GaN-based lasers are promising for white lighting and visible-light communication (VLC). The advances of III-nitride photonic integration, and the application of YAG crystal and perovskite-based phosphors to lighting and VLC will be discussed.

  10. Giant Incident Photon-to-Current Conversion with Photoconductivity Gain on Nanostructured Bismuth Oxysulfide Photoelectrodes under Visible-Light Illumination.

    Science.gov (United States)

    Bondarenko, Evgeny A; Streltsov, Eugene A; Malashchonak, Mikalai V; Mazanik, Alexander V; Kulak, Anatoly I; Skorb, Ekaterina V

    2017-10-01

    Nanostructured layered bismuth oxysulfide films synthesized by chemical bath deposition reveal a giant incident photon-to-current conversion efficiency (IPCE). This study shows that surprisingly for the cathodic photocurrent in the photoreduction process, the IPCE reaches ≈2500% in aqueous solutions containing [Fe(CN)6 ](3-) . The giant IPCE is observed starting from a certain minimal oxidizer concentration (c > 10(-3) m for [Fe(CN)6 ](3-) ) and decreases nonlinearly with an increase of illumination intensity. Giant IPCE is determined by the decrease in resistivity of the bismuth oxysulfide film under illumination with photoconductivity gain, which provides the possibility of charge carriers from an external circuit to participate in the photoreduction process. Giant IPCE is observed not only in [Fe(CN)6 ](3-) solutions, but also in electrolytes containing other photoelectron acceptors: Fe(3+) , I3(-) , quinone, H2 O2 . In all, solution-processed layered bismuth oxysulfide films offer large-area coverage, nontoxicity, low cost, and compatibility with a wide range of substrates. Abnormally high photoelectrochemical activity, as well as a band gap energy value favorable for efficient conversion of solar light (1.38 eV, direct optical transitions), proves the potential of bismuth oxysulfide photoelectrodes for a new generation of high-performance photoconverters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Robust Adaptive Photon Tracing using Photon Path Visibility

    DEFF Research Database (Denmark)

    Hachisuka, Toshiya; Jensen, Henrik Wann

    2011-01-01

    We present a new adaptive photon tracing algorithm which can handle illumination settings that are considered difficult for photon tracing approaches such as outdoor scenes, close-ups of a small part of an illuminated region, and illumination coming through a small gap. The key contribution in our...... algorithm is the use of visibility of photon path as the importance function which ensures that our sampling algorithm focuses on paths that are visible from the given viewpoint. Our sampling algorithm builds on two recent developments in Markov chain Monte Carlo methods: adaptive Markov chain sampling...... and replica exchange. Using these techniques, each photon path is adaptively mutated and it explores the sampling space efficiently without being stuck at a local peak of the importance function. We have implemented this sampling approach in the progressive photon mapping algorithm which provides visibility...

  12. Incorporation of Cu{sub 2}O nanocrystals into TiO{sub 2} photonic crystal for enhanced UV–visible light driven photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Zhi; Zhang, Yu; Yuan, Xing; Huo, Mingxin; Zhao, Yahui; Lu, Ying, E-mail: luy332@nenu.edu.cn; Qiu, Yue

    2015-09-25

    Highlights: • The Cu{sub 2}O NCs/TiO{sub 2} PC composite was synthesized and exhibited high photocatalysis. • The improved light harvesting and increased quantum yield was achieved. • The hydroxyl radical was the primary oxidant in Cu{sub 2}O NCs/TiO{sub 2} PC photocatalysis. - Abstract: A 3D UV–visible light responsive photocatalyst was fabricated by infiltrating Cu{sub 2}O nanocrystals (NCs) into TiO{sub 2} photonic crystal (PC). Morphology characterization presented that Cu{sub 2}O NCs with average diameter around 10 nm were dispersed uniformly into TiO{sub 2} PC. The transmittance spectra showed that Cu{sub 2}O NCs/TiO{sub 2} 260, prepared by integrating Cu{sub 2}O NCs with TiO{sub 2} 260 which was fabricated from 260 nm polystyrene spheres, exhibited the highest light harvesting. The photoluminescence spectra confirmed the electron/hole pairs recombination of Cu{sub 2}O NCs/TiO{sub 2} 260 was efficiently inhibited due to the unique heterojunction structure between TiO{sub 2} and Cu{sub 2}O. In the photocatalytic degradation of Rhodamine B and Bisphenol A under UV–visible light (320 nm < λ < 780 nm) irradiation, the kinetic constant using Cu{sub 2}O NCs/TiO{sub 2} 260 was 3.99 and 8.37-fold larger than that using TiO{sub 2} nanoparticle (NP), respectively. The enhanced photocatalysis benefited from the increased light harvesting owing to the excitation of both TiO{sub 2} and Cu{sub 2}O NCs whose optical absorption was intensified by the photonic effect of TiO{sub 2} 260 and the high quantum efficiency due to the Cu{sub 2}O/TiO{sub 2} heterojunction. The hydroxyl radical, generated from the protonation of superoxide radical which was derived from the reduction of oxygen by photogenerated electrons, was the main oxidant responsible for pollutant degradation.

  13. Seeing elements by visible-light digital camera.

    Science.gov (United States)

    Zhao, Wenyang; Sakurai, Kenji

    2017-03-31

    A visible-light digital camera is used for taking ordinary photos, but with new operational procedures it can measure the photon energy in the X-ray wavelength region and therefore see chemical elements. This report describes how one can observe X-rays by means of such an ordinary camera - The front cover of the camera is replaced by an opaque X-ray window to block visible light and to allow X-rays to pass; the camera takes many snap shots (called single-photon-counting mode) to record every photon event individually; an integrated-filtering method is newly proposed to correctly retrieve the energy of photons from raw camera images. Finally, the retrieved X-ray energy-dispersive spectra show fine energy resolution and great accuracy in energy calibration, and therefore the visible-light digital camera can be applied to routine X-ray fluorescence measurement to analyze the element composition in unknown samples. In addition, the visible-light digital camera is promising in that it could serve as a position sensitive X-ray energy detector. It may become able to measure the element map or chemical diffusion in a multi-element system if it is fabricated with external X-ray optic devices. Owing to the camera's low expense and fine pixel size, the present method will be widely applied to the analysis of chemical elements as well as imaging.

  14. Seeing elements by visible-light digital camera

    Science.gov (United States)

    Zhao, Wenyang; Sakurai, Kenji

    2017-01-01

    A visible-light digital camera is used for taking ordinary photos, but with new operational procedures it can measure the photon energy in the X-ray wavelength region and therefore see chemical elements. This report describes how one can observe X-rays by means of such an ordinary camera - The front cover of the camera is replaced by an opaque X-ray window to block visible light and to allow X-rays to pass; the camera takes many snap shots (called single-photon-counting mode) to record every photon event individually; an integrated-filtering method is newly proposed to correctly retrieve the energy of photons from raw camera images. Finally, the retrieved X-ray energy-dispersive spectra show fine energy resolution and great accuracy in energy calibration, and therefore the visible-light digital camera can be applied to routine X-ray fluorescence measurement to analyze the element composition in unknown samples. In addition, the visible-light digital camera is promising in that it could serve as a position sensitive X-ray energy detector. It may become able to measure the element map or chemical diffusion in a multi-element system if it is fabricated with external X-ray optic devices. Owing to the camera’s low expense and fine pixel size, the present method will be widely applied to the analysis of chemical elements as well as imaging. PMID:28361916

  15. Mutagenesis by near-visible light.

    Science.gov (United States)

    Kubitschek, H E

    1967-03-24

    Mutants resistant to bacter iophage T5 were produced both in continuous and in stationary cultures of Escherichia coli by near-visible light, 320 to 400 millimicrons, at rates greatly exceeding spontaneous rates in the ab sence of light. Aerobic mutation rates were about twice anaerobic rates, which shows that mutations were induced in either of at least two different proces ses. Mutations induced by near-visible light involve different photochemical processes than those induced by ul traviolet light.

  16. Transfer of ultraviolet photon energy into fluorescent light in the visible path represents a new and efficient protection mechanism of sunscreens

    Science.gov (United States)

    Vergou, Theognosia; Patzelt, Alexa; Richter, Heike; Schanzer, Sabine; Zastrow, Leonhard; Golz, Karin; Doucet, Olivier; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2011-10-01

    The development of sunscreens with high sun protection factor (SPF) values but low filter concentrations is the ultimate goal. The purpose of the present study was to investigate why a sunscreen spray and cream with different concentrations of the same UV-filters provided the same SPF. Therefore, the homogeneity of the distribution of both sunscreens was investigated by laser scanning microscopy (LSM) and tape stripping (TS). Additionally, the energy transfer mechanisms of the sunscreens on the skin were analyzed. The TS and LSM showed a better homogeneity of the distribution of the spray. With Wood's light, a total absorption of the irradiation was detected in the spray area. In contrast, after cream treatment, an intensive fluorescent signal was observed. It was demonstrated that this fluorescent signal was caused by nonthermal energy transferred from the UV-filters to one compound of the cream releasing its excitation energy by fluorescence. This nonthermal energy transfer seemed to be the reason for the high efficiency of the cream, which is subjected to thermal relaxation. The transfer of UV photon energy into fluorescent light represents a new approach to increase the efficiency of sunscreens and could form the basis for a new generation of sunscreens.

  17. White LED visible light communication technology research

    Science.gov (United States)

    Yang, Chao

    2017-03-01

    Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.

  18. Visible Light Dye-Sensitized Photosensititve Systems

    National Research Council Canada - National Science Library

    Fang Gao; Yong-yuan Yang

    2000-01-01

      The visible light dyes were employed to sensitized o-Cl-Hexaarylbiimidazole (o-Cl-HABI). The obtained results suggested that o-Cl-HABI displayed a efficient sensitized photocleavage when exposed to Xenon lamp...

  19. Solar Synthesis: Prospects in Visible Light Photocatalysis

    Science.gov (United States)

    Schultz, Danielle M.; Yoon, Tehshik P.

    2015-01-01

    Chemists have long aspired to synthesize molecules the way that plants do — using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions. PMID:24578578

  20. Controlling light with photonic metamaterials

    OpenAIRE

    Zhang, Jianfa

    2013-01-01

    This thesis reports on my research efforts towards controlling light with photonic metamaterials for desired functionalities:I have demonstrated a new family of continuously metallic metamaterials-‘intaglio’ and ‘bas-relief’ metamaterials. They are formed of indented or raised sub-wavelength patterns with depth/height of the order 100 nm and offer a robust and flexible paradigm for engineering the spectral response of metals in the vis-NIR domains. Controlling the colour of metals by intaglio...

  1. Two-photon and two-photon-assisted slow light.

    Science.gov (United States)

    Bautista, E Sánchez; Cabrera-Granado, E; Weigand, R

    2011-03-01

    We show that light pulses propagating in two-photon absorbing systems may present time delays like slow light produced via coherent population oscillations in one-photon interactions. Two regimes are numerically studied for a simplified two-level system: (a) a light pulse at frequency ω/2 undergoes two-photon absorption (TPA) and is delayed by the absorbing system (two-photon slow light) and (b) a light pulse at frequency ω is delayed in a system prepared by TPA of a light pulse at frequency ω/2 (two-photon-assisted slow light). The study carried out in solutions of dyes and dendrites shows significant delays, low distortion, and good transmission for easily reachable experimental conditions. The working principle can be applied to other media and can be used in telecommunications technology.

  2. Visible stealth materials based on photonic crystals

    Science.gov (United States)

    Yao, Guozheng; Liu, Ying

    2014-08-01

    Optical thin film can be used for invisible cloak. As a kind of low-dimension photonic crystal, it is a candidate for metamaterial with designed Σ and μ. As a coating, it is convenient to be stacked to mimic continuous changing of electromagnetic media. Anti-reflection film is suitable for matching coating between layers of media.

  3. Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source

    NARCIS (Netherlands)

    J.A. Palero (Jonathan); V.O. Boer (Vincent); J.C. Vijverberg (Jacob); H.C. Gerritsen (Hans); H.J.C.M. Sterenborg (Dick)

    2005-01-01

    textabstractWe report on a novel and simple light source for short-wavelength two-photon excitation fluorescence microscopy based on the visible nonsolitonic radiation from a photonic crystal fiber. We demonstrate tunability of the light source by varying the wavelength and intensity of the

  4. A Carpet Cloak Device for Visible Light

    CERN Document Server

    Gharghi, Majid; Zentgraf, Thomas; Liu, Yongmin; Yin, Xiaobo; Valentine, Jason; Zhang, Xiang

    2011-01-01

    We report an invisibility carpet cloak device, which is capable of making an object undetectable by visible light. The cloak is designed using quasi conformal mapping and is fabricated in a silicon nitride waveguide on a specially developed nano-porous silicon oxide substrate with a very low refractive index. The spatial index variation is realized by etching holes of various sizes in the nitride layer at deep subwavelength scale creating a local effective medium index. The fabricated device demonstrates wideband invisibility throughout the visible spectrum with low loss. This silicon nitride on low index substrate can also be a general scheme for implementation of transformation optical devices at visible frequency.

  5. Visible light driven plasmonic photochemistry on nano-textured silver.

    Science.gov (United States)

    Walia, Jaspreet; Guay, Jean-Michel; Krupin, Oleksiy; Variola, Fabio; Berini, Pierre; Weck, Arnaud

    2017-12-20

    Plasmon assisted generation of silver sulfate from dodecanethiol is demonstrated on a nano-textured silver substrate with a strong surface plasmon resonance in the visible range. The observed photo-physical processes are attributed to hot charge carriers that are generated from the excitation of surface plasmon resonances using 532 nm laser light. Excited charge carriers are responsible for cleaving the alkane chain, and for generating reactive oxygen species which rapidly photooxidize the exposed sulfur atoms. The ability to drive photochemical reactions with photon energies in the visible range rather than in the UV, on nano-textured silver surfaces, will enable researchers to study photochemical transformations for a wide variety of applications. The strong optical absorbance across the visible range, combined with the fact that the substrates can be fabricated over large areas, naturally makes them candidates for solar driven photochemical applications, and for large scale plasmonic reactors.

  6. Photodetector Characteristics in Visible Light Communication

    KAUST Repository

    Ho, Kang-Ting

    2016-04-01

    Typically, in the semiconductor industry pn heterojunctions have been used as either light-emitting diodes (LED) or photodiodes by applying forward current bias or reverse voltage bias, respectively. However, since both devices use the same structure, the light emitting and detecting properties could be combine in one single device, namely LED-based photodetector. Therefore, by integrating LED-based photodetectors as either transmitter or receiver, optical wireless communication could be easily implemented for bidirectional visible light communication networks at low-cost. Therefore, this dissertation focus on the investigation of the photodetection characteristics of InGaN LED-based photodetectors for visible light communication in the blue region. In this regard, we obtain external quantum efficiency of 10 % and photoresponse rise time of 71 μs at 405-nm illumination, revealing high-performance photodetection characteristics. Furthermore, we use orthogonal frequency division multiplexing quadrature amplitude modulation codification scheme to enlarge the operational bandwidth. Consequently, the transmission rate of the communication is efficiently enhanced up to 420 Mbit/s in visible light communication.

  7. Integrated Photonics Enabled by Slow Light

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yuntian; Ek, Sara

    2012-01-01

    In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources....

  8. How is the water molecule activated on metalloporphyrins? Oxygenation of substrates induced through one-photon/two-electron conversion in artificial photosynthesis by visible light.

    Science.gov (United States)

    Shimada, Tetsuya; Kumagai, Akihiro; Funyu, Shigeaki; Takagi, Shinsuke; Masui, Dai; Nabetani, Yu; Tachibana, Hiroshi; Tryk, Donald A; Inoue, Haruo

    2012-01-01

    The reaction mechanism of the highly efficient (phi = 0.60), selective photochemical epoxidation of alkenes sensitized by CO-coordinated tetra(2,4,6-trimethyl)phenylporphyrinatoruthenium(II) (Ru(II)TMP(CO)), with water acting both as an electron and oxygen atom donor, was investigated. The steady-state light irradiation of the reaction mixture indicated the formation of the Ru(II)TMP (CO) cation radical under neutral conditions, which was effectively trapped by an hydroxide ion to regenerate the starting sensitizer. By means of a laser flash photolysis experiment, the formation of the cation radical as the primary process from the triplet excited state of Ru(II)TMP(CO) was clearly observed. Four kinds of transients were detected in completely different ranges of the delay time: the excited triplet state of Ru(II)TMP(CO) [delay time region artificial photosynthesis.

  9. Design for The Indoor Visible Light Communication Application System Based on LED Visible Light

    Directory of Open Access Journals (Sweden)

    Lian Wenyu

    2017-01-01

    Full Text Available This paper designs an indoor visible light communication application system based on LED. The system can modulate the original signal one or more times, move to a specific frequency band, transmit on the power line, in the LED terminal use this module to decode, restore the Ethernet signals. This design is applicable to the simplicity of the LED visible light communication applications, which provide the premise and guarantee for the construction of smart home network.

  10. Characterization of photonic structures using visible and infrared polarimetry

    Directory of Open Access Journals (Sweden)

    Kral Z.

    2010-06-01

    Full Text Available Photonic Crystals are materials with a spatial periodic variation of the refractive index on the wavelength scale. This confers these materials interesting photonic properties such as the existence of photonic bands and forbidden photon frequency ranges, the photonic band gaps. Among their applications it is worth mentioning the achievement of low-threshold lasers and high-Q resonant cavities. A particular case of the Photonic Crystals is well-known and widely studied since a long time: the periodic thin film coatings. The characterization of thin film coatings is a classical field of study with a very well established knowledge. However, characterization of 2D and 3D photonic crystals needs to be studied in detail as it poses new problems that have to be solved. In this sense, Polarimetry is a specially suited tool given their inherent anisotropy: photonic bands depend strongly on the propagation direction and on polarization. In this work we show how photonic crystal structures can be characterized using polarimetry equipment. We compare the numerical modeling of the interaction of the light polarization with the photonic crystal with the polarimetry measurements. With the S-Matrix formalism, the Mueller matrix of a Photonic Crystal for a given wavelength, angle of incidence and propagation direction can be obtained. We will show that useful information from polarimetry (and also from spectrometry can be obtained when multivariate spectra are considered. We will also compare the simulation results with Polarimetry measurements on different kinds of samples: macroporous silicon photonic crystals in the near-IR range and Laser-Interference-Lithography nanostructured photoresist.

  11. Light the physics of the photon

    CERN Document Server

    Keller, Ole

    2014-01-01

    From the early wave-particle arguments to the mathematical theory of electromagnetism to Einstein's work on the quantization of light, different descriptions of what constitutes light have existed for over 300 years. Light - The Physics of the Photon examines the photon phenomenon from several perspectives. It demonstrates the importance of studying the photon as a concept belonging to a global vacuum (matter-free space).Divided into eight parts, the book begins with exploring aspects of classical optics in a global vacuum on the basis of free-space Maxwell equations. It then describes light r

  12. Visible light communication applications in healthcare.

    Science.gov (United States)

    Muhammad, Shoaib; Qasid, Syed Hussain Ahmed; Rehman, Shafia; Rai, Aitzaz Bin Sulltan

    2016-01-01

    With the development in science, methods of communication are also improved, replacing old ones with new advanced ways in an attempt to make data transfer more secure, safer for health, and time as well as cost efficient. One of such methods is Visible Light Communication, as the name implies data is transferred through a light equipment such as incandescent or florescent bulb having speed of 10 Kb/s or LEDs approaching speed of 500 Mb/s [1]. VLC uses visible light between 384 and 789 THz [2,3]. Though range is limitation of VLC, however data transfer up-to distance of 1 to 2 km although at lower transfer rate has been reached.The VLC system comprises of light source like LED and receiver equipment, however, with advancement, now LEDs are used for both sending and receiving data. LED remains on all the time, and there is no change in brightness level during the whole process, making it safe for eyes. Currently, VLC system is facing some serious technical challenges before it could be applied in daily life.

  13. Bright visible light emission from graphene.

    Science.gov (United States)

    Kim, Young Duck; Kim, Hakseong; Cho, Yujin; Ryoo, Ji Hoon; Park, Cheol-Hwan; Kim, Pilkwang; Kim, Yong Seung; Lee, Sunwoo; Li, Yilei; Park, Seung-Nam; Yoo, Yong Shim; Yoon, Duhee; Dorgan, Vincent E; Pop, Eric; Heinz, Tony F; Hone, James; Chun, Seung-Hyun; Cheong, Hyeonsik; Lee, Sang Wook; Bae, Myung-Ho; Park, Yun Daniel

    2015-08-01

    Graphene and related two-dimensional materials are promising candidates for atomically thin, flexible and transparent optoelectronics. In particular, the strong light-matter interaction in graphene has allowed for the development of state-of-the-art photodetectors, optical modulators and plasmonic devices. In addition, electrically biased graphene on SiO2 substrates can be used as a low-efficiency emitter in the mid-infrared range. However, emission in the visible range has remained elusive. Here, we report the observation of bright visible light emission from electrically biased suspended graphene devices. In these devices, heat transport is greatly reduced. Hot electrons (∼2,800 K) therefore become spatially localized at the centre of the graphene layer, resulting in a 1,000-fold enhancement in thermal radiation efficiency. Moreover, strong optical interference between the suspended graphene and substrate can be used to tune the emission spectrum. We also demonstrate the scalability of this technique by realizing arrays of chemical-vapour-deposited graphene light emitters. These results pave the way towards the realization of commercially viable large-scale, atomically thin, flexible and transparent light emitters and displays with low operation voltage and graphene-based on-chip ultrafast optical communications.

  14. Lethal effects of short-wavelength visible light on insects

    OpenAIRE

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-01-01

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiatio...

  15. Advances and prospects in visible light communications

    Science.gov (United States)

    Hongda, Chen; Chunhui, Wu; Honglei, Li; Xiongbin, Chen; Zongyu, Gao; Shigang, Cui; Qin, Wang

    2016-01-01

    Visible light communication (VLC) is an emerging technology in optical wireless communication (OWC) that has attracted worldwide research in recent years. VLC can combine communication and illumination together, which could be applied in many application scenarios such as visible light communication local area networks (VLANs), indoor localization, and intelligent lighting. In recent years, pioneering and significant work have been made in the field of VLC. In this paper, an overview of the recent progress in VLC is presented. We also demonstrate our recent experiment results including bidirectional 100 Mbit/s VLAN or Li-Fi system based on OOK modulation without blue filter. The VLC systems that we proposed are good solutions for high-speed VLC application systems with low-cost and low-complexity. VLC technology shows a bright future due to its inherent advantages, shortage of RF spectra and ever increasing popularity of white LEDs. Project supported by the National High Technology Research and Development Program of China (Nos. 2015AA033303, 2013AA013602, 2013AA013603, 2013AA03A104), the National Natural Science Foundation of China (Nos. 61178051, 61321063, 61335010, 61178048, 61275169), and the National Basic Research Program of China (Nos. 2013CB329205, 2011CBA00608).

  16. Indoor visible light communication with smart lighting technology

    Science.gov (United States)

    Das Barman, Abhirup; Halder, Alak

    2017-02-01

    An indoor visible-light communication performance is investigated utilizing energy efficient white light by 2D LED arrays. Enabled by recent advances in LED technology, IEEE 802.15.7 standardizes high-data-rate visible light communication and advocates for colour shift keying (CSK) modulation to overcome flicker and to support dimming. Voronoi segmentation is employed for decoding N-CSK constellation which has superior performance compared to other existing decoding methods. The two chief performance degrading effects of inter-symbol interference and LED nonlinearity is jointly mitigated using LMS post equalization at the receiver which improves the symbol error rate performance and increases field of view of the receiver. It is found that LMS post equalization symbol at 250MHz offers 7dB SNR improvement at SER10-6

  17. Photonics engineering in a new light

    OpenAIRE

    Petersen, Paul Michael; Dittmann, Lars

    2009-01-01

    Photonics engineering is an exciting technology that increasingly influences our daily lives. Developing new light-emitting diode (LED) light sources considerably reduces the electricity ised in lighting. In medicine, optical technology is enabling new therapies that improve health, and lasers have been one of the key enablers for developing modern information technology and telecommunication.

  18. Photonics engineering in a new light

    DEFF Research Database (Denmark)

    Petersen, Paul Michael; Dittmann, Lars

    2009-01-01

    Photonics engineering is an exciting technology that increasingly influences our daily lives. Developing new light-emitting diode (LED) light sources considerably reduces the electricity ised in lighting. In medicine, optical technology is enabling new therapies that improve health, and lasers have...

  19. Macroscopic invisibility cloaking of visible light

    DEFF Research Database (Denmark)

    Chen, Xianzhong; Luo, Y.; Zhang, Jingjing

    2011-01-01

    invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region...... to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale...

  20. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen [Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492 (Japan); Fujiwara, Mikio; Sasaki, Masahide [Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan); Koashi, Masato [Photon Science Center, The University of Tokyo, Bunkyo-ku, 113-8656 (Japan)

    2014-12-04

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  1. Wolf equations for two-photon light.

    Science.gov (United States)

    Saleh, Bahaa E A; Teich, Malvin C; Sergienko, Alexander V

    2005-06-10

    The spatiotemporal two-photon probability amplitude that describes light in a two-photon entangled state obeys equations identical to the Wolf equations, which are satisfied by the mutual coherence function for light in any quantum state. Both functions therefore propagate similarly through optical systems. A generalized van Cittert-Zernike theorem explains the predicted enhancement in resolution for entangled-photon microscopy and quantum lithography. The Wolf equations provide a particularly powerful analytical tool for studying three-dimensional imaging and lithography since they describe propagation in continuous inhomogeneous media.

  2. Visible light induced ocular delayed bioluminescence as a possible origin of negative afterimage

    CERN Document Server

    Bokkon, I; Wang, C; Dai, J; Salari, V; Grass, F; Antal, I

    2011-01-01

    The delayed luminescence of biological tissues is an ultraweak reemission of absorbed photons after exposure to external monochromatic or white light illumination. Recently, Wang, B\\'okkon, Dai and Antal (Brain Res. 2011) presented the first experimental proof of the existence of spontaneous ultraweak biophoton emission and visible light induced delayed ultraweak photon emission from in vitro freshly isolated rat's whole eye, lens, vitreous humor and retina. Here, we suggest that the photobiophysical source of negative afterimage can also occur within the eye by delayed bioluminescent photons. In other words, when we stare at a colored (or white) image for few seconds, external photons can induce excited electronic states within different parts of the eye that is followed by a delayed reemission of absorbed photons for several seconds. Finally, these reemitted photons can be absorbed by nonbleached photoreceptors that produce a negative afterimage. Although this suggests the photobiophysical source of negativ...

  3. Lethal effects of short-wavelength visible light on insects

    Science.gov (United States)

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-01

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  4. High-Visibility Photonic Crystal Fiber Interferometer as Multifunctional Sensor

    Directory of Open Access Journals (Sweden)

    Joel Villatoro

    2013-02-01

    Full Text Available A photonic crystal fiber (PCF interferometer that exhibits record fringe contrast (~40 dB is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ~1.6 × 10−5.

  5. High-Visibility Photonic Crystal Fiber Interferometer as Multifunctional Sensor

    Science.gov (United States)

    Cárdenas-Sevilla, G.A.; Fávero, Fernando C.; Villatoro, Joel

    2013-01-01

    A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (∼40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ∼1.6 × 10−5. PMID:23396192

  6. Slow light engineering in photonic crystals

    OpenAIRE

    Baba, Toshihiko; Mori, Daisuke

    2007-01-01

    Light showing extremely slow propagation (known as slow light) provides various effects such as spatial compression of optical signals, buffering, convolution integral calculation, beam forming, and enhancement of optical absorption, gain, nonlinearity, and so on. To generate such light, very large material or structural dispersion is used. Photonic crystal waveguides are good candidates for many device applications since they can easily generate slow light at room temperature. This paper dis...

  7. Hydrophilic Modification of Multi-Walled Carbon Nanotube for Building Photonic Crystals with Enhanced Color Visibility and Mechanical Strength

    Directory of Open Access Journals (Sweden)

    Feihu Li

    2016-04-01

    Full Text Available Low color visibility and poor mechanical strength of polystyrene (PS photonic crystal films have been the main shortcomings for the potential applications in paints or displays. This paper presents a simple method to fabricate PS/MWCNTs (multi-walled carbon nanotubes composite photonic crystal films with enhanced color visibility and mechanical strength. First, MWCNTs was modified through radical addition reaction by aniline 2,5-double sulfonic acid diazonium salt to generate hydrophilic surface and good water dispersity. Then the MWCNTs dispersion was blended with PS emulsion to form homogeneous PS/MWCNTs emulsion mixtures and fabricate composite films through thermal-assisted method. The obtained films exhibit high color visibility under natural light and improved mechanical strength owing to the light-adsorption property and crosslinking effect of MWCNTs. The utilization of MWCNTs in improving the properties of photonic crystals is significant for various applications, such as in paints and displays.

  8. PAPR analysis for OFDM visible light communication.

    Science.gov (United States)

    Wang, Jiaheng; Xu, Yang; Ling, Xintong; Zhang, Rong; Ding, Zhi; Zhao, Chunming

    2016-11-28

    Orthogonal frequency-division multiplexing (OFDM) is a practical technology in visible light communication (VLC) for high-speed transmissions. However, one of its operational limitations is the peak-to-average power ratio (PAPR) of the transmitted signal. In this paper, we analyze the PAPR distributions of four VLC OFDM schemes, namely DC-biased optical OFDM (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM), pulse amplitude modulated discrete multitone (PAM-DMT), and Flip-OFDM. Both lower and upper clippings are considered. We analytically derive the complementary cumulative distribution functions (CCDFs) of the PAPRs of the clipped VLC OFDM signals, and investigate the impact of lower and upper clippings on PAPR distributions. Our analytical results, as verified by numerical simulations, provide useful insights and guidelines for VLC OFDM system designs.

  9. Coded source imaging simulation with visible light

    Energy Technology Data Exchange (ETDEWEB)

    Wang Sheng [State Key Laboratory of Nuclear Physics and Technology and School of Physics, IHIP, Peking University, Yiheyuan Lu 5, Beijing 100871 (China); Zou Yubin, E-mail: zouyubin@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and School of Physics, IHIP, Peking University, Yiheyuan Lu 5, Beijing 100871 (China); Zhang Xueshuang; Lu Yuanrong; Guo Zhiyu [State Key Laboratory of Nuclear Physics and Technology and School of Physics, IHIP, Peking University, Yiheyuan Lu 5, Beijing 100871 (China)

    2011-09-21

    A coded source could increase the neutron flux with high L/D ratio. It may benefit a neutron imaging system with low yield neutron source. Visible light CSI experiments were carried out to test the physical design and reconstruction algorithm. We used a non-mosaic Modified Uniformly Redundant Array (MURA) mask to project the shadow of black/white samples on a screen. A cooled-CCD camera was used to record the image on the screen. Different mask sizes and amplification factors were tested. The correlation, Wiener filter deconvolution and Richardson-Lucy maximum likelihood iteration algorithm were employed to reconstruct the object imaging from the original projection. The results show that CSI can benefit the low flux neutron imaging with high background noise.

  10. Visible Light Responsive Catalyst for Air Water Purification Project

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Investigate and develop viable approaches to render the normally UV-activated TIO2 catalyst visible light responsive (VLR) and achieve high and sustaining catalytic activity under the visible region of the solar spectrum.

  11. On-chip integration for in-plane video transmission using visible light

    Science.gov (United States)

    Yang, Yongchao; Yuan, Jialei; Li, Yuanhang; Gao, Xumin; Wang, Yongjin

    2016-10-01

    We demonstrate a wafer-level process for achieving monolithic photonic integration of a light-emitting diode (LED) with a waveguide and photodiode on a GaN-on-silicon platform. Both silicon removal and back-side thinning are conducted to achieve a suspended device architecture. A highly confined waveguide that utilizes the large index contrast between GaN and air is used for the connection between the LED and the photodiode. The suspended waveguide is considered as an in-plane escape cone of the LED, and the photodiode is located at the other end of the waveguide. The photons emitted from the LED are transported to the photodiode through the suspended waveguide parallel to the LED surface, leading to in-plane data transport using visible light. This proof-of-concept monolithic integration paves the way towards in-plane visible light communication as well as photonic computation on a single chip.

  12. Catadioptric lenses in Visible Light Communications

    Science.gov (United States)

    Garcia-Marquez, J.; Valencia, J. C.; Perez, H.; Topsu, S.

    2015-04-01

    Since few years ago, visible light communications (VLC) have experience an accelerated interest from a research point of view. The beginning of this decade has seen many improvements in VLC at an electronic level. High rates of transmission at low bit error ratios (BER) have been reported. A few numbers of start-ups have initiated activities to offer a variety of applications ranging from indoor geo-localization to internet, but in spite of these advancements, some other problems arise. Long-range transmissions mean a high BER which reduce the number of applications. In this sense, new redesigned optical collectors or in some cases, optical reflectors must be considered to ensure a low BER at higher distance transmissions. Here we also expose a preliminary design of a catadioptric and monolithical lens for a LI-FI receiver with two rotationally symmetrical main piecewise surfaces za and zb. These surfaces are represented in a system of cylindrical coordinates with an anterior surface za with a central and refractive sector surrounded by a peripheral reflective sector and a back piecewise surface zb with a central refractive sector and a reflective sector, both characterized as ideal for capturing light within large acceptance angles.

  13. Photon recycling semiconductor light-emitting diode

    Science.gov (United States)

    Guo, Xiaoyun; Graff, John W.; Schubert, E. F.; Karlicek, Robert F., Jr.

    2000-04-01

    A new white light emitting diode, the photon recycling semiconductor light emitting diode (PRS-LED) is demonstrated. The device consists of a GaInN/GaN LED emitting in the blue spectral range and an AlGaInP photon recycling semiconductor emitting at the complementary color. Thus the PRS-LED has two emission peaks, one in the blue and one in the amber wavelength range. The theoretical luminous performance of the PRS-LED exceeds 300 lm/W, higher than the performance of phosphor-based white LEDs.

  14. Nonclassical light sources for silicon photonics

    Science.gov (United States)

    Bajoni, Daniele; Galli, Matteo

    2017-09-01

    Quantum photonics has recently attracted a lot of attention for its disruptive potential in emerging technologies like quantum cryptography, quantum communication and quantum computing. Driven by the impressive development in nanofabrication technologies and nanoscale engineering, silicon photonics has rapidly become the platform of choice for on-chip integration of high performing photonic devices, now extending their functionalities towards quantum-based applications. Focusing on quantum Information Technology (qIT) as a key application area, we review recent progress in integrated silicon-based sources of nonclassical states of light. We assess the state of the art in this growing field and highlight the challenges that need to be overcome to make quantum photonics a reliable and widespread technology.

  15. Slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Moulin, G.; Jacobsen, Rune Shim; Lavrinenko, Andrei

    report on the first experiments where a direct measure of the group velocity is performed; this is done by measuring the time delay of modulated light propagating through a photonic crystal waveguide. The structure is fabricated in silicon-on-insulator (SOI). A group index (c/vg) of up to almost 200 has...... been measured. Such a high group index makes the light-matter interaction extremely efficient, opening for new opportunities in micrometer-sized integrated lightwave circuits....

  16. Visible Discrimination of Broadband Infrared Light by Dye-Enhanced Upconversion in Lanthanide-Doped Nanocrystals

    OpenAIRE

    Dupuy, Charles G.; Allen, Thomas L.; Williams, George M.; David Schut

    2014-01-01

    Optical upconversion of near infrared light to visible light is an attractive way to capture the optical energy or optical information contained in low-energy photons that is otherwise lost to the human eye or to certain photodetectors and solar cells. Until the recent application of broadband absorbing optical antennas, upconversion efficiency in lanthanide-doped nanocrystals was limited by the weak, narrow atomic absorption of a handful of sensitizer elements. In this work, we extend the ro...

  17. Visible Light Communication Physical Layer Design for Jist Simulation

    Directory of Open Access Journals (Sweden)

    Tomaš Boris

    2014-12-01

    Full Text Available Current advances in computer networking consider using visible light spectrum to encode and decode digital data. This approach is relatively non expensive. However, designing appropriate MAC or any other upper layer protocol for Visible Light Communication (VLC requires appropriate hardware. This paper proposes and implements such hardware simulation (physical layer that is compatible with existing network stack.

  18. SINGLE: single photon sensitive cryogenic light detectors

    Science.gov (United States)

    Biassoni, Matteo; SINGLE Collaboration

    2017-09-01

    Thermal detectors operated at few mK as calorimeters are a powerful tool for the study of rare particle physics processes. In order to implement particle identification, light detection can be effectively performed by means of other thermal detectors operated as light sensors. This configuration can be used also in large scale, thousand-channels setups, but the light sensors must be sensitive enough to detect few, possibly a single, photons. The SINGLE project described here aims at producing silicon based, large area devices that can be operated as thermal detectors with single-photon sensitivity, and demonstrate the reliability of the performance, scalability of the production process and integrability with present and next generation cryogenic experiments for the search for rare events.

  19. The Development of Visible-Light Photoredox Catalysis in Flow.

    Science.gov (United States)

    Garlets, Zachary J; Nguyen, John D; Stephenson, Corey R J

    2014-04-01

    Visible-light photoredox catalysis has recently emerged as a viable alternative for radical reactions otherwise carried out with tin and boron reagents. It has been recognized that by merging photoredox catalysis with flow chemistry, slow reaction times, lower yields, and safety concerns may be obviated. While flow reactors have been successfully applied to reactions carried out with UV light, only recent developments have demonstrated the same potential of flow reactors for the improvement of visible-light-mediated reactions. This review examines the initial and continuing development of visible-light-mediated photoredox flow chemistry by exemplifying the benefits of flow chemistry compared with conventional batch techniques.

  20. Engineering photonic and plasmonic light emission enhancement

    Science.gov (United States)

    Lawrence, Nathaniel

    Semiconductor photonic devices are a rapidly maturing technology which currently occupy multi-billion dollar markets in the areas of LED lighting and optical data communication. LEDs currently demonstrate the highest luminous efficiency of any light source for general lighting. Long-haul optical data communication currently forms the backbone of the global communication network. Proper design of light management is required for photonic devices, which can increase the overall efficiency or add new device functionality. In this thesis, novel methods for the control of light propagation and confinement are developed for the use in integrated photonic devices. The first part of this work focuses on the engineering of field confinement within deep subwavelength plasmonic resonators for the enhancement of light-matter interaction. In this section, plasmonic ring nanocavities are shown to form gap plasmon modes confined to the dielectric region between two metal layers. The scattering properties, near-field enhancement and photonic density of states of nanocavity devices are studied using analytic theory and 3D finite difference time domain simulations. Plasmonic ring nanocavities are fabricated and characterized using photoluminescence intensity and decay rate measurements. A 25 times increase in the radiative decay rate of Er:Si02 is demonstrated in nanocavities where light is confined to volumes as small as 0.01( ln )3. The potential to achieve lasing, due to the enhancement of stimulated emission rate in ring nanocavities, is studied as a route to Si-compatible plasmon-enhanced nanolasers. The second part of this work focuses on the manipulation of light generated in planar semiconductor devices using arrays of dielectric nanopillars. In particular, aperiodic arrays of nanopillars are engineered for omnidirectional light extraction enhancement. Arrays of Er:SiNx, nanopillars are fabricated and a ten times increase in light extraction is experimentally demonstrated

  1. Enhancement of Light via Surface Plasmon Coupling in the Visible

    Science.gov (United States)

    Ray, Emily A.

    The incidence of light with momentum components outside the light cone on the surface of a negative permittivity material results in the excitation of a surface plasmon polariton and the enhancement of the incident signal when there is momentum and energy conservation. This process has an impact across many fields including imaging, optical computing, signaling, and photovoltaic devices, among others. I examine the role and tunability of light-surface plasmon interactions in several applications. I demonstrate a tuned metamaterial grating system that allows the signal from evanescent waves to be detected in the far field in the visible regime. I fabricate a metamaterial that is tuned to support surface plasmons that couple to visible light across a wide range of wavelengths. I characterize the plasmonic response through a simple technique wherein a the reflection from a subwavelength grating on a metamaterial indicates surface plasmon coupling when its intensity dips. With this I demonstrate that the reflection trends match well with simulation, indicating that coupling of light to surface plasmons occurs at the expected crossing points. The strength of coupling (denoted by the drop in reflection) however, is less than expected. Transmission measurements reveal a depolarizing effect that accounts for the decrease in evanescent light enhancement by the surface plasmons and is due to the surface roughness at the interfaces between the metal and dielectric. I also use a tuned metamaterial perforated with a subwavelength array of circular apertures to exhibit extraordinary transmission in the visible. I compare the transmission of the metamaterial to that of a thin film of Ag with equivalent thickness that has fewer plasmon modes and a resonance position in the UV to find that for 400 nm, both thin films exhibit a transmission minimum at 650 nm. Both film spectra have plasmon-aided extraordinary transmission peaks where there is momentum and energy conservation between

  2. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...

  3. Efficient Upconverting Multiferroic Core@Shell Photocatalysts: Visible-to-Near-Infrared Photon Harvesting.

    Science.gov (United States)

    Zhang, Jianming; Huang, Yue; Jin, Lei; Rosei, Federico; Vetrone, Fiorenzo; Claverie, Jerome P

    2017-03-08

    We report the two-step synthesis of a core@shell nanohybrid material for visible-to-near-infrared (NIR) photocatalysis. The core is constituted of NaGdF4:Er3+, Yb3+ upconverting nanoparticles (UCNPs). A bismuth ferrite (BFO) shell is assembled around the UCNPs via a hydrothermal process. The photocatalytic degradation assays of methylene orange and 4-chlorophenol reveal that these core@shell nanostructures possess remarkably enhanced reaction activity under visible and NIR irradiation, compared to the BFO powder alone and the BFO-UCNP mixture. Photo-charge scavenger tests and fluorescent assays indicate that hydroxyl radicals play a pivotal role in the photodegradation mechanism. The enhanced photoactivity of the core@shell structure is attributed to the NIR radiation which is converted into visible light by UCNPs, and which is then captured by BFO via a nonradiative luminescence resonance energy transfer process. Therefore, this core@shell architecture optimizes solar energy use by efficiently harvesting visible and NIR photons.

  4. A Carpet Cloak for Visible Light

    Science.gov (United States)

    2011-01-01

    of transformation optical devices at visible frequencies. KEYWORDS:Optical metamaterials , invisibility cloak , transformation optics, nanofabrication...Berkeley, California 94720, United States Invisibility cloaks , a family of optical illusion devices that routeelectromagnetic (EM) waves around an object...EM properties, known as metamaterials ,1,2 have been used to control the propagation of EM waves. Metamaterials have been applied to cloaking using the

  5. High Density Metamaterials for Visible Light

    Science.gov (United States)

    2016-11-28

    reviewing instructions, searching existing   data sources, gathering and maintaining the data needed, and completing and reviewing the collection of...nanophotonic DNA biosensors ,” J. Am. Chem. Soc., vol. 131, no. 48, pp. 17615–17619, 2009. [15] G. Sarau, B. Lahiri, P. Banzer, P. Gupta, A. Bhattacharya...Searching for better plasmonic materials,” Laser and Photonics Reviews , vol. 4, no. 6. DISTRIBUTION A. Approved for public release: distribution

  6. Photonic crystals: putting a new twist on light

    Science.gov (United States)

    Joannopoulos, J. D.; Villeneuve, Pierre R.; Fan, Shanhui

    1997-03-01

    Photonic crystals are materials patterned with a periodicity in dielectric constant, which can create a range of 'forbidden' frequencies called a photonic bandgap. Photons with energies lying in the bandgap cannot propagate through the medium. This provides the opportunity to shape and mould the flow of light for photonic information technology.

  7. Implementasi Visible Light Communication (VLC Pada Sistem Komunikasi

    Directory of Open Access Journals (Sweden)

    ARSYAD RAMADHAN DARLIS

    2017-06-01

    Full Text Available Abstrak Perkembangan teknologi telah menunjukkan peningkatan yang cukup signifikan, terutama untuk bidang komunikasi. Hal ini terbukti dengan banyaknya media komunikasi baik itu nirkabel dan kabel. Pada penelitian ini dimanfaatkan cahaya tampak sebagai media dalam sistem komunikasi, dimana selama ini cahaya hanya digunakan sebagai penerangan saja. Visible Light Communication (VLC adalah sebuah teknologi komunikasi yang memanfaatkan pancaran cahaya tampak dari lampu pada sistem komunikasi. Sistem komunikasi visible light ini terdiri dari pemancar dan penerima. Pemancar terdiri dari Light Emitting Dioda, audio transformator dan baterai, dan pada penerima terdiri dari solar cell dan photodioda, amplifier dan catu daya. Hal-hal yang dapat mempengaruhi hasil output sistem komunikasi adalah jarak, terang cahaya lampu pemancar dan cahaya luar. Pada penelitian ini, komunikasi menggunakan VLC dapat dilakukan pada jarak pengiriman data sebesar 2,5 m dan dengan range frekuensi 600 Hz sampai dengan 45 kHz dimana data dapat disalurkan dengan baik. Kata kunci: Visible light, Sistem komunikasi, Light Emitting Dioda, solar cell, photodioda. Abstract Technological developments have shown a significant increase, especially in the field of communication. This is proved by the many communications media using both wireless and wired. This study utilized the visible light as a medium of communication system, which has been used as an illumination light only. Visible Light Communication (VLC is a communication technology which utilize visible light emitted from the lamp in the communication system. The visible light communication system consists of a transmitter and receiver. The transmitter consists of a Light Emitting Diode, audio transformer and battery, and the receiver consists of a solar cell and a photodiode, amplifier and power supply. Things that can affect the output of the communication system is the distance, bright light and outdoor light. In the research

  8. Carbon dioxide photoconversion driven by visible-light excitation of small carbon nanoparticles in various configurations

    Science.gov (United States)

    Sahu, Sushant; Cao, Li; Meziani, Mohammed J.; Bunker, Christopher E.; Shiral Fernando, K. A.; Wang, Ping; Sun, Ya-Ping

    2015-08-01

    In the CO2 sequestration, a desirable yet challenging option is the photocatalytic conversion with solar irradiation. While nanoscale semiconductors have been at the center of attention in the development of suitable photocatalysts for the CO2 conversion, carbon nanoparticles have recently emerged as a new class of photoactive materials for harvesting visible photons to drive photocatalytic processes. Results from this study demonstrate that aqueous suspended bare carbon nanoparticles could be excited with visible light to photocatalytically convert CO2 into formic acid, with the performance competitive to that of widely used semiconductor nanoparticles.

  9. Security in Visible Light Communication: Novel Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Christian ROHNER

    2015-09-01

    Full Text Available As LED lighting becomes increasingly ubiquitous, Visible Light Communication is attracting the interest of academia and industry as a complement to RF as the physical layer for the Internet of Things. Aside from its much greater spectral availability compared to RF, visible light has several attractive properties that may promote its uptake: its lack of health risks, its opportunities for spatial reuse, its relative immunity to multipath fading, its lack of electromagnetic interference, and its inherently secure nature: differently from RF, light does not penetrate through walls. In this paper, we outline the security implications of Visible Light Communication, review the existing contributions to this under-explored space, and survey the research opportunities that we envision for the near future.

  10. Mechanochemical Synthesis of Visible Light Sensitive Titanium Dioxide Photocatalyst

    Directory of Open Access Journals (Sweden)

    Jan Šubrt

    2011-01-01

    Full Text Available Phase transition of anatase nanoparticles into the phases TiO2-II and rutile under grinding was studied. The addition of ammonium carbamate to the reaction mixture inhibits the phase conversion and the cold welding of particles. The UV-visible absorption spectrum showed narrowing the band gap width after grinding with an ammonium carbamate additive resulting in shift of the light absorption of the ground sample towards the visible region. By EPR, intensive formation of OH• radical at irradiation of the sample with both UV (λ > 300 nm and visible (λ > 435 nm light was observed. High photocatalytic activity of the ground sample in visible light region was demonstrated also by measurement of kinetics of the photocatalytic decomposition of 4-chlorophenol.

  11. Complex Photonic Structures for Light Harvesting.

    Science.gov (United States)

    Burresi, Matteo; Pratesi, Filippo; Riboli, Francesco; Wiersma, Diederik Sybolt

    2015-06-01

    Over the last few years, micro- and nanophotonics have roused a strong interest in the scientific community for their promising impact on the development of novel kinds of solar cells. Certain thin- and ultrathin-film solar cells are made of innovative, often cheap, materials which suffer from a low energy conversion efficiency. Light-trapping mechanisms based on nanophotonics principles are particularly suited to enhance the absorption of electromagnetic waves in these thin media without changing the material composition. In this review, the latest results achieved in this field are reported, with particular attention to the realization of prototypes, spanning from deterministic to disordered photonic architectures, and from dielectric to metallic nanostructures.

  12. Visible Discrimination of Broadband Infrared Light by Dye-Enhanced Upconversion in Lanthanide-Doped Nanocrystals

    Directory of Open Access Journals (Sweden)

    Charles G. Dupuy

    2014-01-01

    Full Text Available Optical upconversion of near infrared light to visible light is an attractive way to capture the optical energy or optical information contained in low-energy photons that is otherwise lost to the human eye or to certain photodetectors and solar cells. Until the recent application of broadband absorbing optical antennas, upconversion efficiency in lanthanide-doped nanocrystals was limited by the weak, narrow atomic absorption of a handful of sensitizer elements. In this work, we extend the role of the optical antenna to provide false-color, visible discrimination between bands of infrared radiation. By pairing different optical antenna dyes to specific nanoparticle compositions, unique visible emission is associated with different bands of infrared excitation. In one material set, the peak emission was increased 10-fold, and the width of the spectral response was increased more than 10-fold.

  13. VISIBLE LIGHT INDUCED PHOTOCATALYTIC DEGRADATION OF ...

    African Journals Online (AJOL)

    a

    Photocatalytic degradation of eosin and erythrosin-B (xanthene dyes) has been carried out using anthracene semiconductor ... KEY WORDS: Photocatalytic, Degradation, Xanthene dyes, Immobilized anthracene ... light intensity was measured with the help of a solarimeter (Surya Mapi Model CEL 201, India). The progress ...

  14. VISIBLE LIGHT INDUCED PHOTOCATALYTIC DEGRADATION OF ...

    African Journals Online (AJOL)

    a

    ABSTRACT. Photocatalytic degradation of eosin and erythrosin-B (xanthene dyes) has been carried out using anthracene semiconductor immobilized on polyethylene films. Effect of various parameters like pH, concentration of dyes, amount of semiconductor and light intensity have been studied on the rate of reaction.

  15. In-plane visible light communication made with InGaN turning mirror

    Science.gov (United States)

    Yuan, Jialei; Shi, Zheng; Li, Xin; Yang, Yongchao; Gao, Xumin; Jiang, Yuan; Du, Guanxiang; Wang, Yongjin

    2017-11-01

    The refractive index contrast between AlGaN and InGaN leads to the formation of an optically-confined InGaN waveguide structure. Therefore, we propose a simple fabrication procedure to achieve on-chip photonic integration including a light source, waveguide, beam splitter, turning mirror and photodiode on an III-nitride-on-silicon platform. By inserting InGaN/GaN multiple-quantum-well active layer inside the InGaN waveguide, the emitted light is confined and coupled to the light waveguide. The in-plane light propagation that is directly observed due to the visible light emission is manipulated by the beam splitter and turning mirror. The waveguide-splitter-mirror-integrated III-nitride photonic circuit experimentally demonstrates an in-plane data transmission at 50 Mbps using visible light, suggesting its great potential for diverse applications in on-chip power monitoring, high-resolution blue printing and in-plane light communication.

  16. Microtruss structures with enhanced elasticity fabricated through visible light photocuring

    Directory of Open Access Journals (Sweden)

    Hari Nanthakumar

    Full Text Available We report on the fabrication of an open cellular solid structure using visible light photocuring in combination with light-induced self-writing. A visible light sensitive photopolymer is irradiated with multiple arrays of microscale optical beams, which are generated from LEDs. These beams undergo self-trapping and elicit the inscription of microscale, solid struts into the medium. This process creates a structure consisting of multiple, intersecting struts that form a microtruss structure. Such structures retain their elasticity at higher temperatures as compared to a bulk film of the same thickness. This is the first demonstration of visible light photocuring of photopolymers into a microtruss structure, as well as investigation into their elastic properties under tension. Keywords: Polymers, Self-trapping, Microstructures, Cellular solids

  17. Ultraviolet and visible light penetration of epidermis

    Energy Technology Data Exchange (ETDEWEB)

    Eggset, G.; Kavli, G.; Volden, G. (Tromsoe Univ. (Norway). Dept. of Dermatology); Krokan, H. (Tromsoe Univ. (Norway). Inst. of Medical Biology)

    1984-10-01

    Light penetration in untanned skin and skin tanned with UVB (middlewave ultraviolet light) or PUVA (Psoralen photochemotherapy) was compared. Transmission at different wavelengths was measured through sheets of intact epidermis isolated by a suction blister technique. Thick epidermis was collected from a newly formed palmar friction bulla. For these studies a monochromator was used and the range of wavelengths examined was 280-700 nm. The transmission was considerably lower in tanned skin and the difference was most pronounced in the UV range. In the UVB range (290-320 nm), transmission was 13-43% for untanned epidermis, 8-12% for UVB tanned and slightly lower for PUVA tanned epidermis. At wavelengths below 325 nm only a few per cent of light penetrate through thick palmar epidermis. Both UVB and PUVA induce increased melanin content and thickening of the epidermis. Our results indicate that melanin is the most efficient protection against UVA while thickening of epidermis may be as important as the increased melanin content for the protection of living basal cells against the harmful UVB rays.

  18. Improved spring model-based collaborative indoor visible light positioning

    Science.gov (United States)

    Luo, Zhijie; Zhang, WeiNan; Zhou, GuoFu

    2016-06-01

    Gaining accuracy with indoor positioning of individuals is important as many location-based services rely on the user's current position to provide them with useful services. Many researchers have studied indoor positioning techniques based on WiFi and Bluetooth. However, they have disadvantages such as low accuracy or high cost. In this paper, we propose an indoor positioning system in which visible light radiated from light-emitting diodes is used to locate the position of receivers. Compared with existing methods using light-emitting diode light, we present a high-precision and simple implementation collaborative indoor visible light positioning system based on an improved spring model. We first estimate coordinate position information using the visible light positioning system, and then use the spring model to correct positioning errors. The system can be employed easily because it does not require additional sensors and the occlusion problem of visible light would be alleviated. We also describe simulation experiments, which confirm the feasibility of our proposed method.

  19. Visible and ultraviolet light sources based nonlinear interaction of lasers

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Tidemand-Lichtenberg, Peter; Jain, Mayank

    Different light sources can be used for optically stimulated luminescence measurements and usually a halogen lamp in combination with filters or light emitting diodes (LED’s) are used to provide the desired stimulation wavelength. However lasers can provide a much more well-defined beam, very...... for synthesizing any wavelength in the visible and ultraviolet light based sum frequency generation between two lasers is presented....

  20. Aviation signal lighting : impacts of lighting characteristics on visibility.

    Science.gov (United States)

    2011-01-01

    This paper summarizes research on visual responses to colored light signals in the aviation and : roadway environment and on government requirements for lighting along airfields. The objective : is to identify gaps in the knowledge about how individu...

  1. Few photon switching with slow light in hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    Cold atoms confined inside a hollow-core photonic-crystal fiber with core diameters of a few photon wavelengths are a promising medium for studying nonlinear optical interactions at extremely low light levels. The high electric field intensity per photon and interaction lengths not limited by dif...

  2. Silicon light-emitting diodes and lasers photon breeding devices using dressed photons

    CERN Document Server

    Ohtsu, Motoichi

    2016-01-01

    This book focuses on a novel phenomenon named photon breeding. It is applied to realizing light-emitting diodes and lasers made of indirect-transition-type silicon bulk crystals in which the light-emission principle is based on dressed photons. After presenting physical pictures of dressed photons and dressed-photon phonons, the principle of light emission by using dressed-photon phonons is reviewed. A novel phenomenon named photon breeding is also reviewed. Next, the fabrication and operation of light emitting diodes and lasers are described The role of coherent phonons in these devices is discussed. Finally, light-emitting diodes using other relevant crystals are described and other relevant devices are also reviewed.

  3. Visible light guided manipulation of liquid wettability on photoresponsive surfaces

    Science.gov (United States)

    Kwon, Gibum; Panchanathan, Divya; Mahmoudi, Seyed Reza; Gondal, Mohammed A.; McKinley, Gareth H.; Varanasi, Kripa K.

    2017-04-01

    Photoresponsive titania surfaces are of great interest due to their unique wettability change upon ultraviolet light illumination. However, their applications are often limited either by the inability to respond to visible light or the need for special treatment to recover the original wettability. Sensitizing TiO2 surfaces with visible light-absorbing materials has been utilized in photovoltaic applications. Here we demonstrate that a dye-sensitized TiO2 surface can selectively change the wettability towards contacting liquids upon visible light illumination due to a photo-induced voltage across the liquid and the underlying surface. The photo-induced wettability change of our surfaces enables external manipulation of liquid droplet motion upon illumination. We show demulsification of surfactant-stabilized brine-in-oil emulsions via coalescence of brine droplets on our dye-sensitized TiO2 surface upon visible light illumination. We anticipate that our surfaces will have a wide range of applications including microfluidic devices with customizable wettability, solar-driven oil-water clean-up and demulsification technologies.

  4. Properties of magnetic photonic crystals in the visible spectral region and their performance limitations

    Science.gov (United States)

    Kotov, V. A.; Shavrov, V. G.; Vasiliev, M.; Alameh, K.; Nur-E-Alam, M.; Balabanov, D. E.

    2018-02-01

    We report on the results of computer modelling and performance analysis of the optical and magneto-optical (MO) characteristics of one-dimensional magnetic photonic crystals (MPC) of several classic design types (having either a single structure defect, or a number of these), designed for applications in the visible spectral region. The calculations are performed accounting for the real levels of optical absorption achievable in existing MO materials which currently demonstrate the best MO quality (bismuth-substituted ferrite garnets). We consider Bi2Dy1Fe4Ga1O12 as the base material for use within quarter-wave thick MO layers of MPC; silica is used for the non-magnetic transparent quarter-wave layers. The achieved results can be used to clarify the nature of the differences that exist between the expected practical potential of MPCs in integrated photonics, and the actual attained experimental results. Our results show that in MPCs optimized for light intensity modulation applications, in the red spectral region (near 650 nm), the achievable levels of optical transmission are limited to about 30%. This coincides spectrally with the peaks of Faraday rotation reaching their maxima at about 25°, with further transmission increases possible in the near-infrared region. Larger Faraday rotation angles are only achievable currently in structures or single film layers with reduced transmission.

  5. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  6. Slow-light effects in photonic crystal membrane lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted.......In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....

  7. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.

    Science.gov (United States)

    Matsuda, Nobuyuki; Takesue, Hiroki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya

    2013-04-08

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  8. Towards a complete photonic band gap in the visible

    NARCIS (Netherlands)

    Velikov, K.P.

    2002-01-01

    The first part of the thesis describes the fabrication and the characterization of face-centered-cubic (fcc) photonic crystals (PCs) of dielectric (core-shell) spheres in a low-dielectric host (air). We demonstrate the synthesis and optical characterization of the PC's building blocks: well-defined

  9. Development of Visible Light-Responsive Sensitized Photocatalysts

    Directory of Open Access Journals (Sweden)

    Donghua Pei

    2012-01-01

    Full Text Available The paper presents a review of studies about the visible-light-promoted photodegradation of the contaminants and energy conversion with sensitized photocatalysts. Herein we studied mechanism, physical properties, and synergism effect of the sensitized photocatalysts as well as the method for enhancing the photosensitized effect. According to the reported studies in the literature, inorganic sensitizers, organic dyes, and coordination metal complexes were very effective sensitizers that were studied mostly, of which organic dyes photosensitization is the most widely studied modified method. Photosensitization is an important way to extend the excitation wavelength to the visible range, and therefore sensitized photocatalysts play an important role in the development of visible light-responsive photocatalysts for future industrialized applications. This paper mainly describes the types, modification, photocatalytic performance, application, and the developments of photosensitization for environmental application.

  10. Enhancement of visible light irradiation photocatalytic activity of ...

    Indian Academy of Sciences (India)

    Mohamed Abdel Salam

    2017-09-25

    Sep 25, 2017 ... Yin D and Zhao F 2015 Visible-light-responsive sulfated vanadium-doped TS-1 with hollow structure: Enhanced photocatalytic activity in selective oxidation of cyclo- hexane J. Catal. 330 208. 11. Kim J, Ichikuni N, Hara T and Shimazu S 2016 Study on the selectivity of propane photo-oxidation reaction on.

  11. Using Polarization features of visible light for automatic landmine detection

    NARCIS (Netherlands)

    Jong, W. de; Schavemaker, J.G.M.

    2007-01-01

    This chapter describes the usage of polarization features of visible light for automatic landmine detection. The first section gives an introduction to land-mine detection and the usage of camera systems. In section 2 detection concepts and methods that use polarization features are described.

  12. Integrating TEMPO and Its Analogues with Visible-Light Photocatalysis.

    Science.gov (United States)

    Lang, Xianjun; Zhao, Jincai

    2018-01-16

    Visible light has risen to become a very important facilitator for selective radical reactions enabled by well-cognized photocatalysts. The renaissance of visible-light photocatalysis on this matter partly relies on integrating it with other fields of catalysis. In parallel, 2,2,6,6-tetramethylpiperidin N-oxide (TEMPO), a quintessential persistent radical, has a wide range of uses owing to its exceptional redox behavior, which gives rise to its latest prominence in catalysis. Therefore, integrating the catalysis of TEMPO with photocatalysis to perform visible-light-induced selective reactions becomes a very convenient marriage of merits. In this context, the integration of different types of photocatalysts, including metal complexes, metal-free organic dyes, and semiconductors, with TEMPO for outstanding organic transformations will be summarized. To expand further the catalytic repertoire, the integration of TEMPOH analogues such as NHPI (N-hydroxyphthalimide) and NHS (N-hydroxysuccinimide) with photocatalysis will also be discussed. Hopefully, these advances will pave the way for more breakthroughs by integrating TEMPO and its analogues with photocatalysis to lead to a valuable blueprint for visible-light-induced selective organic transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhancement of visible light irradiation photocatalytic activity of ...

    Indian Academy of Sciences (India)

    SrTiO₃ and Pt/SrTiO₃ nanoparticles were characterized by XRD, XPS, TEM, BET surface area UV–Vis and PL techniques in order to explore their chemical and physical properties. The visible light irradiation photocatalyticperformances of SrTiO₃ nanoparticles and Pt/SrTiO₃ nanoparticles for photocatalytic oxidation of ...

  14. Visible light photocatalytic properties of novel molybdenum treated ...

    Indian Academy of Sciences (India)

    Visible light photocatalytic properties of novel molybdenum treated carbon nanotube/titania composites. FENG-JUN ZHANG† and WON-CHUN OH. ∗. School of Materials and Chemical Engineering, Anhui University of Architecture, Anhui Hefei 230022,. P. R. China. †Department of Advanced Materials & Engineering, ...

  15. Photonic hypercrystals for control of light-matter interactions

    Science.gov (United States)

    Galfsky, Tal; Gu, Jie; Narimanov, Evgenii E.; Menon, Vinod M.

    2017-05-01

    Photonic crystals (PCs) have emerged as one of the most widely used platforms for controlling light-matter interaction in solid-state systems. They rely on Bragg scattering from wavelength-sized periodic modulation in the dielectric environment for manipulating the electromagnetic field. A complementary approach to manipulate light-matter interaction is offered by artificial media known as metamaterials that rely on the average response of deep-subwavelength unit cells. Here we demonstrate a class of artificial photonic media termed “photonic hypercrystals” (PHCs) that combine the large broadband photonic density of states provided by hyperbolic metamaterials with the light-scattering efficiency of PCs. Enhanced radiative rate (20×) and light outcoupling (100×) from PHCs embedded with quantum dots is observed. Such designer photonic media with complete control over the optical properties provide a platform for broadband control of light-matter interaction.

  16. Light polarization oscillations induced by photon-photon scattering

    Science.gov (United States)

    Briscese, Fabio

    2017-11-01

    We consider the Heisenberg-Euler action for an electromagnetic field in vacuum, which includes quantum corrections to the Maxwell equations induced by photon-photon scattering. We show that, in some configurations, the plane monochromatic waves become unstable, due to the appearance of secularities in the dynamical equations. These secularities can be treated using a multiscale approach, introducing a slow time variable. The amplitudes of the plane electromagnetic waves satisfy a system of ordinary differential nonlinear equations in the slow time. The analysis of this system shows that, due to the effect of photon-photon scattering, in the unstable configurations the electromagnetic waves oscillate periodically between left-hand-sided and right-hand-sided polarizations. Finally, we discuss the physical implications of this finding and the possibility of disclosing traces of this effect in optical experiments.

  17. A possible mechanism for visible light-induced wound healing.

    Science.gov (United States)

    Lipovsky, Anat; Nitzan, Yeshayahu; Lubart, Rachel

    2008-09-01

    Chronic wounds resistant to conventional therapy have been treated successfully with low energy lasers and light emitting diodes (LEDs) in the visible and near IR region. It has been proposed that production of low level reactive oxygen species (ROS) following illumination is the first step of photobiomodulation. It was also shown that white light (400-800 nm) has similar stimulatory effects as lasers and LEDs. ROS at higher levels are toxic to cells and bacteria. In the present study, we examined the phototoxicity of broadband (400-800 nm, 120 J/cm(2)) visible light on the survival of several pathogenic bacteria: Staphylococcus aureus 195, Pseudomonas aeruginosa 1316, Escherichia coli 1313, and Serratia marcescens. These bacteria were chosen due to their high prevalence in infected wounds. The survival of bacterial cells following illumination was monitored by counting the number of colony forming units before and after exposure to light. Illumination with white light, 120 J/cm(2), caused a reduction of 62%, 83%, and 56% in the colony count of E. coli 1313, S. aureus 195 and S. marcescens, respectively, though no reduction in the viability of P. aeruginosa 1316 was demonstrated. The phototoxic effect was found to involve induction of ROS production by the bacteria. It was also found that illumination of S. aureus 195 and E. coli 1313 in the presence of pyocyanin, known to be secreted by P. aeruginosa, had a stronger bactericidal effect compared to illumination alone. Visible light at high intensity can kill bacteria in infected wounds. Thus, illumination of infected wounds with intense visible light, prior to low intensity illumination for stimulating wound closure, may reduce infection and promote healing.

  18. The nature of light what is a photon?

    CERN Document Server

    Roychoudhuri, Chandra; Creath, Kathy

    2008-01-01

    Focusing on the unresolved debate between Newton and Huygens from 300 years ago, The Nature of Light: What is a Photon? discusses the reality behind enigmatic photons. It explores the fundamental issues pertaining to light that still exist today. Gathering contributions from globally recognized specialists in electrodynamics and quantum optics, the book begins by clearly presenting the mainstream view of the nature of light and photons. It then provides a new and challenging scientific epistemology that explains how to overcome the prevailing paradoxes and confusions arising from the accepted definition of a photon as a monochromatic Fourier mode of the vacuum. The book concludes with an array of experiments that demonstrate the innovative thinking needed to examine the wave-particle duality of photons. Looking at photons from both mainstream and out-of-box viewpoints, this volume is sure to inspire the next generation of quantum optics scientists and engineers to go beyond the Copenhagen interpretat...

  19. Visible-Light-Activated Bactericidal Functions of Carbon "Quantum" Dots.

    Science.gov (United States)

    Meziani, Mohammed J; Dong, Xiuli; Zhu, Lu; Jones, Les P; LeCroy, Gregory E; Yang, Fan; Wang, Shengyuan; Wang, Ping; Zhao, Yiping; Yang, Liju; Tripp, Ralph A; Sun, Ya-Ping

    2016-05-04

    Carbon dots, generally defined as small carbon nanoparticles with various surface passivation schemes, have emerged as a new class of quantum-dot-like nanomaterials, with their optical properties and photocatalytic functions resembling those typically found in conventional nanoscale semiconductors. In this work, carbon dots were evaluated for their photoinduced bactericidal functions, with the results suggesting that the dots were highly effective in bacteria-killing with visible-light illumination. In fact, the inhibition effect could be observed even simply under ambient room lighting conditions. Mechanistic implications of the results are discussed and so are opportunities in the further development of carbon dots into a new class of effective visible/natural light-responsible bactericidal agents for a variety of bacteria control applications.

  20. Visible light communication: Applications, architecture, standardization and research challenges

    Directory of Open Access Journals (Sweden)

    Latif Ullah Khan

    2017-05-01

    Full Text Available The Radio Frequency (RF communication suffers from interference and high latency issues. Along with this, RF communication requires a separate setup for transmission and reception of RF waves. Overcoming the above limitations, Visible Light Communication (VLC is a preferred communication technique because of its high bandwidth and immunity to interference from electromagnetic sources. The revolution in the field of solid state lighting leads to the replacement of florescent lamps by Light Emitting Diodes (LEDs which further motivates the usage of VLC. This paper presents a survey of the potential applications, architecture, modulation techniques, standardization and research challenges in VLC.

  1. Integrated Visible Photonics for Trapped-Ion Quantum Computing

    Science.gov (United States)

    2017-06-10

    necessarily reflect the views of the Department of Defense. Abstract- A scalable trapped-ion-based quantum- computing architecture requires the...span the visible and near IR spectrum. Further, a scalable trap architecture requires many (thousands to millions of) ions in close proximity to one...silicon nitride separated by a 2-µm oxide gap. The platform is similar in structure to those demonstrated by others for 1550 nm operation [2], but here

  2. Reflection beamshifts of visible light due to graphene

    Science.gov (United States)

    Hermosa, Nathaniel

    2016-02-01

    I present calculations of reflection beamshifts, Goos-Hänchen and Imbert-Fedorov shifts, due to the presence of a graphene monolayer on a dielectric medium when using a beam with wavelength in the visible range. Measuring the Goos-Hänchen and Imbert-Fedorov shifts is an alternative method to determine graphene’s conductivity. I look at beamshifts for different polarization states (p, s, 450, {σ }+) and I discuss other possible experimental routes to determine these beamshifts and consequently, the graphene’s optical conductivity. The Goos-Hänchen shifts for visible light I calculated are in good agreement with results of a recent experiment.

  3. Third-order gap plasmon based metasurfaces for visible light

    DEFF Research Database (Denmark)

    Deshpande, Rucha Anil; Pors, Anders; Bozhevolnyi, Sergey I.

    2017-01-01

    -order GSP resonance and thereby involve relatively large nanobricks, can successfully be used for efficient polarization-controlled steering of visible light. The reflection amplitude and phase maps for a 450 nm period array of 50 nm thick nanobricks placed atop a 40 nm thick silica layer supported...... with different dimensions, to operate as a polarization beam splitter for linearly polarized light. The fabricated polarization beam splitter is characterized using a super-continuum light source at normal light incidence and found to exhibit a polarization contrast ratio of up to 40 dB near the design...... (electric field perpendicular to the plane of diffraction) being significantly better (experimentally > 20 % and theoretically > 40 %) than for the TM polarization. This difference becomes even more pronounced for the light incidence deviating from normal. Finally, we discuss possible improvements...

  4. Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber.

    Science.gov (United States)

    Mridha, M K; Novoa, D; Bauerschmidt, S T; Abdolvand, A; St J Russell, P

    2016-06-15

    We report on the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagomé-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the "fiber + gas" system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way toward tunable fiber-based sources of deep and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

  5. Visible light emission and energy transfer processes in Sm-doped nitride films

    Science.gov (United States)

    Zanatta, A. R.

    2012-06-01

    Even though the great interest in studying the near-infrared light emission due to Er3+ ions for telecommunication purposes, efficient visible radiation can be achieved from many different rare-earth (RE) ions. In fact, visible and/or near-infrared light emission takes place in RE-doped wide bandgap semiconductors following either photon or electron excitation, suggesting their technological potential in devices such as light-emitting diodes (LED's) and flat-panel displays, for example. Taking into consideration these aspects, the present contribution reports on the investigation of AlN, BeN, GeN, and SiN thin films doped with samarium. The samples were prepared by sputtering and as a result of the deposition method and conditions they present an amorphous structure and Sm concentrations in the low 0.5 at. %. After deposition, the samples were submitted to thermal annealing treatments and investigated by different spectroscopic techniques. A detailed examination of the experimental data allowed to identify optical transitions due to Sm3+ and Sm2+ ions as well as differences in their mechanisms of photon excitation and recombination. Moreover, it is shown that the Sm-related spectral features and emission intensity are susceptible, respectively, to the atomic environment the Sm3+/Sm2+ ions experience and to the presence of non-radiative recombination centers.

  6. Robust photonic differentiator employing slow light effect in photonic crystal waveguide

    DEFF Research Database (Denmark)

    Yan, Siqi; Cheng, Ziwei; Frandsen, Lars Hagedorn

    2017-01-01

    A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated.......A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated....

  7. Enhanced photoresponse towards visible light in Ru doped titania nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M. Alam [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, 664-14 Dukjin dong, 1Ga, Jeonju 719-756 (Korea, Republic of); School of Display and Chemical Engineering, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749 (Korea, Republic of); Han, Do Hung [School of Display and Chemical Engineering, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749 (Korea, Republic of); Yang, O.-Bong [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, 664-14 Dukjin dong, 1Ga, Jeonju 719-756 (Korea, Republic of)], E-mail: obyang@chonbuk.ac.kr

    2009-01-01

    Doping of ruthenium by the ion exchange method to the hydrothermally synthesized titania nanotube (TiNT) was found to be an effective photocatalyst active under visible light for methylene blue dye decoloration. The well dispersed and well embedded ionized ruthenium particles of about {approx}2-4 nm significantly reduced the band gap energy of synthesized TiNTs from 3.1 eV to 2.56 eV in (Ru(IE)/TiNT). The loading method, size of ruthenium particles and metal dispersion pattern at the nanotube textures have great influence on its photocatalytic performances exhibiting higher photocatalytic activity (>80%) of methylene blue dye. However, large aggregated ruthenium particles (sizes {approx}12-60 nm) on Ru(IM)/TiNT prepared by impregnation method failed to respond in visible light. The prepared catalysts were analysed by TEM, FESEM, FE-SEMEDX, XRD, UV-vis DRS spectra, XPS and BET surface area techniques.

  8. A fast, visible-light-sensitive azobenzene for bioorthogonal ligation.

    Science.gov (United States)

    Poloni, Claudia; Szymański, Wiktor; Hou, Lili; Browne, Wesley R; Feringa, Ben L

    2014-01-20

    Azobenzenes have been used as photoresponsive units for the control of numerous biological processes. Primary prerequisites for such applications are site-selective incorporation of photoswitchable units into biomolecules and the possibility of using non-destructive and deep-tissue-penetrating visible light for the photoisomerization. Here we report a push-pull azobenzene that readily undergoes a Staudinger-Bertozzi ligation with azide groups, that can be addressed with visible light (>440 nm) and exhibits the solvato- and acidochromism typical for push-pull systems. The thermal relaxation in aqueous environment proceeds on the low-millisecond timescale, thus enabling control over biological processes on similar timescales. The approach is demonstrated in the modification of a quartz surface and in the incorporation of an azobenzene unit into a functional peptide, the third zinc finger in the mammalian factor Sp1. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Heterogeneous visible light photocatalysis for selective organic transformations.

    Science.gov (United States)

    Lang, Xianjun; Chen, Xiaodong; Zhao, Jincai

    2014-01-07

    The future development of chemistry entails environmentally friendly and energy sustainable alternatives for organic transformations. Visible light photocatalysis can address these challenges, as reflected by recent intensive scientific endeavours to this end. This review covers state-of-the-art accomplishments in visible-light-induced selective organic transformations by heterogeneous photocatalysis. The discussion comprises three sections based on the photocatalyst type: metal oxides such as TiO2, Nb2O5 and ZnO; plasmonic photocatalysts like nanostructured Au, Ag or Cu supported on metal oxides; and polymeric graphitic carbon nitride. Finally, recent strides in bridging the gap between photocatalysis and other areas of catalysis will be highlighted with the aim of overcoming the existing limitations of photocatalysis by developing more creative synthetic methodologies.

  10. Photocatalytic Degradation of Thiram (Fungicides under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Sanjay R. Thakare

    2005-01-01

    Full Text Available Pesticides in the different form are toxic to the environment and removal of its form the various sources is a difficult task. The thiram undergoes photocatalytic degradation under visible light when prepared TiO2∼PVA polymer composite was used as a photocatalyst. The data represent that prepared TiO2∼PVA polymer composite is a more efficient photocatalyst than the neat TiO2. Photocatalytic efficiency of prepared TiO2∼PVA polymer composite was measured in term of no adsorption of pollutant, higher degradation rate and act as a photocatalyst under visible light irradiation. 150 minutes are required for the complete degradation of the thiram. The end products of photocatalytic degradation of thiram are CO2, nitrate and sulphate.

  11. Multipath Reflections Analysis on Indoor Visible Light Positioning System

    CERN Document Server

    Gu, Wenjun; Kavehrad, Mohsen

    2015-01-01

    Visible light communication (VLC) has become a promising research topic in recent years, and finds its wide applications in indoor environments. Particularly, for location based services (LBS), visible light also provides a practical solution for indoor positioning. Multipath-induced dispersion is one of the major concerns for complex indoor environments. It affects not only the communication performance but also the positioning accuracy. In this paper, we investigate the impact of multipath reflections on the positioning accuracy of indoor VLC positioning systems. Combined Deterministic and Modified Monte Carlo (CDMMC) approach is applied to estimate the channel impulse response considering multipath reflections. Since the received signal strength (RSS) information is used for the positioning algorithm, the power distribution from one transmitter in a typical room configuration is first calculated. Then, the positioning accuracy in terms of root mean square error is obtained and analyzed.

  12. Visible light laser voltage probing on thinned substrates

    Science.gov (United States)

    Beutler, Joshua; Clement, John Joseph; Miller, Mary A.; Stevens, Jeffrey; Cole, Jr., Edward I.

    2017-03-21

    The various technologies presented herein relate to utilizing visible light in conjunction with a thinned structure to enable characterization of operation of one or more features included in an integrated circuit (IC). Short wavelength illumination (e.g., visible light) is applied to thinned samples (e.g., ultra-thinned samples) to achieve a spatial resolution for laser voltage probing (LVP) analysis to be performed on smaller technology node silicon-on-insulator (SOI) and bulk devices. Thinning of a semiconductor material included in the IC (e.g., backside material) can be controlled such that the thinned semiconductor material has sufficient thickness to enable operation of one or more features comprising the IC during LVP investigation.

  13. Hexaarylbiimidazoles as Visible Light Thiol–Ene Photoinitiators

    Science.gov (United States)

    Clarkson, Brian H.; Scott, Timothy F.

    2015-01-01

    Objectives The aim of this study is to determine if hexaarylbiimidazoles (HABIs) are efficient, visible light-active photoinitiators for thiol–ene systems. We hypothesize that, owing to the reactivity of lophyl radicals with thiols and the necessarily high concentration of thiol in thiol–ene formulations, HABIs will effectively initiate thiol–ene polymerization upon visible light irradiation. Methods UV-vis absorption spectra of photoinitiator solutions were obtained using UV-vis spectroscopy, while EPR spectroscopy was used to confirm radical species generation upon HABI photolysis. Functional group conversions during photopolymerization were monitored using FTIR spectroscopy, and thermomechanical properties were determined using dynamic mechanical analysis. Results The HABI derivatives investigated exhibit less absorptivity than camphorquinone at 469 nm; however, they afford increased sensitivity at this wavelength when compared with bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide. Photolysis of the investigated HABIs affords lophyl radicals. Affixing hydroxyhexyl functional groups to the HABI core significantly improved solubility. Thiol–ene resins formulated with HABI photoinitiators polymerized rapidly upon irradiation with 469 nm. The glass transition temperatures of the thiol–ene resin formulated with a bis(hydroxyhexyl)-functionalized HABI and photopolymerized at room and body temperature were 49.5±0.5°C and 52.2±0.1°C, respectively. Significance Although thiol–enes show promise as continuous phases for composite dental restorative materials, they show poor reactivity with the conventional camphorquinone/tertiary amine photoinitiation system. Conversely, despite their relatively low visible light absorptivity, HABI photoinitiators afford rapid thiol–ene photopolymerization rates. Moreover, minor structural modifications suggest pathways for improved HABI solubility and visible light absorption. PMID:26119702

  14. Visible light scatter as quantitative information source on milk constituents

    DEFF Research Database (Denmark)

    Melentieva, Anastasiya; Kucheryavskiy, Sergey; Bogomolov, Andrey

    2012-01-01

    VISIBLE LIGHT SCATTER AS A QUANTITATIVE INFORMATION SOURCE ON MILK CONSTITUENTS A. Melenteva 1, S. Kucheryavski 2, A. Bogomolov 1,31Samara State Technical University, Molodogvardeyskaya Street 244, 443100 Samara, Russia. 2Aalborg University, campus Esbjerg, Niels Bohrs vej 8, 6700 Esbjerg, Denmar...... research area are presented and discussed. References: [1] A. Bogomolov, S. Dietrich, B. Boldrini, R.W. Kessler, Food Chemistry (2012), doi:10.1016/j.foodchem.2012.02.077....

  15. Performance Analysis of Visible Light Communication Using CMOS Sensors.

    Science.gov (United States)

    Do, Trong-Hop; Yoo, Myungsik

    2016-02-29

    This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR), is formulated. Finally, a simulation is conducted to verify the analysis.

  16. Chem/bio sensing with non-classical light and integrated photonics.

    Science.gov (United States)

    Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B

    2018-01-29

    Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.

  17. Twisting Light by Nonlinear Photonic Crystals

    Science.gov (United States)

    Bloch, Noa Voloch; Shemer, Keren; Shapira, Asia; Shiloh, Roy; Juwiler, Irit; Arie, Ady

    2012-06-01

    We report the observation of nonlinear interactions in quadratic nonlinear crystals having a geometrically twisted susceptibility pattern. The quasi-angular-momentum of these crystals is imprinted on the interacting photons during the nonlinear process so that the total angular momentum is conserved. These crystals affect three basic physical quantities of the output photons: energy, translational momentum, and angular momentum. Here we study the case of second-order harmonic vortex beams, generated from a Gaussian pump beam. These crystals can be used to produce multidimensional entanglement of photons by angular momentum states or for shaping the vortex’s structure and polarization.

  18. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  19. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  20. Photonic crystal slow light waveguides in a kagome lattice.

    Science.gov (United States)

    Schulz, Sebastian A; Upham, Jeremy; O'Faolain, Liam; Boyd, Robert W

    2017-08-15

    Slow light photonic crystal waveguides tightly compress propagating light and increase interaction times, showing immense potential for all-optical delay and enhanced light-matter interactions. Yet, their practical application has largely been limited to moderate group index values (light. This limitation persists because nearly all such research has focused on a single photonic crystal lattice type: the triangular lattice. Here, we present waveguides based on the kagome lattice that demonstrate an intrinsically high group index and exhibit slow and stopped light. We experimentally demonstrate group index values of >150, limited by our measurement resolution. The kagome-lattice waveguides are an excellent starting point for further slow light engineering in photonic crystal waveguides.

  1. Perovskite Nanocrystals as a Color Converter for Visible Light Communication

    KAUST Repository

    Dursun, Ibrahim

    2016-05-31

    Visible light communication (VLC) is an emerging technology that uses light-emitting diodes (LEDs) or laser diodes for simultaneous illumination and data communication. This technology is envisioned to be a major part of the solution to the current bottlenecks in data and wireless communication. However, the conventional lighting phosphors that are typically integrated with LEDs have limited modulation bandwidth and thus cannot provide the bandwidth required to realize the potential of VLC. In this work, we present a promising light converter for VLC by designing solution-processed CsPbBr3 perovskite nanocrystals (NCs) with a conventional red phosphor. The fabricated CsPbBr3 NCs phosphor-based white light converter exhibits an unprecedented modulation bandwidth of 491 MHz, which is ~ 40 times greater than that of conventional phosphors, and the capability to transmit a high data rate of up to 2 Gbit/s. Moreover, this perovskite enhanced white light source combines ultrafast response characteristics with a high color rendering index of 89 and a low correlated color temperature of 3236 K, thereby enabling dual VLC and solid-state lighting functionalities.

  2. Passive integrated circuits utilizing slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Têtu, Amélie; Yang, Lirong

    2006-01-01

    We report thorough investigations of photonic crystal waveguide properties in the slow light regime. The transmission and the group index near the cutoff wavelengths oscillate in phase in close analogy with the ID photonic crystal behavior. The influence of having a finite number of periods...... in the photonic crystal waveguide is addressed to explain the spiky character of both the transmission and group index spectra. The profile of the slow-light modes is stretched out into the first and second rows of the holes closest to the waveguide channel. One of our strategies to ameliorate the design...

  3. Visible Light Communications (VLC) for Ambient Assisted Living

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena D.; Kyriazakos, Sofoklis

    2014-01-01

    With the advent of high efficacy light emitting diode (LED) directional lamps as a key component in focal lighting, new possibilities emerge for re-designing the smart home scenario. A smart home scenario is characterized by enabled intelligent interworking of various wireless and wired...... (WLANs) can take upon part of the indoor traffic, the ever increasing demand for such data, and users, calls for either use of licensed or novel unlicensed wireless communication technologies as part of the smart home enablers. This paper focuses on the potentials of visible light communications (VLC......), jointly with radio and fiber communications, to support very dense low and high data rate connectivity, while enabling deployment of secure-sensitive indoor applications, including indoor tracking and localization. The paper proposes a scenario for integrating VLC into the smart home scenario...

  4. Indoor localization system utilizing two visible light emitting diodes

    Science.gov (United States)

    Mousa, Farag I. K.; Le-Minh, Hoa; Ghassemlooy, Zabih; Dai, Xuewu; Tran, Son T.; Boucouvalas, Anthony C.; Liaw, Shien-Kuei

    2016-11-01

    Indoor positioning or localization based on visible light communications (VLC) is an emerging technology with wide applications. In conventional localization schemes, the trilateration technique is widely used with at least three separate lighting sources to determine the user's location. An indoor VLC positioning scheme based on the optical power distributions of only two light emitting diodes (LEDs) is reported for different environments. We have used two received signal strength indications to determine the user's position based on the LEDs configuration offering less complexity. We propose comprehensive mathematical models for the VLC localization system considering the noise and its impact on the user's location, and numerically evaluated it over a range of signal-to-noise ratios (SNRs). In addition, it is compared to the results with the exiting trilateration technique. The performance of the proposed system is evaluated with a reported accuracy of 13 dB.

  5. A novel mirror diversity receiver for indoor MIMO visible light

    KAUST Repository

    Park, Ki-Hong

    2016-03-01

    In this paper, we propose and study a non-imaging receiver design reducing the correlation of channel matrix for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. Contrary to previous works, our proposed mirror diversity receiver (MDR) not only blocks the reception of light on one specific direction but also improves the channel gain on the other direction by receiving the light reflected by a mirror deployed between the photodetectors. We analyze the channel capacity and optimal height of mirror in terms of maximum channel capacity for a 2 -by-2 MIMO-VLC system in a 2-dimensional geometric model.We prove that this constructive and destructive effects in channel matrix resulting from our proposed MDR are more beneficial to obtain well-conditioned channel matrix which is suitable for implementing spatial-multiplexing MIMO-VLC systems in order to support high data rate.

  6. Spiky TiO2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity.

    Science.gov (United States)

    Sun, Hang; Zeng, Shan; He, Qinrong; She, Ping; Xu, Kongliang; Liu, Zhenning

    2017-03-21

    A facile approach for the preparation of spiky TiO2/Au nanorod (NR) plasmonic photocatalysts has been demonstrated, which is through in situ nucleation and growth of spiky TiO2 onto AuNRs. Different aspect ratios of AuNRs in 2.5, 2.7, 4.1 and 4.5 have been applied to prepare spiky TiO2/AuNR nanohybrids to achieve tunable and broad localized surface plasmon resonance (LSPR) bands. All spiky TiO2/AuNR nanohybrids exhibit enhanced light harvesting by extending visible light absorption range by both transverse and longitudinal LSPR bands and decreasing light reflectance by their unique spiky structures. Compared to the bare AuNRs, commercial TiO2 (P25) and spiky TiO2/Au nanosphere photocatalysts, the spiky TiO2/AuNR photocatalysts exhibit significantly enhanced visible light photocatalytic activity in Rhodamine B (RhB) degradation due to their simultaneous enhancement in the light harvesting, charge utilization efficiency, and substrate accessibility. In particular, the spiky TiO2/AuNR-685 photocatalysts show the best photocatalytic activity with ∼98.9% of the RhB degraded within 90 min under the irradiation of 420-780 nm, which could be ascribed to the most extended visible light absorption range and sufficient photon energy of TiO2/AuNR-685 photocatalysts within this irradiation region. The bio-inspired nanostructure, as well as the facile and scalable fabrication approach, will open a new avenue for the rational design and preparation of high-performance photocatalysts for pollutant removal and water splitting.

  7. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    Science.gov (United States)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  8. One-dimensional porous silicon photonic crystals for visible and NIR applications

    Energy Technology Data Exchange (ETDEWEB)

    Xifre Perez, E.; Trifonov, T.; Pallares, J.; Marsal, L.F. [Departament d' Enginyeria Electronica, Electrica i Automatica, ETSE, Campus Sescelades, Universitat Rovira i Virgili, Avda. Paisos Catalans 26, 43007 Tarragona (Spain)

    2005-06-01

    We present one-dimensional porous silicon photonic crystals that exhibit two band gaps in the NIR region and two band gaps in the visible region. These photonic crystals are made by periodically repeating two porous silicon layers with different refractive index. Theoretical analysis demonstrates that they are suitable for obtaining omnidirectional mirrors to be applied in the infrared region, especially for the wavelength of 1.55 {mu}m. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. MIMO decorrelation for visible light communication based on angle optimization

    Science.gov (United States)

    Zhang, Haiyong; Zhu, Yijun

    2017-03-01

    Recently, many researchers have used the normal vector tilting to solve the problems about low rate of multiplexing and channel strong correlation in Visible Light Communication Multiple-Input Multiple-Output (VLC-MIMO) system, but they all lack of the theoretical support. In this paper, we establish a channel model about 2×2 VLC-MIMO, then translate the communication problem about vector tilting optimal angle in a certain range into a mathematical problem about seeking the minimum value of function. Finally, we deduced the mathematic expressions about the optimal tilting angles of corresponding LEDs and PDs, and these expressions will provide a theoretical basis for the further study.

  10. Performance Analysis of Visible Light Communication Using CMOS Sensors

    Directory of Open Access Journals (Sweden)

    Trong-Hop Do

    2016-02-01

    Full Text Available This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR, is formulated. Finally, a simulation is conducted to verify the analysis.

  11. Performance comparison of binary modulation schemes for visible light communication

    KAUST Repository

    Park, Kihong

    2015-09-11

    In this paper, we investigate the power spectral density of several binary modulation schemes including variable on-off keying, variable pulse position modulation, and pulse dual slope modulation which were previously proposed for visible light communication with dimming control. We also propose a novel slope-based modulation called differential chip slope modulation (DCSM) and develop a chip-based hard-decision receiver to demodulate the resulting signal, detect the chip sequence, and decode the input bit sequence. We show that the DCSM scheme can exploit spectrum density more efficiently than the reference schemes while providing an error rate performance comparable to them. © 2015 IEEE.

  12. Highly efficient photocatalytic hydrogen evolution of graphene/YInO3 nanocomposites under visible light irradiation.

    Science.gov (United States)

    Ding, Jianjun; Yan, Wenhao; Xie, Wei; Sun, Song; Bao, Jun; Gao, Chen

    2014-02-21

    Visible-light-driven hydrogen evolution with high efficiency is important in the current photocatalysis research. Here we report for the first time the design and synthesis of a new graphene-semiconductor nanocomposite consisting of YInO3 nanoparticles and two-dimensional graphene sheets as efficient photocatalysts for hydrogen evolution under visible light irradiation. The graphene/YInO3 nanocomposites were synthesized using a facile solvothermal method in which the formation of graphene and the deposition of YInO3 nanoparticles on the graphene sheets can be achieved simultaneously. The addition of graphene as a cocatalyst can narrow the band gap of YInO3 to visible photon energy and prolong the separation and lifetime of electron-hole pairs by the chemical bonding between YInO3 and graphene. The photocatalytic reaction with this nanocomposite reaches a high H2 evolution rate of 400.4 μmol h(-1) g(-1) when the content of graphene is 0.5 wt%, over 127 and 3.7 times higher than that of pure YInO3 and Pt/YInO3, respectively. This work can provide an effective approach to the fabrication of graphene-based photocatalysts with high performance in the field of energy conversion.

  13. Low Efficiency Upconversion Nanoparticles for High-Resolution Coalignment of Near-Infrared and Visible Light Paths on a Light Microscope.

    Science.gov (United States)

    Sundaramoorthy, Sriramkumar; Garcia Badaracco, Adrian; Hirsch, Sophia M; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C; Canman, Julie C

    2017-03-08

    The combination of near-infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro540-UCPs and lower efficiency nano545-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25 000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically encoded fluorophore. However, the high efficiency micro540-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long-lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (∼2 μm versus ∼8 μm beam broadening, respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast Saccharomyces cerevisiae. In summary, nano-UCPs are powerful new tools for

  14. Limits of slow light in photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, N. Asger

    2008-01-01

    While ideal photonic crystals would support modes with a vanishing group velocity, state-of-the-art structures have still only provided a slow down by roughly two orders of magnitude. We find that the induced density of states caused by lifetime broadening of the electromagnetic modes results in ...

  15. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n......(g) for the combined system is significantly enhanced relative to slow light based on purely material or waveguide dispersion....

  16. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...

  17. Physics of quantum light emitters in disordered photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P.D. [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Barcelona (Spain); Lodahl, P. [Niels Bohr Institute, University of Copenhagen (Denmark)

    2017-08-15

    Nanophotonics focuses on the control of light and the interaction with matter by the aid of intricate nanostructures. Typically, a photonic nanostructure is carefully designed for a specific application and any imperfections may reduce its performance, i.e., a thorough investigation of the role of unavoidable fabrication imperfections is essential for any application. However, another approach to nanophotonic applications exists where fabrication disorder is used to induce functionalities by enhancing light-matter interaction. Disorder leads to multiple scattering of light, which is the realm of statistical optics where light propagation requires a statistical description. We review here the recent progress on disordered photonic nanostructures and the potential implications for quantum photonics devices. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Secure positioning technique based on the encrypted visible light map

    Science.gov (United States)

    Lee, Y. U.; Jung, G.

    2017-01-01

    For overcoming the performance degradation problems of the conventional visible light (VL) positioning system, which are due to the co-channel interference by adjacent light and the irregularity of the VL reception position in the three dimensional (3-D) VL channel, the secure positioning technique based on the two dimensional (2-D) encrypted VL map is proposed, implemented as the prototype for the specific embedded positioning system, and verified by performance tests in this paper. It is shown from the test results that the proposed technique achieves the performance enhancement over 21.7% value better than the conventional one in the real positioning environment, and the well known PN code is the optimal stream encryption key for the good VL positioning.

  19. Spatial dimming scheme for optical OFDM based visible light communication.

    Science.gov (United States)

    Yang, Yang; Zeng, Zhimin; Cheng, Julian; Guo, Caili

    2016-12-26

    A new dimming control scheme termed spatial dimming orthogonal frequency division multiplexing (SD-OFDM) is proposed for multiple-input and multiple output OFDM based visible light communication. The basic idea of SD-OFDM is that the illumination can be represented by the number of glared light emitting diodes (LEDs) in an LED lamp. As the biasing level of LEDs does not adjust to represent the required illumination level, the proposed scheme can significantly mitigate the clipping noise compared to analogue dimming schemes. Furthermore, unlike digital dimming schemes that control illumination levels by setting different duty cycles of pulse width modulation, the proposed scheme is always in the "on-state" for varied illumination levels. Both analytical and simulation results indicate that the proposed scheme is an efficient and feasible dimmable scheme.

  20. Optimal linear precoding for indoor visible light communication system

    KAUST Repository

    Sifaou, Houssem

    2017-07-31

    Visible light communication (VLC) is an emerging technique that uses light-emitting diodes (LED) to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs while offering high data rate performance. In this paper, we focus on the design of the downlink of a multi-user VLC system. Inherent to multi-user systems is the interference caused by the broadcast nature of the medium. Linear precoding based schemes are among the most popular solutions that have recently been proposed to mitigate inter-user interference. This paper focuses on the design of the optimal linear precoding scheme that solves the max-min signal-to-interference-plus-noise ratio (SINR) problem. The performance of the proposed precoding scheme is studied under different working conditions and compared with the classical zero-forcing precoding. Simulations have been provided to illustrate the high gain of the proposed scheme.

  1. Precoded generalized space shift keying for indoor visible light communications

    KAUST Repository

    Kadampot, Ishaque Ashar

    2014-09-01

    We consider a visible light communication system with 2 transmit light emitting diodes (LED) and nr receive photodiodes. An optical generalized space shift keying modulation scheme is considered for the transmission of bits where each LED can be either in ON state or OFF state at a given time. With this set-up, we design in this paper a precoder for this modulation scheme given the channel state information to improve the bit error rate performance of the system. As conventional precoding techniques for radio frequency at the transmitter cannot be applied to the optical intensity channel, we formulate an optimization problem with constraints for this specific channel. An analytical solution for the precoder is derived and the system performance is compared with and without precoder.

  2. A novel visible light responsive nanosystem for cancer treatment.

    Science.gov (United States)

    Martínez-Carmona, M; Lozano, D; Baeza, A; Colilla, M; Vallet-Regí, M

    2017-10-26

    A novel singlet-oxygen sensitive drug delivery nanocarrier able to release its cargo after exposure to visible (Vis) light from a common lamp is presented. This nanodevice is based on mesoporous silica nanoparticles (MSN) decorated with porphyrin-caps grafted via reactive oxygen species (ROS)-cleavable linkages. In the presence of Vis light porphyrin-nanocaps produce singlet oxygen molecules that break the sensitive-linker, which triggers pore uncapping and therefore allows the release of the entrapped cargo (topotecan, TOP). This new system takes advantage of the non-toxicity and greater penetration capacity of Vis radiation and a double antitumor effect due to the drug release and the ROS production. In vitro tests with HOS osteosarcoma cancer cells reveal that TOP is able to be released in a controlled fashion inside the tumor cells. This research work constitutes a proof of concept that opens up promising expectations in the search for new alternatives for the treatment of cancer.

  3. Terahertz-visible two-photon rotational spectroscopy of cold OD-

    CERN Document Server

    Lee, Seunghyun; Lakhmanskaya, Olga; Spieler, Steffen; Endres, Eric S; Geistlinger, Katharina; Kumar, Sunil S; Wester, Roland

    2016-01-01

    We present a method to measure rotational transitions of molecular anions in the terahertz domain by sequential two-photon absorption. Ion excitation by bound-bound terahertz absorption is probed by absorption in the visible on a bound-free transition. The visible frequency is tuned to a state-selective photodetachment transition of the excited anions. This provides a terahertz action spectrum for just few hundred molecular ions. To demonstrate this we measure the two lowest rotational transitions, J=1<-0 and J =2<-1 of OD- anions in a cryogenic 22-pole trap. We obtain rotational transition frequencies of 598596.08(19) MHz for J=1<-0 and 1196791.57(27) MHz for J=2<-1 of OD-, in good agreement with their only previous measurement. This two-photon scheme opens up terahertz rovibrational spectroscopy for a range of molecular anions, in particular for polyatomic and cluster anions.

  4. Invisibility Cloaking Based on Geometrical Optics for Visible Light

    Science.gov (United States)

    Ichikawa, H.; Oura, M.; Taoda, T.

    2013-06-01

    Optical cloaking has been one of unattainable dreams and just a subject in fiction until recently. Several different approaches to cloaking have been proposed and demonstrated: stealth technology, active camouflage and transformation optics. The last one would be the most formal approach modifying electromagnetic field around an object to be cloaked with metamaterials. While cloaking based on transformation optics, though valid only at single frequency, is experimentally demonstrated in microwave region, its operation in visible spectrum is still distant from realisation mainly owing to difficulty in fabricating metamaterial structure whose elements are much smaller than wavelength of light. Here we show that achromatic optical cloaking in visible spectrum is possible with the mere principle based on geometrical optics. In combining a pair of polarising beam splitters and right-angled prisms, rays of light to be obstructed by an object can make a detour to an observer, while unobstructed rays go straight through two polarising beam splitters. What is observed eventually through the device is simply background image as if nothing exists in between.

  5. A bisazobenzene crosslinker that isomerizes with visible light

    Directory of Open Access Journals (Sweden)

    Subhas Samanta

    2012-12-01

    Full Text Available Background: Large conformational and functional changes of azobenzene-modified biomolecules require longer azobenzene derivatives that undergo large end-to-end distance changes upon photoisomerization. In addition, isomerization that occurs with visible rather than UV irradiation is preferred for biological applications.Results: We report the synthesis and characterization of a new crosslinker in which a central piperazine unit links two azobenzene chromophores. Molecular modeling indicates that this crosslinker can undergo a large change in end-to-end distance upon trans,trans to cis,cis isomerization. Photochemical characterization indicates that it does isomerize with visible light (violet to blue wavelengths. However, the thermal relaxation rate of this crosslinker is rather high (τ½ ~ 1 s in aqueous buffer at neutral pH so that it is difficult to produce large fractions of the cis,cis-species without very bright light sources.Conclusion: While cis-lifetimes may be longer when the crosslinker is attached to a biomolecule, it appears the para-piperazine unit may be best suited for applications where rapid thermal relaxation is required.

  6. Synergistic Two-Photon Absorption Enhancement in Photosynthetic Light Harvesting

    Science.gov (United States)

    Chen, Kuo-Mei; Chen, Yu-Wei; Gao, Ting-Fong

    2012-06-01

    The grand scale fixation of solar energies into chemical substances by photosynthetic reactions of light-harvesting organisms provides Earth's other life forms a thriving environment. Scientific explorations in the past decades have unraveled the fundamental photophysical and photochemical processes in photosynthesis. Higher plants, green algae, and light-harvesting bacteria utilize organized pigment-protein complexes to harvest solar power efficiently and the resultant electronic excitations are funneled into a reaction center, where the first charge separation process takes place. Here we show experimental evidences that green algae (Chlorella vulgaris) in vivo display a synergistic two-photon absorption enhancement in their photosynthetic light harvesting. Their absorption coefficients at various wavelengths display dramatic dependence on the photon flux. This newly found phenomenon is attributed to a coherence-electronic-energy-transfer-mediated (CEETRAM) photon absorption process of light-harvesting pigment-protein complexes of green algae. Under the ambient light level, algae and higher plants can utilize this quantum mechanical mechanism to create two entangled electronic excitations adjacently in their light-harvesting networks. Concerted multiple electron transfer reactions in the reaction centers and oxygen evolving complexes can be implemented efficiently by the coherent motion of two entangled excitons from antennae to the charge separation reaction sites. To fabricate nanostructured, synthetic light-harvesting apparatus, the paramount role of the CEETRAM photon absorption mechanism should be seriously considered in the strategic guidelines.

  7. Dispersion-controlled slow light in photonic crystal waveguides.

    Science.gov (United States)

    Baba, Toshihiko; Adachi, Jun; Ishikura, Norihiro; Hamachi, Yohei; Sasaki, Hirokazu; Kawasaki, Takashi; Mori, Daisuke

    2009-01-01

    Slow light with a markedly low group velocity is a promising solution for optical buffering and advanced time-domain optical signal processing. It is also anticipated to enhance linear and nonlinear effects and so miniaturize functional photonic devices because slow light compresses optical energy in space. Photonic crystal waveguide devices generate on-chip slow light at room temperature with a wide bandwidth and low dispersion suitable for short pulse transmission. This paper first explains the delay-bandwidth product, fractional delay, and tunability as crucial criteria for buffering capacity of slow light devices. Then the paper describes experimental observations of slow light pulse, exhibiting their record high values. It also demonstrates the nonlinear enhancement based on slow light pulse transmission.

  8. Metal-assisted photonic mode for ultrasmall bending with long propagation length at visible wavelengths.

    Science.gov (United States)

    Yang, Chengyuan; Teo, Ee Jin; Goh, Tian; Teo, Siew Lang; Teng, Jing Hua; Bettiol, Andrew A

    2012-10-08

    In this work, we investigate the use of metal-assisted photonic guiding in a polymer-metal waveguide as an alternative approach for high density photonic integration at visible wavelengths. We demonstrate high confinement and long propagation length in sub-wavelength dimensions down to 300nm × 200nm using leakage radiation microscopy at a wavelength of 632.8 nm. Simulations using the finite element method (FEM) show that the optimum dimension that gives good confinement and propagation length is similar to that of the predicted plasmonic mode supported in the same waveguide. Under such optimum conditions, the metal-assisted photonic mode shows a five times longer propagation length and higher transmission efficiency for all 90° bending radius down to 1 μm compared to the plasmonic mode.

  9. Forward and correctional OFDM-based visible light positioning

    Science.gov (United States)

    Li, Wei; Huang, Zhitong; Zhao, Runmei; He, Peixuan; Ji, Yuefeng

    2017-09-01

    Visible light positioning (VLP) has attracted much attention in both academic and industrial areas due to the extensive deployment of light-emitting diodes (LEDs) as next-generation green lighting. Generally, the coverage of a single LED lamp is limited, so LED arrays are always utilized to achieve uniform illumination within the large-scale indoor environment. However, in such dense LED deployment scenario, the superposition of the light signals becomes an important challenge for accurate VLP. To solve this problem, we propose a forward and correctional orthogonal frequency division multiplexing (OFDM)-based VLP (FCO-VLP) scheme with low complexity in generating and processing of signals. In the first forward procedure of FCO-VLP, an initial position is obtained by the trilateration method based on OFDM-subcarriers. The positioning accuracy will be further improved in the second correctional procedure based on the database of reference points. As demonstrated in our experiments, our approach yields an improved average positioning error of 4.65 cm and an enhanced positioning accuracy by 24.2% compared with trilateration method.

  10. Naturally light hidden photons in LARGE volume string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Goodsell, M. [LPTHE, Univ. Pierre et Marie Curie, Paris (France); Jaeckel, J. [Inst. for Particle Physics Phenomenology, Univ. Durham (United Kingdom); Redondo, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-09-15

    Extra ''hidden'' U(1) gauge factors are a generic feature of string theory that is of particular phenomenological interest. They can kinetically mix with the Standard Model photon and are thereby accessible to a wide variety of astrophysical and cosmological observations and laboratory experiments. In this paper we investigate the masses and the kinetic mixing of hidden U(1)s in LARGE volume compactifications of string theory. We find that in these scenarios the hidden photons can be naturally light and that their kinetic mixing with the ordinary electromagnetic photon can be of a size interesting for near future experiments and observations. (orig.)

  11. Light manipulation and photonics applications of diatom frustules

    DEFF Research Database (Denmark)

    Su, Yanyan

    their applications, manipulation or control of the nanostructure of frustules is desirable. The effect of different light spectra (six different wavelengths throughout the visible range at two light intensities) on the morphology of centric diatom Coscinodiscus granii has been investigated. It has been shown...

  12. The fabrication and visible-near-infrared optical modulation of vanadium dioxide/silicon dioxide composite photonic crystal structure

    Science.gov (United States)

    Liang, Jiran; Li, Peng; Song, Xiaolong; Zhou, Liwei

    2017-12-01

    We demonstrated a visible and near-infrared light tunable photonic nanostructure, which is composed of vanadium dioxide (VO2) thin film and silicon dioxide (SiO2) ordered nanosphere arrays. The vanadium films were sputtered on two-dimensional (2D) SiO2 sphere arrays. VO2 thin films were prepared by rapid thermal annealing (RTA) method with different oxygen flow rates. The close-packed VO2 shell formed a continuous surface, the composition of VO2 films in the structure changed when the oxygen flow rates increased. The 2D VO2/SiO2 composite photonic crystal structure exhibited transmittance trough tunability and near-infrared (NIR) transmittance modulation. When the oxygen flow rate increased from 3 slpm to 4 slpm, the largest transmittance trough can be regulated from 904 to 929 nm at low temperature, the transmittance troughs also appear blue shift when the VO2 phase changes from insulator to metal. The composite nanostructure based on VO2 films showed visible transmittance tunability, which would provide insights into the glass color changing in smart windows.

  13. Innovative, energy-efficient lighting for New York state roadways : opportunities for incorporating mesopic visibility considerations into roadway lighting practice

    Science.gov (United States)

    2008-04-01

    The present report outlines activities undertaken to assess the potential for implementing research on visibility at mesopic light levels into lighting practices for roadways in New York State. Through measurements of light levels at several roadway ...

  14. Threshold Characteristics of Slow-Light Photonic Crystal Lasers.

    Science.gov (United States)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2016-02-12

    The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum value for a specific cavity length. The experimental results are explained by an analytical theory for the laser threshold that takes into account the effects of slow light and random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper into the slow-light region, leading to a trade-off between slow-light induced reduction of the mirror loss and slow-light enhancement of disorder-induced losses.

  15. Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?

    Science.gov (United States)

    Deparis, O; Mouchet, S R; Su, B-L

    2015-11-11

    Light harvesting enhancement by slow photons in photonic crystal catalysts or dye-sensitized solar cells is a promising approach for increasing the efficiency of photoreactions. This structural effect is exploited in inverse opal TiO2 photocatalysts by tuning the red edge of the photonic band gap to the TiO2 electronic excitation band edge. In spite of many experimental demonstrations, the slow photon effect is not fully understood yet. In particular, observed enhancement by tuning the blue edge has remained unexplained. Based on rigorous couple wave analysis simulations, we quantify light harvesting enhancement in terms of absorption increase at a specific wavelength (monochromatic UV illumination) or photocurrent increase (solar light illumination), with respect to homogeneous flat slab of equivalent material thickness. We show that the commonly accepted explanation relying on light intensity confinement in high (low) dielectric constant regions at the red (blue) edge is challenged in the case of TiO2 inverse opals because of the sub-wavelength size of the material skeleton. The reason why slow photons at the blue edge are also able to enhance light harvesting is the loose confinement of the field, which leads to significant resonantly enhanced field intensity overlap with the skeleton in both red and blue edge tuning cases, yet with different intensity patterns.

  16. Writing and probing light-induced waveguides thanks to an endlessly single-mode photonic crystal fiber.

    Science.gov (United States)

    Huy, Kien Phan; Safioui, Jassem; Guichardaz, Blandine; Devaux, Fabrice; Chauvet, Mathieu

    2012-07-01

    We demonstrate writing and probing of light-induced waveguides in photorefractive bulk LiNbO3 crystal using an endlessly single-mode photonic crystal fiber. The optical waveguides are written at visible wavelengths by slightly raising the ferroelectric crystal temperature to benefit from the pyroelectric-driven photorefractive effect and the guiding properties are investigated at telecom wavelengths using the same photonic crystal fiber. End butt coupling with this photonic crystal fiber enables writing and probing of optical waveguides due to the self-alignment properties of spatial solitons.

  17. Photophysics and light-activated biocidal activity of visible-light-absorbing conjugated oligomers.

    Science.gov (United States)

    Parthasarathy, Anand; Goswami, Subhadip; Corbitt, Thomas S; Ji, Eunkyung; Dascier, Dimitri; Whitten, David G; Schanze, Kirk S

    2013-06-12

    The photophysical properties of three cationic π-conjugated oligomers were correlated with their visible light activated biocidal activity vs S. aureus. The oligomers contain three arylene units (terthiophene, 4a; thiophene-benzotriazole-thiophene, 4b; thiophene-benzothiadiazole-thiophene, 4c) capped on each end by cationic -(CH2)3NMe3(+) groups. The oligomers absorb in the visible region due to their donor-acceptor-donor electronic structure. Oligomers 4a and 4b have high intersystem crossing and singlet oxygen sensitization efficiency, but 4c has a very low intersystem crossing efficiency and it does not sensitize singlet oxygen. The biocidal activity of the oligomers under visible light varies in the order 4a > 4b ≈ 4c.

  18. Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures

    KAUST Repository

    Yu, Zongfu

    2012-10-01

    The coupling between free space radiation and optical media critically influences the performance of optical devices. We show that, for any given photonic structure, the sum of the external coupling rates for all its optical modes are subject to an upper bound dictated by the second law of thermodynamics. Such bound limits how efficient light can be coupled to any photonic structure. As one example of application, we use this upper bound to derive the limit of light absorption in broadband solar absorbers. © 2012 American Physical Society.

  19. A comparative study of optical concentrators for visible light communications

    Science.gov (United States)

    Mulyawan, Rahmat; Gomez, Ariel; Chun, Hyunchae; Rajbhandari, Sujan; Manousiadis, Pavlos P.; Vithanage, Dimali A.; Faulkner, Grahame; Turnbull, Graham A.; Samuel, Ifor D. W.; Collins, Stephen; O'Brien, Dominic

    2017-01-01

    Given the imminent radio frequency spectrum crunch, Visible Light Communication (VLC) is being proposed as an alternative wireless technology allowing for scalable connectivity to potentially millions of mobile and Internet-of- Things (IoT) devices. A VLC system uses a photo-detector (PD) receiver that converts the optically modulated light from a light source into a modulated electrical signal. The corresponding receiver electrical bandwidth is typically inversely proportional to the PD active area. Consequently, to construct a high-speed VLC link, the PD active area is often substantially reduced and an optical concentrator is used to enhance the receiver collection area. However, to achieve high concentrating factor, the link field-of-view (FOV) needs to be narrow due to the étendue conservation in linear passive optical systems. This paper studies a Fluorescent Concentrator (FC) that breaks this étendue conservation. The FC is not only based on reflective and refractive principles but also makes use of fluorescence process. A comparison between the FC and conventional optical concentrators, namely Compound Parabolic Concentrator (CPC) is also investigated. The trade-off between received signal strength and incoming link angle is demonstrated over 60° coverage. Experimental results show that performance degradation as the link angle increases using FC-based receivers is significantly lower than for conventional CPC.

  20. Mobile health-monitoring system through visible light communication.

    Science.gov (United States)

    Tan, Yee-Yong; Chung, Wan-Young

    2014-01-01

    Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.

  1. Generation of powerful tungsten reductants by visible light excitation.

    Science.gov (United States)

    Sattler, Wesley; Ener, Maraia E; Blakemore, James D; Rachford, Aaron A; LaBeaume, Paul J; Thackeray, James W; Cameron, James F; Winkler, Jay R; Gray, Harry B

    2013-07-24

    The homoleptic arylisocyanide tungsten complexes, W(CNXy)6 and W(CNIph)6 (Xy = 2,6-dimethylphenyl, Iph = 2,6-diisopropylphenyl), display intense metal to ligand charge transfer (MLCT) absorptions in the visible region (400-550 nm). MLCT emission (λ(max) ≈ 580 nm) in tetrahydrofuran (THF) solution at rt is observed for W(CNXy)6 and W(CNIph)6 with lifetimes of 17 and 73 ns, respectively. Diffusion-controlled energy transfer from electronically excited W(CNIph)6 (*W) to the lowest energy triplet excited state of anthracene (anth) is the dominant quenching pathway in THF solution. Introduction of tetrabutylammonium hexafluorophosphate, [Bu(n)4N][PF6], to the THF solution promotes formation of electron transfer (ET) quenching products, [W(CNIph)6](+) and [anth](•-). ET from *W to benzophenone and cobalticenium also is observed in [Bu(n)4N][PF6]/THF solutions. The estimated reduction potential for the [W(CNIph)6](+)/*W couple is -2.8 V vs Cp2Fe(+/0), establishing W(CNIph)6 as one of the most powerful photoreductants that has been generated with visible light.

  2. Toward visible light response: Overall water splitting using heterogeneous photocatalysts

    KAUST Repository

    Takanabe, Kazuhiro

    2011-01-01

    Extensive energy conversion of solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting by powder-form photocatalysts directly produces a mixture of H 2 and O2 (chemical energy) in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. Development of highly efficient photocatalysts is desired. This review addresses why visible light responsive photocatalysts are essential to be developed. The state of the art for the photocatalysts for overall water splitting is briefly described. Moreover, various fundamental aspects for developing efficient photocatalysts, such as particle size of photocatalysts, cocatalysts, and reaction kinetics are discussed. Copyright © 2011 De Gruyter.

  3. Inverse design of LED arrangement for visible light communication systems

    Science.gov (United States)

    Zheng, Huanhuan; Chen, Jian; Yu, Changyuan; Gurusamy, Mohan

    2017-01-01

    In this paper, an optimal LED arrangement for indoor visible light communications (VLC) is proposed and numerically investigated. By using the concept of inverse design, the LED distribution can be formulated as a convex optimization problem and resolved accordingly. We show that sufficient brightness and uniform signal to noise ratio (SNR) can be achieved within the indoor coverage by using the proposed optimal LED arrangement, thus enabling the terminal mobility for indoor VLC. In addition, the analysis of delay spread distribution over the receiving plane shows that the design exhibits enhanced tolerance of inter-symbol interference (ISI). With the consideration of cabling cost for practical implementation, the suboptimal LED arrangement design is also investigated. Numerical results indicate that the suboptimal design can reduce the power consumption of the system with acceptable performance degradation.

  4. OCT angiography and visible-light OCT in diabetic retinopathy.

    Science.gov (United States)

    Nesper, Peter L; Soetikno, Brian T; Zhang, Hao F; Fawzi, Amani A

    2017-10-01

    In recent years, advances in optical coherence tomography (OCT) techniques have increased our understanding of diabetic retinopathy, an important microvascular complication of diabetes. OCT angiography is a non-invasive method that visualizes the retinal vasculature by detecting motion contrast from flowing blood. Visible-light OCT shows promise as a novel technique for quantifying retinal hypoxia by measuring the retinal oxygen delivery and metabolic rates. In this article, we discuss recent insights provided by these techniques into the vascular pathophysiology of diabetic retinopathy. The next milestones for these modalities are large multicenter studies to establish consensus on the most reliable and consistent outcome parameters to study diabetic retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Downlink resource allocation for multichannel TDMA visible light communications

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz

    2017-05-12

    Optical wireless communications (OWC) in general and resource allocation in OWC networks particularly have gained lots of attention recently. In this work, we consider the resource allocation problem of a visible light communication downlink transmission system based on time division multiple access with the objective of maximizing spectral efficiency (SE). As for the operational conditions, we impose constraints on the average optical intensity, the energy consumption and the quality-of-service. To solve the non-convex problem, we transform the objective function into a difference of concave functions by solving a second order differential inequality. Then, we propose a low-complexity algorithm to solve the resource allocation problem. Finally, we show by simulations the SE performance gains achieved by optimizing the power allocation over equal power allocation in the considered system. Numerical results show the SE gains achieved by using this solution.

  6. Discrete Input Signaling for MISO Visible Light Communication Channels

    KAUST Repository

    Arfaoui, Mohamed Amine

    2017-05-12

    In this paper, we study the achievable secrecy rate of visible light communication (VLC) links for discrete input distributions. We consider single user single eavesdropper multiple-input single-output (MISO) links. In addition, both beamforming and robust beamforming are considered. In the former case, the location of the eavesdropper is assumed to be known, whereas in the latter case, the location of the eavesdropper is unknown. We compare the obtained results with those achieved by some continuous distributions including the truncated generalized normal (TGN) distribution and the uniform distribution. We numerically show that the secrecy rate achieved by the discrete input distribution with a finite support is significantly improved as compared to those achieved by the TGN and the uniform distributions.

  7. The susceptibility of the retina to photochemical damage from visible light.

    Science.gov (United States)

    Hunter, Jennifer J; Morgan, Jessica I W; Merigan, William H; Sliney, David H; Sparrow, Janet R; Williams, David R

    2012-01-01

    The photoreceptor/RPE complex must maintain a delicate balance between maximizing the absorption of photons for vision and retinal image quality while simultaneously minimizing the risk of photodamage when exposed to bright light. We review the recent discovery of two new effects of light exposure on the photoreceptor/RPE complex in the context of current thinking about the causes of retinal phototoxicity. These effects are autofluorescence photobleaching in which exposure to bright light reduces lipofuscin autofluorescence and, at higher light levels, RPE disruption in which the pattern of autofluorescence is permanently altered following light exposure. Both effects occur following exposure to visible light at irradiances that were previously thought to be safe. Photopigment, retinoids involved in the visual cycle, and bisretinoids in lipofuscin have been implicated as possible photosensitizers for photochemical damage. The mechanism of RPE disruption may follow either of these paths. On the other hand, autofluorescence photobleaching is likely an indicator of photooxidation of lipofuscin. The permanent changes inherent in RPE disruption might require modification of the light safety standards. AF photobleaching recovers after several hours although the mechanisms by which this occurs are not yet clear. Understanding the mechanisms of phototoxicity is all the more important given the potential for increased susceptibility in the presence of ocular diseases that affect either the visual cycle and/or lipofuscin accumulation. In addition, knowledge of photochemical mechanisms can improve our understanding of some disease processes that may be influenced by light exposure, such as some forms of Leber's congenital amaurosis, and aid in the development of new therapies. Such treatment prior to intentional light exposures, as in ophthalmic examinations or surgeries, could provide an effective preventative strategy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. CO2 SEQUESTRATION AND RECYCLE BY PHOTOCATALYSIS WITH VISIBLE LIGHT

    Energy Technology Data Exchange (ETDEWEB)

    Steven S.C. Chuang

    2001-10-01

    Visible light-photocatalysis could provide a cost-effective route to recycle CO{sub 2} to useful chemicals or fuels. Development of an effective catalyst for the photocatalytic synthesis requires (i) the knowledge of the surface band gap and its relation to the surface structure, (ii) the reactivity of adsorbates and their reaction pathways, and (iii) the ability to manipulate the actives site for adsorption, surface reaction, and electron transfer. The objective of this research is to study the photo-catalytic activity of TiO{sub 2}-base catalyst. A series of TiO{sub 2}-supported metal catalysts were prepared for determining the activity and selectivity for the synthesis of methane and methanol. 0.5 wt% Cu/SrTiO{sub 3} was found to be the most active and selective catalyst for methanol synthesis. The activity of the catalyst decreased in the order: Ti silsesquioxane > Cu/SrTiO{sub 3} > Pt/TiO{sub 2} > Cu/TiO{sub 2} > TiO{sub 2} > Rh/TiO{sub 2}. To further increase the number of site for the reaction, we propose to prepare monolayer and multiplayer TiOx on high surface area mesoporous oxides. These catalysts will be used for in situ IR study in the Phase II research project to determine the reactivity of adsorbates. Identification of active adsorbates and sites will allow incorporation of acid/basic sites to alter the nature of CO{sub 2} and H{sub 2}O adsorbates and with Pt/Cu sites to direct reaction pathways of surface intermediates, enhancing the overall activity and selectivity for methanol and hydrocarbon synthesis. The overall goal of this research is to provide a greater predictive capability for the design of visible light-photosynthesis catalysts by a deeper understanding of the reaction kinetics and mechanism as well as by better control of the coordination/chemical environment of active sites.

  9. Antimicrobial materials for water disinfection based on visible-light photocatalysts

    Science.gov (United States)

    Wu, Pinggui

    Since the discovery of photocatalytic water-splitting on TiO2 in 1972, enormous effort has been devoted to the study of TiO2. Since the optical properties of TiO2 and e--h + recombination are essential to the photon-driven applications, these two areas have drawn tremendous research attention in the past few years. But there is no single optimal system to date that has visible-light activity, high photo-efficiency and easy recovery. In this study, chemical co-doping approach was adopted to achieve desirable properties of TiO2-based photocatalyst. Nitrogen and metal ions selected from the transition metal or the rare earth element group were incorporated into TiO2 to induce a red-shift to the visible-light absorption regime and to enhance photocatalytic activity. The anion and cation co-doped TiO2 was made into various forms, including thin film, fiber, and foam that circumvent the problems associated with catalyst recovery. Chemical composition, structure, microstructure, optical, and photocatalytic properties were investigated to characterize each type of the materials. Electronic structure calculation and electron paramagnetic resonance spectroscopy were conducted to understand the role of nitrogen and metal ions. The photocatalytic property of these visible-light-active photocatalysts were studied in the inactivation of bacteria and bacterial spores in water. Fast killing rate was obtained for the inactivation of E. coli, P. aeruginosa, S. aureus and B. subtilis endospores. The results of mechanistic study provided evidence of oxidative damages, and indicated that hydroxyl radicals are one of the key killing species. Atomic force microscopy and electron microscopy showed that the cell walls were attacked by photocatalytic inactivation. The potential application of the photocatalyst in water disinfection was demonstrated by flow-through tests.

  10. Turn on the lights: leveraging visible light for communications and positioning

    Science.gov (United States)

    Hranilovic, Steve

    2015-01-01

    The need for ubiquitous broadband connectivity is continually growing, however, radio spectrum is increasingly scarce and limited by interference. In addition, the energy efficiency of many radio transmitters is low and most input energy is converted to heat. A widely overlooked resource for positioning and broadband access is optical wireless communication reusing existing illumination installations. As many of the 14 billion incandescent bulbs in use worldwide are converted to energy efficient LED lighting, a unique opportunity exists to augment them with visible light communications (VLC) and visible light positioning (VLP). VLC- and VLP- enabled LED lighting is not only energy efficient but enables a host of new use cases such as location-aware ubiquitous high-speed wireless communication links. This talk presents the recent work of the Free-space Optical Communication Algorithms Laboratory (FOCAL) at McMaster University in Hamilton, Canada in developing novel signaling and indoor localization techniques using illumination devices. Developments in the signaling design for VLC systems will be presented along with several prototype VLC communication systems. Novel approaches to the integration of VLC networks with power line communications (PLC) are discussed. The role of visible light communications and ranging for automotive safety will also be highlighted. Several approaches to indoor positioning using illumination devices and simple smartphone-based receivers will be presented. Finally, a vision for VLC and VLP technologies will be presented along with our ongoing research directions.

  11. Visibility sweeps for joint-hierarchical importance sampling of direct lighting for stochastic volume rendering

    NARCIS (Netherlands)

    Kroes, T.; Eisemann, M.; Eisemann, E.

    2015-01-01

    Physically-based light transport in heterogeneous volumetric data is computationally expensive because the rendering integral (particularly visibility) has to be stochastically solved. We present a visibility estimation method in concert with an importance-sampling technique for efficient and

  12. Characterization of a broadband interferometric autocorrelator for visible light with ultrashort blue laser pulses

    Science.gov (United States)

    Zürch, M.; Hoffmann, A.; Gräfe, M.; Landgraf, B.; Riediger, M.; Spielmann, Ch.

    2014-06-01

    We present a compact interferometric autocorrelator that allows the characterization of ultrashort laser pulses in the visible light domain (370-740 nm). The presented device uses a GaN photodiode with corresponding two-photon absorption. Different GaN and AlGaN photodiodes were characterized for this purpose. Despite AlGaN diodes have a better matched bandgap for this application, we have found that only the GaN diodes show sufficient nonlinear behavior. Using the autocorrelator we were able to characterize ultrashort frequency doubled Ti:Sapphire laser pulses with a pulse duration down to 18 fs in the second harmonic having just a few hundred nanojoules of pulse energy. The broadband behavior and extension towards the UV along with the need for only low energetic pulses are the novelties of this device.

  13. Slow light enhanced gas sensing in photonic crystals

    Science.gov (United States)

    Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.

    2018-02-01

    Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.

  14. Millisecond Photon Lifetime in a Slow-Light Microcavity

    Science.gov (United States)

    Huet, V.; Rasoloniaina, A.; Guillemé, P.; Rochard, P.; Féron, P.; Mortier, M.; Levenson, A.; Bencheikh, K.; Yacomotti, A.; Dumeige, Y.

    2016-04-01

    Optical microcavities with ultralong photon storage times are of central importance for integrated nanophotonics. To date, record quality (Q ) factors up to 1011 have been measured in millimetric-size single-crystal whispering-gallery-mode (WGM) resonators, and 1010 in silica or glass microresonators. We show that, by introducing slow-light effects in an active WGM microresonator, it is possible to enhance the photon lifetime by several orders of magnitude, thus circumventing both fabrication imperfections and residual absorption. The slow-light effect is obtained from coherent population oscillations in an erbium-doped fluoride glass microsphere, producing strong dispersion of the WGM (group index ng˜106). As a result, a photon lifetime up to 2.5 ms at room temperature has been measured, corresponding to a Q factor of 3 ×1012 at 1530 nm. This system could yield a new type of optical memory microarray with ultralong storage times.

  15. Switchable polarization rotation of visible light using a plasmonic metasurface

    Directory of Open Access Journals (Sweden)

    Stuart K. Earl

    2017-01-01

    Full Text Available A metasurface comprising an array of silver nanorods supported by a thin film of the phase change material vanadium dioxide is used to rotate the primary polarization axis of visible light at a pre-determined wavelength. The dimensions of the rods were selected such that, across the two phases of vanadium dioxide, the two lateral localized plasmon resonances (in the plane of the metasurface occur at the same wavelength. Illumination with linearly polarized light at 45° to the principal axes of the rod metasurface enables excitation of both of these resonances. Modulating the phase of the underlying substrate, we show that it is possible to reversibly switch which axis of the metasurface is resonant at the operating wavelength. Analysis of the resulting Stokes parameters indicates that the orientation of the principal linear polarization axis of the reflected signal is rotated by 90° around these wavelengths. Dynamic metasurfaces such as these have the potential to form the basis of an ultra-compact, low-energy multiplexer or router for an optical signal.

  16. On the Secrecy Capacity of MISO Visible Light Communication Channels

    KAUST Repository

    Arfaoui, Mohamed Amine

    2017-02-07

    We study the secrecy capacity of the multiple- input single-output (MISO) Gaussian wiretap visible light communication (VLC) channel. We study a typical VLC scenario with one transmitter, one legitimate receiver, and one eavesdropper. Specifically, we compute the achievable secrecy rate for various input signaling distributions, including the truncated generalized normal (TGN) and uniform distributions. The transmitter is equipped with multiple light sources, while the legitimate and unauthorized receivers are each equipped with a single photodetector. We analyze the achievable secrecy rates via transmit beamforming and artificial noise. In addition, both zero-forcing beamforming and robust beamforming are considered. In the former case, the location of the eavesdropper is assumed to be known, whereas in the latter case, the location of the eavesdropper is unknown. Our numerical results show that the secrecy rate achieved by the TGN distribution is significantly improved as compared to those achieved by the truncated Gaussian and uniform distributions, for both zero-forcing beamforming and robust beamforming. We also derive an upper bound on the achievable secrecy capacity that we used to assess the closeness of the achievable secrecy rates to the derived bound.

  17. Systematic design of slow-light photonic waveguides

    DEFF Research Database (Denmark)

    Matzen, René; Jensen, Jakob Søndergaard; Sigmund, Ole

    2011-01-01

    A pulse-delaying optimization scheme based on topology optimization for transient response of photonic crystal structures (PhCs) is formulated to obtain slow-light devices. The optimization process is started from a qualified W1 PhC waveguide design with group index ng≈40 obtained from a simple...

  18. LIPSS results for photons coupling to light neutral scalar bosons

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Oliver K. Baker; Kevin Beard; George Biallas; James Boyce; Minarni Minarni; Roopchan Ramdon; Michelle D. Shinn; Penny Slocum

    2008-06-01

    The LIPSS search for a light neutral scalar boson coupling to optical photons is reported. The search covers a region of parameter space of approximately 1.0 meV and coupling strength greater than 10^-6 GeV^-1. The LIPSS results show no evidence for scalar coupling in this region of parameter space.

  19. Topology optimization of slow light coupling to photonic crystal waveguides

    DEFF Research Database (Denmark)

    Yang, Lirong; Lavrinenko, Andrei; Frandsen, Lars Hagedorn

    2007-01-01

    The slow light coupling efficiency in photonic crystal waveguides is enhanced by using the topology optimisation method. As much as 5 dB improvement in transmission can be achieved in the proximity of the spectrum cutoff. Moreover, the resemblance of the resulting two optimised spectra from...

  20. Carbon nitride-TiO2 hybrid modified with hydrogenase for visible light driven hydrogen production.

    Science.gov (United States)

    Caputo, Christine A; Wang, Lidong; Beranek, Radim; Reisner, Erwin

    2015-10-01

    A system consisting of a [NiFeSe]-hydrogenase (H2ase) grafted on the surface of a TiO2 nanoparticle modified with polyheptazine carbon nitride polymer, melon (CN x ) is reported. This semi-biological assembly shows a turnover number (TON) of more than 5.8 × 105 mol H2 (mol H2ase)-1 after 72 h in a sacrificial electron donor solution at pH 6 during solar AM 1.5 G irradiation. An external quantum efficiency up to 4.8% for photon-to-hydrogen conversion was achieved under irradiation with monochromatic light. The CN x -TiO2-H2ase construct was also active under UV-free solar light irradiation (λ > 420 nm), where it showed a substantially higher activity than TiO2-H2ase and CN x -H2ase due, in part, to the formation of a CN x -TiO2 charge transfer complex and highly productive electron transfer to the H2ase. The CN x -TiO2-H2ase system sets a new benchmark for photocatalytic H2 production with a H2ase immobilised on a noble- and toxic-metal free light absorber in terms of visible light utilisation and stability.

  1. Visible Light Neural Stimulation on graphitic-Carbon Nitride/Graphene Photocatalytic Fibers

    DEFF Research Database (Denmark)

    Zhang, Zhongyang; Xu, Ruodan; Wang, Zegao

    2017-01-01

    Light stimulation allows remote and spatiotemporally accurate operation that has been applied as effective, non-invasive means of therapeutic interventions. Here, visible light neural stimulation of graphitic carbon nitride (g-C3N4), an emerging photocatalyst with visible-light optoelectronic...

  2. Study and analysis on slow light in photonic crystal waveguide

    Science.gov (United States)

    Dang, Shuzhen; Shu, Jing

    2017-02-01

    Slow light is to reduce the light propagation speed in the medium. In recent years, because slow light technology is the key to achieving all-optical network technologies constitute optics, it attracted people's attention. Compared with other methods, photonic crystal waveguides provide slow light with many adventages, especially we can fine tune the structure to control the performance of the slow-light. Because the two-dimensional triangular lattice photonic crystal is easier to form band gaps than two-dimensional cubic lattice photonic crystal, the circular dielectric rod is easier to form band gaps than square dielectric cylinder, when the photonic crystal lattice vector angle is greater than 60 degrees, it can make the performance of slow light more excellent. So in this paper,we will rotate the cubic lattice 45 degrees counterclockwise. By reducing the radius of middle row of medium column to form the line defect; Additionly, we design a coupled cavity waveguide. Using the plane wave expansion method (PWE), we have analyzed the dispersion curves of the guided mode, the corresponding group refractive index and group velocity dispersion of slow light. For the line defected waveguide, we have realized the group refractive index changing from 8.1 to 84.8 by fine tuning the radius of the defective rod, the position and radius of the first row of the dielectric cylinder close to the waveguide. For the coupled cavity waveguide, we have realized the group refractive index changing from 16 to 79 by fine tuning the radius of the defective rod.

  3. Evidence of Light-by-Light Scattering with Real Photons

    Energy Technology Data Exchange (ETDEWEB)

    Boege, J.

    2003-12-19

    In a new experiment at the Stanford Linear Accelerator Center, heretofore untested aspects of high field strength Quantum Electrodynamics were probed. Bunches of 46.6 GeV electrons available in the Final Focus Test Beam line were brought into collision with terawatt pulses of either 1.17 eV or 2.34 eV photons from a Nd:Glass laser system. Several physical process were investigated. This thesis describes the production of electron-positron pairs in photon-photon collisions. This is particularly interesting since it represents the generation of massive particles from massless particles. The bunch/pulse trajectories are approximately antiparallel. Due to the head-on nature of the collisions, the electrons see, in their rest frame, a transformed laser pulse electric field amplitude {bar {var_epsilon}}{sub 0} = 2{gamma}{var_epsilon}{sub 0}, and so a lab frame field {var_epsilon} {approx} 1.0 x 10{sup 11} V/cm corresponds to a 46.6 GeV electron rest frame field {bar {var_epsilon}}{sub 0} {approx} 1.8 x 10{sup 16} V/cm. For electric field amplitudes of this magnitude, perturbative QED is of limited validity. Multiphoton processes dominate collision results. The geometry of the experiments was such that any pairs produced came into existence in the midst of the electron/photon collision region. The electron from a produced pair was indistinguishable from the recoil electrons generated via other processes in collisions. Detecting the positron, then, was the only way to observe pair production. In data accumulated during the September 1994 Final Focus Test Beam run, positrons in excess of background were detected. Positron signals were extracted from an ensemble of data collected during electron bunch/laser pulse collisions. Calorimeter readings were used to measure the energy, and reconstruct the transverse displacement of positrons propagating downstream from the bunch/pulse collision region. Field maps of permanent magnets located downstream of the collision region but

  4. Time-reversal constraint limits unidirectional photon emission in slow-light photonic crystals.

    Science.gov (United States)

    Lang, Ben; Beggs, Daryl M; Oulton, Ruth

    2016-08-28

    Photonic crystal waveguides are known to support C-points-point-like polarization singularities with local chirality. Such points can couple with dipole-like emitters to produce highly directional emission, from which spin-photon entanglers can be built. Much is made of the promise of using slow-light modes to enhance this light-matter coupling. Here we explore the transition from travelling to standing waves for two different photonic crystal waveguide designs. We find that time-reversal symmetry and the reciprocal nature of light places constraints on using C-points in the slow-light regime. We observe two distinctly different mechanisms through which this condition is satisfied in the two waveguides. In the waveguide designs, we consider a modest group velocity of vg≈c/10 is found to be the optimum for slow-light coupling to the C-points.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. © 2016 The Author(s).

  5. Behavior of light polarization in photon-scalar interaction

    Science.gov (United States)

    Azizi, Azizollah; Nasirimoghadam, Soudabe

    2017-11-01

    Quantum theories of gravity help us to improve our insight into the gravitational interactions. Motivated by the interesting effect of gravity on the photon trajectory, we treat a quantum recipe concluding a classical interaction of light and a massive object such as the sun. We use the linear quantum gravity to compute the classical potential of a photon interacting with a massive scalar. The leading terms have a traditional 1/r subordinate and demonstrate a polarization-dependent behavior. This result challenges the equivalence principle; attractive and/or repulsive interactions are admissible.

  6. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  7. Photoresist Design for Elastomeric Light Tunable Photonic Devices

    Directory of Open Access Journals (Sweden)

    Sara Nocentini

    2016-06-01

    Full Text Available An increasing interest in tunable photonic structures is growing within the photonic community. The usage of Liquid Crystalline Elastomer (LCE structures in the micro-scale has been motivated by the potential to remotely control their properties. In order to design elastic photonic structures with a three-dimensional lithographic technique, an analysis of the different mixtures used in the micro-printing process is required. Previously reported LCE microstructures suffer damage and strong swelling as a limiting factor of resolution. In this article, we reported a detailed study on the writing process with four liquid crystalline photoresists, in which the percentage of crosslinker is gradually increased. The experiments reveal that exploiting the crosslinking degree is a possible means in which to obtain suspended lines with good resolution, quite good rigidity, and good elasticity, thereby preserving the possibility of deformation by light irradiation.

  8. Si light-emitting device in integrated photonic CMOS ICs

    Science.gov (United States)

    Xu, Kaikai; Snyman, Lukas W.; Aharoni, Herzl

    2017-07-01

    The motivation for integrated Si optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here CMOS-compatible Si light-emitting device structures are presented for investigating the effect of various depletion layer profiles and defect engineering on the photonic transition in the 1.4-2.8 eV. A novel Si device is proposed to realize both a two-terminal Si-diode light-emitting device and a three-terminal Si gate-controlled diode light-emitting device in the same device structure. In addition to the spectral analysis, differences between two-terminal and three-terminal devices are discussed, showing the light emission efficiency change. The proposed Si optical source may find potential applications in micro-photonic systems and micro-optoelectro-mechanical systems (MOEMS) in CMOS integrated circuitry.

  9. Theory of carrier depletion and light amplification in active slow light photonic crystal waveguides.

    Science.gov (United States)

    Chen, Yaohui; Mørk, Jesper

    2013-12-02

    Using a perturbative approach, we perform a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguide. The impact of slow-light propagation on the carrier-depletion-induced nonlinear gain saturation of the device is investigated. An effective rate-equation-based model is presented. It is shown that it well accounts for the three-dimensional simulation results. Simulations indicate that a slow-light-enhanced photonic crystal traveling-wave amplifier has a high small-signal modal gain and low saturation power.

  10. Theory of carrier depletion and light amplification in active slow light photonic crystal waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    of the device is investigated. An effective rate-equation-based model is presented. It is shown that it well accounts for the three-dimensional simulation results. Simulations indicate that a slow-light-enhanced photonic crystal traveling-wave amplifier has a high small-signal modal gain and low saturation......Using a perturbative approach, we perform a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguide. The impact of slow-light propagation on the carrier-depletion-induced nonlinear gain saturation...

  11. Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications

    KAUST Repository

    Shen, Chao

    2017-02-16

    III-nitride light emitters, such as light-emitting diodes (LEDs) and laser diodes (LDs), have been demonstrated and studied for solid-state lighting (SSL) and visible-light communication (VLC) applications. However, for III-nitride LEDbased SSL-VLC system, its efficiency is limited by the

  12. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Thorhauge, Morten

    2003-01-01

    We have investigated the properties of TM polarized light in planar photonic crystal waveguide structures, which exhibit photonic band gaps for TE polarized light. Straight and bent photonic crystal waveguides and couplers have been fabricated in silicon-on-insulator material and modelled using a 3...

  13. Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis

    NARCIS (Netherlands)

    Nasalevich, M.A.; Goesten, M.G.; Savenije, T.J.; Kapteijn, F.; Gascon, J.

    2013-01-01

    NH2-MIL-125(Ti) has been post-synthetically functionalized with dye-like molecular fragments. The new material (methyl red-MIL- 125(Ti)) exhibits improved light absorption over a wide range of the visible spectrum, and shows enhanced photocatalytic oxidation activity under visible light

  14. A 30 Mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit

    Science.gov (United States)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Li, Yuanhang; Yuan, Wei; Zhu, Guixia; Zhu, Hongbo; Feng, Meixin; Sun, Qian; Liu, Yuhuai; Wang, Yongjin

    2017-07-01

    We propose, fabricate and characterize photonic integration of a InGaN/GaN multiple-quantum-well light-emitting diode (MQW-LED), waveguide, ring resonator and InGaN/GaN MQW-photodiode on a single chip, in which the photonic circuit is suspended by the support beams. Both experimental observations and simulation results illustrate the manipulation of in-plane light coupling and propagation by the waveguide and the ring resonator. The monolithic photonic circuit forms an in-plane data communication system using visible light. When the two suspended InGaN/GaN MQW-diodes simultaneously serve as the transmitter and the receiver, an in-plane full-duplex light communication is experimentally demonstrated with a transmission rate of 30 Mbps, and the superimposed signals are extracted using the self-interference cancellation method. The suspended photonic circuit creates new possibilities for exploring the in-plane full-duplex light communication and manufacturing complex GaN-based monolithic photonic integrations.

  15. Ethylene C-H Bond Activation by Neutral Mn2O5 Clusters under Visible Light Irradiation.

    Science.gov (United States)

    Yin, Shi; Bernstein, Elliot R

    2016-05-05

    A photo excitation fast flow reactor coupled with a single-photon ionization (118 nm, 10.5 eV) time-of-flight mass spectrometry (TOFMS) instrument is used to investigate reactions of neutral MnmOn clusters with C2H4 under visible (532 nm) light irradiation. Association products Mn2O5(C2H4) and Mn3O6,7(C2H4) are observed without irradiation. Under light irradiation, the Mn2O5(C2H4) TOFMS feature decreases, and a new species, Mn2O5H2, is observed. This light-activated reaction suggests that the visible radiation can induce the chemistry, Mn2O5 + C2H4 + hv(532 nm) → Mn2O5*(C2H4) → Mn2O5H2 + C2H2. High barriers (0.67 and 0.59 eV) are obtained on the ground-state potential energy surface (PES); the reaction is barrierless and thermodynamically favorable on the first excited-state PES, as performed by time-dependent density functional theory calculations. The calculational and experimental results suggest that Mn2O5-like structures on manganese oxide surfaces are the appropriate active catalytic sites for visible light photocatalysis of ethylene dehydrogenation.

  16. Enhanced visible light absorption and reduced charge recombination in AgNP plasmonic photoelectrochemical cell

    Directory of Open Access Journals (Sweden)

    Samaila Buda

    Full Text Available In this research work, silver nanoparticles (AgNP were synthesized using a simple solvothermal technique, the obtained AgNP were used to prepare a titania/silver (TiO2/Ag nanocomposites with varied amount of Ag contents and used to fabricated a photoanode of dye-sensitized solar cell (DSSC. X-ray photoelectron spectroscopy (XPS was used to ascertain the presence of silver in the nanocomposite. A photoluminance (PL spectra of the nanocomposite powder shows a low PL activity which indicates a reduced election- hole recombination within the material. UV–vis spectra reveal that the Ag in the DSSC photoanode enhances the light absorption of the solar cell device within the visible range between λ = 382 nm and 558 nm nm owing to its surface plasmon resonance effect. Power conversion efficiency was enhanced from 4.40% for the pure TiO2 photoanode based device to 6.56% for the device fabricated with TiO2/Ag due to the improvement of light harvesting caused by the localized surface plasmonic resonance effect of AgNP. The improvement of power conversion was also achieved due to the reduced charge recombination within the photoanode. Keywords: Nanoparticle, Silver, Plasmonic, Power, Photon

  17. High optical bandwidth GaN based photonic-crystal light-emitting diodes

    Science.gov (United States)

    Lin, Tung-Ching; Yin, Yu-Feng; Lan, Wen-Yi; Huang, JianJang

    2016-09-01

    Light emitting diodes (LEDs) for visible light communication (VLC) as radio sources is a solution to channel crowding of radio frequency (RF) signal. However, for the application on high-speed communication, getting higher bandwidth of LEDs is always the problem which is limited by the spontaneous carrier lifetime in the multiple quantum wells. In this paper, we proposed GaN-based LEDs accompanied with photonic crystal (PhC) nanostructure for high speed communication. Using the characteristic of photonic band selection in photonic crystal structure, the guided modes are modulated by RF signal. The PhC can also provide faster mode extraction. From time resolved photoluminescence (TRPL) at room temperature, carrier lifetime of both lower- and higher-order modes is shortened. By observing f-3dB -J curve, it reveals that the bandwidth of PhC LEDs is higher than that of typical LED. The optical - 3-dB bandwidth (f-3dB) can be achieved up to 240 MHz in the PhC LED (PhCLED). We conclude that the higher operation speed can be obtained due to faster radiative carrier recombination of extracted guided modes from the PhC nanostructure.

  18. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    Science.gov (United States)

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  19. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.

    Science.gov (United States)

    Zhu, Linxiao; Raman, Aaswath P; Fan, Shanhui

    2015-10-06

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities.

  20. Damaging effects of visible light. Comprehensive progress report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    Research progress is reported on studies of retinal light damage. A myriad of variables effect the production of light damage. These include age, prior light history, body temperature, vitamin A status, intensity, wavelength and duration of light. The intensity-duration function and the age function have been studied in detail in rats. Studies have been begun on the wavelength variable. (ACR)

  1. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter.

    Science.gov (United States)

    Zaske, Sebastian; Lenhard, Andreas; Keßler, Christian A; Kettler, Jan; Hepp, Christian; Arend, Carsten; Albrecht, Roland; Schulz, Wolfgang-Michael; Jetter, Michael; Michler, Peter; Becher, Christoph

    2012-10-05

    We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.

  2. Isotope effects in photo dissociation of ozone with visible light

    Science.gov (United States)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M

  3. Millisecond Photon Lifetime in a Slow-Light Microcavity.

    Science.gov (United States)

    Huet, V; Rasoloniaina, A; Guillemé, P; Rochard, P; Féron, P; Mortier, M; Levenson, A; Bencheikh, K; Yacomotti, A; Dumeige, Y

    2016-04-01

    Optical microcavities with ultralong photon storage times are of central importance for integrated nanophotonics. To date, record quality (Q) factors up to 10^{11} have been measured in millimetric-size single-crystal whispering-gallery-mode (WGM) resonators, and 10^{10} in silica or glass microresonators. We show that, by introducing slow-light effects in an active WGM microresonator, it is possible to enhance the photon lifetime by several orders of magnitude, thus circumventing both fabrication imperfections and residual absorption. The slow-light effect is obtained from coherent population oscillations in an erbium-doped fluoride glass microsphere, producing strong dispersion of the WGM (group index n_{g}∼10^{6}). As a result, a photon lifetime up to 2.5 ms at room temperature has been measured, corresponding to a Q factor of 3×10^{12} at 1530 nm. This system could yield a new type of optical memory microarray with ultralong storage times.

  4. Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

    Directory of Open Access Journals (Sweden)

    Sunandan Baruah

    2010-11-01

    Full Text Available Hydrothermally grown ZnO nanorods have inherent crystalline defects primarily due to oxygen vacancies that enhance optical absorption in the visible spectrum, opening up possibilities for visible light photocatalysis. Comparison of photocatalytic activity of ZnO nanorods and nanoparticle films on a test contaminant methylene blue with visible light irradiation at 72 kilolux (klx showed that ZnO nanorods are 12–24% more active than ZnO nanoparticulate films. This can be directly attributed to the increased effective surface area for adsorption of target contaminant molecules. Defects, in the form of interstitials and vacancies, were intentionally created by faster growth of the nanorods by microwave activation. Visible light photocatalytic activity was observed to improve by ≈8% attributed to the availability of more electron deficient sites on the nanorod surfaces. Engineered defect creation in nanostructured photocatalysts could be an attractive solution for visible light photocatalysis.

  5. Light transport and lasing in complex photonic structures

    Science.gov (United States)

    Liew, Seng Fatt

    Complex photonic structures refer to composite optical materials with dielectric constant varying on length scales comparable to optical wavelengths. Light propagation in such heterogeneous composites is greatly different from homogeneous media due to scattering of light in all directions. Interference of these scattered light waves gives rise to many fascinating phenomena and it has been a fast growing research area, both for its fundamental physics and for its practical applications. In this thesis, we have investigated the optical properties of photonic structures with different degree of order, ranging from periodic to random. The first part of this thesis consists of numerical studies of the photonic band gap (PBG) effect in structures from 1D to 3D. From these studies, we have observed that PBG effect in a 1D photonic crystal is robust against uncorrelated disorder due to preservation of long-range positional order. However, in higher dimensions, the short-range positional order alone is sufficient to form PBGs in 2D and 3D photonic amorphous structures (PASS). We have identified several parameters including dielectric filling fraction and degree of order that can be tuned to create a broad isotropic PBG. The largest PBG is produced by the dielectric networks due to local uniformity in their dielectric constant distribution. In addition, we also show that deterministic aperiodic structures (DASs) such as the golden-angle spiral and topological defect structures can support a wide PBG and their optical resonances contain unexpected features compared to those in photonic crystals. Another growing research field based on complex photonic structures is the study of structural color in animals and plants. Previous studies have shown that non-iridescent color can be generated from PASs via single or double scatterings. For better understanding of the coloration mechanisms, we have measured the wavelength-dependent scattering length from the biomimetic samples. Our

  6. Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation.

    Science.gov (United States)

    Sun, Lining; Qiu, Yannan; Liu, Tao; Feng, Jing; Deng, Wei; Shi, Liyi

    2015-11-01

    We used the synthesized dinaphthylmethane (Hdnm) ligand whose absorption extends to the visible-light wavelength, to prepare a family of ternary lanthanide complexes, named as [Ln(dnm)3 phen] (Ln = Sm, Nd, Yb, Er, Tm, Pr). The properties of these complexes were investigated by Fourier transform infrared (FT-IR) spectroscopy, diffuse reflectance (DR) spectroscopy, thermogravimetric analyses, and excitation and emission spectroscopy. Generally, excitation with visible light is much more advantageous than UV excitation. Importantly, upon excitation with visible light (401-460 nm), the complexes show characteristic visible (Sm(3+)) as well as near-infrared (Sm(3+), Nd(3+), Yb(3+), Er(3+), Tm(3+), Pr(3+)) luminescence of the corresponding lanthanide ions, attributed to the energy transfer from the ligands to the lanthanide ions, an antenna effect. Now, using these near-infrared luminescent lanthanide complexes, the luminescent spectral region from 800 to 1650 nm, can be covered completely, which is of particular interest for biomedical imaging applications, laser systems, and optical amplification applications. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts

    Science.gov (United States)

    Qu, Dan; Zheng, Min; Du, Peng; Zhou, Yue; Zhang, Ligong; Li, Di; Tan, Huaqiao; Zhao, Zhao; Xie, Zhigang; Sun, Zaicheng

    2013-11-01

    A facile hydrothermal synthesis route to N and S, N co-doped graphene quantum dots (GQDs) was developed by using citric acid as the C source and urea or thiourea as N and S sources. Both N and S, N doped GQDs showed high quantum yield (78% and 71%), excitation independent under excitation of 340-400 nm and single exponential decay under UV excitation. A broad absorption band in the visible region appeared in S, N co-doped GQDs due to doping with sulfur, which alters the surface state of GQDs. However, S, N co-doped GQDs show different color emission under excitation of 420-520 nm due to their absorption in the visible region. The excellent photocatalytic performance of the S, N co-doped GQD/TiO2 composites was demonstrated by degradation of rhodamine B under visible light. The apparent rate of S, N:GQD/TiO2 is 3 and 10 times higher than that of N:GQD/TiO2 and P25 TiO2 under visible light irradiation, respectively.A facile hydrothermal synthesis route to N and S, N co-doped graphene quantum dots (GQDs) was developed by using citric acid as the C source and urea or thiourea as N and S sources. Both N and S, N doped GQDs showed high quantum yield (78% and 71%), excitation independent under excitation of 340-400 nm and single exponential decay under UV excitation. A broad absorption band in the visible region appeared in S, N co-doped GQDs due to doping with sulfur, which alters the surface state of GQDs. However, S, N co-doped GQDs show different color emission under excitation of 420-520 nm due to their absorption in the visible region. The excellent photocatalytic performance of the S, N co-doped GQD/TiO2 composites was demonstrated by degradation of rhodamine B under visible light. The apparent rate of S, N:GQD/TiO2 is 3 and 10 times higher than that of N:GQD/TiO2 and P25 TiO2 under visible light irradiation, respectively. Electronic supplementary information (ESI) available: More XPS and UV-Vis spectra. See DOI: 10.1039/c3nr04402e

  8. Photon and light meson production in hadronic $Z^{0}$ decays

    CERN Document Server

    Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bohme, J.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Doucet, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Hargrove, C.K.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G.D.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schorner, T.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Tafirout, R.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-01-01

    The inclusive production rates and differential cross-sections of photons and mesons with a final state containing photons have been measured with the OPAL detector at LEP. The light mesons covered by the measurements are the \\pi^0, multiplicities per hadronic Z^0 decay, extrapolated to the full energy range, are: = 20.97 +/- 0.02 +/- 1.15, = 9.55 +/- 0.06 +/- 0.75, = 0.97 +/- 0.03 +/- 0.11, = 2.40 +/- 0.06 +/- 0.43, = 1.04 +/- 0.04 +/- 0.14, = 0.14 +/- 0.01 +/- 0.02, = 0.27 +/- 0.04 +/- 0.10. where the first errors are statistical and the second systematic. In general, the results are in agreement with the predictions of the JETSET and HERWIG Monte Carlo models.

  9. Semiconductor Nanomembranes for Quantum Photonics: Quantum Light Sources and Optomechanics

    DEFF Research Database (Denmark)

    Liu, Jin

    This thesis describes the fabrication and characterizations of semiconductor nanomembranes, i.e., gallium arsenide (GaAs) photonic crystal (PC) and optomechanical nanomemebranes. Processing techniques are developed and optimized in order to fabricate PC membranes for quantum light sources......-record mechanical Q-factor up to 1 million have been fabricated with two step selective wet etches. These optomechanical naonmembranes exhibit superb performances in cavity optomechanical cooling experiments in which a mechanical mode has been cooled from room temperature to 4 K. The interaction between single...... quantum dots (QDs) and PC cavities has been modeled in the framework of Jaynes-Cummings model (JCM) with the focus on single artificial atom lasers. In the experiments, a highly efficient single photon source with a collection efficiency up to 38% has been achieved and detailed measurements suggest...

  10. Photonic Crystals: Enhancing the Light Output of Scintillation Based Detectors

    CERN Document Server

    Knapitsch, Arno Richard

    A scintillator is a material which emits light when excited by ionizing radiation. Such materials are used in a diverse range of applications; From high energy particle physics experiments, X-ray security, to nuclear cameras or positron emission tomography. Future high-energy physics (HEP) experiments as well as next generation medical imaging applications are more and more pushing towards better scintillation characteristics. One of the problems in heavy scintillating materials is related to their high index of refraction. As a consequence, most of the scintillation light produced in the bulk material is trapped inside the crystal due to total internal reflection. The same problem also occurs with light emitting diodes (LEDs) and has for a long time been considered as a limiting factor for their overall efficiency. Recent developments in the area of nanophotonics were showing now that those limitations can be overcome by introducing a photonic crystal (PhC) slab at the outcoupling surface of the substrate. P...

  11. Photonic crystals for light trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gjessing, Jo

    2012-07-25

    Solar energy is an abundant and non-polluting source of energy. Nevertheless, the installation of solar cells for energy production is still dependent on subsidies in most parts of the world. One way of reducing the costs of solar cells is to decrease their thickness. This will reduce material consumption and, at the same time, unlock the possibility of using cheaper lower quality solar cell material. However, a thinner solar cell will have a higher optical loss due to insufficient absorption of long wavelength light. Therefore, light-trapping must be improved in order to make thin solar cells economically viable. In this thesis I investigate the potential for light-trapping in thin silicon solar cells by the use of various photonic crystal back-side structures. The first structure I study consists of a periodic array of cylinders in a configuration with a layer of silicon oxide separating the periodic structure from the rear metal reflector. This configuration reduces unwanted parasitic absorption in the reflector and the thickness of the oxide layer provides a new degree of freedom for improving light trapping from the structure. I use a large-period and a small-period approximation to analyze the cylinder structure and to identify criteria that contributes to successful light-trapping. I explore the light-trapping potential of various periodic structures including dimples, inverted pyramids, and cones. The structures are compared in an optical model using a 20 m thick Si slab. I find that the light trapping potential differs between the structures, that the unit cell dimensions for the given structure is more important for light trapping than the type of structure, and that the optimum lattice period does not differ significantly between the different structures. The light-trapping effect of the structures is investigated as a function on incidence angle. The structures provide good light trapping also under angles of incidence up to 60 degrees. The behavior

  12. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    Science.gov (United States)

    Chen, Hongjun

    2014-01-01

    Summary To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given. PMID:24991507

  13. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    Directory of Open Access Journals (Sweden)

    Hongjun Chen

    2014-05-01

    Full Text Available To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given.

  14. Visible light communication based vehicle positioning using LED street light and rolling shutter CMOS sensors

    Science.gov (United States)

    Do, Trong Hop; Yoo, Myungsik

    2018-01-01

    This paper proposes a vehicle positioning system using LED street lights and two rolling shutter CMOS sensor cameras. In this system, identification codes for the LED street lights are transmitted to camera-equipped vehicles through a visible light communication (VLC) channel. Given that the camera parameters are known, the positions of the vehicles are determined based on the geometric relationship between the coordinates of the LEDs in the images and their real world coordinates, which are obtained through the LED identification codes. The main contributions of the paper are twofold. First, the collinear arrangement of the LED street lights makes traditional camera-based positioning algorithms fail to determine the position of the vehicles. In this paper, an algorithm is proposed to fuse data received from the two cameras attached to the vehicles in order to solve the collinearity problem of the LEDs. Second, the rolling shutter mechanism of the CMOS sensors combined with the movement of the vehicles creates image artifacts that may severely degrade the positioning accuracy. This paper also proposes a method to compensate for the rolling shutter artifact, and a high positioning accuracy can be achieved even when the vehicle is moving at high speeds. The performance of the proposed positioning system corresponding to different system parameters is examined by conducting Matlab simulations. Small-scale experiments are also conducted to study the performance of the proposed algorithm in real applications.

  15. Distinguishing Visual Information from Visible Background Light Sources

    OpenAIRE

    Theorell, Axel; Osika, Anton

    2013-01-01

    This thesis regards problems of the form: Two light sources are present. The two sources have dierent light spectra. One of the sources carries information and the other source can be regarded as background light. How can we maximize the contrast between the information and the background light using optical ltering techniques? A relevant question when working with this problem is the theoretical limit of how big dierence a lter can make. The dierence is calculated with regards to the optimal...

  16. Visible and invisible the wonders of light phenomena

    CERN Document Server

    Bisi, Olmes

    2015-01-01

    Light phenomena have intrigued humankind since prehistory. Think of the rainbow, a sunset on the sea, a game of shadows. Humans have always used light for their own needs, from cooking food to illuminating a room. However, light is not only limited to what we can see with our eyes. The invisible part of the electromagnetic spectrum is broad and dynamic. This book outlines the mysteries and wonders of electromagnetism, heat, and light. It also covers the history of our scientific understanding of light. The dark as well as the bright sides of light are fully explored in these pages, from their impact on our world to their use in cutting-edge technologies in a variety of fields. Numerous full-color images and drawings complement the text, and light phenomena are explained in a simple and engaging way.

  17. Simulation and measurement of slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Jacobsen, Rune Shim; Fage-Pedersen, Jacob

    Planar photonic crystals offer a fascinating means of manipulation of light in integrated,optical circuits. Such waveguides can be realized, as in the present investigations, byfabricating arrays of holes with sub-micrometer distance in the top layer of a silicon-oninsulatorwafer. The waveguides...... can be tailored such that the propagating mode achievesextreme dispersion as well as a low group velocity, allowing for realization of ultracompact, functional devices. Here, we present numerical modeling and measurements ofthe time-of-flight propagation of optical pulses. Near the cut......-off of the guided mode weobserve a group velocity vg smaller than c/200, with good agreement between simulationand measurement....

  18. Fundamental limitations to gain enhancement in slow-light photonic structures

    DEFF Research Database (Denmark)

    Grgic, Jure; Ott, Johan Raunkjar; Wang, Fengwen

    2012-01-01

    We present a non-perturbative analysis of light-matter interaction in active photonic crystal waveguides in the slow-light regime. Inclusion of gain is shown to modify the underlying dispersion law, thereby degrading the slow-light enhancement.......We present a non-perturbative analysis of light-matter interaction in active photonic crystal waveguides in the slow-light regime. Inclusion of gain is shown to modify the underlying dispersion law, thereby degrading the slow-light enhancement....

  19. Visible Light Activated Photocatalytic Water Polishing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal targets development of a LED light activated photocatalytic water polishing system that enables reduction of organic impurities (TOC and...

  20. Optimization lighting layout based on gene density improved genetic algorithm for indoor visible light communications

    Science.gov (United States)

    Liu, Huanlin; Wang, Xin; Chen, Yong; Kong, Deqian; Xia, Peijie

    2017-05-01

    For indoor visible light communication system, the layout of LED lamps affects the uniformity of the received power on communication plane. In order to find an optimized lighting layout that meets both the lighting needs and communication needs, a gene density genetic algorithm (GDGA) is proposed. In GDGA, a gene indicates a pair of abscissa and ordinate of a LED, and an individual represents a LED layout in the room. The segmented crossover operation and gene mutation strategy based on gene density are put forward to make the received power on communication plane more uniform and increase the population's diversity. A weighted differences function between individuals is designed as the fitness function of GDGA for reserving the population having the useful LED layout genetic information and ensuring the global convergence of GDGA. Comparing square layout and circular layout, with the optimized layout achieved by the GDGA, the power uniformity increases by 83.3%, 83.1% and 55.4%, respectively. Furthermore, the convergence of GDGA is verified compared with evolutionary algorithm (EA). Experimental results show that GDGA can quickly find an approximation of optimal layout.

  1. A Comprehensive Lighting Configuration for Efficient Indoor Visible Light Communication Networks

    Directory of Open Access Journals (Sweden)

    Thai-Chien Bui

    2016-01-01

    Full Text Available Design of an efficient indoor visible light communication (VLC system requires careful considerations on both illumination and communication aspects. Besides fundamental factors such as received power and signal-to-noise ratio (SNR level, studies on mobility scenarios and link switching process must be done in order to achieve good communication link quality in such systems. In this paper, a comprehensive lighting configuration for efficient indoor VLC systems for supporting mobility and link switching with constraint on illumination, received power, and SNR is proposed. Full connectivity in mobility scenarios is required to make the system more practical. However, different from other literatures, our work highlights the significance of recognizing the main influences of field of view angle on the connectivity performance in the practical indoor scenarios. A flexible link switching initiation algorithm based on the consideration of relative received power with adaptive hysteresis margin is demonstrated. In this regard, we investigate the effect of the overlap area between two light sources with respect to the point view of the receiver on the link switching performance. The simulation results show that an indoor VLC system with sufficient illumination level and high communication link quality as well as full mobility and support link switching can be achieved using our approach.

  2. Visible Light Dye-Sensitized Photosensitive Systems: A Comprehensive Study on Photoimaging

    National Research Council Canada - National Science Library

    Gao, Fang; Yang, Yong-yuan

    2000-01-01

    The visible light dyes were employed to sensitized o-Cl-Hexaarylbiimidazole (o-Cl-HABI). The obtained results suggested that o-Cl-HABI displayed a efficient sensitized photocleavage when exposed to Xenon lamp...

  3. Visibility Enhancement and Power Saving by Pro-beam LED Tunnel Lighting Method

    National Research Council Canada - National Science Library

    Sato, Motohisa; Hagio, Tomokazu

    2014-01-01

    .... The pro-beam lighting system however has an advantage to enhance visibility with reversed silhouette and has being investigated for more safe and comfortable driving in the tunnel for several years...

  4. AIRFIELD RUNWAY LIGHTING EFFICIENCY ESTIMATING BASED ON SIMULATING LANDING PROCESS IN LOW VISIBILITY

    Directory of Open Access Journals (Sweden)

    Yu. T. Zyryanov

    2014-01-01

    Full Text Available The paper presents an approach to solving important scientific application at the evaluation of the effectiveness of airfields runway lighting in low visibility conditions using the integral index-based fashion.

  5. Aerobic oxidation of alcohols in visible light on Pd-grafted Ti cluster

    Science.gov (United States)

    The titanium cluster with the reduced band gap has been synthesized having the palladium nanoparticles over the surface, which not only binds to the atmospheric oxygen but also catalyzes the oxidation of alcohols under visible light.

  6. Sustainable Strategy Utilizing Biomass: Visible-Light-Mediated Synthesis of gamma-Valerolactone

    Data.gov (United States)

    U.S. Environmental Protection Agency — A novel sustainable approach to valued g-valerolactone was investigated. This approach exploits the visible-light-mediated conversion of biomass-derived levulinic...

  7. Robust Visible and Infrared Light Emitting Devices Using Rare-Earth-Doped GaN

    National Research Council Canada - National Science Library

    Steckl, Andrew

    2006-01-01

    Rare earth (RE) dopants (such as Er, Eu, Tm) in the wide bandgap semiconductor (WBGS) GaN are investigated for the fabrication of robust visible and infrared light emitting devices at a variety of wavelengths...

  8. The power conversion efficiency of visible light emitting devices in standard BiCMOS processes

    NARCIS (Netherlands)

    Kuindersma, P.; Hoang, T.; Schmitz, Jurriaan; Vijayaraghavan, M.N.; Dijkstra, Mindert; Dijkstra, M.; van Noort, W.A.; Vanhoucke, T.; Peters, W.C.M.; Kramer, M.C.J.C.M.

    2008-01-01

    We present experimental and theoretical proof for a single and unique relationship between the breakdown voltage and power efficiency of visible light emitting devices fabricated in standard BiCMOS processes.

  9. Photonics linear and nonlinear interactions of laser light and matter

    CERN Document Server

    Menzel, R

    2007-01-01

    This book covers the fundamental properties and the description of single photons and light beams, experimentally and theoretically. It explains the essentials of linear interactions and most nonlinear interactions between light and matter in both the transparent and absorbing cases. It also provides a basic understanding of modern quantum optics and lasers, as well as the principles of nonlinear optical spectroscopy. It is self-consistent and enriched by a large number of calculated illustrations, examples, and descriptive tables. Graduate students in physics and electrical engineering, as well as other sciences, will find this book a thorough introduction to the field, while for lecturers and scientists it is a rich source of useful information and a ready-to-hand reference. The new edition has been thoroughly expanded and revised in all sections

  10. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    OpenAIRE

    Jamal Al-Sabahi; Tanujjal Bora; Mohammed Al-Abri; Joydeep Dutta

    2016-01-01

    Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states we...

  11. Redox Mediators in Visible Light Photocatalysis: Photocatalytic Radical Thiol?Ene Additions

    OpenAIRE

    Tyson, Elizabeth L.; Niemeyer, Zachary L.; Yoon, Tehshik P.

    2014-01-01

    Synthetically useful radical thiol?ene reactions can be initiated by visible light irradiation in the presence of transition metal polypyridyl photocatalysts. The success of this method relies upon the use of p-toluidine as an essential additive. Using these conditions, high-yielding thiol?ene reactions of cysteine-containing biomolecules can be accomplished using biocompatibile wavelengths of visible light, under aqueous conditions, and with the thiol component as the limiting reagent. We pr...

  12. Light-Harvesting Organic Nanocrystals Capable of Photon Upconversion.

    Science.gov (United States)

    Li, Li; Zeng, Yi; Yu, Tianjun; Chen, Jinping; Yang, Guoqiang; Li, Yi

    2017-11-23

    Harvesting and converting low energy photons into higher ones through upconversion have great potential in solar energy conversion. A light-harvesting nanocrystal assembled from 9,10-distyrylanthracene and palladium(II) meso-tetraphenyltetrabenzoporphyrin as the acceptor and the sensitizer, respectively effects red-to-green upconversion under incoherent excitation of low power density. An upconversion quantum yield of 0.29±0.02 % is obtained upon excitation with 640 nm laser of 120 mW cm-2 . The well-organized packing of acceptor molecules with aggregation-induced emission in the nanocrystals dramatically reduces the nonradiative decay of the excited acceptor, benefits the triplet-triplet annihilation (TTA) upconversion and guides the consequent upconverted emission. This work provides a straightforward strategy to develop light-harvesting nanocrystals based on TTA upconversion, which is attractive for energy conversion and photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. UV Blocking Glass: Low Cost Filters for Visible Light Photocatalytic Assessment

    Directory of Open Access Journals (Sweden)

    Charles W. Dunnill

    2014-01-01

    Full Text Available A number of commercially available art protection products have been compared and assessed for their suitability as UV blocking filters in the application of “visible light” photocatalytic research. Many groups claiming visible light photocatalytic success employ filters to block out stray UV radiation in order to justify that their photocatalysts are indeed visible light photocatalysts and not UV light photocatalysts. These filters come in varying degrees of ability and price and many authors fail to correctly characterise their filters in individual papers. The use of effective filters to prevent both false positive and false negative results is important to maintain scientific rigor and create accurate understanding of the subject. The optimum UV filter would have the highest UV blocking properties (<390 nm and simultaneously the highest visible light transmission (390–750 nm. Single and double layers of each of the glass products were assessed as well as laminate products. The conclusions show an inexpensive and highly effective setup for the conduction of visible light photochemistry that should be incorporated as a standard part in any researcher’s work where the claim of visible light activity is made.

  14. Visible light-based human visual system conceptual model

    OpenAIRE

    Prangnell, Lee

    2016-01-01

    There is a widely held belief in the digital image and video processing community, which is as follows: the Human Visual System (HVS) is more sensitive to luminance (often confused with brightness) than photon energies (often confused with chromaticity and chrominance). Passages similar to the following occur with high frequency in the peer reviewed literature and academic text books: “the HVS is much more sensitive to brightness than colour” or “the HVS is much more sensitive to luma than ch...

  15. X-ray intensifying screen visible light detection meter.

    Science.gov (United States)

    McLean, D; Eisenhuth, J; Knight, P; Bui, Q

    1997-06-01

    A light meter has been designed and built for the purpose of measuring the light emitted from an intensifying screen during x-ray irradiation. The meter uses a photodiode detector with a minimal drift amplification system. The meter repeatability was better than 0.5% and was found to be linear. A significant x-ray induced signal was recorded during measurement which needed to be subtracted from readings to deduce the intensification screen light output. The energy response of four screen types was subsequently measured.

  16. Light-Driven Preparation, Microstructure, and Visible-Light Photocatalytic Property of Porous Carbon-Doped TiO2

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Zou

    2012-01-01

    Full Text Available Highly porous carbon-doped TiO2 (C-TiO2 has been prepared, for the first time, through a light-driven approach using crystalline titanium glycolate (TG as the single-source precursor. Although the nonthermally prepared porous C-TiO2 is amorphous, it shows a remarkable visible-light photocatalytic activity higher than that of nitrogen-doped TiO2 (N-TiO2 due to its significant surface area (530 m2/g and pore-rich structure. X-ray photoelectron, electron paramagnetic resonance, and UV-Vis diffuse reflectance spectroscopy reveal that the as-prepared porous C-TiO2 photocatalyst contains Ti–O–C bonds which result in visible-light absorption of the material at wavelengths less than 550 nm. Furthermore, it is discovered that the Ti–O–C bonds in the as-prepared C-TiO2 is easily transformed to coke-type species under mild thermal treatment (200°C. The resulting coke-containing porous TiO2 is an even better visible-light photocatalyst, almost twice as effective as N-TiO2, because of its stronger visible-light absorption. The Ti–O–C and the coke-containing porous TiO2 materials follow two different mechanisms in the visible-light photocatalysis process for degradation of methylene blue.

  17. An ultrathin invisibility skin cloak for visible light

    Science.gov (United States)

    Wong, Zi Jing; Ni, Xingjie; Mrejen, Michael; Wang, Yuan; Zhang, Xiang

    Metamaterial-based optical cloaks have thus far used volumetric distribution of the material properties to gradually bend light and thereby obscure the cloaked region. Hence, they are bulky and hard to scale up to macroscopic sizes. In addition, typical carpet cloaks introduce unnecessary phase shifts in the reflected light, making the cloaks detectable. Here, we demonstrate experimentally an ultrathin invisibility skin cloak wrapped over an object. This skin cloak conceals a three-dimensional arbitrarily shaped object by complete restoration of the phase of the reflected light at 730-nanometer wavelength. The skin cloak comprises a metasurface with distributed phase shifts rerouting light and rendering the object invisible. In contrast to bulky cloaks with volumetric index variation, our device is only 80 nanometer (about one-ninth of the wavelength) thick and potentially scalable to hide macroscopic objects.

  18. Challenges and potentials for visible light communications: State of the art

    Science.gov (United States)

    Jha, Pranav Kumar; Mishra, Neha; Kumar, D. Sriram

    2017-06-01

    Visible Light Communication is the emerging field in the area of Indoor Optical Wireless Communication which uses white light LEDs for transmitting data and light simultaneously. LEDs can be modulated at very high speeds which increases its efficiency and enabling it for the dual purposes of data communication and illumination simultaneously. Radio Frequency have some limitations which is not at par with the current demand of bandwidth but using visible light, it is possible to achieve higher data rates per user. In this paper, we discuss some challenges, potentials and possible future applications for this new technology. Basically, visible light communication is for indoor application capable of multiuser access. We also design a very basic illumination pattern inside a room using uniform power distribution.

  19. Visible Light Neural Stimulation on graphitic-Carbon Nitride/Graphene Photocatalytic Fibers

    DEFF Research Database (Denmark)

    Zhang, Zhongyang; Xu, Ruodan; Wang, Zegao

    2017-01-01

    Light stimulation allows remote and spatiotemporally accurate operation that has been applied as effective, non-invasive means of therapeutic interventions. Here, visible light neural stimulation of graphitic carbon nitride (g-C3N4), an emerging photocatalyst with visible-light optoelectronic...... conversion, was for the first time investigated. Specifically, g-C3N4 was combined with graphene oxide (GO) in a 3D manner on the surfaces of electrospun polycaprolactone/gelatin (PG) fibers and functioned as a biocompatible interface for visible-light stimulating neuronal differentiation. The enhanced...... was confirmed by the Lactate Dehydrogenase (LDH) assay, live dead staining and colorimetric cell viability assay CCK-8. Under a bidaily, monochromatic light stimulation at a wavelength of 450 nm at 10mW/cm2, a 18.5-fold increase of neurite outgrowth of PC12 was found on g-C3N4 coated fibers; while AA reduced GO...

  20. Deployment methods of visible light communication lights for energy efficient buildings

    Science.gov (United States)

    Niaz, Muhammad Tabish; Imdad, Fatima; Kim, Soomi; Kim, Hyung Seok

    2016-10-01

    Indoor visible light communication (VLC) uses light emitting diodes (LEDs) to provide both illumination and data communication. The deployment of LED plays an important role in maintaining a steady optical power distribution over the reference receiving plane. Typical ways of luminaire deployment in offices and homes are not optimized for VLC. This paper investigates various configurations of LEDs for deploying them on the ceilings of offices and homes. The existing square array deployment of LEDs does not provide a full coverage on the receiving plane leaving dead spaces, which in turn affects the performance of the whole system. An optimized circular deployment scheme is proposed that considers both the position of the LED transmitters on the ceiling and the first reflections at each wall to yield more accurate results. Rectangular deployment and circular deployment are analyzed through simulation of the received optical power distribution, average outage area rate, and energy consumption. An optimization technique is developed to analyze the LED deployment schemes. It is clear from the results that the circular LED deployment provides a better performance than the square array grid LED deployment.

  1. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.

    Science.gov (United States)

    Monat, Christelle; Grillet, Christian; Corcoran, Bill; Moss, David J; Eggleton, Benjamin J; White, Thomas P; Krauss, Thomas F

    2010-03-29

    Using Fourier optics, we retrieve the wavevector dependence of the third-harmonic (green) light generated in a slow light silicon photonic crystal waveguide. We show that quasi-phase matching between the third-harmonic signal and the fundamental mode is provided in this geometry by coupling to the continuum of radiation modes above the light line. This process sustains third-harmonic generation with a relatively high efficiency and a substantial bandwidth limited only by the slow light window of the fundamental mode. The results give us insights into the physics of this nonlinear process in the presence of strong absorption and dispersion at visible wavelengths where bandstructure calculations are problematic. Since the characteristics (e.g. angular pattern) of the third-harmonic light primarily depend on the fundamental mode dispersion, they could be readily engineered.

  2. Electrical properties of SiO2-based graphene under monochromatic visible light irradiation

    Science.gov (United States)

    Li, Xiangdi; Liu, Xianming; Cao, Xueying; Zhang, Peng; Lei, Xiaohua; Chen, Weimin

    2017-08-01

    The purpose of this study is to investigate the electrical properties of graphene transparent conductive film under visible light irradiation. Sample in the study is chemical vapor deposition (CVD) growth graphene on the surface of copper foils and then transferred to the SiO2 substrate. Three monochromatic visible lights with wavelength of 635nm, 520nm and 450nm representing red (R), green (G) and blue (B) lights are used as irradiation sources. Results show that the graphene resistances increase slowly under light irradiation with all the three different wavelengths, while decrease slowly after the light is switched off. Light irradiation with higher power density will induce larger relative resistance change. When graphene is irradiated at the same density, blue light irradiation may result in the largest resistance change.

  3. Visible light induced photocatalytic degradation of some xanthene ...

    African Journals Online (AJOL)

    Photocatalytic degradation of eosin and erythrosin-B (xanthene dyes) has been carried out using anthracene semiconductor immobilized on polyethylene films. Effect of various parameters like pH, concentration of dyes, amount of semiconductor and light intensity have been studied on the rate of reaction. Various control ...

  4. Environmental remediation and superhydrophilicity of ultrafine antibacterial tungsten oxide-based nanofibers under visible light source

    Energy Technology Data Exchange (ETDEWEB)

    Srisitthiratkul, Chutima; Yaipimai, Wittaya [Nano Functional Textile Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Intasanta, Varol, E-mail: varol@nanotec.or.th [Nano Functional Textile Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 (Thailand)

    2012-10-15

    Graphical abstract: Nanosilver-decorated WO{sub 3} photocatalytic nanofibers are antibacterial and superhydrophilic under a visible light source. Highlights: Black-Right-Pointing-Pointer Deposition of nanosilver onto electrospun WO{sub 3} nanofibers' surface was done exploiting visible or UV light driven photoreduction of silver ion. Black-Right-Pointing-Pointer Nanofibers showed antibacterial characteristics. Black-Right-Pointing-Pointer Nanofibers degraded a model toxin effectively. Black-Right-Pointing-Pointer Nanofibers showed superhydrophilicity under a visible light source. - Abstract: Fabrication of nanosilver-decorated WO{sub 3} nanofibers was successfully performed. First, deposition of nanosilver onto electrospun WO{sub 3} nanofibers' surface was done via photoreduction of silver ion under visible or UV light. The resulting hybrid nanofibers not only revealed antibacterial characteristics but also maintained their photocatalytic performance towards methylene blue decomposition. Unexpectedly, the nanofibrous layers prepared from these nanofibers showed superhydrophilicity under a visible light source. The nanofibers might be advantageous in environmental and hygienic nanofiltration under natural light sources, where the self-cleaning characteristics could be valuable in maintenance processes.

  5. Inactivation of bacterial biofilms using visible-light-activated unmodified ZnO nanorods

    Science.gov (United States)

    Aponiene, Kristina; Serevičius, Tomas; Luksiene, Zivile; Juršėnas, Saulius

    2017-09-01

    Various zinc oxide (ZnO) nanostructures are widely used for photocatalytic antibacterial applications. Since ZnO possesses a wide bandgap, it is believed that only UV light may efficiently assist bacterial inactivation, and diverse crystal lattice modifications should be applied in order to narrow the bandgap for efficient visible-light absorption. In this work we show that even unmodified ZnO nanorods grown by an aqueous chemical growth technique are found to possess intrinsic defects that can be activated by visible light (λ = 405 nm) and successfully applied for total inactivation of various highly resistant bacterial biofilms rather than more sensitive planktonic bacteria. Time-resolved fluorescence analysis has revealed that visible-light excitation creates long-lived charge carriers (τ > 1 μs), which might be crucial for destructive biochemical reactions achieving significant bacterial biofilm inactivation. ZnO nanorods covered with bacterial biofilms of Enterococcus faecalis MSCL 302 after illumination by visible light (λ = 405 nm) were inactivated by 2 log, and Listeria monocytogenes ATCL3C 7644 and Escherichia coli O157:H7 biofilms by 4 log. Heterogenic waste-water microbial biofilms, consisting of a mixed population of mesophilic bacteria after illumination with visible light were also completely destroyed.

  6. Preparation of TiO2-Fullerene Composites and Their Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Ken-ichi Katsumata

    2012-01-01

    Full Text Available The development of visible light-sensitive photocatalytic materials is being investigated. In this study, the anatase and rutile-C60 composites were prepared by solution process. The characterization of the samples was conducted by using XRD, UV-vis, FT-IR, Raman, and TEM. The photocatalytic activity of the samples was evaluated by the decolorization of the methylene blue. From the results of the Raman, FT-IR, and XRD, the existence of the C60 was confirmed in the samples. The C60 was modified on the anatase or rutile particle as a cluster. The C60 didn't have the photocatalytic activity under UV and visible light. The anatase and rutile-C60 composites exhibited lower photocatalytic activity than the anatase and rutile under UV light. The anatase-C60 exhibited also lower activity than the anatase under visible light. On the other hand, the rutile-C60 exhibited higher activity than the rutile under visible light. It is considered that the photogenerated electrons can transfer from the C60 to the rutile under visible light irradiation.

  7. Recent progress on doped ZnO nanostructures for visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Morasae; Zirak, Mohammad [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Naseri, Amene [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of); Khorashadizade, Elham [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza Z., E-mail: moshfegh@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)

    2016-04-30

    Global environmental pollution and energy supply demand have been regarded as important concerns in recent years. Metal oxide semiconductor photocatalysts is a promising approach to apply environmental remediation as well as fuel generation from water splitting and carbon dioxide reduction. ZnO nanostructures have been shown promising photocatalytic activities due to their non-toxic, inexpensive, and highly efficient nature. However, its wide band gap hinders photo-excitation for practical photocatalytic applications under solar light as an abundant, clean and safe energy source. To overcome this barrier, many strategies have been developed in the last decade to apply ZnO nanostructured photocatalysts under visible light. In this review, we have classified different approaches to activate ZnO as a photocatalyst in visible-light spectrum. Utilization of various nonmetals, transition metals and rare-earth metals for doping in ZnO crystal lattice to create visible-light-responsive doped ZnO photocatalysts is discussed. Generation of localized energy levels within the gap in doped ZnO nanostructures has played an important role in effective photocatalytic reaction under visible-light irradiation. The effect of dopant type, ionic size and its concentration on the crystal structure, electronic property and morphology of doped ZnO with a narrower band gap is reviewed systematically. Finally, a comparative study is performed to evaluate two classes of metals and nonmetals as useful dopants for ZnO nanostructured photocatalysts under visible light. - Highlights: • Metals and nonmetals used as a dopant to shift ZnO band gap toward visible-light. • Modification of electronic structure played a crucial role in doped ZnO activity. • Correlation between dopant's characteristics and ZnO visible activity was reviewed. • Photo-degradation of doped ZnO was studied and compared for different dopants.

  8. [Enhanced visible-light absorbance of nanosized AgI/TiO2 by using calcination combined with light irradiation].

    Science.gov (United States)

    Liang, Zhu; Ni, Jin-Ren

    2009-07-15

    With the aim to enhance visible-light absorbance, calcination combined with light irradiation was used to modify nanosized AgI/TiO2. UV-Vis spectrum curves indicated that the modified sample exhibited an intense absorption in the whole visible light range and a spectrum shifted from 465 nm to 800 nm, and that absorbance at 500 nm was improved three times as much as that of the reported pertinent material. XRD analytic results demonstrated that calcined AgI/TiO2 possessed more rutile phase with reduced band gap from 2.89 eV to 2.81 eV, and that the following xenon-light irradiation further enhanced the relative contents of anatase TiO2, rutile TiO2 and AgI accompanied with produced AgCl phase, leading to the decrease in band gap to 1.55 eV. Formation of AgCl and increases in the relative contents of rutile TiO2 and AgI should take the main responsibilities for the decrease in the band gap and enlargement of visible-light absorbance. Additionally, it was confirmed that only the spectrum absorption of the calcined AgI/TiO2 could be improved by light irradiation, and that ultraviolet light played more role than visible part during the light irradiation. Moreover, it was proposed here that two or more silver halides supported on TiO2 could show more capabilities to stimulate visible-light activation of TiO2.

  9. Visible-Light Excitation of a Molecular Motor with an Extended Aromatic Core.

    Science.gov (United States)

    van Leeuwen, Thomas; Pol, Jasper; Roke, Diederik; Wezenberg, Sander J; Feringa, Ben L

    2017-03-17

    Exploring routes to visible-light-driven rotary motors, the possibility of red-shifting the excitation wavelength of molecular motors by extension of the aromatic core is studied. Introducing a dibenzofluorenyl moiety in a standard molecular motor resulted in red-shifting of the absorption spectrum. UV/vis and 1 H NMR spectroscopy showed that these motors could be isomerized with light of wavelengths up to 490 nm and that the structural modification did not impair the anticipated rotary behavior. Extension of the aromatic core is therefore a suitable strategy to apply in pursuit of visible-light-driven molecular motors.

  10. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light

    DEFF Research Database (Denmark)

    Kessel, Line; Eskildsen, Lars Baunsgaard; Lundeman, Jesper Holm

    2011-01-01

    wavelength region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. METHODS: Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm......ABSTRACT: BACKGROUND: The human lens is continuously exposed to high levels of light. Ultraviolet radiation is believed to play a causative role in the development of cataract. In vivo, however, the lens is mainly exposed to visible light and the ageing lens absorbs a great part of the short....... RESULTS: Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with UVA led to photodarkening whereas no detrimental effects were observed after...

  11. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light

    DEFF Research Database (Denmark)

    Kessel, Line; Eskildsen, Lars; Lundeman, Jesper Holm

    2011-01-01

    region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. METHODS: Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm) lasers......BACKGROUND: The human lens is continuously exposed to high levels of light. Ultraviolet radiation is believed to play a causative role in the development of cataract. In vivo, however, the lens is mainly exposed to visible light and the ageing lens absorbs a great part of the short wavelength......: Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with UVA led to photodarkening whereas no detrimental effects were observed after irradiation...

  12. The Effect of Anisotropy on Light Extraction of Organic Light-Emitting Diodes with Photonic Crystal Structure

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-01-01

    Full Text Available The light extraction efficiency of organic light-emitting diodes (OLED is greatly limited due to the difference in refractive indexes between materials of OLED. We fabricated OLED with photonic crystal microstructures in the interface between the glass substrate and the ITO anode. The light extraction efficiency can be improved by utilizing photonic crystals; however, the anisotropy effect of light extraction was clearly observed in experiment. To optimize the device performance, the effect of photonic crystal on both light extraction and angular distribution was investigated using finite-difference time domain (FDTD method. We simulated the photonic crystals with the structure of square lattice and triangle lattice. We analyzed the improvement of these structures in the light extraction efficiency of the OLED and the influence of arrangement, depth, period, and diameter on anisotropy. The optimized geometric parameters were provided, which will provide the theoretical support for designing the high performance OLED.

  13. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light

    Science.gov (United States)

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-01

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications.Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00759g

  14. Visible light induces matrix metalloproteinase-9 expression in rat eye.

    Science.gov (United States)

    Papp, Andrea M; Nyilas, Rita; Szepesi, Zsuzsanna; Lorincz, Magor L; Takács, Eszter; Abrahám, István; Szilágyi, Nóra; Tóth, Júlia; Medveczky, Péter; Szilágyi, László; Juhász, Gábor; Juhász, Gábor

    2007-12-01

    Up-regulation of matrix metalloproteinase-9 (MMP-9, gelatinase B) in the nervous system has been demonstrated when excitotoxicity-induced tissue remodeling and neuronal death occurs. Induction of MMP-9 by a natural stimulus has not been observed yet. Using RT-PCR and gelatin-zymography we demonstrated MMP-9 induction at transcriptional and protein levels in different structures of the rat eye following over-stimulation with white light. MMP-9 elevation occurred in the retina without reduction in photoreceptor number or major anatomical reorganization. A transient decrease in electroretinogram b-wave indicated the functional recovery. Retrobulbar injection of a broad-spectrum MMP-inhibitor GM6001, slowed the recovery rate of b-wave amplitude. Even room-light applied to dark-adapted awake animals induced MMP-9 increase in the retina, which suggests a role for MMP-9 in physiological functional plasticity of the nervous system, such as light adaptation. This is the first demonstration of MMP-9 induction by a sensory stimulus.

  15. A compact two photon light sheet microscope for applications in neuroscience

    DEFF Research Database (Denmark)

    Piksarv, Peeter; Marti, Dominik; Le, Tuan

    2016-01-01

    We present a compact setup for two photon light sheet microscopy. By using pulsed Airy beam illumination we demonstrate eight-fold increase of the FOV compared to Gaussian light sheet with the same axial resolution....

  16. Direct effects of visible and UVA light on pigment migration in erythrophores of Nile tilapia.

    Science.gov (United States)

    Sato, Masako; Ishikura, Ryo; Oshima, Noriko

    2004-10-01

    Erythrophores derived from Nile tilapia (Oreochromis niloticus) are sensitive to visible light of defined wavelengths in primary culture in the same manner as erythrophores in the skin. Cultured erythrophores aggregate their pigment in response to light with peak wavelengths near 400 or 600 nm, while dispersion is caused by light near 500 nm. In this study, we report that ultraviolet A (UVA) with a peak wavelength near 365 nm also induces pigment aggregation in erythrophores in the skin and in primary culture. The responses of erythrophores in the skin or in culture depend on the light intensity, although the photo-sensitivity differs among individual cells. From the results, we conclude that the action of visible light and UVA light on tilapia erythrophores is direct, and that multiple types of visual pigments may coexist in individual erythrophores.

  17. Photooxidation of anthracene under visible light with metallocarboxyphenylporphyrins

    Directory of Open Access Journals (Sweden)

    Carlos Enrique Díaz-Uribe

    2014-01-01

    Full Text Available En este trabajo sintetizamos metalocarboxifenilporfirinas (TcPP-M, M= Cu y Zn y la carboxifenilporfirina libre de metal (TcPPH y determinamos su eficiencia en la fotooxidación de antraceno bajo luz visible a través de la generación de oxígeno singulete ( 1 O 2 . La presencia de 1 O 2 fue evidenciada por Resonancia Paramagnética Electrónica (RPE, el cual el oxígeno singulete reacciona con la 2,2,6,6-tetrametil-4-piperidona-N (TEMP para producir el radical 2,2,6,6-tetrametil-4-piperidona-N-oxil (TEMPO. Los resultados catalíticos indican que la incorporación del metal en el anillo de la porfirina afecta su eficiencia sobre la oxidación del antraceno. La TcPPH mostró la eficiencia fotónica más alta en la conversión de antraceno (31 % en comparación con la TcPPZn (13 % y TcPPCu (9 %. Estos resultados pueden ser relacionados a la distorsión de la planaridad del anillo de porfirina. Finalmente se detectó la formación de antraquinona y oxoantrona como productos de oxidación in la reacción del antraceno con 1 O 2.

  18. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Gu Shuna; Li Bing [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xu Yunlong; Qian Xiuzhen; Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-05-05

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: > AgCl/(PPy) nanocomposites as visible light driven photocatalyst. > Composites exhibited high visible light-driven photocatalytic activity and stability. > Photocatalytic process on MO followed photoreduction mechanisms. > Used photocatalyst can be regenerated in aqueous FeCl{sub 3} solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag{sup +} and Cl{sup -} ions in the presence of PPy{sub .} The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl{sub 3} solution.

  19. Au/ZnO nanoarchitectures with Au as both supporter and antenna of visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tianyu; Chen, Wei; Hua, Yuxiang; Liu, Xiaoheng, E-mail: xhliu@mail.njust.edu.cn

    2017-01-15

    Highlights: • An inversed Au/ZnO nanostructure was fabricated with ZnO loaded onto Au. • The Au/ZnO nanocomposites showed enhanced properties in visible-light photocatalysis. • The SPR effect of Au was considered important for visible-light photocatalysis. - Abstract: In this paper, we fabricate Au/ZnO nanostructure with smaller ZnO nanoparticles loaded onto bigger gold nanoparticles via combining seed-mediated method and sol-gel method. The obtained Au/ZnO nanocomposites exhibit excellent properties in photocatalysis process like methyl orange (MO) degradation and oxidative conversion of methanol into formaldehyde under visible light irradiation. The enhanced properties were ascribed to the surface plasmon resonance (SPR) effect of Au nanoparticles, which could contribute to the separation of photo-excited electrons and holes and facilitate the process of absorbing visible light. This paper contributes to the emergence of multi-functional nanocomposites with possible applications in visible-light driven photocatalysts and makes the Au/ZnO photocatalyst an exceptional choice for practical applications such as environmental purification of organic pollutants in aqueous solution and the synthesis of fine chemicals and intermediates.

  20. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    Science.gov (United States)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  1. Efficient ZnO-based visible-light-driven photocatalyst for antibacterial applications.

    Science.gov (United States)

    Kumar, Raju; Anandan, Srinivasan; Hembram, Kaliyan; Rao, Tata Narasinga

    2014-08-13

    Herein, we report the development of a ZnO-based visible-light-driven photocatalyst by interfacial charge transfer process for the inactivation of pathogens under visible-light illumination. Surface modification by a cocatalyst on ZnO, prepared by flame spray pyrolysis process is carried out to induce the visible-light absorption in ZnO. Optical studies showed that surface modification of Cu(2+) induces the visible-light absorption in ZnO by interfacial charge transfer between ZnO and surface Cu(2+) ions upon light irradiation. The photocatalytic efficiency of pure and modified ZnO is evaluated for the inactivation of pathogens and the decomposition of methylene blue under visible-light illumination. The antibacterial activity of Cu(2+)-ZnO is several orders higher than pure ZnO and commercial Degussa-P25 and comparable with Cu(2+)-TiO2. Cu(2+)-ZnO nanorods show better photocatalytic activity than Cu(2+)-ZnO nanosphere, which is attributed to high surface area to volume ratio of former than later. The holes generated in the valence band and the Cu(1+) species generated during the interfacial charge transfer process may attribute for the inactivation of bacteria, whereas the strong oxidation power of hole is responsible for the decomposition of methylene blue. Besides the advantage of Cu(2+)-modified ZnO for visible-light-assisted photocatalytic applications, the method (FSP) used for the synthesis of ZnO in the present study is attractive for commercial application because the process has potential for the production of large quantities (2-3 kg/h) of semiconductors.

  2. Visible-light-Mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents.

    Science.gov (United States)

    Paul, Tias; Miller, Penney L; Strathmann, Timothy J

    2007-07-01

    This study reports on the photocatalytic transformation of fluoroquinolone antibacterial agents (ciprofloxacin, enrofloxacin, norfloxacin, and flumequine) in aqueous titanium dioxide (TiO2) suspensions irradiated with ultraviolet (UV; lambda > 324 nm) or visible light (lambda > 400, > 420, or > 450 nm). Visible-light-mediated fluoroquinolone degradation is unexpected from direct photolysis or established TiO2 band gap photoexcitation mechanisms, which both require UV light. Visible-light-mediated photocatalysis requires an appropriate conduction band electron acceptor (e.g., O2, BrO3-), but is not dependent upon hydroxyl radical, superoxide, or other reactive oxygen species generated upon TiO2 band gap excitation. The process slows considerably when fluoroquinolone adsorption is inhibited. Whereas fluoroquinolone decomposition in UV-irradiated TiO2 suspensions is accompanied by mineralization, no changes in dissolved organic carbon occur during visible-light-photocatalyzed degradation. Results are consistent with a proposed charge-transfer mechanism initiated by photoexcitation of surface-complexed fluoroquinolone molecules. Complexation to the TiO2 surface causes a red shift in the fluoroquinolone absorption spectrum (via ligand-to-metal charge transfer), enabling photoexcitation by visible light. Fluoroquinolone oxidation then occurs by electron transfer into the TiO2 conduction band, which delivers the electron to an adsorbed electron acceptor. The lack of organic carbon mineralization indicates formation of stable organic byproducts that are resistant to further degradation by visible light. In UV-irradiated TiO2 suspensions, the charge-transfer mechanism acts in parallel with the semiconductor band gap photoexcitation mechanism.

  3. Infrared to visible image up-conversion using optically addressed spatial light modulator utilizing liquid crystal and InGaAs photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Solodar, A., E-mail: asisolodar@gmail.com; Arun Kumar, T.; Sarusi, G.; Abdulhalim, I. [Department of Electro-Optics Engineering and The Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2016-01-11

    Combination of InGaAs/InP heterojunction photodetector with nematic liquid crystal (LC) as the electro-optic modulating material for optically addressed spatial light modulator for short wavelength infra-red (SWIR) to visible light image conversion was designed, fabricated, and tested. The photodetector layer is composed of 640 × 512 photodiodes array based on heterojunction InP/InGaAs having 15 μm pitch on InP substrate and with backside illumination architecture. The photodiodes exhibit extremely low, dark current at room temperature, with optimum photo-response in the SWIR region. The photocurrent generated in the heterojunction, due to the SWIR photons absorption, is drifted to the surface of the InP, thus modulating the electric field distribution which modifies the orientation of the LC molecules. This device can be attractive for SWIR to visible image upconversion, such as for uncooled night vision goggles under low ambient light conditions.

  4. Near-Infrared to Visible Organic Upconversion Devices Based on Organic Light-Emitting Field Effect Transistors.

    Science.gov (United States)

    Li, Dongwei; Hu, Yongsheng; Zhang, Nan; Lv, Ying; Lin, Jie; Guo, Xiaoyang; Fan, Yi; Luo, Jinsong; Liu, Xingyuan

    2017-10-18

    The near-infrared (NIR) to visible upconversion devices have attracted great attention because of their potential applications in the fields of night vision, medical imaging, and military security. Herein, a novel all-organic upconversion device architecture has been first proposed and developed by incorporating a NIR absorption layer between the carrier transport layer and the emission layer in heterostructured organic light-emitting field effect transistors (OLEFETs). The as-prepared devices show a typical photon-to-photon upconversion efficiency as high as 7% (maximum of 28.7% under low incident NIR power intensity) and millisecond-scale response time, which are the highest upconversion efficiency and one of the fastest response time among organic upconversion devices as referred to the previous reports up to now. The high upconversion performance mainly originates from the gain mechanism of field-effect transistor structures and the unique advantage of OLEFETs to balance between the photodetection and light emission. Meanwhile, the strategy of OLEFETs also offers the advantage of high integration so that no extra OLED is needed in the organic upconversion devices. The results would pave way for low-cost, flexible and portable organic upconversion devices with high efficiency and simplified processing.

  5. Metal-dielectric superlenses for ultraviolet and visible light

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Bundgaard

    This thesis describes a variety of experiments towards the goal of improved superlensing. This new type of lenses are based on materials with a negative refractive index, which opens up the possibility of resolving details that are significantly smaller than the wavelength of light. The results s......, due to their tunable optical properties. The results show, that when using such composites, it is indeed possible to selectively alter the real part of the permittivity, as predicted by effective medium theory, but the loss is much higher than expected....... the enhanced field local field intensity from a nanoantenna array, and the results indicate a successful transfer, which opens up a number of possibilities within the fields of biological, chemical and medical diagnostics. The use of multilayer lenses to improve imaging was also tested, for which a very low...

  6. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2016-03-01

    Full Text Available Titanium dioxide (TiO2 has gained much attentions for the last few decades due to its remarkable performance in photocatalysis and some other related properties. However, its wide bandgap (~3.2 eV can only absorb UV energy which is only ~5% of solar light spectrum. The objective of this research was to improve the photocatalytic activity of TiO2 by improving the optical absorption to the visible light range. Here, colored TiO2 nanoparticles range from light to dark grey were prepared via aluminium treatment at the temperatures ranging from 400 to 600 oC. The modified TiO2 is able to absorb up to 50% of visible light (400-700 nm and shows a relatively good photocatalytic activity in organic dye (Rhodamine B degradation under visible light irradiation compared with the commercial TiO2. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 7th January 2016; Accepted: 7th January 20 How to Cite: Ariyanti, D., Dong, J.Z., Dong, J.Y., Gao, W. (2016. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 40-47. (doi:10.9767/bcrec.11.1.414.40-47 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.414.40-47

  7. Biomimetic synthesis of TiO₂-SiO₂-Ag nanocomposites with enhanced visible-light photocatalytic activity.

    Science.gov (United States)

    Liu, Chuang; Yang, Dong; Jiao, Yang; Tian, Yao; Wang, Yuangui; Jiang, Zhongyi

    2013-05-01

    Ternary TiO2-SiO2-Ag nanocomposites with enhanced visible-light photocatalytic activity have been synthesized through a facile biomimetic approach by utilizing lysozyme as both inducing agent of TiO2 and reducing agent of Ag(+). TiO2 nanoparticles (∼280 nm) are at first fabricated by the inducing of lysozyme. Afterward, SiO2 layers are formed as "pancakes" stuck out of TiO2 nanoparticles through a sol-gel process. Finally, Ag nanocrystals (∼24.5 nm) are deposited onto the surface of TiO2-SiO2 composites via the reduction of lysozyme, forming TiO2-SiO2-Ag nanocomposites. The resultant nanocomposites display a high photocatalytic activity for the degradation of Rhodamine B under the visible-light irradiation, which can be attributed to the synergistic effect of enhanced photon absorption from the surface plasma resonance of Ag nanocrystals and the elevated adsorption capacity for Rhodamine B from the high specific surface area of SiO2. This study may provide some inspiration for the rational design and the facile synthesis of composite catalysts with a high and tunable catalytic property through a green, efficient pathway.

  8. Synthesis and characterization of visible light absorbing (GaN)(1-x)(ZnO)x semiconductor nanorods.

    Science.gov (United States)

    Reinert, Alexandra A; Payne, Candace; Wang, Limin; Ciston, James; Zhu, Yimei; Khalifah, Peter G

    2013-08-05

    Although the (GaN)(1-x)(ZnO)x solid solution is one of the most effective systems for driving overall solar water splitting with visible light, its quantum yield for overall water splitting using visible light photons has not yet reached ten percent. Understanding and controlling the nanoscale morphology of this system may allow its overall conversion efficiency to be raised to technologically relevant levels. We describe the use a Ga2O3(ZnO)16 precursor phase in the synthesis of this phase which naturally results in the production of arrays of nanorods with favorable diameters (∼100 nm) and band gaps (∼2.5 eV). Substantial absorption within the band gap is observed, part of which is found to follow the E(-3) scaling characteristic of free carriers scattered by ionized impurity sites. Compositional analysis suggests that a substantial quantity of cation vacancies (∼3%) may be present in some samples. The typical nanorod growth direction and dominant {1011} facet for powders in this system have been identified through electron microscopy methods, leading to the conclusion that polarity may play an important role in the high photoactivity of this family of wurtzite semiconductors.

  9. W ion implantation boosting visible-light photoelectrochemical water splitting over ZnO nanorod arrays

    Science.gov (United States)

    Cai, Li; Zhou, Wu; Ren, Feng; Chen, Jie; Cai, Guangxu; Liu, Yichao; Guan, Xiangjiu; Shen, Shaohua

    2017-01-01

    W ions were doped into ZnO nanorod arrays hydrothermally grown on the F-doped tin-oxide-coated glass substrates via an advanced ion implantation technique for photoelectrochemical (PEC) water splitting under visible light. It was found that W incorporation could narrow the bandgap of ZnO and shift the optical absorption into visible light regions obviously, with the one-dimensional nanorod structure maintained for superior charge transfer. As a result, the W-doped ZnO nanorod arrays exhibit considerable PEC performance relative to ZnO nanorod arrays under visible light illumination (λ>420 nm), with photocurrent density achieved up to 15.2 μA/cm2 at 1.0 V (versus Ag/AgCl). The obtained PEC properties indicate that ion implantation can be an alternative approach to develop unique materials for efficient solar energy conversion.

  10. Photoinduced reactions between Pb3O4 and organic dyes in aqueous solution under visible light.

    Science.gov (United States)

    Zhou, Yangen; Long, Jinlin; Gu, Quan; Lin, Huaxiang; Lin, Huan; Wang, Xuxu

    2012-12-03

    Pb(3)O(4) could react with organic dyes in aqueous solution under visible light irradiation, in which Pb(3)O(4) was transformed into Pb(3)(CO(3))(2)(OH)(2) along with oxidation of the organic dyes. Cu(2+) has considerable effect on the reaction. In the presence of Cu(2+), MO (20 ppm) and RhB (10(-5) mol L(-1)) were completely degraded under visible light within 6 and 20 min, respectively, while both Pb(3)O(4) and Cu(2+) keep almost stable during photodegradation. The mechanisms of the reactions with and without Cu(2+) ions were studied. The photochemical system of Pb(3)O(4) cooperating with Cu(2+) ions is probably used for the treatment of organic pollutants in water under visible light.

  11. Differences in visible and near-infrared light reflectance between orange fruit and leaves

    Science.gov (United States)

    Gausman, H. W.; Escobar, D. E.; Berumen, A.

    1975-01-01

    The objective was to find the best time during the season (April 26, 1972 to January 8, 1973) to distinguish orange fruit from leaves by spectrophotometrically determining at 10-day intervals when the difference in visible (550- and 650-nm wavelengths) and near-infrared (850-nm wavelength) light reflectance between fruit and nearby leaves was largest. December 5 to January 8 was the best time to distinguish fruit from leaves. During this period the fruit's color was rapidly changing from green to yellow, and the difference in visible light reflectance between fruit and leaves was largest. The difference in near-infrared reflectance between leaves and fruit remained essentially constant during ripening when the difference in visible light reflectance between leaves and fruit was largest.

  12. Enhanced visible-light activity of titania via confinement inside carbon nanotubes

    KAUST Repository

    Chen, Wei

    2011-09-28

    Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO 2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO 2 from the UV to the visible-light region. The CNT-confined TiO 2 exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO 2 induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis. © 2011 American Chemical Society.

  13. Effects of Curcuma extract and visible light on adults with plaque psoriasis.

    Science.gov (United States)

    Carrion-Gutierrez, Miguel; Ramirez-Bosca, Ana; Navarro-Lopez, Vicente; Martinez-Andres, Asunción; Asín-Llorca, Manuel; Bernd, August; Horga de la Parte, José Francisco

    2015-01-01

    We conducted a phase IV randomized, double-blind, placebo-controlled, pilot clinical trial to investigate the safety and efficacy of oral curcumin together with local phototherapy in patients with plaque psoriasis. Patients with moderate to severe psoriasis received Curcuma extract orally with real visible light phototherapy (VLRT) or simulated visible light phototherapy (VLST) in the experimental area, while the rest of the body surface was treated with ultraviolet A (UVA) radiation. The endpoints were the number of responders and the temporal course of the response. The secondary outcomes were related to safety and adverse events. Twenty-one patients were included in the study. In the intention-to-treat analysis, no patients included in the VLRT group showed "moderate" or "severe" plaques after the treatment, in contrast to the patients included in the VSLT group (pCurcuma if activated with visible light phototherapy, a new therapeutic method that would be safer for patients than existing treatments.

  14. Visible-Light-Responsive Catalyst Development for Volatile Organic Carbon Remediation Project

    Science.gov (United States)

    Zeitlin, Nancy; Hintze, Paul E.; Coutts, Janelle

    2015-01-01

    Photocatalysis is a process in which light energy is used to 'activate' oxidation/reduction reactions. Unmodified titanium dioxide (TiO2), a common photocatalyst, requires high-energy UV light for activation due to its large band gap (3.2 eV). Modification of TiO2 can reduce this band gap, leading to visible-light-responsive (VLR) photocatalysts. These catalysts can utilize solar and/or visible wavelength LED lamps as an activation source, replacing mercury-containing UV lamps, to create a "greener," more energy-efficient means for air and water revitalization. Recently, KSC developed several VLR catalysts that, on preliminary evaluation, possessed high catalytic activity within the visible spectrum; these samples out-performed existing commercial VLR catalysts.

  15. Visible light assisted photocatalytic degradation of methyl orange using Ag/N-TiO₂ photocatalysts.

    Science.gov (United States)

    Wu, Deyong; Long, Mingce

    2012-01-01

    For the sake of efficient utilization of sunlight, Ag nanoparticles loaded N-doped TiO₂ photocatalysts (Ag/N-TiO₂) were successfully fabricated via a two-step method to make the best use of the respective advantages of noble metal loading and nonmetal doping. Ag/N-TiO₂ was characterized using XRD, XPS and UV-Vis DRS. Compared to TiO₂, the dramatic enhancement of the visible-light-induced photocatalytic degradation efficiency of Ag/N-TiO₂ obtained for the degradation of methyl orange should be attributed to the synergistic effect of N-doping and Ag-loading, including the good visible light absorption and the effective electron-hole separations. This demonstrates Ag/N-TiO₂ is a promising photocatalytic material for organic pollutant degradation under visible light irradiation.

  16. Visible-Light Active and Magnetically Recyclable Nanocomposites for the Degradation of Organic Dye

    Directory of Open Access Journals (Sweden)

    Helin Niu

    2014-05-01

    Full Text Available Recyclable visible-light photocatalyst Fe3O4@TiO2 with core-shell structure was prepared by a simple synthetic strategy using solvothermal crystallization of titanium precursor on preformed Fe3O4 nanopartiles. The photo-degradation reaction of neutral red aqueous solution was tested to evaluate the visible-light photocatalytic activity of the as prepared Fe3O4@TiO2 nanoparticles, which show excellent photocatalytic activity compared with commercial P25 catalyst. Moreover, the Fe3O4@TiO2 nanocomposites can be easily separated from the reaction mixture, and maintain favorable photocatalytic activity after five cycles. The high visible light absorption of the Fe3O4@TiO2 nanocomposites may originate from the absence of electronic heterojunction, excellently dispersity and the high specific surface area of the as-synthesized Fe3O4@TiO2 samples.

  17. Impact of different visible light spectra on oxygen absorption and surface discoloration of bologna sausage.

    Science.gov (United States)

    Böhner, Nadine; Rieblinger, Klaus

    2016-11-01

    The objective of this study was to evaluate the influence of several visible light spectra in various intensities on the oxygen absorption and surface color of sliced bologna. Sausage samples were stored in a gastight model packaging system and illuminated at 5°C with six single-colored LEDs covering the main part of the visible light spectrum. The initial oxygen level was set at 0.5% in order to simulate common residual oxygen amounts in conventional packaging. The oxygen absorption and the discoloration measured as changes in CIE a*-value were dependent from the applied light intensity. The color stability of bologna was differently affected by light of various wavelengths. The results show that the use of suitable LEDs with specific spectra for display illumination can help to reduce the light induced deterioration of cured sausages in retail markets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light.

    Science.gov (United States)

    Tanabe, Ichiro; Kurawaki, Yuji

    2017-11-07

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sandwiched ZnO@Au@CdS nanorod arrays with enhanced visible-light-driven photocatalytical performance

    Science.gov (United States)

    Ren, Shoutian; Wang, Yingying; Fan, Guanghua; Gao, Renxi; Liu, Wenjun

    2017-11-01

    The development of high-performance photocatalysts is central to efforts focused on taking advantage of solar energy to overcome environmental and energy crises. Integrating different functional materials artfully into nanostructures can deliver more efficient photocatalytic activity. Here, sandwiched ZnO@Au@CdS nanorod films were synthesized via successive ZnO nanorod electrodeposition, Au sputtering and CdS electrodeposition. The as-synthesized composites were characterized by UV–vis spectrophotometer, x-ray diffractometer, scanning and transmission electron microscopy. Their photocatalytic activity was assessed by degrading Rhodamine B solution under visible light irradiation. ZnO@Au@CdS exhibited better photocatalytic performance than ZnO@CdS throughout the visible light region, and the corresponding enhancement factor of Au nanoparticles was measured as a function of CdS loading amount, and it could reach 190% with CdS deposition for 1 min. The normalized rate constant could reach 0.387 h‑1 for ZnO@Au@CdS-1min, which was equivalent to or better than results in reference photocatalysts. The enhancement mechanism of Au nanoparticles was estimated by comparing the monochromatic photocatalytic action spectra with the absorption spectrum of ZnO@Au@CdS, and it was mainly determined by incident photon energy. With selective excitation of Au nanoparticles by incident photons, the excited hot electrons in Au NPs are transferred to the conduction band of ZnO to boost photocatalytic reaction. With selective excitation of CdS, the enhanced interband absorption of CdS and relay station effect of Au nanoparticles should be responsible for the enhanced photocatalytic performance. Our work not only opens the door to the design of efficient supported photocatalysts, but also helps to understand the enhancement mechanism of LSPR effect on the photoelectric conversion of semiconductors.

  20. White light generation using photonic crystal fiber with sub-micron circular lattice

    Science.gov (United States)

    Saghaei, Hamed; Ghanbari, Ashkan

    2017-08-01

    In this paper, we study a photonic crystal fiber (PCF) with circular lattice and engineer linear and nonlinear parameters by varying the diameter of air-holes. It helps us obtain low and high zero dispersion wavelengths in the visible and nearinfrared regions. We numerically demonstrate that by launching 100 fs input pulses of 1, 2, and 5 kW peak powers with center wavelength of 532 nm from an unamplified Ti:sapphire laser into a 100 mm length of the engineered PCF, supercontinua as wide as 290, 440 and 830 nm can be obtained, respectively. The spectral broadening is due to the combined action of self-phase modulation, stimulated Raman scattering and parametric four-wave-mixing generation of the pump pulses. The third and the widest spectrum covers the entire visible range and a part of near infrared region making it a suitable source for both white light applications and optical coherence tomography to measure retinal oxygen metabolic response to systemic oxygenation.

  1. Some Effects of Visible Light on Escherichia coli1

    Science.gov (United States)

    D'Aoust, Jean Y.; Giroux, J.; Barran, L. R.; Schneider, Henry; Martin, W. G.

    1974-01-01

    Light above 400 nm had selective effects on Escherichia coli ML-308: several processes or enzymes were strongly inhibited, whereas others were relatively unaffected. There was a correlation between the inhibition of respiration and the inhibition of active uptake of glycine. However, phenylalanine uptake did not show such a correlation. The decrease in adenosine 5′-triphosphate level during the first few minutes of illumination resembled the inactivation kinetics of phenylalanine uptake. The results suggest that phenylalanine uptake may not depend greatly on oxidative energy and may depend on the adenosine 5′-triphosphate level. The results for glycine suggest either that its active uptake and respiration involve a common photosensitive component or alternately, that only the respiratory chain contains the photosensitive component, and that glycine uptake is coupled almost exclusively to respiration. The critical photochemical lesion does not involve d-lactate dehydrogenase, succinate dehydrogenase, or l-α-glycerophosphate dehydrogenase since their inactivation rate is markedly lower than that for respiration. Images PMID:4281776

  2. Sustainable Strategy Utilizing Biomass: Visible-Light-Mediated Synthesis of gamma-Valerolactone

    Science.gov (United States)

    A novel sustainable approach to valued g-valerolactone was investigated.This approach exploits the visible-light-mediated conversion of biomass-derived levulinic acid by using a bimetallic catalyst on a graphitic carbon nitride, AgPd@g-C3N4.This dataset is associated with the following publication:Verma, S., R.B.N. Baig, M. Nadagouda , and R. Varma. Sustainable Strategy Utilizing Biomass: Visible-Light-Mediated Synthesis of γ-Valerolactone. ChemCatChem. Wiley-VCH, WEINHEIM, GERMANY, 8(4): 872, (2016).

  3. Recent advancements in plasmon-enhanced visible light-driven water splitting

    Directory of Open Access Journals (Sweden)

    Qingzhe Zhang

    2017-03-01

    Full Text Available Recently, the combination of plasmonic noble metallic nanostructures with semiconductors for plasmon-enhanced visible light-driven water splitting (WS has attracted considerable attention. This review first presents three prime enhancement mechanisms for plasmon-enhanced photocatalytic WS, and then some state-of-the-art representative studies are introduced according to different enhancement mechanisms. Furthermore, the design parameters of plasmonic-metal/semiconductor photocatalysts are discussed in detail, focusing on the effect of shape, size and geometric position of metallic nanostructures on the photocatalytic activity of visible light-driven WS. Finally, the challenges and perspectives for plasmon-enhanced solar WS are proposed.

  4. Singly-resonant sum frequency generation of visible light in a semiconductor disk laser

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.

    2009-01-01

    In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...... spectrum, by appropriate choice of semiconductor material and single-pass laser wavelength....

  5. Atom-Transfer Radical Addition to Unactivated Alkenes by using Heterogeneous Visible-Light Photocatalysis.

    Science.gov (United States)

    Mao, Liang-Liang; Cong, Huan

    2017-11-23

    Heterogeneous visible-light photocatalysis represents an important route toward the development of sustainable organic synthesis. In this study visible light-induced, heavy metal-free atom-transfer radical addition to unactivated terminal olefins is carried out by using the combination of heterogeneous titanium dioxide as photocatalyst and a hypervalent iodine(III) reagent as co-initiator. The reaction can be applied to a range of substrates with good functional-group tolerance under very mild conditions. In addition to a number of commonly used atom-transfer reagents, the relatively challenging chloroform is also suitable. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. xBiOI-(1 - x)BiOCl as efficient visible-light-driven photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wendeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Huang Fuqiang [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: huangfq@mail.sic.ac.cn; Lin Xinping [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2007-04-15

    A new class of oxyhalide photocatalysts, xBiOI-(1 - x)BiOCl, were prepared by a soft chemical method. The samples with x = 0.2-1.0 have intense absorptions in the visible light region and the optical band gaps are in the range 1.92-2.31 eV. They possess high photocatalytic activities under visible light irradiation for the degradation of methyl orange. This high photocatalytic activity is in close relation with the deep valance band edge position and the internal electric fields between [Bi{sub 2}O{sub 2}] slabs and halogen anionic slabs.

  7. Characterization of internal geometry / covered surface defects with a visible light sensing system

    Science.gov (United States)

    Straub, Jeremy

    2016-05-01

    Previous work has used visible light scanning to detect and characterize defects in 3D printed objects. This paper focuses on assessing the internal structures and external surfaces (that will be later hidden) of complex objects. These features make in-process defect detection far more important than it would be with an object that can be fully assessed with a post-completion scan, as it is required both for in-process correction and end-product quality assurance. This paper presents work on the use of a multi-camera visible light 3D scanning system to identify defects with printed objects' interior and covered / obscured exterior surfaces.

  8. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident

  9. Implementasi Sistem Penyiaran Musik Digital di Kafe menggunakan Visible Light Communication

    Directory of Open Access Journals (Sweden)

    DENNY DARLIS

    2017-06-01

    Full Text Available ABSTRAKTeknologi penyiaran dengan frekuensi radio menggunakan teknik modulasi frekuensi (FM telah dikenal sejak lama. Teknologi ini memfasilitasi pengiriman suara melalui sinyal analog dari pemancar kepada penerima. Pengembangan teknologi komunikasi menggunakan cahaya tampak yang memanfaatkan lampu LED sebagai pengirim informasi cukup banyak dilakukan. Pada penelitian ini diimplementasi sistem pengiriman dan penerimaaan siaran musik digital dengan memanfaatkan cahaya tampak yang berasal dari lampu penerangan di kafe. Sistem visible light communication (VLC diimplementasikan dengan menggunakan metoda modulasi intensitas dan deteksi langsung (IM/DD. Dari hasil pengujian dapat ditunjukkan bahwa sistem ini dapat melewatkan siaran musik digital dengan redaman rata-rata 7,77 dB pada jarak maksimal adalah 3 meter. Hasil dari sistem yang telah dirancang dan diimplementasikan menunjukan hasil yang baik sehingga layak untuk diterapkan pada system penyiaran musik digital di kafe.Kata kunci: Visible Light Communication, IM/DD, Sistem Penyiaran Musik Digital, Sistem Penerangan Kafe.ABSTRACTBroadcasting technology uses radio frequency and technique of frequency modulation (FM has been known for a long time. This technology allows the transmission of voice through analog signals from transmitter to receiver. Currently, many research on visible light communication technology utilizes LED lights as the sender. In this paper presented the results of transmitter and receiver system implementation of digital musik broadcast for use in the cafe. Visible light communication (VLC system is implemented using intensity modulation and direct detection (IM/DD method. From the test results can be shown that this system can pass digital musik broadcast with an average attenuation of 7.77 dB at maximum distance is 3 meters. Results of the system that has been designed and implemented shows good results, so it deserves to be applied to the digital musik broadcasting system in

  10. Oxygen deficient ZnO 1-x nanosheets with high visible light photocatalytic activity.

    Science.gov (United States)

    Guo, Hong-Li; Zhu, Qing; Wu, Xi-Lin; Jiang, Yi-Fan; Xie, Xiao; Xu, An-Wu

    2015-04-28

    Zinc oxide is one of the most important wide-band-gap (3.2 eV) materials with versatile properties, however, it can not be excited by visible light. In this work, we have developed an exquisite and simple way to prepare oxygen-deficient ZnO 1-x nanosheets with a gray-colored appearance and excellent visible light photocatalytic activity. Detailed analysis based on UV-Vis absorption spectra, X-band electron paramagnetic resonance (EPR) spectra, and photoluminescence (PL) spectra confirms the existence of oxygen vacancies in ZnO 1-x. The incorporation of oxygen defects could effectively extend the light absorption of ZnO 1-x into the visible-light region due to the fact that the energy of the localized state is located in the forbidden gap. Thus, our obtained ZnO 1-x shows a higher photodegradation of methyl orange (MO) compared to defect-free ZnO under visible light illumination. Additionally, the high content of ˙OH radicals with a strong photo-oxidation capability over the ZnO 1-x nanosheets significantly contributes to the improvement in the photocatalytic performance. Our oxygen deficient ZnO 1-x sample shows a very high photocatalytic activity for the degradation of MO even after 5 cycles without any obvious decline. The results demonstrate that defect engineering is a powerful tool to enhance the optoelectronic and photocatalytic performances of nanomaterials.

  11. Visible light driven multifunctional photocatalysis in TeO2-based semiconductor glass ceramics

    Science.gov (United States)

    Kushwaha, Himmat Singh; Thomas, Paramanandam; Vaish, Rahul

    2017-01-01

    Photocatalytic xCaCu3Ti4O12-(100-x)TeO2 (x=0.25 mol% to 3 mol%), glass nanocomposites were fabricated and investigated for wastewater treatment, self-cleaning surfaces, and photocatalytic hydrogen evolution. Visible light active crystals of Cu-doped TiO2 and TiTe3O8 were grown by optimized crystallization of as-quenched glasses. The visible light photocatalytic activity of glass samples was investigated for estrogenic pharmaceutical pollutants, and the degradation rate was obtained as 168.56 min-1 m-2. A higher photocatalytic H2 production rate was observed (135 μmole h-1 g-1) for the crystallized CaCu3Ti4O12-TeO2 (x=3. 0) glass plate under visible light. The self-cleaning performance was observed using contact angle measurements for water under dark and light conditions. These visible light active glass ceramics are a cost effective sustainable solution for water treatment and self-cleaning applications.

  12. Melanin photosensitization and the effect of visible light on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Orlando Chiarelli-Neto

    Full Text Available Protecting human skin from sun exposure is a complex issue that involves unclear aspects of the interaction between light and tissue. A persistent misconception is that visible light is safe for the skin, although several lines of evidence suggest otherwise. Here, we show that visible light can damage melanocytes through melanin photosensitization and singlet oxygen (1O2 generation, thus decreasing cell viability, increasing membrane permeability, and causing both DNA photo-oxidation and necro-apoptotic cell death. UVA (355 nm and visible (532 nm light photosensitize 1O2 with similar yields, and pheomelanin is more efficient than eumelanin at generating 1O2 and resisting photobleaching. Although melanin can protect against the cellular damage induced by UVB, exposure to visible light leads to pre-mutagenic DNA lesions (i.e., Fpg- and Endo III-sensitive modifications; these DNA lesions may be mutagenic and may cause photoaging, as well as other health problems, such as skin cancer.

  13. Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility.

    Directory of Open Access Journals (Sweden)

    Martin Aubé

    Full Text Available Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED and LED 2700 K lamps filtered with the new Ledtech's Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies.

  14. Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility.

    Science.gov (United States)

    Aubé, Martin; Roby, Johanne; Kocifaj, Miroslav

    2013-01-01

    Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED) and LED 2700 K lamps filtered with the new Ledtech's Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies.

  15. BODIPY star-shaped molecules as solid state colour converters for visible light communications

    Energy Technology Data Exchange (ETDEWEB)

    Vithanage, D. A.; Manousiadis, P. P.; Sajjad, M. T.; Samuel, I. D. W., E-mail: idws@st-andrews.ac.uk, E-mail: gat@st-andrews.ac.uk; Turnbull, G. A., E-mail: idws@st-andrews.ac.uk, E-mail: gat@st-andrews.ac.uk [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St. Andrews KY16 9SS (United Kingdom); Rajbhandari, S. [School of Computing, Electronics and Mathematics, Coventry University, Coventry, West Midlands CV1 2JH (United Kingdom); Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom); Chun, H.; Faulkner, G.; O' Brien, D. C. [Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom); Orofino, C.; Cortizo-Lacalle, D.; Findlay, N. J.; Skabara, P. J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL (United Kingdom); Kanibolotsky, A. L. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL (United Kingdom); Institute of Physical-Organic Chemistry and Coal Chemistry, 02160 Kyiv (Ukraine)

    2016-07-04

    In this paper, we study a family of solid-state, organic semiconductors for visible light communications. The star-shaped molecules have a boron-dipyrromethene (BODIPY) core with a range of side arm lengths which control the photophysical properties. The molecules emit red light with photoluminescence quantum yields ranging from 22% to 56%. Thin films of the most promising BODIPY molecules were used as a red colour converter for visible light communications. The film enabled colour conversion with a modulation bandwidth of 73 MHz, which is 16 times higher than that of a typical phosphor used in LED lighting systems. A data rate of 370 Mbit/s was demonstrated using On-Off keying modulation in a free space link with a distance of ∼15 cm.

  16. Preparation of Ag@AgCl-doped TiO2/sepiolite and its photocatalytic mechanism under visible light.

    Science.gov (United States)

    Liu, Shaomin; Zhu, Dinglong; Zhu, Jinglin; Yang, Qing; Wu, Huijun

    2017-10-01

    A cube-like Ag@AgCl-doped TiO2/sepiolite (denoted Ag@AgCl-TiO2/sepiolite) was successfully synthesized via a novel method. X-ray diffraction, scanning electron microscopy, energy dispersion X-ray fluorescence, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and diffuse reflectance ultraviolet-visible spectroscopy were performed to determine the structure and physicochemical properties of Ag@AgCl-TiO2/sepiolite. SEM micrographs revealed that Ag@AgCl nanoparticles and TiO2 film are well deposited on the surface of tube-like sepiolite. As a result, Ag@AgCl-TiO2/sepiolite exhibits a red shift relative to TiO2/sepiolite. Photocatalytic experiments demonstrated that the dosage of catalysts plays an important role during photocatalysis. The photoelectrochemical activities of Ag@AgCl-TiO2/sepiolite and TiO2/sepiolite were also investigated. Photocurrent responses confirmed that the ability of Ag@AgCl-TiO2/sepiolite to separate photo-generated electron-hole pairs is stronger than that of TiO2/sepiolite. Methylene Blue degradation is also improved under alkaline conditions and visible light irradiation because more OH is produced by visible light excitation. This excellent catalytic ability is mainly attributed to the formed Ag nanoparticles and the Schottky barrier at the Ag/TiO2 interface. Active species analysis indicated that O2- and h+ are implicated as active species in photocatalysis. Therefore, catalysts are excited to produce abundant electron-hole pairs after they absorb photons in photocatalysis. Copyright © 2017. Published by Elsevier B.V.

  17. Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope (Conference Presentation)

    Science.gov (United States)

    Chong, Shau Poh; Bernucci, Marcel T.; Borycki, Dawid; Radhakrishnan, Harsha; Srinivasan, Vivek J.

    2017-02-01

    Visible light is absorbed by intrinsic chromophores such as photopigment, melanin, and hemoglobin, and scattered by subcellular structures, all of which are potential retinal disease biomarkers. Recently, high-resolution quantitative measurement and mapping of hemoglobin concentrations was demonstrated using visible light Optical Coherence Tomography (OCT). Yet, most high-resolution visible light OCT systems adopt free-space, or bulk, optical setups, which could limit clinical applications. Here, the construction of a multi-functional fiber-optic OCT system for human retinal imaging with high-resolution visible light OCT has potential for depth-resolved functional imaging of the eye.

  18. Mitochondrial reactive oxygen species generation and calcium increase induced by visible light in astrocytes.

    Science.gov (United States)

    Jou, Mei-Jie; Jou, Shuo-Bin; Guo, Mei-Jin; Wu, Hong-Yueh; Peng, Tsung-I

    2004-04-01

    Mitochondria contain photosensitive chromophores that can be activated or inhibited by light in the visible range. Rather than utilizing light energy, however, mitochondrial electron transport oxidation-reduction reaction and energy coupling could be stimulated or damaged by visible light. Our previous work demonstrated that reactive oxygen species (ROS) were generated in cultured astrocytes after visible laser irradiation. With confocal fluorescence microscopy, we found that ROS were generated mostly from mitochondria. This mitochondrial ROS (mROS) formation plays a critical role in photoirradiation-induced phototoxicity and apoptosis. In this study, we measured changes of mitochondrial calcium level ([Ca(2+)](m)) in cultured astrocytes (RBA-1 cell line) irradiated with blue light and examined the association between mROS formation and [Ca(2+)](m) level changes. Changes of intracellular ROS and [Ca(2+)](m) were visualized using fluorescent probes 2',7'-dichlorodihydrofluorescein (DCF), and rhod-2. After exposure to visible light irradiation, RBA-1 astrocytes showed a rapid increase in ROS accumulation particularly in the mitochondrial area. Increase in [Ca(2+)](m) was also induced by photoirradiation. The levels of increase in DCF fluorescence intensity varied among different astrocytes. Some of the cells generated much higher levels of ROS than others. For those cells that had high ROS levels, mitochondrial Ca(2+) levels were also high. In cells that had mild ROS levels, mitochondrial Ca(2+) levels were only slightly increased. The rate of increase in DCF fluorescence seemed to be close to the rate of rhod-2 fluorescence increase. There is a positive and close correlation between mitochondrial ROS levels and mitochondrial Ca(2+) levels in astrocytes irradiated by visible light.

  19. Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Altintas Yildirim, Ozlem, E-mail: ozlemaltintas@gmail.com [Department of Metallurgical and Materials Engineering, Selcuk University, Konya (Turkey); Arslan, Hanife; Sönmezoğlu, Savaş [Department of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, Karaman (Turkey); Nanotechnology R& D Laboratory, Karamanoglu Mehmetbey University, Karaman (Turkey)

    2016-12-30

    Highlights: • Photocatalytically active Co-ZnO thin film was obtained by sol-gel method. • Co{sup 2+} doping narrowed the band gap of pure ZnO to an extent of 3.18 eV. • Co-ZnO was effective in MB degradation under visible light. • Optimum dopant content to show high performance was 3 at.%. - Abstract: Cobalt-doped zinc oxide (Co:ZnO) thin films with dopant contents ranging from 0 to 5 at.% were prepared using the sol–gel method, and their structural, morphological, optical, and photocatalytic properties were characterized. The effect of the dopant content on the photocatalytic properties of the films was investigated by examining the degradation behavior of methylene blue (MB) under visible light irradiation, and a detailed investigation of their photocatalytic activities was performed by determining the apparent quantum yields (AQYs). Co{sup 2+} ions were observed to be substitutionally incorporated into Zn{sup 2+} sites in the ZnO crystal, leading to lattice parameter constriction and band gap narrowing due to the photoinduced carriers produced under the visible light irradiation. Thus, the light absorption range of the Co:ZnO films was improved compared with that of the undoped ZnO film, and the Co:ZnO films exhibited highly efficient photocatalytic activity (∼92% decomposition of MB after 60-min visible light irradiation for the 3 at.% Co:ZnO film). The AQYs of the Co:ZnO films were greatly enhanced under visible light irradiation compared with that of the undoped ZnO thin film, demonstrating the effect of the Co doping level on the photocatalytic activity of the films.

  20. Visible Light Emission from Atomic Scale Patterns Fabricated by the Scanning Tunneling Microscope

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Stokbro, Kurt

    1999-01-01

    Scanning tunneling microscope (STM) induced light emission from artificial atomic scale structures comprising silicon dangling bonds on hydrogen-terminated Si(001) surfaces has been mapped spatially and analyzed spectroscopically in the visible spectral range. The light emission is based on a novel...... a quasipoint source with a spatial extension similar to the size of a dangling bond. [S0031-9007(98)08376-8]....

  1. A photo-auxiliary approach - enabling excited state classical phototransformations with metal free visible light irradiation.

    Science.gov (United States)

    Iyer, Akila; Jockusch, Steffen; Sivaguru, Jayaraman

    2017-02-04

    Most traditional photoreactions require UV light to yield the desired product. To address this issue, photoreaction of hydrazide based chromophores was evaluated with visible light using a metal free photocatalyst to afford photoproducts in high yields. This hydrazide functionality itself may be removed/modified after the photoreaction, highlighting its role as a "photo-auxiliary". A preliminary mechanistic model based on photophysical experiments is provided to highlight the generality of the strategy.

  2. Visible light sensitive photocatalyst, delafossite structured alpha-AgGaO(2).

    Science.gov (United States)

    Maruyama, Yoshihiko; Irie, Hiroshi; Hashimoto, Kazuhito

    2006-11-23

    Delafossite structured alpha-AgGaO(2) powder was successfully synthesized through a cation exchange reaction. alpha-AgGaO(2) has a band gap of 2.4 eV, absorbs visible light up to 520 nm, and effectively decomposes 2-propanol to CO2 via acetone by irradiating with either UV light (300-400 nm) or visible light (420-530 nm). The values of the quantum efficiency are similar (ca. 0.6%) under light irradiations with wavelengths of 365, 390, 430, 470, and 510 +/- 10 nm, but steeply decrease with wavelengths longer than 530 +/- 10 nm, which support a 2.4 eV band gap. In contrast, the other polymorph, alpha-AgGaO(2) powder, which has a band gap of 2.1 eV, shows a negligible activity when irradiating with either UV light or visible light. The higher oxidation activity of alpha-AgGaO(2) is probably due to its larger band gap, which is formed at the top of its valence band in a lower energy region as compared to alpha-AgGaO(2). Moreover, the first-principle calculations of alpha-AgGaO(2) and alpha-AgGaO(2) clearly indicate that alpha-AgGaO(2) has a remarkably larger dispersed valence band as compared to alpha-AgGaO(2), which is advantageous to the photocatalytic activity due to the efficient hole conduction.

  3. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    Directory of Open Access Journals (Sweden)

    Jamal Al-Sabahi

    2016-03-01

    Full Text Available Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  4. Generation of pulsed light in the visible spectral region based on non-linear cavity dumping

    DEFF Research Database (Denmark)

    Johansson, Sandra; Andersen, Martin; Tidemand-Lichtenberg, Peter

    We propose a novel generic approach for generation of pulsed light in the visible spectrum based on sum-frequency generation between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser. For demonstration, we used a CW 1342 nm laser mixed with a pass...

  5. UV and visible light photodegradation effect on Fe–CNT/TiO2 ...

    Indian Academy of Sciences (India)

    ... the MB photodegradation increase with an increase of visible light intensity can be ascribed to the enhancement MB cationic radical. In addition, chemical oxygen demand (COD) of piggery waste and reduction efficiency of Cr (IV) was done at regular intervals, which gave a good idea about mineralization of wastewater.

  6. UV and visible light photodegradation effect on Fe–CNT/TiO2 ...

    Indian Academy of Sciences (India)

    intervals, which gave a good idea about mineralization of wastewater. Keywords. Fe–CNT/TiO2 composites; photocatalytic activity; ultraviolet; visible light. 1. Introduction. The photocatalytic activity of wide bandgap semiconductors has been the subject of numerous studies due to their abil- ity to simultaneously harvest solar ...

  7. Synthesis of novel photocatalytic RGO-InVO{sub 4} nanocomposites with visible light photoactivity

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jianfeng; Li, Xianfu [Department of Materials Science, Fudan University, Shanghai, 200433 (China); Huang, Weishi; Li, Na [Center of Special Materials and Technology, Fudan University, Shanghai, 200433 (China); Ye, Mingxin, E-mail: mxye@fudan.edu.cn [Department of Materials Science, Fudan University, Shanghai, 200433 (China); Center of Special Materials and Technology, Fudan University, Shanghai, 200433 (China)

    2013-09-01

    Graphical abstract: A facile method for preparation of reduced graphene oxide (RGO) sheets supported indium vanadate (InVO{sub 4}) photocatalysts is reported. The visible light response and adsorption ability of RGO-InVO{sub 4} nanocomposites is greatly improved, which can effectively remove methyl orange and Cr (VI) from water. - Highlights: • Supramolecular photocatalyst of RGO-InVO{sub 4} was achieved. • Reduction of GO and preparation of RGO-InVO{sub 4} was simultaneous. • The prepared RGO-InVO{sub 4} shows high photocatalytic activity and adsorption capacity under visible light. • In situ growth of uniform InVO{sub 4} particles on RGO sheets is facile and efficient - Abstract: In this study, we report a facile method for preparation of reduced graphene oxide (RGO) sheets supported indium vanadate (InVO{sub 4}) photocatalysts. A wide range of characterization techniques, such as Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, Thermogravimetric analysis and Transmission electron microscopy were applied to characterize the obtained composites. The results indicated that the composites consist of uniformly dispersed InVO{sub 4} nanocrystals on RGO sheets. Visible light responses of RGO-InVO{sub 4} nanocomposites are greatly improved as compared with the bulk InVO{sub 4}. The as-prepared RGO-InVO{sub 4} nanocomposites can effectively remove methyl orange and Cr (VI) from water under visible light irradiation, which can be used as novel photocatalysts for environmental protection.

  8. Visible light induced fast synthesis of protein-polymer conjugates: controllable polymerization and protein activity.

    Science.gov (United States)

    Li, Xin; Wang, Lei; Chen, Gaojian; Haddleton, David M; Chen, Hong

    2014-06-21

    Herein visible light is used to induce RAFT polymerization from protein for preparing protein-polymer conjugates at ambient temperature. Polymerization is fast and can be conveniently controlled with irradiation time. By site-specific polymerization of NIPAm to protein, the protein activity is maintained and in certain cases it presents an efficient on-off-switchable property.

  9. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review.

    Science.gov (United States)

    Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat

    2013-01-01

    The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

  10. Zinc oxide nanostructures and its nano-compounds for efficient visible light photo-catalytic processes

    Science.gov (United States)

    Adam, Rania E.; Alnoor, Hatim; Elhag, Sami; Nur, Omer; Willander, Magnus

    2017-02-01

    Zinc oxide (ZnO) in its nanostructure form is a promising material for visible light emission/absorption and utilization in different energy efficient photocatalytic processes. We will first present our recent results on the effect of varying the molar ratio of the synthesis nutrients on visible light emission. Further we will use the optimized conditions from the molar ration experiments to vary the synthesis processing parameters like stirring time etc. and the effect of all these parameters in order to optimize the efficiency and control the emission spectrum are investigated using different complementary techniques. Cathodoluminescence (CL) is combined with photoluminescence (PL) and electroluminescence (EL) as the techniques to investigate and optimizes visible light emission from ZnO/GaN light emitting diodes. We will then show and discuss our recent finding of the use of high quality ZnO nanoparticles (NPs) for efficient photo-degradation of toxic dyes using the visible spectra, namely with a wavelength up to 800 nm. In the end, we show how ZnO nanorods (NRs) are used as the first template to be transferred to bismuth zinc vanadate (BiZn2VO6). The BiZn2VO6 is then used to demonstrate efficient and cost effective hydrogen production through photoelectrochemical water splitting using solar radiation.

  11. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    Science.gov (United States)

    Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2016-01-01

    Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC) was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region. PMID:28773363

  12. Intraoperative assessment of microperfusion with visible light spectroscopy for prediction of anastomotic leakage in colorectal anastomoses

    NARCIS (Netherlands)

    Karliczek, A.; Benaron, D. A.; Baas, P. C.; Zeebregts, C. J.; Wiggers, T.; van Dam, G. M.

    2010-01-01

    Purpose Anastomotic leakage is associated with increased morbidity and mortality. However, there is no accurate tool to predict its occurrence. We evaluated the predictive value of visible light spectroscopy (VLS), a novel method to measure tissue oxygenation [saturated O(2) (StO(2))], for

  13. Aerobic oxidation of alcohols in visible light on Pd-grafted Ti ...

    Science.gov (United States)

    The titanium cluster with the reduced band gap has been synthesized having the palladium nanoparticles over the surface, which not only binds to the atmospheric oxygen but also catalyzes the oxidation of alcohols under visible light. Prepared as an invited article for submission to the Elsevier journal, Tetrahedron.

  14. Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst

    Science.gov (United States)

    TiO2 doping with N-rich melamine produced a stable, active and visible light sentisized nanocatalyst that showed a remarkable efficiency towards the photobleaching of a model compound – methylene blue (MB) in aqueous solution. The photobleaching followed a mixed reaction order ki...

  15. Can visible light impact litter decomposition under pollution of ZnO nanoparticles?

    Science.gov (United States)

    Du, Jingjing; Zhang, Yuyan; Liu, Lina; Qv, Mingxiang; Lv, Yanna; Yin, Yifei; Zhou, Yinfei; Cui, Minghui; Zhu, Yanfeng; Zhang, Hongzhong

    2017-11-01

    ZnO nanoparticles is one of the most used materials in a wide range including antibacterial coating, electronic device, and personal care products. With the development of nanotechnology, ecotoxicology of ZnO nanoparticles has been received increasing attention. To assess the phototoxicity of ZnO nanoparticles in aquatic ecosystem, microcosm experiments were conducted on Populus nigra L. leaf litter decomposition under combined effect of ZnO nanoparticles and visible light radiation. Litter decomposition rate, pH value, extracellular enzyme activity, as well as the relative contributions of fungal community to litter decomposition were studied. Results showed that long-term exposure to ZnO nanoparticles and visible light led to a significant decrease in litter decomposition rate (0.26 m-1 vs 0.45 m-1), and visible light would increase the inhibitory effect (0.24 m-1), which caused significant decrease in pH value of litter cultures, fungal sporulation rate, as well as most extracellular enzyme activities. The phototoxicity of ZnO nanoparticles also showed impacts on fungal community composition, especially on the genus of Varicosporium, whose abundance was significantly and positively related to decomposition rate. In conclusion, our study provides the evidence for negatively effects of ZnO NPs photocatalysis on ecological process of litter decomposition and highlights the contribution of visible light radiation to nanoparticles toxicity in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Symmetry-Breaking-Induced Enhancement of Visible Light Absorption in Delafossite Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Huda, M. N.; Yan, Y.; Walsh, A.; Wei, S. H.; Al-Jassim, M. M.

    2009-06-01

    Through density functional theory calculations, we demonstrate that enhancement of optical absorption and optimization of the fundamental band gap for Cu delafossites can be achieved through alloying group IIIA and IIIB delafossites. These alloys significantly improved the flexibility in designing delafossite-based photoelectrodes for application in photoelectrochemical decomposition of water by visible spectra of solar light.

  17. Photocatalytic generation of hydrogen under visible light on La2CuO4

    Indian Academy of Sciences (India)

    Bull. Mater. Sci., Vol. 38, No. 4, August 2015, pp. 1043–1048. c Indian Academy of Sciences. Photocatalytic generation of hydrogen under visible light on La2CuO4. H LAHMAR and M TRARI. ∗. Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB),. B.P. 32, 16111 Algiers, Algeria.

  18. Visible-Light Photoredox-Catalyzed Coupling Reaction of Azoles with α-Carbamoyl Sulfides.

    Science.gov (United States)

    Jarrige, Lucie; Levitre, Guillaume; Masson, Géraldine

    2016-08-19

    A simple, straightforward strategy for the synthesis of N-substituted azoles is reported that involves a visible-light photoredox-catalyzed coupling reaction of azoles with α-carbamoyl sulfides. A variety of heterocyclic units, including pyrazoles, benzopyrazoles, benzoimidazoles, and purines, can be efficiently incorporated under mild reaction conditions in respectable yields.

  19. Role of particle size in visible light photocatalysis of Congo Red ...

    Indian Academy of Sciences (India)

    Their visible light photocatalytic activity was tested for the degradation of Congo Red dye. Maximum photodegradation was observed for the NC with = 0.1 synthesized by CPH (particle size, 71 nm). Similar composition prepared by SSR method (particle size, 6.19 m) showed lower photoactivity in comparison even with ...

  20. Solution-processed photonic crystals to enhance the light outcoupling efficiency of organic light-emitting diodes.

    Science.gov (United States)

    Cho, Hwan-Hee; Park, Boik; Kim, Hyong-Jun; Jeon, Sohee; Jeong, Jun-Ho; Kim, Jang-Joo

    2010-07-20

    We report an effective solution process to fabricate planarized photonic crystal substrates to enhance the outcoupling efficiency of organic light-emitting diodes (OLEDs). The photonic crystal structure was fabricated using nanoimprint lithography using a UV-curable acrylate and was planarized by using a ZnO layer formed by the solgel process. The solgel process resulted in a smooth surface, and OLEDs have been successfully integrated on the planarized photonic crystal layer with a low leakage current. The resulting light outcoupling efficiency was enhanced by 38% compared with that of conventional OLEDs, which is well matched with a theoretical prediction.

  1. Stopping of light by the dynamic tuning of photonic crystal slow light device.

    Science.gov (United States)

    Saito, Yuji; Baba, Toshihiko

    2010-08-02

    We propose a simple technique of stopping light pulses using a slow-light device based on photonic crystal coupled waveguide (PCCW). Dynamically tuning the material index chirp in the PCCW adiabatically transforms slow-light pulses into stopped ones. We demonstrate this in finite-difference time-domain simulation assuming ideal and actual tuning of the index chirp. In the ideal case, the group velocity of the almost stopped pulse is reduced to 190 times smaller than that of simple slow light pulse. The smallest limit is affected by the timing error of the tuning between wavelengths. Re-ordering and stopping of a pulse train are possible by optimizing the device length and timing. As a practical tuning method, we discuss carrier effects induced by photo-excitation. Taking into account carrier distribution and free carrier absorption, the actual behaviors of stopped light are estimated. We define and evaluate an effective delay-bandwidth product, which is affected by free carrier absorption.

  2. Photonic crystal waveguides with semi-slow light and tailored dispersion properties

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Lavrinenko, Andrei; Fage-Pedersen, Jacob

    2006-01-01

    waveguide with either vanishing, positive, or negative group velocity dispersion and semi-slow light. We realize experimentally a silicon-on-insulator photonic crystal waveguide having nearly constant group velocity [similar to]c$-0$//34 in an 11-nm bandwidth below the silica-line. $CPY@2006 Optical Society......We demonstrate a concept for tailoring the group velocity and dispersion properties for light propagating in a planar photonic crystal waveguide. By perturbing the holes adjacent to the waveguide core it is possible to increase the useful bandwidth below the light-line and obtain a photonic crystal...

  3. Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis.

    Science.gov (United States)

    Sun, Bo; Reddy, Ettireddy P; Smirniotis, Panagiotis G

    2005-08-15

    Here we report the simultaneous Cr(VI) reduction and 4-chlorophenol (4-CP) oxidation in water under visible light (wavelength > 400 nm) using commercial Degussa P25 TiO2. This remarkable observation was attributed to a synergistic effect among TiO2, Cr(VI), and 4-CP. It is well known that TiO2 alone cannot remove either 4-CP or Cr(VI) efficiently under visible light. Moreover, the interaction between Cr(VI) and 4-CP is minimal if not negligible. However, we found that the combination of TiO2, Cr(VI), and 4-CP together can enable efficient Cr(VI) reduction and 4-CP oxidation under visible light. The specific roles of the three ingredients in the synergistic system were studied parametrically. It was found that optimal concentrations of Cr(VI) and TiO2 exist for the Cr(VI) reduction and 4-CP oxidation. Cr(VI) was compared experimentally with other metals such as Cu(ll), Fe(lll), Mn(IV), Ce(IV), and V(V). Among all these metal ions, only Cr(VI) promotes the photocatalytic oxidation of 4-CP. The amount of 4-CP removed was directly related to the initial concentration of Cr(VI). The system was also tested with four other chemicals (aniline, salicylic acid, formic acid, and diethyl phosphoramidate). We found that the same phenomenon occurred for organics containing acid and/or phenolic groups. Cr(VI) was reduced at the same time as the organic chemicals being oxidized during photoreaction under visible light. The synergistic effect was also found with pure anatase TiO2 and rutile TiO2. This study demonstrates a possible economical way for environmental cleanup under visible light.

  4. [TiO2-Induced Photodegradation of Levofloxacin by Visible Light and Its Mechanism].

    Science.gov (United States)

    Guo, Hong-sheng; Liu, Ya-nan; Qiao, Qi; Wei, Hong; Dong, Cheng-xing; Xue, Jie; Li, Ke-bin

    2015-05-01

    Levofloxacin is an emerging pollutant. Single levofloxacin and TiO2 have no visible-light activity. However, photodegradation of levofloxacin dramatically enhanced in the presence of TiO2 under visible light irradiation. Considering this finding, he photodegradation of levofloxacin over TiO2 was investigated under visible light irradiation. Effects of TiO2 dosage, levofloxacin concentration, and solution pH on levofloxacin photodegradation were examined by monitoring its concentration decay with time. The results showed that levofloxacin photodegradation fitted the Langmuir-Hinshelwood kinetic model. Solution pH, TiO2 dose, and levofloxacin concentration had significant effects on the photodegradation rates. In addition, batch adsorption experiments revealed that adsorption of levofloxacin on TiO2 conformed to the pseudo-second-order kinetics and the Langmuir isotherm. DRS spectrum of levofloxacin-adsorbed TiO2 suggested that a surface complex was formed between levofloxacin and TiO2. Addition of radical scavengers and N2-degassing affecting levofloxacin photodegradation indicated that the superoxide ion radical was mainly active species. UV-Vis spectra of a deaerated TiO2 and levofloxacin suspensions further confirmed that the electron injection into TiO2 conduction band took place under visible light irradiation. Based on these results, a charge-transfer mechanism initiated by photoexcitation of TiO2/ levofloxacin surface complex was proposed for levofloxacin photocatalytic degradation over TiO2 under visible light. This study indicates that the charge-transfer-complex-mediated photocatalytic technique has promising applications in the removal of colorless organic pollutants.

  5. Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Nourmohammadi, Amin; Rahighi, Reza [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Akhavan, Omid, E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2014-11-05

    Highlights: • Involvement of GO into the vertically aligned ZnO nanowires using electrophoretic deposition. • UV assisted photocatalytic reduction of the GO sheets involved in the ZnO nanowires. • Visible light photoinactivation of bacteria by the reduced graphene oxide/ZnO nanocomposite. - Abstract: Vertically aligned ZnO nanowires (NWs) hybridized with reduced graphene oxide sheets (rGO) were applied in efficient visible light photoinactivation of bacteria. To incorporate graphene oxide (GO) sheets within the NWs two different methods of drop-casting and electrophoretic deposition (EPD) were utilized. The EPD method yielded effective penetration of the positively charged GO sheets into the NWs to form a spider net-like structure, whereas the drop-casting method resulted in only a surface coverage of the GO sheets on top of the NWs. The electrical connection between the EPD-incorporated sheets and the NWs was checked by monitoring the electron transfer from UV-assisted photoexcited ZnO NWs into the GO sheets, during photocatalytic reduction of the sheets. The obtained rGO/ZnO composites were applied in visible light photoinactivation of Escherichia coli bacteria. The ZnO NWs could inactivate only ∼58% of the bacteria, while both drop-casting and EPD-prepared GO/ZnO composites exhibited strong antibacterial activities (especially the EPD sample with ∼99.5% photoinactivation), under visible light irradiation for 1 h. In fact, the visible light photocatalytic activity of the EPD-prepared GO/ZnO NW composite was found ∼1.9 and 6.2 folds of the activity of the GO/ZnO composite prepared by drop-casting method and the bare ZnO NWs.

  6. Coherent frequency bridge between visible and telecommunications band for vortex light.

    Science.gov (United States)

    Liu, Shi-Long; Liu, Shi-Kai; Li, Yin-Hai; Shi, Shuai; Zhou, Zhi-Yuan; Shi, Bao-Sen

    2017-10-02

    In quantum communications, vortex photons can encode higher-dimensional quantum states and build high-dimensional communication networks (HDCNs). The interfaces that connect different wavelengths are significant in HDCNs. We construct a coherent orbital angular momentum (OAM) frequency bridge via difference frequency conversion in a nonlinear bulk crystal for HDCNs. Using a single resonant cavity, maximum quantum conversion efficiencies from visible to infrared are 36%, 15%, and 7.8% for topological charges of 0,1, and 2, respectively. The average fidelity obtained using quantum state tomography for the down-converted infrared OAM-state of topological charge 1 is 96.51%. We also prove that the OAM is conserved in this process by measuring visible and infrared interference patterns. This coherent OAM frequency-down conversion bridge represents a basis for an interface between two high-dimensional quantum systems operating with different spectra.

  7. Analysis of photon recycling in light emitting diodes with nonuniform injection

    Science.gov (United States)

    Tsutsui, N.; Khmyrova, I.; Ryzhii, V.; Ikegami, T.

    2000-09-01

    We studied the effect of photon recycling in double heterostructure light emitting diodes (LEDs) with relatively small area contact providing nonuniform injection of electrons. A simple phenomenological model of the electron and photon transport in the LED is used to calculate the spatial distributions of electrons and output radiation as well as the external quantum efficiency as functions of device parameters. It is shown that photon recycling is the governing factor of the operation of LEDs with nonuniform injection.

  8. Optical switching in nonlinear photonic crystals lightly doped with nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Lipson, R H [Department of Chemistry, University of Western Ontario, London, ON N6A 5B7 (Canada)

    2008-01-14

    A possible switching mechanism has been investigated for nonlinear photonic crystals doped with an ensemble of non-interacting three-level nanoparticles. In this scheme, an intense pump laser field is used to change the refractive index of the nonlinear photonic crystal while a weaker probe field monitors an absorption transition in the nanoparticles. In the absence of the strong laser field the system transmits the probe field when the resonance energy of the nanoparticles lies near the edge of the photonic band gap due to strong coupling between the photonic crystal and the nanoparticles. However, upon application of an intense pump laser field the system becomes absorbing due to a band edge frequency shift that arises due to a nonlinear Kerr effect which changes the refractive index of the crystal. It is anticipated that the optical switching mechanism described in this work can be used to make new types of photonic devices.

  9. Dressed photons concepts of light-matter fusion technology

    CERN Document Server

    Ohtsu, Motoichi

    2014-01-01

    Authored by the developer of dressed photon science and technology as well as nanophotonics, this book outlines concepts of the subject using a novel theoretical framework that differs from conventional wave optics. It provides a quantum theoretical description of optical near fields and related problems that puts matter excitation such as electronic and vibrational ones on an equal footing with photons. By this description, optical near fields are interpreted as quasi-particles and named dressed photons which carry the material excitation energy in a nanometric space. The author then explores novel nanophotonic devices, fabrications, and energy conversion based on the theoretical picture of dressed photons. Further, this book looks at how the assembly of nanophotonic devices produces information and communication systems.  Dressed photon science and technology is on its way to revolutionizing various applications in devices, fabrications, and systems. Promoting further exploration in the field, this book pr...

  10. Development of a high-speed single-photon pixellated detector for visible wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Raighne, Aaron Mac [Department of Physics and Astronomy, University of Glasgow, England (United Kingdom)], E-mail: aaron.macraighne@gmail.com; Teixeira, Antonio; Mathot, Serge [CERN, Geneve (Switzerland); McPhate, Jason; Vallerga, John [University of California, Berkeley (United States); Jarron, Pierre [CERN, Geneve (Switzerland); Brownlee, Colin [Marine Biological Association of the United Kingdom, Plymouth (United Kingdom); O' Shea, Val [Department of Physics and Astronomy, University of Glasgow, England (United Kingdom)

    2009-08-01

    We present the development of a high-speed, single-photon counting, Hybrid Photo Detector (HPD). The HPD consists of a vacuum tube, containing the detector assembly, sealed with a transparent optical input window. Photons incident on the photocathode eject a photoelectron into a large electric field, which accelerates the incident electron onto a silicon detector. The silicon detector is bump bonded to a Medipix readout chip. This set-up allows for the detection and readout of low incident photon intensities at rates that are otherwise unattainable with current camera technology. Reported is the fabrication of the camera that brings together a range of sophisticated design and fabrication techniques and the expected theoretical imaging performance. Applications to cellular and molecular microscopy are also described in which single-photon-counting abilities at high frame rates are crucial.

  11. Development of a high-speed single-photon pixellated detector for visible wavelengths

    CERN Document Server

    Mac Raighne, Aaron; Mathot, Serge; McPhate, Jason; Vallerga, John; Jarron, Pierre; Brownlee, Colin; O’Shea, Val

    2009-01-01

    We present the development of a high-speed, single-photon counting, Hybrid Photo Detector (HPD). The HPD consists of a vacuum tube, containing the detector assembly, sealed with a transparent optical input window. Photons incident on the photocathode eject a photoelectron into a large electric field, which accelerates the incident electron onto a silicon detector. The silicon detector is bump bonded to a Medipix readout chip. This set-up allows for the detection and readout of low incident photon intensities at rates that are otherwise unattainable with current camera technology. Reported is the fabrication of the camera that brings together a range of sophisticated design and fabrication techniques and the expected theoretical imaging performance. Applications to cellular and molecular microscopy are also described in which single-photon-counting abilities at high frame rates are crucial

  12. Visible Light Image-Based Method for Sugar Content Classification of Citrus

    Science.gov (United States)

    Wang, Xuefeng; Wu, Chunyan; Hirafuji, Masayuki

    2016-01-01

    Visible light imaging of citrus fruit from Mie Prefecture of Japan was performed to determine whether an algorithm could be developed to predict the sugar content. This nondestructive classification showed that the accurate segmentation of different images can be realized by a correlation analysis based on the threshold value of the coefficient of determination. There is an obvious correlation between the sugar content of citrus fruit and certain parameters of the color images. The selected image parameters were connected by addition algorithm. The sugar content of citrus fruit can be predicted by the dummy variable method. The results showed that the small but orange citrus fruits often have a high sugar content. The study shows that it is possible to predict the sugar content of citrus fruit and to perform a classification of the sugar content using light in the visible spectrum and without the need for an additional light source. PMID:26811935

  13. An adaptive scaling and biasing scheme for OFDM-based visible light communication systems.

    Science.gov (United States)

    Wang, Zhaocheng; Wang, Qi; Chen, Sheng; Hanzo, Lajos

    2014-05-19

    Orthogonal frequency-division multiplexing (OFDM) has been widely used in visible light communication systems to achieve high-rate data transmission. Due to the nonlinear transfer characteristics of light emitting diodes (LEDs) and owing the high peak-to-average-power ratio of OFDM signals, the transmitted signal has to be scaled and biased before modulating the LEDs. In this contribution, an adaptive scaling and biasing scheme is proposed for OFDM-based visible light communication systems, which fully exploits the dynamic range of the LEDs and improves the achievable system performance. Specifically, the proposed scheme calculates near-optimal scaling and biasing factors for each specific OFDM symbol according to the distribution of the signals, which strikes an attractive trade-off between the effective signal power and the clipping-distortion power. Our simulation results demonstrate that the proposed scheme significantly improves the performance without changing the LED's emitted power, while maintaining the same receiver structure.

  14. Photocatalytic dye degradation with copper–titanium dioxide nanocomposites under sunlight and visible light irradiation

    Science.gov (United States)

    Qayyum Khan, Abdul; Yuan, Shuai; Niu, Sheng; Liu, Fengjiang; Feng, Guang; Jiang, Mengci; Zeng, Heping

    2018-01-01

    Photocatalytic methalyne blue dye degradation was carried out with copper (Cu)–titanium dioxide (TiO2) nanocomposites under sunlight and visible light irradiation. The Cu–TiO2 nanocomposites were fabricated via femtosecond laser ablation of pressed targets in water. The current method provides a facile route for Cu–TiO2 nanocomposites preparation, which is free from impurities on the catalysts surface. The Cu–TiO2 nanocomposites (with Cu content of 5 wt%) have shown 3 folds faster dye degradation kinetics compared with TiO2 nanoparticles under sunlight irradiation. While under visible light irradiation, the same nanocomposites exhibited 2.6 folds faster kinetics compared with TiO2 nanoparticles. The faster light harvesting efficiency of the catalysts is attributed to more hydroxyl radical generation.

  15. Microwave photonics processing controlling the speed of light in semiconductor waveguides

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Sales, Salvador

    2009-01-01

    We review the theory of slow and fast light effect in semiconductor waveguides and potential applications of these effects in microwave photonic systems as RF phase shifters. Recent applications as microwave photonic filters is presented. Also, in the presentation more applications like...

  16. Enhanced visible light photocatalytic hydrogen evolution over porphyrin hybridized graphitic carbon nitride.

    Science.gov (United States)

    Mei, Shunkang; Gao, Jianping; Zhang, Ye; Yang, Jiangbing; Wu, Yongli; Wang, Xiaoxue; Zhao, Ruiru; Zhai, Xiangang; Hao, Chaoyue; Li, Ruixia; Yan, Jing

    2017-11-15

    Tetra (4-carboxyphenyl) porphyrin (TCPP) was loaded on the surface of Pt/g-C3N4 via a simple adsorption process, and the microstructure and chemical structure of the composites were characterized by high resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-visible diffused reflectance spectroscopy and photoluminescence spectroscopy. Loading TCPP onto Pt/g-C3N4 enhanced the visible-light-driven photocatalytic evolution of H2 from water. The TCPP/Pt/g-C3N4 composite with a TCPP loading of 1wt% had the highest photoactivity, which was 2.1 times higher than that of Pt/g-C3N4. This improvement is attributed to enhanced visible light utilization by the TCPP/Pt/g-C3N4 resulting from the strong visible light response of TCPP. In addition, the formed organic heterostructure between TCPP and g-C3N4 with overlapping bad gaps accelerates the electron transfer and inhibits the recombination of the photogenerated electrons and holes on g-C3N4. Copyright © 2017. Published by Elsevier Inc.

  17. Enhanced Photoactivity of Fe + N Codoped Anatase-Rutile Nanowire Film under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Kewei Li

    2012-01-01

    Full Text Available Rutile-anatase phase mixed codoped TiO2 nanowires were designed and prepared by a two-step anodic oxidation method. The results of X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy confirm that the prepared codoped TiO2 nanowires exhibit intimately contacted anatase-rutile heterostructure with the rutile content of 21.89%. The X-ray photoelectron spectroscopy measurements show that nitrogen and iron atoms are incorporated into the titania oxide lattice, and the UV-visible absorption spectra show that the codoping of iron and nitrogen atoms could extend the absorption to visible light region. The photocatalytic activities of all the samples were evaluated by photocatalytic degradation of methylene blue under visible light irradiation. The codoped sample achieves the best response to visible light and the highest photocatalytic activities. The enhancement of photocatalytic activity for codoped sample should be ascribed to the synergistic effects of codoped nitrogen and iron ions and the anatase-rutile heterostructure.

  18. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Saoud, Khaled [Virginia Commonwealth University-Qatar, Doha (Qatar); Alsoubaihi, Rola [Virginia Commonwealth University, Richmond, VA (United States); Bensalah, Nasr [Qatar University, Doha (Qatar); Bora, Tanujjal [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman); Bertino, Massimo [Virginia Commonwealth University, Richmond, VA (United States); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman)

    2015-03-15

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescence and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.

  19. Hydrothermal Preparation of Visible-Light-Driven N-Br-Codoped TiO2 Photocatalysts

    Directory of Open Access Journals (Sweden)

    Yonggang Sheng

    2008-01-01

    Full Text Available Using a facile hydrothermal method, N-Br-codoped TiO2 photocatalyst that had intense absorption in visible region was prepared at low temperature (100°C, through a direct reaction between nanocrystalline anatase TiO2 solution and cetyltrimethylammonium bromide (CTAB. The results of X-ray photoelectron spectroscopy (XPS showed the existence of N-Ti-N, O-Ti-N-R, Ti3+ (attribute to the doped Br atoms by charge compensation, and TiOxNy species, indicating the successful codoping of N and Br atoms, which were substituted for lattice oxygen without any influence on the crystalline phase of TiO2. In contrast to the N-doped sample, the N-Br-codoped TiO2 photocatalyst could more readily photodegrade methylene blue (MB under visible-light irradiation. The visible-light catalytic activity of thus-prepared photocatalyst resulted from the synergetic effect of the doped nitrogen and bromine, which not only gave high absorbance in the visible-light range, but also reduced electron-hole recombination rate.

  20. [Degrading anticancer drugs in the medical environment using a visible light-driven photocatalyst].

    Science.gov (United States)

    Sato, Junya; Kikuchi, Satomi; Kudo, Kenzo

    2014-01-01

      Occupational exposure to anticancer drugs is recognized as a risk for healthcare workers. Reducing anticancer drugs in the environment is important to prevent the exposure of individuals to anticancer drugs. However, there are currently no effective degrading agents for all anticancer drugs used in clinical settings. We previously reported the resolution of an anticancer drug with the use of a photocatalyst (TiO2), which acts by absorbing ultraviolet light to degrade organic compounds. In this study, we evaluated anticancer drug degradation using a visible light-driven photocatalyst (Cu/WO3). Anticancer drugs [cyclophosphamide (CPA), paclitaxel (PTX), methotrexate (MTX), irinotecan (CPT-11), cytarabine (Ara-C), and 5-fluorouracil (5-FU)], were experimentally deposited on a stainless steel plate. The visible light-driven photocatalytic agent (0.075% Cu/WO3 solution) was sprayed onto the plate, and the plate was then left under a fluorescent lamp for 12 h. The anticancer drugs remaining on the plate were assayed by high-performance liquid chromatography (HPLC). CPA, PTX, MTX, CPT-11, Ara-C, and 5-FU were found to be degraded by up to 37.7%, >99.0%, 57.1%, 54.6%, 69.5%, and 36.3%, respectively. The visible light-driven photocatalyst was therefore confirmed to degrade anticancer drugs under a fluorescent lamp. The ability of the visible light-driven photocatalyst to degrade multiple chemotherapeutic agents without the need for altering the light source could make it a useful tool for reducing anticancer drug pollution in clinical settings.

  1. Photonic breakdown in up-conversion imaging devices based on the integration of quantum-well infrared photodetector and light-emitting diode

    Science.gov (United States)

    Ryzhii, V.; Liu, H. C.

    2002-09-01

    We analyze the effect of photon recycling on up-conversion in a heterostructure device including a quantum well infrared photodetector (QWIP) integrated with a light emitting diode (LED). Such a QWIP-LED device converts middle infrared radiation into near infrared (NIR) or visible radiation (VIR) utilizing intersubband transitions in the QWIP and interband transitions in the LED. We show that the reabsorption of NIR/VIR photons in the QWIP can substantially affect the up-conversion of both uniform illuminations and infrared images. As demonstrated, this effect can cause a photonic breakdown associated with a positive feedback between the emission of NIR/VIR photons from the LED and the resulting photocurrent in the QWIP.

  2. Slow and fast light effects in semiconductor optical amplifiers for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi

    This thesis analyzes semiconductor optical amplifiers based slow and fast light effects with particular focus on the applications in microwave photonics. We conceive novel ideas and demonstrate a great enhancement of light slow down. Furthermore, by cascading several slow light stages, >360 degree...

  3. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    Science.gov (United States)

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  4. Comparison between different dispersion engineering methods in slow light photonic crystal waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Sigmund, Ole

    2011-01-01

    This paper compares the performance of different dispersion engineering methods in slow light photonic crystal waveguides, i.e., geometrical parameter optimization and topology optimization. In both methods, the design robustness is enforced by considering the dilated, intermediate and eroded...

  5. Neutron and photon (light) scattering on solitons in the quasi-one-dimensional magnetics

    CERN Document Server

    Abdulloev, K O

    1999-01-01

    The general expression we have found earlier for the dynamics form-factor is used to analyse experiments on the neutron and photon (light) scattering by the gas of solitons in quasi-one-dimensional magnetics (Authors)

  6. Effect of loss on slow-light enhanced absorption in liquid-infiltrated photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, Asger

    2008-01-01

    We study slow-light enhancement of absorption measurements in photonic crystals composed of lossy dielectrics. We find that the material loss has an unexpected limited drawback and may even increase the bandwidth for low-index contrast systems....

  7. Controlling light emission from single-photon sources using photonic nanowires

    DEFF Research Database (Denmark)

    Gregersen, Niels; Chen, Yuntian; Mørk, Jesper

    2012-01-01

    are used to tailor the far-field emission pattern. This non-resonant approach relaxes the demands to fabrication perfection, allowing for record-high measured efficiency of fabricated nanowire single-photon sources. We review recent progress in photonic nanowire technology and present next generation...

  8. Purification of photon subtraction from continuous squeezed light by filtering

    Science.gov (United States)

    Yoshikawa, Jun-ichi; Asavanant, Warit; Furusawa, Akira

    2017-11-01

    Photon subtraction from squeezed states is a powerful scheme to create good approximation of so-called Schrödinger cat states. However, conventional continuous-wave-based methods actually involve some impurity in squeezing of localized wave packets, even in the ideal case of no optical losses. Here, we theoretically discuss this impurity by introducing mode match of squeezing. Furthermore, here we propose a method to remove this impurity by filtering the photon-subtraction field. Our method in principle enables creation of pure photon-subtracted squeezed states, which was not possible with conventional methods.

  9. Oxidative photodecarboxylation of α-hydroxycarboxylic acid derivatives with FSM-16 under visible light irradiation of fluorescent lamp.

    Science.gov (United States)

    Tada, Norihiro; Matsusaki, Yoko; Miura, Tsuyoshi; Itoh, Akichika

    2011-01-01

    Hydroxycarboxylic acids were converted to the corresponding carbonyl compounds under aerobic photo-oxidative conditions in the presence of FSM-16 under visible light irradiation by a fluorescent lamp. This synthetic protocol is the first example of FSM-16 functioning as a photocatalyst by visible light.

  10. Visible-light photocatalytic performances of TiO2 nanoparticles modified by trace derivatives of PVA

    Directory of Open Access Journals (Sweden)

    Le SHI

    2016-10-01

    Full Text Available In order to study the visible-light photocatalytic activity and catalysis stability of nanocomposites, a TiO2-based visible-light photocatalyst is prepared by surface-modification of TiO2 nanoparticles using trace conjugated derivatives from polyvinyl alcohol (DPVA via a facile method. The obtained DPVA/TiO2 nanocomposites are characterized by X-ray diffraction (XRD, Fourier transform infrared Spectra (FT-IR, scanning electron microscopy (SEM, UV-vis diffuse reflection spectroscopy (DRS, and X-ray photoelectron spectroscopy (XPS. With Rhodamine B (RhB as a model pollutant, the visible-light photocatalytic activity and stability of DPVA/TiO2 nanocomposites are investigated by evaluating the RhB decomposition under visible light irradiation. The results reveal that the trace conjugated polymers on the TiO2 surface doesn’t change the crystalline and crystal size of TiO2 nanoparticles, but significantly enhances their visible-light absorbance and visible-light photocatalytic activity. The nanocomposite with the PVA and TiO2 mass ratio of 1∶200 exhibits the highest visible-light photocatalytic activity. The investigated nanocomposites exhibit well visible-light photoctatalytic stability. The photogenerated holes are thought as the main active species for the RhB photodegradation in the presence of the DPVA/TiO2 nanocomposites.

  11. A versatile new method for synthesis and deposition of doped, visible light-activated TiO2 thin films

    DEFF Research Database (Denmark)

    In, Su-il; Kean, A.H.; Orlov, A.

    2009-01-01

    A flexible and widely applicable method allows the deposition of carbon-doped visible light-activated photocatalytic TiO2 thin films on a variety of substrates.......A flexible and widely applicable method allows the deposition of carbon-doped visible light-activated photocatalytic TiO2 thin films on a variety of substrates....

  12. Enhancement of Coupling to the Slow Light Regime in Photonic Crystal Waveguides using Topology Optimization

    DEFF Research Database (Denmark)

    Têtu, Amélie; Yang, Lirong; Lavrinenko, Andrei

    2006-01-01

    The topology optimization method has been used to improve the coupling into the slow light wavelength regime in planar photonic crystal waveguides. The coupling efficiency has been enhanced by more than 5dB.......The topology optimization method has been used to improve the coupling into the slow light wavelength regime in planar photonic crystal waveguides. The coupling efficiency has been enhanced by more than 5dB....

  13. Optimization of Photonic Crystal 60o Waveguide Bends in the Slow Light Regime for Broadband Transmission

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Têtu, Amélie; Frandsen, Lars Hagedorn

    2006-01-01

    We present results for broadband transmission through photonic crystal waveguide bends optimized for slow-light modes. Theoretical analysis is complemented by experimental verification of designs including topology optimized ones fabricated in SOI material.......We present results for broadband transmission through photonic crystal waveguide bends optimized for slow-light modes. Theoretical analysis is complemented by experimental verification of designs including topology optimized ones fabricated in SOI material....

  14. Enhanced Gain in Slow-Light Photonic Crystal Waveguides with Embedded Quantum Dots

    DEFF Research Database (Denmark)

    Ek, Sara; Hansen, Per Lunnemann; Semenova, Elizaveta

    2011-01-01

    We experimentally demonstrate enhanced gain in the slow-light regime of quantum dot photonic crystal waveguide slabs. These are promising results for future compact devices for terabit/s communication, such as compact optical amplifiers and mode-locked lasers.......We experimentally demonstrate enhanced gain in the slow-light regime of quantum dot photonic crystal waveguide slabs. These are promising results for future compact devices for terabit/s communication, such as compact optical amplifiers and mode-locked lasers....

  15. Classical Light Sources with Tunable Temporal Coherence and Tailored Photon Number Distributions

    OpenAIRE

    Pandey, Deepak; Satapathy, Nandan; Suryabrahmam, Buti; Ivan, J. Solomon; Ramachandran, Hema

    2012-01-01

    We demonstrate the generation of classical incoherent light with electronic control over its temporal characteristics and photon number distribution. The tunability of the temporal coherence is shown, under both classical and quantum detection, through second order correlation ($G^2(\\tau)$) measurements. The tailoring of desired classical photon number distributions is illustrated by creating two representative light sources - one thermal and the other a specific classical, non-Gaussian state...

  16. Light Control and Image Transmission Through Photonic Lattices with Engineered Coupling

    Science.gov (United States)

    2015-05-05

    include mainly beam control in engineered photonic lattices, Tamm and Shockley-like edge states and topological surface states in 2D honey -comb lattices...many application potentials. 15.  SUBJECT TERMS Light Propagation, Nonlinear Crystals , Nonlinear Schrodinger Equation 16.  SECURITY CLASSIFICATION...like edge states and topological surface states in 2D honey -comb lattices (“photonic graphene”), and light localization and transport in disordered

  17. CdS-graphene Nanocomposite for Efficient Visible-light-driven Photocatalytic and Photoelectrochemical Applications.

    Science.gov (United States)

    Khan, Mohammad Ehtisham; Khan, Mohammad Mansoob; Cho, Moo Hwan

    2016-11-15

    This paper reports cadmium sulphide nanoparticles-(CdS NPs)-graphene nanocomposite (CdS-Graphene), prepared by a simple method, in which CdS NPs were anchored/decorated successfully onto graphene sheets. The as-synthesized nanocomposite was characterized using standard characterization techniques. A combination of CdS NPs with the optimal amount of two-dimensional graphene sheets had a profound influence on the properties of the resulting hybrid nanocomposite, such as enhanced optical, photocatalytic, and photo-electronic properties. The photocatalytic degradation ability of the CdS-Graphene nanocomposite was evaluated by degrading different types of dyes in the dark and under visible light irradiation. Furthermore, the photoelectrode performance of the nanocomposite was evaluated by different electrochemical techniques. The results showed that the CdS-Graphene nanocomposite can serve as an efficient visible-light-driven photocatalyst as well as photoelectrochemical performance for optoelectronic applications. The significantly enhanced photocatalytic and photoelectrochemical performance of the CdS-Graphene nanocomposite was attributed to the synergistic effects of the enhanced light absorption behaviour and high electron conductivity of the CdS NPs and graphene sheets, which facilitates charge separation and lengthens the lifetime of photogenerated electron-hole pairs by reducing the recombination rate. The as-synthesized narrow band gap CdS-Graphene nanocomposite can be used for wide range of visible light-induced photocatalytic and photoelectrochemical based applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Curcumin in combination with visible light inhibits tumor growth in a xenograft tumor model.

    Science.gov (United States)

    Dujic, Jadranka; Kippenberger, Stefan; Ramirez-Bosca, Ana; Diaz-Alperi, Joaquin; Bereiter-Hahn, Jürgen; Kaufmann, Roland; Bernd, August; Hofmann, Matthias

    2009-03-15

    It is known that curcumin, a dietary pigment from the plant Curcuma longa, inhibits cell proliferation and induces apoptosis in different cell lines; however, the therapeutic benefit is hampered by very low absorption after transdermal or oral application. Recent studies from our laboratory have demonstrated that curcumin at low concentrations (0.2-1 microg/ml) offered the described effects only when applied with UVA or visible light. Nevertheless, the in vivo efficacy of this combination is lacking. In the present study, we used a xenograft tumor model with human epithelial carcinoma A431 cells to test the effect of curcumin and visible light on tumor growth. It was found that tumor growth was significantly inhibited in mice that were i.p. injected with curcumin and consecutively irradiated with visible light. Furthermore, immunohistochemistry showed a reduction of Ki 67 expression, indicating a decrease of cycling cells and induction of apoptotic bodies. The effect on apoptosis was further confirmed by Western blot analysis showing enhanced activation of caspases-9. Vice versa inhibition of extracellular regulated kinases (ERK) 1/2 and epidermal growth factor receptor (EGF-R) was observed which may aid inhibition of proliferation and induction of apoptosis. In summary, the present findings suggest a combination of curcumin and light as a new therapeutic concept to increase the efficacy of curcumin in the treatment of cancer.

  19. Visible-Light Photodegradation of Dye on Co-Doped Titania Nanotubes Prepared by Hydrothermal Synthesis

    Directory of Open Access Journals (Sweden)

    Jung-Pin Wang

    2012-01-01

    Full Text Available Highly porous Co-doped TiO2 nanotubes synthesized from a hydrothermal treatment were used to photodecompose methylene blue (MB in liquid phase under visible light irradiation. The anatase-type titania nanotubes were found to have high specific surface areas of about 289–379 m2/g. These tubes were shown to be hollow scrolls with outer diameter of about 10–15 nm and length of several micrometers. UV absorption confirmed that Co doping makes the light absorption of nanotubes shift to visible light region. With increasing the dopant concentration, the optical band gap of nanotubes became narrower, ranging from 2.4 eV to 1.8 eV, determined by Kubelka-Munk plot. The Co-doped nanotubes exhibit not only liquid-phase adsorption ability, but also visible-light-derived photodegradation of MB in aqueous solution. The synergetic effect involves two key factors in affecting the photocatalytic activity of Co-doped titania nanotubes under fluorescent lamp, that is, high porosity and optical band gap. The merit of the present work is to provide an efficient route for preparing Co-doped TiO2 nanotubes and to clarifying their adsorption and photocatalytic activity under fluorescent lamp.

  20. Deep Learning-Based Iris Segmentation for Iris Recognition in Visible Light Environment

    Directory of Open Access Journals (Sweden)

    Muhammad Arsalan

    2017-11-01

    Full Text Available Existing iris recognition systems are heavily dependent on specific conditions, such as the distance of image acquisition and the stop-and-stare environment, which require significant user cooperation. In environments where user cooperation is not guaranteed, prevailing segmentation schemes of the iris region are confronted with many problems, such as heavy occlusion of eyelashes, invalid off-axis rotations, motion blurs, and non-regular reflections in the eye area. In addition, iris recognition based on visible light environment has been investigated to avoid the use of additional near-infrared (NIR light camera and NIR illuminator, which increased the difficulty of segmenting the iris region accurately owing to the environmental noise of visible light. To address these issues; this study proposes a two-stage iris segmentation scheme based on convolutional neural network (CNN; which is capable of accurate iris segmentation in severely noisy environments of iris recognition by visible light camera sensor. In the experiment; the noisy iris challenge evaluation part-II (NICE-II training database (selected from the UBIRIS.v2 database and mobile iris challenge evaluation (MICHE dataset were used. Experimental results showed that our method outperformed the existing segmentation methods.

  1. Chlorine-functionalized carbon dots for highly efficient photodegradation of pollutants under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shengliang, E-mail: hsliang@yeah.net [School of Material Science and Engineering, North University of China, Taiyuan 030051 (China); Ding, Yanli [School of Material Science and Engineering, North University of China, Taiyuan 030051 (China); Chang, Qing, E-mail: changneu@gmail.com [School of Material Science and Engineering, North University of China, Taiyuan 030051 (China); Yang, Jinlong [State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China); Lin, Kui, E-mail: linkui@tju.edu.cn [Analytical Instrumentation Center, Tianjin University, Tianjin 300072 (China)

    2015-11-15

    Graphical abstract: Chlorine-functionalized carbon dots (Cl-CDs) were synthesized through the substitution reaction. Cl-CDs show highly photocatalytic activity under visible-light irradiation, and can quickly degrade phthalocyanine with the thermal and chemical stability. This work suggests that surface engineering of carbon dots with heteroatoms can be used to enhance their photochemical properties. - Highlights: • Chlorine-functionalized carbon dots (Cl-CDs) were synthesized by substitution reaction. • Cl-CDs show highly photocatalytic activity under visible-light irradiation. • The thermally and chemically stable phthalocyanine is even photodegraded by Cl-CDs. - Abstract: Chlorine-functionalized carbon dots (Cl-CDs) were prepared by the substitution reaction between Cl radicals into thionyl chloride molecules and carbon dots with containing OH/COOH groups at their surface (O-CDs). The obtained Cl-CDs with a size of 2–5 nm contain 2–3% Cl atoms and emit blue light. Compared with amine-functionalzed carbon dots (N-CDs) and O-CDs, Cl-CDs exhibit much higher photocatalytic activity under visible-light irradiation. The thermally and chemically stable phthalocyanine can be even degraded quickly through Cl-CDs. This work suggests that surface engineering of carbon dots with heteroatoms can be used to enhance their photochemical properties.

  2. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels.

    Science.gov (United States)

    Noshadi, Iman; Hong, Seonki; Sullivan, Kelly E; Shirzaei Sani, Ehsan; Portillo-Lara, Roberto; Tamayol, Ali; Shin, Su Ryon; Gao, Albert E; Stoppel, Whitney L; Black, Lauren D; Khademhosseini, Ali; Annabi, Nasim

    2017-09-26

    Photocrosslinkable materials have been frequently used for constructing soft and biomimetic hydrogels for tissue engineering. Although ultraviolet (UV) light is commonly used for photocrosslinking such materials, its use has been associated with several biosafety concerns such as DNA damage, accelerated aging of tissues, and cancer. Here we report an injectable visible light crosslinked gelatin-based hydrogel for myocardium regeneration. Mechanical characterization revealed that the compressive moduli of the engineered hydrogels could be tuned in the range of 5-56 kPa by changing the concentrations of the initiator, co-initiator and co-monomer in the precursor formulation. In addition, the average pore sizes (26-103 μm) and swelling ratios (7-13%) were also shown to be tunable by varying the hydrogel formulation. In vitro studies showed that visible light crosslinked GelMA hydrogels supported the growth and function of primary cardiomyocytes (CMs). In addition, the engineered materials were shown to be biocompatible in vivo, and could be successfully delivered to the heart after myocardial infarction in an animal model to promote tissue healing. The developed visible light crosslinked hydrogel could be used for the repair of various soft tissues such as the myocardium and for the treatment of cardiovascular diseases with enhanced therapeutic functionality.

  3. A fast fusion scheme for infrared and visible light images in NSCT domain

    Science.gov (United States)

    Zhao, Chunhui; Guo, Yunting; Wang, Yulei

    2015-09-01

    Fusion of infrared and visible light images is an effective way to obtain a simultaneous visualization of details of background provided by visible light image and hiding target information provided by infrared image, which is more suitable for browsing and further processing. Two crucial components for infrared and visual light image fusion are improving its fusion performance as well as reducing its computational burden. In this paper, a novel fusion algorithm named pixel information estimation is proposed, which determines the weights by evaluating the information of pixel and is well applied in visible light and infrared image fusion with better fusion quality and lower time-consumption. Besides, a fast realization of non-subsampled contourlet transform is also proposed in this paper to improve the computational efficiency. To verify the advantage of the proposed method, this paper compares it with several popular ones in six evaluation metrics over four different image groups. Experimental results show that the proposed algorithm gets a more effective result with much less time consuming and performs well in both subjective evaluation and objective indicators.

  4. Bandwidth-adaptable silicon photonic differentiator employing a slow light effect

    DEFF Research Database (Denmark)

    Yan, Siqi; Cheng, Ziwei; Frandsen, Lars Hagedorn

    2017-01-01

    exploits the slow light effect in a photonic crystal waveguide (PhCW) to overcome the inherent bandwidth limitation of current photonic DIFFs. We fabricated a PhCW Mach-Zehnder interferometer (PhCW-MZI) on the silicon-onisolator material platform to validate our concept. Input Gaussian pulses with full...... width to half-maximums (FWHMs) ranging from 2.7 to 81.4 ps are accurately differentiated using our PhCW-MZI. Our all-passive scheme circumvents the bandwidth bottlenecks of previously reported photonic DIFFs and can greatly broaden the application area of photonic DIFFs. (C) 2017 Optical Society...

  5. Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yaowen [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China); Li, Yixi; Yao, Linyu; Li, Simiao; Liu, Jin [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China)

    2017-05-05

    Highlights: • Persulfate could decolorize Rhodamine B (RhB) directly via non-radical reactions. • LED lamps emitting white light were utilized as the visible light source. • Dyes could activate peroxides through photoexcitation pathway. • Decolorization of dyes and production of radicals were achieved simultaneously. • The catalyst-free peroxide/dye/Vis process was effective in a broad pH range. - Abstract: Catalysts are known to activate peroxides to generate active radicals (i.e., hydroxyl radical (·OH) and sulfate radical (SO{sub 4}·{sup −})) under certain conditions, but the activation of peroxides in the absence of catalysts under visible light irradiation has been rarely reported. This work demonstrates a catalyst-free activation of peroxides for the generation of ·OH and/or SO{sub 4}·{sup −} through photoexcited electron transfer from organic dyes to peroxides under visible LED light irradiation, where Rhodamine B (RhB) and Eosin Y (EY) were selected as model dyes. The formation of ·OH and/or SO{sub 4}·{sup −} in the reactions and the electron transfer from the excited dyes to peroxides were validated via electron paramagnetic resonance (EPR), photoluminescence (PL) spectra and cyclic voltammetry (CV). The performance of the peroxide/dye/Vis process was demonstrated to be altered depending on the target substrate. Meanwhile, the peroxide/dye/Vis process was effective for simultaneous decolorization of dyes and production of active radicals under neutral even or basic conditions. The findings of this study clarified a novel photoexcitation pathway for catalyst-free activation of peroxides under visible light irradiation, which could avoid the secondary metal ion (dissolved or leached) pollution from the metal-based catalysts and expand the application range of the peroxide-based catalytic process.

  6. Visible Light Triggered Drug Release from TiO2 Nanotube Arrays: A Novel Controllable Antibacterial Platform

    CERN Document Server

    Xu, Jingwen; Gao, Zhida; Song, Yan-Yan; Schmuki, Patrik

    2016-01-01

    In this work, we use a double-layered stack of TiO2 nanotubes (TiNTs) to construct a visible-light triggered drug delivery system. Key for visible-light drug release is a hydrophobic cap on the nanotubes containing Au nanoparticles (AuNPs). The AuNPs allow for a photocatalytic scission of the hydrophobic chain under visible light. To demonstrate the principle, we loaded antibiotic (ampicillin sodium (AMP)) in the lower part of the TiO2 nanotube stack, triggered visible light induced release, and carried out antibacterial studies. The release from the platform becomes most controllable if the drug is silane-grafted in hydrophilic bottom layer for drug storage. Thus visible-light photocatalysis can also determine the release kinetics of the active drug from the nanotube wall.

  7. Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera.

    Science.gov (United States)

    Shi, Jin; He, Jing; He, Jing; Deng, Rui; Wei, Yiran; Long, Fengting; Cheng, Yun; Chen, Lin

    2017-07-10

    Visible light communication (VLC) with light emitting diodes (LEDs) is an emerging technology for 5G wireless communications. Recently, using complementary metal-oxide-semiconductor (CMOS) image sensor as VLC receiver is developed owing to its flexibility and low-cost. However, two illumination levels such as on-off keying (OOK) signal are used. To improve the system throughput and reduce complexity of the hardware design, in this paper, we propose and experimentally demonstrate a multilevel modulation scheme for VLC system utilizing the overlapping of two light sources for the first time, and the two light sources are modulated by an OOK and a Manchester signal respectively. At the receiver, a CMOS camera can demodulate the Manchester and the OOK signal simultaneously. Meanwhile, a low-pass filter (LPF) is used to enhance the system performance. The experimental results demonstrate that the proposed multilevel modulation scheme can achieve a net data rate of 4.32 kbit/s.

  8. Using Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery to identify and analyze light pollution

    Science.gov (United States)

    Nurbandi, Wahyu; Ramadhani Yusuf, Febrina; Prasetya, Ruwanda; Dimas Afrizal, Mousafi

    2016-11-01

    Light pollution is any adverse effect of artificial lighting including sky glow, glare, light trespass, light clutter, decreased visibility at night, and energy waste. Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object. Remote sensing can be used for identification of light pollution. The purpose of this study is to identify and analyze the light pollution by using remote sensing imagery. This study uses VIIRS DNB Free Cloud Composites imagery to identify light pollution in Yogyakarta province and surrounding areas. VIIRS imagery which obtained is processed to get information of light pollution by classifying the information into several classes presented in a map. Selected few sample points as test sites to determine the actual condition. Field work conducted at theree location, they are Yogyakarta City, Depok Beach, and Gajah Mungkur reservoir. Night sky condition analysis conducted field tests as well as night time shooting the night sky conditions. Analysis of the night sky conditions are calculated qualitatively using Bortle Dark-Sky Scale with a value range of 1-9. Field test results show that Yogyakarta City has a value of 8, Depok has a value of 3, and Gajah Mungkur Reservoir has a value of 4. The conclusion of study is VIIRS imagery can be used for identification light pollution and calculation analysis of light pollution can use Bortle Dark-Sky Scale.

  9. A Difference in Cutaneous Pigmentary Response to LED Versus Halogen Incandescent Visible Light: A Case Report from a Single Center, Investigational Clinical Trial Determining a Minimal Pigmentary Visible Light Dose.

    Science.gov (United States)

    Soleymani, Teo; Soter, Nicholas A; Folan, Lorcan M; Elbuluk, Nada; Okereke, Uchenna R; Cohen, David E

    2017-04-01

    BACKGROUND: While most of the attention regarding skin pigmentation has focused on the effects on ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. In this report, we describe a case of painful erythema and induration that resulted from direct irradiation of UV-naïve skin with visible LED light in a patient with Fitzpatrick type II skin. METHODS AND RESULTS: A 24-year-old healthy woman with Fitzpatrick type II skin presented to our department to participate in a clinical study. As part of the study, the subject underwent visible light irradiation with an LED and halogen incandescent visible light source. After 5 minutes of exposure, the patient complained of appreciable pain at the LED exposed site. Evaluation demonstrated erythema and mild induration. There were no subjective or objective findings at the halogen incandescent irradiated site, which received equivalent fluence (0.55 Watts / cm2). The study was halted as the subject was unable to tolerate the full duration of visible light irradiation. CONCLUSION: This case illustrates the importance of recognizing the effects of visible light on skin. While the vast majority of investigational research has focused on ultraviolet light, the effects of visible light have been largely overlooked and must be taken into consideration, in all Fitzpatrick skin types. J Drugs Dermatol. 2017;16(4):388-392..

  10. A visible light-induced photocatalytic silver enhancement reaction for gravimetric biosensors

    Science.gov (United States)

    Ko, Wooree; Yim, Changyong; Jung, Namchul; Joo, Jinmyoung; Jeon, Sangmin; Seo, Hyejung; Lee, Soo Suk; Park, Jae Chan

    2011-10-01

    We have developed a novel microgravimetric immunosensor using a WO3 nanoparticle-modified immunoassay and a silver enhancement reaction. When the nanoparticles in silver ion solution (i.e. AgNO3) are exposed to visible light, the silver ions are photocatalytically reduced and form a metallic silver coating on the nanoparticles. This silver coating consequently induces changes in the mass and light absorption spectrum. Although photocatalytic reduction reactions can be achieved using ultraviolet (UV) light and TiO2 nanoparticles as described in our previous publication (Seo et al 2010 Nanotechnology 21 505502), the use of UV light in biosensing applications has drawbacks in that UV light can damage proteins. In addition, conventional quartz crystal substrates must be passivated to prevent undesirable silver ion reduction on their gold-coated sensing surfaces. We addressed these problems by adopting a visible light-induced photocatalytic silver enhancement method using WO3 nanoparticles and lateral field excited (LFE) quartz crystals. As a proof-of-concept demonstration of the technique, streptavidin was adsorbed onto an LFE quartz crystal, and its mass was enhanced with biotinylated WO3 nanoparticles, this being followed by a photocatalytic silver enhancement reaction. The mass change due to the enhancement was found to be > 30 times greater than the mass change obtained with the streptavidin alone.

  11. A visible light-induced photocatalytic silver enhancement reaction for gravimetric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Wooree; Yim, Changyong; Jung, Namchul; Joo, Jinmyoung; Jeon, Sangmin [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Seo, Hyejung; Lee, Soo Suk; Park, Jae Chan, E-mail: jeons@postech.ac.kr [Samsung Advanced Institute of Technology (SAIT), Suwon (Korea, Republic of)

    2011-10-07

    We have developed a novel microgravimetric immunosensor using a WO{sub 3} nanoparticle-modified immunoassay and a silver enhancement reaction. When the nanoparticles in silver ion solution (i.e. AgNO{sub 3}) are exposed to visible light, the silver ions are photocatalytically reduced and form a metallic silver coating on the nanoparticles. This silver coating consequently induces changes in the mass and light absorption spectrum. Although photocatalytic reduction reactions can be achieved using ultraviolet (UV) light and TiO{sub 2} nanoparticles as described in our previous publication (Seo et al 2010 Nanotechnology 21 505502), the use of UV light in biosensing applications has drawbacks in that UV light can damage proteins. In addition, conventional quartz crystal substrates must be passivated to prevent undesirable silver ion reduction on their gold-coated sensing surfaces. We addressed these problems by adopting a visible light-induced photocatalytic silver enhancement method using WO{sub 3} nanoparticles and lateral field excited (LFE) quartz crystals. As a proof-of-concept demonstration of the technique, streptavidin was adsorbed onto an LFE quartz crystal, and its mass was enhanced with biotinylated WO{sub 3} nanoparticles, this being followed by a photocatalytic silver enhancement reaction. The mass change due to the enhancement was found to be > 30 times greater than the mass change obtained with the streptavidin alone.

  12. Increasing of visibility on the pedestrian crossing by the additional lighting systems

    Science.gov (United States)

    Baleja, Richard; Bos, Petr; Novak, Tomas; Sokansky, Karel; Hanusek, Tomas

    2017-09-01

    Pedestrian crossings are critical places for road accidents between pedestrians and motor vehicles. For this reason, it is very important to increase attention when the pedestrian crossings are designed and it is necessary to take into account all factors that may contribute to higher safety. Additional lighting systems for pedestrian crossings are one of them and the lighting systems must fulfil the requirements for higher visibility from the point of view of car drivers from both directions. This paper describes the criteria for the suitable additional lighting system on pedestrian crossings. Generally, it means vertical illuminance on the pedestrian crossing from the driver’s view, horizontal illuminance on the crossing and horizontal illuminance both in front of and behind the crossing placed on the road and their acceptable ratios. The article also describes the choice of the colours of the light (correlated colour temperature) and its influence on visibility. As a part of the article, there are case designs of additional lighting systems for pedestrian crossings and measurements from realized additional lighting systems by luxmeters and luminance cameras and their evaluation.

  13. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light

    Science.gov (United States)

    Chu, Xiao-Liu; Götzinger, Stephan; Sandoghdar, Vahid

    2017-01-01

    A two-level atom cannot emit more than one photon at a time. As early as the 1980s, this quantum feature was identified as a gateway to 'single-photon sources', where a regular excitation sequence would create a stream of light particles with photon number fluctuations below the shot noise. Such an intensity-squeezed beam of light would be desirable for a range of applications, such as quantum imaging, sensing, enhanced precision measurements and information processing. However, experimental realizations of these sources have been hindered by large losses caused by low photon-collection efficiencies and photophysical shortcomings. By using a planar metallodielectric antenna applied to an organic molecule, we demonstrate the most regular stream of single photons reported to date. The measured intensity fluctuations were limited by our detection efficiency and amounted to 2.2 dB squeezing.

  14. Subwavelength-Diameter Silica Wire and Photonic Crystal Waveguide Slow Light Coupling

    Directory of Open Access Journals (Sweden)

    Ziyang Zhang

    2007-01-01

    Full Text Available Counter-directional coupling between subwavelength-diameter silica wire and single-line-defect two-dimensional photonic crystal slab waveguide is studied numerically using parallel three-dimensional finite-different time-domain method. By modifying silica wire properties or engineering photonic crystal waveguide dispersion band, the coupling central wavelength can be moved to the slow light region and the coupling efficiency improves simultaneously. One design gives 82% peak power transmission from silica wire to photonic crystal waveguide over an interacting distance of 50 lattice constants. The group velocity is estimated as 1/35 of light speed in vacuum.

  15. Gravitational field around black hole induces photonic spin-orbit interaction that twists light

    Science.gov (United States)

    Pan, Deng; Xu, Hong-Xing

    2017-10-01

    The spin-orbit interaction (SOI) of light has been intensively studied in nanophotonics because it enables sensitive control of photons' spin degree of freedom and thereby the trajectories of the photons, which is useful for applications such as signal encoding and routing. A recent study [ Phys. Rev. Lett. 117, 166803 (2016)] showed that the SOI of photons manifests in the presence of a gradient in the permittivity of the medium through which the photons propagate; this enhances the scattering of circularly polarized light and results in the photons propagating along twisted trajectories. Here we theoretically predict that, because of the equivalence between an inhomogeneous dielectric medium and a gravitational field demonstrated in transformation optics, a significant SOI is induced onto circularly polarized light passing by the gravitational lens of a black hole. This leads to: i) the photons to propagate along chiral trajectories if the size of the black hole is smaller than the wavelength of the incident photons; ii) the resulting image of the gravitational lens to manifest an azimuthal rotation because of these chiral trajectories. The findings open for a way to probe for and discover subwavelength-size black holes using circularly polarized light.

  16. Study of Visible Light Reactive Photocatalyst TIO2 Prepared with Thiourea

    Science.gov (United States)

    Murai, Kei-Ichiro; Endo, Kazuki; Nakagawa, Taisuke; Yamahata, Akiko; Moriga, Toshihiro

    Visible light reactive N-doped TiO2 samples were prepared with thiourea in the sol-gel method. They had the single anatase-type crystal structure. N-doped TiO2 synthesized with thiourea (T-TiO2) had a higher catalytic activity than that synthesized with urea (U-TiO2). The S2p peak observed on the surface of T-TiO2 was assigned to S6+ by XPS measurement. It was estimated that sulfuric acid species exist on the surface of T-TiO2. However, it was concluded that sulfuric acid species do not have the catalytic activity directly, but depress the crystallinity, the decrease of specific surface area and the decrease of visible light absorption.

  17. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Science.gov (United States)

    Chen, Shi; Ng, Chin Fan; Huan, Cheng Hon Alfred

    2014-01-01

    Summary A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species. PMID:24991486

  18. Theoretical design of visible light driven azobenzene-based photo-switching molecules

    Science.gov (United States)

    Pang, Juan; Tian, Ziqi; Ma, Jing

    2014-10-01

    The preparation of switchable azobenzene derivatives driven by visible light is desirable for applications in biomolecular systems. o-R-substituted 4,4‧-diacetamidoazobenzene derivatives (Rdbnd H, CH3, OCH3 or OH) were investigated by using both density functional theory (DFT) and reactive molecular dynamics simulations. DFT calculations demonstrated that the nonplanar azo trans geometric structure, which caused by bulky groups tetra substituted in the ortho-position, is the key factor to enable the trans → cis transition with visible light. Furthermore, 100 independent reactive MD simulations demonstrated that 71% trans isomers of tetra o-OCH3-substituted 4,4‧-diacetamidoazobenzene translated to cis, in good agreement with the experimental data.

  19. Strongly Reducing, Visible-Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals.

    Science.gov (United States)

    Du, Ya; Pearson, Ryan M; Lim, Chern-Hooi; Sartor, Steven M; Ryan, Matthew D; Yang, Haishen; Damrauer, Niels H; Miyake, Garret M

    2017-08-16

    Photoredox catalysis is a versatile approach for the construction of challenging covalent bonds under mild reaction conditions, commonly using photoredox catalysts (PCs) derived from precious metals. As such, there is need to develop organic analogues as sustainable replacements. Although several organic PCs have been introduced, there remains a lack of strongly reducing, visible-light organic PCs. Herein, we establish the critical photophysical and electrochemical characteristics of both a dihydrophenazine and a phenoxazine system that enables their success as strongly reducing, visible-light PCs for trifluoromethylation reactions and dual photoredox/nickel-catalyzed C-N and C-S cross-coupling reactions, both of which have been historically exclusive to precious metal PCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Formation of nitric oxide under action of UV and visible light on S-nitrosocompounds

    Science.gov (United States)

    Stepuro, Ivan I.; Adamchuk, Raisa I.; Anufrik, Slavomir S.; Stepuro, Vitali I.; Maskevich, Sergei A.

    2000-06-01

    It has been shown that NO is released under the exposure of the aqueous solutions of S-nitrosocompounds as well as blood plasma proteins and whole blood of healthy donors to UV and visible light. The NO release from degrading S- nitrosocompounds was monitored both spectrophotometrically (by nitrosohemoglobin formation) and using the quenching of pyrene fluorescence by nitric oxide. In addition to NO, thyil radicals which dismutate to disulfides, were formed under anaerobic conditions. In the presence of oxygen, peroxide compounds, cysteine acid derivatives and S-nitrocompounds are formed apart from disulfides, and NO is mainly converted to NO2-. It is suggested that NO releasing under the actin of UV and visible light from physiological depots induces vascular relaxation, which enhances the blood flow.

  1. Mineralization of Azo Dye Using Combined Photo-Fenton and Photocatalytic Processes under Visible Light

    Directory of Open Access Journals (Sweden)

    Selma K. Kuriechen

    2013-01-01

    Full Text Available Visible-light-assisted photodegradation of an azo dye, Reactive Red 180 (RR180, in the presence of nitrogen-doped TiO2 (N-TiO2 has been studied. The photodegradation of RR180 is evaluated through decolorization studies and total organic carbon analysis. The efficacy of hydrogen peroxide (H2O2, potassium peroxomonosulfate (oxone or PMS, and potassium peroxodisulfate (PDS in improving the photodegradation of the dye in the N-TiO2-RR180 system is also examined. The effect of combining photo-Fenton-like reaction with N-TiO2-mediated photodegradation of RR180 under visible light has been investigated. The photoactivity of N-TiO2-RR180-Fe3+/Cu2+-oxidant systems is compared with the individual techniques of photocatalysis and photo-Fenton-like reactions. The coupled system possesses superior photomineralization ability towards the abatement of RR180.

  2. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Science.gov (United States)

    Rajbhandari, Sujan; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Chun, Hyunchae; Faulkner, Grahame; Haas, Harald; Watson, Ian M.; O'Brien, Dominic; Dawson, Martin D.

    2017-02-01

    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost polymer optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb s-1 are also outlined.

  3. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  4. Ultrafast slow-light tuning beyond the carrier lifetime using photonic crystal waveguides.

    Science.gov (United States)

    Kondo, K; Shinkawa, M; Hamachi, Y; Saito, Y; Arita, Y; Baba, T

    2013-02-01

    We demonstrate ultrafast delay tuning of a slow-light pulse with a response time slow light: dispersion-compensated slow light for the signal pulse, and low-dispersion slow light to enhance nonlinear effects of the control pulse. These two types of slow light are generated simultaneously in Si lattice-shifted photonic crystal waveguides, arising from flat and straight photonic bands, respectively. The control pulse blueshifts the signal pulse spectrum, through dynamic tuning caused by the plasma effect of two-photon-absorption-induced carriers. This changes the delay by up to 10 ps only when the two pulses overlap within the waveguide and enables ultrafast tuning that is not limited by the carrier lifetime. Using this, we succeeded in tuning the delay of one target pulse within a pulse train with 12 ps intervals.

  5. A novel sandwich-type polyoxometalate compound with visible-light photocatalytic H2 evolution activity.

    Science.gov (United States)

    Zhang, Zhenyu; Lin, Qipu; Zheng, Shou-Tian; Bu, Xianhui; Feng, Pingyun

    2011-04-07

    A tin(II) tungstosilicate derivative K(11)H[Sn(4)(SiW(9)O(34))(2)]·25H(2)O with four sandwiched Sn(2+) cations was prepared by reaction of SnCl(2), KCl and Na(10)[α-SiW(9)O(34)]·xH(2)O. Visible-light photocatalytic H(2) evolution activity was observed with Pt nanoparticles as co-catalyst and methanol as sacrificial agent.

  6. Simulation of impulse response for indoor visible light communications using 3D CAD models

    OpenAIRE

    Pérez Rodríguez, Silvestre; Pérez Jiménez, Rafael; Rodríguez Mendoza, Beatriz; López Hernández, Francisco José; Ayala Alfonso, Alejandro José

    2013-01-01

    n this article, a tool for simulating the channel impulse response for indoor visible light communications using 3D computer-aided design (CAD) models is presented. The simulation tool is based on a previous Monte Carlo ray-tracing algorithm for indoor infrared channel estimation, but including wavelength response evaluation. The 3D scene, or the simulation environment, can be defined using any CAD software in which the user specifies, in addition to the setting geometry, the reflect...

  7. Two-Step, One-Pot Synthesis of Visible-Light-Responsive 6-Azopurines.

    Science.gov (United States)

    Kolarski, Dušan; Szymanski, Wiktor; Feringa, Ben L

    2017-10-06

    The first general two-step, one-pot synthetic route to 6-azopurines is presented. Microwave-assisted nucleophilic aromatic substitution of protected 6-chloropurines with hydrazines or hydrazides, followed by metal-free oxidation with oxygen, gives 6-azopurines in high to excellent yields. Photophysical studies revealed intensive n-π* absorption band that makes trans-to-cis photoswitching possible using visible light (λ = 530 nm).

  8. Mechanical Properties and Failure Analysis of Visible Light Crosslinked Alginate-Based Tissue Sealants

    OpenAIRE

    Charron, Patrick; Fenn, Spencer L.; Poniz, Alex; Oldinski, Rachael A.

    2016-01-01

    Moderate to weak mechanical properties limit the use of naturally-derived tissue sealants for dynamic medical applications, e.g., sealing a lung leak. To overcome these limitations, we developed visible-light crosslinked alginate-based hydrogels, as either non-adhesive methacrylated alginate (Alg-MA) hydrogel controls, or oxidized Alg-MA (Alg-MA-Ox) tissue adhesive tissue sealants, which form covalent bonds with extracellular matrix (ECM) proteins. Our study investigated the potential for vis...

  9. Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: donguser@hotmail.com; Liu, Xiaogang; Xue, Xiaoxiao; Pan, Hui; Zhang, Min; Li, Qiuye; Yu, Laigui; Yang, Jianjun; Zhang, Zhijun [Henan University, Key Laboratory of Ministry of Education for Special Functional Materials (China)

    2013-09-15

    Nanotube titanic acid/graphene (NTA/Gr) composites were prepared by an easy hydrothermal treatment of graphene oxide (GO) and NTA in a mixed solvent of ethanol-water. As-prepared NTA/Gr composites and GO were characterized by means of Fourier transform infrared spectrometry, X-ray diffraction, diffuse-reflection spectrometry, thermal analysis, and transmission electron microscopy. Besides, the photocatalytic activities of as-prepared NTA/Gr composites were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation. It has been found that extending hydrothermal reaction time (24 h instead of 3 h) leads to great changes in the morphology and crystal structure of as-prepared composites. Namely, the orthorhombic NTA (ca. 10 nm in diameter) in the composite transformed to anatase TiO{sub 2} particle (ca. 20-30 nm in diameter) while the Gr sheets (with micrometers-long wrinkles) in it transformed to a few Gr fragments (ca. 50 nm in diameter). Correspondingly, the NTA/Gr composite transformed to titanium dioxide/graphene (TiO{sub 2}/Gr) composite. In the meantime, pure GO only has adsorption effect but it has no photocatalytic activity in the visible light region. Nevertheless, increasing Gr ratio results in enhanced visible light absorption capability and photocatalytic activity of NTA/Gr composites as well as the TiO{sub 2}/Gr composites. This demonstrates that the true visible light photocatalytic activity of NTA/Gr composites as well as the TiO{sub 2}/Gr composites for the degradation of MO is not as excellent as expected, and their high apparent activity is attributed to the strong adsorption of MO on the composites.

  10. Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites

    Science.gov (United States)

    Wang, Xiaodong; Liu, Xiaogang; Xue, Xiaoxiao; Pan, Hui; Zhang, Min; Li, Qiuye; Yu, Laigui; Yang, Jianjun; Zhang, Zhijun

    2013-09-01

    Nanotube titanic acid/graphene (NTA/Gr) composites were prepared by an easy hydrothermal treatment of graphene oxide (GO) and NTA in a mixed solvent of ethanol-water. As-prepared NTA/Gr composites and GO were characterized by means of Fourier transform infrared spectrometry, X-ray diffraction, diffuse-reflection spectrometry, thermal analysis, and transmission electron microscopy. Besides, the photocatalytic activities of as-prepared NTA/Gr composites were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation. It has been found that extending hydrothermal reaction time (24 h instead of 3 h) leads to great changes in the morphology and crystal structure of as-prepared composites. Namely, the orthorhombic NTA (ca. 10 nm in diameter) in the composite transformed to anatase TiO2 particle (ca. 20-30 nm in diameter) while the Gr sheets (with micrometers-long wrinkles) in it transformed to a few Gr fragments (ca. 50 nm in diameter). Correspondingly, the NTA/Gr composite transformed to titanium dioxide/graphene (TiO2/Gr) composite. In the meantime, pure GO only has adsorption effect but it has no photocatalytic activity in the visible light region. Nevertheless, increasing Gr ratio results in enhanced visible light absorption capability and photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites. This demonstrates that the true visible light photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites for the degradation of MO is not as excellent as expected, and their high apparent activity is attributed to the strong adsorption of MO on the composites.

  11. Experimental demonstration of block interleaved frequency division multiple access for bidirectional visible light communications

    Science.gov (United States)

    Lin, Bangjiang; Yang, Hui; Ye, Weiping; Tang, Xuan; Ghassemlooy, Zabih

    2017-01-01

    We propose a power efficient multiple access scheme for visible light communications (VLC) based on the block interleaved frequency division multiple access (B-IFDMA) which provides large frequency-diversity, flexible bandwidth allocation, low complexity of channel equalization, and user separation. Bidirectional B-IFDMA VLC transmission is experimentally demonstrated to verify its feasibility. The impact of the number of subcarriers per block on the transmission performance under wireless optical channel is investigated.

  12. Self-Strengthening Hybrid Dental Adhesive via Visible-light Irradiation Triple Polymerization

    OpenAIRE

    Song, Linyong; Ye, Qiang.; Ge, Xueping; Misra, Anil; Tamerler, Candan; Spencer, Paulette

    2016-01-01

    A self-strengthening methacrylate-based dental adhesive system was developed by introducing an epoxy cyclohexyl trimethoxysilane (TS) which contains both epoxy and methoxysilyl functional groups. The experimental formulation, HEMA/BisGMA/TS (22.5/27.5/50, wt%), was polymerized by visible-light. Real-time Fourier transform infrared spectroscopy (FTIR) was used to investigate in situ the free radical polymerization of methacrylate, ring-opening cationic polymerization of epoxy, and photoacid-in...

  13. A General Strategy for Visible-Light Decaging Based on the Quinone Trimethyl Lock.

    Science.gov (United States)

    Walton, David P; Dougherty, Dennis A

    2017-04-05

    Visible-light triggered quinone trimethyl locks are reported as a general design for long-wavelength photoremovable protecting groups for alcohols and amines. Intramolecular photoreduction unmasks a reactive phenol that undergoes fast lactonization to release alcohols and amines. Model substrates are released in quantitative yield along with well-defined, colorless hydroquinone byproducts. Substituent modifications of the quinone core allow absorption from 400 to 600 nm.

  14. Visible light communications in heterogeneous networks: pave the way for user-centric design

    OpenAIRE

    Zhang, Rong; Wang, Jiaheng; Wang, Zhaocheng; Xu, Zhengyuan; Zhao, Chunming; Hanzo, Lajos

    2015-01-01

    At the time of writing, there is substantial research interest in the subject of Visible Light Communications (VLC) owing to its capability of offering significant traffic offloading potential in highly crowded Radio Frequency (RF) scenarios. We introduce the user-centric design of VLC for Heterogeneous Networks (HetNet), where three key aspects are identified and elaborated on, namely 1) signal coverage quality, 2) system control and 3) service provision aspects. More explicitly, the concept...

  15. Wideband slow light in chirped slot photonic-crystal coupled waveguides.

    Science.gov (United States)

    Hou, Jin; Wu, Huaming; Citrin, D S; Mo, Wenqin; Gao, Dingshan; Zhou, Zhiping

    2010-05-10

    Wideband dispersion-free slow light in chirped-slot photonic-crystal coupled waveguides is proposed and theoretically investigated in detail. By systematically analyzing the dependence of band shape on various structure parameters, unique inflection points in the key photonic band with approximate zero group velocity can be obtained in an optimized slot photonic-crystal coupled waveguide. By simply chirping the widths of the photonic-crystal waveguides in the optimized structure, wideband (up to 20 nm) slow-light with optical confinement in the low dielectric slot is demonstrated numerically with relative temporal pulse-width spreading well below 8% as obtained from two-dimensional finite-difference time-domain simulations. The wideband slow-light operation of the proposed structures would offer significant potential for novel compact high-speed optical-signal-processing devices in silicon-based systems. (c) 2010 Optical Society of America.

  16. Optics. Spatially structured photons that travel in free space slower than the speed of light.

    Science.gov (United States)

    Giovannini, Daniel; Romero, Jacquiline; Potoček, Václav; Ferenczi, Gergely; Speirits, Fiona; Barnett, Stephen M; Faccio, Daniele; Padgett, Miles J

    2015-02-20

    That the speed of light in free space is constant is a cornerstone of modern physics. However, light beams have finite transverse size, which leads to a modification of their wave vectors resulting in a change to their phase and group velocities. We study the group velocity of single photons by measuring a change in their arrival time that results from changing the beam's transverse spatial structure. Using time-correlated photon pairs, we show a reduction in the group velocity of photons in both a Bessel beam and photons in a focused Gaussian beam. In both cases, the delay is several micrometers over a propagation distance of ~1 meter. Our work highlights that, even in free space, the invariance of the speed of light only applies to plane waves. Copyright © 2015, American Association for the Advancement of Science.

  17. Demonstration of high-speed multi-user multi-carrier CDMA visible light communication

    Science.gov (United States)

    Yang, Chao; Wang, Yuanquan; Wang, Yiguang; Huang, Xingxing; Chi, Nan

    2015-02-01

    We experimentally demonstrated a high-speed multi-user multi-carrier code-division multiple access (MC-CDMA) visible light communication (VLC) system. By employing a commercially available red light emitting diode (LED) and an avalanche photo diode (APD), we achieved a 16-user VLC system enabled by MC-CDMA, pre- and post-equalization, with an overall bit rate of 750 Mb/s over 1.5 m free-space transmission. The measured bit error ratio (BER) of each user is below the 7% pre-forward-error-correction (pre-FEC) threshold of 3.8×10-3.

  18. Visible Red Light Emitting Diode Photobiomodulation for Skin Fibrosis: Key Molecular Pathways.

    Science.gov (United States)

    Mamalis, Andrew; Siegel, Daniel; Jagdeo, Jared

    Skin fibrosis, also known as skin scarring, is an important global health problem that affects an estimated 100 million persons per year worldwide. Current therapies are associated with significant side effects and even with combination therapy, progression, and recurrence is common. Our goal is to review the available published data available on light-emitting diode-generated (LED) red light phototherapy for treatment of skin fibrosis. A search of the published literature from 1 January 2000 to present on the effects of visible red light on skin fibrosis, and related pathways was performed in January 2016. A search of PubMed and EMBASE was completed using specific keywords and MeSH terms. "Fibrosis" OR "skin fibrosis" OR "collagen" was combined with ("light emitting diode," "LED," "laser," or "red light"). The articles that were original research studies investigating the use of visible red light to treat skin fibrosis or related pathways were selected for inclusion. Our systematic search returned a total of 1376 articles. Duplicate articles were removed resulting in 1189 unique articles, and 133 non-English articles were excluded. From these articles, we identified six articles related to LED effects on skin fibrosis and dermal fibroblasts. We augmented our discussion with additional in vitro data on related pathways. LED phototherapy is an emerging therapeutic modality for treatment of skin fibrosis. There is a growing body of evidence demonstrating that visible LED light, especially in the red spectrum, is capable of modulating key cellular characteristic associated with skin fibrosis. We anticipate that as the understanding of LED-RL's biochemical mechanisms and clinical effects continue to advance, additional therapeutic targets in related pathways may emerge. We believe that the use of LED-RL, in combination with existing and new therapies, has the potential to alter the current treatment paradigm of skin fibrosis. There is a current lack of clinical trials

  19. Bias-polarity dependent ultraviolet/visible switchable light-emitting devices.

    Science.gov (United States)

    Ni, Pei-Nan; Shan, Chong-Xin; Li, Bing-Hui; Wang, Shuang-Peng; Shen, De-Zhen

    2014-06-11

    By taking semiconductors with different band-gap energies as the active layers and controlling the electron-hole recombination region through the electric field, bias-polarity dependent ultraviolet/visible switchable light-emitting devices have been realized in Au/MgO/Mg0.49Zn0.51O/MgxZn1-xO/n-ZnO structures, of which the emission bands can be switched from the ultraviolet region to the orange region by changing the polarity of the applied bias. The results reported here may provide a feasible idea to multicolor-switchable light-emitting devices.

  20. A visible light-activated direct-bonding material: An in vivo comparative study

    OpenAIRE

    O'Brien, K. D.; Read, M. J F; Sandison, R. J.; Roberts, C. T.

    1989-01-01

    A clinical trial was carried out to evaluate and compare the clinical performance of a visible light-cured material with a chemically cured adhesive. This was used in combination with two types of bracket base. Fifty-two patients entered the trial and 542 bracket bases were placed. The incidence and site of bond failure were recorded. The overall failure rate for the light-cured material in combination with both types of bracket was 4.7% and 6% for the chemical-cured adhesive. There were no s...

  1. Photonic hypercrystals: new media for control of light-matter interaction (Conference Presentation)

    Science.gov (United States)

    Galfsky, Tal; Narimanov, Evgenii E.; Menon, Vinod M.

    2016-09-01

    Photonic crystals and metamaterials have emerged as the most widely used artificial media for controlling light-matter interaction in solid state systems. The former relies on Bragg scattering from wavelength sized periodic modulation in the dielectric environment while the latter has sub-wavelength sized sub-structures that are designed to give an effective medium response. Here we report a new class of artificial photonic media: "photonics hypercrystals" for control of light matter interaction. Hypercrystals are distinct from photonic crystals, as both material scales involved - the hypercrystal period and the unit cells of its material components - are sub-wavelength. And they are also not metamaterials, as their electromagnetic response is qualitatively different from the expected averaged behavior. This fundamental difference results in a number of nontrivial electromagnetic properties of the hypercrystals, that can be observed in experiment and even lead to practical devices - from broadband enhancement of spontaneous emission and light out-coupling which has never to date been demonstrated simultaneously in either metamaterials or photonic crystals, to Dirac physics and singularities in sub-wavelength sized lattice. Specifically, we demonstrate enhanced spontaneous emission rate (x20) and light out-coupling (x100) from a two-dimensional metal-dielectric hypercrystal embedded with quantum dots. Such designer photonic media with complete control over the optical properties provide a new platform for broadband control of light-matter interaction.

  2. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras.

    Science.gov (United States)

    Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-03-16

    The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body.

  3. Real time biomedical signal transmission of mixed ECG signal and patient information using visible light communication.

    Science.gov (United States)

    Tan, Yee Yong; Jung, Sang-Joong; Chung, Wan-Young

    2013-01-01

    The utilization of radio-frequency (RF) communication technology in healthcare application, especially in the transmission of health-related data such as biomedical signal and patient information is often perturbed by electromagnetic interference (EMI). This will not only significantly reduce the accuracy and reliability of the data transmitted, but could also compromise the safety of the patients due to radio frequency (RF) radiation. In this paper, we propose a method which utilizes visible light communication technology as a platform for transmission and to provide real-time monitoring of heart rate and patient information. White LED beam is used as the illuminating source to simultaneously transmit biomedical signal as well as patient record. On-off Keying (OOK) modulation technique is used to modulate all the data onto the visible light beam. Both types of data will be transmitted using a single data packet. At the receiving end, a receiver circuit consisting of a high-speed PIN photodetector and a demodulation circuit is employed to demodulate the data from the visible light beam. The demodulated data is then serially transmitted to a personal computer where the biomedical signal, patient information and heart rate can be monitored in real-time.

  4. Development of visible-light responsive and mechanically enhanced "smart" UCST interpenetrating network hydrogels.

    Science.gov (United States)

    Xu, Yifei; Ghag, Onkar; Reimann, Morgan; Sitterle, Philip; Chatterjee, Prithwish; Nofen, Elizabeth; Yu, Hongyu; Jiang, Hanqing; Dai, Lenore L

    2017-12-20

    An interpenetrating polymer network (IPN), chlorophyllin-incorporated environmentally responsive hydrogel was synthesized and exhibited the following features: enhanced mechanical properties, upper critical solution temperature (UCST) swelling behavior, and promising visible-light responsiveness. Poor mechanical properties are known challenges for hydrogel-based materials. By forming an interpenetrating network between polyacrylamide (PAAm) and poly(acrylic acid) (PAAc) polymer networks, the mechanical properties of the synthesized IPN hydrogels were significantly improved compared to hydrogels made of a single network of each polymer. The formation of the interpenetrating network was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), the analysis of glass transition temperature, and a unique UCST responsive swelling behavior, which is in contrast to the more prevalent lower critical solution temperature (LCST) behaviour of environmentally responsive hydrogels. The visible-light responsiveness of the synthesized hydrogel also demonstrated a positive swelling behavior, and the effect of incorporating chlorophyllin as the chromophore unit was observed to reduce the average pore size and further enhance the mechanical properties of the hydrogel. This interpenetrating network system shows potential to serve as a new route in developing "smart" hydrogels using visible-light as a simple, inexpensive, and remotely controllable stimulus.

  5. Facile synthesis and visible-light photocatalytic activity of bismuth titanate nanorods

    Science.gov (United States)

    Hou, Jungang; Jiao, Shuqiang; Zhu, Hongmin; Kumar, R. V.

    2011-10-01

    Highly crystalline bismuth titanate (Bi12TiO20, BiT) nanorods, as visible-light photocatalysts were prepared by a template-free hydrothermal process. The as-prepared BiT nanorods fabricated in high yields by simply manipulating pH values in the absence of any capping agent, were characterized by a number of techniques, such as XRD, SEM, TEM, HRTEM, BET, and UV-Vis spectrum. In this case, hydroxide ions seem to play a pivotal role in controlling the formation of seeds and the growth of the BiT nanorods. Based on the structural analysis of nanocrystals obtained at different pH values, we proposed a plausible mechanism to account for the formation of the tunable morphologies. Most importantly, the BiT nanorods with good stability exhibited higher photocatalytic activities in the degradation of Rhodamine B under visible light irradiation (λ ≥ 420 nm) than the commercial P25 TiO2 and bulk BiT powders, demonstrating that Bi12TiO20 is a promising candidate as a visible-light photocatalyst.

  6. A versatile, fast, and efficient method of visible-light-induced surface grafting polymerization.

    Science.gov (United States)

    Xiong, Xinhong; Liu, Wei; Luan, Yafei; Du, Jun; Wu, Zhaoqiang; Chen, Hong

    2014-05-20

    To overcome the problem caused by the lability of the Au-S bond, we demonstrate the first use of Mn2(CO)10 for visible-light-induced surface grafting polymerization on Au surfaces in this paper. The visible-light-induced surface grafting of poly(N-isopropylacrylamide) (PNIPAAm) has the features of a "controlled" polymerization, which is characterized by a linear relationship between the thickness of the grafting layer and the monomer concentration. Ellipsometry indicated the formation of PNIPAAm films of up to ∼200 nm in thickness after only 10 min of polymerization at room temperature, demonstrating that this is a very fast process in comparison with traditional grafting polymerization techniques. Moreover, to demonstrate the potential applications of our approach, different substrates grafted by PNIPAAm and the covalent immobilization of a range of polymers on Au surfaces were also demonstrated. Considering the advantages of simplicity, efficiency, and mild reaction conditions as well as the ability of catecholic derivatives to bind to a large variety of substrates, this visible-light-induced grafting method is expected to be useful in designing functional interfaces.

  7. Visible-Light Photocatalysis: Does it make a difference in Organic Synthesis?

    Science.gov (United States)

    Marzo, Leyre; Pagire, Santhosh K; Reiser, Oliver; König, Burkhard

    2018-02-19

    Visible light photocatalysis has evolved over the last decade into a widely used method in organic synthesis. For many important transformations, such as cross-coupling reactions, alpha-amino functionalizations, cycloadditions, ATRA reactions, or fluorinations, photocatalytic variants have been reported. In this review, we try to compare classical and photocatalytic procedures for selected classes of reactions and highlight their advantages and limitations. In many cases, the photocatalytic reactions proceed at milder reaction conditions, typically at room temperature, and stoichiometric reagents are replaced by simple oxidants or reductants, like air oxygen or amines. This way, besides providing alternative protocols for established transformations that allow a broadening of the substrate scope, also new transformations become possible, especially by merging photocatalysis with organo- or metal catalysis. Does visible light photocatalysis make a difference in organic synthesis? The prospect to shuttle electrons back and forth to substrates and intermediates or to selectively transfer energy through a visible light absorbing photocatalyst holds the promise to improve current protocols in radical chemistry and to open up new avenues by accessing reactive species hitherto unknown. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Visible-Light-Driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition.

    Science.gov (United States)

    Deng, Wei; Zhao, Huilei; Pan, Fuping; Feng, Xuhui; Jung, Bahngmi; Abdel-Wahab, Ahmed; Batchelor, Bill; Li, Ying

    2017-11-21

    Solar-driven heterogeneous photocatalysis has been widely studied as a promising technique for degradation of organic pollutants in wastewater. Herein, we have developed a sulfite-enhanced visible-light-driven photodegradation process using BiOBr/methyl orange (MO) as the model photocatalyst/pollutant system. We found that the degradation rate of MO was greatly enhanced by sulfite, and the enhancement increased with the concentration of sulfite. The degradation rate constant was improved by 29 times in the presence of 20 mM sulfite. Studies using hole scavengers suggest that sulfite radicals generated by the reactions of sulfite (sulfite anions or bisulfite anions) with holes or hydroxyl radicals are the active species for MO photodegradation using BiOBr under visible light. In addition to the BiOBr/MO system, the sulfite-assisted photocatalysis approach has been successfully demonstrated in BiOBr/rhodamine B (RhB), BiOBr/phenol, BiOI/MO, and Bi 2 O 3 /MO systems under visible light irradiation, as well as in TiO 2 /MO system under simulated sunlight irradiation. The developed method implies the potential of introducing external active species to improve photodegradation of organic pollutants and the beneficial use of air pollutants for the removal of water pollutants since sulfite is a waste from flue gas desulfurization process.

  9. Antibacterial properties of F-doped ZnO visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Podporska-Carroll, Joanna, E-mail: joannapcarroll@gmail.com [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); Myles, Adam [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin St., Dublin (Ireland); Quilty, Brid [School of Biotechnology, Dublin City University, Dublin (Ireland); McCormack, Declan E.; Fagan, Rachel [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin St., Dublin (Ireland); Hinder, Steven J. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Pillai, Suresh C., E-mail: Pillai.Suresh@itsligo.ie [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); Nanotechnology Research Group, Department of Environmental Science, PEM Centre, Institute of Technology Sligo, Sligo (Ireland)

    2017-02-15

    Highlights: • F doped ZnO nano-powders were obtained by a modified sol–gel method. • These materials were found to be effective against S. aureus and E. coli. • Enhanced visible light photocatalytic and antimicrobial properties were obtained. • The toxic effect of ZnO on bacteria can be due to the release of zinc cations. • Production of reactive oxidation species influences bacterial viability. - Abstract: Nanocrystalline ZnO photocatalysts were prepared by a sol–gel method and modified with fluorine to improve their photocatalytic anti-bacterial activity in visible light. Pathogenic bacteria such as Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) were employed to evaluate the antimicrobial properties of synthesized materials. The interaction with biological systems was assessed by analysis of the antibacterial properties of bacteria suspended in 2% (w/w) powder solutions. The F-doping was found to be effective against S. aureus (99.99% antibacterial activity) and E. coli (99.87% antibacterial activity) when irradiated with visible light. Production of reactive oxygen species is one of the major factors that negatively impact bacterial growth. In addition, the nanosize of the ZnO particles can also be toxic to microorganisms. The small size and high surface-to-volume ratio of the ZnO nanoparticles are believed to play a role in enhancing antimicrobial activity.

  10. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    Science.gov (United States)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-07-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  11. Visible light assisted nitrogen dioxide sensing using tungsten oxide - Graphene oxide nanocomposite sensors

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Xin [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); You, Jiajun; Wang, Jie [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Zhang, Chao, E-mail: zhangc@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China)

    2017-04-15

    Tungsten oxide (WO{sub 3}) coatings were deposited by solution precursor plasma spray (SPPS) on alumina substrates. In order to enhance the NO{sub 2} sensing properties of the pure WO{sub 3} coatings at room temperature, illuminating with visible light and formation of p-n heterojunction were used. The SPPS WO{sub 3} coatings were modified by immersing them into a synthesized graphene oxide (GO) suspension to obtain the WO{sub 3}-GO composites. Raman and FTIR results demonstrated that p-n heterojunctions were successfully formed in the WO{sub 3}-GO composites. The UV–Vis spectra showed that the WO{sub 3}-GO composites had a longer visible light absorption range compared with the WO{sub 3} coatings. The sensors based on the WO{sub 3}-GO coatings exhibited ultra-high responses to NO{sub 2} at room temperature performed under visible light illumination. - Highlights: • Highly porous nanostructured WO{sub 3} coatings were deposited by SPPS process. • The WO{sub 3}-GO nanocomposites with p-n heterojunctions were successfully prepared. • The WO{sub 3}-GO nanocomposites exhibited ultra-high responses to 0.9 ppm NO{sub 2}. • The enhanced performance was ascribed to the fine structure and heterojunction.

  12. Preparation and visible-light photocatalytic performances of cyclized polyacrylonitrile/TiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiaojing WANG

    2015-10-01

    Full Text Available TiO2 nanomaterials were prepared by a conventional sol-gel method with tetrabutyl titanate as Ti source. The polyacrylonitrile solution with dimethyl sulfoxide as solvent was added into TiO2 sols to form TiO2 gels containing polyacrylonitrile, then the as-prepared TiO2 gels were heat-treated to prepare cyclized polyacrylonitrile/TiO2 (CPAN/TiO2 nanocomposites. The CPAN/TiO2 nanocomposites were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, UV-vis diffuse reflection spectroscopy (DRS and photoluminescence spectroscopy (PL. The visible-light photocatalytic performances of CPAN/TiO2 nanocomposites were investigated by evaluating the decomposition of methyl orange. The results reveal CPAN/TiO2 nanocomposites exhibit excellent visible-light photocatalytic acitivity and stability, and show the highest visible-light photocatalytic activity when the mass ratio of CPAN to TiO2, heat-treatment temperature and time are 1∶300, 270 ℃ and 1 h, respectively.

  13. Conjugated Microporous Polymer Nanosheets for Overall Water Splitting Using Visible Light.

    Science.gov (United States)

    Wang, Lei; Wan, Yangyang; Ding, Yanjun; Wu, Sikai; Zhang, Ying; Zhang, Xinlei; Zhang, Guoqing; Xiong, Yujie; Wu, Xiaojun; Yang, Jinlong; Xu, Hangxun

    2017-10-01

    Direct water splitting into H2 and O2 using photocatalysts by harnessing sunlight is very appealing to produce storable chemical fuels. Conjugated polymers, which have tunable molecular structures and optoelectronic properties, are promising alternatives to inorganic semiconductors for water splitting. Unfortunately, conjugated polymers that are able to efficiently split pure water under visible light (400 nm) via a four-electron pathway have not been previously reported. This study demonstrates that 1,3-diyne-linked conjugated microporous polymer nanosheets (CMPNs) prepared by oxidative coupling of terminal alkynes such as 1,3,5-tris-(4-ethynylphenyl)-benzene (TEPB) and 1,3,5-triethynylbenzene (TEB) can act as highly efficient photocatalysts for splitting pure water (pH ≈ 7) into stoichiometric amounts of H2 and O2 under visible light. The apparent quantum efficiencies at 420 nm are 10.3% and 7.6% for CMPNs synthesized from TEPB and TEB, respectively; the measured solar-to-hydrogen conversion efficiency using the full solar spectrum can reach 0.6%, surpassing photosynthetic plants in converting solar energy to biomass (globally average ≈0.10%). First-principles calculations reveal that photocatalytic H2 and O2 evolution reactions are energetically feasible for CMPNs under visible light irradiation. The findings suggest that organic polymers hold great potential for stable and scalable solar-fuel generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    Directory of Open Access Journals (Sweden)

    Tae-Jun Ha

    2014-10-01

    Full Text Available We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs for transparent electronics by exploring the shift in threshold voltage (Vth. A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO TFTs possessing large optical band-gap (≈3 eV was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger Vth shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  15. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras

    Science.gov (United States)

    Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-01-01

    The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body. PMID:28300783

  16. Mechanical properties and failure analysis of visible light crosslinked alginate-based tissue sealants.

    Science.gov (United States)

    Charron, Patrick N; Fenn, Spencer L; Poniz, Alex; Oldinski, Rachael A

    2016-06-01

    Moderate to weak mechanical properties limit the use of naturally-derived tissue sealants for dynamic medical applications, e.g., sealing a lung leak. To overcome these limitations, we developed visible-light crosslinked alginate-based hydrogels, as either non-adhesive methacrylated alginate (Alg-MA) hydrogel controls, or oxidized Alg-MA (Alg-MA-Ox) tissue adhesive tissue sealants, which form covalent bonds with extracellular matrix (ECM) proteins. Our study investigated the potential for visible-light crosslinked Alg-MA-Ox hydrogels to serve as effective surgical tissue sealants for dynamic in vivo systems. The Alg-MA-Ox hydrogels were designed to be an injectable system, curable in situ. Burst pressure experiments were conducted on a custom-fabricated burst pressure device using constant air flow; burst pressure properties and adhesion characteristics correlated with the degrees of methacrylation and oxidation. In summary, visible light crosslinked Alg-MA-Ox hydrogel tissue sealants form effective seals over critically-sized defects, and maintain pressures up to 50mm Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Visible-light sensitized luminescent europium(III)-β-diketonate complexes: bioprobes for cellular imaging.

    Science.gov (United States)

    Reddy, M L P; Divya, V; Pavithran, Rani

    2013-11-21

    Visible-light sensitized luminescent europium(III) molecular materials are of considerable importance because their outstanding photophysical properties make them well suited as labels in fluorescence-based bioassays and low-voltage driven pure red-emitters in optoelectronic technology. One challenge in this field is development of visible-light sensitizing ligands that can form highly emissive europium(III) complexes with sufficient stability and aqueous solubility for practical applications. Indeed, some of the recent reports have demonstrated that the excitation-window can be shifted to longer-wavelengths in europium(III)-β-diketonate complexes by appropriate molecular engineering and suitably expanded π-conjugation in the complex molecules. In this review, attention is focused on the latest innovations in the syntheses and photophysical properties of visible-light sensitized europium(III)-β-diketonate complexes and their application as bioprobes for cellular imaging. Furthermore, luminescent nanomaterials derived from long-wavelength sensitized europium(III)-β-diketonate complexes and their application in life sciences are also highlighted.

  18. Multiwalled Carbon Nanotube-TiO2 Nanocomposite for Visible-Light-Induced Photocatalytic Hydrogen Evolution

    Directory of Open Access Journals (Sweden)

    Ke Dai

    2014-01-01

    Full Text Available Multiwalled carbon nanotube- (MWCNT- TiO2 nanocomposite was synthesized via hydrothermal process and characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, field emission scanning electron microscope, thermogravimetry analysis, and N2 adsorption-desorption isotherms. Appropriate pretreatment on MWCNTs could generate oxygen-containing groups, which is beneficial for forming intimate contact between MWCNTs and TiO2 and leads to a higher thermal stability of MWCNT-TiO2 nanocomposite. Modification with MWCNTs can extend the visible-light absorption of TiO2. 5 wt% MWCNT-TiO2 derived from hydrothermal treatment at 140°C exhibiting the highest hydrogen generation rate of 15.1 μmol·h−1 under visible-light irradiation and a wide photoresponse range from 350 to 475 nm with moderate quantum efficiency (4.4% at 420 nm and 3.7% at 475 nm. The above experimental results indicate that the MWCNT-TiO2 nanocomposite is a promising photocatalyst with good stability and visible-light-induced photoactivity.

  19. Structured light generation by magnetic metamaterial half-wave plates at visible wavelength

    Science.gov (United States)

    Zeng, Jinwei; Luk, Ting S.; Gao, Jie; Yang, Xiaodong

    2017-12-01

    Metamaterial or metasurface unit cells functioning as half-wave plates play an essential role for realizing ideal Pancharatnam–Berry phase optical elements capable of tailoring light phase and polarization as desired. Complex light beam manipulation through these metamaterials or metasurfaces unveils new dimensions of light–matter interactions for many advances in diffraction engineering, beam shaping, structuring light, and holography. However, the realization of metamaterial or metasurface half-wave plates in visible spectrum range is still challenging mainly due to its specific requirements of strong phase anisotropy with amplitude isotropy in subwavelength scale. Here, we propose magnetic metamaterial structures which can simultaneously exploit the electric field and magnetic field of light for achieving the nanoscale half-wave plates at visible wavelength. We design and demonstrate the magnetic metamaterial half-wave plates in linear grating patterns with high polarization conversion purity in a deep subwavelength thickness. Then, we characterize the equivalent magnetic metamaterial half-wave plates in cylindrical coordinate as concentric-ring grating patterns, which act like an azimuthal half-wave plate and accordingly exhibit spatially inhomogeneous polarization and phase manipulations including spin-to-orbital angular momentum conversion and vector beam generation. Our results show potentials for realizing on-chip beam converters, compact holograms, and many other metamaterial devices for structured light beam generation, polarization control, and wavefront manipulation.

  20. Visible light-induced OH radicals in Ga2O3: an EPR study.

    Science.gov (United States)

    Tzitrinovich, Zeev; Lipovsky, Anat; Gedanken, Aharon; Lubart, Rachel

    2013-08-21

    Reactive oxygen species (ROS) were found to exist in water suspensions of several metal oxide nanoparticles (NPs), such as CuO, TiO2 and ZnO. Visible light irradiation enhanced the capability of TiO2 and ZnO NPs to generate ROS, thus increasing their antibacterial effects. Because of the possible toxic effects on the host tissue it is desired to find nano-metal oxides which do not produce ROS under room light, but only upon a strong external stimulus. Using the technique of electron-spin resonance (ESR) coupled with spin trapping, we examined the ability of Ga2O3 submicron-particle suspensions in water to produce reactive oxygen species with and without visible light irradiation. We found that in contrast to ZnO and TiO2 NPs, no ROS are produced by Ga2O3 under room light. Nevertheless blue light induced hydroxyl radical formation in Ga2O3. This finding might suggest that NPs of Ga2O3 could be used safely for infected skin sterilization.

  1. Energy, Electron Transfer and Photocatalytic Reactions of Visible Light Absorbing Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Schmehl, Russell H. [Tulane Univ., New Orleans, LA (United States)

    2016-03-02

    This is the final technical report for a project carried out at Tulane University of New Orleans that describes the development of light induced (solar) reactions geared toward decomposing water into its component elements : hydrogen and oxygen. Much of the work involved optimizing systems for absorbing visible light and undergoing light promoted reactions to generate very strong reducing agents that are capable of reacting with water to produce hydrogen. Additional portions of the research were collaborative efforts to put the strong reducing agents to work in reaction with hydrogen generation catalysts prepared elsewhere. Time resolved laser spectroscopic methods were used to evaluate the light induced reactions and characterize very reactive intermediate substances formed during the reactions.

  2. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    Science.gov (United States)

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  3. The Influence of Visible Light on the Sulfhydryl Content of Yeast Cells After Ionizing and Ultraviolet Irradiation

    Science.gov (United States)

    1951-12-15

    u„ Report No. 72 AMRt Project No. 6 -59-08-013 -S-4 MEDEA 15 December 1951 ABSTRACT // THE INFLUENCE OF VISIBLE LIGHT ON THE SULFHYDRYL...effect of visible light on ultraviolet irradiated cells) has shed new light on the complexities of the irradiation phenomena, but the under- lying...136, 1943. Vi 4. Lea, D. E. Actions of radiations onliving cells * New York, ’ Macmillan, 1947. 5. Keiner, A. Photore activation of

  4. FRB 121102 casts new light on the photon mass

    Science.gov (United States)

    Bonetti, Luca; Ellis, John; Mavromatos, Nikolaos E.; Sakharov, Alexander S.; Sarkisyan-Grinbaum, Edward K.; Spallicci, Alessandro D. A. M.

    2017-05-01

    The photon mass, mγ, can in principle be constrained using measurements of the dispersion measures (DMs) of fast radio bursts (FRBs), once the FRB redshifts are known. The DM of the repeating FRB 121102 is known to eVc-2 (3.9 ×10-50 kg). Since the plasma and photon mass contributions to DMs have different redshift dependences, they could in principle be distinguished by measurements of more FRB redshifts, enabling the sensitivity to mγ to be improved.

  5. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2017-05-01

    Full Text Available Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1 and two open databases (Korea advanced institute of science and technology (KAIST and computer vision center (CVC databases, as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  6. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors.

    Science.gov (United States)

    Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2017-05-08

    Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR) illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1) and two open databases (Korea advanced institute of science and technology (KAIST) and computer vision center (CVC) databases), as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  7. Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: mzkhm73@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ahmed, E. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Hong, Z.L., E-mail: hong_zhanglian@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Khalid, N.R. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ahmed, W.; Elhissi, A. [Institute of Nanotechnology and Bioengineering, University of Central Lancashire, School of Medicine and Dentistry, Preston PR1 2HE (United Kingdom)

    2013-11-15

    Highlights: •Synthesis of Graphene–Ag/ZnO composite photocatalysts by facile one-step nontoxic approach. •Enhanced visible light absorption and efficient charge separation of ZnO by graphene modification and silver doping. •Effective utilization of photo-induced conduction band electron and valance band hole to photocatalytic degradation process. •Excellent photocatalytic performance of composites over pure ZnO. •The reduction in COD and TOC confirms the destruction of the organic molecules in the effluents along with colour removal. -- Abstract: Visible-light-responsive Graphene–Ag/ZnO nanocomposites were fabricated using a facile, one-pot, nontoxic solvothermal process for the photodegradation of organic dyes. During the solvothermal process reduction of graphene oxide and loading of Ag-doped ZnO nanoparticles on two-dimensional graphene sheets were achieved. Electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray analysis, BET surface area measurements, X-ray photoelectron spectroscopy and powder X-ray diffraction were used to confirm that the Ag-doped ZnO nanoparticles as randomly dispersed and effectively decorated on graphene sheets via covalent bonds between Zn and C atoms. Optical properties studied using UV–vis diffuse reflectance spectroscopy confirmed that the absorption edge of Ag-doped ZnO shifted to visible-light region with the incorporation of graphene. The as-synthesized Graphene–Ag/ZnO nanocomposites showed unprecedented photodecomposition efficiency compared to the Ag-doped ZnO, pristine ZnO and commercial ZnO under visible-light. The textile mill effluent containing organic substances was also treated using photocatalysis and the reduction in the chemical oxygen demand (COD) of the treated effluent revealed a complete destruction of the organic molecules along with colour removal. This dramatically enhanced photoactivity of the composite which is attributed to retarded charge recombination rate

  8. Solution-processed PCDTBT capped low-voltage InGaZnOx thin film phototransistors for visible-light detection

    Science.gov (United States)

    Wang, Han; Xiao, Yubin; Chen, Zefeng; Xu, Wangying; Long, Mingzhu; Xu, Jian-Bin

    2015-06-01

    The effects of visible-light detection based on solution processed poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'benzothiadiazole) (PCDTBT) capped InGaZnOx (IGZO) phototransistors with Al2Ox serving as gate dielectric are investigated in this paper. The high-k dielectric is used to lower the device operating voltage down to 2 V. Photons emitted from laser sources with the wavelengths (λ) of 532 nm and 635 nm are absorbed through the layer of PCDTBT to generate electron-hole-pairs (EHPs). After the separation of EHPs, electrons are injected into IGZO layer through the p-n junction formed between the IGZO (n-type semiconductor) and the PCDTBT (p-type semiconductor). The photo-generated carriers boost the drain current of the transistors as well as bring about the negative threshold voltage shift. Significant enhanced detection performance is achieved under the laser wavelength of 532 nm. The highest photoresponsivity reaches up to 20 A/W, while the photoresponse rise time comes to 10 ms and the fall time comes to approximate 76 ms, which is much faster than trap assisted IGZO visible light detection. The fabricated phototransistors favor the application of visible-light detectors and/or optical switches.

  9. Facile fabrication of visible light induced Bi2O3 nanorod using conventional heat treatment method

    Science.gov (United States)

    Raza, Waseem; Khan, Azam; Alam, Umair; Muneer, M.; Bahnemann, D.

    2016-03-01

    In this paper, a new Bi2O3 based photocatalyst doped with varying concentration of Nb and Mn metal ion was fabricated by conventional heat treatment method and their photocatalytic activity was investigated. The prepared material was characterized by X-ray diffraction (XRD), UV-Visible Spectroscopy, Fourier transform infrared (FTIR) and Scanning Electron Microscopic (SEM) techniques. The XRD analysis of synthesized photocatalyst was found to exhibit characteristic peaks of well crystallized monoclinic α-Bi2O3. The XRD pattern of pure and metal doped Bi2O3 were found to more or less similar. The crystallite size of doped materials were smaller than pure Bi2O3 and size decreases with increasing dopant concentration from 0.5 to 2.0% for Nb & 1.0-3.0% for Mn and remains almost constant at higher dopant concentration. The SEM analysis clearly indicate the formation of nanorod like morphologies. The UV-Vis absorption spectra of synthesized nanorods revealed that the absorption edge shift towards longer wavelength on doping with Nb and Mn metal ions which is beneficial for absorbing more visible light in the solar spectrum. The prepared doped Bi2O3 nanorod showed the excellent photocatalytic activity for degradation of selected organic pollutants, such as Methylene Blue (MB) and Rodaamime B (RhB) under visible light source. The higher activity of doped Bi2O3 nanorod may be attributed to absorption of more visible light leading to generation of higher photogenerated electron hole pairs and efficient separation of photoinduced charge carrier to inhibit the recombination rate.

  10. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  11. Group-index limitations in slow-light photonic crystals

    DEFF Research Database (Denmark)

    Grgic, Jure; Pedersen, Jesper Goor; Xiao, Sanshui

    2010-01-01

    -valued dielectric function. Perturbation theory predicts that the group index scales as 1/ϵ″ which we find to be in complete agreement with the full solutions for various examples. As a consequence, the group index remains finite in real photonic crystals, with its value depending on the damping parameter...

  12. Ultrafast investigations of slow light in photonic crystal structures

    NARCIS (Netherlands)

    Engelen, Rob Jacques Paul

    2008-01-01

    Optical structures with dimensions down to nanometer length scales have been a topic for investigation for an increasing number of researchers, due to their intriguing physical properties and their possible new optical applications. In this thesis, waveguides in two-dimensional photonic crystals are

  13. Reducing disorder-induced losses for slow light photonic crystal waveguides through Bloch mode engineering

    DEFF Research Database (Denmark)

    Mann, Nishan; Combrié, Sylvian; Colman, Pierre

    2013-01-01

    We present theory and measurements ofdisorder-induced losses for low loss 1.5 mmlong slow light photonic crystal waveguides. A recent class of dispersion engineered waveguides increases the bandwidth of slow light and shows lower propagation losses for the same group index. Our theory and experim...

  14. REVIEW ARTICLE: Dispersion engineered slow light in photonic crystals: a comparison

    Science.gov (United States)

    Schulz, S. A.; O'Faolain, L.; Beggs, D. M.; White, T. P.; Melloni, A.; Krauss, T. F.

    2010-10-01

    We review the different types of dispersion engineered photonic crystal waveguides that have been developed for slow light applications. We introduce the group index bandwidth product (GBP) and the loss per delay in terms of dB ns - 1 as two key figures of merit to describe such structures and compare the different experimental realizations based on these figures. A key outcome of the comparison is that slow light based on photonic crystals performs as well or better than slow light based on coupled ring resonators.

  15. Single-photon pulsed-light indirect time-of-flight 3D ranging.

    Science.gov (United States)

    Bellisai, S; Bronzi, D; Villa, F A; Tisa, S; Tosi, A; Zappa, F

    2013-02-25

    "Indirect" time-of-flight is one technique to obtain depth-resolved images through active illumination that is becoming more popular in the recent years. Several methods and light timing patterns are used nowadays, aimed at improving measurement precision with smarter algorithms, while using less and less light power. Purpose of this work is to present an indirect time-of-flight imaging camera based on pulsed-light active illumination and a 32 × 32 single-photon avalanche diode array with an improved illumination timing pattern, able to increase depth resolution and to reach single-photon level sensitivity.

  16. Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Volkov, V.S.; Bozhevolnyi, Sergey I.; Frandsen, Lars Hagedorn

    2007-01-01

    A scanning near-field optical microscope (SNOM) is used to systematically study the properties of guided modes in linear and slow-light regimes of silicon-on-insulator (SOI)-based photonic crystal waveguides (PhCWs) with different terminations of the photonic lattice. High quality SNOM images...... are obtained for light at telecom wavelengths propagating in the PhCW, demonstrating directly, for the first time to our knowledge, drastic widening of the PhCW guided mode in the slow-light regime and excitation of surface waves at the PhCW interface along with their feeding into the guided mode...

  17. Integrated single- and two-photon light sheet microscopy using accelerating beams

    DEFF Research Database (Denmark)

    Piksarv, Peeter; Marti, Dominik; Le, Tuan

    2017-01-01

    We demonstrate the first light sheet microscope using propagation invariant, accelerating Airy beams that operates both in single- and two-photon modes. The use of the Airy beam permits us to develop an ultra compact, high resolution light sheet system without beam scanning. In two-photon mode......, an increase in the field of view over the use of a standard Gaussian beam by a factor of six is demonstrated. This implementation for light sheet microscopy opens up new possibilities across a wide range of biomedical applications, especially for the study of neuronal processes....

  18. Photonic metamaterials: a new class of materials for manipulating light waves

    Directory of Open Access Journals (Sweden)

    Masanobu Iwanaga

    2012-01-01

    Full Text Available A decade of research on metamaterials (MMs has yielded great progress in artificial electromagnetic materials in a wide frequency range from microwave to optical frequencies. This review outlines the achievements in photonic MMs that can efficiently manipulate light waves from near-ultraviolet to near-infrared in subwavelength dimensions. One of the key concepts of MMs is effective refractive index, realizing values that have not been obtained in ordinary solid materials. In addition to the high and low refractive indices, negative refractive indices have been reported in some photonic MMs. In anisotropic photonic MMs of high-contrast refractive indices, the polarization and phase of plane light waves were efficiently transformed in a well-designed manner, enabling remarkable miniaturization of linear optical devices such as polarizers, wave plates and circular dichroic devices. Another feature of photonic MMs is the possibility of unusual light propagation, paving the way for a new subfield of transfer optics. MM lenses having super-resolution and cloaking effects were introduced by exploiting novel light-propagating modes. Here, we present a new approach to describing photonic MMs definitely by resolving the electromagnetic eigenmodes. Two representative photonic MMs are addressed: the so-called fishnet MM slabs, which are known to have effective negative refractive index, and a three-dimensional MM based on a multilayer of a metal and an insulator. In these photonic MMs, we elucidate the underlying eigenmodes that induce unusual light propagations. Based on the progress of photonic MMs, the future potential and direction are discussed.

  19. Tunable flat band slow light in reconfigurable photonic crystal waveguides based on magnetic fluids

    DEFF Research Database (Denmark)

    Pu, Shengli; Wang, Haotian; Wang, Ning

    2013-01-01

    and the light speed in vacuum, respectively). Simultaneously, the normalized delay-bandwidth product is relatively large compared with other works. Reconfiguring the photonic crystal waveguide with magnetic fluids of different concentrations can remarkably tune the slow light parameters and the trade......A kind of two-dimensional photonic crystal line-defect waveguide with 45 -rotated square lattice is proposed to present slow light phenomena. Infiltrating the photonic crystal waveguide with appropriate magnetic fluids can generate very wide flat bands of guided modes, which give rise...... to the excellent slow light properties. The bandwidth centered at λ0=1550 nm of the designed W1 waveguide is considerably large (around 54 nm). The obtained group velocity dispersion β2 within the bandwidth is ultralow (varying from -2118a/2πc2 to 1845a/2πc2, where a and c are the period of the lattice...

  20. High efficiency asymmetric directional coupler for slow light slot photonic crystal waveguides.

    Science.gov (United States)

    Xu, Yameng; Caer, Charles; Gao, Dingshan; Cassan, Eric; Zhang, Xinliang

    2014-05-05

    An asymmetric directional coupler scheme for the efficient injection of light into slow light slot photonic crystal waveguide modes is proposed and investigated using finite-difference time-domain simulation. Coupling wavelengths can be flexibly controlled by the geometrical parameters of a side-coupled subwavelength corrugated strip waveguide. This approach leads to a ~1dB insertion loss level up to moderately high light group indices (nG≈30) in wavelength ranges of 5-10nm. This work brings new opportunities to inject light into the slow modes of slot photonic crystal waveguides for on-chip communications using hybrid silicon photonics or sensing based on hollow core waveguides.

  1. Experimental Limit on Optical-Photon Coupling to Light Neutral Scalar Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Afanaciev, Andrei; Afanasev, Andrei; Baker, O.; Beard, Kevin; Biallas, George; Boyce, James; Minarni, Minarni; Ramdon, Roopchan; Michelle D. Shinn; Slocum, P.

    2008-09-01

    DOI: http://dx.doi.org/10.1103/PhysRevLett.101.120401
    We report on the first results of a sensitive search for scalar coupling of photons to a light neutral boson in the mass range of approximately 1.0 meV (milli-electron volts) and coupling strength greater than 10^-6 GeV^-1 using optical photons. This was a photon regeneration experiment using the "light shining through a wall" technique in which laser light was passed through a strong magnetic field upstream of an optical beam dump; regenerated laser light was then searched for downstream of a second magnetic field region optically shielded from the former. Our results show no evidence for scalar coupling in this region of parameter space.

  2. Threshold Characteristics of Slow-Light Photonic Crystal Lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2016-01-01

    results are explained by an analytical theory for the laser threshold that takes into account the effects of slow light and random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper into the slow-light region, leading to a trade-off between slow-light induced...

  3. Photocatalytic activity of polymer-modified ZnO under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Rongliang [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)], E-mail: eesqrl@mail.sysu.edu.cn; Zhang Dongdong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Mo Yueqi [College of Material Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Song Lin [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Department of Environmental Engineering, Jinan University, Guangzhou 510630 (China); Brewer, Eric [Viridian Environmental, LLC, Arlington, VA 22207 (United States); Huang Xiongfei; Xiong Ya [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2008-08-15

    Photocatalytic removal of phenol, rhodamine B, and methyl orange was studied using the photocatalyst ZnO/poly-(fluorene-co-thiophene) (PFT) under visible light. After 2 h irradiation with three 1 W LED (light-emitting diode) lights, about 40% removal of both phenol and methyl orange was achieved; rhodamine B was completely degraded to rhodamine. Diffuse reflectance spectra showed that the absorbance range of PFT/ZnO was expanded from 387 nm (ZnO) to about 500 nm. Photoluminescent spectra and photoluminescent quantum efficiency indicated that electrons were transferred from PFT to the conduction band of ZnO. Electron spin resonance (ESR) signals of spin-trapped paramagnetic species with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) evidenced that the OH{center_dot} radicals were indeed formed in the PFT/ZnO system under visible light irradiation. A working mechanism involving excitation of PFT, followed by charge injection into the ZnO conduction band is proposed.

  4. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    Science.gov (United States)

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  5. Bactericidal performance of visible-light responsive titania photocatalyst with silver nanostructures.

    Directory of Open Access Journals (Sweden)

    Ming-Show Wong

    Full Text Available BACKGROUND: Titania dioxide (TiO(2 photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO(2 photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved. METHODOLOGY/PRINCIPAL FINDINGS: Using thermal reduction method, here we synthesized silver-nanostructures coated TiO(2 thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO(2, carbon-doped TiO(2 [TiO(2 (C] and nitrogen-doped TiO(2 [TiO(2 (N], TiO(2 (N showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO(2 (N substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials. CONCLUSION/SIGNIFICANCE: Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.

  6. Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication.

    Science.gov (United States)

    Janjua, Bilal; Oubei, Hassan M; Durán Retamal, Jose R; Ng, Tien Khee; Tsai, Cheng-Ting; Wang, Huai-Yung; Chi, Yu-Chieh; Kuo, Hao-Chung; Lin, Gong-Ru; He, Jr-Hau; Ooi, Boon S

    2015-07-13

    With increasing interest in visible light communication, the laser diode (LD) provides an attractive alternative, with higher efficiency, shorter linewidth and larger bandwidth for high-speed visible light communication (VLC). Previously, more than 3 Gbps data rate was demonstrated using LED. By using LDs and spectral-efficient orthogonal frequency division multiplexing encoding scheme, significantly higher data rates has been achieved in this work. Using 16-QAM modulation scheme, in conjunction with red, blue and green LDs, data rates of 4.4 Gbps, 4 Gbps and 4 Gbps, with the corresponding BER/SNR/EVM of 3.3 × 10⁻³/15.3/17.9, 1.4 × 10⁻³/16.3/15.4 and 2.8 × 10⁻³/15.5/16.7were obtained over transmission distance of ~20 cm. We also simultaneously demonstrated white light emission using red, blue and green LDs, after passing through a commercially available diffuser element. Our work highlighted that a tradeoff exists in operating the blue LDs at optimum bias condition while maintaining good color temperature. The best results were obtained when encoding red LDs which gave both the strongest received signal amplitude and white light with CCT value of 5835K.

  7. Visible emission from bismuth-doped yttrium oxide thin films for lighting and display applications.

    Science.gov (United States)

    Scarangella, Adriana; Fabbri, Filippo; Reitano, Riccardo; Rossi, Francesca; Priolo, Francesco; Miritello, Maria

    2017-12-11

    Due to the great development of light sources for several applications from displays to lighting, great efforts are devoted to find stable and efficient visible emitting materials. Moreover, the requirement of Si compatibility could enlarge the range of applications inside microelectronic chips. In this scenario, we have studied the emission properties of bismuth doped yttrium oxide thin films grown on crystalline silicon. Under optical pumping at room temperature a stable and strong visible luminescence has been observed. In particular, by the involvement of Bi ions in the two available lattice sites, the emission can be tuned from violet to green by changing the excitation wavelength. Moreover, under electron beam at low accelerating voltages (3 keV) a blue emission with high efficiency and excellent stability has been recorded. The color is generated by the involvement of Bi ions in both the lattice sites. These peculiarities make this material interesting as a luminescent medium for applications in light emitting devices and field emission displays by opening new perspectives for the realization of silicon-technology compatible light sources operating at room temperature.

  8. Novel microfabrication stage allowing for one-photon and multi-photon light assisted molecular immobilization and for multi-photon microscope

    Science.gov (United States)

    Gonçalves, Odete; Snider, Scott; Zadoyan, Ruben; Nguyen, Quoc-Thang; Vorum, Henrik; Petersen, Steffen B.; Neves-Petersen, Maria Teresa

    2017-02-01

    Light Assisted Molecular Immobilization (LAMI) results in spatially oriented and localized covalent coupling of biomolecules onto thiol reactive surfaces. LAMI is possible due to the conserved spatial proximity between aromatic residues and disulfide bridges in proteins. When aromatic residues are excited with UV light (275-295nm), disulphide bridges are disrupted and the formed thiol groups covalently bind to surfaces. Immobilization hereby reported is achieved in a microfabrication stage coupled to a fs-laser, through one- or multi-photon excitation. The fundamental 840nm output is tripled to 280nm and focused onto the sample, leading to one-photon excitation and molecular immobilization. The sample rests on a xyz-stage with micrometer step resolution and is illuminated according to a pattern uploaded to the software controlling the stage and the shutter. Molecules are immobilized according to such pattern, with micrometer spatial resolution. Spatial masks inserted in the light path lead to light diffraction patterns used to immobilize biomolecules with submicrometer spatial resolution. Light diffraction patterns are imaged by an inbuilt microscope. Two-photon microscopy and imaging of the fluorescent microbeads is shown. Immobilization of proteins, e.g. C-reactive protein, and of an engineered molecular beacon has been successfully achieved. The beacon was coupled to a peptide containing a disulfide bridge neighboring a tryptophan residue, being this way possible to immobilize the beacon on a surface using one-photon LAMI. This technology is being implemented in the creation of point-of-care biosensors aiming at the detection of cancer and cardiovascular disease markers.

  9. Switching Thin Films of Azobenzene-Containing Metal-Organic Frameworks with Visible Light.

    Science.gov (United States)

    Müller, Kai; Knebel, Alexander; Zhao, Fangli; Bléger, David; Caro, Jürgen; Heinke, Lars

    2017-04-24

    Stimuli-responsive molecules change their properties when exposed to external signals, such as light, and enable the preparation of smart materials. UV light, which often destroys organic materials, is typically required for activating the desired response of photoswitchable compounds, significantly limiting the potential applications of light-operated smart materials. Herein, we present the first metal-organic framework (MOF), which enables reversible modulation of key properties upon irradiation with visible light only. The fluorinated azobenzene side groups in the MOF structure can be reversibly switched between the trans and cis state by green and violet light, avoiding UV light. It was demonstrated that the uptake of guest molecules by these MOF films can be switched in a fully remote-controlled way. The membrane separation of hydrogen/hydrocarbon mixtures was investigated. The light-induced changes of the MOF pore size result in the switching of the permeation and of the selection factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Akir, Sana [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Bizerte (Tunisia); Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Bordj Cedria, BP73, 8027, Soliman (Tunisia); Hamdi, Abderrahmane [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Bizerte (Tunisia); Laboratory of Semi-conductors, Nano-structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif (Tunisia); Addad, Ahmed [UMET, UMR CNRS 8207, Université Lille 1, 59655 Villeneuve d' Ascq Cédex (France); Coffinier, Yannick [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Boukherroub, Rabah, E-mail: rabah.boukherroub@iemn.univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); and others

    2017-04-01

    Highlights: • C-ZnO nanocomposite was successfully prepared via a facile and eco-friendly process. • C-ZnO NPs have excellent photocatalytic activity for RhB dye degradation under visible light irradiation compared with literature. • The visible photocatalytic properties originate from injection e{sup −} in CB of ZnO from RhB. - Abstract: The present study describes a facile route for synthesis of carbon-ZnO nanocomposites (C-ZnO) via hydrothermal process in presence of glucose as carbon precursor. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) measurements. The results showed carbon uniformly coated on the surface of the ZnO nanoparticles to form the C-ZnO nanocomposites. Further investigation revealed that carbon could significantly protect ZnO NPs against the coalescence during high temperature treatment. The obtained C-ZnO nanocomposite showed excellent photocatalytic activity for the degradation of rhodamine B (RhB) under visible light irradiation, which was attributed to the repressed charge carrier recombination in the nanocomposite. Quenching experiments and photocurrent measurements revealed a photocatalytic mechanism occurring through photosensitization.

  11. Novel GQD-PVP-CdS composite with enhanced visible-light-driven photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Tao; Li, Yinle; Shen, Jianfeng, E-mail: jfshen@fudan.edu.cn; Ye, Mingxin, E-mail: mxye@fudan.edu.cn

    2016-03-30

    Graphical abstract: - Highlights: • GQD-PVP-CdS composite was prepared for the first time through a facile hydrothermal route. • GQD-PVP-CdS demonstrated outstanding photoactivity under visible light illumination. • GQDs and polymeric material are compounded with CdS nanoparticles simultaneously for the first time. • The addition of GQDs plays pivotal roles in the enhancement of the photoactivity. - Abstract: A facile one-step hydrothermal method to synthesize graphene quantum dots (GQDs)-polyvinyl pyrrolidone (PVP)-CdS nanocomposite was reported. The nanocomposite was thoroughly characterized with X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and ultraviolet–visible spectroscopy. The results confirmed the formation of GQD-PVP-CdS composite with a uniform size (5–10 nm) and a relatively low band gap (E{sub g} = 2.23 eV). Moreover, the as-prepared composite exhibited enhanced photocatalytic activity toward the degradation of organic contaminants, with 92.3% of methyl orange (10 mg/L) removed after 3 hours of visible light illumination. This enhancement in photocatalytic activity was postulated to be attributed to the upconversion property of GQDs and a more efficient charge distribution between GQDs and CdS particles.

  12. Sulfur/Gadolinium-Codoped TiO2 Nanoparticles for Enhanced Visible-Light Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Eric S. Agorku

    2014-01-01

    Full Text Available A series of S/Gd3+-codoped TiO2 photocatalysts were synthesized by a modified sol-gel method. The materials were characterized by X-ray diffraction (XRD, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR, UV-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM/energy-dispersive X-ray spectroscopy (EDX, and transmission electron microscopy (TEM/energy-dispersive spectroscopy (EDS. Laboratory experiments with Indigo Carmine chosen as a model for organic pollutants were used to evaluate the photocatalytic performance of S/Gd3+-codoped TiO2 under visible-light with varying concentrations of Gd3+ ions in the host material. XRD and Raman results confirmed the existence of anatase phase TiO2 with particle size ranging from 5 to 12 nm. Codoping has exerted a great influence on the optical responses along with red shift in the absorption edge. S/Gd3+-codoped TiO2 showed significant visible-light induced photocatalytic activity towards Indigo Carmine dye compared with S-TiO2 or commercial TiO2. TiO2-S/Gd3+ (0.6% Gd3+ degraded the dye (ka = 5.6 × 10−2 min−1 completely in 50 min.

  13. Gold-plasmon enhanced photocatalytic performance of anatase titania nanotubes under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bingyang [Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing, 100044 (China); He, Dawei, E-mail: dwhe@bjtu.edu.cn [Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing, 100044 (China); Wang, Wenshuo [Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nuremberg, Cauerstrasse 4, D-91058 Erlangen (Germany); Zhuo, Zuliang; Wang, Yongsheng [Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing, 100044 (China)

    2016-02-15

    Highlights: • APTMS/(TNTs-Au) was synthesized using a deposition-precipitation process. • APTMS/(TNTs-Au) showed superior visible light activity for the degradation of methylene blue. • The electromagnetic field distribution at the interface between TNTs and Au NPs were estimated by the 3D finite-difference time domain simulation. • The working mechanism of the photocatalytic activity of APTMS/(TNTs-Au) was illustrated. - Abstract: [3-Aminopropyl]trimethoxysilane-modified titania nanotubes decorated with Au nanoparticles (APTMS/(TNTs-Au)) nanocomposites were synthesized using a deposition-precipitation process. The results showed that Au nanoparticles (NPs) in the metallic state were firmly adhered to the surface of the anatase TNTs. APTMS/(TNTs-Au) exhibited great photocatalytic activities which were evaluated from the degradation rate of methylene blue aqueous solution under visible light irradiation. 3D finite-difference time domain simulation was performed to estimate the electromagnetic field distribution at the interface between TNTs and Au NPs. The visible photocatalytic activity of APTMS/(TNTs-Au) was largely attributed to the surface plasmon absorption of metallic Au NPs, which generated and transferred hot electrons to the CB of TNTs. In addition, the hot electrons on the surface of TNTs also suppressed the radiative electron–hole recombination and consequently enhanced the photocatalytic activity.

  14. Facile synthesis of CuS nanostructured flowers and their visible light photocatalytic properties

    Science.gov (United States)

    Wu, Huijie; Li, Yuan; Li, Qing

    2017-03-01

    Uniform CuS nanostructured flowers have been generated conveniently in aqueous solution without using any surfactant. The products were characterized by XRD, XPS, EDX, FESEM, TEM, UV-Vis, PL, and BET techniques. The as-prepared CuS nanostructured flowers have a diameter of about 800-1200 nm and are in high yield. The flowers were formed by the assembly of numerous nanosheets. A tentative explanation for the growth mechanism of CuS nanostructured flowers was proposed. UV-Vis absorption spectrum and PL spectrum were used to investigate the optical properties of CuS nanostructured flowers. UV-Vis absorption spectrum shows a broad absorption band in the visible range and PL spectrum shows a strong ultraviolet emission peak. The BET surface area of the as-prepared product was determined to be 61.55 m2/g with a dominant pore diameter of 26 nm. The photocatalytic activity was evaluated by measuring the decomposition rate of methylene blue aqueous solution under visible light irradiation and results indicated that the as-prepared CuS nanostructured flowers exhibit enhanced visible light photocatalytic activity with the assistence of H2O2.

  15. Electrochemical deposition of copper decorated titania nanotubes and its visible light photocatalytic performance

    Science.gov (United States)

    Lim, Y. C.; Siti, A. S.; Nur Amiera, P.; Devagi, K.; Lim, Y. P.

    2017-09-01

    Coupling of titania with narrow band gap materials has been a promising strategy in preparing visible light responsive photocatalyst. In this work, self-organized copper decorated TiO2 nanotube (Cu/TNT) was prepared via electrodeposition of Cu onto highly ordered titania nanotube arrays (TNT). The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX). The DRS studies clearly show the extended absorption of Cu/TNT into the visible region and present a red shift of band gap to 2.1 eV. FESEM analysis has shown the dispersion of cubic-like Cu particles upon electrodeposition and EDX analysis supports the presence of copper species on the nanotubes surface. The photocatalytic ability of Cu/TNT was evaluated by the degradation of methyl orange from aqueous solution under low power visible light illumination. Compared to TNT, an appreciable improvement in methyl orange removal was observed for Cu/TNT and the highest removal efficiency of 80% was achieved. The effects of catalyst loading and samples repeatability were investigated and under optimum conditions, the removal efficiency of methyl orange over Cu/TNT had further increased to 93.4%. This work has demonstrated a feasible and simple way to introduce narrow band gap transition metal into nanotube arrays, which could create novel properties for functionalized nanotube arrays as well as promise a wide range of applications.

  16. On different photodecomposition behaviors of rhodamine B on laponite and montmorillonite clay under visible light irradiation

    KAUST Repository

    Wang, Peng

    2013-12-11

    In this study, laponite and montmorillonite clays were found to be able to decompose rhodamine B upon visible light irradiation (λ>420nm). Very interestingly, it was found that rhodamine B on laponite underwent a stepwise N-deethylation and its decomposition was terminated once rhodamine 110, as a decomposition product, was formed, whereas the same phenomenon was not observed for rhodamine B on montmorillonite, whose decomposition involved chromophore destruction. Mechanistic study revealed that the different photodecomposition behaviors of rhodamine B on laponite and montmorillonite were attributed to the oxidation by different reactive oxygen species, with laponite involving HO2/O2- while montmorillonite involving OH. It was also found that the degradation pathway of rhodamine B on laponite switched from N-deethylation to chromophore destruction when solution pH was changed from 7.0 to 3.0, which was attributed to a much higher fraction of HO2 relative to O2- under pH 3.0 than under pH 7.0. Based on the results, a mechanism of rhodamine dye decomposition on clay under visible light was proposed, involving the clay as an electron acceptor, electron relay between the adsorbed dye molecules and oxygen molecules, and subsequent reactions between the generated dye radical cations and different reactive oxygen species. The results of this study shed light on how to best utilize visible light for organic pollutant degradation on clays within engineered treatment systems as well as on many of naturally occurring pollutant degradation processes in soils and air involving clay. © 2013 King Saud University.

  17. Debris Disk Dust Characterization through Spectral Types: Deep Visible-Light Imaging of Nine Systems

    Science.gov (United States)

    Choquet, Elodie

    2017-08-01

    We propose STIS coronagraphy of 9 debris disks recently seen in the near-infrared from our re-analysis of archival NICMOS data. STIS coronagraphy will provide complementary visible-light images that will let us characterize the disk colors needed to place constraints on dust grain sizes, albedos, and anisotropy of scattering of these disks. With 3 times finer angular resolution and much better sensitivity, our STIS images will dramatically surpass the NICMOS discovery images, and will more clearly reveal disk local structures, cleared inner regions, and test for large-scale asymmetries in the dust distributions possibly triggered by associated planets in these systems. The exquisite sensitivity to visible-light scattering by submicron particles uniquely offered by STIS coronagraphy will let us detect and spatially characterize the diffuse halo of dust blown out of the systems by the host star radiative pressure. Our sample includes disks around 3 low-mass stars, 3 solar-type stars, and 3 massive A stars; together with our STIS+NICMOS imaging of 6 additional disks around F and G stars, our sample covers the full range of spectral types and will let us perform a comparative study of dust distribution properties as a function of stellar mass and luminosity. Our sample makes up more than 1/3 of all debris disks imaged in scattered light to date, and will offer the first homogeneous characterization of the visible-light to near-IR properties of debris disk systems over a large range of spectral types. Our program will let us analyze how the dynamical balance is affected by initial conditions and star properties, and how it may be perturbed by gas drag or planet perturbations.

  18. Epitaxially-grown Gallium Nitride on Gallium Oxide substrate for photon pair generation in visible and telecomm wavelengths

    KAUST Repository

    Awan, Kashif M.

    2016-08-11

    Gallium Nitride (GaN), along with other III-Nitrides, is attractive for optoelectronic and electronic applications due to its wide direct energy bandgap, as well as high thermal stability. GaN is transparent over a wide wavelength range from infra-red to the visible band, which makes it suitable for lasers and LEDs. It is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a wide range of applications from all-optical signal processing to quantum computing and on-chip wavelength conversion. Despite its abundant use in commercial devices, there is still need for suitable substrate materials to reduce high densities of threading dislocations (TDs) and other structural defects like stacking faults, and grain boundaries. All these defects degrade the optical quality of the epi-grown GaN layer as they act as non-radiative recombination centers.

  19. Wide-angle and high-efficiency achromatic metasurfaces for visible light

    CERN Document Server

    Deng, Zi-Lan; Wang, Guo Ping

    2016-01-01

    Recently, an achromatic metasurface was successfully demonstrated to deflect light of multiple wavelengths in the same direction and it was further applied to the design of planar lenses without chromatic aberrations [Science, 347, 1342(2015)]. However, such metasurface can only work for normal incidence and exhibit low conversion efficiency. Here, we present an ultrawide-angle and high-efficiency metasurface without chromatic aberration for wavefront shaping in visible range. The metasurface is constructed by multiple metallic nano-groove gratings, which support enhanced diffractions for an ultrawide incident angle range from 10o to 80o due to the excitations of localized gap plasmon modes at different resonance wavelengths. Incident light at these resonance wavelengths can be efficiently diffracted into the same direction with complete suppression of the specular reflection. This approach is applied to the design of an achromatic flat lens for focusing light of different wavelengths into the same position. ...

  20. Design of optical transmitting antenna with enhance performance in visible light communication

    Science.gov (United States)

    Kuang, Dang; Wang, Jianping; Lu, Huimin

    2016-10-01

    An optical transmitting antenna for visible light communication(VLC) is designed in this work, in which the antenna is positioned before the light-emitting diodes (LED) source to change the lighting distribution, in order to achieve uniform received power effect. The method to design antenna is introduced into physical optical lens principle. According to the energy conservation law and Snell law, the antenna is designed via establishing energy mapping between the luminous flux emitted by a LED source with Lambertian distribution and the target plane. The coordinates of the antenna model are obtained under matrix laboratory (MATLAB). The antenna model entity is generated through three dimensional (3D) composition software AutoCAD with the coordinates of antenna. Ray-tracing software Tracepro is used to trace the ray which through antenna, and validate the irradiance maps. The uniformity of illumination and received power of the designed VLC is improved from approximately 35% to over 83%.

  1. A novel mirror diversity receiver for indoor MIMO visible light communication systems

    KAUST Repository

    Park, Kihong

    2016-12-24

    In this paper, we propose and study a non-imaging receiver design reducing the correlation of channel matrix for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. Contrary to previous works, our proposed mirror diversity receiver (MDR) not only blocks the reception of light on one specific direction but also improves the channel gain on the other direction by receiving the light reflected by a mirror deployed between the photodetectors. We analyze the channel capacity and optimal height of mirror in terms of maximum channel capacity for a 2 × 2 MIMO-VLC system in a 2-dimensional geometric model. We prove that this constructive and destructive effects in channel matrix resulting from our proposed MDR are more beneficial to obtain well-conditioned channel matrix which is suitable for implementing spatial-multiplexing MIMO-VLC systems in order to support high data rate.

  2. Off-Shell Photon Longitudinal Light-Cone Wave Function at Leading Twist

    Science.gov (United States)

    Zhu, Kai; Liu, Jueping; Yu, Ran

    The leading twist longitudinal virtual photon light-cone wave function, ϕγ‖(u, P2), is calculated within the framework of the low-energy effective theory arising from the instanton model of QCD vacuum. Corresponding to the non-perturbative effects at low-energy scale, a suitable regularization scale T is fixed by analysing the differential behavior of the photon wave function on the internal transverse momentum cut-off in the light-cone frame. The coupling constant, Fγ(P2), of the quark-antiquark vector current to the virtual photon state is also obtained by imposing the normalization condition. The feature of the obtained photon wave function has been discussed at the end as well as the coupling constant.

  3. Unidirectional and bidirectional light beam splitting in photonic crystal with elliptical and circular scatterers

    Science.gov (United States)

    Feng, Shuai

    2015-09-01

    The light beam splitting characters of the two-dimensional asymmetric photonic crystal structures are studied, which are composed of elliptical and circular silicon rods immersed in air. Through interlacing the elliptical and circular silicon rods along the interface of the two photonic crystals, the unidirectional light splitting phenomena are achieved, where the light beam propagates towards two opposite directions within different frequency regions. A bidirectional three-channel light beam splitting behavior is also observed within another frequency region. The light transmission characters can be altered by rotating the elliptical rods in the unit cell. The unidirectional three-output-channel beam splitting behavior is achieved, while the light beam propagating along the opposite direction experiences a self-collimation behavior and keeps its transmitting direction unchanged.

  4. A calibration method for photon counters using a customized standard light source

    Science.gov (United States)

    Lin, Shulang; Gu, Huarong; Tan, Qiaofeng

    2016-10-01

    Photomultiplier tubes (PMTs) are the most common photoelectric conversion apparatus used as photon counters. Because of the sensitivity of the PMTs to the interference, calibration is necessary during the application of the PMTs. Traditional solutions for calibration are either based on the inverse square law of illumination, or using light-emitting diodes (LEDs) as standard light sources. However, rigid experimental techniques are required for these solutions. And the emission spectrum of LEDs does not cover the entire spectrum of detection. In this paper, a calibration method is presented by using a customized standard light source which can provide full spectrum of weak light from the dark count level to the saturation level of the PMTs. The photon counter in a light-shielding cavity is connected, via an optical fiber, to the customized standard light source attached with an intensity detector. The calibration process is discussed and experimental results with chemical reference substance are also presented for comparison.

  5. Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells

    DEFF Research Database (Denmark)

    Benabid, F.; Roberts, John; Couny, F.

    2009-01-01

    optical waveguide guidance. For the second type of fibre, which can guide over a broad wavelength range, we examine the nature of the inhibited coupling. We describe a technique for the fabrication of photonic microcells that can accommodate vacuum pressures, and we finish by showing the latest results...

  6. FRB 121102 casts new light on the photon mass

    Directory of Open Access Journals (Sweden)

    Luca Bonetti

    2017-05-01

    Full Text Available The photon mass, mγ, can in principle be constrained using measurements of the dispersion measures (DMs of fast radio bursts (FRBs, once the FRB redshifts are known. The DM of the repeating FRB 121102 is known to <1%, a host galaxy has now been identified with high confidence, and its redshift, z, has now been determined with high accuracy: z=0.19273(8. Taking into account the plasma contributions to the DM from the Intergalactic medium (IGM and the Milky Way, we use the data on FRB 121102 to derive the constraint mγ≲2.2×10−14 eVc−2 (3.9×10−50 kg. Since the plasma and photon mass contributions to DMs have different redshift dependences, they could in principle be distinguished by measurements of more FRB redshifts, enabling the sensitivity to mγ to be improved.

  7. Visible light crosslinking of methacrylated hyaluronan hydrogels for injectable tissue repair.

    Science.gov (United States)

    Fenn, Spencer L; Oldinski, Rachael A

    2016-08-01

    Tissue engineering hydrogels are primarily cured in situ using ultraviolet (UV) radiation which limits the use of hydrogels as drug or cell carriers. Visible green light activated crosslinking systems are presented as a safe alternative to UV photocrosslinked hydrogels, without compromising material properties such as viscosity and stiffness. The objective of this study was to fabricate and characterize photocrosslinked hydrogels with well-regulated gelation kinetics and mechanical properties for the repair or replacement of soft tissue. An anhydrous methacrylation of hyaluronan (HA) was performed to control the degree of modification (DOM) of HA, verified by (1) H-NMR spectroscopy. UV-activated crosslinking was compared to visible green light activated crosslinking. While the different photocrosslinking techniques resulted in varied crosslinking times, comparable mechanical properties of UV and green light activated crosslinked hydrogels were achieved using each photocrosslinking method by adjusting time of light exposure. Methacrylated HA (HA-MA) hydrogels of varying molecular weight, DOM, and concentration exhibited compressive moduli ranging from 1 kPa to 116 kPa, for UV crosslinking, and 3 kPa to 146 kPa, for green light crosslinking. HA-MA molecular weight and concentration were found to significantly influence moduli values. HA-MA hydrogels did not exhibit any significant cytotoxic effects toward human mesenchymal stem cells. Green light activated crosslinking systems are presented as a viable method to form natural-based hydrogels in situ. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1229-1236, 2016. © 2015 Wiley Periodicals, Inc.

  8. Charge-coupled device /CCD/ visible light sensor for the Teal Ruby Experiment

    Science.gov (United States)

    Roberts, A.

    The Teal Ruby Experiment (TRE), employing a Space-Shuttle-launched infrared telescope, will mark a major milestone in the application of mosaic infrared detectors in space. However, it is generally recognized that supplemental overview imagery acquired in the visible portion of the spectrum is necessary to assist in accurately interpreting the data generated by the infrared focal plane. For this purpose, the TRE will be equipped with a Charge Coupled Device (CCD) Visible Light Sensor (VLS) that will yield the cloud and ground truth data needed to assist in pointing and scene verification. The optical format of the VLS is designed to overlay the TRE footprint on the earth from a distance of 1000 nautical miles. The VLS is designed, built and will be qualified to meet the environmental and reliability requirements for an on-orbit mission in excess of one year. The TRE/VLS is tentatively scheduled for launch in mid 1983.

  9. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water

    Science.gov (United States)

    Giovannetti, R.; Amato, C. A. D’; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A.

    2015-01-01

    The use of Polypropylene as support material for nano-TiO2 photocatalyst in the photodegradation of Alizarin Red S in water solutions under the action of visible light was investigated. The optimization of TiO2 pastes preparation using two commercial TiO2, Aeroxide P-25 and Anatase, was performed and a green low-cost dip-coating procedure was developed. Scanning electron microscopy, Atomic Force Microscopy and X-Ray Diffraction analysis were used in order to obtain morphological and structural information of as-prepared TiO2 on support material. Equilibrium and kinetics aspects in the adsorption and successive photodegradation of Alizarin Red S, as reference dye, are described using polypropylene-TiO2 films in the Visible/TiO2/water reactor showing efficient dyes degradation. PMID:26627118

  10. All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors

    Science.gov (United States)

    Buckley, Sonia; Chiles, Jeffrey; McCaughan, Adam N.; Moody, Galan; Silverman, Kevin L.; Stevens, Martin J.; Mirin, Richard P.; Nam, Sae Woo; Shainline, Jeffrey M.

    2017-10-01

    We demonstrate cryogenic, electrically injected, waveguide-coupled Si light-emitting diodes (LEDs) operating at 1.22 μm. The active region of the LED consists of W centers implanted in the intrinsic region of a p-i-n diode. The LEDs are integrated on waveguides with superconducting nanowire single-photon detectors (SNSPDs). We demonstrate the scalability of this platform with an LED coupled to eleven SNSPDs in a single integrated photonic device.

  11. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S. [European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Cheng, Yu-Chieh; Maigyte, Lina; Trull, Jose; Cojocaru, Crina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa (Spain); Institucio Catalana de Reserca i Estudis Avançats (ICREA), passeig Lluis Companys 23, 08010 Barcelona (Spain)

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  12. CdS nanoparticle sensitized titanium dioxide decorated graphene for enhancing visible light induced photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Yousefzadeh, S.; Faraji, M. [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Nien, Y.T. [Department of Materials Science and Engineering, National Formosa University, Taiwan (China); Moshfegh, A.Z., E-mail: moshfegh@sharif.edu [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • CdS nanoparticles were deposited on TiO{sub 2}/graphene film by different SILAR cycles. • The visible light absorption increased due to graphene and CdS nanoparticles. • The highest photocurrent density was achieved for nanocomposite with 30 CdS cycles. • A mechanism has been suggested for nanocomposite photoanodes, significantly. - Abstract: CdS/TiO{sub 2}/graphene (CTG) nanocomposite thin films were synthesized by a facile production route. The TiO{sub 2}/graphene (TG) nanocomposite was initially fabricated by sol-gel method in such a way that TiO{sub 2} nanoparticles loaded on graphene oxide (GO) sheet via photocatalytic process. Then, CdS nanoparticles were deposited on the TG thin film by successive ion layer adsorption and reaction process (SILAR) approach. Based on atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the TG thin film possessed a larger surface area as compared with the pure TiO{sub 2} thin film due to presence of graphene sheet. UV/visible spectroscopy exhibited that visible absorption of the CTG samples increased with increasing CdS SILAR deposition cycle (n). Enhanced photocurrent response of the CTG(n) photoanodes measured as compared with the TG and T photoanodes due to good electrical conductivity and large surface area of graphene as well as the visible light-harvesting ability of CdS nanoparticles. Maximum photocurrent density of about 4.5 A/m{sup 2} and electron life time of about 5 s was measured for the CTG(30) photoanodes.

  13. Investigation of Light-Emitting Diode (LED) Point Light Source Color Visibility against Complex Multicolored Backgrounds

    Science.gov (United States)

    2017-11-01

    sent from light-emitting diodes (LEDs) of 5 colors (green, red, white , amber, and blue). Experiment 1 involved controlled laboratory measurements of...for operation at 12 VDC. Specifications for colored and white LEDs are in Table 1. * A picture of...520 nm Blue 15 mA 1000 mcd 465 nm White LED specifications Color Current draw Output Effective color temperature Cool white 20 mA 4100 mcd 6000 K

  14. Slow to superluminal light waves in thin 3D photonic crystals.

    Science.gov (United States)

    Galisteo-López, J F; Galli, M; Balestreri, A; Patrini, M; Andreani, L C; López, C

    2007-11-12

    Phase measurements on self-assembled three-dimensional photonic crystals show that the group velocity of light can flip from small positive (slow) to negative (superluminal) values in samples of a few mum size. This phenomenon takes place in a narrow spectral range around the second-order stop band and follows from coupling to weakly dispersive photonic bands associated with multiple Bragg diffraction. The observations are well accounted for by theoretical calculations of the phase delay and of photonic states in the finite-sized systems.

  15. Sub-cycle switching of a photonic bandstructure via ultrastrong light-matter coupling

    Directory of Open Access Journals (Sweden)

    Sorba L.

    2013-03-01

    Full Text Available Phase-locked multi-terahertz transients map out the full photonic bandstructure of a one-dimensional photonic crystal while a 12-fs control pulse activates ultrastrong interaction on a sub-cycle time scale with quantized electronic transitions in semiconductor quantum wells. We trace the build-up dynamics of a large vacuum Rabi splitting and observe an unexpected asymmetric formation of the upper and lower polariton bands. The pronounced flattening of the photonic bands causes a slow-down of the group velocity by one order of magnitude on the time scale of the oscillation period of light.

  16. Double-doped TiO{sub 2} nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light

    Energy Technology Data Exchange (ETDEWEB)

    Ashkarran, Ali Akbar, E-mail: ashkarran@umz.ac.ir [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Hamidinezhad, Habib [Nano and Biotechnology Research Group, Faculty of Basic Sciences, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Haddadi, Hedayat [Department of Chemistry, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of); Mahmoudi, Morteza [Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-05-01

    Graphical abstract: Double doping introduces two different electronic states in the band gap of TiO{sub 2}, which increase the lifetime of the charge carriers and leads to narrower band gap and enhancement of the visible-light absorption. - Highlights: • Preparation of single and double doped TiO{sub 2} NPs using a simple sol–gel route. • Extension of light absorption spectrum toward the visible region. • Enhanced visible-light photo-induced activity and antibacterial property in double doped TiO{sub 2} NPs. - Abstract: Silver and nitrogen doped TiO{sub 2} nanoparticles (NPs) were synthesized via sol–gel method. The physicochemical properties of the achieved NPs were characterized by various methods including X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultra violet–visible absorption spectroscopy (UV–vis). Both visible-light photocatalytic activity and antimicrobial properties were successfully demonstrated for the degradation of Rhodamine B (Rh. B.), as a model dye, and inactivation of Escherichia coli (E. coli), as a representative of microorganisms. The concentration of the employed dopant was optimized and the results revealed that the silver and nitrogen doped TiO{sub 2} NPs extended the light absorption spectrum toward the visible region and significantly enhanced the photodegradation of model dye and inactivation of bacteria under visible-light irradiation while double-doped TiO{sub 2} NPs exhibited highest photocatalytic and antibacterial activity compared with single doping. The significant enhancement in the photocatalytic activity and antibacterial properties of the double doped TiO{sub 2} NPs, under visible-light irradiation, can be attributed to the generation of two different electronic states acting as electron traps in TiO{sub 2} and responsible for narrowing the band gap of TiO{sub 2} and shifting its optical response from UV to the

  17. A cooperative positioning with Kalman filters and handover mechanism for indoor microcellular visible light communication network

    Science.gov (United States)

    Xiong, Jieqing; Huang, Zhitong; Zhuang, Kaiyu; Ji, Yuefeng

    2016-08-01

    We propose a novel handover scheme for indoor microcellular visible light communication (VLC) network. With such a scheme, the room, which is fully coverage by light, is divided into several microcells according to the layout of light-emitting diodes (LEDs). However, the directionality of light arises new challenges in keeping the connectivity between the mobile devices and light source under the mobile circumstances. The simplest solution is that all LEDs broadcast data of every user simultaneously, but it wastes too much bandwidth resource, especially when the amount of users increases. To solve this key problem, we utilize the optical positioning assisting handover procedure in this paper. In the positioning stage, the network manager obtains the location information of user device via downlink and uplink signal strength information, which is white light and infrared, respectively. After that, a Kalman filter is utilized for improving the tracking performance of a mobile device. Then, the network manager decides how to initiate the handover process by the previous information. Results show that the proposed scheme can achieve low-cost, seamless data communication, and a high probability of successful handover.

  18. Fundamental Studies and Development of III-N Visible LEDs for High-Power Solid-State Lighting Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, Russell

    2012-02-29

    The goal of this program is to understand in a fundamental way the impact of strain, defects, polarization, and Stokes loss in relation to unique device structures upon the internal quantum efficiency (IQE) and efficiency droop (ED) of III-nitride (III-N) light-emitting diodes (LEDs) and to employ this understanding in the design and growth of high-efficiency LEDs capable of highly-reliable, high-current, high-power operation. This knowledge will be the basis for our advanced device epitaxial designs that lead to improved device performance. The primary approach we will employ is to exploit new scientific and engineering knowledge generated through the application of a set of unique advanced growth and characterization tools to develop new concepts in strain-, polarization-, and carrier dynamics-engineered and low-defect materials and device designs having reduced dislocations and improved carrier collection followed by efficient photon generation. We studied the effects of crystalline defect, polarizations, hole transport, electron-spillover, electron blocking layer, underlying layer below the multiplequantum- well active region, and developed high-efficiency and efficiency-droop-mitigated blue LEDs with a new LED epitaxial structures. We believe new LEDs developed in this program will make a breakthrough in the development of high-efficiency high-power visible III-N LEDs from violet to green spectral region.

  19. Heterogeneous Catalysis by Tetraethylammonium Tetrachloroferrate of the Photooxidation of Toluene by Visible and Near-UV Light

    Directory of Open Access Journals (Sweden)

    Kelsie R. Barnard

    2018-02-01

    Full Text Available Titanium dioxide is the most extensively used heterogeneous catalyst for the photooxidation of toluene and other hydrocarbons, but it has low utility for the synthesis of benzyl alcohol, of which little is produced, or benzaldehyde, due to further oxidation to benzoic acid and cresol, among other oxidation products, and eventually complete mineralization to CO2. Et4N[FeCl4] functions as a photocatalyst through the dissociation of chlorine atoms, which abstract hydrogen from toluene, and the photooxidation of toluene proceeds only as far as benzyl alcohol and benzaldehyde. Unlike TiO2, which requires ultraviolet (UV irradiation, Et4N[FeCl4] catalyzes the photooxidation of toluene with visible light alone. Even under predominantly UV irradiation, the yield of benzyl alcohol plus benzaldehyde is greater with Et4N[FeCl4] than with TiO2. Et4N[FeCl4] photocatalysis yields benzyl chloride as a side product, but it can be minimized by restricting irradiation to wavelengths above 360 nm and by the use of long irradiation times. The photonic efficiency of oxidation in one experiment was found to be 0.042 mol/einstein at 365 nm. The use of sunlight as the irradiation source was explored.

  20. Continuous-wave mid-infrared photonic crystal light emitters at room temperature

    Science.gov (United States)

    Weng, Binbin; Qiu, Jijun; Shi, Zhisheng

    2017-01-01

    Mid-infrared photonic crystal enhanced lead-salt light emitters operating under continuous-wave mode at room temperature were investigated in this work. For the device, an active region consisting of 9 pairs of PbSe/Pb0.96Sr0.04Se quantum wells was grown by molecular beam epitaxy method on top of a Si(111) substrate which was initially dry-etched with a two-dimensional photonic crystal structure in a pattern of hexagonal holes. Because of the photonic crystal structure, an optical band gap between 3.49 and 3.58 µm was formed, which matched with the light emission spectrum of the quantum wells at room temperature. As a result, under optical pumping, using a near-infrared continuous-wave semiconductor laser, the device exhibited strong photonic crystal band-edge mode emissions and delivered over 26.5 times higher emission efficiency compared to the one without photonic crystal structure. The output power obtained was up to 7.68 mW (the corresponding power density was 363 mW/cm2), and a maximum quantum efficiency reached to 1.2%. Such photonic crystal emitters can be used as promising light sources for novel miniaturized gas-sensing systems.

  1. Efficient visible-light photocatalytic degradation system assisted by conventional Pd catalysis

    Science.gov (United States)

    Yu, Yanlong; He, Tao; Guo, Lingju; Yang, Yajun; Guo, Limei; Tang, Yue; Cao, Yaan

    2015-01-01

    Different approaches like doping and sensitization have been used to develop photocatalysts that can lead to high reactivity under visible-light illumination, which would allow efficient utilization of solar irradiation and even interior lighting. We demonstrated a conceptually different approach by changing reaction route via introducing the idea of conventional Pd catalysis used in cross-coupling reactions into photocatalysis. The –O–Pd–Cl surface species modified on Ni-doped TiO2 can play a role the same as that in chemical catalysis, resulting in remarkably enhanced photocatalytic activity under visible-light irradiation. For instance, Pd/Ni-TiO2 has much higher activity than N-TiO2 (about 3 ~ 9 times for all of the 4-XP systems) upon irradiation with wavelength of 420 nm. The catalytically active Pd(0) is achieved by reduction of photogenerated electrons from Ni-TiO2. Given high efficient, stable Pd catalysts or other suitable chemical catalysts, this concept may enable realization of the practical applications of photocatalysis. PMID:25825365

  2. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts.

    Science.gov (United States)

    Li, Gen; Wang, Feng; Liu, Peng; Chen, Zheming; Lei, Ping; Xu, Zhongshan; Li, Zengxi; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-01-18

    As a new member of carbon dots (CDs), Polymer dots (PDs) prepared by hydrothermal treatment of polymers, usually consist of the carbon core and the connected partially degraded polymer chains. This type of CDs might possess aqueous solubility, non-toxicity, excellent stability against photo-bleaching and high visible light activity. In this research, PDs were prepared by a moderate hydrothermal treatment of polyvinyl alcohol, and PDs grafted TiO2 (PDs-TiO2) nanohybrids with TiOC bonds were prepared by a facile in-situ hydrothermal treatment of PDs and Ti (SO4)2. Under visible light irradiation, the PDs-TiO2 demonstrate excellent photocatalytic activity for methyl orange degradation, and the photocatalytic rate constant of PDs-TiO2 is 3.6 and 9.5 times higher than that of pure TiO2 and commercial P25, respectively. In addition, the PDs-TiO2 exhibit good recycle stability under UV-Vis light irradiation. The interfacial TiOC bonds and the π-conjugated structures in PDs-TiO2 can act as the pathways to quickly transfer the excited electrons between PDs and TiO2, therefore contribute to the excellent photocatalytic activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Recent progress in oxynitride photocatalysts for visible-light-driven water splitting.

    Science.gov (United States)

    Takata, Tsuyoshi; Pan, Chengsi; Domen, Kazunari

    2015-06-01

    Photocatalytic water splitting into hydrogen and oxygen is a method to directly convert light energy into storable chemical energy, and has received considerable attention for use in large-scale solar energy utilization. Particulate semiconductors are generally used as photocatalysts, and semiconductor properties such as bandgap, band positions, and photocarrier mobility can heavily impact photocatalytic performance. The design of active photocatalysts has been performed with the consideration of such semiconductor properties. Photocatalysts have a catalytic aspect in addition to a semiconductor one. The ability to control surface redox reactions in order to efficiently produce targeted reactants is also important for photocatalysts. Over the past few decades, various photocatalysts for water splitting have been developed, and a recent main concern has been the development of visible-light sensitive photocatalysts for water splitting. This review introduces the study of water-splitting photocatalysts, with a focus on recent progress in visible-light induced overall water splitting on oxynitride photocatalysts. Various strategies for designing efficient photocatalysts for water splitting are also discussed herein.

  4. Degradation of gaseous formaldehyde via visible light photocatalysis using multi-element doped titania nanoparticles.

    Science.gov (United States)

    Laciste, Maricris T; de Luna, Mark Daniel G; Tolosa, Nolan C; Lu, Ming-Chun

    2017-09-01

    This study developed a modified titanium dioxide photocatalyst doped with multi-element synthesized via sol-gel process to productize a novel photocatalyst. The study includes degradation of gaseous formaldehyde under visible light using the synthesized novel titanium dioxide photocatalyst. Varying molar ratios from 0 to 2 percent (% mole in titanium dioxide) of ammonium fluoride, silver nitrate and sodium tungstate as dopant precursors for nitrogen, fluorine, silver and tungsten were used. Photodegradation of gaseous formaldehyde was examined on glass tubular reactors illuminated with blue light emitting diodes (LEDs) using immobilized photocatalyst. The photocatalytic yield is analyzed based on the photocatalyst surface chemical properties via X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared (FTIR) Spectrophotometry, Brunauer-Emmett-Teller (BET) and X-ray Diffraction (XRD) characterization results. The applied modifications enhanced the visible light capability of the catalyst in comparison to the undoped catalyst and commercially available Degussa P-25, such that it photocatalytically degrades 88.1% of formaldehyde in 120 min. Synthesized titanium dioxide photocatalyst exhibits a unique spin orbital at 532.07 eV and 533.27 eV that came from the hybridization of unoccupied Ti d(t 2g ) levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of visible laser light on ATP level of anaemic red blood cell.

    Science.gov (United States)

    Suardi, Nursakinah; Sodipo, Bashiru Kayode; Mustafa, Mohd Zulkifli; Ali, Zalila

    2016-09-01

    In this work we present influence of visible laser light on ATP level and viability of anaemic red blood cell (RBC). The visible laser lights used in this work are 460nm and 532nm. The responses of ATP level in anaemic and normal RBC before and after laser irradiation at different exposure time (30, 40, 50 and 60s) were observed. Three aliquots were prepared from the ethylenediaminetetraacetic acid (EDTA) blood sample. One served as a control (untreated) and another two were irradiated with 460nm and 560nm lasers. Packed RBC was prepared to study ATP level in the RBC using CellTiter-GloLuminescent cell Viability Assay kit. The assay generates a glow type signal produced by luciferase reaction, which is proportional to the amount of ATP present in RBCs. Paired t-test were done to analyse ATP level before and after laser irradiation. The results revealed laser irradiation improve level of ATP in anaemic RBC. Effect of laser light on anaemic RBCs were significant over different exposure time for both 460nm (p=0.000) and 532nm (p=0.003). The result of ATP level is further used as marker for RBC viability. The influence of ATP level and viability were studied. Optical densities obtained from the data were used to determine cell viability of the samples. Results showed that laser irradiation increased viability of anaemic RBC compared to normal RBC. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Antibacterial Properties of Visible-Light-Responsive Carbon-Containing Titanium Dioxide Photocatalytic Nanoparticles against Anthrax

    Directory of Open Access Journals (Sweden)

    Der-Shan Sun

    2016-12-01

    Full Text Available The bactericidal activity of conventional titanium dioxide (TiO2 photocatalyst is effective only on irradiation by ultraviolet light, which restricts the applications of TiO2 for use in living environments. Recently, carbon-containing TiO2 nanoparticles [TiO2(C NP] were found to be a visible-light-responsive photocatalyst (VLRP, which displayed significantly enhanced antibacterial properties under visible light illumination. However, whether TiO2(C NPs exert antibacterial properties against Bacillus anthracis remains elusive. Here, we evaluated these VLRP NPs in the reduction of anthrax-induced pathogenesis. Bacteria-killing experiments indicated that a significantly higher proportion (40%–60% of all tested Bacillus species, including B. subtilis, B. cereus, B. thuringiensis, and B. anthracis, were considerably eliminated by TiO2(C NPs. Toxin inactivation analysis further suggested that the TiO2(C NPs efficiently detoxify approximately 90% of tested anthrax lethal toxin, a major virulence factor of anthrax. Notably, macrophage clearance experiments further suggested that, even under suboptimal conditions without considerable bacterial killing, the TiO2(C NP-mediated photocatalysis still exhibited antibacterial properties through the reduction of bacterial resistance against macrophage killing. Our results collectively suggested that TiO2(C NP is a conceptually feasible anti-anthrax material, and the relevant technologies described herein may be useful in the development of new strategies against anthrax.

  7. Visible Light Induced Green Transformation of Primary Amines to Imines Using a Silicate Supported Anatase Photocatalyst

    Directory of Open Access Journals (Sweden)

    Sifani Zavahir

    2015-01-01

    Full Text Available Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.

  8. Synthesis and Characterization of Cerium Doped Titanium Catalyst for the Degradation of Nitrobenzene Using Visible Light

    Directory of Open Access Journals (Sweden)

    Padmini Ellappan

    2014-01-01

    Full Text Available Cerium doped catalyst was synthesized using Titanium isopropoxide as the Titanium source. The metal doped nanoparticles semiconductor catalyst was prepared by sol-sol method with the sol of Cerium. The synthesized catalyst samples were characterized by powder X-ray diffraction, BET surface area, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and UV-vis diffuse reflectance measurements (DRS and compared with undoped TiO2 catalyst. The photocatalytic activity of the sample was investigated for the decomposition of nitrobenzene (NB using visible light as the artificial light source. Cerium doped catalyst was found to have better degradation of nitrobenzene owing to its shift in the band gap from UV to visible region as compared to undoped TiO2 catalyst. The operational parameters were optimized with catalyst dosage of 0.1 g L−1, pH of 9, and light intensity of 500 W. The degradation mechanism followed the Langmuir Hinshelwood kinetic model with the rate constant depending nonlinearly on the operational parameters as given by the relationship Kapp (theoretical = 2.29 * 10−4 * Intensity0.584 * Concentration−0.230 * Dosage0.425 * pH0.336.

  9. Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media

    Science.gov (United States)

    Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan

    2018-02-01

    Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications

  10. Pulsed, all solid-state light source in the visible spectral region based on non-linear cavity dumping

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Andersen, Martin; Johansson, Sandra

    We propose a novel generic approach for generation of pulsed light in the visible spectrum, based on SFG between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser....

  11. Design and analysis of a highly nonlinear composite photonic crystal fiber for supercontinuum generation: visible to mid-infrared.

    Science.gov (United States)

    Jamatia, Purniya; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-08-20

    A composite photonic crystal fiber structure has been designed with tellurite as the cladding and chalcogenide as a core material. To increase nonlinearity, rods of the chalcogenide glass material have been inserted around the core region. The reported structure offers very high nonlinearity of 1042  W-1 Km-1 at 2800 nm pump wavelength with low and flattened dispersion of approximately -11  ps·nm-1 Km-1. An effective mode area of 6.46  μm2 of the propagating mode has been achieved as at pump wavelength. Such a highly nonlinear composite photonic crystal fiber structure is a potential candidate for nonlinear applications, such as slow-light and supercontinuum generation. Pumping at 2800 nm results in a supercontinuum spectrum spanning 0.5-4.7 μm using 8 mm long photonic crystal fiber pumped with femtosecond laser pulses with peak power of 3 kW.

  12. Spectrometry: photon sorting at the speed of light

    NARCIS (Netherlands)

    Vink, H.J.P.; Day, J.P.R.; Volatier, J.B.C.G.; Nijkerk, M.D.

    2015-01-01

    The fact that every spectrometer can sort light by wavelength at the speed of light is intriguing. The field of spectrometry is a long-existing and ever-changing one. The application areas extend from optical communication to possible extraterrestrial life detection, health monitoring, environmental

  13. Visible-light-induced Ag/BiVO4 semiconductor with enhanced photocatalytic and antibacterial performance

    Science.gov (United States)

    Regmi, Chhabilal; Dhakal, Dipesh; Wohn Lee, Soo

    2018-02-01

    An Ag-loaded BiVO4 visible-light-driven photocatalyst was synthesized by the microwave hydrothermal method followed by photodeposition. The photocatalytic performance of the synthesized samples was evaluated on a mixed dye (methylene blue and rhodamine B), as well as bisphenol A in aqueous solution. Similarly, the disinfection activities of synthesized samples towards the Gram-negative Escherichia coli (E. coli) in a model cell were investigated under irradiation with visible light (λ ≥ 420 nm). The synthesized samples have monoclinic scheelite structure. Photocatalytic results showed that all Ag-loaded BiVO4 samples exhibited greater degradation and a higher mineralization rate than the pure BiVO4, probably due to the presence of surface plasmon absorption that arises due to the loading of Ag on the BiVO4 surface. The optimum Ag loading of 5 wt% has the highest photocatalytic performance and greatest stability with pseudo-first-order rate constants of 0.031 min‑1 and 0.023 min‑1 for the degradation of methylene blue and rhodamine B respectively in a mixture with an equal volume and concentration of each dye. The photocatalytic degradation of bisphenol A reaches 76.2% with 5 wt% Ag-doped BiVO4 within 180 min irradiation time. Similarly, the Ag-loaded BiVO4 could completely inactivate E. coli cells within 30 min under visible light irradiation. The disruption of the cell membrane as well as degradation of protein and DNA exhibited constituted evidence for antibacterial activity towards E. coli. Moreover, the bactericidal mechanisms involved in the photocatalytic disinfection process were systematically investigated.

  14. Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.

    Science.gov (United States)

    Chen, Tao; Sun, Junqiang; Li, Linsen

    2012-08-27

    In this paper, we derive the couple-mode equations for third-order nonlinear effects in photonic crystal waveguides by employing the modal theory. These nonlinear interactions include self-phase modulation, cross-phase modulation and degenerate four-wave mixing. The equations similar to that in nonlinear fiber optics could be expanded and applied for third-order nonlinear processes in other periodic waveguides. Based on the equations, we systematically analyze the group-velocity dispersion, optical propagation loss, effective interaction area, slow light enhanced factor and phase mismatch for a slow light engineered silicon photonic crystal waveguide. Considering the two-photon and free-carrier absorptions, the wavelength conversion efficiencies in two low-dispersion regions are numerically simulated by utilizing finite difference method. Finally, we investigate the influence of slow light enhanced multiple four-wave-mixing process on the conversion efficiency.

  15. 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting

    Science.gov (United States)

    Mateo, Diego; Esteve-Adell, Iván; Albero, Josep; Royo, Juan F. Sánchez; Primo, Ana; Garcia, Hermenegildo

    2016-06-01

    Development of renewable fuels from solar light appears as one of the main current challenges in energy science. A plethora of photocatalysts have been investigated to obtain hydrogen and oxygen from water and solar light in the last decades. However, the photon-to-hydrogen molecule conversion is still far from allowing real implementation of solar fuels. Here we show that 111 facet-oriented gold nanoplatelets on multilayer graphene films deposited on quartz is a highly active photocatalyst for simulated sunlight overall water splitting into hydrogen and oxygen in the absence of sacrificial electron donors, achieving hydrogen production rate of 1.2 molH2 per gcomposite per h. This photocatalytic activity arises from the gold preferential orientation and the strong gold-graphene interaction occurring in the composite system.

  16. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties

    Science.gov (United States)

    Mumin, Md Abdul; Xu, William Z.; Charpentier, Paul A.

    2015-08-01

    The dispersion of light-absorbing inorganic nanomaterials in transparent plastics such as poly(ethylene-co-vinyl acetate) (PEVA) is of enormous current interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Nanocrystalline semiconductor or quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light, which can control plant growth in greenhouses or enhance PV panel efficiencies. This work provides a new and simple approach for loading mesoporous silica-encapsulated QDs into PEVA. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm size were synthesized using a modified facile approach based on pyrolysis of the single-molecule precursors and capping the CdS QDs with a thin layer of ZnS. To make both the bare and core-shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interactions. By careful experimental tuning, this encapsulation technique enhanced the quantum yield (˜65%) and photostability compared to the bare QDs. Both the encapsulated bare and core-shell QDs were then melt-mixed with EVA pellets using a mini twin-screw extruder and pressed into thin films with controlled thickness. The results demonstrated for the first time that mesoporous silica not only enhanced the quantum yield and photostability of the QDs but also improved the compatibility and dispersibility of QDs throughout the PEVA films. The novel light selective films show high visible light transmission (˜90%) and decreased UV transmission (˜75%).

  17. Lighting the way: photonics leaders II (PL2) optics and photonics teacher professional development

    Science.gov (United States)

    Gilchrist, Pamela O.; Hilliard-Clark, Joyce; Bowles, Tuere; Carpenter, Eric

    2014-07-01

    A sample group of nineteen teachers completed the second phase of the Photonics Leaders II Optics and Photonics professional development program. Participants took a basic Physics content knowledge test that was designed by a Professor of Physics. The test was completed before the teachers participated in the program and at the end of the program to gather data for statistical inquiry. Statistical studies on pre-test and post-test data indicated significant gains in physics content knowledge over time, and that instructors teaching at the middle school level or only teaching one subject area scored significantly lower during the pretest. Reports from previous participants are summarized to disseminate the percentage of teachers who have incorporated at least one workshop activity and the kind of activity performed. The concerns and limitations reported by previous participants are reviewed as well.

  18. Eosin Y Catalyzed Visible-light-promoted One –Pot Facile Synthesis of 1,3,4- Thiadiazole

    Directory of Open Access Journals (Sweden)

    Vishal Srivastava

    2015-03-01

    Full Text Available A novel one-pot visible light irradiated synthesis of 1,3,4-thiadiazole from aldehydes and thioacyl hydrazides have been reported in presence of eosin Y as an organophotoredox catalyst at room temperature under aerobic condition. This synthesis includes application of air and visible light as inexpensive, readily available, non-toxic and sustainable regents, which fulfils the basic principle of green chemistry.

  19. Visible Light Photocatalysis via CdS/TiO2 Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    Elias K. Stefanakos

    2006-10-01

    Full Text Available Nanostructured colloidal semiconductors with heterogeneous photocatalytic behavior have drawn considerable attention over the past few years. This is due to their large surface area, high redox potential of the photogenerated charge carriers, and selective reduction/oxidation of different classes of organic compounds. In the present paper, we have carried out a systematic synthesis of nanostructured CdS-TiO2 via reverse micelle process. The structural and microstructural characterizations of the as-prepared CdS-TiO2 nanocomposites are determined using XRD and SEM-EDS techniques. The visible light assisted photocatalytic performance is monitored by means of degradation of phenol in water suspension.

  20. Experimental demonstration of multiple-inputs multiple-outputs OFDM/OQAM visible light communications

    Science.gov (United States)

    Lin, Bangjiang; Tang, Xuan; Ghassemlooy, Zabih; Lin, Chun; Zhang, Min

    2017-10-01

    We experimentally demonstrate a 2×2 optical multiple-inputs multiple-outputs (MIMO) visible light communications system based on the modified orthogonal frequency-division multiplexing/offset quadrature amplitude modulation scheme. The adjacent subcarrier frequency-domain averaging (ASFA) with the full-loaded (FL) and half-loaded (HL) preamble structures is proposed for demultiplexing and mitigating the intrinsic imaginary interference (IMI) effect. Compared with the conventional channel estimation (CE) method, ASFA offers improved transmission performance. With the FL method, we obtain more accurate MIMO CE to mitigate the IMI effect and the optical noise compared to the HL method.