WorldWideScience

Sample records for visible earth dust

  1. High Latitude Dust in the Earth System

    Science.gov (United States)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; hide

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  2. Heliotropic dust rings for Earth climate engineering

    Science.gov (United States)

    Bewick, R.; Lücking, C.; Colombo, C.; Sanchez, J. P.; McInnes, C. R.

    2013-04-01

    This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth's J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.

  3. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  4. Size Dependence of Dust Distribution around the Earth Orbit

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Takahiro; Takeuchi, Taku [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551 (Japan); Kobayashi, Hiroshi; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro, E-mail: t.ueda@geo.titech.ac.jp [Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602 (Japan)

    2017-05-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  5. Size Dependence of Dust Distribution around the Earth Orbit

    International Nuclear Information System (INIS)

    Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro

    2017-01-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s max  = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  6. High-latitude dust in the Earth system

    Science.gov (United States)

    Bullard, Joanna E; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; NcKenna Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80–100 Tg yr−1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  7. Dust visualisation in TJ-II with intensified visible fast cameras

    International Nuclear Information System (INIS)

    Cal, E. de la; Pablos, J. L. de; Carralero, D.; Hidalgo, C.

    2010-01-01

    A visible fast camera equipped with an image Intensifier and atomic line filters is used in TJ-II for spectroscopic dust observation. First results show characteristic features depending on filter and clearly differing from those without the filters as is usually done in existing experiments. Preliminary discussions of the observed results are presented. (Author) 5 refs.

  8. Dust visualisation in TJ-II with intensified visible Fast Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Cal, E. de la; Pablos, J. L. de; Carralero, D.; Hidalgo, C.

    2010-10-21

    A visible fast camera equipped with an image Intensifier and atomic line filters is used in TJ-II for spectroscopic dust observation. First results show characteristic features depending on filter and clearly differing from those without the filters as is usually done in existing experiments. Preliminary discussions of the observed results are presented. (Author) 5 refs.

  9. The Medical Geochemistry of Dusts, Soils, and Other Earth Materials

    Science.gov (United States)

    Plumlee, G. S.; Ziegler, T. L.

    2003-12-01

    "Town clenched in suffocating grip of asbestos"USA Today, article on Libby,Montana, February, 2000"Researchers find volcanoes are bad for your health… long after they finish erupting"University of WarwickPress Release, 1999"Toxic soils plague city - arsenic, lead in 5 neighborhoods could imperil 17,000 residents"Denver Post, 2002"Ill winds - dust storms ferry toxic agents between countries and even continents"Science News, 2002A quick scan of newspapers, television, science magazines, or the internet on any given day has a fairly high likelihood of encountering a story (usually accompanied by a creative headline such as those above) regarding human health concerns linked to dusts, soils, or other earth materials. Many such concerns have been recognized and studied for decades, but new concerns arise regularly.Earth scientists have played significant roles in helping the medical community understand some important links between earth materials and human health, such as the role of asbestos mineralogy in disease (Skinner et al., 1988; Ross, 1999; Holland and Smith, 2001), and the role of dusts generated by the 1994 Northridge, California, earthquake in an outbreak of Valley Fever ( Jibson et al., 1998; Schneider et al., 1997).Earth science activities tied to health issues are growing (Skinner and Berger, 2003), and are commonly classified under the emerging discipline of medical geology (Finkelman et al., 2001; Selinus and Frank, 2000; Selinus, in press).Medical geochemistry (also referred to as environmental geochemistry and health: Smith and Huyck (1999), Appleton et al. (1996)) can be considered as a diverse subdiscipline of medical geology that deals with human and animal health in the context of the Earth's geochemical cycle ( Figure 1). Many medical geochemistry studies have focused on how chemical elements in rocks, soils, and sediments are transmitted via water or vegetation into the food chain, and how regional geochemical variations can result in disease

  10. Observation of Dust in DIII-D Divertor and SOL by Visible Imaging

    International Nuclear Information System (INIS)

    Rudakov, D L; West, W P; Groth, M; Yu, J H; Wong, C C; Boedo, J A; Brooks, N H; Evans, T E; Fenstermacher, M E; Hollmann, E M; Hyatt, A W; Lasnier, C J; McLean, A G; Moyer, R A; Pigarov, A; Smirnov, R; Solomon, W M; Watkins, J G

    2007-01-01

    Dust is commonly found in fusion devices. Though generally of no concern in the present day machines, dust may pose serious safety and operational concerns for ITER. Micron-size dust usually dominates the samples collected from tokamaks. During a plasma discharge micron-size dust particles can become highly mobile and travel over distances of a few meters. Once inside the plasma, dust particles heat up to over 3000 K and emit thermal radiation that can be detected by visible imaging techniques. Observations of naturally occurring and artificially introduced dusts have been performed in DIII-D divertor and scrape-off layer (SOL) using standard frame rate CMOS cameras, a gated-intensified CID camera, and a fast-framing CMOS camera. In the first 2-3 plasma discharges after a vent with personnel entry inside the vacuum vessel ('dirty vent') dust levels were quite high with thousands of particles observed in each discharge. Individual particles moving at velocities of up to a few hundred m/s and breakup of larger particles into pieces were observed. After about 15 discharges dust was virtually gone during the stationary portion of a discharge, and appeared at much reduced levels during the plasma initiation and termination phases. After a few days of plasma operations (about 70 discharges) dust levels were further reduced to just a few observed events per discharge except in discharges with current disruptions that produced significant amounts of dust. An injection of a few milligram of micron-size (6 micron median diameter) carbon dust into a high-power lower single-null ELMing H-mode discharge with strike points swept across the lower divertor floor was performed. A significant increase of the core carbon radiation was observed for about 250 ms after the injection, as the total radiated power increased twofold. Dust particles from the injection were observed by the fast framing camera in the outboard SOL near the midplane. The amount of dust observed by the fast

  11. Field measurements of horizontal forward motion velocities of terrestrial dust devils: Towards a proxy for ambient winds on Mars and Earth

    Science.gov (United States)

    Balme, M. R.; Pathare, A.; Metzger, S. M.; Towner, M. C.; Lewis, S. R.; Spiga, A.; Fenton, L. K.; Renno, N. O.; Elliott, H. M.; Saca, F. A.; Michaels, T. I.; Russell, P.; Verdasca, J.

    2012-11-01

    Dust devils - convective vortices made visible by the dust and debris they entrain - are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00-16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to

  12. Microcharacterization of interplanetary dust collected in the earth's stratosphere

    International Nuclear Information System (INIS)

    Fraundorf, P.B.

    1980-01-01

    This thesis involved an examination of the internal structure of thirteen 10 μm aggregates using selected techniques from the field now known as analytical electron microscopy. The aggregates were collected in the earth's stratosphere at 20 km altitude by impactors mounted on NASA U-2 aircraft. Eleven of them exhibited relative major element abundances similar to those found in chondritic meteorities. For this and other reasons, these eleven particles are believed to represent relatively-unaltered interplanetary dust. Interplanetary dust is thought to be of cometary origin, and comets in turn provide the most promising reservoir for unaltered samples of materials present during the collapse of the solar nebula. This thesis shows that the chondritic aggregates probably contain important information on a wide range of processes in the early solar system. In the course of this study, significant developments were necessary in the techniques of analysis for: (i) selected area electron diffraction (SAED) data; (ii) energy dispersive x-ray spectra; and (iii) spatial heterogeneity in geological materials. These developments include a method for analysing single crystal SAED patterns using spherical geometry. The method makes possible much more efficient use of diffraction data taken with a goniometer specimen stage. It allows major portions of the analysis to be done by a microprocessor, and it has potential for a wide range of on-line applications. Also, a comprehensive approach to the study of point-to-point heterogeneity in geological materials was developed. Some statistical, comparative, petrographic, and physical applications are described in the thesis

  13. Infra-red photon release from cosmic dust entering into the earth's atmosphere

    International Nuclear Information System (INIS)

    Kobayashi, Koichi

    1975-01-01

    Cosmic dust brings considerably high intensity of energy flux to the upper atmosphere of the earth. Most of this energy can be converted to infra-red radiation. It can be concluded that the infra-red background radiation in the sky of its wavelength of less than about 10μ may considerably originate in the cosmic dust which has entered the earth's atmosphere, or that the upper limit to the flux of cosmic dust is about 10 5 tons/earth year. (author)

  14. THE VISUALIZATION METHOD OF THE 3D CONCENTRATION DISTRIBUTION OF ASIAN DUST IN THE GOOGLE EARTH

    Directory of Open Access Journals (Sweden)

    W. Okuda

    2012-07-01

    Full Text Available The Asian dust (called "Kosa" in Japan transported from desert areas in the northern China often covers over East Asia in the late winter and spring seasons. In this study, first of all, for dust events observed at various places in Japan on April 1, 2007 and March 21, 2010, the long-range transport simulation of Asian dust from desert areas in the northern China to Japan is carried out. Next, the method for representing 3D dust clouds by means of the image overlay functionality provided in the Google Earth is described. Since it is very difficult to display 3D dust clouds along the curvature of the Earth on the global scale, the 3D dust cloud distributed at the altitude of about 6300m was divided into many thin layers, each of which is the same thickness. After each of layers was transformed to the image layer, each image layer was displayed at the appropriate altitude in the Google Earth. Thus obtained image layers were displayed every an hour in the Google Earth. Finally, it is shown that 3D Asian dust clouds generated by the method described in this study are represented as smooth 3D cloud objects even if we looked at Asian dust clouds transversely in the Google Earth.

  15. Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry

    Science.gov (United States)

    Johnson, J. R.; Sohl-Dickstein, J.; Grundy, W.M.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; Graff, T.; Guinness, E.A.; Kinch, K.; Morris, Robert; Shepard, M.K.

    2006-01-01

    Laboratory visible/near-infrared multispectral observations of Mars Exploration Rover Pancam calibration target materials coated with different thicknesses of Mars spectral analog dust were acquired under variable illumination geometries using the Bloomsburg University Goniometer. The data were fit with a two-layer radiative transfer model that combines a Hapke formulation for the dust with measured values of the substrate interpolated using a He-Torrance approach. We first determined the single-scattering albedo, phase function, opposition effect width, and amplitude for the dust using the entire data set (six coating thicknesses, three substrates, four wavelengths, and phase angles 3??-117??). The dust exhibited single-scattering albedo values similar to other Mars analog soils and to Mars Pathfinder dust and a dominantly forward scattering behavior whose scattering lobe became narrower at longer wavelengths. Opacity values for each dust thickness corresponded well to those predicted from the particles sizes of the Mars analog dust. We then restricted the number of substrates, dust thicknesses, and incidence angles input to the model. The results suggest that the dust properties are best characterized when using substrates whose reflectances are brighter and darker than those of the deposited dust and data that span a wide range of dust thicknesses. The model also determined the dust photometric properties relatively well despite limitations placed on the range of incidence angles. The model presented here will help determine the photometric properties of dust deposited on the MER rovers and to track the multiple episodes of dust deposition and erosion that have occurred at both landing sites. Copyright 2006 by the American Geophysical Union.

  16. Dust Acoustic Solitons in the Dusty Plasma of the Earth's Ionosphere

    International Nuclear Information System (INIS)

    Kopnin, S.I.; Kosarev, I.N.; Popel, S.I.; Yu, M.Y.

    2005-01-01

    Stratified structures that are observed at heights of 80-95 km in the lower part of the Earth's ionosphere are known as noctilucent clouds and polar mesosphere summer echoes. These structures are thought to be associated with the presence of vast amounts of charged dust or aerosols. The layers in the lower ionosphere where there are substantial amounts of dust are called the dusty ionosphere. The dust grains can carry a positive or a negative charge, depending on their constituent materials. As a rule, the grains are ice crystals, which may contain metallic inclusions. A grain with a sufficiently large metallic content can acquire a positive charge. Crystals of pure ice are charged negatively. The distribution of the dust grains over their charges has a profound impact on the ionizational and other properties of dust structures in the dusty ionosphere. In the present paper, a study is made of the effect of the sign of the dust charge on the properties of dust acoustic solitons propagating in the dusty ionosphere. It is shown that, when the dust charge is positive, dust acoustic solitons correspond to a hill in the electron density and a well in the ion density. When the dust is charged negatively, the situation is opposite. These differences in the properties of dust acoustic solitons can be used to diagnose the plasmas of noctilucent clouds and polar mesosphere summer echoes

  17. Robust Visible and Infrared Light Emitting Devices Using Rare-Earth-Doped GaN

    National Research Council Canada - National Science Library

    Steckl, Andrew

    2006-01-01

    Rare earth (RE) dopants (such as Er, Eu, Tm) in the wide bandgap semiconductor (WBGS) GaN are investigated for the fabrication of robust visible and infrared light emitting devices at a variety of wavelengths...

  18. Dust Acoustic Mode Manifestations in Earth's Dusty Ionosphere

    International Nuclear Information System (INIS)

    Kopnin, S.I.; Popel, S.I.

    2005-01-01

    Dust acoustic mode manifestations in the dusty ionosphere are studied. The reason for an appearance of the low-frequency radio noises associated with such meteor fluxes as Perseids, Orionids, Leonids, and Gemenids is determined

  19. Effects of dust polarity and nonextensive electrons on the dust-ion acoustic solitons and double layers in earth atmosphere

    Science.gov (United States)

    Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh

    2018-05-01

    Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.

  20. Dust in the Earth system: the biogeochemical linking of land, air and sea.

    Science.gov (United States)

    Ridgwell, Andy J

    2002-12-15

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO(2) lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback

  1. Migration of Small Bodies and Dust to Near-Earth Space

    Science.gov (United States)

    Ipatov, S. I.; Mather, J. C.

    Computer simulations of the orbital evolution of Jupiter-family comets (JFCs), resonant asteroids, and asteroidal, kuiperoidal, and cometary dust particles were made. The gravitational influence of planets (exclusive of Pluto and sometimes of Mercury) was taken into account. For dust particles we also considered radiation pressure, Poynting-Robertson drag, and solar wind drag. A few JFCs got Earth-crossing orbits with semi-major axes adisintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. The obtained results show that during the accumulation of the giant planets the total mass of icy bodies delivered to the Earth could be about the mass of water in Earth's oceans. In our runs for dust particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 0.0004 to 0.4 (for silicates, such values correspond to particle diameters between 1000 and 1 microns). For β >0.01 the collision probabilities of dust particles with the terrestrial planets during lifetimes of particles were considerably greater for larger asteroidal and cometary particles. At β ≥ 0.1 and β ≤ 0.001 some asteroidal particles migrated beyond Jupiter's orbit. The peaks in the distribution of migrating asteroidal dust particles with semi-major axis corresponding to the n:(n+1) resonances with Earth and Venus and the gaps associated with the 1:1 resonances with these planets are more pronounced for larger particles. Several our papers on this problem were put in http://arXiv.org/format/astro-ph/ (e.g., 0305519, 0308448, 0308450). This work was supported by INTAS (00-240) and NASA (NAG5-10776).

  2. Evaluating Ice Nucleating Particle Concentrations From Prognostic Dust Minerals in an Earth System Model

    Science.gov (United States)

    Perlwitz, J. P.; Knopf, D. A.; Fridlind, A. M.; Miller, R. L.; Pérez García-Pando, C.; DeMott, P. J.

    2016-12-01

    The effect of aerosol particles on the radiative properties of clouds, the so-called, indirect effect of aerosols, is recognized as one of the largest sources of uncertainty in climate prediction. The distribution of water vapor, precipitation, and ice cloud formation are influenced by the atmospheric ice formation, thereby modulating cloud albedo and thus climate. It is well known that different particle types possess different ice formation propensities with mineral dust being a superior ice nucleating particle (INP) compared to soot particles. Furthermore, some dust mineral types are more proficient INP than others, depending on temperature and relative humidity.In recent work, we have presented an improved dust aerosol module in the NASA GISS Earth System ModelE2 with prognostic mineral composition of the dust aerosols. Thus, there are regional variations in dust composition. We evaluated the predicted mineral fractions of dust aerosols by comparing them to measurements from a compilation of about 60 published literature references. Additionally, the capability of the model to reproduce the elemental composition of the simulated dusthas been tested at Izana Observatory at Tenerife, Canary Islands, which is located off-shore of Africa and where frequent dust events are observed. We have been able to show that the new approach delivers a robust improvement of the predicted mineral fractions and elemental composition of dust.In the current study, we use three-dimensional dust mineral fields and thermodynamic conditions, which are simulated using GISS ModelE, to calculate offline the INP concentrations derived using different ice nucleation parameterizations that are currently discussed. We evaluate the calculated INP concentrations from the different parameterizations by comparing them to INP concentrations from field measurements.

  3. African Dust Transport Captured by Rare Earth Elemental Concentrations in Coral Microatolls

    Science.gov (United States)

    Ouellette, G., Jr.; DeLong, K.; Herrmann, A.; Huang, C. Y.; Shen, C. C.

    2017-12-01

    Winds are integral components of the climate system; unfortunately, windsare also among the climate variables that are most difficult to study prior to the instrumentalrecord. Paleoclimatologists use sedimentary dust records (e.g., lake and ocean cores) tounderstand past wind circulation conditions; however, these types of records typically are notamenable to sub-annual interpretation due to their limited temporal resolution. Here wedeveloped a coral-based dust-wind proxy to overcome these temporal limitations by usingtrace (nmol/mol) rare earth elemental concentrations recorded in the skeletons of coralmicroatolls. The rare earth elements (REE; the lanthanides as well as scandium and yttrium)behave similarly in geologic and geochemical systems, and have served as useful proxies ofgeological processes in both deep and shallow time. Corals incorporate REE as they deposittheir exoskeletons that extend incrementally with time forming annual density band couplets.Coral microatolls grow at or near the sea surface, where coral REE concentrations are mostsensitive to dust deposition. Our study site off the west coast of Haiti is down stream of light-REE depleted bedrock whereas REE in African dust, transported by the easterly trade winds,reflect average crustal abundances. This unique "upstream" source signature allows forterrestrial contamination of the dust-wind signal to be ruled out. Light REE concentrations (esp.Nd and Pr) demonstrate an order of magnitude increase within coral aragonite coincident withmajor African dust plume events throughout the past decade, with Nd/Ca and Pr/Ca increasingfrom an average of 27 nmol/mol to an average 144 nmol/mol and an average of 5 nmol/mol toan average of 37 nmol/mol, respectively, during major African dust plume events. Monthly-resolved REE analysis shows these REE peaks coincide with the summer dust season rather thanHaiti's two wet seasons in spring and autumn. Regression of our coral REE dust proxy tosatellite records of

  4. Ablation and chemical alteration of cosmic dust particles during entry into the earth`s atmosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Dey, S.; Plane, J.M.C.; Feng, W.; Carrillo-Sanchez, J.D.; Fernandes, D.

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre...

  5. How large is the cosmic dust flux into the Earth's atmosphere?

    Science.gov (United States)

    Plane, John; Janches, Diego; Gomez-Martin, Juan Carlos; Bones, David; Diego Carrillo-Sanchez, Juan; James, Sandy; Nesvorny, David; Pokorny, Petr

    2016-07-01

    Cosmic dust particles are produced in the solar system from the sublimation of comets as they orbit close to the sun, and also from collisions between asteroids in the belt between Mars and Jupiter. Current estimates of the magnitude of the cosmic dust input rate into the Earth's atmosphere range from 2 to well over 100 tons per day, depending on whether the measurements are made in space, in the middle atmosphere, or at the surface in polar ice cores. This nearly 2 order-of-magnitude discrepancy indicates that there are serious flaws in the interpretation of observations that have been used to make the estimates. Dust particles enter the atmosphere at hyperthermal velocities (11 - 72 km s ^{-1}), and mostly ablate at heights between 80 and 120 km in a region of the atmosphere known as the mesosphere/lower thermosphere (MLT). The resulting metal vapours (Fe, Mg, Si and Na etc.) then oxidize and recondense to form nm-size particles, termed "meteoric smoke". These particles are too small to sediment downwards. Instead, they are transported by the general circulation of the atmosphere, taking roughly 5 years to reach the surface. There is great interest in the role smoke particles play as condensation nuclei of noctilucent ice clouds in the mesosphere, and polar stratospheric clouds in the lower stratosphere. Various new estimates of the dust input will be discussed. The first is from a zodiacal dust cloud model which predicts that more than 90% of the dust entering the atmosphere comes from Jupiter Family Comets; this model is constrained by observations of the zodiacal cloud using the IRAS, COBE and Planck satellites. The cometary dust is predicted to mostly be in a near-prograde orbit, entering the atmosphere with an average velocity around 14 km s ^{-1}. The total dust input should then be about 40 t d ^{-1}. However, relatively few of these particles are observed, even by the powerful Arecibo 430 MHz radar. Coupled models of meteoroid differential ablation

  6. In-situ detection of micron-sized dust particles in near-Earth space

    Science.gov (United States)

    Gruen, E.; Zook, H. A.

    1985-01-01

    In situ detectors for micron sized dust particles based on the measurement of impact ionization have been flown on several space missions (Pioneer 8/9, HEOS-2 and Helios 1/2). Previous measurements of small dust particles in near-Earth space are reviewed. An instrument is proposed for the measurement of micron sized meteoroids and space debris such as solid rocket exhaust particles from on board an Earth orbiting satellite. The instrument will measure the mass, speed, flight direction and electrical charge of individually impacting debris and meteoritic particles. It is a multicoincidence detector of 1000 sq cm sensitive area and measures particle masses in the range from 10 to the -14th power g to 10 to the -8th power g at an impact speed of 10 km/s. The instrument is lightweight (5 kg), consumes little power (4 watts), and requires a data sampling rate of about 100 bits per second.

  7. Study of chromosome aberrations on the workers occupationally exposed to thorium and rare earth mixed dust

    International Nuclear Information System (INIS)

    Zhang Wei; Wang Chunyan; Lv Huiming; Zhang Cuilan; Hao Shuxia; Su Xu; Jia Kejun; Liu Yufei

    2008-01-01

    Objective: To study the effect of thorium and rare earth mixed dust on chromosome aberrations in the lymphocytes of occupational exposed workers. Methods: Analyses of unstable chromosome aberrations on 53 occupational exposed workers and 58 control workers were carried out by the conventional Giemsa staining method. Fluorescence in situ hybridization method was performed to analyze the chromosome stable aberrations on 10 occupational exposed workers and l0 control workers. Results: The frequencies of chromosomal aberration cells, dicentrics plus rings, total aberrations in exposed workers were significantly higher than those in controls. No significant difference was found in the frequency of acentric aberrations between exposed and non-exposed workers. No significant difference was found in the frequency of translocations between exposed and non-exposed workers. Conclusions: Chronically occupational exposure to thorium and rare earth mixed dust can increase the induction of unstable chromosome aberration, but the increase of stable chromosome aberrations (translocation) can not be observed. (authors)

  8. Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths

    International Nuclear Information System (INIS)

    Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.; Moreno, F.; Penttilä, A.; Muinonen, K.

    2017-01-01

    The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected to mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.

  9. Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.; Moreno, F. [Instituto de Astrofìsica de Andalucìa, CSIC, Glorieta de la Astronomìa s/n, E-18008 Granada (Spain); Penttilä, A.; Muinonen, K. [Department of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland)

    2017-03-20

    The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected to mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.

  10. An LDEF 2 dust instrument for discrimination between orbital debris and natural particles in near-Earth space

    Science.gov (United States)

    Tuzzolino, A. J.; Simpson, J. A.; Mckibben, R. B.; Voss, H. D.; Gursky, H.

    1993-01-01

    The characteristics of a space dust instrument which would be ideally suited to carry out near-Earth dust measurements on a possible Long Duraction Exposure Facility reflight mission (LDEF 2) is discussed. As a model for the trajectory portion of the instrument proposed for LDEF 2, the characteristics of a SPAce DUSt instrument (SPADUS) currently under development for flight on the USA ARGOS mission to measure the flux, mass, velocity, and trajectory of near-Earth dust is summarized. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. The SPADUS measurements will cover the dust mass range approximately 5 x 10(exp -12) g (2 microns diameter) to approximately 1 x 10(exp -5) g (200 microns diameter), with an expected mean error in particle trajectory of approximately 7 deg (isotropic flux). Arrays of capture cell devices positioned behind the trajectory instrumentation would provide for Earth-based chemical and isotopic analysis of captured dust. The SPADUS measurement principles, characteristics, its role in the ARGOS mission, and its application to an LDEF 2 mission are summarized.

  11. Contribution to the study of the accretion of cosmic dust on earth

    International Nuclear Information System (INIS)

    Grjebine, Tovy

    1971-01-01

    The study of the accretion of cosmic dust has been carried out by different ways and techniques. The measurements of the presently falling cosmic dust must be limited to that stratospheric contribution which has spent only a short time in the stratosphere, otherwise it can be mixed with a possible terrestrial dust of very small size. The discrimination between those different components can be made by studying the geographical and time distribution, correlated or anti-correlated with other phenomena such as radio-meteor statistics, meteorological phenomena statistics (rain or nuclear bomb debris fallout). It is impossible to measure directly the weight of the falling dust but the weight must be deduced from the measurements of some other characteristics such as magnetism, which are not characteristic of terrestrial dust. The 'magnetism ratio/weight' or 'chemical iron/weight' has therefore been established for stratospheric collection, and then used for soil level collection. The collection of spherules is another approach to measure the accretion in the size range of some micron particles. Spherules are considered as cosmic for their non-terrestrial type average chemical composition, non terrestrial association of elements and presence of cosmogenic nuclei. The knowledge of their average chemical composition enables their utilisation as a geochemical model to calculate the total weight of matter which should be associated with the content of nickel and cobalt found in the deep sea bottoms. Depending on the collection method, the total mass accreted yearly by the earth is estimated around 10 4 if only microscopic spherules are considered, around 10 8 if all size collection is performed or if deep sea sediments nickel and cobalt are used with spherules as a geochemical model. (author) [fr

  12. Dust: A major environmental hazard on the earth's moon

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Vaniman, D.; Lehnert, B.

    1990-01-01

    On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

  13. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  14. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    OpenAIRE

    G. Helas; M. O. Andreae

    2008-01-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly...

  15. Spectroscopic and visible luminescence properties of rare earth ions in lead fluoroborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Anjaiah, G. [Department of Physics, Osmania University, Hyderabad 500007 (India); Nayab Rasool, SK. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Kistaiah, P., E-mail: pkistaiah@yahoo.com [Department of Physics, Osmania University, Hyderabad 500007 (India)

    2015-03-15

    The lanthanide doped lead lithium calcium zinc fluoroborate glasses (LLCZFB:Ln) of composition 20PbF{sub 2}+10Li{sub 2}O+5Cao+5ZnO+59B{sub 2}O{sub 3}+1Ln{sub 2}O{sub 3} (where Ln=Sm, Eu and Dy in mol%) were prepared by conventional melt quench technique. The amorphous nature of these glasses was confirmed by X-ray diffraction studies. The glass transition temperatures (T{sub g}) were studied by DSC analysis. The glass structure and spectroscopic properties were investigated using optical absorption, vibrational and fluorescence spectra. The FT-IR spectra and Raman spectra reveal the presence of BO{sub 3}, BO{sub 4} and non-bridging oxygen's. The Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4, 6) were determined from the spectral intensities of absorption bands. These parameters were used to calculate the radiative parameters such as radiative transition probability (A{sub R}), radiative life time (τ{sub R}) and branching ratio (β{sub r}) for various excited luminescent states of rare earth ions. The visible emission spectra for different rare earth ions were recorded by exciting the samples at different wavelengths and the decay rates for the different rare earth ions were measured. Using the emission spectra, full width half maxima (FWFM), stimulated emission cross section (σ{sup E}{sub p}) were evaluated. The nature of decay profiles of {sup 4}F{sub 9/2}, {sup 4}G{sub 5/2} and {sup 5}D{sub 0} states of Dy, Sm and Eu ions respectively are analyzed. Comparison of luminescence features of these glasses and also with those reported for different glass hosts indicates that the LLCZFB:Dy glass has strong luminescence in the visible region. - Highlights: • LLCZFB:Ln glasses are prepared with Ln: Sm, Eu and Dy. • Glasses are characterized by XRD, FTIR, Raman, absorption and emission spectra. • J–O theory is used to calculate different radiative properties. • Green, yellow and red emissions are observed. • Glasses are useful for the development

  16. Increase the Visibility of Microbial Growth in a Winogradsky Column by Substituting Diatomaceous Earth for Sediment

    Directory of Open Access Journals (Sweden)

    Thomas G. Benoit

    2015-02-01

    Full Text Available The difficulty students have seeing the color associated with microbial growth in a traditional Winogradsky column can be overcome by substituting diatomaceous earth (DE for sediment. Microbial growth in a DE column is visible from the early stages of ecological succession and the colors produced appear more vibrant. A flat-sided tissue culture flask can be used as a column container to provide a large surface area for observation. The enhanced visual experience provided by a DE column increases student engagement and learning. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at www.asm.org. The Editors of JMBE recommend that adopters of the protocols included in this article follow a minimum of Biosafety Level 1 practices.

  17. Rare earth elements, U and Th in tunnel dusts of SÃO Paulo City, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Nory, Renata M.; Figueireido, Ana Maria G., E-mail: renata.nory@ipen.br, E-mail: anamaria@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    São Paulo is one of the most populated cities in the world, with about 20 million inhabitants in its metropolitan area, more than 12 million motor vehicles and intense industrial activity. Given its importance as a major urban center in South America and the lack of information concerning urban dust composition, the present study aimed to determine rare earth elements (REEs), U and Th mass fractions in tunnel dust, collected in the Jânio Quadros Tunnel, and to assess their possible sources. The study of REEs distribution in urban environments has become of interest over the last decades, due to the increasing industrial use of these elements. The REEs, that are as common as the most familiar metals, are found in metallurgical additives, fluid cracking catalysts and automobile converter catalysts, among other applications. In this study, which employed Instrumental Neutron Activation Analysis (INAA) as analytical technique, the mass fractions of eight REEs were determined and normalized to the chondrite concentration values. The results showed that major concentrations were found for light REEs, following the sequence Ce > La > Nd > Sm > Yb > Eu > Tb > Lu. The pattern of the results pointed to a natural origin for these elements. Regarding U and Th concentrations, the results varied between 1.0 - 9.4 μg g{sup -1} and 3.3 - 35.9 μg g{sup -1}, respectively. Since there is almost no information about the concentration of these elements in this kind of matrix in São Paulo city, these data are important to support further investigations. (author)

  18. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  19. Interplanetary dust profile observed on Juno's cruise from Earth to Jupiter

    Science.gov (United States)

    Joergensen, J. L.; Benn, M.; Jørgensen, P. S.; Denver, T.; Jørgensen, F. E.; Connerney, J. E. P.; Andersen, A. C.; Bolton, S. J.; Levin, S.

    2017-12-01

    Juno was launched August 5th, 2011, and entered the highly-elliptical polar orbit about Jupiter on July 4th, 2016, some 5 years later. Juno's science objectives include the mapping of Jupiter's gravity and magnetic fields and observation of the planet's deep atmosphere, aurora and polar regions. The Juno spacecraft is a large spin-stabilized platform powered by three long solar panel structures, 11 m in length, extending radially outward from the body of the spacecraft with panel normal parallel to the spacecraft spin axis. During almost 5 years in cruise, Juno traversed the inner part of the solar system, from Earth, to a deep space maneuver at 2.2AU, back to 0.8AU for a subsequent rendezvous with Earth for gravity assist, and then out to Jupiter (at 5.4AU at the time of arrival). The solar panels were nearly sun-pointing during the entire cruise phase, with the 60 m2 of solar panel area facing the ram direction (panel normal parallel to the spacecraft velocity vector). Interplanetary Dust Particles (IPDs) impacting Juno's solar panels with typical relative velocities of 20 km/s excavate target mass, some of which will leave the spacecraft at moderate speeds (few m/s) in the form of a few large spallation products. Many of these impact ejecta have been recorded and tracked by one of the autonomous star trackers flown as part of the Juno magnetometer investigation (MAG). Juno MAG instrumentation is accommodated on a boom at the end of one of the solar arrays, and consists of two magnetometer sensor suites each instrumented with two star trackers for accurate attitude determination at the MAG sensors. One of the four star trackers was configured to report such fast moving objects, effectively turning Juno's large solar array area into the largest-aperture IPD detector ever flown - by far. This "detector", by virtue of its prodigious collecting area, is sensitive to the relatively infrequent impacts of particles much larger (at 10's of microns) than those collected

  20. The thermal history of interplanetary dust particles collected in the Earth's stratosphere

    Science.gov (United States)

    Nier, A. O.; Schlutter, D. J.

    1993-01-01

    Fragments of 24 individual interplanetary dust particles (IDPs) collected in the Earth's stratosphere were obtained from NASA's Johnson Space Center collection and subjected to pulse-heating sequences to extract He and Ne and to learn about the thermal history of the particles. A motivation for the investigation was to see if the procedure would help distinguish between IDPs of asteroidal and cometary origin. The use of a sequence of short-duration heat pulses to perform the extractions is an improvement over the employment of a step-heating sequence, as was used in a previous investigation. The particles studied were fragments of larger parent IDPs, other fragments of which, in coordinated experiments, are undergoing studies of elemental and mineralogical composition in other laboratories. While the present investigation will provide useful temperature history data for the particles, the relatively large size of the parent IDPs (approximately 40 micrometers in diameter) resulted in high entry deceleration temperatures. This limited the usefulness of the study for distinguishing between particles of asteroidal and cometary origin.

  1. A TEOM (tm) particulate monitor for comet dust, near Earth space, and planetary atmospheres

    Science.gov (United States)

    1988-01-01

    Scientific missions to comets, near earth space, and planetary atmospheres require particulate and mass accumulation instrumentation for both scientific and navigation purposes. The Rupprecht & Patashnick tapered element oscillating microbalance can accurately measure both mass flux and mass distribution of particulates over a wide range of particle sizes and loadings. Individual particles of milligram size down to a few picograms can be resolved and counted, and the accumulation of smaller particles or molecular deposition can be accurately measured using the sensors perfected and toughened under this contract. No other sensor has the dynamic range or sensitivity attained by these picogram direct mass measurement sensors. The purpose of this contract was to develop and implement reliable and repeatable manufacturing methods; build and test prototype sensors; and outline a quality control program. A dust 'thrower' was to be designed and built, and used to verify performance. Characterization and improvement of the optical motion detection system and drive feedback circuitry was to be undertaken, with emphasis on reliability, low noise, and low power consumption. All the goals of the contract were met or exceeded. An automated glass puller was built and used to make repeatable tapered elements. Materials and assembly methods were standardized, and controllers and calibrated fixtures were developed and used in all phases of preparing, coating and assembling the sensors. Quality control and reliability resulted from the use of calibrated manufacturing equipment with measurable working parameters. Thermal and vibration testing of completed prototypes showed low temperature sensitivity and high vibration tolerance. An electrostatic dust thrower was used in vacuum to throw particles from 2 x 10(exp 6) g to 7 x 10(exp -12) g in size. Using long averaging times, particles as small as 0.7 to 4 x 10(exp 11) g were weighted to resolutions in the 5 to 9 x 10(exp -13) g range

  2. Rare earth elements in street dust and associated health risk in a municipal industrial base of central China.

    Science.gov (United States)

    Sun, Guangyi; Li, Zhonggen; Liu, Ting; Chen, Ji; Wu, Tingting; Feng, Xinbin

    2017-12-01

    The content levels, distribution characteristics, and health risks associated with 15 rare earth elements (REEs) in urban street dust from an industrial city, Zhuzhou, in central China were investigated. The total REE content (∑REE) ranged from 66.1 to 237.4 mg kg -1 , with an average of 115.9 mg kg -1 , which is lower than that of Chinese background soil and Yangtze river sediment. Average content of the individual REE in street dust decreased in the order Ce > La > Nd > Y > Pr > Sm > Gd > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu. The chondrite-normalized REE pattern indicated light REE (LREE) enrichment, a relatively steep LREE trend, heavy REE (HREE) depletion, a flat HREE trend, a Eu-negative anomaly and a Ce-positive anomaly. Foremost heavy local soil and to less degree anthropogenic pollution are the main sources of REE present in street dust. Health risk associated with the exposure of REE in street dust was assessed based on the carcinogenic and non-carcinogenic effect and lifetime average daily dose. The obtained cancer and non-cancer risk values prompt for no augmented health hazard. However, children had greater health risks than that of adults.

  3. Diagnostic evaluation of the Community Earth System Model in simulating mineral dust emission with insight into large-scale dust storm mobilization in the Middle East and North Africa (MENA)

    Science.gov (United States)

    Parajuli, Sagar Prasad; Yang, Zong-Liang; Lawrence, David M.

    2016-06-01

    Large amounts of mineral dust are injected into the atmosphere during dust storms, which are common in the Middle East and North Africa (MENA) where most of the global dust hotspots are located. In this work, we present simulations of dust emission using the Community Earth System Model Version 1.2.2 (CESM 1.2.2) and evaluate how well it captures the spatio-temporal characteristics of dust emission in the MENA region with a focus on large-scale dust storm mobilization. We explicitly focus our analysis on the model's two major input parameters that affect the vertical mass flux of dust-surface winds and the soil erodibility factor. We analyze dust emissions in simulations with both prognostic CESM winds and with CESM winds that are nudged towards ERA-Interim reanalysis values. Simulations with three existing erodibility maps and a new observation-based erodibility map are also conducted. We compare the simulated results with MODIS satellite data, MACC reanalysis data, AERONET station data, and CALIPSO 3-d aerosol profile data. The dust emission simulated by CESM, when driven by nudged reanalysis winds, compares reasonably well with observations on daily to monthly time scales despite CESM being a global General Circulation Model. However, considerable bias exists around known high dust source locations in northwest/northeast Africa and over the Arabian Peninsula where recurring large-scale dust storms are common. The new observation-based erodibility map, which can represent anthropogenic dust sources that are not directly represented by existing erodibility maps, shows improved performance in terms of the simulated dust optical depth (DOD) and aerosol optical depth (AOD) compared to existing erodibility maps although the performance of different erodibility maps varies by region.

  4. MAPPING THE SPATIAL DISTRIBUTION OF DUST EXTINCTION IN NGC 959 USING BROADBAND VISIBLE AND MID-INFRARED FILTERS

    International Nuclear Information System (INIS)

    Tamura, K.; Jansen, R. A.; Windhorst, R. A.

    2009-01-01

    We present a method to estimate and map the two-dimensional distribution of dust extinction in the late-type spiral galaxy NGC 959 from the theoretical and observed flux ratio of optical V and mid-IR (MIR) 3.6 μm images. Our method is applicable to both young and old stellar populations for a range of metallicities, and is not restricted to lines of sight toward star-formation (SF) regions. We explore this method using a pixel-based analysis on images of NGC 959 obtained in the V band at the Vatican Advanced Technology Telescope and at 3.6 μm (L band) with Spitzer/Infrared Array Camera. We present the original and extinction corrected Galaxy Evolution Explorer (GALEX) far-UV (FUV) and near-UV (NUV) images, as well as optical UBVR images of NGC 959. While the dust lanes are not clearly evident at GALEX resolution, our dust map clearly traces the dust that can be seen silhouetted against the galaxy's disk in the high-resolution Hubble Space Telescope (HST) images of NGC 959. The advantages of our method are (1) it only depends on two relatively common broadband images in the optical V band and in the MIR at 3.6 μm (but adding a near-UV band improves its fidelity); and (2) it is able to map the two-dimensional spatial distribution of dust within a galaxy. This powerful tool could be used to measure the detailed distribution of dust extinction within higher redshift galaxies to be observed with, e.g., the Hubble Space Telescope (HST)/WFC3 (optical near-IR) and James Webb Space Telescope (mid-IR), and to distinguish properties of dust within galaxy bulges, spiral arms, and inter-arm regions.

  5. Cometary Dust

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  6. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    Science.gov (United States)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  7. Why Is Improvement of Earth System Models So Elusive? Challenges and Strategies From Dust Aerosol Modeling

    Science.gov (United States)

    Miller, R. L.; Pérez García-Pando, C.; Perlwitz, J. P.; Ginoux, P. A.

    2015-12-01

    Past decades have seen an accelerating increase in computing efficiency,while climate models are representing a rapidly widening set ofphysical processes. Yet simulations of some fundamental aspects ofclimate like precipitation or aerosol forcing remain highly uncertainand resistent to progress. Dust aerosol modeling of soil particleslofted by wind erosion has seen a similar conflict between increasingmodel sophistication and remaining uncertainty. Dust aerosols perturbthe energy and water cycles by scattering radiation and acting as icenuclei, while mediating atmospheric chemistry and marinephotosynthesis (and thus the carbon cycle). These effects take placeacross scales from the dimensions of an ice crystal to theplanetary-scale circulation that disperses dust far downwind of itsparent soil. Representing this range leads to several modelingchallenges. Should we limit complexity in our model, which consumescomputer resources and inhibits interpretation? How do we decide if aprocess involving dust is worthy of inclusion within our model? Canwe identify a minimal representation of a complex process that isefficient yet retains the physics relevant to climate? Answeringthese questions about the appropriate degree of representation isguided by model evaluation, which presents several more challenges.How do we proceed if the available observations do not directlyconstrain our process of interest? (This could result from competingprocesses that influence the observed variable and obscure thesignature of our process of interest.) Examples will be presentedfrom dust modeling, with lessons that might be more broadlyapplicable. The end result will either be clinical depression or thereassuring promise of continued gainful employment as the communityconfronts these challenges.

  8. Why Is Improvement of Earth System Models so Elusive? Challenges and Strategies from Dust Aerosol Modeling

    Science.gov (United States)

    Miller, Ronald L.; Garcia-Pando, Carlos Perez; Perlwitz, Jan; Ginoux, Paul

    2015-01-01

    Past decades have seen an accelerating increase in computing efficiency, while climate models are representing a rapidly widening set of physical processes. Yet simulations of some fundamental aspects of climate like precipitation or aerosol forcing remain highly uncertain and resistant to progress. Dust aerosol modeling of soil particles lofted by wind erosion has seen a similar conflict between increasing model sophistication and remaining uncertainty. Dust aerosols perturb the energy and water cycles by scattering radiation and acting as ice nuclei, while mediating atmospheric chemistry and marine photosynthesis (and thus the carbon cycle). These effects take place across scales from the dimensions of an ice crystal to the planetary-scale circulation that disperses dust far downwind of its parent soil. Representing this range leads to several modeling challenges. Should we limit complexity in our model, which consumes computer resources and inhibits interpretation? How do we decide if a process involving dust is worthy of inclusion within our model? Can we identify a minimal representation of a complex process that is efficient yet retains the physics relevant to climate? Answering these questions about the appropriate degree of representation is guided by model evaluation, which presents several more challenges. How do we proceed if the available observations do not directly constrain our process of interest? (This could result from competing processes that influence the observed variable and obscure the signature of our process of interest.) Examples will be presented from dust modeling, with lessons that might be more broadly applicable. The end result will either be clinical depression or there assuring promise of continued gainful employment as the community confronts these challenges.

  9. Construction dust amelioration techniques.

    Science.gov (United States)

    2012-04-01

    Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...

  10. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  11. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  12. Determination of parameters for hypervelocity dust grains encountered in near-Earth space

    Science.gov (United States)

    Tanner, William G.; Maag, Carl R.; Alexander, W. Merle; Sappenfield, Patricia

    1993-01-01

    Primarily interest was in the determination of the population of micrometeoroids and space debris and interpretation of the hole size in a thin film or in a micropore foam returned from space with theoretical calculations describing the event. In order to augment the significance of the theoretical calculations of the impact event, an experiment designed to analyze the charge production due to hypervelocity impacts on thin films also produced data which described the penetration properties of micron and sub-micron sized projectiles. The thin film penetration sites in the 500 A and 1000 A aluminum films were counted and a size distribution function was derived. In the case of the very smallest dust grains, there were no independent measurements of velocities like that which existed for the larger dust grains (d(sub p) is less than or equal to 1 micron). The primary task then became to assess the relationship between the penetration hole and the particle diameter of the projectile which made the hole. The most promising means to assess the measure of the diameters of impacting grains came in the form of comparing cratering mechanics to penetration mechanics. Future experimentation will produce measurements of the cratering as opposed to the penetrating event. Particles encountered by surfaces while being flown in space will degrade that surface in a systematic manner even when the impact is with small hypervelocity particles, d(sub p) is less than or equal to 10 microns. Though not to a degree which would precipitate a catastrophic failure of a system, the degradation of the materials comprising the interconnected system will occur. It is the degradation of the optical system and the subsequent embrittlement of other materials that can lead to degradation if not to failure. It is to this end that research was conducted to compare the primary consequences for experiments which will be flown to those which have been returned.

  13. Visible Wavelength Reflectance Spectra and Taxonomies of Near-Earth Objects from Apache Point Observatory

    Science.gov (United States)

    Hammergren, Mark; Brucker, Melissa J.; Nault, Kristie A.; Gyuk, Geza; Solontoi, Michael R.

    2015-11-01

    Near-Earth Objects (NEOs) are interesting to scientists and the general public for diverse reasons: their impacts pose a threat to life and property; they present important albeit biased records of the formation and evolution of the Solar System; and their materials may provide in situ resources for future space exploration and habitation.In January 2015 we began a program of NEO astrometric follow-up and physical characterization using a 17% share of time on the Astrophysical Research Consortium (ARC) 3.5-meter telescope at Apache Point Observatory (APO). Our 500 hours of annual observing time are split into frequent, short astrometric runs (see poster by K. A. Nault et. al), and half-night runs devoted to physical characterization (see poster by M. J. Brucker et. al for preliminary rotational lightcurve results). NEO surface compositions are investigated with 0.36-1.0 μm reflectance spectroscopy using the Dual Imaging Spectrograph (DIS) instrument. As of August 25, 2015, including testing runs during fourth quarter 2014, we have obtained reflectance spectra of 68 unique NEOs, ranging in diameter from approximately 5m to 8km.In addition to investigating the compositions of individual NEOs to inform impact hazard and space resource evaluations, we may examine the distribution of taxonomic types and potential trends with other physical and orbital properties. For example, the Yarkovsky effect, which is dependent on asteroid shape, mass, rotation, and thermal characteristics, is believed to dominate other dynamical effects in driving the delivery of small NEOs from the main asteroid belt. Studies of the taxonomic distribution of a large sample of NEOs of a wide range of sizes will test this hypothesis.We present a preliminary analysis of the reflectance spectra obtained in our survey to date, including taxonomic classifications and potential trends with size.Acknowledgements: Based on observations obtained with the Apache Point Observatory 3.5-meter telescope, which

  14. Effect of molarity in geo polymer earth brick reinforced with fibrous coir wastes using sandy soil and quarry dust as fine aggregate. (Case study

    Directory of Open Access Journals (Sweden)

    P. Palanisamy

    2018-06-01

    Full Text Available The studies are mainly carried out on strength development for various grades of geo-polymer mortar with varying molarity (M for producing geo-polymer earth brick (GPEB. The studies are focused on use of more sandy soil sieved from the raw earth available at site and quarry dust on replaced with river sand for making the un-burnt brick. The brick is reinforced with fibrous coir waste to increase shear strength and further pressed by hand compaction. Geo-polymer mortar is based on an inorganic alumina silicate binder system and it has more advantages of quick strength gain, negligence of water curing, best mechanical properties, eco-friendly, sustainable and alternate to ordinary Portland cement (OPC based mortar. Fly Ash (FA, Ground Granulated Blast-furnace Slag (GGBS, sandy soil sieved from earth and Quarry Dust (QD are mixed with alkaline solution in different molarities 6 M, 8 M and 10 M to prepare specimens. Specimens are tested against workability, compressive strength, and water absorption test, rate of water absorption, abraded test and also fiber content of the brick. The research found that the brick is made by FA & GGBS as binders and soil & quarry dust as fine aggregate in ratio of 0.5:0.5:1.75:0.25 with fibrous coir waste 1% and alkaline solution 10 M for preparing mortar to produce, excellent compressive strength, low water absorption, low rate of absorption, good abrasive resistance etc., The new brick is placed an alternate to compressed stabilized earth block, cement block and traditional burnt brick. Keywords: Fiber reinforced geo-polymer earth brick, Geo-polymer mortar using sandy soil and quarry dust as fine-aggregate, Nature fibrous coir wastes, Un-burnt brick, Alternate to compressed stabilized earth block

  15. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.; Román, Miguel O.

    2017-10-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6; https://nsidc.org/data/modis/data_summaries) and VIIRS Collection 1 (C1; https://doi.org/10.5067/VIIRS/VNP10.001) represent the state-of-the-art global snow-cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow-cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map. The increased data content allows flexibility in using the datasets for specific regions and end-user applications. Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375

  16. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.

    2017-01-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data

  17. The subglacial Lake Vostok (East Antarctica) surface snow is Earth-bound DNA (and dust)-free

    Science.gov (United States)

    Bulat, S.; Marie, D.; Bulat, E.; Alekhina, I.; Petit, J.-R.

    2012-09-01

    came up with only contaminant bacterial phylotypes (mostly of human source). The bioexposure trials showed that even in one day of open exposure the gDNA of rather complex microbial community composition was fatally damaged in terms of long-, mid-range and short-size amplicon generation in PCR. All this testify for very harsh conditions for life to survive the climate conditions of Central East Antarctica which could be considered as a presentday 'zone mortale' or 'polar desert' for known Earthbound microbial life forms. In addition this means that no life seeds are expected to reach subglacial lakes and water reservoirs and establish indigenous lake microbiota during their transit through the thick and aged Antarctic ice sheet upon its bottom melting. In general the subglacial Lake Vostok surface (ice sheet as well) environ represents the unique test area (sterile - in fact Earth-bound DNA-free and clean - in fact Earth-bound dust-free) for advancing extraterrestrial (ET) life detection technologies and searching for ET life indices in AMMs and IDPs.

  18. Planck intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible

    DEFF Research Database (Denmark)

    Cardoso, J.F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    The Planck survey provides unprecedented full-sky coverage of the submillimetre polarized emission from Galactic dust. In addition to the information on the direction of the Galactic magnetic field, this also brings new constraints on the properties of dust. The dust grains that emit the radiation...... with the spectral dependence in the submillimetre from Planck, will be important for constraining and understanding the full complexity of the grain models, and for interpreting the Planck thermal dust polarization and refinement of the separation of this contamination of the cosmic microwave background....... of dust, and therefore of the important dust model parameters, composition, size, and shape. Using ancillary catalogues of interstellar polarization and extinction of starlight, we obtain the degree of polarization, pV, and the optical depth in the V band to the star, τV. Toward these stars we measure...

  19. Evolution of Cometary Dust Particles to the Orbit of the Earth: Particle Size, Shape, and Mutual Collisions

    Science.gov (United States)

    Yang, Hongu; Ishiguro, Masateru

    2018-02-01

    In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.

  20. Ensemble mean climatology of snow darkening effect due to deposition of dust, black carbon, and organic carbon as simulated with the NASA GEOS-5 Earth System Model

    Science.gov (United States)

    Yasunari, T. J.; Lau, W. K.; Mahanama, S. P.; Colarco, P. R.; Koster, R. D.; Kim, K.; da Silva, A.

    2013-12-01

    The importance of the snow darkening effect (SDE) caused by solar absorbing aerosols such as dust and black carbon (BC) on climate has been discussed in previous studies. We have developed a snow darkening package for the catchment land surface model coupled to the NASA Goddard Earth Observing System, version 5 (GEOS-5), Earth System Model. Our snow darkening package includes the schemes for snow albedo and mass concentration calculations in polluted snow by dust, BC, and organic carbon (OC) depositions. The snow darkening package is currently available for seasonal snowpack over the model-defined land areas, excluding sea ice and inland of the ice sheets. The depositions of the solar absorbing aerosols are obtained from the GOCART aerosol module in the GEOS-5. Here we show the preliminary results of ensemble mean climatology (EMC) of the full SDE (i.e., dust+BC+OC). Ensemble simulations covering 10-year of 2002-2011 were carried out with the GEOS-5 including and excluding the full SDE for which each has 10 ensemble members. Shortwave radiative forcing (RF) at the top of atmosphere under all-sky condition for the 10-member EMC of the full SDE was relatively larger over Europe, Central Asia (CA), the Himalayas, the Tibetan Plateau (TP), East Asia (EA), Eastern Siberia (ES), the US, and Canadian Arctic. The RF was the strongest over the Himalayas and the TP in the northern hemisphere. The increases of surface air temperature also well correspond to the RF pattern. Larger reductions of snow water equivalent in seasonal snowpack were seen over the Himalayas, the TP, Alaska, Western Canada, and Arctic regions. We will discuss more on the day of the presentation.

  1. The Fourier-Kelvin Stellar Interferometer (FKSI): Infrared Detection and Characterization of Exozodiacal Dust to Super-Earths, A Progress Report

    Science.gov (United States)

    Danchi, W.

    2010-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a structurally connected infrared space interferometer with 0.5 m diameter telescopes on a 12.5 m baseline, and is passively cooled to approx.60K. The FKSI operates in the thermal infrared from 3-8 microns in a nulling (or starlight suppressing) mode for the detection and characterization of exoplanets, debris disks, extrasolar zodiacal dust levels. The FKSI will have the highest angular resolution of any infrared space instrument ever made with its nominal resolution of 40 mas at a 5 micron center wavelength. This resolution exceeds that of Spitzer by a factor of 38 and JWST by a factor of 5. The FKSI mission is conceived as a "probe class" or "mid-sized" strategic mission that utilizes technology advances from flagship projects like JWST, SIM, Spitzer, and the technology programs of TPF-I/Darwin. During the past year we began investigating an enhanced version of FKSI with 1-2 m diameter telescopes, passively cooled to 40K, on a 20-m baseline, with a sunshade giving a +/- 45 degree Field-of-Regard. This enhanced design is capable of detecting and characterizing the atmospheres of many 2 Earth-radius super-Earths and a few Earth-twins. We will report progress on the design of the enhanced mission concept and current status of the technologies needed for this mission.

  2. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  3. Using an Instrumented Drone to Sample Dust Devils

    Science.gov (United States)

    Jackson, Brian; Lorenz, Ralph; Davis, Karan; Lipple, Brock

    2017-10-01

    Dust devils are low-pressure, small (many to tens of meters) convective vortices powered by surface heating and rendered visible by lofted dust. Dust devils occur in arid climates on Earth, where they degrade air quality and pose a hazard to small aircraft. They also occur ubiquitously on Mars, where they may dominate the supply of atmospheric dust. Since dust contributes significantly to Mars’ atmospheric heat budget, dust devils probably play an important role in its climate. The dust-lifting capacity of a devil likely depends sensitively on its structure, particularly the wind and pressure profiles, but the exact dependencies are poorly constrained. Thus, the exact contribution to Mars’ atmosphere remains unresolved. Moreover, most previous studies of martian dust devils have relied on passive sampling of the profiles via meteorology packages on landed spacecraft, resulting in random encounter geometries which non-trivially skew the retrieved profiles. Analog studies of terrestrial devils have employed more active sampling (instrumented vehicles or manned aircraft) but have been limited to near-surface (few meters) or relatively high altitude (hundreds of meters) sampling. Unmanned aerial vehicles (UAVs) or drones, combined with miniature, digital instrumentation, promise a novel and uniquely powerful platform from which to sample dust devils via (relatively) controlled geometries at a wide variety of altitudes. In this presentation, we will describe a pilot study using an instrumented quadcopter on an active field site in southeastern Oregon, which (to our knowledge) has not previously been surveyed for dust devils. We will present preliminary results from the resulting encounters, including stereo image analysis and encounter footage collected onboard the drone.

  4. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  5. Airborne Dust, "The Good Guy or the Bad Guy": How Much do We Know?

    Science.gov (United States)

    Tsay, Si-Chee

    2010-01-01

    Processes in generating, transporting, and dissipating the airborne dust particles are global phenomena -African dust regularly reaching the Alps; Asian dust seasonally crossing the Pacific into North America, and ultimately the Atlantic into Europe. One of the vital biogeochemical roles dust storms play in Earth's ecosystem is routinely mobilizing mineral dust, as a source of iron, from deserts into oceans for fertilizing the growth of phytoplankton -the basis of the oceanic food chain. Similarly, these dust-laden airs also supply crucial nutrients for the soil of tropical rain forests, the so-called womb of life that hosts 50-90% of the species on Earth. With massive amounts of dust lifted from desert regions and injected into the atmosphere, however, these dust storms often affect daily activities in dramatic ways: pushing grit through windows and doors, forcing people to stay indoors, causing breathing problems, reducing visibility and delaying flights, and by and large creating chaos. Thus, both increasing and decreasing concentrations of doses result in harmful biological effects; so do the airborne dust particles to our Living Earth. Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite, in major international research projects such

  6. Adaptive responses on chromosome aberration and DNA breakage of peripheral lymphocytes from workers exposed to thorium and rare earth mixed dust in Baotou steel plant

    International Nuclear Information System (INIS)

    Liu Qingjie; Feng Jiangbing; Lu Xue; Chen Deqing; Lv Huimin; Su Xu; Liu Yufei; Jia Kejun

    2008-01-01

    Objective: To explore if the occupational exposure to low dose thorium could induce adaptive response in peripheral lymphocytes. Methods: 40 individuals, who exposed to thorium and rare earth mixed dust (exposure group) or control in Baotou Steel Plant, were selected, and chromosome aberrations were analyzed. Then the peripheral blood samples were irradiated in vitro with 2 Gy 60 Co γ-rays, and unstable chromosome aberration or DNA stand breakage analysis using single cell gel electrophoresis was performed. Results: The dicentrics before 2 Gy exposure in exposure group was higher than that in control (P>0.05). But the dicentrics after 2 Gy exposure in exposure group was lower than that in control, but not significantly (P >0.05). The tricentrics in exposure group was significantly lower than that in control (U=3.1622, 0.001< P<0.002). The DNA strand breakage in control group was significantly higher than that in exposure group (t=25, P<0.001). Conclusions: Occupational exposure to low dose thorium could induce the adaptive response on chromosome aberration and DNA strand breakage in peripheral lymphocytes. (authors)

  7. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  8. A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR

    Science.gov (United States)

    Hansell, R. A., Jr.; Reid, J. S.; Tsay, S. C.; Roush, T. L.; Kalashnikova, O. V.

    2011-01-01

    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects.

  9. Investigating the Present Day Cosmic Dust Flux at the Earth's Surface: Initial Results from the Kwajalein Micrometeorite Collection

    Science.gov (United States)

    Wozniakiewicz, P. J.; Bradley, J. P.; Price, M. C.; Zolensky, M. E.; Ishii, H. A.; Brownlee, D. E.; Russell, S. S.

    2014-01-01

    Examination of impact craters on the Long Duration Exposure Facility satellite indicate a present day micrometeoroid flux of approx. 30,000 tonnes [1 after 2]. But what portion of this material arrives at the Earth's surface as micrometeorites? Studies of available micrometeorite collections from deep sea sediments [e.g. 3], Greenland blue ice [e.g. 4] and the South Pole water well [e.g. 1] may be complicated by terrestrial weathering and, in some cases, collection bias (magnetic separation for deep sea sediments) and poorly constrained ages. We have recently set up a micrometeorite collection station on Kwajalein Island in the Republic of the Marshall Islands in the Pacific Ocean, using high volume air samplers to collect particles directly from the atmosphere. By collecting in this way, the terrestrial age of the particles is known, the weathering they experience is minimal, and we are able to constrain particle arrival times. Collecting at this location also exploits the considerably reduced anthropogenic background [5]. Method: High volume air samplers were installed on top of the two-story airport building on Kwajalein. These were fitted with polycarbonate membrane filters with 5µm diameter perforations. The flow rates were set to 0.5m3/min, and filters were changed once a week. After collection, filters were washed to remove salt and concentrate particles [see 5] in preparation for analysis by SEM. Results and Discussion: A selection of filters have been prepared and surveyed. Due to their ease of identification our initial investigations have focused on particles resembling cosmic spherules. The spheres can be divided into three main groups: 1. Silicate spherules rich in Al, Ca, K and Na (to varying degrees), 2. Silicate spherules rich in Mg and Fe and 3. Fe-rich spherules. Group 1 spherules are often vesiculated and can occur as aggregates. They are similar in appearance and composition to volcanic microspheres [e.g. 6] and are thus likely terrestrial in

  10. Loess and Eolian Dust Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past environment derived from Loess and Eolian dust (silt-sized material deposited on the Earth surface by the surface winds. Parameter keywords describe...

  11. Sol–gel glass-ceramics comprising rare-earth doped SnO2 and LaF3 nanocrystals: an efficient simultaneous UV and IR to visible converter

    International Nuclear Information System (INIS)

    Yanes, A. C.; Castillo, J. del; Méndez-Ramos, J.; Rodríguez, V. D.

    2011-01-01

    We report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot), and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.Graphical AbstractWe report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot) and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.

  12. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  13. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  14. Active Dust Experiment in the Mesosphere

    International Nuclear Information System (INIS)

    Norberg, Carol; Pellinen-Wannberg, Asta

    2008-01-01

    The mesosphere stretches from an altitude of about 50 to 90 km above the Earth's surface. Meteors entering the Earth's atmosphere are believed to ablate and hence give rise to a thin layer of dust particles in the upper part of the Earth's mesosphere. It seems that the dust is most dense in a layer that lies between 80 and 90 km. The dust particles are thought to have sizes of a few to tens of nanometers. Efforts have been made to measure these particles using rockets and radar techniques with limited success. We propose to release dust into the mesosphere over northern Sweden at a height of about 90 km and observe the released dust using the EISCAT radar system. The dust will be launched from the Swedish Space Corporation Esrange Space Centre on a single-stage Improved-Orion rocket that will be launched so that its flight path will be in the radar field of view.

  15. Characterization of synoptic patterns causing dust outbreaks that affect the Arabian Peninsula

    Science.gov (United States)

    Hermida, L.; Merino, A.; Sánchez, J. L.; Fernández-González, S.; García-Ortega, E.; López, L.

    2018-01-01

    Dust storms pose serious weather hazards in arid and semiarid regions of the earth. Understanding the main synoptic conditions that give rise to dust outbreaks is important for issuing forecasts and warnings to the public in cases of severe storms. The aim of the present study is to determine synoptic patterns that are associated with or even favor dust outbreaks over the Arabian Peninsula. In this respect, red-green-blue dust composite images from the Meteosat Second Generation (MSG) satellite are used to detect dust outbreaks affecting the Arabian Peninsula, with possible influences in southwestern Asia and northeastern Africa, between 2005 and 2013. The Meteosat imagery yielded a sample of 95 dust storm days. Meteorological fields from NCEP/NCAR reanalysis data of wind fields at 10 m and 250 hPa, mean sea level pressure, and geopotential heights at 850 and 500 hPa were obtained for the dust storm days. Using principal component analysis in T-mode and non-hierarchical k-means clustering, we obtained four major atmospheric circulation patterns associated with dust outbreaks during the study days. Cluster 4 had the largest number of days with dust events, which were constrained to summer, and cluster 3 had the fewest. In clusters 1, 2 and 3, the jet stream favored the entry of a low-pressure area or trough that varied in location between the three clusters. Their most northerly location was found in cluster 4, along with an extensive low-pressure area supporting strong winds over the Arabian Peninsula. The spatial distribution of aerosol optical depth for each cluster obtained was characterized using the Moderate Resolution Imaging Spectroradiometer data. Then, using METAR stations, clusters were also characterized in terms of frequency and visibility.

  16. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  17. The physics of wind-blown sand and dust.

    Science.gov (United States)

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  18. Numerical Prediction of Dust. Chapter 10

    Science.gov (United States)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; hide

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  19. Electrodynamic Dust Shield Demonstrator

    Science.gov (United States)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  20. Enhancement and identification of dust events in the south-west ...

    Indian Academy of Sciences (India)

    in dust source regions, which have a negative impact on human health ... Keywords. MODIS; dust storm; visible; infrared; remote sensing; brightness temperature. 1 ... clouds can often be misinterpreted as dust. In order to ... dust aerosol outbreaks over land using satellite ... models were also used to track air parcels arriving.

  1. Hot exozodiacal dust resolved around Vega with IOTA/IONIC

    Science.gov (United States)

    Defrère, D.; Absil, O.; Augereau, J.-C.; di Folco, E.; Berger, J.-P.; Coudé du Foresto, V.; Kervella, P.; Le Bouquin, J.-B.; Lebreton, J.; Millan-Gabet, R.; Monnier, J. D.; Olofsson, J.; Traub, W.

    2011-10-01

    Context. Although debris discs have been detected around a significant number of main-sequence stars, only a few of them are known to harbour hot dust in their inner part where terrestrial planets may have formed. Thanks to infrared interferometric observations, it is possible to obtain a direct measurement of these regions, which are of prime importance for preparing future exo-Earth characterisation missions. Aims: We resolve the exozodiacal dust disc around Vega with the help of infrared stellar interferometry and estimate the integrated H-band flux originating from the first few AUs of the debris disc. Methods: Precise H-band interferometric measurements were obtained on Vega with the 3-telescope IOTA/IONIC interferometer (Mount Hopkins, Arizona). Thorough modelling of both interferometric data (squared visibility and closure phase) and spectral energy distribution was performed to constrain the nature of the near-infrared excess emission. Results: Resolved circumstellar emission within ~6 AU from Vega is identified at the 3-σ level. The most straightforward scenario consists in a compact dust disc producing a thermal emission that is largely dominated by small grains located between 0.1 and 0.3 AU from Vega and accounting for 1.23 ± 0.45% of the near-infrared stellar flux for our best-fit model. This flux ratio is shown to vary slightly with the geometry of the model used to fit our interferometric data (variations within ± 0.19%). Conclusions: The presence of hot exozodiacal dust in the vicinity of Vega, initially revealed by K-band CHARA/FLUOR observations, is confirmed by our H-band IOTA/IONIC measurements. Whereas the origin of the dust is still uncertain, its presence and the possible connection with the outer disc suggest that the Vega system is currently undergoing major dynamical perturbations.

  2. Radio Frequencies Emitted by Mobile Granular Materials: A Basis for Remote Sensing of Sand and Dust Activity on Mars and Earth

    Science.gov (United States)

    Marshall, J.; Farrell, W.; Houser, G.; Bratton, C.

    1999-01-01

    In recent laboratory experiments, measurements were made of microsecond radio-wave (RF) bursts emitted by grains of sand as they energetically circulated in a closed, electrically ungrounded chamber. The bursts appeared to result from nanoscale electrical discharging from grain surfaces. Both the magnitude and wave form of the RF pulses varied with the type of material undergoing motion. The release of RF from electrical discharging is a well-known phenomenon, but it is generally measured on much larger energy scales (e.g., in association with lightning or electrical motors). This phenomenon might be used to detect, on planetary surfaces, the motion and composition of sand moving over dunes, the turbulent motion of fine particles in dust storms, highly-energetic grain and rock collisions in volcanic eruptions, and frictional grinding of granular materials in dry debris flows, landslides, and avalanches. The occurrence of these discharges has been predicted from theoretical considerations Additional information is contained in the original.

  3. Meteors, meteorites and cosmic dust

    International Nuclear Information System (INIS)

    Lebedinets, V.N.

    1987-01-01

    The problem of meteorite origin and meteorite composition is discussed. Nowadays, most scientists suppose that the giant Oort cloud consisting of ice comet nuclei is the sourse of the meteor matter. A principle unity of the matter of meteorites falling to the Earth and cosmic dust is noted as well as that of meteorite bodies evaporating in the atmosphere and bearing meteors and bodies

  4. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  5. Technology Advancement of the Visible Nulling Coronagraph

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve

    2010-01-01

    The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.

  6. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    Science.gov (United States)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  7. Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling

    Science.gov (United States)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-01-01

    Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

  8. Charged dust structures in plasmas

    International Nuclear Information System (INIS)

    Cramer, N.F.; Vladimirov, S.V.

    1999-01-01

    We report here on theoretical investigations of the mechanical-electrostatic modes of vibration of a dust-plasma crystal, extending earlier work on the transverse modes of a horizontal line of grains (where the ions flow vertically downward to a plane horizontal cathode), the modes of two such lines of grains, and the modes of a vertical string of grains. The last two arrangements have the unique feature that the effect of the background plasma on the mutual grain interaction is asymmetric because of the wake downstream of the grains studied in. The characteristic frequencies of the vibrations are dependent on the parameters of the plasma and the dust grains, such as the Debye length and the grain charge, and so measurement of the frequencies could provide diagnostics of these quantities. Although the current boom in dusty plasma research is driven mainly by such industrial applications as plasma etching, sputtering and deposition, the physical outcomes of investigations in this rapidly expanding field cover many important topics in space physics and astrophysics as well. Examples are the interaction of dust with spacecraft, the structure of planetary rings, star formation, supernova explosions and shock waves. In addition, the study of the influence of dust in environmental research, such as in the Earth's ionosphere and atmosphere, is important. The unique binding of dust particles in a plasma opens possibilities for so-called super-chemistry, where the interacting bound elements are not atoms but dust grains

  9. A simplified Suomi NPP VIIRS dust detection algorithm

    Science.gov (United States)

    Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan

    2017-11-01

    Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.

  10. Ocular toxicity of authentic lunar dust.

    Science.gov (United States)

    Meyers, Valerie E; Garcìa, Hector D; Monds, Kathryn; Cooper, Bonnie L; James, John T

    2012-07-20

    Dust exposure is a well-known occupational hazard for terrestrial workers and astronauts alike and will continue to be a concern as humankind pursues exploration and habitation of objects beyond Earth. Humankind's limited exploration experience with the Apollo Program indicates that exposure to dust will be unavoidable. Therefore, NASA must assess potential toxicity and recommend appropriate mitigation measures to ensure that explorers are adequately protected. Visual acuity is critical during exploration activities and operations aboard spacecraft. Therefore, the present research was performed to ascertain the ocular toxicity of authentic lunar dust. Small (mean particle diameter = 2.9 ± 1.0 μm), reactive lunar dust particles were produced by grinding bulk dust under ultrapure nitrogen conditions. Chemical reactivity and cytotoxicity testing were performed using the commercially available EpiOcularTM assay. Subsequent in vivo Draize testing utilized a larger size fraction of unground lunar dust that is more relevant to ocular exposures (particles lunar dust was minimally irritating. Minor irritation of the upper eyelids was noted at the 1-hour observation point, but these effects resolved within 24 hours. In addition, no corneal scratching was observed using fluorescein stain. Low-titanium mare lunar dust is minimally irritating to the eyes and is considered a nuisance dust for ocular exposure. No special precautions are recommended to protect against ocular exposures, but fully shielded goggles may be used if dust becomes a nuisance.

  11. Dust-gas interaction deduced from Halley multicolour camera observations

    International Nuclear Information System (INIS)

    Huebner, W.F.; Delamere, W.A.; Keller, H.U.; Reitsema, H.J.; Schmidt, H.U.; Whipple, F.L.; Wilhelm, K.

    1986-01-01

    The dust and gas productions of Comet Halley were measured by the dust counter and the mass spectrometers on the Giotto spacecraft. These instruments give only little information about the spatial asymmetry of the activity. The asymmetry in the dust production is clearly evident from the dust jets seen in the Halley Multicolour Camera images. Since the dust is entrained by the gas, production must be similarly asymmetric. The intensity profiles along and across several dust jets are related to their source regions on the nucleus. Properties of the dust jets are investigated. A few compact, but highly active source regions on the nucleus produce most of the visible dust and can account for most of the gas produced by the comet. 2 refs

  12. Transport of Mineral Dust and Its Impact on Climate

    Directory of Open Access Journals (Sweden)

    Kerstin Schepanski

    2018-04-01

    Full Text Available Mineral dust plays a pivotal role in the Earth’s system. Dust modulates the global energy budget directly via its interactions with radiation and indirectly via its influence on cloud and precipitation formation processes. Dust is a micro-nutrient and fertilizer for ecosystems due to its mineralogical composition and thus impacts on the global carbon cycle. Hence, dust aerosol is an essential part of weather and climate. Dust suspended in the air is determined by the atmospheric dust cycle: Dust sources and emission processes define the amount of dust entrained into the atmosphere. Atmospheric mixing and circulation carry plumes of dust to remote places. Ultimately, dust particles are removed from the atmosphere by deposition processes such as gravitational settling and rain wash out. During its residence time, dust interacts with and thus modulates the atmosphere resulting into changes such as in surface temperature, wind, clouds, and precipitation rates. There are still uncertainties regarding individual dust interactions and their relevance. Dust modulates key processes that are inevitably influencing the Earth energy budget. Dust transport allows for these interactions and at the same time, the intermittency of dust transport introduces additional fluctuations into a complex and challenging system.

  13. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  14. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    Science.gov (United States)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  15. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    Science.gov (United States)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  16. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-04-01

    To better quantify radiative effects of dust over the Arabian Peninsula we have developed a standalone column radiation transport model coupled with the Mie calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments are carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18-20 March 2012. Comprehensive ground-based observations and satellite retrievals are used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing are estimated both from the model and from observations. Diurnal cycle of the the shortwave instantaneous dust direct radiative forcing is studied for a range of aerosol and surface characteristics representative for the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing are evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions along with anisotropic aerosol scattering are mostly responsible for diurnal effects. We also discuss estimates of the climatological dust instantaneous direct radiative forcing over land and the Red Sea using two approaches. The first approach is based on the probability density function of the aerosol optical depth, and the second is based on the climatologically average Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  17. The Spatial Variation of Dust Particulate Matter Concentrations during Two Icelandic Dust Storms in 2015

    Directory of Open Access Journals (Sweden)

    Pavla Dagsson-Waldhauserova

    2016-06-01

    Full Text Available Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 µg·m−3 (PM10 = 7 to 583 µg·m−3. The mean PM1 concentrations were 97–241 µg·m−3 with a maximum of 261 µg·m−3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34–0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  18. Phosphatases as an index of biotic contamination of dust

    NARCIS (Netherlands)

    Kniest, F.M.; Bronswijk, van J.E.M.H.; Schober, G.; Bouma, C.

    1990-01-01

    Enzymatic (phosphatase) activity (naphthol-release made visible with diazonium salt) of 10 mattress dust samples was correlated with number of counted arthropods, fungal spores and bacteria. This method can be helpful in the evaluation of large number of dust samples e.g. from riskful areas or from

  19. Palaeo-dust records: A window to understanding past environments

    Science.gov (United States)

    Marx, Samuel K.; Kamber, Balz S.; McGowan, Hamish A.; Petherick, Lynda M.; McTainsh, Grant H.; Stromsoe, Nicola; Hooper, James N.; May, Jan-Hendrik

    2018-06-01

    Dust entrainment, transport over vast distances and subsequent deposition is a fundamental part of the Earth system. Yet the role and importance of dust has been underappreciated, due largely to challenges associated with recognising dust in the landscape and interpreting its depositional history. Despite these challenges, interest in dust is growing. Technical advances in remote sensing and modelling have improved understanding of dust sources and production, while advances in sedimentology, mineralogy and geochemistry (in particular) have allowed dust to be more easily distinguished within sedimentary deposits. This has facilitated the reconstruction of records of dust emissions through time. A key advance in our understanding of dust has occurred following the development of methods to geochemically provenance (fingerprint) dust to its source region. This ability has provided new information on dust transport pathways, as well as the reach and impact of dust. It has also expanded our understanding of the processes driving dust emissions over decadal to millennial timescales through linking dust deposits directly to source area conditions. Dust provenance studies have shown that dust emission, transport and deposition are highly sensitive to variability in climate. They also imply that dust emissions are not simply a function of the degree of aridity in source areas, but respond to a more complex array of conditions, including sediment availability. As well as recording natural variability, dust records are also shown to sensitively track the impact of human activity. This is reflected by both changing dust emission rates and changing dust chemistry. Specific examples of how dust responds to, and records change, are provided with our work on dust emissions from Australia, the most arid inhabited continent and the largest dust source in the Southern Hemisphere. These case studies show that Australian dust emissions reflect hydro-climate variability, with

  20. LADEE UVS Observations of Atoms and Dust in the Lunar Tail

    Science.gov (United States)

    Wooden, Diane H.; Colaprete, Anthony; Cook, Amanda M.; Shirley, Mark H.; Vargo, Kara E.; Elphic, Richard C.; Stubbs, Timothy J.; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) was a lunar orbiter launched in September 2013 that investigated the composition and temporal variation of the tenuous lunar exosphere and dust environment. A major goal of the mission was to characterize the dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. The Ultraviolet/Visible Spectrometer (UVS) onboard LADEE addresses this goal, utilizing two sets of optics: a limbviewing telescope, and a solar-viewing telescope. We report on spectroscopic (approximately 280 - 820 nm) observations viewing down the lunar wake or along the 'lunar tail' from lunar orbit. Prior groundbased studies have observed the emission from neutral sodium atoms extended along the lunar tail, so often this region is referred to as the lunar sodium tail. UVS measurements were made on the dark side of the moon, with the UVS limb-viewing telescope pointed outward in the direction of the Moon's wake (almost anti-sun), during different lunar phases. These UVS observation activities sample a long column and allow the characterization of scattered light from dust and emission lines from atoms in the lunar tail. Observations in this UVS configuration show the largest excess of scattered blue light in our data set, indicative of the presence of small dust grains in the tail. Once lofted, nanoparticles may become charged and picked up by the solar wind, similar to the phenomena witnessed above Enceladus's northern hemisphere or by the STEREO/WAVES instrument while close to Earth's orbit. The UVS data show that small dust grains as well as atoms become entrained in the lunar tail.

  1. Dust: Small-scale processes with global consequences

    Science.gov (United States)

    Okin, G.S.; Bullard, J.E.; Reynolds, R.L.; Ballantine, J.-A.C.; Schepanski, K.; Todd, M.C.; Belnap, J.; Baddock, M.C.; Gill, T.E.; Miller, M.E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored. ?? Author(s) 2011.

  2. Dust emission: small-scale processes with global consequences

    Science.gov (United States)

    Okin, Gregory S.; Bullard, Joanna E.; Reynolds, Richard L.; Ballantine, John-Andrew C.; Schepanski, Kerstin; Todd, Martin C.; Belnap, Jayne; Baddock, Matthew C.; Gill, Thomas E.; Miller, Mark E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored.

  3. Ice nucleation properties of mineral dusts

    OpenAIRE

    Steinke, Isabelle

    2013-01-01

    Ice nucleation in clouds has a significant impact on the global hydrological cycle as well as on the radiative budget of the Earth. The AIDA cloud chamber was used to investigate the ice nucleation efficiency of various atmospherically relevant mineral dusts. From experiments with Arizona Test Dust (ATD) a humidity and temperature dependent ice nucleation active surface site density parameterization was developed to describe deposition nucleation at temperatures above 220 K. Based...

  4. Dust in Protoplanetary Disks: Properties and Evolution

    NARCIS (Netherlands)

    Natta, A.; Testi, L.; Calvet, N.; Henning, T.; Waters, R.; Wilner, D.

    2007-01-01

    We review the properties of dust in protoplanetary disks around optically visible pre-main-sequence stars obtained with a variety of observational techniques, from measurements of scattered light at visual and infrared wavelengths to mid-infrared spectroscopy and millimeter interferometry. A general

  5. Quantitative detection of settled coal dust over green canopy

    Science.gov (United States)

    Brook, Anna; Sahar, Nir

    2017-04-01

    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing spectral unmixing in order to retrieve accurate quantitative information latent in in situ data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem in semi-supervised fashion. This study presents a practical implementation of field spectroscopy as a quantitative tool to detect settled coal dust over green canopy in free/open environment. Coal dust is a fine powdered form of coal, which is created by the crushing, grinding, and pulverizing of coal. Since the inelastic nature of coal, coal dust can be created during transportation, or by mechanically handling coal. Coal dust, categorized at silt-clay particle size, of particular concern due to heavy metals (lead, mercury, nickel, tin, cadmium, mercury, antimony, arsenic, isotopes of thorium and strontium) which are toxic also at low concentrations. This hazard exposes risk on both environment and public health. It has been identified by medical scientist around the world as causing a range of diseases and health problems, mainly heart and respiratory diseases like asthma and lung cancer. It is due to the fact that the fine invisible coal dust particles (less than 2.5 microns) long lodge in the lungs and are not naturally expelled, so long-term exposure increases the risk of health problems. Numerus studies reported that data to conduct study of geographic distribution of the very fine coal dust (smaller than PM 2.5) and related health impacts from coal exports, is not being collected. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature

  6. Effect of dust storms on FSO communications links

    KAUST Repository

    Esmail, Maged Abdullah

    2017-05-18

    In literature, there is a lake of information about free space optic (FSO) systems\\' performance in arid and semi-arid areas that are prone to frequent dust storms. Therefore, in this paper, we investigate the performance of FSO links under dust storm conditions. We aim to determine the limits and capabilities of such systems in this harsh environment. To achieve this goal, we use some performance metrics including signal-to-noise (SNR) ratio, bit error rate (BER), and channel capacity. The results show that dust is a rough impairment that causes link drop under low visibility range. Moreover, we found that the system performance can be improved by using short segments or multi-hop system. Furthermore, the results show negligible improvement in system performance under dense dust. The comparison of fog and dust impairments show that dust introduces much higher attenuation than fog. Therefore, dust can be considered as the ultimate impairment for FSO links.

  7. Effect of dust storms on FSO communications links

    KAUST Repository

    Esmail, Maged Abdullah; Fathallah, Habib; Alouini, Mohamed-Slim

    2017-01-01

    In literature, there is a lake of information about free space optic (FSO) systems' performance in arid and semi-arid areas that are prone to frequent dust storms. Therefore, in this paper, we investigate the performance of FSO links under dust storm conditions. We aim to determine the limits and capabilities of such systems in this harsh environment. To achieve this goal, we use some performance metrics including signal-to-noise (SNR) ratio, bit error rate (BER), and channel capacity. The results show that dust is a rough impairment that causes link drop under low visibility range. Moreover, we found that the system performance can be improved by using short segments or multi-hop system. Furthermore, the results show negligible improvement in system performance under dense dust. The comparison of fog and dust impairments show that dust introduces much higher attenuation than fog. Therefore, dust can be considered as the ultimate impairment for FSO links.

  8. Dust grain resonant capture: A statistical study

    Science.gov (United States)

    Marzari, F.; Vanzani, V.; Weidenschilling, S. J.

    1993-01-01

    A statistical approach, based on a large number of simultaneous numerical integrations, is adopted to study the capture in external mean motion resonances with the Earth of micron size dust grains perturbed by solar radiation and wind forces. We explore the dependence of the resonant capture phenomenon on the initial eccentricity e(sub 0) and perihelion argument w(sub 0) of the dust particle orbit. The intensity of both the resonant and dissipative (Poynting-Robertson and wind drag) perturbations strongly depends on the eccentricity of the particle while the perihelion argument determines, for low inclination, the mutual geometrical configuration of the particle's orbit with respect to the Earth's orbit. We present results for three j:j+1 commensurabilities (2:3, 4:5 and 6:7) and also for particle sizes s = 15, 30 microns. This study extends our previous work on the long term orbital evolution of single dust particles trapped into resonances with the Earth.

  9. Long-term variability of dust events in Iceland (1949-2011)

    Science.gov (United States)

    Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.

    2014-12-01

    The long-term frequency of atmospheric dust observations was investigated for the southern part of Iceland and interpreted together with earlier results obtained from northeastern (NE) Iceland (Dagsson-Waldhauserova et al., 2013). In total, over 34 dust days per year on average occurred in Iceland based on conventionally used synoptic codes for dust observations. However, frequent volcanic eruptions, with the re-suspension of volcanic materials and dust haze, increased the number of dust events fourfold (135 dust days annually). The position of the Icelandic Low determined whether dust events occurred in the NE (16.4 dust days annually) or in the southern (S) part of Iceland (about 18 dust days annually). The decade with the most frequent dust days in S Iceland was the 1960s, but the 2000s in NE Iceland. A total of 32 severe dust storms (visibility typically warm, occurring during summer/autumn (May-September) and during mild southwesterly winds, while the subarctic dust events (S Iceland) were mainly cold, occurring during winter/spring (March-May) and during strong northeasterly winds. About half of the dust events in S Iceland occurred in winter or at sub-zero temperatures. A good correlation was found between particulate matter (PM10) concentrations and visibility during dust observations at the stations Vík and Stórhöfði. This study shows that Iceland is among the dustiest areas of the world and that dust is emitted year-round.

  10. Dust collector

    Energy Technology Data Exchange (ETDEWEB)

    Sahourin, H.

    1988-03-22

    This invention relates to a dust collector or filter which may be used for large volume cleaning air for gases or for separating out industrial byproducts such as wood chips, sawdust, and shavings. It relies on filtration or separation using only a uniquely configured medium. A primary, but not exclusive, purpose of the invention is to enable very large throughput, capable of separating or filtering of gases containing up to three or more tons of byproduct with a minimum pressure-drop across the device. No preliminary cycloning, to remove major particulates is necessary. The collector generally comprises a continuous and integral filter medium which is suspended from a plurality of downwardly extending frames forming a series of separate elements having a triangular cross-section, each element being relatively wide at the top and narrow at the bottom to define, between adjacent elements, a divergent collecting space which is wide at the bottom. 11 figs.

  11. The Electric Environment of Martian Dust Devils

    Science.gov (United States)

    Barth, E. L.; Farrell, W. M.; Rafkin, S. C.

    2017-12-01

    While Martian dust devils have been monitored through decades of observations, we have yet to study their possible electrical effects from in situ instrumentation. However, evidence for the existence of active electrodynamic processes on Mars is provided by laboratory studies of analog material and field campaigns of dust devils on Earth. We have enabled our Mars regional scale atmospheric model (MRAMS) to estimate an upper limit on electric fields generated through dust devil circulations by including charged particles as defined from the Macroscopic Triboelectric Simulation (MTS) code. MRAMS is used to investigate the complex physics of regional, mesoscale, and microscale atmospheric phenomena on Mars; it is a 3-D, nonhydrostatic model, which permits the simulation of atmospheric flows with large vertical accelerations, such as dust devils. MTS is a 3-D particle code which quantifies charging associated with swirling, mixing dust grains; grains of pre-defined sizes and compositions are placed in a simulation box and allowed to move under the influence of winds and gravity. Our MRAMS grid cell size makes our results most applicable to dust devils of a few hundred meters in diameter. We have run a number of simulations to understand the sensitivity of the electric field strength to the particle size and abundance and the amount of charge on each dust grain. We find that Efields can indeed develop in Martian dust convective features via dust grain filtration effects. The overall value of these E-fields is strongly dependent upon dust grain size, dust load, and lifting efficiency, and field strengths can range from 100s of mV/m to 10s of kV/m.

  12. Models of surface convection and dust clouds in brown dwarfs

    International Nuclear Information System (INIS)

    Freytag, B; Allard, F; Ludwig, H-G; Homeier, D; Steffen, M

    2008-01-01

    The influence of dust grains on the atmospheres of brown dwarfs is visible in observed spectra. To investigate what prevents the dust grains from falling down, or how fresh condensable material is mixed up in the atmosphere to allow new grains to form, we performed 2D radiation-hydrodynamics simulations with CO5BOLD of the upper part of the convection zone and the atmosphere containing the dust cloud layers. We find that unlike in models of Cepheids, the convective overshoot does not play a major role. Instead, the mixing in the dust clouds is controlled by gravity waves.

  13. Cosmic dust investigations. Pt. 2

    International Nuclear Information System (INIS)

    Simpson, J.A.; Tuzzolino, A.J.

    1989-01-01

    A series of experiments have been completed using accelerator dust particles in the mass range ≅ 10 -9 -10 -6 g and velocity range ≅ 2-12 km/s to measure the velocity loss and degree of fragmentation for dust particles penetrating 6 and 28 μm thick polyvinylidene fluoride (PVDF) dust detectors. These measurements prove that even for a ratio of PVDF foil thickness to particle diameter as large as 0.6, the velocity loss and fragmentation is far less than expected from earlier reports in the literature. For 6 μm thick foils the velocity loss is ≤5%. These experiments are based on an extension of our earlier work which showed that two PVDF foils spaced a given distance apart could provide accurate time-of-flight (TOF) information due to the fast pulse rise time of PVDF detector response. We also report on our present state of development of PVDF position-sensing detectors which identify the x, y coordinates of particle impact, using detector and electronic pulse techniques adapted from our semiconductor position-sensing cosmic-ray detectors. Typical position errors of ≅ 1 mm are readily achieved. Finally, we have combined the above developments into a dust-particle telescope which accurately (≅ 1 0 angular accuracy) measures the trajectory of the incident particle as well as its mass and incident velocity, irrespective of whether it is a charged or neutral particle. We discuss how this practical dust telescope can be combined with dust capture cells for space flight and later recovery for laboratory determination of elemental and isotopic composition of captured dust. We also describe a simpler trajectory array based on discrete mosaics of thin detectors which would measure trajectories with a mean angular error of ≅ 4 0 . We discuss the application of these instruments for distinguishing between interplanetary dust of cometary and asteroidal origin, and for measurements on a space station, from near-Earth trapped dust of artificial origin. (orig.)

  14. Dust as a Working Fluid for Heat Transfer Project

    Science.gov (United States)

    Mantovani, James G.

    2015-01-01

    The project known as "Dust as a Working Fluid" demonstrates the feasibility of a dust-based system for transferring heat radiatively into space for those space applications requiring higher efficiency, lower mass, and the need to operate in extreme vacuum and thermal environments - including operating in low or zero gravity conditions in which the dust can be conveyed much more easily than on Earth.

  15. Identifying sources of aeolian mineral dust: Present and past

    Science.gov (United States)

    Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E

    2014-01-01

    Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in

  16. Glass Frit Clumping And Dusting

    International Nuclear Information System (INIS)

    Steimke, J. L.

    2013-01-01

    the dust removed from fresh DWPF Frit 418 while it was being shaken in a small scale LabRAM test was measured. The median size on a volume basis was 7.6 μm and 90% of the frit particles were between 1.6 and 28 μm. The mass of dust collected using this test protocol was much less than 1% of the original frit. 4. Can the dust be removed in a small number of processing steps and without the larger frit particles continuing to spall additional dust sized particles? a. Test results using a LabRAM were inconclusive. The LaRAM performs less efficient particle size separation than the equipment used by Bekeson and Multi-Aspirator. 5. What particle size of frit is expected to create a dust problem? a. The original criterion for creating a dusting problem was those particle sizes that were readily suspended when being shaken. For that criterion calculations and Microtrac size analyses indicated that particles smaller than 37 μm are likely dust generators. Subsequently a more sophisticated criterion for dust problem was considered, particle sizes that would become suspended in the air flow patterns inside the SME and possibly plug the condenser. That size may be larger than 37 μm but has not yet been determined. 6. If particles smaller than 37 μm are removed will bulk dust generation be eliminated? a. Video-taped tests were performed using three gallons each of three types of frit 418, DWPF frit, Bekeson frit and Multi-Aspirator frit. Frit was poured through air from a height of approximately eight feet into a container half filled with water. Pouring Bekeson frit or Multi-Aspirator frit generated markedly less visible dust, but there was still a significant amount, which still has the potential of causing a dust problem. 7. Can completely dry frit be poured into the SME without having dust plug the condenser at the top of the vessel? a. Because of the complexity of air currents inside the SME and the difficulty of defensible size scaling a more prototypical test will be

  17. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    the dust removed from fresh DWPF Frit 418 while it was being shaken in a small scale LabRAM test was measured. The median size on a volume basis was 7.6 μm and 90% of the frit particles were between 1.6 and 28 μm. The mass of dust collected using this test protocol was much less than 1% of the original frit. 4. Can the dust be removed in a small number of processing steps and without the larger frit particles continuing to spall additional dust sized particles? a. Test results using a LabRAM were inconclusive. The LaRAM performs less efficient particle size separation than the equipment used by Bekeson and Multi-Aspirator. 5. What particle size of frit is expected to create a dust problem? a. The original criterion for creating a dusting problem was those particle sizes that were readily suspended when being shaken. For that criterion calculations and Microtrac size analyses indicated that particles smaller than 37 μm are likely dust generators. Subsequently a more sophisticated criterion for dust problem was considered, particle sizes that would become suspended in the air flow patterns inside the SME and possibly plug the condenser. That size may be larger than 37 μm but has not yet been determined. 6. If particles smaller than 37 μm are removed will bulk dust generation be eliminated? a. Video-taped tests were performed using three gallons each of three types of frit 418, DWPF frit, Bekeson frit and Multi-Aspirator frit. Frit was poured through air from a height of approximately eight feet into a container half filled with water. Pouring Bekeson frit or Multi-Aspirator frit generated markedly less visible dust, but there was still a significant amount, which still has the potential of causing a dust problem. 7. Can completely dry frit be poured into the SME without having dust plug the condenser at the top of the vessel? a. Because of the complexity of air currents inside the SME and the difficulty of defensible size scaling a more prototypical test will be

  18. Long-term variability of dust-storms in Iceland

    Science.gov (United States)

    Dagsson-Waldhauserová, Pavla; Ólafsson, Haraldur; Arnalds, Ólafur

    2013-04-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland are volcanic sandy deserts. Natural emissions from these sources influenced by strong winds affect not only regional air quality in Iceland ("Reykjavik haze") but dust particles are transported over the Atlantic ocean and Arctic Ocean > 1000 km at times. The study places Icelandic dust production area into international perspective, present long term frequency of dust storm events in NE Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in NE Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the NE erosion area, indicating extreme dust plume activity and erosion within the NE deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and aeolian transport during dust/volcanic ash storms in Iceland which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust is not only a substantial source for regional air pollution, but may be considered to contribute to the Arctic haze phenomena and Arctic air pollution.

  19. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  20. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  1. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  2. Dust as a surfactant

    International Nuclear Information System (INIS)

    Ignatov, A M; Schram, P P J M; Trigger, S A

    2003-01-01

    We argue that dust immersed in a plasma sheath acts as a surfactant. By considering the momentum balance in a plasma sheath, we evaluate the dependence of the plasma surface pressure on the dust density. It is shown that the dust may reduce the surface pressure, giving rise to a sufficiently strong tangential force. The latter is capable of confining the dust layer inside the sheath in the direction perpendicular to the ion flow

  3. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Kraus (University of Exeter) in a recent publication. Kraus and collaborators show that the protoplanetary disk of V1247 Orionis contains a ring-shaped, asymmetric inner disk component, as well as a sharply confined crescent structure. These structures are consistent with the morphologies expected from theoretical models of vortex formation in disks.Kraus and collaborators propose the following picture: an early planet is orbiting at 100 AU within the disk, generating a one-armed spiral arm as material feeds the protoplanet. As the protoplanet orbits, it clears a gap between the ring and the crescent, and it simultaneously triggers two vortices, visible as the crescent and the bright asymmetry in the ring. These vortices are then able to trap millimeter-sized particles.Gas column density of the authors radiation-hydrodynamic simulation of V1247 Orioniss disk. [Kraus et al. 2017]The authors run detailed hydrodynamics simulations of this scenario and compare them (as well as alternative theories) to the ALMA observations of V1247 Orionis. The simulations support their model, producing sample scattered-light images thatmatchwell the one-armed spiral observed in previous scattered-light images of the disk.How can we confirm V1247 Orionis providesan example of dust-trapping vortices? One piece of supporting evidence would be the discovery of the protoplanet that Kraus and collaborators theorize triggered the potential vortices in this disk. Future deeper ALMA imaging may make this possible, helping to confirm our picture of how dust builds into planets.CitationStefan Kraus et al 2017 ApJL 848 L11. doi:10.3847/2041-8213/aa8edc

  4. Visibility and Haze

    Science.gov (United States)

    Haze forms when sunlight encounters particle pollution. It reduces visibility in cities and scenic areas. This web area provides regulatory information and progress towards improving visibility through EPA’s regional haze program.

  5. Visible Human Project

    Science.gov (United States)

    ... cryosections are associated with anatomical terminology. AnatLine : A prototype system consisting of an anatomical image database and ... further information is available Publications VHJOE: Visible Human Journal of Endoscopy. NLM's Current Bibliographies in Medicine, Visible ...

  6. Visibly Pushdown Automata

    DEFF Research Database (Denmark)

    Srba, Jiri

    2006-01-01

    We investigate the possibility of (bi)simulation-like preorder/equivalence checking on the class of visibly pushdown automata and its natural subclasses visibly BPA (Basic Process Algebra) and visibly one-counter automata. We describe generic methods for proving complexity upper and lower bounds...... for a number of studied preorders and equivalences like simulation, completed simulation, ready simulation, 2-nested simulation preorders/equivalences and bisimulation equivalence. Our main results are that all the mentioned equivalences and preorders are EXPTIME-complete on visibly pushdown automata, PSPACE......-complete on visibly one-counter automata and P-complete on visibly BPA. Our PSPACE lower bound for visibly one-counter automata improves also the previously known DP-hardness results for ordinary one-counter automata and one-counter nets. Finally, we study regularity checking problems for visibly pushdown automata...

  7. Dust in Proto-Planetary Disks: Properties and Evolution

    OpenAIRE

    Natta, A.; Testi, L.; Calvet, N.; Henning, Th.; Waters, R.; Wilner, D.

    2006-01-01

    We review the properties of dust in protoplanetary disks around optically visible pre-main sequence stars obtained with a variety of observational techniques, from measurements of scattered light at visual and infrared wavelengths to mid-infrared spectroscopy and millimeter interferometry. A general result is that grains in disks are on average much larger than in the diffuse interstellar medium (ISM). In many disks, there is evidence that a large mass of dust is in grains with millimeter and...

  8. 'Nuisance Dust' - a Case for Recalibration?

    Science.gov (United States)

    Datson, Hugh; Marker, Brian

    2013-04-01

    This paper considers the case for a review and recalibration of limit values and acceptability criteria for 'nuisance dust', a widely encountered but poorly defined and regulated aspect of particulate matter pollution. Specific dust fractions such as PM10 and asbestiforms are well characterised and have limit values enshrined in legislation. National, and international, limit values for acceptable concentrations of PM10 and other fractions of particulate matter have been defined and agreed. In the United Kingdom (UK), these apply to both public and workplace exposures. By contrast, there is no standard definition or universal criteria against which acceptable levels for 'nuisance dust' can be assessed. This has implications for land-use planning and resource utilisation. Without meaningful limit values, inappropriate development might take place too near to residential dwellings or land containing economically important mineral resources may be effectively sterilised. Furthermore, the expression 'nuisance dust' is unhelpful in that 'nuisance' has a specific meaning in environmental law whilst 'nuisance dust' is often taken to mean 'generally visible particulate matter'. As such, it is associated with the social and broader environmental impacts of particulate matter. PM10 concentrations are usually expressed as a mass concentration over time. These can be determined using a range of techniques. While results from different instruments are generally comparable, data obtained from alternative methods for measuring 'nuisance dust' are rarely interchangeable. In the UK, many of the methods typically used are derived from approaches developed under the HMIP (Her Majesty's Inspectorate of Pollution) regime in the 1960s onwards. Typical methods for 'nuisance dust' sampling focus on measurement of dust mass (from the weight of dust collected in an open container over time) or dust soiling (from loss of reflectance and or obscuration of a surface discoloured by dust over

  9. The Dust Management Project: Characterizing Lunar Environments and Dust, Developing Regolith Mitigation Technology and Simulants

    Science.gov (United States)

    Hyatt, Mark J.; Straka, Sharon A.

    2010-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.

  10. Operational aerosol and dust storm forecasting

    International Nuclear Information System (INIS)

    Westphal, D L; Curtis, C A; Liu, M; Walker, A L

    2009-01-01

    The U. S. Navy now conducts operational forecasting of aerosols and dust storms on global and regional scales. The Navy Aerosol Analysis and Prediction System (NAAPS) is run four times per day and produces 6-day forecasts of sulfate, smoke, dust and sea salt aerosol concentrations and visibility for the entire globe. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS (registered) ) is run twice daily for Southwest Asia and produces 3-day forecasts of dust, smoke, and visibility. The graphical output from these models is available on the Internet (www.nrlmry.navy.mil/aerosol/). The aerosol optical properties are calculated for each specie for each forecast output time and used for sea surface temperature (SST) retrieval corrections, regional electro-optical (EO) propagation assessments, and the development of satellite algorithms. NAAPS daily aerosol optical depth (AOD) values are compared with the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD values. Visibility forecasts are compared quantitatively with surface synoptic reports.

  11. Statistical analysis of temporal and spatial evolution of in-vessel dust particles in KSTAR

    International Nuclear Information System (INIS)

    Kim, Kyung-Rae; Hong, Suk-Ho; Nam, Yong-Un; Jung, Jinil; Kim, Woong-Chae

    2013-01-01

    Images of wide-angle visible standard CCD cameras contain information on in-vessel dusts such as dust creation events (DCEs) that occur during plasma operations, and their velocity. Analyzing the straight line-like dust traces in the shallow cylindrical shell-structured scrape-off layer along the vacuum vessel, a database on the short/long term temporal evolutions, spatial locations of DCEs caused by plasma–dust interaction, and the dust velocity distribution are built. We have studied DCEs of 2010 and 2011 KSTAR campaign

  12. The Dust Management Project: Final Report

    Science.gov (United States)

    Hyatt, Mark J.; Straka, Sharon

    2011-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting longterm operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, approach, accomplishments, summary of deliverables, and lessons learned are presented.

  13. Dust-Firing of Straw and Additives

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming

    2011-01-01

    In the present work, the ash chemistry and deposition behavior during straw dust-firing were studied by performing experiments in an entrained flow reactor. The effect of using spent bleaching earth (SBE) as an additive in straw combustion was also investigated by comparing with kaolinite. During...... dust-firing of straw, the large (>∼2.5 μm) fly ash particles generated were primarily molten or partially molten spherical particles rich in K, Si, and Ca, supplemented by Si-rich flake-shaped particles. The smaller fly ash particles (...

  14. Dust Effect on The Performance of Optical Wireless Communication System

    Directory of Open Access Journals (Sweden)

    Fadel Abdul-Zahra Murad

    2017-11-01

    Full Text Available In this paper wireless optical communication system (FSO is designed through the use of software (Optisystem . The paper also study  the effect of atmospheric dust on the performance of communication system (FSO, the effect of dust concentration on the visibility by taking a different concentrations of dust (9, 20, 40, 60, 80 100, 120 gm / month / m2 . The effect of the visibility on the attenuation of dust concentration on each of these concentrations , and calculate attenuation of dust for the  wavelengths  (784 nm, 1550 nm. The Paper also deals with effect of the transmitted laser  power on the transmitter range (propagation distance where five different values of transmitted laser power (10mw, 20mw, 30mw, 40mw, 50mw are taken  and the study calculates the maximum transmitter range of  each value of the transmitted power under the influence of attenuation atmospheric dust concentrations for each concentration of dust used and also for the two wavelengths (1550nm, 784nm.

  15. Asian Dust Weather Categorization with Satellite and Surface Observations

    Science.gov (United States)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  16. Episodic Dust Emission from Alpha Orionis

    Science.gov (United States)

    Danchi, W. C.; Greenhill, L. J.; Bester, M.; Degiacomi, C.; Townes, C. H.

    1993-05-01

    The spatial distribution of dust surrounding alpha Orionis has been observed with the Infrared Spatial Interferometer (ISI) operating at a wavelength of 11.15 microns. Radiative transfer modeling of the visibility curves obtained by the ISI has yielded estimates of the physical parameters of the dust surrounding the star and new details of the dust distribution. The visibility curves taken in 1992 can be fitted best by a model with two dust shells. One shell has an inner radius of 1.0+/- 0.1{ }('') , a thickness between 50-200 milliarcsec, and a temperature of about 380 K. The second shell has an inner radius of 2.0+/-0.1{ }('') , a thickness less than about 200 milliarcsec, and a temperature of 265 K. These results are consistent with the recent spatially resolved spectroscopy of alpha Orionis reported by Sloan et al. (1993, Ap.J., 404, 303). The dust was modelled with the MRN size distribution with radius varying from 0.005--0.25 microns. The star was assumed to be a blackbody with a temperature of 3500 K and angular radius of 21.8 milliarcsec, consistent with recent interferometric determinations of its diameter (cf. Dyck et al., 1992, A.J., 104, 1992). For an adopted distance of 150 pc, the model for the 1992 data was evolved backward in time for a comparison with previous visibility data of Sutton (1979, Ph.D. Thesis, U.C. Berkeley) and Howell et al. (1981, Ap.J., 251, L21). The velocities, 11 km \\ s(-1) and 18 km \\ s(-1) , were used for the first and second shells respectively, which are the CO velocities measured by Bernat et al. (1979, Ap.J.,233, L135). We find excellent agreement if the dust shells were at approximately 0.80{ }('') and 1.67{ }('') at the epoch of the previous measurements. The data are consistent with the hypothesis that inner dust shell was emitted during the unusual variations in radial velocity and visual magnitude in the early 1940's, described by Goldberg (1984, PASP, 96, 366).

  17. Investigations of Wind/WAVES Dust Impacts

    Science.gov (United States)

    St Cyr, O. C.; Wilson, L. B., III; Rockcliffe, K.; Mills, A.; Nieves-Chinchilla, T.; Adrian, M. L.; Malaspina, D.

    2017-12-01

    The Wind spacecraft launched in November 1994 with a primary goal to observe and understand the interaction between the solar wind and Earth's magnetosphere. The waveform capture detector, TDS, of the radio and plasma wave investigation, WAVES [Bougeret et al., 1995], onboard Wind incidentally detected micron-sized dust as electric field pulses from the recollection of the impact plasma clouds (an unintended objective). TDS has detected over 100,000 dust impacts spanning almost two solar cycles; a dataset of these impacts has been created and was described in Malaspina & Wilson [2016]. The spacecraft continues to collect data about plasma, energetic particles, and interplanetary dust impacts. Here we report on two investigations recently conducted on the Wind/WAVES TDS database of dust impacts. One possible source of dust particles is the annually-recurring meteor showers. Using the nine major showers defined by the American Meteor Society, we compared dust count rates before, during, and after the peak of the showers using averaging windows of varying duration. However, we found no statistically significant change in the dust count rates due to major meteor showers. This appears to be an expected result since smaller grains, like the micron particles that Wind is sensitive to, are affected by electromagnetic interactions and Poynting-Robertson drag, and so are scattered away from their initial orbits. Larger grains tend to be more gravitationally dominated and stay on the initial trajectory of the parent body so that only the largest dust grains (those that create streaks as they burn up in the atmosphere) are left in the orbit of the parent body. Ragot and Kahler [2003] predicted that coronal mass ejections (CMEs) near the Sun could effectively scatter dust grains of comparable size to those observed by Wind. Thus, we examined the dust count rates immediately before, during, and after the passage of the 350 interplanetary CMEs observed by Wind over its 20+ year

  18. Dust around the Cool Component of D-Type Symbiotic Binaries

    Science.gov (United States)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2018-04-01

    D type symbiotic binaries are an excellent astrophysical laboratory for investigation of the dust properties and dust formation under the influence of theMira stellar wind and nova activity and of the mass loss and mass transfer between components in such a widely separated system. We present a study of the properties of circumstellar dust in symbiotic Miras by use of long-term near-IR photometry and colour indices. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel, HM Sge and R Aqr have been collected, analyzed and corrected for short-term variations caused by Mira pulsations. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case. Common dust properties of the symbiotic Miras have been found, suggesting similar conditions in the condensation region of the studied symbiotic Miras. Silicate dust with the inner dust shell radius determined by the dust condensation and with the dust temperature of 900-1200 K can fully explain the observed colour indices. R Aqr is an exception and showed lower dust temperature of 650 K. Obscuration events visible in light curves can be explained by variable dust optical depth with minimal variations of other dust properties. More active symbioticMiras that underwent recent nova outbursts showed higher dust optical depths and larger maximum grain sizes of the order of μm, which means that the post-nova activity could stimulate the dust formation and the grain growth. Optically thicker dust shells and higher dust condensation temperatures have been found in symbiotic Miras compared to their single counterparts, suggesting different conditions for dust production.

  19. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  20. Quantitative detection of settled dust over green canopy

    Science.gov (United States)

    Brook, Anna

    2016-04-01

    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing hyperspectral unmixing in order to retrieve accurate quantitative information latent in hyperspectral imagery data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem of hyperspectral imagery in semi-supervised fashion. This paper suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify dust settled over/upon green vegetation canopy using hyperspectral airborne data. Atmospheric dust transports a variety of chemicals, some of which pose a risk to the ecosystem and human health (Kaskaoutis, et al., 2008). Many studies deal with the impact of dust on particulate matter (PM) and atmospheric pollution. Considering the potential impact of industrial pollutants, one of the most important considerations is the fact that suspended PM can have both a physical and a chemical impact on plants, soils, and water bodies. Not only can the particles covering surfaces cause physical distortion, but particles of diverse origin and different chemistries can also serve as chemical stressors and cause irreversible damage. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature of a forthcoming environmental hazard are of key interest when considering the effects of pollution. According to the most basic distribution dynamics, dust consists of suspended particulate matter in a fine state of subdivision that are raised and carried by wind. In this context, it is increasingly important to first, understand the distribution dynamics of pollutants, and

  1. Atmospheric response to Saharan dust deduced from ECMWF reanalysis increments

    Science.gov (United States)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-04-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data - the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely-sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (> 0.5), low correlation, and high negative correlation (Forecast(ECMWF) suggests that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity, and downward (upward) airflow. These facts indicate an interaction between dust-forced heating /cooling and atmospheric circulation. The April correlation results are supported by the analysis of vertical distribution of dust concentration, derived from the 24-hour dust prediction system at Tel Aviv University (website: http://earth.nasa.proj.ac.il/dust/current/). For other months the analysis is more complicated because of the essential increasing of humidity along with the northward progress of the ITCZ and the significant impact on the increments.

  2. Bioleaching of metals from WEEE shredding dust.

    Science.gov (United States)

    Marra, Alessandra; Cesaro, Alessandra; Rene, Eldon R; Belgiorno, Vincenzo; Lens, Piet N L

    2018-03-15

    A bioleaching process developed in two separate steps was investigated for the recovery of base metals, precious metals and rare earth elements from dusts generated by Waste Electrical and Electronic Equipment (WEEE) shredding. In the first step, base metals were almost completely leached from the dust in 8 days by Acidithiobacillus thiooxidans (DSM 9463) that lowered the pH of the leaching solution from 3.5 to 1.0. During this step, cerium, europium and neodymium were mobilized at high percentages (>99%), whereas lanthanum and yttrium reached an extraction yield of 80%. In the second step, the cyanide producing Pseudomonas putida WSC361 mobilized 48% of gold within 3 h from the A. thiooxidans leached shredding dust. This work demonstrated the potential application of biohydrometallurgy for resource recovery from WEEE shredding dust, destined to landfill disposal, and its effectiveness in the extraction of valuable substances, including elements at high supply risk as rare earths. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Visibility and Citation Impact

    Science.gov (United States)

    Ebrahim, Nader Ale; Salehi, Hadi; Embi, Mohamed Amin; Tanha, Farid Habibi; Gholizadeh, Hossein; Motahar, Seyed Mohammad

    2014-01-01

    The number of publications is the first criteria for assessing a researcher output. However, the main measurement for author productivity is the number of citations, and citations are typically related to the paper's visibility. In this paper, the relationship between article visibility and the number of citations is investigated. A case study of…

  4. Viewer Makes Radioactivity "Visible"

    Science.gov (United States)

    Yin, L. I.

    1983-01-01

    Battery operated viewer demonstrates feasibility of generating threedimensional visible light simulations of objects that emit X-ray or gamma rays. Ray paths are traced for two pinhold positions to show location of reconstructed image. Images formed by pinholes are converted to intensified visible-light images. Applications range from radioactivity contamination surveys to monitoring radioisotope absorption in tumors.

  5. Prediction of fog/visibility over India using NWP Model

    Indian Academy of Sciences (India)

    Aditi Singh

    2018-03-06

    Mar 6, 2018 ... National Centre for Medium Range Weather Forecasting, Earth System Science Organization, Ministry of Earth. Sciences, Noida ..... ing water. For a given relative humidity, the aerosol content fixed according to cleaner conditions in the model gives higher values of visibility as com- pared to the polluted ...

  6. Whither Cometary Dust?

    Science.gov (United States)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  7. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    Science.gov (United States)

    Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  8. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, Asunción; Bachiller, Rafael [Observatorio Astronómico Nacional (OAN, IGN), Apdo 112, E-28803 Alcalá de Henares (Spain); Baruteau, Clément; Carmona, Andrés; Berné, Olivier [IRAP, Université de Toulouse, CNRS, UPS, Toulouse (France); Neri, Roberto [Institut de Radioastronomie Millimétrique (IRAM), 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Agúndez, Marcelino; Goicoechea, Javier R.; Cernicharo, José, E-mail: a.fuente@oan.es [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Cantoblanco, Madrid (Spain)

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  9. Communication plan for windblown dust.

    Science.gov (United States)

    2015-05-01

    Windblown dust events occur in Arizona, and blowing dust has been considered a contributing factor to serious crashes on the : segment of Interstate 10 (I10) between Phoenix and Tucson, as well as on other Arizona roadways. Arizonas dust events...

  10. Simulation of dust voids in complex plasmas

    Science.gov (United States)

    Goedheer, W. J.; Land, V.

    2008-12-01

    In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.

  11. Migration of Interplanetary Dust and Comets

    Science.gov (United States)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles produced by comets, including high-eccentricity comets, are needed for such explanation

  12. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  13. Toxicity of lunar dust

    NARCIS (Netherlands)

    Linnarsson, D.; Carpenter, J.; Fubini, B.; Gerde, P.; Loftus, D.; Prisk, K.; Staufer, U.; Tranfield, E.; van Westrenen, W.

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of

  14. Combustible dust tests

    Science.gov (United States)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  15. Advances in Mineral Dust Source Composition Measurement with Imaging Spectroscopy at the Salton Sea, CA

    Science.gov (United States)

    Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.

    2015-12-01

    Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.

  16. An overview of mineral dust modeling over East Asia

    Science.gov (United States)

    Chen, Siyu; Huang, Jianping; Qian, Yun; Zhao, Chun; Kang, Litai; Yang, Ben; Wang, Yong; Liu, Yuzhi; Yuan, Tiangang; Wang, Tianhe; Ma, Xiaojun; Zhang, Guolong

    2017-08-01

    East Asian dust (EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation efficiency. Providing an accurate description of the life cycle and climate effects of EAD is therefore critical to better understanding of climate change and socioeconomic development in East Asia and even worldwide. Dust modeling has undergone substantial development since the late 1990s, associated with improved understanding of the role of EAD in the earth system. Here, we review the achievements and progress made in recent decades in terms of dust modeling research, including dust emissions, long-range transport, radiative forcing (RF), and climate effects of dust particles over East Asia. Numerous efforts in dust/EAD modeling have been directed towards furnishing more sophisticated physical and chemical processes into the models on higher spatial resolutions. Meanwhile, more systematic observations and more advanced retrieval methods for instruments that address EAD related science issues have made it possible to evaluate model results and quantify the role of EAD in the earth system, and to further reduce the uncertainties in EAD simulations. Though much progress has been made, large discrepancies and knowledge gaps still exist among EAD simulations. The deficiencies and limitations that pertain to the performance of the EAD simulations referred to in the present study are also discussed.

  17. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  18. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  19. Viking orbiter imaging observations of dust in the Martian atmosphere

    International Nuclear Information System (INIS)

    Briggs, G.A.; Baum, W.A.; Barnes, J.

    1979-01-01

    More than 20 local Martian dust clouds and two global dust storms were observed with the Viking orbiter camera. Sixteen of the local clouds were imaged in two colors or were observed with other instruments confirming their identification as dust clouds. These Viking results are compared with earth-based observations of Martian dust storms and with Mariner 9 data. Most of the dust activity seen by Viking occurred during southern hemisphere spring and early summer, when Mars was near perihelion and isolation was near maximum. About half the local clouds occurred near the edge of the southern polar cap, where winds are presumably enhanced by a strong regional temperature gradient. The other half occurred mainly in the southern hemisphere near regions where circulation models incorporating topography predict positive vertical velocities. Although dust clouds observed from earth show a similar partial correlation with models, some ambiguity exists concerning interpretation of regions near Hellespontus that have spawned the most spectacular Martian dust storms on record

  20. Analyzing Visibility Configurations.

    Science.gov (United States)

    Dachsbacher, C

    2011-04-01

    Many algorithms, such as level of detail rendering and occlusion culling methods, make decisions based on the degree of visibility of an object, but do not analyze the distribution, or structure, of the visible and occluded regions across surfaces. We present an efficient method to classify different visibility configurations and show how this can be used on top of existing methods based on visibility determination. We adapt co-occurrence matrices for visibility analysis and generalize them to operate on clusters of triangular surfaces instead of pixels. We employ machine learning techniques to reliably classify the thus extracted feature vectors. Our method allows perceptually motivated level of detail methods for real-time rendering applications by detecting configurations with expected visual masking. We exemplify the versatility of our method with an analysis of area light visibility configurations in ray tracing and an area-to-area visibility analysis suitable for hierarchical radiosity refinement. Initial results demonstrate the robustness, simplicity, and performance of our method in synthetic scenes, as well as real applications.

  1. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  2. Using an Instrumented Drone to Probe Dust Devils on Oregon’s Alvord Desert

    Directory of Open Access Journals (Sweden)

    Brian Jackson

    2018-01-01

    Full Text Available Dust devils are low-pressure, small (many to tens of meters convective vortices powered by surface heating and rendered visible by lofted dust. Dust devils occur ubiquitously on Mars, where they may dominate the supply of atmospheric dust, and since dust contributes significantly to Mars’ atmospheric heat budget, dust devils probably play an important role in its climate. The dust-lifting capacity of a devil likely depends sensitively on its structure, particularly the wind and pressure profiles, but the exact dependencies are poorly constrained. Thus, the exact contribution to Mars’ atmosphere remains unresolved. Analog studies of terrestrial devils have provided some insights into dust devil dynamics and properties but have been limited to near-surface (few meters or relatively high altitude (hundreds of meters sampling. Automated aerial vehicles or drones, combined with miniature, digital instrumentation, promise a novel and uniquely powerful platform from which to sample dust devils at a wide variety of altitudes. In this article, we describe a pilot study using an instrumented quadcopter on an active field site in southeastern Oregon, which (to our knowledge has not previously been surveyed for dust devils. We present preliminary results from the encounters, including stereo image analysis and encounter footage collected onboard the drone. In spite of some technical difficulties, we show that a quadcopter can successfully navigate in an active dust devil, while collecting time-series data about the dust devil’s structure.

  3. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; hide

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  4. Geochemical evidence for diversity of dust sources in the southwestern United States

    Science.gov (United States)

    Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.

    2002-01-01

    Several potential dust sources, including generic sources of sparsely vegetated alluvium, playa deposits, and anthropogenic emissions, as well as the area around Owens Lake, California, affect the composition of modern dust in the southwestern United States. A comparison of geochemical analyses of modern and old (a few thousand years) dust with samples of potential local sources suggests that dusts reflect four primary sources: (1) alluvial sediments (represented by Hf, K, Rb, Zr, and rare-earth elements, (2) playas, most of which produce calcareous dust (Sr, associated with Ca), (3) the area of Owens (dry) Lake, a human-induced playa (As, Ba, Li, Pb, Sb, and Sr), and (4) anthropogenic and/or volcanic emissions (As, Cr, Ni, and Sb). A comparison of dust and source samples with previous analyses shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district are the primary sources of As, Ba, Li, and Pb in dusts from Owens Valley. Decreases in dust contents of As, Ba, and Sb with distance from Owens Valley suggest that dust from southern Owens Valley is being transported at least 400 km to the east. Samples of old dust that accumulated before European settlement are distinctly lower in As, Ba, and Sb abundances relative to modern dust, likely due to modern transport of dust from Owens Valley. Thus, southern Owens Valley appears to be an important, geochemically distinct, point source for regional dust in the southwestern United States. Copyright ?? 2002 Elsevier Science Ltd.

  5. A Database of Interplanetary and Interstellar Dust Detected by the Wind Spacecraft

    Science.gov (United States)

    Malaspina, David M.; Wilson, Lynn B., III

    2016-01-01

    It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 micron radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database.

  6. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia

    Science.gov (United States)

    Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam

    2018-01-01

    Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and

  7. Visible spectroscopy on ASDEX

    International Nuclear Information System (INIS)

    Hofmann, J.V.

    1991-12-01

    In this report visible spectroscopy and impurity investigations on ASDEX are reviewed and several sets of visible spectra are presented. As a basis for identification of metallic impurity lines during plasma discharges spectra from a stainless steel - Cu arc have been recorded. In a next step a spectrum overview of ASDEX discharges is shown which reveals the dominating role of lines from light impurities like carbon and oxygen throughout the UV and visible range (2000 A ≤ λ ≤ 8000 A). Metallic impurity lines of neutrals or single ionized atoms are observed near localized surfaces. The dramatic effect of impurity reduction by boronization of the vessel walls is demonstrated in a few examples. In extension to some ivesti-gations already published, further diagnostic applications of visible spectroscopy are presented. Finally, the hardware and software system used on ASDEX are described in detail. (orig.)

  8. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  9. Spirit Feels Dust Gust

    Science.gov (United States)

    2007-01-01

    On sol 1149 (March 28, 2007) of its mission, NASA's Mars Exploration Rover Spirit caught a wind gust with its navigation camera. A series of navigation camera images were strung together to create this movie. The front of the gust is observable because it was strong enough to lift up dust. From assessing the trajectory of this gust, the atmospheric science team concludes that it is possible that it passed over the rover. There was, however, no noticeable increase in power associated with this gust. In the past, dust devils and gusts have wiped the solar panels of dust, making it easier for the solar panels to absorb sunlight.

  10. Origin of the earth and moon

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1981-01-01

    The composition of the Earth's interior and its bearing on the Earth's origin are discussed. It seems likely that the terrestrial planets formed by the accretion of solid planetisimals from the nebula of dust and gas left behind during the formation of the Sun. The scenario proposed is simpler than others. New evidence based upon a comparison of siderophile element abundances in the Earth's mantle and in the Moon imply that the Moon was derived from the Earth's mantle after the Earth's core had segregated

  11. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania

    Directory of Open Access Journals (Sweden)

    C. A. Friese

    2017-08-01

    Full Text Available Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL. In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.

  12. A SmallSat Approach for Global Imaging Spectroscopy of the Earth SYSTEM Enabled by Advanced Technology

    Science.gov (United States)

    Green, R. O.; Asner, G. P.; Thompson, D. R.; Mouroulis, P.; Eastwood, M. L.; Chien, S.

    2017-12-01

    Global coverage imaging spectroscopy in the solar reflected energy portion of the spectrum has been identified by the Earth Decadal Survey as an important measurement that enables a diverse set of new and time critical science objectives/targets for the Earth system. These science objectives include biodiversity; ecosystem function; ecosystem biogeochemistry; initialization and constraint of global ecosystem models; fire fuel, combustion, burn severity, and recovery; surface mineralogy, geochemistry, geologic processes, soils, and hazards; global mineral dust source composition; cryospheric albedo, energy balance, and melting; coastal and inland water habitats; coral reefs; point source gas emission; cloud thermodynamic phase; urban system properties; and more. Traceability of these science objectives to spectroscopic measurement in the visible to short wavelength infrared portion of the spectrum is summarized. New approaches, including satellite constellations, to acquire these global imaging spectroscopy measurements is presented drawing from recent advances in optical design, detector technology, instrument architecture, thermal control, on-board processing, data storage, and downlink.

  13. Plasma jet acceleration of dust particles to hypervelocities

    International Nuclear Information System (INIS)

    Ticos, C. M.; Wang, Zhehui; Wurden, G. A.; Kline, J. L.; Montgomery, D. S.

    2008-01-01

    A convenient method to accelerate simultaneously hundreds of micron-size dust particles to a few km/s over a distance of about 1 m is based on plasma drag. Plasma jets which can deliver sufficient momentum to the dust particles need to have speeds of at least several tens of km/s, densities of the order of 10 22 m -3 or higher, and low temperature ∼1 eV, in order to prevent dust destruction. An experimental demonstration of dust particles acceleration to hypervelocities by plasma produced in a coaxial gun is presented here. The plasma flow speed is deduced from photodiode signals while the plasma density is measured by streaked spectroscopy. As a result of the interaction with the plasma jet, the dust grains are also heated to high temperatures and emit visible light. A hypervelocity dust shower is imaged in situ with a high speed video camera at some distance from the coaxial gun, where light emission from the plasma flow is less intense. The bright traces of the flying microparticles are used to infer their speed and acceleration by employing the time-of-flight technique. A simple model for plasma drag which accounts for ion collection on the grain surface gives predictions for dust accelerations which are in good agreement with the experimental observations.

  14. Galactic dust and extinction

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1979-01-01

    The ratio R between visual extinction and colour excess, is slightly larger than 3 and does not vary much throughout our part of the Galaxy. The distribution of dust in the galactic plane shows, on the large scale, a gradient with higher colour excesses towards l=50 0 than towards l=230 0 . On the smaller scale, much of the dust responsible for extinction is situated in clouds which tend to group together. The correlation between positions of interstellar dust clouds and positions of spiral tracers seems rather poor in our Galaxy. However, concentrated dark clouds as well as extended regions of dust show an inclined distribution similar to the Gould belt of bright stars. (Auth.)

  15. Radioisotope dust pollution monitor

    International Nuclear Information System (INIS)

    Szepke, R.; Harasimczuk, J.; Dobrowiecki, J.

    1990-01-01

    Measuring principles and specification of two dust monitors: station-type AMIZ and portable-type PIK-10 for ambient air pollution are presented. The first one, a fully automatic instrument is destined for permanent monitoring of air pollution in preset sampling time from .25 to 24 hours. The second one was developed as a portable working model. Both instruments display their results in digital form in dust concentration units. (author)

  16. Coal dust symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This paper gives a report of the paper presented at the symposium held in Hanover on 9 and 10 February 1981. The topics include: the behaviour of dust and coal dust on combustion and explosion; a report on the accidents which occurred at the Laegerdorf cement works' coal crushing and drying plant; current safety requirements at coal crushing and drying plant; and coal crushing and drying. Four papers are individually abstracted. (In German)

  17. Dust devil generation

    International Nuclear Information System (INIS)

    G Onishchenko, O; A Pokhotelov, O; Horton, W; Stenflo, L

    2014-01-01

    The equations describing axi-symmetric nonlinear internal gravity waves in an unstable atmosphere are derived. A hydrodynamic model of a dust devil generation mechanism in such an atmosphere is investigated. It is shown that in an unstably stratified atmosphere the convective plumes with poloidal motion can grow exponentially. Furthermore, it is demonstrated that these convective plumes in an atmosphere with weak large scale toroidal motion are unstable with respect to three-dimensional dust devil generation. (papers)

  18. Effect of rock fragment embedding on the aeolian deposition of dust on stone-covered surfaces

    NARCIS (Netherlands)

    Goossens, D.

    2005-01-01

    Many stone-covered surfaces on Earth are subject to aeolian deposition of atmospheric dust. This study investigates how the deposition of dust is affected when rock fragments become gradually more embedded in the ground or, inversely, become more concentrated on the surface. Experiments were

  19. Direct Radiative Effect of Mineral Dust on the Middle East and North Africa Climate

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-01-01

    Dust-climate interaction over the Middle East and North Africa (MENA) has long been studied, as it is the "dustiest" region on earth. However, the quantitative and qualitative understanding of the role of dust direct radiative effect on MENA climate

  20. Predicting visibility of aircraft.

    Directory of Open Access Journals (Sweden)

    Andrew Watson

    Full Text Available Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO. In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  1. Measuring visibility using smartphones

    Science.gov (United States)

    Friesen, Jan; Bialon, Raphael; Claßen, Christoph; Graffi, Kalman

    2017-04-01

    Spatial information on fog density is an important parameter for ecohydrological studies in cloud forests. The Dhofar cloud forest in Southern Oman exhibits a close interaction between the fog, trees, and rainfall. During the three month monsoon season the trees capture substantial amounts of horizontal precipitation from fog which increases net precipitation below the tree canopy. As fog density measurements are scarce, a smartphone app was designed to measure visibility. Different smartphone units use a variety of different parts. It is therefore important to assess the developed visibility measurement across a suite of different smartphones. In this study we tested five smartphones/ tablets (Google/ LG Nexus 5X, Huawei P8 lite, Huawei Y3, HTC Nexus 9, and Samsung Galaxy S4 mini) against digital camera (Sony DLSR-A900) and visual visibility observations. Visibility was assessed from photos using image entropy, from the number of visible targets, and from WiFi signal strength using RSSI. Results show clear relationships between object distance and fog density, yet a considerable spread across the different smartphone/ tablet units is evident.

  2. Ultrasonic Sorter for Handling and Collecting Dust or Soil Particles Separated by Size/Density

    Science.gov (United States)

    Gonzalez, I.; Pinto, A.

    2018-04-01

    A new device is proposed consisting of an endless screw attached to a small sorter actuated by ultrasounds where particles collect from soil or dust to be separated and collected in different reservoirs for their return to the Earth.

  3. Global dust sources detection using MODIS Deep Blue Collection 6 aerosol products

    Science.gov (United States)

    Pérez García-Pando, C.; Ginoux, P. A.

    2015-12-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Remote sensing sensors are the most useful tool to locate dust sources. These sensors include microwaves, visible channels, and lidar. On the global scale, major dust source regions have been identified using polar orbiting satellite instruments. The MODIS Deep Blue algorithm has been particularly useful to detect small-scale sources such as floodplains, alluvial fans, rivers, and wadis , as well as to identify anthropogenic sources from agriculture. The recent release of Collection 6 MODIS aerosol products allows to extend dust source detection to the entire land surfaces, which is quite useful to identify mid to high latitude dust sources and detect not only dust from agriculture but fugitive dust from transport and industrial activities. This presentation will overview the advantages and drawbacks of using MODIS Deep Blue for dust detection, compare to other instruments (polar orbiting and geostationary). The results of Collection 6 with a new dust screening will be compared against AERONET. Applications to long range transport of anthropogenic dust will be presented.

  4. UVISS preliminary visibility analysis

    DEFF Research Database (Denmark)

    Betto, Maurizio

    1998-01-01

    The goal of this work is to obtain a preliminary assessment of the sky visibility for anastronomical telescope located on the express pallet of the International SpaceStation (ISS)} taking into account the major constraints imposed on the instrument by the ISSattitude and structure. Part of the w......The goal of this work is to obtain a preliminary assessment of the sky visibility for anastronomical telescope located on the express pallet of the International SpaceStation (ISS)} taking into account the major constraints imposed on the instrument by the ISSattitude and structure. Part...... of the work is also to setup the kernel of a software tool for the visibility analysis thatshould be easily expandable to consider more complex strucures for future activities.This analysis is part of the UVISS assessment study and it is meant to provide elementsfor the definition and the selection...

  5. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran

    Science.gov (United States)

    Kaskaoutis, D. G.; Rashki, A.; Houssos, E. E.; Mofidi, A.; Goto, D.; Bartzokas, A.; Francois, P.; Legrand, M.

    2015-07-01

    Dust storms are considered natural hazards that seriously affect atmospheric conditions, ecosystems and human health. A key requirement for investigating the dust life cycle is the analysis of the meteorological (synoptic and dynamic) processes that control dust emission, uplift and transport. The present work focuses on examining the synoptic and dynamic meteorological conditions associated with dust-storms in the Sistan region, southeastern Iran during the summer season (June-September) of the years 2001-2012. The dust-storm days (total number of 356) are related to visibility records below 1 km at Zabol meteorological station, located near to the dust source. RegCM4 model simulations indicate that the intense northern Levar wind, the high surface heating and the valley-like characteristics of the region strongly affect the meteorological dynamics and the formation of a low-level jet that are strongly linked with dust exposures. The intra-annual evolution of the dust storms does not seem to be significantly associated with El-Nino Southern Oscillation, despite the fact that most of the dust-storms are related to positive values of Oceanic Nino Index. National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis suggests that the dust storms are associated with low sea-level pressure conditions over the whole south Asia, while at 700 hPa level a trough of low geopotential heights over India along with a ridge over Arabia and central Iran is the common scenario. A significant finding is that the dust storms over Sistan are found to be associated with a pronounced increase of the anticyclone over the Caspian Sea, enhancing the west-to-east pressure gradient and, therefore, the blowing of Levar. Infrared Difference Dust Index values highlight the intensity of the Sistan dust storms, while the SPRINTARS model simulates the dust loading and concentration reasonably well, since the dust storms are usually associated with peaks in model

  6. The Southern Kalahari: a potential new dust source in the Southern Hemisphere?

    International Nuclear Information System (INIS)

    Bhattachan, Abinash; D’Odorico, Paolo; Baddock, Matthew C; Zobeck, Ted M; Okin, Gregory S; Cassar, Nicolas

    2012-01-01

    Most sources of atmospheric dust on Earth are located in the Northern Hemisphere. The lower dust emissions in the Southern Hemisphere in part limit the supply of micronutrients (primarily soluble iron) to the Southern Ocean, thereby constraining its productivity. Climate and land use change can alter the current distribution of dust source regions on Earth. Can new dust sources be activated in the Southern Hemisphere? Here we show that vegetation loss and dune remobilization in the Southern Kalahari can promote dust emissions comparable to those observed from major contemporary dust sources in the Southern African region. Dust generation experiments support the hypothesis that, in the Southern Kalahari, aeolian deposits that are currently mostly stabilized by savanna vegetation are capable of emitting substantial amounts of dust from interdune areas. We show that dust from these areas is relatively rich in soluble iron, an important micronutrient for ocean productivity. Trajectory analyses show that dust from the Kalahari commonly reaches the Southern Ocean and could therefore enhance its productivity. (letter)

  7. Making Invisible Forces Visible

    DEFF Research Database (Denmark)

    Ratner, Helene Gad

    2013-01-01

    This paper investigates managerial tactics of visualisation when a need to know and manage employees' values and attitudes is expressed. Using the Danish public school as a case study, we explore how school managers use teachers' emotions to render visible presumably invisible information about...... their 'true' attitudes and values. The paper draws on theories of affect as well as actor-network theory to analyse three incidents where managers turn their interpretations of teachers' emotions into such information. These incidents suggest that the efforts to render employees' attitudes and values visible...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 3 ... in an area presently devoid of drainage bespeaks of occasional high-energy fluvial regime, ... The present studies indicate that aeolian dust or rainwater are minor ...

  9. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  10. An investigation of Martian and terrestrial dust devils

    Science.gov (United States)

    Ringrose, Timothy John

    2004-10-01

    It is the purpose of this work to provide an insight into the theoretical and practical dynamics of dust devils and how they are detected remotely from orbit or in situ on planetary surfaces. There is particular interest in the detection of convective vortices on Mars; this has been driven by involvement in the development of the Beagle 2 Environmental Sensor Suite. This suite of sensors is essentially a martian weather station and will be the first planetary lander experiment specifically looking for the presence of dust devils on Mars. Dust devils are characterised by their visible dusty core and intense rotation. The physics of particle motion, including dust lofting and the rotational dynamics within convective vortices are explained and modelled. This modelling has helped in identifying dust devils in meteorological data from both terrestrial and martian investigations. An automated technique for dust devil detection using meteorological data has been developed. This technique searches data looking for the specific vortex signature as well as detecting other transient events. This method has been tested on both terrestrial and martian data with surprising results. 38 possible convective vortices were detected in the first 60 sols of the Viking Lander 2 meteorological data. Tests were also carried out on data from a terrestrial dust devil campaign, which provided conclusive evidence from visual observations of the reliability of this technique. A considerable amount of this work does focus on terrestrial vortices. This is to aid in the understanding of dust devils, specifically how, why and when they form. Both laboratory and terrestrial fieldwork is investigated, providing useful data on the general structure of dust devils.

  11. Dust and smoke pollution monitoring in industrial unit

    International Nuclear Information System (INIS)

    Shamsi, S.S.

    1995-01-01

    Dust and smoke are the two most commonly emitted industrial pollutants which are visible to the naked eye. Cement plants and power generation plants, based on coal and fuel oil etc. are the most common examples of industry emitting these pollutants. In this article these pollutants have been briefly described and some monitoring instruments for dust and smoke emissions have been specific. These instruments are especially suitable for power station and the cement industry etc. Automotive in urban areas. However, this paper does not include equipment for automotive exhaust pollution. (author)

  12. Making Invisible Histories Visible

    Science.gov (United States)

    Hanssen, Ana Maria

    2012-01-01

    This article features Omaha Public Schools' "Making Invisible Histories Visible" program, or MIHV. Omaha's schools have a low failure rate among 8th graders but a high one among high school freshmen. MIHV was created to help at-risk students "adjust to the increased demands of high school." By working alongside teachers and…

  13. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  14. Cometary dust size distributions from flyby spacecraft

    International Nuclear Information System (INIS)

    Divine, N.

    1988-01-01

    Pior to the Halley flybys in 1986, the distribution of cometary dust grains with particle size were approximated using models which provided reasonable fits to the dynamics of dust tails, anti-tails, and infrared spectra. These distributions have since been improved using fluence data (i.e., particle fluxes integrated over time along the flyby trajectory) from three spacecraft. The fluence derived distributions are appropriate for comparison with simultaneous infrared photometry (from Earth) because they sample the particles in the same way as the IR data do (along the line of sight) and because they are directly proportional to the concentration distribution in that region of the coma which dominates the IR emission

  15. The role of airborne mineral dusts in human disease

    Science.gov (United States)

    Morman, Suzette A.; Plumlee, Geoffrey S.

    2013-01-01

    Exposure to fine particulate matter (PM) is generally acknowledged to increase risk for human morbidity and mortality. However, particulate matter (PM) research has generally examined anthropogenic (industry and combustion by-products) sources with few studies considering contributions from geogenic PM (produced from the Earth by natural processes, e.g., volcanic ash, windborne ash from wildfires, and mineral dusts) or geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities, e.g., dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices). Globally, public health concerns are mounting, related to potential increases in dust emission from climate related changes such as desertification and the associated long range as well as local health effects. Recent epidemiological studies have identified associations between far-traveled dusts from primary sources and increased morbidity and mortality in Europe and Asia. This paper provides an outline of public health research and history as it relates to naturally occurring inorganic mineral dusts. We summarize results of current public health research and describe some of the many challenges related to understanding health effects from exposures to dust aerosols.

  16. Visible nulling coronagraph testbed results

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Petrone, Peter; Madison, Timothy; Rizzo, Maxime; Melnick, Gary; Tolls, Volker

    2009-08-01

    We report on our recent laboratory results with the NASA/Goddard Space Flight Center (GSFC) Visible Nulling Coronagraph (VNC) testbed. We have experimentally achieved focal plane contrasts of 1 x 108 and approaching 109 at inner working angles of 2 * wavelength/D and 4 * wavelength/D respectively where D is the aperture diameter. The result was obtained using a broadband source with a narrowband spectral filter of width 10 nm centered on 630 nm. To date this is the deepest nulling result with a visible nulling coronagraph yet obtained. Developed also is a Null Control Breadboard (NCB) to assess and quantify MEMS based segmented deformable mirror technology and develop and assess closed-loop null sensing and control algorithm performance from both the pupil and focal planes. We have demonstrated closed-loop control at 27 Hz in the laboratory environment. Efforts are underway to first bring the contrast to > 109 necessary for the direct detection and characterization of jovian (Jupiter-like) and then to > 1010 necessary for terrestrial (Earth-like) exosolar planets. Short term advancements are expected to both broaden the spectral passband from 10 nm to 100 nm and to increase both the long-term stability to > 2 hours and the extent of the null out to a ~ 10 * wavelength / D via the use of MEMS based segmented deformable mirror technology, a coherent fiber bundle, achromatic phase shifters, all in a vacuum chamber at the GSFC VNC facility. Additionally an extreme stability textbook sized compact VNC is under development.

  17. Determinants, reproducibility, and seasonal variation of ergosterol levels in house dust.

    Science.gov (United States)

    Leppänen, H K; Nevalainen, A; Vepsäläinen, A; Roponen, M; Täubel, M; Laine, O; Rantakokko, P; von Mutius, E; Pekkanen, J; Hyvärinen, A

    2014-06-01

    This study aimed to clarify the determinants that affect the concentrations of ergosterol and viable fungi in house dust and to examine the seasonal variation and reproducibility of ergosterol concentrations indoors. In studying the determinants, dust samples from living room floors and vacuum cleaner dust bags were collected from 107 farming and 105 non-farming homes. Ergosterol levels were determined with gas chromatography-mass spectrometry,and the dust bag dust was cultivated for enumeration of fungal genera. Lifestyle and environmental factors, for example using of the fireplace, and visible mold observations in homes, explained 20–26% of the variation of fungal concentrations. For the reproducibility study, samples were collected from five urban homes in four different seasons. The reproducibility of ergosterol determinations within a sample was excellent (ICC = 89.8) for floor dust and moderate (ICC = 63.8) for dust bag dust, but poor when sampling the same home throughout a year (ICC = 31.3 and 12.6, respectively) due to large temporal variation in ergosterol concentrations. In conclusion, environmental characteristics only partially predicted the variation of fungal concentrations. Based on these studies, we recommend repeated sampling of dust over time if one seeks to adequately describe overall fungal levels and exposure in a home. This study shows that levels of ergosterol and viable fungi in house dust are related to visible mold observations. Only 20% of the variation in fungal levels can be explained with questionnaires, and therefore, environmental samples need to be taken in addition. Reproducibility of ergosterol determination was excellent for floor dust, and thus, ergosterol measurements from floor dust samples could be suitable for assessing the fungal load in building investigations. The temporal variation needs to be taken into account when describing the ergosterol concentration of urban homes.

  18. Geochemical evidence on the source regions of Tibetan Plateau dusts during non-monsoon period in 2008/09

    Science.gov (United States)

    Li, C.; Kang, S.; Zhang, Q.; Gao, S.

    2012-12-01

    Geochemical characteristics, source regions and related transport patterns of dust over the Tibetan Plateau (TP) are still unclear. To address these issues, major (Na, Mg, Al, K and Ca), trace (e.g. Li, Cr, Ni, As, Cd, Cs, Pb and U) and rare earth elements of dust samples from five snow-pits over the TP and its fringe areas during the non-monsoon period in 2008/2009 were analyzed. The results indicate that rare earth element compositions of snow-pit dust are similar to those of the upper continental crust. Enrichment factors of all the elements of snow-pit dust are identical to those of the pollution elements (e.g. Cu and Ni) and elements like Li, As and Cs that are concentrated in surface soils. In contrast, concentrations of some typical pollution elements (e.g. Cr and Cd) of snow pit dust are lower than those of dusts derived from the Sahara Desert and the Thar Desert surrounding the TP. Additionally, the compositions of rare earth elements and high field strength elements (Hf, Zr and Nb) of snow-pit dust are also similar to those of surface soils and different from dusts of these two deserts. The combined evidence, including dust transport patterns around the TP, supports the conclusion that the TP itself is the main source region of snow-pit dusts of the inner TP. It is unlikely that those particle-bound pollutants are transported into the TP from outside sources during the non-monsoon period. Ratios of Ce/Sm against Eu/Sm for the snow-pit dust, fine dust from the Sahara desert (A), and ratios of Ce/Er against Eu/Er for the snow-pit dust, fine dust from the Thar Desert (B). Dust from Sahasa cannot penetrate into the TP and transport only along the Himalayas at south and the Tianshan at north due to their high elevation

  19. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  20. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    International Nuclear Information System (INIS)

    Sobrado, J. M.; Martín-Soler, J.; Martín-Gago, J. A.

    2015-01-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration

  1. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM–CSIC), Cantoblanco, 28049 Madrid (Spain)

    2015-10-15

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  2. Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles

    Science.gov (United States)

    Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.

    2014-01-01

    The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.

  3. Interstellar dust and extinction

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1990-01-01

    It is noted that the term interstellar dust refers to materials with rather different properties, and that the mean extinction law of Seaton (1979) or Savage and Mathis (1979) should be replaced by the expression given by Cardelli et al. (1989), using the appropriate value of total-to-selective extinction. The older laws were appropriate for the diffuse ISM but dust in clouds differs dramatically in its extinction law. Dust is heavily processed while in the ISM by being included within clouds and cycled back into the diffuse ISM many times during its lifetime. Hence, grains probably reflect only a trace of their origin, although meteoritic inclusions with isotopic anomalies demonstrate that some tiny particles survive intact from a supernova origin to the present. 186 refs

  4. Dust control for draglines

    Energy Technology Data Exchange (ETDEWEB)

    Grad, P.

    2009-09-15

    Monitoring dust levels inside draglines reveals room for improvement in how filtration systems are used and maintained. The Australian firm BMT conducted a field test program to measure airflow parameters, dust fallout rates and dust concentrations, inside and outside the machine house, on four draglines and one shovel. The study involved computational fluid dynamics (CFD) simulations. The article describes how the tests were made and gives results. It was not possible to say which of the two main filtration systems currently used on Australian draglines - Dynavane or Floseps - performs better. It would appear that more frequent maintenance and cleaning would increase the overall filtration performance and systems could be susceptible to repeat clogging in a short time. 2 figs., 1 photos.

  5. DustEM: Dust extinction and emission modelling

    Science.gov (United States)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  6. Modelling of mid-infrared interferometric signature of hot exozodiacal dust emission

    Science.gov (United States)

    Kirchschlager, Florian; Wolf, Sebastian; Brunngräber, Robert; Matter, Alexis; Krivov, Alexander V.; Labdon, Aaron

    2018-01-01

    Hot exozodiacal dust emission was detected in recent surveys around two dozen main-sequence stars at distances of less than 1 au using the H- and K-band interferometry. Due to the high contrast as well as the small angular distance between the circumstellar dust and the star, direct observation of this dust component is challenging. An alternative way to explore the hot exozodiacal dust is provided by mid-infrared interferometry. We analyse the L, M and N bands interferometric signature of this emission in order to find stronger constraints for the properties and the origin of the hot exozodiacal dust. Considering the parameters of nine debris disc systems derived previously, we model the discs in each of these bands. We find that the M band possesses the best conditions to detect hot dust emission, closely followed by L and N bands. The hot dust in three systems - HD 22484 (10 Tau), HD 102647 (β Leo) and HD 177724 (ζ Aql) - shows a strong signal in the visibility functions, which may even allow one to constrain the dust location. In particular, observations in the mid-infrared could help to determine whether the dust piles up at the sublimation radius or is located at radii up to 1 au. In addition, we explore observations of the hot exozodiacal dust with the upcoming mid-infrared interferometer Multi AperTure mid-Infrared SpectroScopic Experiment (MATISSE) at the Very Large Telescope Interferometer.

  7. Long-term dust aerosol production from natural sources in Iceland.

    Science.gov (United States)

    Dagsson-Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur

    2017-02-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland ("Reykjavik haze"), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution. Long-term records of meteorological dust observations from Northeast Iceland indicate the frequency of dust events from Icelandic deserts. The research involves a 60-year period and

  8. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, M.

    2010-01-01

    The objective of our theoretical research under this grant over the past 3 years was to develop new understanding in a range of topics in the physics of dust-plasma interactions, with application to space and the laboratory. We conducted studies related to the physical properties of dust, waves and instabilities in both weakly coupled and strongly coupled dusty plasmas, and innovative possible applications. A major consideration in our choice of topics was to compare theory with experiments or observations, and to motivate new experiments, which we believe is important for developing this relatively new field. Our research is summarized, with reference to our list of journal publications.

  9. Tank bromeliads capture Saharan dust in El Yunque National Forest, Puerto Rico

    Science.gov (United States)

    Royer, Dana L.; Moynihan, Kylen M.; Ariori, Carolyn; Bodkin, Gavin; Doria, Gabriela; Enright, Katherine; Hatfield-Gardner, Rémy; Kravet, Emma; Nuttle, C. Miller; Shepard, Lisa; Ku, Timothy C. W.; O'Connell, Suzanne; Resor, Phillip G.

    2018-01-01

    Dust from Saharan Africa commonly blows across the Atlantic Ocean and into the Caribbean. Most methods for measuring this dust either are expensive if collected directly from the atmosphere, or depend on very small concentrations that may be chemically altered if collected from soil. Tank bromeliads in the dwarf forest of El Yunque National Forest, Puerto Rico, have a structure of overlapping leaves used to capture rainwater and other atmospheric inputs. Therefore, it is likely that these bromeliads are collecting in their tanks Saharan dust along with local inputs. Here we analyze the elemental chemistry, including rare earth elements (REEs), of tank contents in order to match their chemical fingerprint to a provenance of the Earth's crust. We find that the tank contents differ from the local soils and bedrock and are more similar to published values of Saharan dust. Our study confirms the feasibility of using bromeliad tanks to trace Saharan dust in the Caribbean.

  10. Social media visibility

    DEFF Research Database (Denmark)

    Uldam, Julie

    2018-01-01

    of activists remains under-researched. This article examines BP’s surveillance of activists who criticise the company’s corporate social responsibility (CSR) programme as ‘greenwashing’. In this way, it goes beyond corporations’ uses of big data and instead explores how they monitor and discuss strategies......As activists move from alternative media platforms to commercial social media platforms, they face increasing challenges in protecting their online security and privacy. While government surveillance of activists is well-documented in scholarly research and the media, corporate surveillance...... for responding to the activities of individual activists in social media. It shows that while social media afford an unprecedented level of visibility for activists, it comes with the risk of being monitored by corporations. Theoretically, it draws on conceptions of visibility in social sciences and media...

  11. Making Heat Visible

    Science.gov (United States)

    Goodhew, Julie; Pahl, Sabine; Auburn, Tim; Goodhew, Steve

    2015-01-01

    Householders play a role in energy conservation through the decisions they make about purchases and installations such as insulation, and through their habitual behavior. The present U.K. study investigated the effect of thermal imaging technology on energy conservation, by measuring the behavioral effect after householders viewed images of heat escaping from or cold air entering their homes. In Study 1 (n = 43), householders who received a thermal image reduced their energy use at a 1-year follow-up, whereas householders who received a carbon footprint audit and a non-intervention control demonstrated no change. In Study 2 (n = 87), householders were nearly 5 times more likely to install draught proofing measures after seeing a thermal image. The effect was especially pronounced for actions that addressed an issue visible in the images. Findings indicate that using thermal imaging to make heat loss visible can promote energy conservation. PMID:26635418

  12. Adapting MODIS Dust Mask Algorithm to Suomi NPP VIIRS for Air Quality Applications

    Science.gov (United States)

    Ciren, P.; Liu, H.; Kondragunta, S.; Laszlo, I.

    2012-12-01

    Despite pollution reduction control strategies enforced by the Environmental Protection Agency (EPA), large regions of the United States are often under exceptional events such as biomass burning and dust outbreaks that lead to non-attainment of particulate matter standards. This has warranted the National Weather Service (NWS) to provide smoke and dust forecast guidance to the general public. The monitoring and forecasting of dust outbreaks relies on satellite data. Currently, Aqua/MODIS (MODerate resolution Imaging Spectrometer) and Terra/MODIS provide measurements needed to derive dust mask and Aerosol Optical Thickness (AOT) products. The newly launched Suomi NPP VIIRS (Visible/Infrared Imaging Radiometer Suite) instrument has a Suspended Matter (SM) product that indicates the presence of dust, smoke, volcanic ash, sea salt, and unknown aerosol types in a given pixel. The algorithm to identify dust is different over land and ocean but for both, the information comes from AOT retrieval algorithm. Over land, the selection of dust aerosol model in the AOT retrieval algorithm indicates the presence of dust and over ocean a fine mode fraction smaller than 20% indicates dust. Preliminary comparisons of VIIRS SM to CALIPSO Vertical Feature Mask (VFM) aerosol type product indicate that the Probability of Detection (POD) is at ~10% and the product is not mature for operational use. As an alternate approach, NESDIS dust mask algorithm developed for NWS dust forecast verification that uses MODIS deep blue, visible, and mid-IR channels using spectral differencing techniques and spatial variability tests was applied to VIIRS radiances. This algorithm relies on the spectral contrast of dust absorption at 412 and 440 nm and an increase in reflectivity at 2.13 μm when dust is present in the atmosphere compared to a clear sky. To avoid detecting bright desert surface as airborne dust, the algorithm uses the reflectances at 1.24 μm and 2.25 μm to flag bright pixels. The

  13. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    Science.gov (United States)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike

  14. Lunar Airborne Dust Toxicity Hazard Assessments (Invited)

    Science.gov (United States)

    Cooper, B. L.; McKay, D. S.; Taylor, L. A.; Wallace, W. T.; James, J.; Riofrio, L.; Gonzalez, C. P.

    2009-12-01

    was developed for this task. The dust separation system includes a fluidized bed, an elutriation flask, and a cyclone. The product dust is collected on a membrane filter with 0.45 micrometer pore size. Collection and separation efficiencies, and particle size distribution measurements of the material retained in the various components are tracked as development and tests proceed. Calculations show that respirable-sized particles, if released in a habitat, would remain suspended in the air for extended periods of time. Without active dust control, most of this fine dust would end up in the crew’s lungs. Dust exposure standards, similar to those established for quartz on Earth, will determine the design, mass, power, and cost of dust control systems incorporated into lunar habitats and pressurized rovers.

  15. The Paleozoic Dust Bowl: Dust Deposition in Tropical Western Pangaea (Midcontinent U.S.) at the Terminus of the Late Paleozoic Ice Age

    Science.gov (United States)

    Soreghan, G. S.; Heavens, N. G.; Benison, K. C.; Soreghan, M. J.; Mahowald, N. M.; Foster, T.; Zambito, J.; Sweet, A.; Kane, M.

    2012-12-01

    Atmospheric dust is well recognized and studied as both an archive and agent of climate change in Earth's relatively recent past. Archives of past dust include loess deposits and dust recovered from ocean- and ice-cores. Dust remains poorly known in Earth's past prior to the Cenozoic, but is increasingly recognized in the form of paleo-loess deposits, and (epeiric) marine strata that accumulated isolated from fluvio-deltaic influx. Here, we report on the growing recognition of voluminous dust deposits preserved in the Permian record of the U.S. Midcontinent (western tropical Pangaea). Fine-grained redbeds predominate in Permian strata throughout the U.S. Midcontinent, but notably in a swath extending from Oklahoma through South Dakota. These units consist predominantly of red mudstone and siltstone in commonly massive units, but sedimentary structures and bedding that signal aqueous processes (e.g. laminations, ripples) have led most to infer deltaic or tidal deposition. The absence of channel systems to deliver the sediment, as well as the predominantly massive and laterally continuous character and the uniform fine grain size signal wind transport, implying that these units record sustained dust deposition overprinted at times by sub-aqueous deposition in lakes, including ephemeral saline and acid lakes that led to evaporite cementation. Detrital zircon geochronology indicates that much of the dust originated in the relatively distant Appalachian-Ouachita orogenic systems, which formed part of the central Pangaean mountains (CPM), the collisional zone that sutured the supercontinent. Within the Anadarko basin of Oklahoma, Permian redbeds record >2 km of predominantly dust deposition, some of the thickest dust deposits yet documented in Earth's record. Yet the tropical setting is remarkably non-uniformitarian, as much Quaternary loess occurs in mid- to high-latitude regions, commonly linked to glacial genesis. We are currently investigating with both data and

  16. Paradoxes of Visibility

    Directory of Open Access Journals (Sweden)

    Tarnay László

    2017-12-01

    Full Text Available The paper investigates two possible critical arguments following the pictorial turn. The first is formulated within ocularcentrism, the dominance of sight, and starts with the right to visibility as a general principle that governs today’s digital culture but gets twisted in special cases like the Auschwitz photos of the Shoa, the Abu Ghraib prison videos, or recently the website called Yolocaust. The second is conceived outside the visual culture and is meant to vindicate the other senses vis-à-vis the eyes. However, the argument is truncated here only to highlight the boomerang effect of the other senses: haptic vision. It is the case of visual perception when (a there is a lack of things to see and (b indeterminate synaesthesia: when vision intensifies the other senses in the embodied viewer. The two arguments converge upon a dialectic of the visible and the imaginable, which is formulated here as two paradoxes that the discussed examples transcend. By enforcing visibility at all costs where there is hardly anything recognizable to see, they lead to two diverging results. On the one hand, the meaning of “image” is extended toward the unimaginable, the traumatic experience, on the other hand, it is extended toward the invisible, the encounter with the radical Other.

  17. The benefits of visibility

    International Nuclear Information System (INIS)

    Krupnick, A.; DeWitt, D.

    1994-01-01

    The benefits of visibility improvement (or the damages with additional degradation) refer to increases (or decreases) in utility obtained in three different dimensions. The first of these is associated with the nature of the visibility change. Visual range may be improved so that features of an area become more distinct or the sky becomes clearer. Alternatively, normal features of an area may be marred, say by the site of a power plant or its plume (called plume blight). The second dimension is the location of the change: in an urban area, in a rural setting, or in a recreational area or area of particular beauty, such as the Grand Canyon. The third dimension is the type of value: use or non-use. Thus, a person who visits the Grand Canyon (or may visit it in the future) may hold use values for improving his view of the Canyon or its surroundings and may also old non-use values for improved visibility (whether for altruistic or other reasons) irrespective of present or planned visits. In all, therefore, there are 12 possible combinations of the elements in these three dimension, each of which is logically distinct from the others and which demands attention in the literature to derive willingness to pay (WTP)

  18. The benefits of visibility

    Energy Technology Data Exchange (ETDEWEB)

    Krupnick, A; DeWitt, D

    1994-07-01

    The benefits of visibility improvement (or the damages with additional degradation) refer to increases (or decreases) in utility obtained in three different dimensions. The first of these is associated with the nature of the visibility change. Visual range may be improved so that features of an area become more distinct or the sky becomes clearer. Alternatively, normal features of an area may be marred, say by the site of a power plant or its plume (called plume blight). The second dimension is the location of the change: in an urban area, in a rural setting, or in a recreational area or area of particular beauty, such as the Grand Canyon. The third dimension is the type of value: use or non-use. Thus, a person who visits the Grand Canyon (or may visit it in the future) may hold use values for improving his view of the Canyon or its surroundings and may also old non-use values for improved visibility (whether for altruistic or other reasons) irrespective of present or planned visits. In all, therefore, there are 12 possible combinations of the elements in these three dimension, each of which is logically distinct from the others and which demands attention in the literature to derive willingness to pay (WTP)

  19. Control of harmful dust in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, B; Bower, K; Mitchell, D

    1973-01-01

    This handbook consists of a series of short chapters devoted to: sources of airborne dust; dust standards and methods of sampling; dust prevention on mechanized faces; ventilation and dust extraction; distribution and use of water; dust control on mechanized faces; dust control in drivages and headings; drilling and shotfiring; dust control in transport; some outbye dust control techniques (hygroscopic salts, impingement curtains); water infusion; personal protective equipment. (CIS Abstr.)

  20. Dust evolution in protoplanetary disks

    OpenAIRE

    Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume

    2007-01-01

    6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...

  1. Respirable versus inhalable dust sampling

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    The ICRP uses a total inhalable dust figure as the basis of calculations on employee lung dose. This paper was written to look at one aspect of the Olympic Dam dust situation, namely, the inhalable versus respirable fraction of the dust cloud. The results of this study will determine whether it is possible to use respirable dust figures, as obtained during routine monitoring to help in the calculations of employee exposure to internal radioactive contaminants

  2. Dust Composition in Climate Models: Current Status and Prospects

    Science.gov (United States)

    Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.; Kok, J. F.; Scanza, R.; Mahowald, N. M.

    2015-12-01

    Mineral dust created by wind erosion of soil particles is the dominant aerosol by mass in the atmosphere. It exerts significant effects on radiative fluxes, clouds, ocean biogeochemistry, and human health. Models that predict the lifecycle of mineral dust aerosols generally assume a globally uniform mineral composition. However, this simplification limits our understanding of the role of dust in the Earth system, since the effects of dust strongly depend on the particles' physical and chemical properties, which vary with their mineral composition. Hence, not only a detailed understanding of the processes determining the dust emission flux is needed, but also information about its size dependent mineral composition. Determining the mineral composition of dust aerosols is complicated. The largest uncertainty derives from the current atlases of soil mineral composition. These atlases provide global estimates of soil mineral fractions, but they are based upon massive extrapolation of a limited number of soil samples assuming that mineral composition is related to soil type. This disregards the potentially large variability of soil properties within each defined soil type. In addition, the analysis of these soil samples is based on wet sieving, a technique that breaks the aggregates found in the undisturbed parent soil. During wind erosion, these aggregates are subject to partial fragmentation, which generates differences on the size distribution and composition between the undisturbed parent soil and the emitted dust aerosols. We review recent progress on the representation of the mineral and chemical composition of dust in climate models. We discuss extensions of brittle fragmentation theory to prescribe the emitted size-resolved dust composition, and we identify key processes and uncertainties based upon model simulations and an unprecedented compilation of observations.

  3. Saharan dust levels in Greece and received inhalation doses

    Directory of Open Access Journals (Sweden)

    C. Mitsakou

    2008-12-01

    Full Text Available The desert of Sahara is one of the major sources of mineral dust on Earth, producing around 2×108 tons/yr. Under certain weather conditions, dust particles from Saharan desert get transported over the Mediterranean Sea and most of Europe. The limiting values set by the directive EC/30/1999 of European Union can easily be exceeded by the transport of desert dust particles in the south European Region and especially in urban areas, where there is also significant contribution from anthropogenic sources. In this study, the effects of dust transport on air quality in several Greek urban areas are quantified. PM10 concentration values from stationary monitoring stations are compared to dust concentrations for the 4-year period 2003–2006. The dust concentration values in the Greek areas were estimated by the SKIRON modelling system coupled with embedded algorithms describing the dust cycle. The mean annual dust contribution to daily-averaged PM10 concentration values was found to be around or even greater than 10% in the urban areas throughout the years examined. Natural dust transport may contribute by more than 20% to the annual number of exceedances – PM10 values greater than EU limits – depending on the specific monitoring location. In a second stage of the study, the inhaled lung dose received by the residents in various Greek locations is calculated. The particle deposition efficiency of mineral dust at the different parts of the human respiratory tract is determined by applying a lung dosimetry numerical model, which incorporates inhalation dynamics and aerosol physical processes. The inhalation dose from mineral dust particles was greater in the upper respiratory system (extrathoracic region and less significant in the lungs, especially in the sensitive alveolar region. However, in cases of dust episodes, the amounts of mineral dust deposited along the human lung are comparable to those

  4. Systematic characterization of structural, dynamical and electrical properties of dust devils and implications for dust lifting processes

    Science.gov (United States)

    Franzese, Gabriele; Esposito, Francesca; Lorenz, Ralph D.; Popa, Ciprian; Silvestro, Simone; Deniskina, Natalia; Cozzolino, Fabio

    2017-04-01

    Dust devils are convective vortices able to lift sand and dust grains from the soil surface, even in conditions of low wind speed environment. They have been observed not only on Earth but also on other planets of the solar system; in particular, they are largely studied on Mars. Indeed, the contribution of the dust devils to the Martian climate is a highly debated question. In order to investigate this topic, it is important to understand the nature of the dust lifting mechanism by the vortex and characterize the induced electric field. As part of the development process of DREAMS, the meteorological station on board the Schiapparelli lander of the ExoMars 2016 mission, and of the Dust complex package of the ExoMars 2020 mission, we performed various field campaigns in the Sahara desert (Tafilalt region, Morocco). We deployed a fully equipped meteorological station and, during the 2014 summer, we observed three months of dust devils activity, collecting almost six hundreds events. For each dust devil, we monitored the horizontal wind speed and direction, the vertical wind speed, the pressure drop due to the vortex core, the temperature, the induced electric field and the concentration of dust lifted. This data set is unique in literature and represents up to now the most comprehensive one available for the dusty convective vortices. Here we will present the analysis of the Moroccan data with particular emphasis on the study of the atmospheric electric field variations due to the passage of the vortices. The distribution of the vortex parameters (wind speed and direction, pressure, E-field and dust lifted) are showed and compared, when possible, to the ones observed by the Martian surveys. The connection between the E-field and the other parameters will be presented. In the terrestrial environment, the development of the convective vortices is restricted by the presence of the vegetation and of the urban areas, hence dust devils can impact the climate only on local

  5. Lack of dust in quasar absorption line systems

    International Nuclear Information System (INIS)

    Jura, M.

    1977-01-01

    It is stated that the origin of absorption line systems in quasars is still uncertain. Most such systems apparently have atomic hydrogen column densities of the order of 10 19 /cm 2 , but at least two quasars, 1331 + 170 and PHL957, have such strong Lyman α absorption lines that atomic hydrogen column densities of the order of 10 21 /cm 2 are indicated. It should be possible to observe the dust produced 2,200 A extinction feature as it is red shifted into the visible, and to determine whether absorption line systems are produced in spiral galaxies where the dust content is similar to that in the interstellar medium. It has been argued that the emission line regions of quasars generally lack dust and that towards PHL957 the 2,200 A feature is absent. The present author argues that dust similar to that found in the interstellar medium is not found towards the quasars 1331 + 170 and PHL957. This could explain why H 2 is not found towards PHL957, and it indicates that the absorption line systems in quasars are not produced in spiral galaxies similar to our own. It seems from the analysis presented that the dust-to-gas ratio towards 1331 + 170 is at least a factor of 20 less than in the interstellar medium, and there is no reason to suppose that this lack of dust results from a lack of metals It is concluded that there seems to be a lack of normal dust towards PHL957 by at least a factor of two; and that the absorption region towards 1331 + 170 and probably the region towards PHL957 are lacking dust similar to that in our own galaxy. This can explain the lack of H 2 in these systems. (U.K.)

  6. Red Dawn: Characterizing Iron Oxide Minerals in Atmospheric Dust

    Science.gov (United States)

    Yauk, K.; Ottenfeld, C. F.; Reynolds, R. L.; Goldstein, H.; Cattle, S.; Berquo, T. S.; Moskowitz, B. M.

    2012-12-01

    Atmospheric dust is comprised of many components including small amounts of iron oxide minerals. Although the iron oxides make up a small weight percent of the bulk dust, they are important because of their roles in ocean fertilization, controls on climate, and as a potential health hazard to humans. Here we report on the iron oxide mineralogy in dust from a large dust storm, dubbed Red Dawn, which engulfed eastern Australia along a 3000 km front on 23 September 2009. Red Dawn originated from the lower Lake Eyre Basin of South Australia, western New South Wales (NSW) and southwestern Queensland and was the worst dust storm to have hit the city of Sydney in more than 60 years. Dust samples were collected from various locations across eastern Australia (Lake Cowal, Orange, Hornsby, Sydney) following the Red Dawn event. Our dust collection provides a good opportunity to study the physical and mineralogical properties of iron oxides from Red Dawn using a combination of reflectance spectroscopy, Mössbauer spectroscopy (MB), and magnetic measurements. Magnetization measurements from 20-400 K reveal that magnetite/maghemite, hematite and goethite are present in all samples with magnetite occurring in trace amounts (effects (d< 100 nm). Finally, we compared reflectance with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance to assess the degree to which ferric oxide in these samples might absorb solar radiation. In samples for which both parameters were obtained, HIRM and average reflectance over the visible wavelengths are correlated as a group (r2=0.24). These results indicate that the ferric oxide minerals in Red Dawn dust absorb solar radiation. Much of this ferric oxide occurs likely as grain coatings of nanohematite and nanogoethite, thereby providing high surface area to enhance absorption of solar radiation.

  7. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos

    Science.gov (United States)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; McMillan, W. W.; Rousch, T.

    1995-01-01

    We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff)variance-0.8 micron), smaller particle size (r(sub mode)-0.02 microns) distribution coupled with a "palagonite-like" composition is argued to fit the complete ultraviolet-to-30-micron absorption properties of the dust better than the montmorillonite-basalt r(sub eff)variance= 0.4 micron, r(sub mode)= 0.40 micron dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971 - 1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emission-phase-function (EPF) observations at 9 microns are analyzed to retrieve 9-micron dust opacities coincident with solar band dust opacities obtained from the same EPF sequences. These EPF dust opacities provide an independent measurement of the visible/9-microns extinction opacity ratio (> or equal to 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-microns opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions and compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micron absorption well. However, it predicts structured, deep absorptions at 20 microns which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8- to 9-micron

  8. Erosion of dust aggregates

    NARCIS (Netherlands)

    Seizinger, A.; Krijt, S.; Kley, W.

    2013-01-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple

  9. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, Marelene

    2005-01-01

    Our theoretical research on dust-plasma interactions has concentrated on three main areas: (a)studies of grain charging and applications; (b) waves and instabilities in weakly correlated dusty plasma with applications to space and laboratory plasmas; (c) waves in strongly coupled dusty plasmas.

  10. From dust to life

    Science.gov (United States)

    Wickramasinghe, Chandra

    After initially challenging the dirty-ice theory of interstellar grains, Fred Hoyle and the present author proposed carbon (graphite) grains, mixtures of refractory grains, organic polymers, biochemicals and finally bacterial grains as models of interstellar dust. The present contribution summarizes this trend and reviews the main arguments supporting a modern version of panspermia.

  11. Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula

    Science.gov (United States)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Temimi, Marouane; Ghedira, Hosni

    2018-01-01

    Dust storms are among the most severe environmental problems in arid and semi-arid regions of the world. The predictability of seven dust events, viz. D1: April 2-4, 2014; D2: February 23-24, 2015; D3: April 1-3, 2015; D4: March 26-28, 2016; D5: August 3-5, 2016; D6: March 13-14, 2017 and D7:March 19-21, 2017, are investigated over the Arabian Peninsula using a regionally adapted chemistry transport model CHIMERE coupled with the Weather Research and Forecast (WRF) model. The hourly forecast products of particulate matter concentrations (PM10) and aerosol optical depths (AOD) are compared against both satellite-based (MSG/SEVRI RGB dust, MODIS Deep Blue Aerosol Optical Depth: DB-AOD, Ozone Monitoring Instrument observed UV Aerosol Absorption Index: OMI-AI) and ground-based (AERONET AOD) remote sensing products. The spatial pattern and the time series of the simulations show good agreement with the observations in terms of the dust intensity as well as the spatiotemporal distribution. The causative mechanisms of these dust events are identified by the concurrent analyses of the meteorological data. From these seven storms, five are associated with synoptic scale meteorological processes, such as prefrontal storms (D1 and D7), postfrontal storms of short (D2), and long (D3) duration types, and a summer shamal storm (D6). However, the storms D4 and D6 are partly associated with mesoscale convective type dust episodes known as haboobs. The socio-economic impacts of the dust events have been assessed by estimating the horizontal visibility, air quality index (AQI), and the dust deposition flux (DDF) from the forecasted dust concentrations. During the extreme dust events, the horizontal visibility drops to near-zero values co-occurred withhazardous levels of AQI and extremely high dust deposition flux (250 μg cm- 2 day- 1).

  12. Vertical transport of desert particulates by dust devils and clear thermals

    International Nuclear Information System (INIS)

    Sinclair, P.C.

    1974-01-01

    While the vertical and horizontal transport of natural surface material by dust devils is not in itself a critical environmental problem, the transport and downwind fallout of toxic or hazardous materials from dust devil activity may be a contributing factor in the development of future ecological-biological problems. Direct quantitative measurements of the dust particle size distribution near and within the visible dust devil vortex and analyses of the upper level clear thermal plume have been made to provide estimates of the vertical and horizontal transport of long half-life radioactive substances such as plutonium. Preliminary measurements and calculations of dust concentrations within dust devils indicate that over 7 x 10 3 tons of desert dust and sand may be transported downwind from an area 285 km 2 during an average dust devil season (May to August). Near the ground these dust concentrations contain particles in the size range from approximately 1 μm to 250 μm diameter. Since the vertical velocity distribution greatly exceeds the particle(s) fall velocities, the detrainment of particles within the vortex is controlled primarily by the spatial distribution of the radial (v/sub r/) and tangential (v/sub theta/) velocity fields. Above the visible dust devil vortex, a clear thermal plume may extend upward to 15,000 to 18,000 ft MSL. A new airborne sampling and air data system has been developed to provide direct measurements of the dust concentration and air motion near and within the upper thermal plume. The air sampler has been designed to operate isokinetically over a considerable portion of the low-speed flight regime of a light aircraft. A strapped down, gyro-reference platform and a boom-vane system is used to determine the vertical air motions as well as the temperature and turbulence structure within the thermal plume. (U.S.)

  13. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    Directory of Open Access Journals (Sweden)

    Basit Khan

    2015-11-01

    Full Text Available Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth's meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I, which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane's tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size

  14. Laboratory polarization and permittivity measurements to interpret dust polarimetric observations and in-situ radar studies. Significance for Rosetta mission at 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Brouet, Yann; Hadamcik, Edith; Heggy, Essam; Hines, Dean; Lasue, Jérémie; Renard, Jean-Baptiste

    2015-08-01

    Polarimetric astronomical observations on dust clouds and regolithic surfaces require laboratory simulations on samples to provide information on properties (size distribution, porosity, refractive index) of the scattering media. Similarly, in-situ radar investigations in the solar system require laboratory studies on samples to infer physical properties (e.g. porosity, ice/dust ratio) of sub-surfaces and interiors. Recent developments are illustrated with present studies related to the Rosetta mission, which begun its rendezvous with comet 67P/Churyumov-Gerasimeko (C-G) and landed the Philae module on its nucleus in 2014.We will summarize laboratory simulations with the PROGRA2 suite of instruments that study (in the visible to near IR domain) the polarimetric properties of dust samples in microgravity conditions or on surfaces [1], with emphasis on the interpretation of polarimetric observations of C-G, during its previous perihelion passages from Earth observatories, and currently from HST [2,3]. The presence of large dust particles in the pre-perihelion coma previously inferred from remote observations agrees with Rosetta ground truth [4]. We will also present measurements on the permittivity (in the millimeter to meter domain) of various dust samples, with emphasis on porous samples [5,6]. Results provide constraints on the properties of the subsurface and interior of C-G, as explored by MIRO on Rosetta and CONSERT on Philae.Such studies are relevant for the interpretation of polarimetric observations of other dust clouds (e.g. debris disks, interplanetary dust cloud, clouds in planetary atmospheres) and surfaces (e.g. planets, moons), as well as for those of other radar characterization studies (e.g. Mars, moons, asteroids).[1] Levasseur-Regourd et al. In Polarization of stars and planetary systems, Cambridge UP, in press 2015.[2] Hadamcik et al. A&A 517 2010.[3] Hines and Levasseur-Regourd, PSS submitted 2015.[4] Schulz et al. Nature 518 2015.[5] Heggy et al

  15. Spectrophotometry of Dust in Comet Hale-Bopp

    Science.gov (United States)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  16. Update on Automated Classification of Interplanetary Dust Particles

    Science.gov (United States)

    Maroger, I.; Lasue, J.; Zolensky, M.

    2018-01-01

    Every year, the Earth accretes about 40,000 tons of extraterrestrial material less than 1 mm in size on its surface. These dust particles originate from active comets, from impacts between asteroids and may also be coming from interstellar space for the very small particles. Since 1981, NASA Jonhson Space Center (JSC) has been systematically collecting the dust from Earth's strastosphere by airborne collectors and gathered them into "Cosmic Dust Catalogs". In those catalogs, a preliminary analysis of the dust particles based on SEM images, some geological characteristics and X-ray energy-dispersive spectrometry (EDS) composition is compiled. Based on those properties, the IDPs are classified into four main groups: C (Cosmic), TCN (Natural Terrestrial Contaminant), TCA (Artificial Terrestrial Contaminant) and AOS (Aluminium Oxide Sphere). Nevertheless, 20% of those particles remain ambiguously classified. Lasue et al. presented a methodology to help automatically classify the particles published in the catalog 15 based on their EDS spectra and nonlinear multivariate projections (as shown in Fig. 1). This work allowed to relabel 155 particles out of the 467 particles in catalog 15 and reclassify some contaminants as potential cosmic dusts. Further analyses of three such particles indicated their probable cosmic origin. The current work aims to bring complementary information to the automatic classification of IDPs to improve identification criteria.

  17. Three-dimensional Reconstruction of Dust Particle Trajectories in the NSTX

    International Nuclear Information System (INIS)

    Boeglin, W.U.; Roquemore, A.L.; Maqueda, R.

    2009-01-01

    Highly mobile incandescent dust particles are routinely observed on NSTX using two fast cameras operating in the visible region. An analysis method to reconstruct dust particle trajectories in space using two fast cameras is presented in this paper. Position accuracies of a few millimeters depending on the particle's location have been achieved and particle velocities between 10 and 200 m/s have been observed

  18. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  19. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    Science.gov (United States)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    2005-08-01

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.

  20. Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?

    International Nuclear Information System (INIS)

    Smith, Andrew J.A.; Grainger, Roy G.

    2014-01-01

    Mineral dust aerosol is a major component of natural airborne particulates. Using satellite measurements from the visible and near-infrared, there is insufficient information to retrieve a full microphysical and chemical description of an aerosol distribution. As such, refractive index is one of many parameters that must be implicitly assumed in order to obtain an optical depth retrieval. This is essentially a proxy for the dust mineralogy. Using a global soil map, it is shown that as long as a reasonable refractive index for dust is assumed, global dust variability is unlikely to cause significant variation in the optical properties of a dust aerosol distribution in the short-wave, and so should not greatly affect retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol optical depth due to this variation are expected to be ≲1%. The work is framed around the ORAC AATSR aerosol retrieval, but is equally applicable to similar satellite retrievals. In this case, variations in the top-of-atmosphere reflectance caused by mineral variation are within the noise limits of the instrument. -- Highlights: • Global variation in dust aerosol refractive index is quantified using soil maps. • Resulting visible light scattering properties have limited variability. • Satellite aerosol retrievals do not need to account for varying dust refractive indices

  1. The HOSTS Survey—Exozodiacal Dust Measurements for 30 Stars

    Science.gov (United States)

    Ertel, S.; Defrère, D.; Hinz, P.; Mennesson, B.; Kennedy, G. M.; Danchi, W. C.; Gelino, C.; Hill, J. M.; Hoffmann, W. F.; Rieke, G.; Shannon, A.; Spalding, E.; Stone, J. M.; Vaz, A.; Weinberger, A. J.; Willems, P.; Absil, O.; Arbo, P.; Bailey, V. P.; Beichman, C.; Bryden, G.; Downey, E. C.; Durney, O.; Esposito, S.; Gaspar, A.; Grenz, P.; Haniff, C. A.; Leisenring, J. M.; Marion, L.; McMahon, T. J.; Millan-Gabet, R.; Montoya, M.; Morzinski, K. M.; Pinna, E.; Power, J.; Puglisi, A.; Roberge, A.; Serabyn, E.; Skemer, A. J.; Stapelfeldt, K.; Su, K. Y. L.; Vaitheeswaran, V.; Wyatt, M. C.

    2018-05-01

    The Hunt for Observable Signatures of Terrestrial Systems survey searches for dust near the habitable zones (HZs) around nearby, bright main-sequence stars. We use nulling interferometry in the N band to suppress the bright stellar light and to probe for low levels of HZ dust around the 30 stars observed so far. Our overall detection rate is 18%, including four new detections, among which are the first three around Sun-like stars and the first two around stars without any previously known circumstellar dust. The inferred occurrence rates are comparable for early-type and Sun-like stars, but decrease from {60}-21+16% for stars with previously detected cold dust to {8}-3+10% for stars without such excess, confirming earlier results at higher sensitivity. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal excess luminosity function, we put upper limits on the median HZ dust level of 13 zodis (95% confidence) for a sample of stars without cold dust and of 26 zodis when focusing on Sun-like stars without cold dust. However, our data suggest that a more complex luminosity function may be more appropriate. For stars without detectable Large Binocular Telescope Interferometer (LBTI) excess, our upper limits are almost reduced by a factor of two, demonstrating the strength of LBTI target vetting for future exo-Earth imaging missions. Our statistics are limited so far, and extending the survey is critical to informing the design of future exo-Earth imaging surveys.

  2. On court interpreters' visibility

    DEFF Research Database (Denmark)

    Dubslaff, Friedel; Martinsen, Bodil

    of the service they receive. Ultimately, the findings will be used for training purposes. Future - and, for that matter, already practising - interpreters as well as the professional users of interpreters ought to take the reality of the interpreters' work in practice into account when assessing the quality...... on the interpreter's interpersonal role and, in particular, on signs of the interpreter's visibility, i.e. active co-participation. At first sight, the interpreting assignment in question seems to be a short and simple routine task which would not require the interpreter to deviate from the traditional picture...

  3. Making Invisible Forces Visible

    DEFF Research Database (Denmark)

    Ratner, Helene Gad

    2013-01-01

    their 'true' attitudes and values. The paper draws on theories of affect as well as actor-network theory to analyse three incidents where managers turn their interpretations of teachers' emotions into such information. These incidents suggest that the efforts to render employees' attitudes and values visible...... install a normative emotional scale where an ideal employee displays emotional investment and self-control. This has implications, not only for employees who are expected to exhibit the 'right' emotions, but also for management, which comes to depend on transient emotions and co-presence in situations...

  4. The Stardust Interstellar Dust Collector and Stardust@home

    Science.gov (United States)

    Westphal, A. J.; Anderson, D.; Bastien, R.; Butterworth, A.; Frank, D.; Gainsforth, Z.; Kelley, N.; Lettieri, R.; Mendez, B.; Prasad, R.; Tsitrin, S.; von Korff, J.; Warren, J.; Wertheimer, D.; Zhang, A.; Zolensky, M.

    2006-12-01

    The Stardust sample return mission is effectively two missions in one. Stardust brought back to earth for analytical study the first solid samples from a known solar system body beyond the moon, comet Wild2. The first results of the analyses of these samples are reported elsewhere in this session. In a separate aerogel collector, Stardust also captured and has returned the first samples of contemporary interstellar dust. Landgraf et al. [1] has estimated that ~ 50 interstellar dust particles in the micron size range have been captured in the Stardust Interstellar Dust Collector. Their state after capture is unknown. Before analysis of these particles can begin, they must be located in the collector. Here we describe the current status of Stardust@home, the massively distributed public search for these tiny interstellar dust particles. So far more than 13,000 volunteers have collectively performed more than 10,000,000 searches in stacks of digital images of ~10% of the collector. We report new estimates of the flux of interplanetary dust at ~2 AU based on the results of this search, and will compare with extant models[2]. References: [1] Landgraf et al., (1999) Planet. Spac. Sci. 47, 1029. [2] Staubach et al. (2001) in Interplanetary Dust, E. Grün, ed., Astron. &Astro. Library, Springer, 2001.

  5. A Multi-Year Dust Devil Vortex Survey Using an Automated Search of Pressure Time-Series

    Science.gov (United States)

    Jackson, Brian K.; Lorenz, Ralph

    2014-11-01

    Dust devils occur in arid climates on the Earth and ubiquitously on Mars, where they likely dominate the supply of atmospheric dust and influence climate. Martian dust devils have been studied with a combination of orbiting and landed spacecraft, while most studies of terrestrial dust devils have involved manned monitoring of field sites, which can be costly both in time and personnel. As an alternative approach, we describe a multi-year in-situ survey of terrestrial dust devils using pressure loggers deployed at El Dorado Playa in Nevada, USA, a site known for dust devil activity. Analogous to previous surveys for Martian dust devils, we conduct a post-hoc analysis of the barometric data to search for putative dust devil pressure dips using a new automated detection algorithm. We investigate the completeness and false positive rates of our new algorithm and conduct several statistically robust analyses of the resulting population of dips. We also investigate seasonal, annual, and spatial variability of the putative dust devil dips, possible correlations with precipitation, and the influence of sample size on the derived population statistics. Our results suggest that large numbers of dips (> 1,000) collected over multiple seasons are probably required for accurate assessment of the underlying dust devil population. Correlating long-term barometric time-series with other data streams (e.g., solar flux measurements from photovoltaic cells) can uniquely elucidate the natures and origins of dust devils, and accurately assessing their influence requires consideration of the full distribution of dust devil properties, rather than average values. For example, our results suggest the dust flux from the average terrestrial devil is nearly 1,000 times smaller than the (more representative) population-weighted average flux. If applicable to Martian dust devils, such corrections may help resolve purported discrepancies between the dust fluxes estimated from dust devil studies

  6. Origin of the Earth and planets

    International Nuclear Information System (INIS)

    Safronov, V.S.; Ruskol, E.L.

    1982-01-01

    The present state of the Schmidt hypothesis on planets formation by combining cold solid particles and bodies in the protoplanet dust cloud is briefly outlined in a popular form. The most debatable problems of the planet cosmogony: formation of and processes in a protoplanet cloud, results of analytical evaluations and numerical simulation of origin of the Earth and planets-giants are discussed [ru

  7. Forecast errors in dust vertical distributions over Rome (Italy): Multiple particle size representation and cloud contributions

    Science.gov (United States)

    Kishcha, P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.; Kallos, G.; Katsafados, P.; Spyrou, C.; Gobbi, G. P.; Barnaba, F.; Nickovic, S.; PéRez, C.; Baldasano, J. M.

    2007-08-01

    In this study, forecast errors in dust vertical distributions were analyzed. This was carried out by using quantitative comparisons between dust vertical profiles retrieved from lidar measurements over Rome, Italy, performed from 2001 to 2003, and those predicted by models. Three models were used: the four-particle-size Dust Regional Atmospheric Model (DREAM), the older one-particle-size version of the SKIRON model from the University of Athens (UOA), and the pre-2006 one-particle-size Tel Aviv University (TAU) model. SKIRON and DREAM are initialized on a daily basis using the dust concentration from the previous forecast cycle, while the TAU model initialization is based on the Total Ozone Mapping Spectrometer aerosol index (TOMS AI). The quantitative comparison shows that (1) the use of four-particle-size bins in the dust modeling instead of only one-particle-size bins improves dust forecasts; (2) cloud presence could contribute to noticeable dust forecast errors in SKIRON and DREAM; and (3) as far as the TAU model is concerned, its forecast errors were mainly caused by technical problems with TOMS measurements from the Earth Probe satellite. As a result, dust forecast errors in the TAU model could be significant even under cloudless conditions. The DREAM versus lidar quantitative comparisons at different altitudes show that the model predictions are more accurate in the middle part of dust layers than in the top and bottom parts of dust layers.

  8. Electromagnetic scattering by a polydispersion of small charged cosmic dust particles

    Directory of Open Access Journals (Sweden)

    M. Kocifaj

    2011-09-01

    Full Text Available Some recent studies on extended red emissions suggest the presence of very small dust particles in the Universe. The sizes of these particles vary from 1 nm to some tens of nanometers, thus situating them deeply in the Rayleigh region if computations are made for visible or near infrared. The optical response of such particles can be a function of the surface charge. In this study we analyse the effect of surface electric potential on the total optical thickness and scattering phase function of the cosmic dust particles. The results are compared with those obtained for electrically neutral dust.

  9. Influence of large dust particles on plasma performance in the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.H., E-mail: huangzh@swip.ac.cn; Yan, L.W.; Feng, Z.; Cheng, J.; Tomita, Y.; Liu, L.; Gao, J.M.; Zhong, W.L.; Jiang, M.; Yang, Q.W.; Xu, Y.; Duan, X.R.

    2015-08-15

    Visible dust particles generated from plasma-facing components (PFCs) and the impact of the dusts on plasma performance as a source of impurities have been studied in the HL-2A tokamak by means of a fast framing camera together with other diagnostics. The camera images display that during a steady state discharge the dusts are accelerated toriodally by the ion drag force and radially by the centrifugal force. The first experimental evidence shows that dust particles originating from the high field side (HFS) lead to a significant reduction of central electron temperature and divertor heat flux, a considerable rise of total radiated power and effective charge, and a slight growth of local electron density. The results reveal that the dusts at the HFS have much stronger effects on plasma performance than those at the low field side (LFS)

  10. Use of SEVIRI images and derived products in a WMO Sand and dust Storm Warning System

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, M A; Ruiz, J; Cuevas, E [Agencia Estatal de MeteorologIa (AEMET) (Spain)], E-mail: mig@inm.es

    2009-03-01

    The Visible/IR images of SEVIRI (Spinning Enhanced Visible and Infrared Imager), on board Meteosat Second Generation (MSG) satellites, are used to monitor dust events. Satellite-based detection of dust is a difficult problem due in part to the observing-system limitations. The main difficulty is that the dust can be confused with water/ice clouds. SEVIRI is not as optimal for the viewing of dust as SEAWIFS or MODIS, due to the fact that both of them count with additional short-wavelength channels. However, the SEVIRI 15-minute loop images can detect small dust plumes as well as subtle changes from one image to the next. A description of how the AEMET, former INM, is developing the environment to support MSG satellite imagery to the WMO/GEO Sand and Dust Storm Warning System (SDS WS) for Europe, Africa and Middle East Regional Centre will be briefly presented, together with some on-going operational developments to best monitor dust events.

  11. Dust storm, northern Mexico

    Science.gov (United States)

    1983-01-01

    This large dust storm along the left side of the photo, covers a large portion of the state of Coahuila, Mexico (27.5N, 102.0E). The look angle of this oblique photo is from the south to the north. In the foreground is the Sierra Madre Oriental in the states Coahuila and Nuevo Leon with the Rio Grande River, Amistad Reservoir and Texas in the background.

  12. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  13. Dust appearance rates during neutral beam injection and after oxygen bake in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Yu, J.H.; Smirnov, R.D.; Rudakov, D.L.

    2011-01-01

    A simple model to quantify source and sink terms of dust observed in tokamaks using fast visible imaging is presented. During neutral beam injection (NBI), dust appearance rates increase in front of the neutral beam port by up to a factor of 5. The images show dust streaming from the port box as previously settled dust becomes mobilized during beam injection. Following an oxygen bake and vent, the dust observation rate is a factor of 2 lower than that after a vessel entry vent with no oxygen bake. Detected dust levels decay on a shot-to-shot basis in a roughly exponential fashion, with a decay time of approximately 20 s of plasma exposure. Appearance rates of dust mass are estimated using assumed lognormal and power law functional forms for the dust size distribution. The two dust size distributions differ significantly on the amount the dust material carried by the largest particles, highlighting the need for further dust studies in order to make accurate forecasts to ITER.

  14. Dust acoustic shock wave at high dust density

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.

    2003-01-01

    Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak

  15. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  16. Retrieval of Saharan desert dust optical depth from thermal infrared measurements by IASI

    Science.gov (United States)

    Vandenbussche, S.; Kochenova, S.; Vandaele, A.-C.; Kumps, N.; De Mazière, M.

    2012-04-01

    Aerosols are a major actor in the climate system. They are responsible for climate forcing by both direct (by emission, absorption and scattering) and indirect effects (for example, by altering cloud microphysics). A better knowledge of aerosol optical properties, of the atmospheric aerosol load and of aerosol sources and sinks may therefore significantly improve the modeling of climate changes. Aerosol optical depth and other properties are retrieved on an operational basis from daytime measurements in the visible and near infrared spectral range by a number of instruments, like the satellite instruments MODIS, CALIOP, POLDER, MISR and ground-based sunphotometers. Aerosol retrievals from day and night measurements at thermal infrared (TIR) wavelengths (for example, from SEVIRI, AIRS and IASI satellite instruments) are less common, but they receive growing interest in more recent years. Among those TIR measuring instruments, IASI on METOP has one major advantage for aerosol retrievals: its large continuous spectral coverage, allowing to better capture the broadband signature of aerosols. Furthermore, IASI has a high spectral resolution (0.5cm-1 after apodization) which allows retrieving a large number of trace gases at the same time, it will nominally be in orbit for 15 years and offers a quasi global Earth coverage twice a day. Here we will show recently obtained results of desert aerosol properties (concentration, altitude, optical depth) retrieved from IASI TIR measurements, using the ASIMUT software (BIRA-IASB, Belgium) linked to (V)LIDORT (R. Spurr, RTsolutions Inc, US) and to SPHER (M. Mishchenko, NASA GISS, USA). In particular, we will address the case of Saharan desert dust storms, which are a major source of desert dust particles in the atmosphere. Those storms frequently transport sand to Europe, Western Asia or even South America. We will show some test-case comparisons between our retrievals and measurements from other instruments like those listed

  17. High Proportions of Sub-micron Particulate Matter in Icelandic Dust Storms in 2015

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Magnusdottir, Agnes

    2017-04-01

    Iceland is extremely active dust region and desert areas of over 44,000 km2 acknowledge Iceland as the largest Arctic and European desert. Frequent dust events, up to 135 dust days annually, transport dust particles far distances towards the Arctic and Europe. Satellite MODIS pictures have revealed dust plumes exceeding 1,000 km. The annual dust deposition was calculated as 40.1 million tons yr-1. Two dust storms were measured in transverse horizontal profile about 90 km far from different dust sources in southwestern Iceland in the summer of 2015. Aerosol monitor DustTrak DRX 8533EP was used to measure PM mass concentrations corresponding to PM1, PM2.5, PM4, PM10 and the total PM15 at several places within the dust plume. Images from camera network operated by the Icelandic Road and Coastal Administration were used to estimate the visibility and spatial extent of measured dust events. A numerical simulation of surface winds was carried out with the numerical model HIRLAM with horizontal resolution of 5 km and used to calculate the total dust flux from the sources. The in situ measurements inside the dust plumes showed that aeolian dust can be very fine. The study highlights that suspended volcanic dust in Iceland causes air pollution with extremely high PM1 concentrations comparable to the polluted urban stations in Europe or Asia rather than reported dust event observations from around the world. The PM1/PM2.5 ratios are generally low during dust storms outside of Iceland, much lower than > 0.9 and PM1/PM10 ratios of 0.34-0.63 found in our study. It shows that Icelandic volcanic dust consists of higher proportion of submicron particles compared to crustal dust. The submicron particles are predicted to travel long distances. Moreover, such submicron particles pose considerable health risk because of high potential for entering the lungs. Icelandic volcanic glass has often fine pipe-vesicular structures known from asbestos and high content of heavy metals. Previous

  18. Parameterizing the interstellar dust temperature

    Science.gov (United States)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-08-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.

  19. Water and organics in interplanetary dust particles

    Science.gov (United States)

    Bradley, John

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at 90 km altitude and settle to the Earths surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earths surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend 104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.

  20. Earth as art 4

    Science.gov (United States)

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  1. Earth - South America (first frame of Earth Spin Movie)

    Science.gov (United States)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  2. Impact on the earth, ocean and atmosphere

    International Nuclear Information System (INIS)

    Ahrens, T.J.; O'Keefe, J.D.

    1987-01-01

    Several hundred impact craters produced historically and at times as early as 1.9 x 10/sup 9/ years ago with diameters in the range 10/sup -2/ to 10/sup 2/ km are observed on the surface of the earth. Earth-based and spacecraft observations of the surfaces of all the terrestrial planets and their satellites, as well as many of the icy satellites of the outer planets, indicated that impact cratering was a dominant process on planetary surfaces during the early history of the solar system. Moreover, the recent observation of a circumstellar disk around the nearby star, β-Pictoris, appears to be similar to the authors' own hypothesized protosolar disk. A disk of material around our sun has been hypothesized to have been the source of the solid planetesimals from which the earth and the other planets accreted by infall and capture. Thus it appears that the earth and the other terrestrial planets formed as a result of infall and impact of planetesimals. Although the present planets grew rapidly via accretion to their present size (in --10/sup 7/ years), meteorite impacts continue to occur on the earth and other planets. Until recently meteorite impact has been considered to be a process that was important on the earth and the other planets only early in the history of the solar system. This is no longer true. The Alvarez hypothesis suggests that the extinction of some 90% of all species, including 17 classes of dinosaurs, is associated with the 1 to 150 cm thick layer of noble-element rich dust which is found all over the earth exactly at the Cretaceous-Tertiary boundary. The enrichment of noble elements in this dust is in meteorite-like proportions. This dust is thought to represent the fine impact ejecta from a --10 km diameter asteroid interacting with the solid earth. The Alvarez hypothesis associates the extinction with the physics of a giant impact on the earth

  3. Visible but Unseen?

    DEFF Research Database (Denmark)

    Torkilsheyggi, Arnvør Martinsdóttir á; Hertzum, Morten

    2015-01-01

    Studies have shown that whiteboards support much cooper-ative work by for example strengthening awareness, im-proving communication, and reducing mental workload. In line with these predominantly positive findings, an emer-gency department (ED) turned to its whiteboard to improve the coordination...... of its work with blood tests. We investi-gate this use of the whiteboard through observations and informal interviews in the ED and analyze the ability of the whiteboard to support coordination and awareness in the work with blood tests. Our findings show limitations in the ability of the whiteboard...... to support awareness in a setting where the users are (locally) mobile, specifically in regard to information that requires continuous monitoring. We do however also find that the whiteboard safeguarded the work with blood tests against some risks by making blood-test information socially visible....

  4. Dust in H II regions

    International Nuclear Information System (INIS)

    Isobe, S.

    1977-01-01

    Several pieces of evidence indicate that H II regions may contain dust: 1) the continuum light scattered by dust grains (O'Dell and Hubbard, 1965), 2) thermal radiation from dust grains at infrared wavelengths (Ney and Allen, 1969), 3) the abnormal helium abundance in some H II regions (Peimbert and Costero, 1969), etc. Although observations of the scattered continuum suggest that the H II region cores may be dust-free, dust grains and gas must be well mixed in view of the infrared observations. This difficulty may be solved by introducing globules with sizes approximately 0.001 pc. These globules and the molecular clouds adjacent to H II regions are the main sources supplying dust to H II regions. (Auth.)

  5. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  6. Cosmic gamma-ray burst from intergalactic relativistic dust grains

    International Nuclear Information System (INIS)

    Dasgupta, A.K.

    1979-01-01

    Charged dust grains of radii a approximately 3 x 10 -6 approximately 3 x 10 -5 cm may acquire relativistic energy (>10 18 eV) in the intergalactic medium. In order to attain relativistic energy, dust grains have to move in and out ('scattering') of the magnetic field of the medium. A relativistic grain of radius a -5 cm with Lorentz factor γ approximately 10 3 approaching the Earth will break up either due to electrostatic charge or due to sputtering about 150 approximately 100 km, and may scatter solar photons via a fluorescence process. Dust grains may also melt into droplets in the solar vicinity and may contribute towards observed gamma-ray bursts. (Auth.)

  7. Making The Invisible Visible

    Science.gov (United States)

    1978-01-01

    In public and private archives throughout the world there are many historically important documents that have become illegible with the passage of time. They have faded, been erased, acquired mold, water and dirt stain, suffered blotting or lost readability in other ways. While ultraviolet and infrared photography are widely used to enhance deteriorated legibility, these methods are more limited in their effectiveness than the space-derived image enhancement technique. The aim of the JPL effort with Caltech and others is to better define the requirements for a system to restore illegible information for study at a low page-cost with simple operating procedures. The investigators' principle tools are a vidicon camera and an image processing computer program, the same equipment used to produce sharp space pictures. The camera is the same type as those on NASA's Mariner spacecraft which returned to Earth thousands of images of Mars, Venus and Mercury. Space imagery works something like television. The vidicon camera does not take a photograph in the ordinary sense; rather it "scans" a scene, recording different light and shade values which are reproduced as a pattern of dots, hundreds of dots to a line, hundreds of lines in the total picture. The dots are transmitted to an Earth receiver, where they are assembled line by line to form a picture like that on the home TV screen.

  8. Photoelectric charging of dust grains

    International Nuclear Information System (INIS)

    Ignatov, A. M.

    2009-01-01

    Photoemission from the surface of a dust grain in vacuum is considered. It is shown that the cutoff in the energy spectrum of emitted electrons leads to the formation of a steady-state electron cloud. The equation describing the distribution of the electric potential in the vicinity of a dust grain is solved numerically. The dust grain charge is found as a function of the grain size.

  9. An automated and integrated framework for dust storm detection based on ogc web processing services

    Science.gov (United States)

    Xiao, F.; Shea, G. Y. K.; Wong, M. S.; Campbell, J.

    2014-11-01

    Dust storms are known to have adverse effects on public health. Atmospheric dust loading is also one of the major uncertainties in global climatic modelling as it is known to have a significant impact on the radiation budget and atmospheric stability. The complexity of building scientific dust storm models is coupled with the scientific computation advancement, ongoing computing platform development, and the development of heterogeneous Earth Observation (EO) networks. It is a challenging task to develop an integrated and automated scheme for dust storm detection that combines Geo-Processing frameworks, scientific models and EO data together to enable the dust storm detection and tracking processes in a dynamic and timely manner. This study develops an automated and integrated framework for dust storm detection and tracking based on the Web Processing Services (WPS) initiated by Open Geospatial Consortium (OGC). The presented WPS framework consists of EO data retrieval components, dust storm detecting and tracking component, and service chain orchestration engine. The EO data processing component is implemented based on OPeNDAP standard. The dust storm detecting and tracking component combines three earth scientific models, which are SBDART model (for computing aerosol optical depth (AOT) of dust particles), WRF model (for simulating meteorological parameters) and HYSPLIT model (for simulating the dust storm transport processes). The service chain orchestration engine is implemented based on Business Process Execution Language for Web Service (BPEL4WS) using open-source software. The output results, including horizontal and vertical AOT distribution of dust particles as well as their transport paths, were represented using KML/XML and displayed in Google Earth. A serious dust storm, which occurred over East Asia from 26 to 28 Apr 2012, is used to test the applicability of the proposed WPS framework. Our aim here is to solve a specific instance of a complex EO data

  10. Direct Radiative Effect of Mineral Dust on the Middle East and North Africa Climate

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-11-01

    Dust-climate interaction over the Middle East and North Africa (MENA) has long been studied, as it is the "dustiest" region on earth. However, the quantitative and qualitative understanding of the role of dust direct radiative effect on MENA climate is still rudimentary. The present dissertation investigates dust direct radiative effect on MENA climate during summer with a special emphasis on the sensitivity of climate response to dust shortwave absorption, which is one of the most uncertain components of dust direct radiative effect. Simulations are conducted with and without dust radiative effect, to differentiate the effect of dust on climate. To elucidate the sensitivity of climate response to dust shortwave absorption, simulations with dust assume three different cases of dust shortwave absorption, representing dust as a very efficient, standard and inefficient shortwave absorber. The non-uniformly distributed dust perturb circulations at various scales. Therefore, the present study takes advantage of the high spatial resolution capabilities of an Atmospheric General Circulation Model (AGCM), High Resolution Atmospheric Model (HiRAM), which incorporates global and regional circulations. AMIP-style global high-resolution simulations are conducted at a spatial resolution of 25 km. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet and West African Monsoon circulation. Consistent with these dynamic responses at various scales, the tropical rainbelt across MENA strengthens and shifts northward. Similarly, the temperature under rainbelt cools and that over subtropical deserts warms. Inter-comparison of various dust shortwave absorption cases shows that the response of the MENA tropical rainbelt is extremely sensitive to the

  11. Dust in cosmic plasma environments

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1979-01-01

    Cosmic dust is invariably immersed in a plasma and a radiative environment. Consequently, it is charged to some electrostatic potential which depends on the properties of the environment as well as the nature of the dust. This charging affects the physical and dynamical properties of the dust. In this paper the basic aspects of this dust-plasma interaction in several cosmic environments - including planetary magnetospheres, the heliosphere and the interstellar medium - are discussed. The physical and dynamical consequences of the interaction, as well as the pertinent observational evidence, are reviewed. Finally, the importance of the surface charge during the condensation process in plasma environments is stressed. (Auth.)

  12. Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites.

    Science.gov (United States)

    Vollmer, Christian; Kepaptsoglou, Demie; Leitner, Jan; Busemann, Henner; Spring, Nicole H; Ramasse, Quentin M; Hoppe, Peter; Nittler, Larry R

    2014-10-28

    Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight (15)N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C-O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C-O bonding environments and nanoglobular organics with dominant aromatic and C-N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid.

  13. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  14. Gravitational radiation from dust

    International Nuclear Information System (INIS)

    Isaacson, R.A.; Welling, J.S.; Winicour, J.

    1985-01-01

    A dust cloud is examined within the framework of the general relativistic characteristic initial value problem. Unique gravitational initial data are obtained by requiring that the space-time be quasi-Newtonian. Explicit calculations of metric and matter fields are presented, which include all post-Newtonian corrections necessary to discuss the major physical properties of null infinity. These results establish a curved space version of the Einstein quadrupole formula, in the form ''news function equals third time derivative of transverse quadrupole moment,'' for this system. However, these results imply that some weakened notion of asymptotic flatness is necessary for the description of quasi-Newtonian systems

  15. Dust coagulation in ISM

    Science.gov (United States)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  16. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    Science.gov (United States)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  17. Dust confinement and dust acoustic waves in a magnetized plasma

    Science.gov (United States)

    Piel, A.

    2005-10-01

    Systematic laboratory experiments on dust acoustic waves require the confinement of dust particles. Here we report on new experiments in a magnetized plasma region in front of an additional positively biased disk electrode in a background plasma which is generated in argon at 27MHz between a disk and grid electrode. The plasma diffuses through the grid along the magnetic field. The three-dimensional dust distribution is measured with a horizontal sheet of laser light and a CCD camera, which are mounted on a vertical translation stage. Depending on magnetic field and discharge current, cigar or donut-shaped dust clouds are generated, which tend to rotate about the magnetic field direction. Measurements with emissive probes show that the axial confinement of dust particles with diameters between 0.7-2 μm is achieved by a balance of ion-drag force and electric field force. Dust levitation and radial confinement is due to a strong radial electric field. Dust acoustic waves are destabilized by the ion flow or can be stimulated by a periodic bias on the disk electrode. The observed wave dispersion is compared with fluid and kinetic models of the dust acoustic wave.

  18. Gravimetric dust sampling for control purposes and occupational dust sampling.

    CSIR Research Space (South Africa)

    Unsted, AD

    1997-02-01

    Full Text Available Prior to the introduction of gravimetric dust sampling, konimeters had been used for dust sampling, which was largely for control purposes. Whether or not absolute results were achievable was not an issue since relative results were used to evaluate...

  19. Spacesuit Integrated Carbon Nanotube Dust Mitigation System for Lunar Exploration

    Science.gov (United States)

    Manyapu, Kavya Kamal

    by integrating a passive technique based on Work Function Matching coating. SPIcDER aims for a self-cleaning spacesuit that can repel lunar dust. The SPIcDER research encompassed numerous demonstrations on coupons made of spacesuit outerlayer fabric, to validate the feasibility of the concept, and provide evidence that the SPIcDER system is capable of repelling over 85% of lunar dust simulant comprising of particles in the range of 10 microm-75microm, in ambient and vacuum conditions. Furthermore, the research presented in this dissertation proves the scalability of the SPIcDER technology on a full scale functional prototype of a spacesuit knee joint-section, and demonstrates its scaled functionality and performance using lunar dust simulant. It also comprises detailed numerical simulation and parametric analysis in ANSYS Maxwell and MATLAB for optimizing the integration of the SPIcDER system into the spacesuit outerlayer. The research concludes with analysis and experimental results on design, manufacturability, operational performance, practicality of application and astronaut safety. The research aims primarily towards spacesuit dust contamination. The SPIcDER technology developed in this research is however versatile, that can be optimized to a wide range of flexible surfaces for space and terrain applications-such as exploration missions to asteroids, Mars and dust-prone applications on Earth.

  20. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  1. Current NASA Earth Remote Sensing Observations

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  2. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S [Earth Sciences Department. Barcelona Supercomputing Center. Barcelona (Spain); Cuevas, E [Izanaa Atmospheric Research Center. Agencia Estatal de Meteorologia, Tenerife (Spain); Nickovic, S [Atmospheric Research and Environment Branch, World Meteorological Organization, Geneva (Switzerland)], E-mail: carlos.perez@bsc.es

    2009-03-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  3. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    International Nuclear Information System (INIS)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S; Cuevas, E; Nickovic, S

    2009-01-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  4. Following Saharan Dust Outbreak Toward The Amazon Basin

    Science.gov (United States)

    Ben Ami, Y.; Koren, I.; Rudich, Y.; Flores, M.

    2008-12-01

    The role of the Amazon rainforest on earth climatic system is well recognized. To keep forest wellbeing and the fragile balance between the rainforest and the atmosphere, the Amazon must contain a satisfactory amount of nutrients to support the plants. The extensive rain and floods wash most of the soluble nutrients from the rainforest soil, leaving behind acidic kaolinite clay or sandy soil, with limited minerals for plant growth. It was suggested that lack of mineral in the soil may be replenished by deposition of Saharan mineral dust. Using remote sensing data (from the A-train satellites constellation) following with in-situ measurements (as part of the AMazonian Aerosol CharacteriZation Experiment (AMZE) campaign), ground-based data (from AErosol RObotic NETwork (AERONET)) and back trajectory calculations, we analyzed Saharan dust transport toward the Amazon basin during the AMZE period (Feb 7 to Mar 14, 2008). Dust mass, sink, vertical distribution and surface wind speeds were analyzed over the Bodele depression (located in Chad), where most of the dust is emitted, along the Atlantic Ocean and near the Brazilian coastline. Using an integrated data analysis approach we followed dust packages from their emission in the Sahara to their sink in the Amazon forest.

  5. Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates

    Science.gov (United States)

    Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo

    2015-07-01

    Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.

  6. Asian Dust Storm Outbreaks: A Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, Si-Chee

    2006-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during springtime. Asian dust typically originates in desert areas far from polluted urban regions. During the transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in the mid-Pacific Ocean, etc.), as well as societal concerns (e.g., adverse health effects to humans). The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network (e.g. AERONET, SKY NET, MPLNET, etc.). Recently, many field campaigns (e.g., ACE-Asia-2001, TRACEP-2001, ADE-2002 & -2003, APEX-2001 & -2003, etc.) were designed and executed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. I will present an overview of the outbreak of Asian dust storms from space and surface observations and to address the climatic effects and societal impacts.

  7. New View of Gas and Dust in the Solar Nebula

    Science.gov (United States)

    Taylor, G. J.

    2010-08-01

    The recognizable components in meteorites differ in their relative abundances of the three oxygen isotopes (16O, 17O, and 18O). In particular, the amount of 16O varies from being like that of the Earth to substantially enriched compared to the other two isotopes. The current explanation for this interesting range in isotopic composition is that dust and gas in the solar nebula (the cloud of gas and dust surrounding the primitive Sun) began with the same 16O-rich composition, but the solids evolved towards the terrestrial value. A new analysis of the problem by Alexander Krot (University of Hawaii) and colleagues at the University of Hawaii, the University of Chicago, Clemson University, and Lawrence Livermore National Laboratory leads to the bold assertion that primordial dust and gas differed in isotopic composition. The gas was rich in 16O as previously thought (possibly slightly richer in 16O than the measurements of the solar wind returned by the Genesis Mission), but that the dust had a composition close to the 16O-depleted terrestrial average. In this new view, the dust had a different history than did the gas before being incorporated into the Solar System. Solids with compositions near the terrestrial line may have formed in regions of the solar nebula where dust had concentrated compared to the mean solar dust/gas ratio (1 : ~100). The idea has great implications for understanding the oxygen-isotope composition of the inner Solar System and the origin of materials in the molecular cloud from which the Solar System formed.

  8. Interannual Variability in Dust Deposition, Radiative Forcing, and Snowmelt Rates in the Colorado River Basin

    Science.gov (United States)

    Skiles, M.; Painter, T. H.; Deems, J. S.; Barrett, A. P.

    2011-12-01

    Dust in snow accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. Since the Anglo expansion and disturbance of the western US that began in the mid 19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading. Here we present the impacts of dust deposition onto alpine snow cover using a 7-year energy balance record at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. We assess the radiative and hydrologic impacts with a two-layer point snow energy balance snowmelt model that calculates snowmelt and predicts point runoff using measured inputs of energy exchanges and snow properties. By removing the radiative forcing due to dust, we can determine snowmelt under observed dusty and modeled clean conditions. Additionally, we model the relative response of melt rates to simulated increases in air temperature. Our modeling results indicate that the number of days that dust advances retreat of snow cover and cumulative radiative forcing are linearly related to total dust concentration. The greatest dust radiative impact occurred in 2009, when the highest observed end of year dust concentrations reduced visible albedo to less than 0.35 during the last three weeks of snowcover and snow cover duration was shortened by 50 days. This work also shows that dust radiative forcing has a markedly greater impact on snow cover duration than increases in temperature in terms of acceleration of snowmelt. We have completed the same analysis over a 2-year energy balance record at the Grand Mesa Study plot (GMSP) in west central Colorado, 150 km north of SBBSA. This new location allows us to assess site variability. For example, at SBBSA 2010 and 2011 were the second and third highest dust deposition years, respectively, but 2010 was a larger year with 3

  9. Of data and dust

    CERN Multimedia

    Stephanie Hills

    2016-01-01

    The traditional image of an archive is one of dusty old boxes, books and papers. When your archive is digital, dust spells disaster. An innovative environmental sensor designed and built by a CERN IT specialist has become an essential element in the Laboratory’s data-preservation strategy.   The novel air particle monitoring sensor designed by CERN's Julien Leduc. CERN’s archive holds more than 130 petabytes of data from past and present high-energy physics experiments. Some of it is 40 years old, most of it needs to be kept forever, and all of it is held on tape cartridges (over 20,000 of them). The cartridges are held inside tape libraries with robotic arms that load them into tape drives where they can be read and written. Tape cartridges have many advantages over other data storage media, notably cost and long-term reliability, but topping the list of drawbacks is their vulnerability to contamination from airborne dust particles; a tiny piece of g...

  10. Radionuclides in house dust

    Energy Technology Data Exchange (ETDEWEB)

    Fry, F A; Green, N; Dodd, N J; Hammond, D J

    1985-04-01

    Discharges of radionuclides from the British Nuclear Fuel plc (BNFL) reprocessing plant at Sellafield in Cumbria have led to elevated concentrations radionuclides in the local environment. The major routes of exposure of the public are kept under review by the appropriate authorising Government departments and monitoring is carried out both by the departments and by BNFL itself. Recently, there has been increasing public concern about general environmental contamination resulting from the discharges and, in particular, about possible exposure of members of the public by routes not previously investigated in detail. One such postulated route of exposure that has attracted the interest of the public, the press and Parliament arises from the presence of radionuclides within houses. In view of this obvious and widespread concern, the Board has undertaken a sampling programme in a few communities in Cumbria to assess the radiological significance of this source of exposure. From the results of our study, we conclude that, although radionuclides originating rom the BNFL site can be detected in house dust, this source of contamination is a negligible route of exposure for members of the public in West Cumbria. This report presents the results of the Board's study of house dust in twenty homes in Cumbria during the spring and summer of 1984. A more intensive investigation is being carried out by Imperial College. (author)

  11. Local geological dust in the area of Rome (Italy): linking mineral composition, size distribution and optical properties to radiative transfer modelling

    Science.gov (United States)

    Pietrodangelo, Adriana; Salzano, Roberto; Bassani, Cristiana; Pareti, Salvatore; Perrino, Cinzia

    2015-04-01

    Airborne mineral dust plays a key role in the energy balance of the Earth - atmosphere coupled system. The microphysical and optical properties of dust drive the direct radiative effects and are in turn influenced by the dust mineralogical composition. The latter varies largely, depending on the geology of the source region. Knowledge gaps still exist about relationships between the scattering and absorption of solar and terrestrial radiation by mineral dust and its mineralogical, size distribution and particle morphology features; this also affects the reliability of radiative transfer (RT) modelling estimates (Hansell et al., 2011). In this study, these relationships were investigated focusing on the crustal suspended PM10 dust, sourced from outcropping rocks of the local geological domains around Rome (Latium, Italy). The mineral composition variability of the Latium rocks ranges from the silicate-dominated (volcanics domain) to the calcite-dominated (travertine), through lithological materials composed in different proportions by silicates, silica and calcite, mainly (limestone series, siliciclastic series) (Cosentino et al., 2009). This peculiarity of the Latium region was thus exploited to investigate the behavior of the size distribution, optical properties and radiative transfer at BOA (Bottom Of Atmosphere) of the suspended dust PM10 fraction with the variability of mineral composition. Elemental source profiles of the same dust samples were previously determined (Pietrodangelo et al., 2013). A multi-faceted analysis was performed, and outcomes from the following approaches were merged: individual-particle scanning electron microscopy combined with X-ray energy-dispersive microanalysis (SEM XEDS), bulk mineralogical analysis by X-ray diffraction (XRD), size distribution fit of the individual-particle data set and modelling of the dust optical and radiative properties. To this aim, the 6SV atmospheric radiative transfer code (Kotchenova et al., 2008

  12. Revisiting visibility in the plane

    DEFF Research Database (Denmark)

    Wilkinson, Bryan Thomas

    Abstract We consider two closely related problems: computing the region visible from a point amid simple polygonal obstacles and computing the lower envelope of a set of disjoint segments. Visibility problems such as these were proposed and promptly solved in the late'80s and early'90s before...

  13. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  14. Spatially-resolved dust properties of the GRB 980425 host galaxy

    DEFF Research Database (Denmark)

    Michałowski, Michał J.; Hunt, L. K.; Palazzi, E.

    2014-01-01

    ), located 800 pc away from the GRB position. The host is characterised by low dust content and high fraction of UV-visible star-formation, similar to other dwarf galaxies. Such galaxies are abundant in the local universe, so it is not surprising to find a GRB in one of them, assuming the correspondence...

  15. Health hazards of cement dust

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)

  16. Dust forecasting system in JMA

    International Nuclear Information System (INIS)

    Mikami, M; Tanaka, T Y; Maki, T

    2009-01-01

    JMAs dust forecasting information, which is based on a GCM dust model, is presented through the JMA website coupled with nowcast information. The website was updated recently and JMA and MOE joint 'KOSA' website was open from April 2008. Data assimilation technique will be introduced for improvement of the 'KOSA' information.

  17. Integrated spatiotemporal characterization of dust sources and outbreaks in Central and East Asia

    Science.gov (United States)

    Darmenova, Kremena T.

    The potential of atmospheric dust aerosols to modify the Earth's environment and climate has been recognized for some time. However, predicting the diverse impact of dust has several significant challenges. One is to quantify the complex spatial and temporal variability of dust burden in the atmosphere. Another is to quantify the fraction of dust originating from human-made sources. This thesis focuses on the spatiotemporal characterization of sources and dust outbreaks in Central and East Asia by integrating ground-based data, satellite multisensor observations, and modeling. A new regional dust modeling system capable of operating over a span of scales was developed. The modeling system consists of a dust module DuMo, which incorporates several dust emission schemes of different complexity, and the PSU/NCAR mesoscale model MM5, which offers a variety of physical parameterizations and flexible nesting capability. The modeling system was used to perform for the first time a comprehensive study of the timing, duration, and intensity of individual dust events in Central and East Asia. Determining the uncertainties caused by the choice of model physics, especially the boundary layer parameterization, and the dust production scheme was the focus of our study. Implications to assessments of the anthropogenic dust fraction in these regions were also addressed. Focusing on Spring 2001, an analysis of routine surface meteorological observations and satellite multi-sensor data was carried out in conjunction with modeling to determine the extent to which integrated data set can be used to characterize the spatiotemporal distribution of dust plumes at a range of temporal scales, addressing the active dust sources in China and Mongolia, mid-range transport and trans-Pacific, long-range transport of dust outbreaks on a case-by-case basis. This work demonstrates that adequate and consistent characterization of individual dust events is central to establishing a reliable

  18. Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region

    Directory of Open Access Journals (Sweden)

    R.-E. Mamouri

    2016-11-01

    Full Text Available A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling, we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer of aerosol optical thickness (AOT and Ångström exponent, surface particle mass (PM10 concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations, EARLINET (European Aerosol Research Lidar Network lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio, and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly >  10 g m−2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m−3 and the observed meteorological optical range (visibility was reduced to 300–750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP extinction coefficients of 6000 Mm−1 and thus TSP mass concentrations of 10 000 µg m−3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height, pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm already exceeded 1000 Mm−1 and the mass concentrations reached 2000 µg m−3 in the elevated dust layers on

  19. Detecting Exoplanets with the New Worlds Observer: The Problem of Exozodiacal Dust

    Science.gov (United States)

    Roberge, A.; Noecker, M. C.; Glassman, T. M.; Oakley, P.; Turnbull, M. C.

    2009-01-01

    Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.

  20. Attraction of likely charged nano-sized grains in dust-electron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, Vladimir I., E-mail: eksvar@ukr.net [Physical-Chemical Institute for Environmental and Human Protection, Odessa 65082 (Ukraine)

    2016-01-15

    Dust-electron plasma, which contains only the dust grains and electrons, emitted by them, is studied. Assumption of almost uniform spatial electrons distribution, which deviates from the uniformity only near the dust grains, leads to the grain charge division into two parts: first part is the individual for each grain “visible” charge and the second part is the common charge of the neutralized background. The visible grain charge can be both negative and positive, while the total grain charge is only positive. The attraction of likely charged grains is possible, because the grain interaction is determined by the visible charges. The equilibrium state between attraction and repulsion of grains is demonstrated.

  1. Dust in flowing magnetized plasma

    International Nuclear Information System (INIS)

    Pandey, Birendra P.; Samarian, Alex A.; Vladimirov, Sergey V.

    2009-01-01

    Plasma flows occur in almost every laboratory device and interactions of flowing plasmas with near-wall impurities and/or dust significantly affects the efficiency and lifetime of such devices. The charged dust inside the magnetized flowing plasma moves primarily under the influence of the plasma drag and electric forces. Here, the charge on the dust, plasma potential, and plasma density are calculated self-consistently. The electrons are assumed non-Boltzmannian and the effect of electron magnetization and electron-atom collisions on the dust charge is calculated in a self-consistent fashion. For various plasma magnetization parameters viz. the ratio of the electron and ion cyclotron frequencies to their respective collision frequencies, plasma-atom and ionization frequencies, the evolution of the plasma potential and density in the flow region is investigated. The variation of the dust charge profile is shown to be a sensitive function of plasma parameters. (author)

  2. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  3. Arabian Red Sea coastal soils as potential mineral dust sources

    Directory of Open Access Journals (Sweden)

    P. Jish Prakash

    2016-09-01

    Full Text Available Both Moderate Resolution Imaging Spectroradiometer (MODIS and Spinning Enhanced Visible and InfraRed Imager (SEVIRI satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD, inductively coupled plasma optical emission spectrometry (ICP-OES, ion chromatography (IC, scanning electron microscopy (SEM and laser particle size analysis (LPSA. We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models

  4. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-09-26

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy (SEM) and laser particle size analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used in climate

  5. Visibility of galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.

    1976-01-01

    It is stated that counts of galaxies could be seriously biased by selection effects, largely influenced by the brightness of the night sky. To illustrate this suppose the Earth were situated near the center of a giant elliptical galaxy. The mean surface brightness of the sky would then appear some 8 to 9 mag. brighter than is observed from our position in the Galaxy. Extragalactic space would then appear to be empty void; spiral and irregular galaxies would be invisible, and all that could be easily detected would be the core regions of galaxy ellipticals very similar to our own. Much of the Universe would be blinded by the surface brightness of the parent galaxy. This blinding, however, is a relative matter and the question arises as to what extent we are blinded by the spiral galaxy in which we exist. Strong indirect evidence exists that our knowledge of galaxies is heavily biased by the sky background, and the true population of extragalactic space may be very different from that seen. Other relevant work is also discussed, and further investigational work is indicated. (U.K.)

  6. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  7. EPOXI EARTH OBS - MRI CALIBRATED IMAGES V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains calibrated, 750-nm filter images of Earth acquired by the Deep Impact Medium Resolution Visible CCD (MRI) during the EPOCh and Cruise 2 phases...

  8. Surface observation of sand and dust storm in East Asia and its application in CUACE/Dust

    Directory of Open Access Journals (Sweden)

    Y. Q. Wang

    2008-02-01

    Full Text Available The spatial-temporal distributions and sources of sand and dust storm (SDS in East Asia from 2001 to 2006 were investigated on the basis of visibility and PM10 data from the routine SDS and weather monitoring networks run by CMA (China Meteorological Administration. A power functional relationships between PM10 and visibility was found among various regions generally with a good correlation (r2=0.90, especially in Asian SDS source regions. In addition, three SDS occurrence centers, i.e. western China, Mongolia and northern China, were identified with the Mongolia source contributing more dust to the downwind areas including Korea and Japan than other two sources. Generally, high PM10 concentrations were observed in most areas of northern China. The highest value was obtained in the center of western China with a spring daily mean value of 876 μgm−3, and the value in other source regions exceeds 200 μgm−3. These data sets together with the satellite observations in China form the main observation database for the evaluation and data assimilation of CUACE/Dust system – an operational SDS forecasting system for East Asia.

  9. COAL DUST EMISSION PROBLEM

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. The article aims to develop 2D numerical models for the prediction of atmospheric pollution during transportation of coal in the railway car, as well as the ways to protect the environment and the areas near to the mainline from the dust emission due to the air injection installation. Methodology. To solve this problem there were developed numerical models based on the use of the equations of motion of an inviscid incompressible fluid and mass transfer. For the numerical integration of the transport equation of the pollutant the implicit alternating-triangular difference scheme was used. For numerical integration of the 2D equation for the velocity potential the method of total approximation was used. The developed numerical models are the basis of established software package. On the basis of the constructed numerical models it was carried out a computational experiment to assess the level of air pollution when transporting bulk cargo by rail when the railway car has the air injection. Findings. 2D numerical models that belong to the class «diagnostic models» were developed. These models take into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during transportation of bulk cargo. The developed numerical models make it possible to calculate the dust loss process, taking into account the use of the air injection of the car. They require a small cost of the computer time during practical realization at the low and medium power machines. There were submitted computational calculations to determine pollutant concentrations and the formation of the zone of pollution near the train with bulk cargo in «microscale» scale taking into account the air curtains. Originality. 2D numerical models taking into account the relevant factors influencing the process of dispersion of pollutants in the atmosphere, and the formation of the zone of pollution during transportation of bulk cargo by

  10. Blowing dust and highway safety in the southwestern United States: Characteristics of dust emission "hotspots" and management implications.

    Science.gov (United States)

    Li, Junran; Kandakji, Tarek; Lee, Jeffrey A; Tatarko, John; Blackwell, John; Gill, Thomas E; Collins, Joe D

    2018-04-15

    Despite the widespread media attention of chain-reaction traffic incidents and property damage caused by windblown dust in the U.S. and elsewhere in the world, very few studies have provided in-depth analysis on this issue. Remote sensing and field observations reveal that wind erosion in the southwestern U.S. typically occurs in localized source areas, characterized as "hotspots", while most of the landscape is not eroding. In this study, we identified the spatial and temporal distribution patterns of hotspots that may contribute dust blowing onto highways in the southwestern U.S. We further classified the hotspots for the potential of blowing dust production based upon field observations and wind erosion modeling. Results of land use and land cover show that shrubland, grassland, and cropland accounted for 42%, 31%, and 21% of the overall study area, respectively. However, of the 620 total hotspots identified, 164 (26%), 141 (22%), and 234 (38%) are located on shrubland, grassland, and cropland, respectively. Barren land represented 0.9% of the land area but 8% of the dust hotspots. While a majority of these hotspots are located close to highways, we focused on 55 of them, which are located hotspot sites are dominated by sand and silt particles with threshold shear velocities ranging from 0.17-0.78m s -1 , largely depending on the land use of the hotspot sites. Dust emission modeling showed that 13 hotspot sites could produce annual emissions >3.79kg m -2 , yielding highly hazardous dust emissions to ground transportation with visibility hotspots are critical information for highway authorities to make informed and timely management decisions when wind events strike. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dust of dark energy

    International Nuclear Information System (INIS)

    Lim, Eugene A.; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a novel class of field theories where energy always flows along timelike geodesics, mimicking in that respect dust, yet which possess non-zero pressure. This theory comprises two scalar fields, one of which is a Lagrange multiplier enforcing a constraint between the other's field value and derivative. We show that this system possesses no wave-like modes but retains a single dynamical degree of freedom. Thus, the sound speed is always identically zero on all backgrounds. In particular, cosmological perturbations reproduce the standard behaviour for hydrodynamics in the limit of vanishing sound speed. Using all these properties we propose a model unifying Dark Matter and Dark Energy in a single degree of freedom. In a certain limit this model exactly reproduces the evolution history of ΛCDM, while deviations away from the standard expansion history produce a potentially measurable difference in the evolution of structure

  12. On characterizing terrain visibility graphs

    Directory of Open Access Journals (Sweden)

    William Evans

    2015-06-01

    Full Text Available A terrain is an $x$-monotone polygonal line in the $xy$-plane. Two vertices of a terrain are mutually visible if and only if there is no terrain vertex on or above the open line segment connecting them. A graph whose vertices represent terrain vertices and whose edges represent mutually visible pairs of terrain vertices is called a terrain visibility graph. We would like to find properties that are both necessary and sufficient for a graph to be a terrain visibility graph; that is, we would like to characterize terrain visibility graphs.Abello et al. [Discrete and Computational Geometry, 14(3:331--358, 1995] showed that all terrain visibility graphs are “persistent”. They showed that the visibility information of a terrain point set implies some ordering requirements on the slopes of the lines connecting pairs of points in any realization, and as a step towards showing sufficiency, they proved that for any persistent graph $M$ there is a total order on the slopes of the (pseudo lines in a generalized configuration of points whose visibility graph is $M$.We give a much simpler proof of this result by establishing an orientation to every triple of vertices, reflecting some slope ordering requirements that are consistent with $M$ being the visibility graph, and prove that these requirements form a partial order. We give a faster algorithm to construct a total order on the slopes. Our approach attempts to clarify the implications of the graph theoretic properties on the ordering of the slopes, and may be interpreted as defining properties on an underlying oriented matroid that we show is a restricted type of $3$-signotope.

  13. Electrical Activity in Martian Dust Storms

    Science.gov (United States)

    Majid, W.; Arabshahi, S.; Kocz, J.

    2016-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. Such electrical activity poses serious risks to any Human exploration of the planet and the lack of sufficient data to characterize any such activity has been identified by NASA's MEPAG as a key human safety knowledge gap. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, frequency of occurrence, and the strength of the generated electric fields. We will describe a recently deployed detection engine using NASA's Deep Space Network (DSN) to carry out a long term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The resulting knowledge of Mars electrical activity would allow NASA to plan risk mitigation measures to ensure human safety during Mars exploration. In addition, these measurements will also allow us to place limits on presence of oxidants such as H2O2 that may be produced by such discharges, providing another measurement point for models describing Martian atmospheric chemistry and habitability. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the DSN is the only instrument in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity at Mars from the ground.

  14. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...... lattice mismatch. Secondly, SiC material is abundant, containing no rear-earth element material as commercial phosphor. In this paper, fabrication of porous SiC is introduced, and their morphology and photoluminescence are characterized. Additionally, the carrier lifetime of the porous SiC is measured...... by time-resolved photoluminescence. The ultrashort lifetime in the order of ~70ps indicates porous SiC is very promising for the application in the ultrafast visible light communications....

  15. Meteorites and cosmic dust: Interstellar heritage and nebular processes in the early solar system

    Directory of Open Access Journals (Sweden)

    Engrand C.

    2012-01-01

    Full Text Available Small solar system bodies like asteroids and comets have escaped planetary accretion. They are the oldest and best preserved witnesses of the formation of the solar system. Samples of these celestial bodies fall on Earth as meteorites and interplanetary dust. The STARDUST mission also recently returned to Earth cometary dust from comet 81P/Wild 2, a Jupiter Family Comet (JFC. These samples provide unique insights on the physico-chemical conditions and early processes of the solar system. They also contain some minute amount of materials inherited from the local interstellar medium that have survived the accretion processes in the solar system.

  16. Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.

    2003-01-01

    A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.

  17. Ulysses dust measurements near Jupiter.

    Science.gov (United States)

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  18. Experiments on Dust Grain Charging

    Science.gov (United States)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  19. The Exploration of Near-Earth Objects

    Science.gov (United States)

    1998-01-01

    Near-Earth objects (NEOs) are asteroids and comets with orbits that intersect or pass near that of our planet. About 400 NEOs are currently known, but the entire population contains perhaps 3000 objects with diameters larger than 1 km. These objects, thought to be similar in many ways to the ancient planetesimal swarms that accreted to form the planets, are interesting and highly accessible targets for scientific research. They carry records of the solar system's birth and the geologic evolution of small bodies in the interplanetary region. Because collisions of NEOs with Earth pose a finite hazard to life, the exploration of these objects is particularly urgent. Devising appropriate risk-avoidance strategies requires quantitative characterization of NEOS. They may also serve as resources for use by future human exploration missions. The scientific goals of a focused NEO exploration program are to determine their orbital distribution, physical characteristics, composition, and origin. Physical characteristics, such as size, shape, and spin properties, have been measured for approximately 80 NEOs using observations at infrared, radar, and visible wavelengths. Mineralogical compositions of a comparable number of NEOs have been inferred from visible and near-infrared spectroscopy. The formation and geologic histories of NEOs and related main-belt asteroids are currently inferred from studies of meteorites and from Galileo and Near-Earth Asteroid Rendezvous spacecraft flybys of three main-belt asteroids. Some progress has also been made in associating specific types of meteorites with main-belt asteroids, which probably are the parent bodies of most NEOs. The levels of discovery of NEOs in the future will certainly increase because of the application of new detection systems. The rate of discovery may increase by an order of magnitude, allowing the majority of Earth-crossing asteroids and comets with diameters greater than 1 km to he discovered in the next decade. A

  20. An analysis of the correlation between dust storms in Korea and 137Cs nuclide concentration

    International Nuclear Information System (INIS)

    Choi, Soo-won; Kim, Jeong-hun; Shin, Sang-hwa; Hwang, Joo-ho

    2008-01-01

    Dust storms occur in Korea during spring time when fine dust is blown in from the far western regions of western China and Mongolia. A fine powdery dust is blown up into the sky and enters the upper reaches of the atmosphere where it is carried easterly across China then slowly falls to the ground on the Korean peninsula and Japan. The dust originates mostly in the Gobi dessert of China, as well as the yellow earth regions in the middle and upper streams of the Yellow river in China. Previous studies on dust storms have been limited to following or estimating their courses, distribution and frequency, or distribution of the heavy metals they transmit. However, since radionuclides exist in the dust, they must also exist in the dust storms. In this study, we analyzed the correlation of :1 37 Cs nuclide concentration based on a count of annual dust storm occurrence in the city of Suwon, South Korea and assessed seasonal differences of 137 Cs nuclide concentration

  1. Changes in Stratiform Clouds of Mesoscale Convective Complex Introduced by Dust Aerosols

    Science.gov (United States)

    Lin, B.; Min, Q.-L.; Li, R.

    2010-01-01

    Aerosols influence the earth s climate through direct, indirect, and semi-direct effects. There are large uncertainties in quantifying these effects due to limited measurements and observations of aerosol-cloud-precipitation interactions. As a major terrestrial source of atmospheric aerosols, dusts may serve as a significant climate forcing for the changing climate because of its effect on solar and thermal radiation as well as on clouds and precipitation processes. Latest satellites measurements enable us to determine dust aerosol loadings and cloud distributions and can potentially be used to reduce the uncertainties in the estimations of aerosol effects on climate. This study uses sensors on various satellites to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective complex (MCC). A trans-Atlantic dust outbreak of Saharan origin occurring in early March 2004 is considered. For the observed MCCs under a given convective strength, small hydrometeors were found more prevalent in the dusty stratiform regions than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust regions, particularly at altitudes where heterogeneous nucleation of mineral dust prevails, further supports the observed changes of clouds and precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the size spectrum of precipitation-sized hydrometeors from heavy precipitation to light precipitation and ultimately to suppress precipitation and increase the lifecycle of cloud systems, especially over stratiform areas.

  2. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean

    Science.gov (United States)

    Han, Yongxiang; Zhao, Tianliang; Song, Lianchun; Fang, Xiaomin; Yin, Yan; Deng, Zuqin; Wang, Suping; Fan, Shuxian

    2011-08-01

    Iron-addition experiments have revealed that iron supply exerts controls on biogeochemical cycles in the ocean and ultimately influences the Earth's climate system. The iron hypothesis in its broad outlines has been proved to be correct. However, the hypothesis needs to be verified with an observable biological response to specific dust deposition events. Plankton growth following the Asian dust storm over Ocean Station PAPA (50°N, 145°W) in the North Pacific Ocean in April 2001 was the first supportive evidence of natural aeolian iron inputs to ocean; The data were obtained through the SeaWiFS satellite and robot carbon explorers by Bishop et al. Using the NARCM modeling results in this study, the calculated total dust deposition flux was 35 mg m -2 per day in PAPA region from the dust storm of 11-13 April, 2001 into 0.0615 mg m -2 d -1 (about 1100 nM) soluble iron in the surface layer at Station PAPA. It was enough for about 1100 nM to enhance the efficiency of the marine biological pump and trigger the rapid increase of POC and chlorophyll. The iron fertilization hypothesis therefore is plausible. However, even if this specific dust event can support the iron fertilization hypothesis, long-term observation data are lacking in marine export production and continental dust. In this paper, we also conducted a simple correlation analysis between the diatoms and foraminifera at about 3000 m and 4000 m at two subarctic Pacific stations and the dust aerosol production from China's mainland. The correlation coefficient between marine export production and dust storm frequency in the core area of the dust storms was significantly high, suggesting that aerosols generated by Asian dust storm are the source of iron for organic matter fixation in the North Pacific Ocean. These results suggest that there could be an interlocking chain for the change of atmospheric dust aerosol-soluble iron-marine export production.

  3. A dust-free dock

    Energy Technology Data Exchange (ETDEWEB)

    Merrion, D. [E & F Services Ltd. (United Kingdom)

    2002-10-01

    This paper describes the process of unloading coal, petcoke and other dusty products in environmentally-sensitive areas. It presents a case study of the deepwater Port of Foynes on the west coast of Ireland which imports animal feed, fertiliser, coal and cement clinker, where dockside mobile loaders (DMLs) have eliminated spillage and controlled dust, and a record case study of the Humber International Terminal in the UK, where air curtinas, dust suppression grids and EFFEX{reg_sign} filters overcome the dust problems. 2 photos.

  4. Triton's streaks as windblown dust

    Science.gov (United States)

    Sagan, Carl; Chyba, Christopher

    1990-01-01

    Explanations for the surface streaks observed by Voyager 2 on Triton's southern hemisphere are discussed. It is shown that, despite Triton's tenuous atmosphere, low-cohesion dust trains with diameters of about 5 micron or less may be carried into suspension by aeolian surface shear stress, given expected geostrophic wind speeds of about 10 m/s. For geyser-like erupting dust plumes, it is shown that dust-settling time scales and expected wind velocities can produce streaks with length scales in good agreement with those of the streaks. Thus, both geyserlike eruptions or direct lifting by surface winds appear to be viable mechanisms for the origin of the streaks.

  5. [Asthma due to grain dust].

    Science.gov (United States)

    Baur, X; Preisser, A; Wegner, R

    2003-06-01

    The actual literature as well as two case reports described in detail show that grain dust induces asthmatic reactions and ODTS which are obviously not of allergic origin. For diagnosis occupational-type exposure tests are decisive whereas allergological testing usually is not. Endotoxins which are present in the grain dust samples in high concentrations have to be regarded as the major causative components. To avoid irreversible lung function impairment a comprehensive early diagnosis is necessary. Generally, a remarkable reduction of exposure to dust with high levels of airborne endotoxin in agriculture has to be achieved since in many workplaces corresponding exposures are still rather high.

  6. Characterization of east Asian dust outbreaks in the spring of 2001 using ground-based and satellite data

    Science.gov (United States)

    Darmenova, Kremena; Sokolik, Irina N.; Darmenov, Anton

    2005-01-01

    This study presents a detailed examination of east Asian dust events during March-April of 2001, by combining satellite multisensor observation (Total Ozone Mapping Spectrometer (TOMS), Moderate-Resolution Imaging Spectroradiometer (MODIS), and Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)) meteorological data from weather stations in China and Mongolia and the Pennsylania State University/National Center for Atmospheric Research Mesoscale Modeling System (MM5) driven by the National Centers for Environmental Prediction Reanalysis data. The main goal is to determine the extent to which the routine surface meteorological observations (including visibility) and satellite data can be used to characterize the spatiotemporal distribution of dust plumes at a range of scales. We also examine the potential of meteorological time series for constraining the dust emission schemes used in aerosol transport models. Thirty-five dust events were identified in the source region during March and April of 2001 and characterized on a case-by-case basis. The midrange transport routes were reconstructed on the basis of visibility observations and observed and MM5-predicted winds with further validation against satellite data. We demonstrate that the combination of visibility data, TOMS aerosol index, MODIS aerosol optical depth over the land, and a qualitative analysis of MODIS and SeaWiFS imagery enables us to constrain the regions of origin of dust outbreaks and midrange transport, though various limitations of individual data sets were revealed in detecting dust over the land. Only two long-range transport episodes were found. The transport routes and coverage of these dust episodes were reconstructed by using MODIS aerosol optical depth and TOMS aerosol index. Our analysis reveals that over the oceans the presence of persistent clouds poses a main problem in identifying the regions affected by dust transport, so only partial reconstruction of dust transport routes reaching the

  7. Incremental Visualizer for Visible Objects

    DEFF Research Database (Denmark)

    Bukauskas, Linas; Bøhlen, Michael Hanspeter

    This paper discusses the integration of database back-end and visualizer front-end into a one tightly coupled system. The main aim which we achieve is to reduce the data pipeline from database to visualization by using incremental data extraction of visible objects in a fly-through scenarios. We...... also argue that passing only relevant data from the database will substantially reduce the overall load of the visualization system. We propose the system Incremental Visualizer for Visible Objects (IVVO) which considers visible objects and enables incremental visualization along the observer movement...... path. IVVO is the novel solution which allows data to be visualized and loaded on the fly from the database and which regards visibilities of objects. We run a set of experiments to convince that IVVO is feasible in terms of I/O operations and CPU load. We consider the example of data which uses...

  8. Life from the stars?. [extraterrestrial sources contributing to chemical evolution on Earth

    Science.gov (United States)

    Pendleton, Yvonne J.; Cruikshank, Dale P.

    1994-01-01

    Scientists are now seriously considering the possibility that organic matter from interstellar space could have influenced, or even spurred, the origin of life on Earth. Various aspects of chemical evolution are discussed along with possible extraterrestrial sources responsible for contributing to Earth's life-producing, chemical composition. Specific topics covered include the following: interstellar matter, molecular clouds, asteroid dust, organic molecules in our solar system, interplanetary dust and comets, meteoritic composition, and organic-rich solar-system bodies.

  9. Dust Dynamics Near Planetary Surfaces

    Science.gov (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude

  10. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  11. Synoptic characteristics of dust over the southwest of Iran

    Science.gov (United States)

    Katiraie-Boroujerdy, P.; Ghahri, F.; Ranjbar Saadatabadi, A.

    2012-12-01

    Iran is frequently affected by dust events because it is located in arid and semiarid belt of the world. As Khozestan province is in the vicinity of large deserts and also due to especial atmospheric conditions the frequency of dust in this area is increased in the recent years. Therefore it has the destructive affect on the healthcare, economy, social and etc. The study is based on the, sea level, 850 mb and 500 mb weather charts, surface wind field and observations weather data during the period of 1968-2008. By numerical simulation with WRF modeling it has tried to high light provide an answer to how this event produced and reached to Ahwaz. It has been shown in this 40 years, dust events by high strength and frequency occur in July in Ahwaz. Synoptic patterns revealed that for making sever dust event Persian Gulf thermal trough extends to the north west of Iraq and European ridge extends over the Black sea and large part of the Turkey by passing waves of middle level Mediterranean trough from northwest of Iraq and east of Syria. Numerical simulation shows strong surface flow over source regions in northwest of Iraq and east of Syria, creation westerly low level jet in low-lying areas and the increase in friction velocity in the source regions. In the deserts of Iraq and north east of Syria increase in friction velocity to its highest value (approx 0.6 m/s) causes reduction in visibility and by decrease to lowest value (approx 0.4 m/s) visibility reaches up to 600 meters in Ahwaz.

  12. Visible neutrino decay at DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Fermilab; Peres, Orlando G. [ICTP, Trieste

    2017-05-09

    If the heaviest neutrino mass eigenstate is unstable, its decay modes could include lighter neutrino eigenstates. In this case part of the decay products could be visible, as they would interact at neutrino detectors via mixing. At neutrino oscillation experiments, a characteristic signature of such \\emph{visible neutrino decay} would be an apparent excess of events at low energies. We focus on a simple phenomenological model in which the heaviest neutrino decays as $\

  13. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  14. First Results from NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)

    Science.gov (United States)

    Elphic, R. C.; Colaprete, A.; Horanyi, M.; Mahaffy, P. R.; Delory, G. T.; Noble, S. K.; Boroson, D.; Hine, B.; Salute, J.

    2013-12-01

    As of early August, 2013, the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is scheduled for launch on a Minotaur V rocket from Wallops Flight Facility during a five-day launch period that opens on Sept. 6, 2013 (early Sept. 7 UTC). LADEE will address 40 year-old mysteries of the lunar atmosphere and the question of levitated lunar dust. It will also pioneer the next generation of optical space communications. LADEE will assess the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. These investigations are relevant to our understanding of surface boundary exospheres and dust processes occurring at many objects throughout the solar system, address questions regarding the origin and evolution of lunar volatiles, and have potential implications for future exploration activities. Following a successful launch, LADEE will enter a series of phasing orbits, which allows the spacecraft to arrive at the Moon at the proper time and phase. This approach accommodates any dispersion in the Minotaur V launch injection. LADEE's arrival at the moon depends on the launch date, but with the Sept. 6 launch date it should arrive at the Moon in early October. The spacecraft will approach the moon from its leading edge, travel behind the Moon out of sight of the Earth, and then re-emerge and execute a three-minute Lunar Orbit Insertion maneuver. This will place LADEE in an elliptical retrograde equatorial orbit with an orbital period of approximately 24 hours. A series of maneuvers is then performed to reduce the orbit to become nearly circular with a 156-mile (250-kilometer) altitude. Spacecraft checkout and science instrument commissioning will commence in early-October and will nominally span 30 days but can be extended for an additional 30

  15. Dust particle formation in silane plasmas

    NARCIS (Netherlands)

    Sorokin, M.

    2005-01-01

    Dust can be found anywhere: in the kitchen, in the car, in space… Not surprisingly we also see dust in commercial and laboratory plasmas. Dust can be introduced in the plasma, but it can also grow there by itself. In the microelectronics industry, contamination of the processing plasma by dust is an

  16. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  17. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  18. 75 FR 3881 - Combustible Dust

    Science.gov (United States)

    2010-01-25

    ..., rubber, drugs, dried blood, dyes, certain textiles, and metals (such as aluminum and magnesium..., furniture manufacturing, metal processing, fabricated metal products and machinery manufacturing, pesticide... standard that will comprehensively address the fire and explosion hazards of combustible dust. The Agency...

  19. Rethinking wood dust safety standards

    OpenAIRE

    Ratnasingam, Jega; Wai, Lim Tau; Ramasamy, Geetha; Ioras, Florin; Tadin, Ishak; Universiti Putra Malaysia; Buckinghamshire New University; Centre for Occupational Safety and Health Singapore

    2015-01-01

    The current universal work safety and health standards pertaining to wood dust in factories lack the localisation required. As a study has shown, there is a urgent need to reevaluate the current guidelines and practices.

  20. Dust particles investigation for future Russian lunar missions.

    Science.gov (United States)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On light side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution dust particle by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar

  1. The influence of organic-containing soil dust on ice nucleation and cloud properties

    Science.gov (United States)

    Hummel, Matthias; Grini, Alf; Berntsen, Terje K.; Ekman, Annica

    2017-04-01

    Natural mineral dust from desert regions is known to be the most important contributor to atmospheric ice-nucleating particles (INP) which induce heterogeneous ice nucleation in mixed-phase clouds. Its ability to nucleate ice effectively is shown by various laboratory (Hoose and Möhler 2012) and field results (DeMott et al. 2015) and its abundance in ice crystal residuals has also been shown (Cziczo et al. 2013). Thus it is an important player when representing mixed-phase clouds in climate models. MODIS satellite data indicate that 1 /4 of the global dust emission originates from semi-arid areas rather than from arid deserts (Ginoux et al. 2012). Here, organic components can mix with minerals within the soil and get into the atmosphere. These so-called 'soil dust' particles are ice-nucleating active at high sub-zero temperatures, i.e. at higher temperatures than pure desert dust (Steinke et al. 2016). In this study, soil dust is incorporated into the Norwegian Earth System Model (NorESM, Bentsen et al. 2013) and applied to a modified ice nucleation parameterization (Steinke et al. 2016). Its influence on the cloud ice phase is evaluated by comparing a control run, where only pure desert dust is considered, and a sensitivity experiment, where a fraction of the dust emissions are classified as soil dust. Both simulations are nudged to ERA-interim meteorology and they have the same loading of dust emissions. NorESM gives a lower annual soil dust emission flux compared to Ginoux et al. (2012), but the desert dust flux is similar to the MODIS-retrieved data. Although soil dust concentrations are much lower than desert dust, the NorESM simulations indicate that the annual INP concentrations from soil dust are on average lower by a just a factor of 4 than INP concentrations from pure desert dust. The highest soil dust INP concentrations occur at a lower height than for desert dust, i.e at warmer temperatures inside mixed-phase clouds. Furthermore, soil dust INP

  2. Quantifying local-scale dust emission from the Arabian Red Sea coastal plain

    KAUST Repository

    Anisimov, Anatolii

    2017-01-23

    Dust plumes emitted from the narrow Arabian Red Sea coastal plain are often observed on satellite images and felt in local population centers. Despite its relatively small area, the coastal plain could be a significant dust source; however, its effect is not well quantified as it is not well approximated in global or even regional models. In addition, because of close proximity to the Red Sea, a significant amount of dust from the coastal areas could be deposited into the Red Sea and serve as a vital component of the nutrient balance of marine ecosystems. In the current study, we apply the offline Community Land Model version 4 (CLM4) to better quantify dust emission from the coastal plain during the period of 2009-2011. We verify the spatial and temporal variability in model results using independent weather station reports. We also compare the results with the MERRA Aerosol Reanalysis (MERRAero). We show that the best results are obtained with 1 km model spatial resolution and dust source function based on Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements. We present the dust emission spatial pattern, as well as estimates of seasonal and diurnal variability in dust event frequency and intensity, and discuss the emission regime in the major dust generation hot spot areas. We demonstrate the contrasting seasonal dust cycles in the northern and southern parts of the coastal plain and discuss the physical mechanisms responsible for dust generation. This study provides the first estimates of the fine-scale spatial and temporal distribution of dust emissions from the Arabian Red Sea coastal plain constrained by MERRAero and short-term WRF-Chem simulations. The estimate of total dust emission from the coastal plain, tuned to fit emissions in MERRAero, is 7.5 ± 0.5 Mt a. Small interannual variability indicates that the study area is a stable dust source. The mineralogical composition analysis shows that the coastal plain

  3. Quantifying local-scale dust emission from the Arabian Red Sea coastal plain

    KAUST Repository

    Anisimov, Anatolii; Tao, Weichun; Stenchikov, Georgiy L.; Kalenderski, Stoitchko; Jish Prakash, P.; Yang, Zong Liang; Shi, Mingjie

    2017-01-01

    Dust plumes emitted from the narrow Arabian Red Sea coastal plain are often observed on satellite images and felt in local population centers. Despite its relatively small area, the coastal plain could be a significant dust source; however, its effect is not well quantified as it is not well approximated in global or even regional models. In addition, because of close proximity to the Red Sea, a significant amount of dust from the coastal areas could be deposited into the Red Sea and serve as a vital component of the nutrient balance of marine ecosystems. In the current study, we apply the offline Community Land Model version 4 (CLM4) to better quantify dust emission from the coastal plain during the period of 2009-2011. We verify the spatial and temporal variability in model results using independent weather station reports. We also compare the results with the MERRA Aerosol Reanalysis (MERRAero). We show that the best results are obtained with 1 km model spatial resolution and dust source function based on Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements. We present the dust emission spatial pattern, as well as estimates of seasonal and diurnal variability in dust event frequency and intensity, and discuss the emission regime in the major dust generation hot spot areas. We demonstrate the contrasting seasonal dust cycles in the northern and southern parts of the coastal plain and discuss the physical mechanisms responsible for dust generation. This study provides the first estimates of the fine-scale spatial and temporal distribution of dust emissions from the Arabian Red Sea coastal plain constrained by MERRAero and short-term WRF-Chem simulations. The estimate of total dust emission from the coastal plain, tuned to fit emissions in MERRAero, is 7.5 ± 0.5 Mt a. Small interannual variability indicates that the study area is a stable dust source. The mineralogical composition analysis shows that the coastal plain

  4. Physical properties of five grain dust types.

    OpenAIRE

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less tha...

  5. Efficient radiative transfer in dust grain mixtures

    OpenAIRE

    Wolf, S.

    2002-01-01

    The influence of a dust grain mixture consisting of spherical dust grains with different radii and/or chemical composition on the resulting temperature structure and spectral energy distribution of a circumstellar shell is investigated. The comparison with the results based on an approximation of dust grain parameters representing the mean optical properties of the corresponding dust grain mixture reveal that (1) the temperature dispersion of a real dust grain mixture decreases substantially ...

  6. Rare earth oxyhalogenide base thermoluminescent material

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1976-01-01

    A process is described that consists to expose a thermoluminescent material to ionizing radiations, the material being a rare earth oxyhalogenide with terbium additions, to heat this material up to the emission of visible radiations and to measure the emitted radiations which are proportional to the ionizing radiation dose [fr

  7. Geochemical characterization of critical dust source regions in the American West

    Science.gov (United States)

    Aarons, Sarah M.; Blakowski, Molly A.; Aciego, Sarah M.; Stevenson, Emily I.; Sims, Kenneth W. W.; Scott, Sean R.; Aarons, Charles

    2017-10-01

    The generation, transport, and deposition of mineral dust are detectable in paleoclimate records from land, ocean, and ice, providing valuable insight into earth surface conditions and cycles on a range of timescales. Dust deposited in marine and terrestrial ecosystems can provide critical nutrients to nutrient-limited ecosystems, and variations in dust provenance can indicate changes in dust production, sources and transport pathways as a function of climate variability and land use change. Thus, temporal changes in locations of dust source areas and transport pathways have implications for understanding interactions between mineral dust, global climate, and biogeochemical cycles. This work characterizes dust from areas in the American West known for dust events and/or affected by increasing human settlement and livestock grazing during the last 150 years. Dust generation and uplift from these dust source areas depends on climate and land use practices, and the relative contribution of dust has likely changed since the expansion of industrialization and agriculture into the western United States. We present elemental and isotopic analysis of 28 potential dust source area samples analyzed using Thermal Ionization Mass Spectrometry (TIMS) for 87Sr/86Sr and 143Nd/144Nd composition and Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) for 176Hf/177Hf composition, and ICPMS for major and trace element concentrations. We find significant variability in the Sr, Nd, and Hf isotope compositions of potential source areas of dust throughout western North America, ranging from 87Sr/86Sr = 0.703699 to 0.740236, εNd = -26.6 to 2.4, and εHf = -21.7 to -0.1. We also report differences in the trace metal and phosphorus concentrations in the geologic provinces sampled. This research provides an important resource for the geochemical tracing of dust sources and sinks in western North America, and will aid in modeling the biogeochemical impacts of increased

  8. Grain dust and the lungs.

    Science.gov (United States)

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  9. Suspended dust in Norwegian cities

    International Nuclear Information System (INIS)

    2001-01-01

    According to calculations, at least 80 000 people in Oslo and 8 000 in Trondheim were annoyed by too much suspended dust in 2000. The dust concentration is greatest in the spring, presumably because dust is swirling up from melting snow and ice on the streets. Car traffic is the main source of the dust, except for some of the most highly exposed regions where wood-firing from old stoves contributes up to 70 percent of the dust. National targets for air quality include suspended dust, nitrogen dioxide, sulphur dioxide and benzene. Calculations show that nitrogen dioxide emissions exceeding the limit affected 4 000 people in Oslo and 1 000 people in Trondheim. The sulphur dioxide emissions in the major cities did non exceed the national quality limit; they did exceed the limit in some of the smaller industrial centres. In Trondheim, measurements show that the national limit for benzene was exceeded. Most of the emission of nitrogen dioxide comes from the road traffic. Local air pollution at times causes considerable health- and well-being problems in the larger cities and industrial centres, where a great part of the population may be at risk of early death, infection of the respiratory passage, heart- and lung diseases and cancer

  10. Modeling wind-blown desert dust in the southwestern United States for public health warning: A case study

    Science.gov (United States)

    Yin, Dazhong; Nickovic, Slobodan; Barbaris, Brian; Chandy, Beena; Sprigg, William A.

    A model for simulating desert dust cycle was adapted and applied for a dust storm case in the southwest United States (US). This is an initial test of the model's capability as part of a future public health early warning system. The modeled meteorological fields, which drive a dust storm, were evaluated against surface and upper-air measurement data. The modeled dust fields were compared with satellite images, in situ surface PM2.5 and PM10 data, and visibility data in the areas affected by the dust event. The model predicted meteorological fields reasonably well. The modeled surface and upper-air field patterns were in agreement with the measured ones. The vertical profiles of wind, temperature, and humidity followed closely with the observed profiles. Statistical analyses of modeled and observed meteorological variables at surface sites showed fairly good model performance. The modeled dust spatial distributions were comparable with the satellite-observed dust clouds and the reduced visibility patterns. Most encouragingly, the model-predicted and observed PM2.5 peak hours matched reasonably well. The model produced better PM2.5 peak hours than PM10 peak hours. The temporal varying trends of daily and hourly PM2.5 and PM10 concentrations at most of the measurement sites were similar to those observed. Discrepancies between the values of the modeled and the measured surface PM2.5 and PM10 concentrations differed with time and location. Sometimes the modeled and measured concentrations can have one order of magnitude differences. These revealed there were possible deficiencies in the simulation of the dust production strength and location, and the representation of dust particle size in the modeling. Better land surface data and size representation of the dust production are expected to further improve model performance.

  11. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    Science.gov (United States)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-09-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if

  12. Radio Emissions from Electrical Activity in Martian Dust Storms

    Science.gov (United States)

    Majid, W.; Arabshahi, S.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, event rate, and the strength of the generated electric fields. The detection and characterization of electric activity in Martian dust storms has important implications for habitability, and preparations for human exploration of the red planet. Furthermore, electrostatic discharges may be linked to local chemistry and plays an important role in the predicted global electrical circuit. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the Deep Space Network (DSN) is the only facility in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity from large scale convective dust storms at Mars. We will describe a newly inaugurated program at NASA's Madrid Deep Space Communication Complex to carry out a long-term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The ground-based detections will also have important implications for the design of a future instrument that could make similar in-situ measurements from orbit or from the surface of Mars, with far greater sensitivity and duty cycle, opening up a new window in our understanding of the Martian environment.

  13. Solar Array Panels With Dust-Removal Capability

    Science.gov (United States)

    Dawson, Stephen; Mardesich, Nick; Spence, Brian; White, Steve

    2004-01-01

    It has been proposed to incorporate piezoelectric vibrational actuators into the structural supports of solar photovoltaic panels, for the purpose of occasionally inducing vibrations in the panels in order to loosen accumulated dust. Provided that the panels were tilted, the loosened dust would slide off under its own weight. Originally aimed at preventing obscuration of photovoltaic cells by dust accumulating in the Martian environment, the proposal may also offer an option for the design of solar photovoltaic panels for unattended operation at remote locations on Earth. The figure depicts a typical lightweight solar photovoltaic panel comprising a backside grid of structural spars that support a thin face sheet that, in turn, supports an array of photovoltaic cells on the front side. The backside structure includes node points where several spars intersect. According to the proposal, piezoelectric buzzers would be attached to the node points. The process of designing the panel would be an iterative one that would include computational simulation of the vibrations by use of finite- element analysis to guide the selection of the vibrational frequency of the actuators and the cross sections of the spars to maximize the agitation of dust.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Aditi Singh. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 26. Prediction of fog/visibility over India using NWP Model · Aditi Singh John P George Gopal Raman Iyengar · More Details Abstract Fulltext PDF. Frequent occurrence of fog ...

  15. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    Science.gov (United States)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  16. Earth thermics

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M

    1960-01-01

    The thermodynamics of the Earth are described, including terrestrial heat flow, internal temperatures and thermal history. The value of the geothermal gradient has been considered to be 3/sup 0/C/100 m but measured values are slightly different. The values of terrestrial heat flow are relatively constant and are calculated be about 2.3 x 10 to the minus 6 cal/cm/sup 2/ sec (2.3 HFU). The Earth's internal temperature can be calculated from the adiabatic temperature gradient of adiabatic expansion. Using Simon's equation No. 9, a value of 2100-2500/sup 0/C is obtained, this is much lower than it was previously thought to be. The value of 2.3 HFU can easily be obtained from this internal temperature figure.

  17. Open questions on optical properties of dust and the opacity of the Martian atmosphere

    Science.gov (United States)

    Korablev, O.; Moroz, V.; Petrova, E.; Rodin, A.

    Particulate component of the atmosphere composed by micron-sized products of soil weathering and water ice clouds that strongly affect the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data and measurem ents from the surface (Viking landers, Pathfinder) which give in the quiet seasons the typical optical depth of? 0.5 from one side, and ground-based observations in the UV-visible range that frequently infer <0.2, on the other side. Also the relationship between9 and the visible optical depth is not well established experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.

  18. Optical properties of dust and the opacity of the Martian atmosphere

    Science.gov (United States)

    Korablev, O.; Moroz, V. I.; Petrova, E. V.; Rodin, A. V.

    Particulate component of the Mars atmosphere composed by micron-sized products of soil weathering and water ice clouds strongly affects the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with τ ≈ 0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data (τ = 0.05-0.2) and measurements from the surface (Viking landers, Pathfinder) which give the typical “clear” optical depth of τ ≈ 0.5 from one side, and ground-based observations in the UV-visible range showing much more transparent atmosphere, on the other side. Also the relationship between τ9 and the visible optical depth is not well constrained experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.

  19. Recommended metric for tracking visibility progress in the Regional Haze Rule.

    Science.gov (United States)

    Gantt, Brett; Beaver, Melinda; Timin, Brian; Lorang, Phil

    2018-05-01

    For many national parks and wilderness areas with special air quality protections (Class I areas) in the western United States (U.S.), wildfire smoke and dust events can have a large impact on visibility. The U.S. Environmental Protection Agency's (EPA) 1999 Regional Haze Rule used the 20% haziest days to track visibility changes over time even if they are dominated by smoke or dust. Visibility on the 20% haziest days has remained constant or degraded over the last 16 yr at some Class I areas despite widespread emission reductions from anthropogenic sources. To better track visibility changes specifically associated with anthropogenic pollution sources rather than natural sources, the EPA has revised the Regional Haze Rule to track visibility on the 20% most anthropogenically impaired (hereafter, most impaired) days rather than the haziest days. To support the implementation of this revised requirement, the EPA has proposed (but not finalized) a recommended metric for characterizing the anthropogenic and natural portions of the daily extinction budget at each site. This metric selects the 20% most impaired days based on these portions using a "delta deciview" approach to quantify the deciview scale impact of anthropogenic light extinction. Using this metric, sulfate and nitrate make up the majority of the anthropogenic extinction in 2015 on these days, with natural extinction largely made up of organic carbon mass in the eastern U.S. and a combination of organic carbon mass, dust components, and sea salt in the western U.S. For sites in the western U.S., the seasonality of days selected as the 20% most impaired is different than the seasonality of the 20% haziest days, with many more winter and spring days selected. Applying this new metric to the 2000-2015 period across sites representing Class I areas results in substantial changes in the calculated visibility trend for the northern Rockies and southwest U.S., but little change for the eastern U.S. Changing the

  20. Sustainable synthesis of metals-doped ZnO nanoparticles from zinc-bearing dust for photodegradation of phenol

    International Nuclear Information System (INIS)

    Wu, Zhao-Jin; Huang, Wei; Cui, Ke-Ke; Gao, Zhi-Fang; Wang, Ping

    2014-01-01

    Highlights: • Multi-doped ZnO (M-ZnO) was prepared from Zn-bearing dust for waste-cleaning-waste. • All the dopants M (Fe, Mg, Ca and Al) and Zn are recovered from the dust. • Doping by the dust-derived M expands excitability of ZnO to visible light region. • M-ZnO has good catalytic activity in the degradation of phenol under visible light. - Abstract: A novel strategy of waste-cleaning-waste is proposed in the present work. A metals-doped ZnO (M-ZnO, M = Fe, Mg, Ca and Al) nanomaterial has been prepared from a metallurgical zinc-containing solid waste “fabric filter dust” by combining sulfolysis and co-precipitation processes, and is found to be a favorable photocatalyst for photodegradation of organic substances in wastewater under visible light irradiation. All the zinc and dopants (Fe, Mg, Ca and Al) for preparing M-ZnO are recovered from the fabric filter dust, without any addition of chemical as elemental source. The dust-derived M-ZnO samples deliver single phase indexed as the hexagonal ZnO crystal, with controllable dopants species. The photocatalytic activity of the dust-derived M-ZnO samples is characterized by photodegradation of phenol aqueous solution under visible light irradiation, giving more prominent photocatalytic behaviors than undoped ZnO. Such enhancements may be attributed to incorporation of the dust-derived metal elements (Fe, Mg, Ca and Al) into ZnO structure, which lead to the modification of band gap and refinement of grain size. The results show a feasibility to utilize the industrial waste as a resource of photodegradating organic substances in wastewater treatments

  1. Dust modeling over East Asia during the summer of 2010 using the WRF-Chem model

    Science.gov (United States)

    Zhang, B.; Huang, J.; Chen, S.

    2017-12-01

    An intense summer dust storm over East Asia during June 24-27, 2010, was systematically analyzed using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and a variety of in situ measurements and satellite retrievals. The results showed that the WRF-Chem model captured the spatial and temporal distributions of meteorological factors and dust aerosols over East Asia. This summer dust storm was initiated by the approach of a transverse trough in the northwestern Xinjiang. Because of the passage of the cutoff-low, a large amount of cold air was transported southward and further enhanced in the narrow valleys of the Altai and Tianshan Mountains, which resulted in higher wind speeds and huge dust emissions over the Taklimakan Desert (TD). Dust emission fluxes over the TD were as high as 54 μg m-2 s-1 on June 25th. The dust aerosols from the TD then swept across Inner Mongolia, Ningxia and Mongolia, and some were also transported eastward to Beijing, Tianjin, the Hebei region, and even South Korea and Japan. The simulations further showed that summer dust over East Asia exerts an important influence on the radiation budget in the Earth-atmosphere system. Dust heat the atmosphere at a maximum heating rate of 0.14 k day-1, effectively changing the vertical stability of the atmosphere and affecting climate change at regional and even global scales. The dust event-averaged direct radiative forcing induced by dust particles over the TD at all-sky was -6.0, -16.8 and 10.8 W m-2 at the top of the atmosphere, the surface, and in the atmosphere, respectively.

  2. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic

    Directory of Open Access Journals (Sweden)

    M. van der Does

    2016-11-01

    Full Text Available Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 32 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also, the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.

  3. Bacillus licheniformis in geogenic dust induces inflammation in respiratory epithelium.

    Science.gov (United States)

    Pickering, Janessa; Teo, Teck Hui; Thornton, Ruth B; Kirkham, Lea-Ann; Zosky, Graeme R; Clifford, Holly D

    2018-07-01

    Exposure to environmental geogenic (or earth-derived) dust can lead to more frequent and severe infections in the human airway. Particulate matter respiratory diseases. We have previously demonstrated that mice exposed to geogenic dust PM 10 experienced an exacerbation of inflammatory responses to influenza A virus. Whether geogenic dust PM 10 also exacerbates respiratory bacterial infection is not yet known, nor are the components of the dust that drive these responses. We treated airway bronchial epithelial cells (NuLi-1) with UV-irradiated geogenic dust PM 10 from six remote Western Australian towns. High levels of IL-6 and IL-8 production were observed, as well as persistent microbial growth. 16 S rRNA sequencing of the growth identified the microbe as Bacillus licheniformis, a spore-forming, environmentally abundant bacterium. We next investigated the interaction of B. licheniformis with respiratory epithelium in vitro to determine whether this exacerbated infection with a bacterial respiratory pathogen (non-typeable Haemophilus influenzae, NTHi). Heat treatment (100 °C) of all PM 10 samples eliminated B. licheniformis contamination and reduced epithelial inflammatory responses, suggesting that heat-labile and/or microbial factors were involved in the host response to geogenic dust PM 10 . We then exposed NuLi-1 epithelium to increasing doses of the isolated Bacillus licheniformis (multiplicity of infection of 10:1, 1:1 or 0.1:1 bacteria: cells) for 1, 3, and 24 h. B. licheniformis and NTHi infection (association and invasion) was assessed using a standard gentamicin survival assay, and epithelial release of IL-6 and IL-8 was measured using a bead based immunoassay. B. licheniformis was cytotoxic to NuLi-1 cells at 24 h. At 3 h post-challenge, B. licheniformis elicited high IL-6 and IL-8 inflammatory responses from NuLi-1 cells compared with cells treated with heat-treated geogenic dust PM 10 (p respiratory epithelium. The impact on respiratory

  4. Comet Hyakutake to Approach the Earth in Late March 1996

    Science.gov (United States)

    1996-03-01

    the very distant `Oort Cloud' of comets that surrounds the solar system. In this sense it is different from the periodical comets which move in closed orbits around the Sun with revolution periods between a few years and some decades. Its `dirty snowball' nucleus of ices and dust has therefore not been heated by the Sun for a very long time, perhaps never, if this is its first visit to the inner regions of the solar system. Hence it is particularly difficult to predict its future performance. Nevertheless, the available observations seem to indicate that it is a quite `active' comet and that it may therefore become comparatively bright when it approaches the Earth and later at perihelion. But how bright ? Imaging as well as spectroscopic observations have been performed in order to better characterize Comet Hyakutake. On CCD-frames obtained of the comet in early February with telescopes at the ESO La Silla Observatory and elsewhere, an elongation is clearly visible (cf. ESO Press Photo 11/96 ) in the anti-sunward direction of the coma (the cloud of gas and dust that surrounds the cometary nucleus). A real tail has not yet developed, but this is expected to happen soon. The size of the coma was measured as at least 7 arcmin, corresponding to a projected diameter of nearly 500,000 kilometres. It is also of interest that until recently the coma otherwise appeared absolutely symmetrical - there was no indication of `jets', i.e. no large vents on the surface of the nucleus had yet become active. However, on images obtained with the ESO 3.6-metre telescope in the morning of February 13, a `jet'-like feature is seen which emerges south-east of the nucleus (i.e. from the sunlit side) and curls counter-clockwise towards the opposite side (the `tail'-direction). This is probably the first evidence of localized dust production on the surface of the nucleus. CCD observations were made on February 9 at the Lowell Observatory (Flagstaff, U.S.A.) through special optical filters

  5. Study on treatment of dust by dismantling

    International Nuclear Information System (INIS)

    Torikai, K.; Suzuki, K.

    1987-01-01

    In dismantling of nuclear reactors, various kinds of treatment of dust generated by cutting or dismantling concrete structures of components of reactors are evaluated for safety, cost, and performance comparing the work in air with water. A method of dust treatment for work in air is discussed. The dry method has an easy operation in practice and a good performance in the equipment, but has problem on the prevention from radioactive contamination by diffusion of dust in air. For the purpose of advancing the strong points and eliminating the weak points in dry method, an improved venturi scrubber system is proposed for dismantling work as a dust collecting system. The system consists of dust absorbing pipe, dust collector, separator of dust and water and dust transfer equipment to a storage of waste. This system would be expected to have better performance and lower operating cost in decommissioning nuclear reactors, especially, the number of dust filters, for example, HEPA filters, will be considerably saved

  6. The global dispersion of microorganisms and pollutants in clouds of desert dust

    Science.gov (United States)

    Griffin, D. W.; Kellogg, C. A.; Garrison, V. H.; Kubilay, N.; Kocak, M.; Shinn, E.

    2003-12-01

    A current estimate of the quantity of dust that is transported some distance in Earth's atmosphere each year is approximately two billion metric tons. Whereas various research projects have been undertaken to understand this planetary process, little has been done to address public and ecosystem health issues. Our research group is currently investigating long-range transport of microorganisms associated with desert dust clouds at various points on the globe via the integration of remote sensing, modeling and microbiological assays. Using a suite of molecular biology techniques, we are identifying cultivable bacteria and fungi and enumerating total bacteria and viruses. Research results indicate that approximately 30% of the microorganisms found in Earth's atmosphere during `African dust events' are species of bacteria or fungi that have previously been identified as disease causing agents in terrestrial plants, trees, and animals. This presentation will cover historical research in this field and the implications of microbial and pollutant \\(metals, pesticides, etc.\\) transport to downwind ecosystems.

  7. Vertical distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings

    Science.gov (United States)

    Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.

    2005-03-01

    Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in observations of dust vertical profiles. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar observations to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar vertical profiles collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed vertical profiles, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust vertical distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume profiles. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect

  8. The Interstellar Gas Dust Streams and Seeds of Life

    Science.gov (United States)

    Oleg, Khavroshkin; Vladislav, Tsyplakov

    Gas dust Streams from Double Stars & Lunar Seismicity. The time series of seismic events were generated as follows: on the ordinate axis the peak amplitudes of events in standard units, on abscissa axis - seismogram durations of the same moonquakes and subsequent time intervals between them were used. Spectrum of the series disclosed time picks on hidden cosmological periodicities of lunar seismicity. A part of results (picks) presents orbital periods of double stars nearest to the Solar system. The explanation of that results is existing gas-dust streams from binary stars systems and interacting of it with lunar surface. Information content of the Nakamura`s Catalog of moonquakes is very rich: from solar-earth tides to clustering among the meteoroid streams [1, 2]. The histograms from meteoroid impacts seismic data revealed the seismic wave responses of the Moon to solar oscillations and the action on the lunar surface by dust-gas plasma of meteoroid streams [3]. The time series of seismic events were generated as follows: on an axis of ordinates - the peak amplitudes of events in standard units, on an abscissa - seismogram durations of the same moonquakes and subsequent time intervals between them were put aside [4]. Spectrum of the series of meteoroid streams seismicity disclosed time picks on orbital periods some planets and their satellites and solar oscillations [4, 5]. The research of peculiarities of histogram envelopes [3] and comparative common analysis solar bursts data and mass meteoroid distribution are confirmed [3, 4] and revealed Forbush`s effect for gas-dust plasma [6]. Hidden astrophysical periodicities of lunar seismicity were obtained early from an analysis of time series [7] which were similarity to series [4]. The path of results of [7] is presented in the Table where picks presents orbital periods of double stars nearest to the Solar system. Hypothesis for explanation of the Table results is existing gas-dust streams from binary stars near

  9. Dust particle charge and screening in the collisional RF plasma sheath

    NARCIS (Netherlands)

    Beckers, J.; Trienekens, D.J.M.; Kroesen, G.M.W.; Sprouse, G.D.

    2012-01-01

    Once immersed in plasma, a dust particle gathers a highly negative charge due to the net collection of free electrons. In most plasma's on earth and with particle sizes is in the micrometer range, the gravitational force is dominant and consequently the particle ends up within the plasma sheath

  10. Ten-year operational dust forecasting - Recent model development and future plans

    International Nuclear Information System (INIS)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G

    2009-01-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10 8 t yr- 1 . A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  11. INVESTIGATION OF SAHARAN DUST TRANSPORT ON THE BASIS OF AEROLOGICAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    R. TÓTH

    2016-03-01

    Full Text Available The Sahara Desert is the largest dust source on Earth. Its dust is frequently emitted into the Mediterranean atmosphere and transported by the winds sometimes as far north as Central Europe. The accumulated particles contribute to soil forming processes, while the atmospheric mineral dust has an impact on the radiation budget, cloud forming processes, the pH of precipitation and biogeochemical cycles of marine ecosystems. The PM (particulate matter in ambient air does not contain only primary particles but secondary particles formed in the atmosphere from precursor gases as well. Especially these latter ones have significant negative impacts to human health. There are in average four-five Saharan dust episodes annually in Hungary, sometimes in form of colour precipitation (brown rainfall, red snow. There are several possibilities for providing evidence for the Saharan origin of the dust observed in our country: back-trajectories using NOAA HYSPLIT model, TOMS satellite maps of NASA, maps of aerosol index of Ozone Monitoring Instrument, observations of spectral aerosol optical depth of Aerosol Robotic Network, satellite maps of EUMETSAT, elemental analysis of dust samples. In this study we try to reveal the suitability of the upper-air wind fields in detection of Saharan dust episodes in Central Europe. We deployed the global upper-air data base of the last 41 years that is available by courtesy of College of Engineering and Applied Sciences at University of Wyoming. We apply this method also for tracking air pollution of vegetation fires.

  12. Ten-year operational dust forecasting - Recent model development and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G [University of Athens, School of Physics, Atmospheric Modeling and Weather Forecasting Group - UOA/AM and WFG, University Campus, Bldg. PHYS-V, Athens 15784 (Greece)], E-mail: kallos@mg.uoa.gr

    2009-03-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10{sup 8} t yr-{sup 1}. A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  13. Charged dust in saturn's magnetosphere

    International Nuclear Information System (INIS)

    Mendis, D.A.; Hill, J.R.; Houpis, H.L.F.

    1983-01-01

    Gravito-electrodynamic theory of charged dust grains is used to explain a variety of phenomena in those portions of the Saturnian ring system that are known to be dominated by fine (micron- and submicron-sized) dust, and in which collisional forces and Coulomb drag can be neglected. Among the phenomena discussed are the formation and evolution of the rotating near-radial spokes in the B-ring, the formation of waves in the F-ring, the cause of eccentricities of certain isolated ringlets, and the origin and morphology of the broad diffuse E-ring. Several novel processes predicted by the gravitoelectrodynamic theory, including 'magneto-gravitational capture' of exogenic dust by the magnetosphere, '1:1 magneto-gravitational orbital resonances' of charged dust with nearby satellites, and 'gyro-orbital resonances,' are used to explain individual observations. The effect of a ring current associated with this charged dust is also evaluated. Finally, the cosmogonic implications of the magneto-gravitational theory are briefly discussed. While several (although not all) of these processes have been discussed by one or more of the present authors elsewhere, the purpose of this paper is to synthesize all these processes within the framework of gravito-electrodynamics, and also to show its range of applicability within Saturn's ring system

  14. Spring Dust Storm Smothers Beijing

    Science.gov (United States)

    2002-01-01

    A few days earlier than usual, a large, dense plume of dust blew southward and eastward from the desert plains of Mongolia-quite smothering to the residents of Beijing. Citizens of northeastern China call this annual event the 'shachenbao,' or 'dust cloud tempest.' However, the tempest normally occurs during the spring time. The dust storm hit Beijing on Friday night, March 15, and began coating everything with a fine, pale brown layer of grit. The region is quite dry; a problem some believe has been exacerbated by decades of deforestation. According to Chinese government estimates, roughly 1 million tons of desert dust and sand blow into Beijing each year. This true-color image was made using two adjacent swaths (click to see the full image) of data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on March 17, 2002. The massive dust storm (brownish pixels) can easily be distinguished from clouds (bright white pixels) as it blows across northern Japan and eastward toward the open Pacific Ocean. The black regions are gaps between SeaWiFS' viewing swaths and represent areas where no data were collected. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  15. Physical properties of five grain dust types.

    Science.gov (United States)

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482

  16. Atmosphere aerosol/dust composition over central Asia and western Siberia derived from snow/ice core records and calibrated with NASA remote sensing data

    Science.gov (United States)

    Aizen, V. B.; Aizen, E. M.; Joswiak, D. R.; Surazakov, A. B.; Takeuchi, N.

    2007-12-01

    The vast arid and semi-arid regions of central Asia, Mongolia, and Northern China are the world's second largest source of atmospheric mineral dust. In recent years, severe dust storms in Asia have intensified in frequency, duration, and areal coverage. However, limited spatial and temporal extent of aerosol measurements precludes definitive statements to be made regarding relationship between the Asian aerosol generation and climate. It has been well known that glaciers are the natural archives of environmental records related to past climate and aerosol generation. In our research, we utilized central Asian and western Siberia shallow ice-core records recovered from Altai, Tien Shan and Pamir mountain glaciers. Despite the fact that ice-core data may extend climate/aerosol records back in time, their sparse coverage is inadequate to document aerosol spatial distribution. The NASA products from Aura, Terra and Aqua satellite missions address this gap identifying aerosol sources, transport pathways, and area of deposition. The main objective of our research is to evaluate an affect of climate variability on dynamics of Asian aerosol loading to atmosphere and changes in aerosol transport pathways. Dust particle, major and rare earth element analysis from dust aerosols deposited and accumulated in Altai, Tien Shan and Pamir glaciers suggests that loess from Tajikistan, Afghanistan and north-western China are main sources of aerosol loading into the upper troposphere over the central Asia and western Siberia. At the same time, the soluble ionic component of the ice-cores, related to aerosol generated from evaporate deposits, demonstrated both anthropogenic and natural impacts on atmospheric chemistry over these regions. Large perturbations of Ca2+ derived from CaCO3- rich dust transported from Goby Desert to Altai and Tien Shan. Origin and pathway of the ice-core aerosol depositions for the last 10-years were identified through calibrating ice-core records with dust

  17. Long-term atmospheric visibility trend in Southeast China, 1973-2010

    Science.gov (United States)

    Deng, Junjun; Du, Ke; Wang, Kai; Yuan, Chung-Shin; Zhao, Juanjuan

    2012-11-01

    declined at a rate of -1.6, -2.0 and -2.4 km/decade, with the average of 13.1, 17.8 and 23.0 km, respectively. During 2000-2010, the daily dry extinction coefficients were positively correlated with API with linear R2 values of 0.42 and 0.43 for Xiamen and Shantou, respectively, suggesting that the air pollution could be responsible for the visibility impairment in Southeast China. Analysis on the effects of recent policies suggested that visibility change was significantly positively correlated with environment treatment variables including Removed Industrial SO2 (RISO2), Total Investment in Environmental Pollution Control (TIEPC), Area of Green Space (AGS) and Removed Industrial Dust (RID), but significantly negatively correlated with Emission of Industrial Dust (EID). Time-lag effect on the contribution of TIEPC to visibility was found. It is suggested that continuous and effective pollution control strategy, particularly increasing investment in environment control and pollutant emission reduction, is needed to counteract the degradation of atmospheric visibility in Southeast China.

  18. Understanding and Approaching Muslim Visibilities

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2011-01-01

    Within Western nation-states such as Denmark, Islamic identities are often seen as inherently and divergently visible, an aspect that some argue is detrimental to the secular nation-state. From a research perspective, one way to nuance this position is by focusing on groups of 'invisible' Muslims...

  19. Early Learning Theories Made Visible

    Science.gov (United States)

    Beloglovsky, Miriam; Daly, Lisa

    2015-01-01

    Go beyond reading about early learning theories and see what they look like in action in modern programs and teacher practices. With classroom vignettes and colorful photographs, this book makes the works of Jean Piaget, Erik Erikson, Lev Vygotsky, Abraham Maslow, John Dewey, Howard Gardner, and Louise Derman-Sparks visible, accessible, and easier…

  20. Non-Euclidean visibility problems

    Indian Academy of Sciences (India)

    FERNANDO CHAMIZO. Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain. MS received 14 November 2005. Abstract. We consider the analog of visibility problems in hyperbolic plane (repre- sented by Poincaré half-plane model H), replacing the standard lattice Z ...

  1. Are naked singularities really visible

    Energy Technology Data Exchange (ETDEWEB)

    Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; De Felice, F [Alberta Univ., Edmonton (Canada); Nobili, L [Padua Univ. (Italy). Ist. di Fisica

    1978-12-09

    The question whether a Kerr naked singularity is actually visible from infinity is investigated; it is shown that in fact any signal which could be emitted from the singularity is infinitely red-shifted. This implies that naked singularities would be indistinguishable from a black hole.

  2. Visible Machine Learning for Biomedicine.

    Science.gov (United States)

    Yu, Michael K; Ma, Jianzhu; Fisher, Jasmin; Kreisberg, Jason F; Raphael, Benjamin J; Ideker, Trey

    2018-06-14

    A major ambition of artificial intelligence lies in translating patient data to successful therapies. Machine learning models face particular challenges in biomedicine, however, including handling of extreme data heterogeneity and lack of mechanistic insight into predictions. Here, we argue for "visible" approaches that guide model structure with experimental biology. Copyright © 2018. Published by Elsevier Inc.

  3. Mid-Infrared Interferometry on Spectral Lines. II. Continuum (Dust) Emission Around IRC +10216 and VY Canis Majoris

    Science.gov (United States)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Lipman, E. A.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    The University of California Berkeley Infrared Spatial Interferometer has measured the mid-infrared visibilities of the carbon star IRC +10216 and the red supergiant VY CMa. The dust shells around these sources have been previously shown to be time variable, and these new data are used to probe the evolution of the dust shells on a decade timescale, complementing contemporaneous studies at other wavelengths. Self-consistent, spherically symmetric models at maximum and minimum light both show the inner radius of the IRC +10216 dust shell to be much larger (150 mas) than expected from the dust-condensation temperature, implying that dust production has slowed or stopped in recent years. Apparently, dust does not form every pulsational cycle (638 days), and these mid-infrared results are consistent with recent near-infrared imaging, which indicates little or no new dust production in the last 3 yr. Spherically symmetric models failed to fit recent VY CMa data, implying that emission from the inner dust shell is highly asymmetric and/or time variable.

  4. Dust deposit in recirculation regions

    International Nuclear Information System (INIS)

    Griemert, R.

    1985-03-01

    The present report shows investigations, which have been carried out in a closed duct at forward and backward facing steps. Distribution of fluid velocity and fluid fluctuations in and normal to main flow direction as well as the distribution of Reynolds shear stress have been measured. The mass transfer downstream of a backward facing step has been investigated as well. By using graphite-, copper-, tin- and rubber dust, conditions of deposition have been defined experimentally. A serie of photos shows the filling of a recirculation region downstream of a backward facing step with graphite dust. The present investigations allow to avoid deposition of dust in recirculation regions by selecting the fluid numbers in an appropriate way. (orig.) [de

  5. Dust Storm Hits Canary Islands

    Science.gov (United States)

    2002-01-01

    A thick pall of sand and dust blew out from the Sahara Desert over the Atlantic Ocean yesterday (January 6, 2002), engulfing the Canary Islands in what has become one of the worst sand storms ever recorded there. In this scene, notice how the dust appears particularly thick in the downwind wake of Tenerife, the largest of the Canary Islands. Perhaps the turbulence generated by the air currents flowing past the island's volcanic peaks is churning the dust back up into the atmosphere, rather than allowing it to settle toward the surface. This true-color image was captured by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on January 7, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  6. Mechanisms of metal dusting corrosion

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo

    In this thesis the early stages of metal dusting corrosion is addressed; the development of carbon expanded austenite, C, and the decomposition hereof into carbides. Later stages of metal dusting corrosion are explored by a systematic study of stainless steel foils exposed to metal dusting...... deformed stainless steel flakes is transformed to expanded martensite/austenite during low-temperature carburization. Various experimental procedures to experimentally determine the concentration dependent diffusion coefficient of carbon in expanded austenite are evaluated. The most promising procedure...... powders and flakes. The nature of the decomposition products, carbides of the form M23C6 and M7C3, were evaluated by X-ray diffraction, light optical microscopy, scanning electron microscopy and thermodynamic modelling. The decomposition was found to be dependent on several parameters such as thermal...

  7. The lunar atmosphere and dust environment explorer mission (LADEE)

    CERN Document Server

    Russell, Christopher

    2015-01-01

    This volume contains five articles describing the mission and its instruments.  The first paper, by the project scientist Richard C. Elphic and his colleagues, describes the mission objectives, the launch vehicle, spacecraft and the mission itself.  This is followed by a description of LADEE’s Neutral Mass Spectrometer by Paul Mahaffy and company.  This paper describes the investigation that directly targets the lunar exosphere, which can also be explored optically in the ultraviolet.  In the following article Anthony Colaprete describes LADEE’s Ultraviolet and Visible Spectrometer that operated from 230 nm to 810 nm scanning the atmosphere just above the surface.  Not only is there atmosphere but there is also dust that putatively can be levitated above the surface, possibly by electric fields on the Moon’s surface.  Mihaly Horanyi leads this investigation, called the Lunar Dust Experiment, aimed at understanding the purported observations of levitated dust.  This experiment was also very succes...

  8. A Peek into a Cul-De-Sac and a Mews of Martian Dust Storm Activity: Western Hellas and Syria-Claritas Fossae During Mars Year 29

    Science.gov (United States)

    Heavens, N. G.

    2016-12-01

    Western Hellas Planitia (WHP) and the region encompassed by Syria Planum and Claritas Fossae are the main centers of textured dust storm activity in Mars's southern low to mid-latitudes. (Texture in this context refers to distinct fine structure at the cloud tops indicative of active lifting.) WHP is a well-known initiation zone for regional and global dust storm activity and often the end point of the Utopia "flushing storm" track. Syria-Claritas Fossae (SCF), too, can be a lifting center in global dust storm activity. Indeed, SCF and the area to its west was the region most denuded of dust by the Mars Year (MY) 25 global dust storm, perhaps suggesting that SCF contained the principal lifting center of the storm. Thus, if the Acidalia and Utopia storm tracks are Mars's dust storm alleys, through which dust storms pass quickly again and again; WHP might be a cul-de-sac and SCF something like a mews, where dust storm activity can enter more or less easily but may not as easily leave. In this presentation, I will focus on dust storm activity in these areas in a typical non-global dust storm year, MY 29. Synthesizing visible imagery by the Mars Color Imager (MARCI) on board Mars Reconnaissance Orbiter (MRO) and Mars Climate Sounder (MCS) also on board MRO, I will consider the climatology, morphology, texture, and vertical structure of dust storm activity in these areas in order to infer their governing dynamics. This investigation has two aims: (1) to understand why these areas are centers of textured dust storm activity; and (2) to connect the characteristics of smaller-scale dust storm activity in these regions to the underlying dynamics in order to understand the role of WHP and SCF in the dynamics of global dust storms. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G).

  9. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2006-03-01

    The effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. Due to changes in cloud microphysics, the instantaneous net RF is increased from -161.6 W/m2 for dust-free clouds to -118.6 W/m2 for dust-contaminated clouds.

  10. Simulation of African dust properties and radiative effects during the 2015 SHADOW campaign in Senegal

    Science.gov (United States)

    Péré, J.-C.; Rivellini, L.; Crumeyrolle, S.; Chiapello, I.; Minvielle, F.; Thieuleux, F.; Choël, M.; Popovici, I.

    2018-01-01

    The aim of this work is to estimate optical and radiative properties of dust aerosols and their potential feedbacks on atmospheric properties over Western Africa for the period 20 March-28 April 2015, by using numerical simulations and different sets of remote-sensing and in-situ measurements. Comparisons of simulations made by the on-line coupled meteorological-chemistry model WRF-CHEM with MODIS, AERONET and in-situ observations result in a general agreement for the spatio-temporal variations of aerosol extinction at both local and regional scales. Simulated SSA reached elevated values between 0.88 and 0.96 along the visible/near-infrared in close agreement with AERONET inversions, suggesting the predominance of dust over Western Africa during this specific period. This predominance of dust is confirmed by in-situ measurements of the aerosol size distribution, fitting well with the aerosols size distribution simulated by WRF-CHEM. The impact of this large dust load on the radiative fluxes leads to large modifications of the shortwave and longwave radiative budget both at the ground and at the top of the atmosphere. In return, the response of the atmosphere to these dust-induced radiative changes is the alteration of the surface air temperature and wind fields, with non-negligible impact on the dust emission and transport.

  11. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey; Stenchikov, Georgiy L.; Brindley,  Helen; Banks,  Jamie

    2015-01-01

    Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  12. Intergalactic dust and quasar distribution

    International Nuclear Information System (INIS)

    Soltan, A.

    1979-01-01

    Non-homogeneous intergalactic extinction may considerably affect the quasar distribution. Especially samples of quasars isolated on the basis of B-V colours are subject to this phenomenon. Apparent grouping and close pairs of quasars reported in the literature may be a result of intergalactic dust. Using surface distribution of faint blue objects selected by Hawkins and Reddish it is estimated that intergalactic extinction in B should reach approximately 1 mag out to the redshift of approximately 1. This is slightly larger than predicted by theory and comparable to the mean dust density derived from observations. (Author)

  13. The distribution of interstellar dust

    International Nuclear Information System (INIS)

    Clocchiatti, A.; Marraco, H.G.

    1986-01-01

    We propose the interstellar matter structural function as a tool to derive the features of the interstellar dust distribution. We study that function resolving some ideal dust distribution models. Later we describe the method used to find a reliable computing algorithm for the observational case. Finally, we describe the steps to build a model for the interstellar matter composed by spherically symmetrical clouds. The density distribution for each of these clouds is D(r) = D 0 .esup(-r/r 0 ) 2 . The preliminary results obtained are summarised. (author)

  14. Electrostatic Dust Detector with Improved Sensitivity

    International Nuclear Information System (INIS)

    Boyle, D.P.; Skinner, C.H.; Roquemore, A.L.

    2008-01-01

    Methods to measure the inventory of dust particles and to remove dust if it approaches safety limits will be required in next-step tokamaks such as ITER. An electrostatic dust detector, based on a fine grid of interlocking circuit traces, biased to 30 or 50 V, has been developed for the detection of dust on remote surfaces in air and vacuum environments. Gaining operational experience of dust detection on surfaces in tokamaks is important, however the level of dust generated in contemporary short-pulse tokamaks is comparatively low and high sensitivity is necessary to measure dust on a shot-by-shot basis. We report on modifications in the detection electronics that have increased the sensitivity of the electrostatic dust detector by a factor of up to 120, - a level suitable for measurements on contemporary tokamaks.

  15. Infrared Observations of Cometary Dust and Nuclei

    Science.gov (United States)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  16. The global distribution of mineral dust

    International Nuclear Information System (INIS)

    Tegen, I; Schepanski, K

    2009-01-01

    Dust aerosol particles produced by wind erosion in arid and semi arid regions affect climate and air quality, but the magnitude of these effects is largely unquantified. The major dust source regions include the Sahara, the Arabian and Asian deserts; global annual dust emissions are currently estimated to range between 1000 and 3000 Mt/yr. Dust aerosol can be transported over long distances of thousands of kilometers, e.g. from source regions in the Saharan desert over the North Atlantic, or from the Asian deserts towards the Pacific Ocean. The atmospheric dust load varies considerably on different timescales. While dust aerosol distribution and dust effects are important on global scales, they strongly depend on dust emissions that are controlled on small spatial and temporal scales.

  17. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    Science.gov (United States)

    Bastien, Ron; Burkett, P. J.; Rodriquez, M.; Frank, D.; Gonzalez, C.; Robinson, G.-A.; Zolensky, M.; Brown, P.; Campbell-Brown, M.; Broce, S.; hide

    2014-01-01

    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.

  18. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  19. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  20. Studies of dust shells around stars

    International Nuclear Information System (INIS)

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  1. Sensitivity of Sahelian Precipitation to Desert Dust under ENSO variability: a regional modeling study

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.

    2016-12-01

    Mineral dust is estimated to comprise over half the total global aerosol burden, with a majority coming from the Sahara and Sahel region. Bounded by the Sahara Desert to the north and the Sahelian Savannah to the south, the Sahel experiences high interannual rainfall variability and a short rainy season during the boreal summer months. Observation-based data for the past three decades indicates a reduced dust emission trend, together with an increase in greening and surface roughness within the Sahel. Climate models used to study regional precipitation changes due to Saharan dust yield varied results, both in sign convention and magnitude. Inconsistency of model estimates drives future climate projections for the region that are highly varied and uncertain. We use the NASA-Unified Weather Research and Forecasting (NU-WRF) model to quantify the interaction and feedback between desert dust aerosol and Sahelian precipitation. Using nested domains at fine spatial resolution we resolve changes to mesoscale atmospheric circulation patterns due to dust, for representative phases of El Niño-Southern Oscillation (ENSO). The NU-WRF regional earth system model offers both advanced land surface data and resolvable detail of the mechanisms of the impact of Saharan dust. Results are compared to our previous work assessed over the Western Sahel using the Geophysical Fluid Dynamics Laboratory (GFDL) CM2Mc global climate model, and to other previous regional climate model studies. This prompts further research to help explain the dust-precipitation relationship and recent North African dust emission trends. This presentation will offer a quantitative analysis of differences in radiation budget, energy and moisture fluxes, and atmospheric dynamics due to desert dust aerosol over the Sahel.

  2. Dust Transport and Deposition Observed from the Terra-Moderate Image Spectrometer (MODIS) Space Observations

    Science.gov (United States)

    Kaufman, Y.

    2004-01-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 plus or minus 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 plus or minus 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  3. Radio frequency discharge with dust particles

    NARCIS (Netherlands)

    Chutov, Y. I.; W. J. Goedheer,; Kravchenko, O. Y.; Zuz, V. M.; Yan, M.; Martins, R.; Ferreira, I.; Fortunato, E.; Kroesen, G.

    2000-01-01

    A 1D PIC/MCC method has been developed for computer simulations of low-pressure RF discharges with dust particles using the method for dust-free discharges. A RF discharge in argon with dust particles distributed uniformly in the interelectrode gap is simulated at parameters providing a possibility

  4. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the

  5. Dust Measurements Onboard the Deep Space Gateway

    Science.gov (United States)

    Horanyi, M.; Kempf, S.; Malaspina, D.; Poppe, A.; Srama, R.; Sternovsky, Z.; Szalay, J.

    2018-02-01

    A dust instrument onboard the Deep Space Gateway will revolutionize our understanding of the dust environment at 1 AU, help our understanding of the evolution of the solar system, and improve dust hazard models for the safety of crewed and robotic missions.

  6. Properties of interstellar dust in reflection nebulae

    International Nuclear Information System (INIS)

    Sellgren, K.

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer

  7. House dust extracts contain potent immunological adjuvants

    NARCIS (Netherlands)

    Beukelman, C.J.; Dijk, H. van; Aerts, P.C.; Rademaker, P.M.; Berrens, L.; Willers, J.M.N.

    1987-01-01

    A crude aqueous extract of house dust and two house dust subfractions were tested for adjuvant activity in a sensitivity assay performed in mice. Evidence is presented that house dust contains at least two potent immunological adjuvants. One of these, present in both subfractions, was probably

  8. Ultraviolet, Visible, and Fluorescence Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  9. Heterodyne spatial interferometry of circumstellar dust shells at a wavelength of 11 microns

    International Nuclear Information System (INIS)

    Sutton, E.C.

    1979-01-01

    The spatial distribution of the 11 micron thermal emission from circumstellar dust envelopes has been studied using an infrared heterodyne interferometer. Circumstellar dust envelopes often exist around cool, late-type stars. These envelopes radiate strongly at 11 microns, particularly if they are composed of silicate grains, which have a strong emission feature near this wavelength. By measuring the spatial distribution of this dust emission it is possible to probe the temperatures and densities of the circumstellar material and thereby to gain an understanding of the structures of circumstellar envelopes. Among the sources which have been observed with this interferometer are α Orionis, o Ceti, VY Canis Majoris, and IRC + 10216. The 11 micron brightness distributions of these objects all have spatially extended dust-emission components which are resolved in these measurements. The dust envelopes of α Orionis and o Ceti are optically thin, having optical depths at 11 microns of 0.02 and 0.04, respectively. In addition, variations are seen in the 11 micron brightness distribution of o Ceti which correlate with the stellar variability. These variations primarily represent changes in the relative amount of spatially compact photospheric emission and spatially extended dust emission. The source VY Canis Majoris, on the other had, has a dust envelope which is optically thick at 11 microns. The dust envelope of IRC + 10216, although optically thick at visible wavelengths, does not seem to be optically thick at 11 microns since there is a spatially compact component of the 11 micron brightness distribution which presumably represents emission from the central star

  10. Observed spectral features of dust

    International Nuclear Information System (INIS)

    Willner, S.P.

    1984-01-01

    The author concentrates on the observed properties of dust spectral features. Identifications, based on laboratory data, are given whenever plausible ones exist. There are a very large number of papers in the literature of even such a young field as infrared spectroscopy, and therefore the author refers only to the most recent paper on a topic or to another review. (Auth.)

  11. Occupational diseases of dust etiology

    International Nuclear Information System (INIS)

    Sokolik, L.I.; Shkondin, A.N.

    1981-01-01

    Detailed etiologic and clinico-roentgenological characteristics of pneumoconiosis, as widely spread occupational disease caused by different kinds of dust, are given. The course of pneumoconiosis is discussed depending on working conditions of patients after the disease had been ascertained, as well as its complications, taking into account roentgeno-morphological types of fibrosis and the stages of the disease [ru

  12. 75 FR 32142 - Combustible Dust

    Science.gov (United States)

    2010-06-07

    .... Contact Mat Chibbaro, P.E., Fire Protection Engineer, Office of Safety Systems, OSHA Directorate of..., and metals (such as aluminum and magnesium). Industries that may have combustible dust hazards include..., chemical manufacturing, textile manufacturing, furniture manufacturing, metal processing, fabricated metal...

  13. Chemical lasers in the visible

    International Nuclear Information System (INIS)

    Jones, C.R.; Broida, H.P.

    1974-01-01

    Since the beginning of the laser era in 1960, a continuing search for chemical lasers has been carried out. This quest has been influenced by the knowledge that many chemical reactions produce visible chemiluminescence and, therefore, partition some of the reaction products into emitting, electronically excited states. Such luminescence has been observed not only from low-pressure, gas-phase reactions, notably those of alkali metals and halogens, but also from a limited number of liquid-phase reactions. (U.S.)

  14. Computing Visible-Surface Representations,

    Science.gov (United States)

    1985-03-01

    Terzopoulos N00014-75-C-0643 9. PERFORMING ORGANIZATION NAME AMC ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Artificial Inteligence Laboratory AREA A...Massachusetts Institute of lechnolog,. Support lbr the laboratory’s Artificial Intelligence research is provided in part by the Advanced Rtccarcl Proj...dynamically maintaining visible surface representations. Whether the intention is to model human vision or to design competent artificial vision systems

  15. Efficiency of inert mineral dusts in the control of corn weevil

    Directory of Open Access Journals (Sweden)

    Carlos F. Jairoce

    2016-02-01

    Full Text Available ABSTRACT Corn weevil (Sitophilus zeamais may cause great losses in the crop and in stored corn grains. This insect is controlled with the use of chemical insecticides, which may cause serious damage to human health. One alternative of control is the use of inert dusts. The objective of this study was to evaluate the efficiency of inert dusts in the control of S. zeamais under laboratory conditions. The experiment was conducted in 2014, in a completely randomized design, and the treatments consisted of basalt dust with three different granulometries (A, B and C and diatomaceous earth, each of which at the doses of 2 and 4 kg t-1 and a control (no application. Each treatment had four replicates, and the sample unit consisted of 20 g of corn grains infected with 10 adults of S. zeamais kept in temperature-controlled chamber at 25 °C, 70% RH and photophase of 12 h. The dust efficiency was calculated using the equation of Abbott. The mortality rate was higher with the use of diatomaceous earth, reaching 100% after 5 days of exposure and the percentage of control for basalt dusts, 29 days after treatment, was above 80%.

  16. Recent developments with the visible nulling coronagraph

    Science.gov (United States)

    Hicks, Brian A.; Lyon, Richard G.; Bolcar, Matthew R.; Clampin, Mark; Petrone, Peter; Helmbrecht, Michael A.; Howard, Joseph M.; Miller, Ian J.

    2016-08-01

    A wide array of general astrophysics studies including detecting and characterizing habitable exoplanets could be enabled by a future large segmented telescope with sensitivity in the UV, optical, and infrared bands. When paired with a starshade or coronagraph, such an observatory could enable direct imaging and detailed spectroscopic observations of nearby Earth-like habitable zone planets. Over the past several years, a laboratory-based Visible Nulling Coronagraph (VNC) has evolved to reach requisite contrasts over a 1 nm bandwidth at narrow source angle separation using a segmented deformable mirror in one arm of a Mach-Zehnder layout. More recent efforts targeted broadband performance following the addition of two sets of half-wave Fresnel rhomb achromatic phase shifters (APS) with the goal of reaching 10-9 contrast, at a separation of 2λ/D, using a 40 nm (6%) bandwidth single mode fiber source. Here we present updates on the VNC broadband nulling effort, including approaches to addressing system contrast limitations.

  17. Near-Earth Object (NEO) Hazard Background

    Science.gov (United States)

    Mazanek, Daniel D.

    2005-01-01

    The fundamental problem regarding NEO hazards is that the Earth and other planets, as well as their moons, share the solar system with a vast number of small planetary bodies and orbiting debris. Objects of substantial size are typically classified as either comets or asteroids. Although the solar system is quite expansive, the planets and moons (as well as the Sun) are occasionally impacted by these objects. We live in a cosmic shooting gallery where collisions with Earth occur on a regular basis. Because the number of smaller comets and asteroids is believed to be much greater than larger objects, the frequency of impacts is significantly higher. Fortunately, the smaller objects, which are much more numerous, are usually neutralized by the Earth's protective atmosphere. It is estimated that between 1000 and 10,000 tons of debris fall to Earth each year, most of it in the form of dust particles and extremely small meteorites. With no atmosphere, the Moon's surface is continuously impacted with dust and small debris. On November 17 and 18, 1999, during the annual Leonid meteor shower, several lunar surface impacts were observed by amateur astronomers in North America. The Leonids result from the Earth's passage each year through the debris ejected from Comet Tempel-Tuttle. These annual showers provide a periodic reminder of the possibility of a much more consequential cosmic collision, and the heavily cratered lunar surface acts a constant testimony to the impact threat. The impact problem and those planetary bodies that are a threat have been discussed in great depth in a wide range of publications and books, such as The Spaceguard Survey , Hazards Due to Comets and Asteroids, and Cosmic Catastrophes. This paper gives a brief overview on the background of this problem and address some limitations of ground-based surveys for detection of small and/or faint near-Earth objects.

  18. Cosmological simulation with dust formation and destruction

    Science.gov (United States)

    Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh

    2018-06-01

    To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.

  19. Respiratory Toxicity of Lunar Highland Dust

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Wallace, William T.

    2009-01-01

    Lunar dust exposures occurred during the Apollo missions while the crew was on the lunar surface and especially when microgravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes and in some cases respiratory symptoms were elicited. NASA s vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust need to be assessed. NASA has performed this assessment with a series of in vitro and in vivo tests on authentic lunar dust. Our approach is to "calibrate" the intrinsic toxicity of lunar dust by comparison to a nontoxic dust (TiO2) and a highly toxic dust (quartz) using intratrachael instillation of the dusts in mice. A battery of indices of toxicity is assessed at various time points after the instillations. Cultures of selected cells are exposed to test dusts to assess the adverse effects on the cells. Finally, chemical systems are used to assess the nature of the reactivity of various dusts and to determine the persistence of reactivity under various environmental conditions that are relevant to a space habitat. Similar systems are used to assess the dissolution of the dust. From these studies we will be able to set a defensible inhalation exposure standard for aged dust and predict whether we need a separate standard for reactive dust. Presently-available data suggest that aged lunar highland dust is slightly toxic, that it can adversely affect cultured cells, and that the surface reactivity induced by grinding the dust persists for a few hours after activation.

  20. Interannual Variability in Radiative Forcing and Snowmelt Rates by Desert Dust in Snowcover in the Colorado River Basin

    Science.gov (United States)

    Skiles, S.; Painter, T. H.; Barrett, A. P.; Landry, C.; Deems, J. S.; Winstral, A. H.

    2010-12-01

    Dust in snow accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. Since the Anglo expansion and disturbance of the western US that began in the mid 19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading. This research expands on the work done in Painter et al. (2007) by assessing the interannual variability in radiative forcing, melt rates, and shortening of snow cover duration from 2005 to 2010, and the relative response of melt rates to simulated increases in air temperature. We ran the SNOBAL snowmelt model over the 6 year energy balance record at the alpine and subalpine towers in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Observations indicate that dust concentrations are not correlated with total number of dust events and that dust loading and concentrations vary by an order of magnitude during the 6 year record. Our modeling results indicate that the number of days that dust advances retreat of snow cover and cumulative radiative forcing are linearly related to total dust concentration. Over the 6 years of record we have shown that for all years dust advances melt relative to a clean snowpack, even in lowest dust concentration years melt is advanced by up to 26 days. The greatest dust radiative impact occurred in 2009, when snow cover duration was shortened by 50 days, and the highest observed end of year dust concentrations reduced visible albedo to less than 0.35 during the last three weeks of snowcover. This work also shows that dust radiative forcing has a markedly greater impact on snow cover duration than increases in temperature. In the presence of dust there is little impact from temperature increases of 2 °C and 4 °C (0-4 days) and, in the absence of dust radiative forcing, temperature increases shorten snow cover duration by 5-18 days, compared with the 26

  1. An Extensive Study on Dynamical aspects of Dust Storm over the United Arab Emirates during 18-20 March 2012

    Science.gov (United States)

    Basha, Ghouse; Phanikumar, Devulapalli V.; Ouarda, Taha B. M. J.

    2015-04-01

    On 18 March 2012, a super dust storm event occurred over Middle East (ME) and lasted for several hours. Following to this, another dust storm occurred on early morning of 20 March 2012 with almost higher intensity. Both these storms reduced the horizontal visibility to few hundreds of meters and represented as one of the most intense and long duration dust storms over United Arab Emirates (UAE) in recent times. These storms also reduced the air quality in most parts of the ME implying the shutdown of Airports, schools and hundreds of people were hospitalized with respirational problems. In the context of the above, we have made a detailed study on the dynamical processes leading to triggering of dust storm over UAE and neighboring regions. We have also analyzed its impact on surface, and vertical profiles of background parameters and aerosols during the dust storm period by using ground-based, space borne, dust forecasting model, and reanalysis data sets. The synoptic and dynamic conditions responsible for the occurrence of the dust storm are discussed extensively by using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim reanalysis data sets. The Impact of dust storm on surface and upper air radiosonde measurements and aerosol optical properties are also investigated before, during and after the dust storm event. During the dust storm, surface temperature decreased by 15oC when compared to before and after the event. PM10 values significantly increased maximum of about 1600µg/m3. Spatial variation of Aerosol Optical Depth (AOD) from Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) aerosol index (AI) exhibited very high values during the event and source region can be identified of dust transport to our region with this figure. The total attenuated backscatter at 550nm from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite shows the vertical extent of dust up to 8km. The dynamics of this event is

  2. Ultraviolet interstellar linear polarization. I - Applicability of current dust grain models

    Science.gov (United States)

    Wolff, Michael J.; Clayton, Geoffrey C.; Meade, Marilyn R.

    1993-01-01

    UV spectropolarimetric observations yielding data on the wavelength-dependence of interstellar polarization along eight lines of sight facilitate the evaluation of dust grain models previously used to fit the extinction and polarization in the visible and IR. These models pertain to bare silicate/graphite grains, silicate cores with organic refractory mantles, silicate cores with amorphous carbon mantles, and composite grains. The eight lines-of-sight show three different interstellar polarization dependences.

  3. A spectroscopic study of absorption and emission features of interstellar dust components

    International Nuclear Information System (INIS)

    Zwet, G.P. van der.

    1986-01-01

    The spectroscopic properties of silicate interstellar dust grains are the subject of this thesis. The process of accretion and photolysis is simulated in the laboratory by condensing mixtures of gases onto a cold substrate (T ∼ 12 K) in a vacuum chamber and photolyzing these mixtures with a vacuum ultraviolet source. Alternatively, the gas mixtures may be passed through a microwave discharge first, before deposition. The spectroscopic properties of the ices are investigated using ultraviolet, visible and infrared spectroscopy. (Auth.)

  4. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    Science.gov (United States)

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  5. Dust emission and transport over Iraq associated with the summer Shamal winds

    Science.gov (United States)

    Bou Karam Francis, D.; Flamant, C.; Chaboureau, J.-P.; Banks, J.; Cuesta, J.; Brindley, H.; Oolman, L.

    2017-02-01

    In this study, we investigate the diurnal evolution of the summer Shamal wind (a quasi-permanent low-level northwesterly wind feature) and its role in dust emission and transport over Iraq, using ground-based and space-borne observations together with a numerical simulation performed with the mesoscale model meso-NH. A 6-year dataset from the synoptic stations over Iraq allows establishing the prominence of the link between strong near surface winds and reduced visibility in the summer. The detailed processes at play during Shamal events are explored on the basis of a meso-NH simulation for a given, representative case study (25 June-3 July 2010). The Shamal exhibits an out-of-phase relationship between the surface wind and winds in the lower troposphere (typically 500 m above ground level), the maximum surface wind speeds being observed during the day while in altitude the maximum wind speeds are observed at night. The daytime near surface winds, at the origin of dust emission, are associated with the downward transfer of momentum from the nocturnal low-level jet to the surface due to turbulent mixing after solar heating commences each day. For the first time, an estimate of the dust load associated with summer Shamal events over Iraq has been made using aerosol optical depths derived from the Spinning Enhanced Visible and Infrared Imager, the Moderate Resolution Imaging Spectroradiometer, and the simulation. The dust load exhibits a large diurnal variability, with a daily minimum value of 1 Tg around 0600 UTC and a daily peak of 2.5 Tg or more around 1500 UTC, and is driven by the diurnal cycle of the near surface wind speed. The daily dust load peak associated with the summer Shamal over Iraq is in the same order of magnitude as those derived from simulations downstream of the Bodélé depression in Chad, known to be the world's largest dust source.

  6. Step by step in dust control

    Energy Technology Data Exchange (ETDEWEB)

    Archer, N. [Arch Environmental Equipment, Inc. (United States)

    2003-05-01

    The paper examines the different stages in identifying delegating and controlling dust before it becomes a serious problem for a facility. Material handling, processing, storage and traffic are the major dust producing sources. All industries that convey dry, light material need to install a dust control system. The confine-seal-suppress method of dust control has provided excellent results in numerous applications, only with the combination of all three will maximum dust control. When a system is properly engineered and correctly installed, meeting the EPA Government standards becomes very easy, and is necessary in to the operation of a quality facility. 5 photos.

  7. Dust bands in the asteroid belt

    International Nuclear Information System (INIS)

    Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs

  8. Linear Alkylbenzenesulfonates in indoor Floor Dust

    DEFF Research Database (Denmark)

    Madsen, Jørgen Øgaard; Wolkoff, Peder; Madsen, Jørgen Øgaard

    1999-01-01

    The amount of Linear Alkylbenzenesulfonates (LAS) in the particle fraction of floor dust sampled from 7 selected public buildings varied between 34 and 1500 microgram per gram dust, while the contents of the fibre fractions generally were higher with up to 3500 microgram LAS/g dust. The use...... of a cleaning agent with LAS resulted in an increase of the amount of LAS in the floor dust after floor wash relative to just before floor wash. However, the most important source of LAS in the indoor floor dust appears to be residues of detergent in clothing. Thus, a newly washed shirt contained 2960 microgram...

  9. Time-Dependent Dust Formation in Novae

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    1991-06-01

    Full Text Available The dust formation processes in novae are investigated with close attention to recent infrared observations. Using mainly the classical nucleation theory, we have calculated the time scales of dust formation and growth in the environments of novae. Those time scales roughly resemble the typical observations. We have classified the dust-forming novae into three classes according to their explosion properties and the thermodynamic properties of dust grains. Oxygen grains from much later than carbon grains because of their thermodynamic properties. The effect of grain formation to the efficiency of stellar winds to drive the material outward is tested with newly obtained Planck mean values of dust grains.

  10. Dust removal system for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y.; Seki, Y.; Ueda, S.; Aoki, I.

    1995-01-01

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors

  11. Dust removal system for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Seki, Y.; Ueda, S.; Aoki, I. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1995-12-31

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors.

  12. [Street Outreach Offices: visibility, invisibility, and enhanced visibility].

    Science.gov (United States)

    Hallais, Janaína Alves da Silveira; Barros, Nelson Filice de

    2015-07-01

    This article discusses care for street people from a socio-anthropological perspective, using participant observation conducted with a team from a street outreach project. Based on observations, street people are historically viewed as marginal and rarely obtain access to health services, thus making them invisible to the Brazilian Unified National Health System. Brazil's National Policy for the Homeless provides for their access to health care, but such care is not always guaranteed in practice, because health services and professionals have little experience in dealing with homeless persons. The study concludes that enhanced visibility is needed to ensure care for people living on the street, establishing a therapeutic bond that deconstructs stigmatizing practice.

  13. Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles

    Science.gov (United States)

    Wooden, D. H.

    2005-01-01

    Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.

  14. Beyond Language Equivalence on Visibly Pushdown Automata

    DEFF Research Database (Denmark)

    Srba, Jiri

    2009-01-01

    We study (bi)simulation-like preorder/equivalence checking on the class of visibly pushdown automata and its natural subclasses visibly BPA (Basic Process Algebra) and visibly one-counter automata. We describe generic methods for proving complexity upper and lower bounds for a number of studied...... preorders and equivalences like simulation, completed simulation, ready simulation, 2-nested simulation preorders/equivalences and bisimulation equivalence. Our main results are that all the mentioned equivalences and preorders are EXPTIME-complete on visibly pushdown automata, PSPACE-complete on visibly...... one-counter automata and P-complete on visibly BPA. Our PSPACE lower bound for visibly one-counter automata improves also the previously known DP-hardness results for ordinary one-counter automata and one-counter nets. Finally, we study regularity checking problems for visibly pushdown automata...

  15. Simulating STARDUST: Reproducing Impacts of Interstellar Dust in the Laboratory

    Science.gov (United States)

    Postberg, F.; Srama, R.; Hillier, J. K.; Sestak, S.; Green, S. F.; Trieloff, M.; Grün, E.

    2008-09-01

    Our experiments are carried out to support the analysis of interstellar dust grains, ISDGs, brought to earth by the STARDUST mission. Since the very first investigations, it has turned out that the major problem of STARDUST particle analysis is the modification (partly even the destruction) during capture when particles impact the spacecraft collectors with a velocity of up to 20 km/s. While it is possible to identify, extract, and analyse cometary grains larger than a few microns in aerogel and on metal collector plates, the STARDUST team is not yet ready for the identification, extraction, and analysis of sub-micron sized ISDGs with impact speeds of up to 20 km/s. Reconstructing the original particle properties requires a simulation of this impact capture process. Moreover, due to the lack of laboratory studies of high speed impacts of micron scale dust into interstellar STARDUST flight spares, the selection of criteria for the identification of track candidates is entirely subjective. Simulation of such impact processes is attempted with funds of the FRONTIER program within the framework of the Heidelberg University initiative of excellence. The dust accelerator at the MPI Kernphysik is a facility unique in the world to perform such experiments. A critical point is the production of cometary and interstellar dust analogue material and its acceleration to very high speeds of 20 km/s, which has never before been performed in laboratory experiments. Up to now only conductive material was successfully accelerated by the 2 MV Van de Graaf generator of the dust accelerator facility. Typical projectile materials are Iron, Aluminium, Carbon, Copper, Silver, and the conducting hydrocarbon Latex. Ongoing research now enables the acceleration of any kind of rocky planetary and interstellar dust analogues (Hillier et al. 2008, in prep.). The first batch of dust samples produced with the new method consists of micron and submicron SiO2 grains. Those were successfully

  16. ORIGIN OF DUST AROUND V1309 SCO

    International Nuclear Information System (INIS)

    Zhu, Chunhua; Lü, Guoliang; Wang, Zhaojun

    2013-01-01

    The origin of dust grains in the interstellar medium is still an unanswered problem. Nicholls et al. found the presence of a significant amount of dust around V1309 Sco, which may originate from the merger of a contact binary. We investigate the origin of dust around V1309 Sco and suggest that these dust grains are produced in the binary-merger ejecta. By means of the AGBDUST code, we estimate that ∼5.2 × 10 –4 M ☉ dust grains are produced with a radii of ∼10 –5 cm. These dust grains are mainly composed of silicate and iron grains. Because the mass of the binary merger ejecta is very small, the contribution of dust produced by binary merger ejecta to the overall dust production in the interstellar medium is negligible. However, it is important to note that the discovery of a significant amount of dust around V1309 Sco offers a direct support for the idea that common-envelope ejecta provides an ideal environment for dust formation and growth. Therefore, we confirm that common envelope ejecta can be important source of cosmic dust

  17. A large source of dust missing in Particulate Matter emission inventories? Wind erosion of post-fire landscapes

    Directory of Open Access Journals (Sweden)

    N.S. Wagenbrenner

    2017-02-01

    Full Text Available Wind erosion of soils burned by wildfire contributes substantial particulate matter (PM in the form of dust to the atmosphere, but the magnitude of this dust source is largely unknown. It is important to accurately quantify dust emissions because they can impact human health, degrade visibility, exacerbate dust-on-snow issues (including snowmelt timing, snow chemistry, and avalanche danger, and affect ecological and biogeochemical cycles, precipitation regimes, and the Earth’s radiation budget. We used a novel modeling approach in which local-scale winds were used to drive a high-resolution dust emission model parameterized for burned soils to provide a first estimate of post-fire PM emissions. The dust emission model was parameterized with dust flux measurements from a 2010 fire scar. Here we present a case study to demonstrate the ability of the modeling framework to capture the onset and dynamics of a post-fire dust event and then use the modeling framework to estimate PM emissions from burn scars left by wildfires in U.S. western sagebrush landscapes during 2012. Modeled emissions from 1.2 million ha of burned soil totaled 32.1 Tg (11.7–352 Tg of dust as PM10 and 12.8 Tg (4.68–141 Tg as PM2.5. Despite the relatively large uncertainties in these estimates and a number of underlying assumptions, these first estimates of annual post-fire dust emissions suggest that post-fire PM emissions could substantially increase current annual PM estimates in the U.S. National Emissions Inventory during high fire activity years. Given the potential for post-fire scars to be a large source of PM, further on-site PM flux measurements are needed to improve emission parameterizations and constrain these first estimates.

  18. Engineering-scale dust control experiments

    International Nuclear Information System (INIS)

    Winberg, M.R.; Pawelko, R.J.; Jacobs, N.C.; Thompson, D.N.

    1990-12-01

    This report presents the results of engineering scale dust-control experiments relating to contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of misting systems, soil fixatives, and dust suppression agents. The Dryfog Ultrasonic Misting Head, manufactured by Sonics, Incorporated, and ENTAC, an organic resin derived from tree sap manufactured by ENTAC Corporation, were tested. The results of the experiments include product performance and recommended application methods. 19 figs., 7 refs., 6 tabs

  19. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    International Nuclear Information System (INIS)

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-01-01

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly

  20. Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    Science.gov (United States)

    Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  1. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms.

    Science.gov (United States)

    Weil, Tobias; De Filippo, Carlotta; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Pavarini, Lorenzo; Carotenuto, Federico; Pasqui, Massimiliano; Poto, Luisa; Gabrieli, Jacopo; Barbante, Carlo; Sattler, Birgit; Cavalieri, Duccio; Miglietta, Franco

    2017-03-10

    A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.

  2. Signal-adapted tomography as a tool for dust devil detection

    Science.gov (United States)

    Aguirre, C.; Franzese, G.; Esposito, F.; Vázquez, Luis; Caro-Carretero, Raquel; Vilela-Mendes, Rui; Ramírez-Nicolás, María; Cozzolino, F.; Popa, C. I.

    2017-12-01

    Dust devils are important phenomena to take into account to understand the global dust circulation of a planet. On Earth, their contribution to the injection of dust into the atmosphere seems to be secondary. Elsewhere, there are many indications that the dust devil's role on other planets, in particular on Mars, could be fundamental, impacting the global climate. The ability to identify and study these vortices from the acquired meteorological measurements assumes a great importance for planetary science. Here we present a new methodology to identify dust devils from the pressure time series testing the method on the data acquired during a 2013 field campaign performed in the Tafilalt region (Morocco) of the North-Western Sahara Desert. Although the analysis of pressure is usually studied in the time domain, we prefer here to follow a different approach and perform the analysis in a time signal-adapted domain, the relation between the two being a bilinear transformation, i.e. a tomogram. The tomographic technique has already been successfully applied in other research fields like those of plasma reflectometry or the neuronal signatures. Here we show its effectiveness also in the dust devils detection. To test our results, we compare the tomography with a phase picker time domain analysis. We show the level of agreement between the two methodologies and the advantages and disadvantages of the tomographic approach.

  3. Accretion and early evolution of Earth

    DEFF Research Database (Denmark)

    Saji, Nikitha Susan

    in solar system materials is found to be related to selective thermal processing of dust in the early nebula given the correlation observed for these eects with Fe-peak neutron-rich isotope anomalies, whose origin is attributed to distinct nucleosnythetic sites other than classical s-, r- or p......-sized dust, of which the early protoplanetary disk is initially composed of, coalesce over the course of several millions of years to form the precursors to planets that make up the solar system today. The final assembly of Earth-like planets is complete only after a protracted latestage evolution...... that extends over at least 100 Myr, characterized by violent collisions between Mars- to Moon-sized planetary embryos. Evidence for the many details of solar system evolution - such as the diverse stellar sources that contributed material to solar system bodies to what role disk processes and late...

  4. Asteroid 'Bites the Dust' Around Dead Star

    Science.gov (United States)

    2009-01-01

    NASA's Spitzer Space Telescope set its infrared eyes upon the dusty remains of shredded asteroids around several dead stars. This artist's concept illustrates one such dead star, or 'white dwarf,' surrounded by the bits and pieces of a disintegrating asteroid. These observations help astronomers better understand what rocky planets are made of around other stars. Asteroids are leftover scraps of planetary material. They form early on in a star's history when planets are forming out of collisions between rocky bodies. When a star like our sun dies, shrinking down to a skeleton of its former self called a white dwarf, its asteroids get jostled about. If one of these asteroids gets too close to the white dwarf, the white dwarf's gravity will chew the asteroid up, leaving a cloud of dust. Spitzer's infrared detectors can see these dusty clouds and their various constituents. So far, the telescope has identified silicate minerals in the clouds polluting eight white dwarfs. Because silicates are common in our Earth's crust, the results suggest that planets similar to ours might be common around other stars.

  5. Dynamic responses of photosystem II in the Namib Desert shrub, Zygophyllum prismatocarpum, during and after foliar deposition of limestone dust

    International Nuclear Information System (INIS)

    Heerden, P.D.R. van; Krueger, G.H.J.; Kilbourn Louw, M.

    2007-01-01

    The effects of limestone dust deposition on vegetation in desert ecosystems have not yet been reported. We investigated these effects in a succulent shrub from the Namib Desert at a limestone quarry near Skorpion Zinc mine (Namibia). Effects of limestone dust were determined in Zygophyllum prismatocarpum (dollar bush) plants with heavy, moderate and no visible foliar dust cover by means of chlorophyll a fluorescence measurements. Limestone dust deposition decreased overall plant performance through loss of chlorophyll content, inhibition of CO 2 assimilation, uncoupling of the oxygen-evolving complex and decreased electron transport. Importantly, dynamic recovery occurred after termination of limestone extraction at the quarry. Recovery was accelerated by rainfall, mainly because of dust removal from leaves and stimulation of new growth. These results indicate that limestone dust has severe effects on photosynthesis in desert shrubs, but that recovery is possible and that, in arid environments, this process is modulated by rainfall. - Limestone dust deposition reduced photosynthetic capacity in the Namib Desert shrub, Zygophyllum prismatocarpum

  6. Computing visibility on terrains in external memory

    NARCIS (Netherlands)

    Haverkort, H.J.; Toma, L.; Zhuang, Yi

    2007-01-01

    We describe a novel application of the distribution sweeping technique to computing visibility on terrains. Given an arbitrary viewpoint v, the basic problem we address is computing the visibility map or viewshed of v, which is the set of points in the terrain that are visible from v. We give the

  7. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  8. Visible Nulling Coronagraph Progress Report

    Science.gov (United States)

    Lyon, R. G.; Clampin, M.; Woodruff, R. A.; Vasudevan, G.; Thompson, P.; Petrone, P.; Madison, T.; Rizzo, M.; Melnick, G.; Tolls, V.

    2010-10-01

    We report on recent laboratory results with the NASA Goddard Space Flight Center Visible Nulling Coronagraph (VNC) testbed. We have achieved focal plane contrasts of 108 and approaching 109 at inner working angles of 2 λ/D and 4 λ/D, respectively. Results were obtained with a broadband source and 40 nm filter centered on 630 nm. A null control breadboard (NCB) was also developed to assess and quantify MEMS based deformable mirror technology (DM), and to develop and assess closed-loop null control algorithms. We have demonstrated closed-loop performance at 27 Hz.

  9. House Dust Mite Respiratory Allergy

    DEFF Research Database (Denmark)

    Calderón, Moisés A; Kleine-Tebbe, Jörg; Linneberg, Allan

    2015-01-01

    Although house dust mite (HDM) allergy is a major cause of respiratory allergic disease, specific diagnosis and effective treatment both present unresolved challenges. Guidelines for the treatment of allergic rhinitis and asthma are well supported in the literature, but specific evidence on the e......Although house dust mite (HDM) allergy is a major cause of respiratory allergic disease, specific diagnosis and effective treatment both present unresolved challenges. Guidelines for the treatment of allergic rhinitis and asthma are well supported in the literature, but specific evidence...... not extend beyond the end of treatment. Finally, allergen immunotherapy has a poor but improving evidence base (notably on sublingual tablets) and its benefits last after treatment ends. This review identifies needs for deeper physician knowledge on the extent and impact of HDM allergy in respiratory disease...... and therapy of HDM respiratory allergy in practice....

  10. Enrichment of Inorganic Martian Dust Simulant with Carbon Component can Provoke Neurotoxicity

    Science.gov (United States)

    Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Borysov, Arsenii; Krisanova, Natalia; Nazarova, Anastasia; Borisova, Tatiana

    2017-02-01

    Carbon is the most abundant dust-forming element in the interstellar medium. Tremendous amount of meteorites containing plentiful carbon and carbon-enriched dust particles have reached the Earth daily. National Institute of Health panel accumulates evidences that nano-sized air pollution components may have a significant impact on the central nervous system (CNS) in health and disease. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and can be transported to the CNS. Based on above facts, here we present the study, the aims of which were: 1) to upgrade inorganic Martian dust simulant derived from volcanic ash (JSC-1a/JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin) by the addition of carbon components, that is, nanodiamonds and carbon dots; 2) to analyse acute effects of upgraded simulant on key characteristics of synaptic neurotransmission; and 3) to compare above effects with those of inorganic dust and carbon components per se. Acute administration of carbon-containing Martian dust analogues resulted in a significant decrease in transporter-mediated uptake of L-[14C]glutamate (the major excitatory neurotransmitter) and [3H]GABA (the main inhibitory neurotransmitter) by isolated rat brain nerve terminals. The extracellular level of both neurotransmitters increased in the presence of carbon-containing Martian dust analogues. These effects were associated with action of carbon components of upgraded Martian dust simulant, but not with its inorganic constituent. This fact indicates that carbon component of native Martian dust can have deleterious effects on extracellular glutamate and GABA homeostasis in the CNS, and so glutamate- and GABA-ergic neurotransmission disballansing exitation and inhibition.

  11. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    Science.gov (United States)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  12. THE ORIGIN OF DUST IN EARLY-TYPE GALAXIES AND IMPLICATIONS FOR ACCRETION ONTO SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Paul [Department of Astronomy and Center for Cosmology and Astroparticle Physics, The Ohio State University, Columbus, OH 43210 (United States); Dicken, Daniel [Institut de Astrophysique Spatiale, Paris (France); Storchi-Bergmann, Thaisa [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Caixa Postal 15051, 91501-970 Porto Alegre, RS (Brazil)

    2013-04-01

    We have conducted an archival Spitzer study of 38 early-type galaxies in order to determine the origin of the dust in approximately half of this population. Our sample galaxies generally have good wavelength coverage from 3.6 {mu}m to 160 {mu}m, as well as visible-wavelength Hubble Space Telescope (HST) images. We use the Spitzer data to estimate dust masses, or establish upper limits, and find that all of the early-type galaxies with dust lanes in the HST data are detected in all of the Spitzer bands and have dust masses of {approx}10{sup 5}-10{sup 6.5} M{sub Sun }, while galaxies without dust lanes are not detected at 70 {mu}m and 160 {mu}m and typically have <10{sup 5} M{sub Sun} of dust. The apparently dust-free galaxies do have 24 {mu}m emission that scales with the shorter-wavelength flux, yet substantially exceeds the expectations of photospheric emission by approximately a factor of three. We conclude this emission is dominated by hot, circumstellar dust around evolved stars that does not survive to form a substantial interstellar component. The order-of-magnitude variations in dust masses between galaxies with similar stellar populations rule out a substantial contribution from continual, internal production in spite of the clear evidence for circumstellar dust. We demonstrate that the interstellar dust is not due to purely external accretion, unless the product of the merger rate of dusty satellites and the dust lifetime is at least an order of magnitude higher than expected. We propose that dust in early-type galaxies is seeded by external accretion, yet the accreted dust is maintained by continued growth in externally accreted cold gas beyond the nominal lifetime of individual grains. The several Gyr depletion time of the cold gas is long enough to reconcile the fraction of dusty early-type galaxies with the merger rate of gas-rich satellites. As the majority of dusty early-type galaxies are also low-luminosity active galactic nuclei and likely fueled

  13. Dust Tolerant Commodity Transfer Interface Mechanisms for Planetary Surfaces

    Science.gov (United States)

    Townsend, Ivan I.; Mueller, Robert P.; Tamasy, Gabor J.

    2014-01-01

    Regolith is present on most planetary surfaces such as Earth's moon, Mars, and Asteroids. If human crews and robotic machinery are to operate on these regolith covered surfaces, they must face the consequences of interacting with regolith fines which consist of particles below 100 microns in diameter down to as small as submicron scale particles. Such fine dust will intrude into mechanisms and interfaces causing a variety of problems such as contamination of clean fluid lines, jamming of mechanisms and damaging connector seals and couplings. Since multiple elements must be assembled in space for system level functionality, it will be inevitable that interfaces will be necessary for structural connections, and to pass commodities such as cryogenic liquid propellants, purge and buffer gases, water, breathing air, pressurizing gases, heat exchange fluids, power and data. When fine regolith dust is present in the environment it can be lofted into interfaces where it can compromise the utility of the interface by preventing the connections from being successfully mated, or by inducing fluid leaks or degradation of power and data transmission. A dust tolerant, hand held "quick-disconnect" cryogenic fluids connector housing has been developed at NASA KSC which can be used by astronaut crews to connect flex lines that will transfer propellants and other useful fluids to the end user. In addition, a dust tolerant, automated, cryogenic fluid, multiple connector, power and data interface mechanism prototype has been developed, fabricated and demonstrated by NASA at Kennedy Space Center (KSC). The design and operation of these prototypes are explained and discussed.

  14. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.

    2002-01-01

    A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential

  15. Impacts of interactive dust and its direct radiative forcing on interannual variations of temperature and precipitation in winter over East Asia: Impacts of Dust on IAVs of Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Sijia [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Russell, Lynn M. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Yang, Yang [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Liu, Ying [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Singh, Balwinder [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Ghan, Steven J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2017-08-24

    We used 150-year pre-industrial simulations of the Community Earth System Model (CESM) to quantify the impacts of interactively-modeled dust emissions on the interannual variations of temperature and precipitation over East Asia during the East Asian Winter Monsoon (EAWM) season. The simulated December-January-February dust column burden and dust optical depth are lower over northern China in the strongest EAWM years than those of the weakest years, with regional mean values lower by 38.3% and 37.2%, respectively. The decrease in dust over the dust source regions (the Taklamakan and Gobi Deserts) and the downwind region (such as the North China Plain) leads to an increase in direct radiative forcing (RF) both at the surface and top of atmosphere by up to 1.5 and 0.75 W m-2, respectively. The effects of EAWM-related variations in surface winds, precipitation and their effects on dust emissions and wet removal contribute about 67% to the total dust-induced variations of direct RF at the surface and partly offset the cooling that occurs with the EAWM strengthening by heating the surface. The variations of surface air temperature induced by the changes in wind and dust emissions increase by 0.4-0.6 K over eastern coastal China, northeastern China, and Japan, which weakens the impact of EAWM on surface air temperature by 3–18% in these regions. The warming results from the combined effects of changes in direct RF and easterly wind anomalies that bring warm air from the ocean to these regions. Moreover, the feedback of the changes in wind on dust emissions weakens the variations of the sea level pressure gradient on the Siberian High while enhancing the Maritime Continent Low. Therefore, cold air is prevented from being transported from Siberia, Kazakhstan, western and central China to the western Pacific Ocean and decreases surface air temperature by 0.6 K and 2 K over central China and the Tibetan Plateau, respectively. Over eastern coastal China, the variations of

  16. Respiratory effects of borax dust.

    Science.gov (United States)

    Garabrant, D H; Bernstein, L; Peters, J M; Smith, T J; Wright, W E

    1985-12-01

    The relation of respiratory symptoms, pulmonary function, and abnormalities of chest radiographs to estimated exposures of borax dust has been investigated in a cross sectional study of 629 actively employed borax workers. Ninety three per cent of the eligible workers participated in the study and exposures ranged from 1.1 mg/m3 to 14.6 mg/m3. Symptoms of acute respiratory irritation such as dryness of the mouth, nose, or throat, dry cough, nose bleeds, sore throat, productive cough, shortness of breath, and chest tightness were related to exposures of 4.0 mg/m3 or more, and were infrequent at exposures of 1.1 mg/m3. Symptoms of persistent respiratory irritation meeting the definition of chronic simple bronchitis were related to exposure among non-smokers. Decrements in the FEV1 as a percentage of predicted were seen among smokers who had heavy cumulative borax exposures (greater than or equal to 80 mg/m3 years) but were not seen among less exposed smokers or among non-smokers. Radiographic abnormalities were uncommon and were not related to dust exposure. Borax dust appears to act as a simple respiratory irritant and perhaps causes small changes in the FEV1 among smokers who are heavily exposed.

  17. Mass loss from OH/IR stars - Models for the infrared emission of circumstellar dust shells

    Science.gov (United States)

    Justtanont, K.; Tielens, A. G. G. M.

    1992-01-01

    The IR emission of a sample of 24 OH/IR stars is modeled, and the properties of circumstellar dust and mass-loss rate of the central star are derived. It is shown that for some sources the observations of the far-IR emission is well fitted with a lambda exp -1 law, while some have a steeper index of 1.5. For a few sources, the presence of circumstellar ice grains is inferred from detailed studies of the observed 10-micron feature. Dust mass-loss rates are determined from detailed studies for all the stars in this sample. They range from 6.0 x 10 exp -10 solar mass/yr for an optically visible Mira to 2.2 x 10 exp -6 solar mass/yr for a heavily obscured OH/IR star. These dust mass-loss rates are compared to those calculated from IRAS photometry using 12-, 25-, and 60-micron fluxes. The dust mass-loss rates are also compared to gas mass-loss rates determined from OH and CO observations. For stars with tenuous shells, a dust-to-gas ratio of 0.001 is obtained.

  18. Dust-Tolerant Intelligent Electrical Connection System

    Science.gov (United States)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  19. WMO SDS-WAS NAMEE Regional Center: Towards continuous evaluation of dust models in Northern Africa

    Science.gov (United States)

    Basart, Sara; García-Castillo, Gerardo; Cuevas, Emilio; Terradellas, Enric

    2016-04-01

    frequently affected by intrusions of Saharan dust. Regional Node are evaluated during two years (2013-2014) with observations recorded in the Sahelian region and Canary Islands. Additionally, since the data sets of weather records have an excellent spatial and temporal coverage, observations of horizontal visibility included in meteorological reports are used as an alternative way to monitor dust events in near-real-time (NRT). Recently, a new visibility product that includes more than 1,500 METAR stations has implemented in the SDS-WAS NAMEE Regional Center. The present contribution also will demonstrate how the visibility can complement the information provided by other observing systems (air quality monitoring stations, sun photometers, vertical profilers or satellite products) and numerical simulations presenting its application in tracking several dust episodes. Otherwise, the vertical distribution of aerosol also influences the radiative effect at the top of the atmosphere, especially when aerosols have strong absorption of shortwave radiation. The free troposphere contribution to aerosol optical depth (AOD) and the altitude of lofted layers are provided thanks to the vertical profiling capability of the lidar/ceilomenter technique. Currently, a lidar located in Dakar (Senegal) and a ceilometer in Santa Cruz de Tenerife (Canary Islands, Spain) provide near-real-time (NRT) vertical profiles of aerosols, which are compared with those simulated by models.

  20. Dust characterisation for hot gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Dockter, B.; Erickson, T.; Henderson, A.; Hurley, J.; Kuehnel, V.; Katrinak, K.; Nowok, J.; O`Keefe, C.; O`Leary, E.; Swanson, M.; Watne, T. [University of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center (UNDEERC)

    1998-03-01

    Hot gas filtration to remove particulates from the gas flow upstream of the gas turbine is critical to the development of many of the advanced coal-fired power generation technologies such as the Air Blown Gasification Cycle (ABGC), a hybrid gasification combined cycle being developed in the UK. Ceramic candle filters are considered the most promising technology for this purpose. Problems of mechanical failure and of `difficult-to-clean` dusts causing high pressure losses across the filter elements need to be solved. The project investigated the behaviour of high-temperature filter dusts, and the factors determining the ease with which they can be removed from filters. The high-temperature behaviour of dusts from both combustion and gasification systems was investigated. Dust samples were obtained from full-scale demonstration and pilot-scale plant operating around the world. Dust samples were also produced from a variety of coals, and under several different operating conditions, on UNDEERC`s pilot-scale reactor. Key factors affecting dust behaviour were examined, including: the rates of tensile strength developing in dust cakes; the thermochemical equilibria pertaining under filtration conditions; dust adhesivity on representative filter materials; and the build-up and cleaning behaviour of dusts on representative filter candles. The results obtained confirmed the importance of dust temperature, dust cake porosity, cake liquid content, and particle size distribution in determining the strength of a dust cake. An algorithm was developed to indicate the likely sticking propensity of dusts as a function of coal and sorbent composition and combustion conditions. This algorithm was incorporated into a computer package which can be used to judge the degree of difficulty in filter cleaning that can be expected to arise in a real plant based on operating parameters and coal analyzes. 6 figs.

  1. Long-Term Trend and Seasonal Variability of Horizontal Visibility in Nigerian Troposphere

    Directory of Open Access Journals (Sweden)

    Mukhtar Balarabe

    2015-10-01

    Full Text Available A study of the long-term variability; trend and characteristics of visibility in four zones of Nigeria was carried out. Visibility and other meteorological data from NOAA-NCDC and aerosol index data over Nigeria during 1984–2013 are analyzed using time series and  simple regression model. There are significant decreasing trends for every region and season during the 30-years period; the fluctuations exhibited nearly similar pattern. The 30-year mean visibilities for the four zones (Sahel; North Central; Southern; and Coastal were 13.8 ± 3.9; 14.3 ± 4.2; 13.6 ± 3.5 and 12.8 ± 3.1 km with decreasing trends at the rates of 0.08; 0.06; 0.02 and 0.02 km/year. In all the zones; visibilities were better in summer while worse in Harmattan (dry season. During summer visibility was best in Sahel and North-central; however; in Harmattan visibility was best in southern and coastal zones. It was best between May and June (17.6; 18.9; 16.6 and 15.1 km with a second peak in September. The 30-year seasonal averages were 16.2 ± 2.1; 16.8 ± 2.4; 15.4 ± 1.8 and 14.0 ± 2.2 km in summer; and 10.2 ± 2.5; 10.9 ± 2.9; 11.0 ± 3.3 and 11.4 ± 3.0 km in Harmattan for the respective zones. Sahel and North Central had the worse visibility reduction during Harmattan compared with Southern and coastal areas. An analysis based on simple regression equation reveals a strong and negative relationship between visibility on one hand; AI; and AOD on the other hand. The analysis also discusses the variability regarding the frequency of occurrence of a dust storm; dust haze; and good visibility over the period of study.

  2. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations

    Science.gov (United States)

    Painter, Thomas H.; Skiles, S. Mckenzie; Deems, Jeffrey S.; Bryant, Ann C.; Landry, Christopher C.

    2012-07-01

    Dust in snow accelerates snowmelt through its direct reduction of snow albedo and its further indirect reduction of albedo by accelerating the growth of snow grains. Since the westward expansion of the United States that began in the mid-19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading, largely from the Colorado Plateau and Great Basin. Radiative forcing of snowmelt by dust is not captured by conventional micrometeorological measurements, and must be monitored by a more comprehensive suite of radiation instruments. Here we present a 6 year record of energy balance and detailed radiation measurements in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Data include broadband irradiance, filtered irradiance, broadband reflected flux, filtered reflected flux, broadband and visible albedo, longwave irradiance, wind speed, relative humidity, and air temperatures. The gradient of the snow surface is monitored weekly and used to correct albedo measurements for geometric effects. The snow is sampled weekly for dust concentrations in plots immediately adjacent to each tower over the melt season. Broadband albedo in the last weeks of snow cover ranged from 0.33 to 0.55 across the 6 years and two sites. Total end of year dust concentration in the top 3 cm of the snow column ranged from 0.23 mg g-1 to 4.16 mg g-1. These measurements enable monitoring and modeling of dust and climate-driven snowmelt forcings in the Upper Colorado River Basin.

  3. Sustainable synthesis of metals-doped ZnO nanoparticles from zinc-bearing dust for photodegradation of phenol.

    Science.gov (United States)

    Wu, Zhao-Jin; Huang, Wei; Cui, Ke-Ke; Gao, Zhi-Fang; Wang, Ping

    2014-08-15

    A novel strategy of waste-cleaning-waste is proposed in the present work. A metals-doped ZnO (M-ZnO, M = Fe, Mg, Ca and Al) nanomaterial has been prepared from a metallurgical zinc-containing solid waste "fabric filter dust" by combining sulfolysis and co-precipitation processes, and is found to be a favorable photocatalyst for photodegradation of organic substances in wastewater under visible light irradiation. All the zinc and dopants (Fe, Mg, Ca and Al) for preparing M-ZnO are recovered from the fabric filter dust, without any addition of chemical as elemental source. The dust-derived M-ZnO samples deliver single phase indexed as the hexagonal ZnO crystal, with controllable dopants species. The photocatalytic activity of the dust-derived M-ZnO samples is characterized by photodegradation of phenol aqueous solution under visible light irradiation, giving more prominent photocatalytic behaviors than undoped ZnO. Such enhancements may be attributed to incorporation of the dust-derived metal elements (Fe, Mg, Ca and Al) into ZnO structure, which lead to the modification of band gap and refinement of grain size. The results show a feasibility to utilize the industrial waste as a resource of photodegradating organic substances in wastewater treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. House dust in seven Danish offices

    Science.gov (United States)

    Mølhave, L.; Schneider, T.; Kjærgaard, S. K.; Larsen, L.; Norn, S.; Jørgensen, O.

    Floor dust from Danish offices was collected and analyzed. The dust was to be used in an exposure experiment. The dust was analyzed to show the composition of the dust which can be a source of airborne dust indoors. About 11 kg of dust from vacuum cleaner bags from seven Danish office buildings with about 1047 occupants (12 751 m 2) was processed according to a standardized procedure yielding 5.5 kg of processed bulk dust. The bulk dust contained 130.000-160.000 CFU g -1 microorganisms and 71.000-90.000 CFU g -1 microfungi. The content of culturable microfungi was 65-123 CFU 30 g -1 dust. The content of endotoxins ranged from 5.06-7.24 EU g -1 (1.45 ng g -1 to 1.01 ng g -1). Allergens (ng g -1) were from 147-159 (Mite), 395-746 (dog) and 103-330 (cat). The macro molecular organic compounds (the MOD-content) varied from 7.8-9.8 mg g -1. The threshold of release of histamine from basophil leukocytes provoked by the bulk dust was between 0.3 and 1.0 mg ml -1. The water content was 2% (WGT) and the organic fraction 33%. 6.5-5.9% (dry) was water soluble. The fiber content was less than 0.2-1.5% (WGT) and the desorbable VOCs was 176-319 μg g -1. Most of the VOC were aldehydes. However, softeners for plastic (DBP and DEHP) were present. The chemical composition includes human and animal skin fragments, paper fibers, glass wool, wood and textilefibers and inorganic and metal particles. The sizes ranged from 0.001-1 mm and the average specific density was 1.0 g m -3. The bulk dust was resuspended and injected into an exposure chamber. The airborne dust was sampled and analyzed to illustrate the exposures that can result from sedimented dirt and dust. The airborne dust resulting from the bulk dust reached concentrations ranging from 0.26-0.75 mg m -3 in average contained 300-170 CFU m -3. The organic fraction was from 55-70% and the water content about 2.5% (WGT). The content of the dust was compared to the similar results reported in the literature and its toxic potency is

  5. Paradigm shifts about dust on the Moon: From Apollo 11 to Chang'e-4

    Science.gov (United States)

    O'Brien, Brian J.

    2018-07-01

    that Apollo dust is the major surface problem for risk management plans of lunar expeditions. As of 1 February 2018, a second paradigm change awaits transparent authoritative Ground truth measurements by Chang'e-4 or other relevant dust detectors to compare with Apollo 12 DDE measurements. Re-examination of risk management of effects of Apollo dust is essential for international expeditions including a Moon Village and Google Lunar XMedal competitors. Future DAPs could refine a third paradigm shift for Moon, moving from the past and present Earth-centric cultures of an inert Moon to cultures with visions of Moon as an active and close Extraterrestrial neighbour, because its outermost sunlit two cm of dusty plasmas are a variable soup of lunar and Extraterrestrial plasmas. An emphasis on its research seems a neat fit with the Directive of President Trump on 11 December 2017 to "Lead an innovative and sustainable program of exploration with commercial and international partners" to "lead the return of humans to the Moon for long-term exploration and utilization". It would also be measurement-based now thus less costly, more safe and quicker than any human visit to Mars.

  6. Characterization of high concentration dust generator

    International Nuclear Information System (INIS)

    Shimura, Toichiro; Yokochi, Akira

    1999-01-01

    This paper describes the development of fluidized bed type high concentration dust generator that keeps for long period dust concentration range of about 10 mg/m 3 for the study of working place monitoring system and evaluation of respirator. The generator is keeping constant powder in fluidized bed for keeping the dust concentration. It is necessary to keep constant feeding rate of powder in order to keep the quantity of dust in the fluidized bed. Our generator enables to obtain constant feeding rate by a screw feeder and by using mixed powder with fluidising particles (glass beads) before feeding. The generator produces high concentration dust of 11.3 mg/m 3 ± 1.0 mg/m 3 for about 5 hours and keeps the dust size 4.2-4.6 μm in mass median aerodynamic diameter with reasonable reproducibility. (author)

  7. Molecules and dust in Cassiopeia A

    DEFF Research Database (Denmark)

    Biscaro, Chiara; Cherchneff, Isabelle

    2016-01-01

    We study the dust evolution in the supernova remnant Cassiopeia A. We follow the processing of dust grains that formed in the Type II-b supernova ejecta by modelling the sputtering of grains. The dust is located in dense ejecta clumps that are crossed by the reverse shock. We also investigate......-rich clumps that correspond to the outermost carbon-rich ejecta zone. We consider the various dust components that form in the supernova, several reverse shock velocities and inter-clump gas temperatures, and derive grain-size distributions and masses for the dust as a function of time. Both non...... and size, and the shock velocity in the clump. A Type II-b SN forms small grains that are sputtered within the clumps and in the inter-clump medium. For Cas A, silicate grains do not survive thermal sputtering in the inter-clump medium, while alumina, silicon carbide, and carbon dust may survive...

  8. Dust observations by PFS on Mars Express

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Grassi, D.; Ignatiev, N. I.; Blecka, M. I.; Maturilli, A.; Palomba, E.; Piccioni, G.; Pfs Team

    Dust is always present in the Martian atmosphere with opacity, which changes from values below 0.1 (at 9 μ m) up to several units during the dust storms. From the thermal IR (LW channel of PFS) the dust opacity is retrieved in a self consistent way together with the temperature profile from the same spectrum A preliminary investigation along the orbit, which comes through Hellas, shows that the value of dust opacity anticorrelates with surface altitude. From -70 to +25 of latitude the vertical dust distribution follows the exponential low with the scale of 12 km, which corresponds to the gaseous scale height near noon and indicates for well mixed condition. The dust opacity, corresponding to the zero surface altitude, is found of 0.25+-0.05. More detailed investigations of all available data will be presented, including analysis of both short- and long- wavelength spectra of PFS.

  9. Saltation under Martian gravity and its influence on the global dust distribution

    Science.gov (United States)

    Musiolik, Grzegorz; Kruss, Maximilian; Demirci, Tunahan; Schrinski, Björn; Teiser, Jens; Daerden, Frank; Smith, Michael D.; Neary, Lori; Wurm, Gerhard

    2018-05-01

    Dust and sand motion are a common sight on Mars. Understanding the interaction of atmosphere and Martian soil is fundamental to describe the planet's weather, climate and surface morphology. We set up a wind tunnel to study the lift of a mixture between very fine sand and dust in a Mars simulant soil. The experiments were carried out under Martian gravity in a parabolic flight. The reduced gravity was provided by a centrifuge under external microgravity. The onset of saltation was measured for a fluid threshold shear velocity of 0.82 ± 0.04 m/s. This is considerably lower than found under Earth gravity. In addition to a reduction in weight, this low threshold can be attributed to gravity dependent cohesive forces within the sand bed, which drop by 2/3 under Martian gravity. The new threshold for saltation leads to a simulation of the annual dust cycle with a Mars GCM that is in agreement with observations.

  10. Dust Generation Resulting from Desiccation of Playa Systems: Studies on Mono and Owens Lakes, California

    Science.gov (United States)

    Gill, Thomas Edward

    1995-01-01

    Playas, evaporites, and aeolian sediments frequently are linked components within the Earth system. Anthropogenic water diversions from terminal lakes form playas that release fugitive dust. These actions, documented worldwide, simulate aeolian processes activated during palaeoclimatic pluvial/interpluvial transitions, and have significant environmental impacts. Pluvial lakes Russell and Owens in North America's Great Basin preceded historic Mono and Owens Lakes, now desiccated by water diversions into dust-generating, evaporite -encrusted playas. Geochemical and hydrologic cycles acting on the Owens (Dry) Lake playa form three distinct crust types each year. Although initial dust production results from deflation of surface efflorescences after the playa dries, most aerosols are created by saltation abrasion of salt/silt/clay crusts at crust/ sand sheet contacts. The warm-season, clastic "cemented" crust is slowest to degrade into dust. If the playa surface is stabilized by an unbroken, non-efflorescent crust, dust formation is discouraged. When Mono Lake's surFace elevation does not exceed 1951 meters (6400 feet), similar processes will also generate dust from its saline lower playa. Six factors--related to wind, topography, groundwater, and sediments--control dust formation at both playas. These factors were combined into a statistical model relating suspended dust concentrations to playa/lake morphometry. The model shows the extent and severity of Mono Lake dust storms expands significantly below the surface level 6376 feet (1943.5 meters). X-ray diffraction analysis of Mono Basin soils, playa sediments, and aerosols demonstrates geochemical cycling of materials through land, air and water during Mono Lake's 1982 low stand. Soils and clastic playa sediments contain silicate minerals and tephra. Saline groundwater deposited calcite, halite, thenardite, gaylussite, burkeite and glauberite onto the lower playa. Aerosols contained silicate minerals (especially

  11. How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei

    Science.gov (United States)

    Perlwitz, Jan P.; Fridlind, Ann M.; Garcia-Pando, Carlos Perez; Miller, Ron L.; Knopf, Daniel A.

    2015-01-01

    The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range 2 m. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range 2 m as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null

  12. Visible/Near-Infrared Spectral Properties of MUSES C Target Asteroid 25143 Itokawa

    Science.gov (United States)

    Jarvis, K. S.; Vilas, F.; Kelley, M. S.; Abell, P. A.

    2004-01-01

    The Japanese MUSES C mission launched the Hayabusa spacecraft last May 15, 2003, to encounter and study the near-Earth asteroid 25143 Itokawa. The spacecraft will obtain visible images through broadband filters similar to the ECAS filters, and near-infrared spectra from 0.85 - 2.1 microns. In preparation for this encounter, opportunities to study the asteroid with Earth-based telescopes have been fully leveraged. Visible and near-infrared spectral observations were made of asteroid 25143 Itokawa during several nights of March, 2001, around the last apparition. We report here on the results of extensive spectral observations made to address the questions of compositional variations across the surface of the asteroid (as determined by the rotational period and shape model); variations in phase angle (Sun-Itokawa-Earth angle) on spectral characteristics; and predictions of Itokawa observations by Hayabusa based on the spectral resolution and responsivity of the NIRS and AMICA instruments.

  13. Formation and dissociation of dust molecules in dusty plasma

    International Nuclear Information System (INIS)

    Yan Jia; Feng Fan; Liu Fucheng; Dong Lifang; He Yafeng

    2016-01-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. (paper)

  14. Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture

    Science.gov (United States)

    Zhu, A.; Ramanathan, V.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for

  15. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  16. Dust Devil in Spirit's View Ahead on Sol 1854

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,854th Martian day, or sol, of Spirit's surface mission (March 21, 2009). The rover had driven 13.79 meters (45 feet) westward earlier on Sol 1854. West is at the center, where a dust devil is visible in the distance. North on the right, where Husband Hill dominates the horizon; Spirit was on top of Husband Hill in September and October 2005. South is on the left, where lighter-toned rock lines the edge of the low plateau called 'Home Plate.' This view is presented as a cylindrical projection with geometric seam correction.

  17. Techniques For Injection Of Pre-Charaterized Dust Into The Scrape Off Layer Of Fusion Plasma

    International Nuclear Information System (INIS)

    Roquemore, A.L.; John, B.; Friesen, F.; Hartzfeld, K.; Mansfield, D.K.

    2011-01-01

    Introduction of micron-sized dust into the scrape-off layer (SOL) of a plasma has recently found many applications aimed primarily at determining dust behavior in future fusion reactors. The dust particles are typically composed of materials intrinsic to a fusion reactor. On DIII-D and TEXTOR carbon dust has been introduced into the SOL using a probe inserted from below into the divertor region. On NSTX, both Li and tungsten dust have been dropped from the top of the machine into the SOL throughout the duration of a discharge, by utilizing a vibrating piezoelectric based particle dropper. The original particle dropper was developed to inject passivated Li powder ∼ 40 μm in diameter into the SOL to enhance plasma performance. A simplified version of the dropper was developed to introduce trace amounts of tungsten powder for only a few discharges, thus not requiring a large powder reservoir. The particles emit visible light from plasma interactions and can be tracked by either spectroscopic means or by fast frame rate visible cameras. This data can then be compared with dust transport codes such as DUSTT to make predictions of dust behavior in next-step devices such as ITER. For complete modeling results, it is desired to be able to inject pre-characterized dust particles in the SOL at various known poloidal locations, including near the vessel midplane. Purely mechanical methods of injecting particles are presently being studied using a modified piezoelectric-based powder dropper as a particle source and one of several piezo-based transducers to deflect the particles into the SOL. Vibrating piezo fans operating at 60 Hz with a deflection of ±2.5 cm can impart a significant horizontal boost in velocity. The highest injection velocities are expected from rotating paddle wheels capable of injecting particles at 10's of meters per second depending primarily on the rotation velocity and diameter of the wheel. Several injection concepts have been tested and will be

  18. Trace metals in urban road dust

    International Nuclear Information System (INIS)

    Randazzo, Loredana Antonella; Dongarra, Gaetano; Manno, Emanuela; Varrica, Daniela

    2006-01-01

    Heavy metals associated with urban road dust is a matter for concern as they may have serious effects on biological systems. The bioavailability and potential toxicity of metals bound to urban dust is related to the specific chemical form of the element. In the present article are reported the determinations and chemical speciation of As, Ba, Cr, Cu, Mo, Ni, Pb and Zn in six samples of road dust collected within the urban centre and the outskirts of Palermo [it

  19. Cylindrical dust acoustic waves with transverse perturbation

    International Nuclear Information System (INIS)

    Xue Jukui

    2003-01-01

    The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation

  20. The control and prevention of dust explosions

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Papers presented discussed: explosion characteristics and hybrid mixtures explosion characteristics and influencing factors, propagation of dust explosions in ducts, prevention of dust explosions, desensitization, explosion-proof type of construction, explosion pressure relief, optical flame barriers, slide-valves for explosion protection, Ventex explosion barrier valves, grinding and mixing plants, spray driers, dust explosions in silos, and explosion-proof bucket elevators. One paper has been abstracted separately.

  1. Reflectance spectroscopy of indoor settled dust in Tel Aviv, Israel: comparison between the spring and the summer seasons

    Directory of Open Access Journals (Sweden)

    A. A. Chudnovsky

    2007-07-01

    Full Text Available The influence of mineral and anthropogenic dust components on the VIS-NIR-SWIR spectral reflectance of artificial laboratory dust mixtures was evaluated and used in combination with Partial Least Squares (PLS regression to construct a model that correlates the dust content with its reflectance. Small amounts of dust (0.018–0.33 mg/cm2 were collected using glass traps placed in different indoor environments in Tel Aviv, Israel during the spring and summer of 2005. The constructed model was applied to reflectance spectroscopy measurements derived from the field dust samples to assess their mineral content. Additionally, field samples were examined using Principal Component Analysis (PCA to identify the most representative spectral pattern for each season. Across the visible range of spectra two main spectral shapes were observed, convex and concave, though spectra exhibiting hybrid shapes were also seen. Spectra derived from spring season dust samples were characterized mostly by a convex shape, which indicates a high mineral content. In contrast, the spectra generated from summer samples were characterized generally by a concave shape, which indicates a high organic matter content. In addition to this seasonal variation in spectral patterns, spectral differences were observed associated with the dwelling position in the city. Samples collected in the city center showed higher organic content, whereas samples taken from locations at the city margins, near the sea and next to open areas, exhibited higher mineral content. We conclude that mineral components originating in the outdoor environment influence indoor dust loads, even when considering relatively small amounts of indoor settled dust. The sensitive spectral-based method developed here has potentially many applications for environmental researchers and policy makers concerned with dust pollution.

  2. Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon

    Science.gov (United States)

    Dang, Cheng; Brandt, Richard E.; Warren, Stephen G.

    2015-06-01

    The reduction of snow spectral albedo by black carbon (BC) and mineral dust, both alone and in combination, is computed using radiative transfer modeling. Broadband albedo is shown for mass fractions covering the full range from pure snow to pure BC and pure dust, and for snow grain radii from 5 µm to 2500 µm, to cover the range of possible grain sizes on planetary surfaces. Parameterizations are developed for opaque homogeneous snowpacks for three broad bands used in general circulation models and several narrower bands. They are functions of snow grain radius and the mass fraction of BC and/or dust and are valid up to BC content of 10 ppm, needed for highly polluted snow. A change of solar zenith angle can be mimicked by changing grain radius. A given mass fraction of BC causes greater albedo reduction in coarse-grained snow; BC and grain radius can be combined into a single variable to compute the reduction of albedo relative to pure snow. The albedo reduction by BC is less if the snow contains dust, a common situation on mountain glaciers and in agricultural and grazing lands. Measured absorption spectra of mineral dust are critically reviewed as a basis for specifying dust properties for modeling. The effect of dust on snow albedo at visible wavelengths can be represented by an "equivalent BC" amount, scaled down by a factor of about 200. Dust has little effect on the near-IR albedo because the near-IR albedo of pure dust is similar to that of pure snow.

  3. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  4. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  5. Dust control at Yucca Mountain project

    International Nuclear Information System (INIS)

    Kissell, F.; Jurani, R.; Dresel, R.; Reaux, C.

    1999-01-01

    This report describes actions taken to control silica dust at the Yucca Mountain Exploratory Studies Facility, a tunnel located in Southern Nevada that is part of a scientific program to determine site suitability for a potential nuclear waste repository. The rock is a volcanic tuff containing significant percentages of both quartz and cristobalite. Water use for dust control was limited because of scientific test requirements, and this limitation made dust control a difficult task. Results are reported for two drifts, called the Main Loop Drift and the Cross Drift. In the Main Loop Drift, dust surveys and tracer gas tests indicated that air leakage from the TBM head, the primary ventilation duct, and movement of the conveyor belt were all significant sources of dust. Conventional dust control approaches yielded no significant reductions in dust levels. A novel alternative was to install an air cleaning station on a rear deck of the TBM trailing gear. It filtered dust from the contaminated intake air and discharged clean air towards the front of the TBM. The practical effect was to produce dust levels below the exposure limit for all TBM locations except close to the head. In the Cross Drift, better ventilation and an extra set of dust seals on the TBM served to cut down the leakage of dust from the TBM cutter head. However, the conveyor belt was much dustier than the belt in the main loop drift. The problem originated with dirt on the bottom of the belt return side and much spillage from the belt top side. Achieving lower dust levels in hard rock tunneling operations will require new approaches as well as a more meticulous application of existing technology. Planning for dust control will require specific means to deal with dust that leaks from the TBM head, dust that originates with leaky ventilation systems, and dust that comes from conveyor belts. Also, the application of water could be more efficient if automatic controls were used to adjust the water flow

  6. Beryllium dust generation resulting from plasma bombardment

    International Nuclear Information System (INIS)

    Doerner, R.; Mays, C.

    1997-01-01

    The beryllium dust resulting from erosion of beryllium samples subjected to plasma bombardment has been measured in PISCES-B. Loose surface dust was found to be uniformly distributed throughout the device and accounts for 3% of the eroded material. A size distribution measurement of