WorldWideScience

Sample records for visda modeling visualization

  1. Business Model Visualization

    OpenAIRE

    Zagorsek, Branislav

    2013-01-01

    Business model describes the company’s most important activities, proposed value, and the compensation for the value. Business model visualization enables to simply and systematically capture and describe the most important components of the business model while the standardization of the concept allows the comparison between companies. There are several possibilities how to visualize the model. The aim of this paper is to describe the options for business model visualization and business mod...

  2. Visual Perceptual Learning and Models.

    Science.gov (United States)

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  3. Modelling individual difference in visual categorization.

    Science.gov (United States)

    Shen, Jianhong; Palmeri, Thomas J

    Recent years has seen growing interest in understanding, characterizing, and explaining individual differences in visual cognition. We focus here on individual differences in visual categorization. Categorization is the fundamental visual ability to group different objects together as the same kind of thing. Research on visual categorization and category learning has been significantly informed by computational modeling, so our review will focus both on how formal models of visual categorization have captured individual differences and how individual difference have informed the development of formal models. We first examine the potential sources of individual differences in leading models of visual categorization, providing a brief review of a range of different models. We then describe several examples of how computational models have captured individual differences in visual categorization. This review also provides a bit of an historical perspective, starting with models that predicted no individual differences, to those that captured group differences, to those that predict true individual differences, and to more recent hierarchical approaches that can simultaneously capture both group and individual differences in visual categorization. Via this selective review, we see how considerations of individual differences can lead to important theoretical insights into how people visually categorize objects in the world around them. We also consider new directions for work examining individual differences in visual categorization.

  4. Quantifying and Visualizing Uncertainties in Molecular Models

    OpenAIRE

    Rasheed, Muhibur; Clement, Nathan; Bhowmick, Abhishek; Bajaj, Chandrajit

    2015-01-01

    Computational molecular modeling and visualization has seen significant progress in recent years with sev- eral molecular modeling and visualization software systems in use today. Nevertheless the molecular biology community lacks techniques and tools for the rigorous analysis, quantification and visualization of the associated errors in molecular structure and its associated properties. This paper attempts at filling this vacuum with the introduction of a systematic statistical framework whe...

  5. Modeling human comprehension of data visualizations

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Laura E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haass, Michael Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Divis, Kristin Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Andrew T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This project was inspired by two needs. The first is a need for tools to help scientists and engineers to design effective data visualizations for communicating information, whether to the user of a system, an analyst who must make decisions based on complex data, or in the context of a technical report or publication. Most scientists and engineers are not trained in visualization design, and they could benefit from simple metrics to assess how well their visualization's design conveys the intended message. In other words, will the most important information draw the viewer's attention? The second is the need for cognition-based metrics for evaluating new types of visualizations created by researchers in the information visualization and visual analytics communities. Evaluating visualizations is difficult even for experts. However, all visualization methods and techniques are intended to exploit the properties of the human visual system to convey information efficiently to a viewer. Thus, developing evaluation methods that are rooted in the scientific knowledge of the human visual system could be a useful approach. In this project, we conducted fundamental research on how humans make sense of abstract data visualizations, and how this process is influenced by their goals and prior experience. We then used that research to develop a new model, the Data Visualization Saliency Model, that can make accurate predictions about which features in an abstract visualization will draw a viewer's attention. The model is an evaluation tool that can address both of the needs described above, supporting both visualization research and Sandia mission needs.

  6. Illustrative visualization of 3D city models

    Science.gov (United States)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  7. Novel mathematical neural models for visual attention

    DEFF Research Database (Denmark)

    Li, Kang

    for the visual attention theories and spiking neuron models for single spike trains. Statistical inference and model selection are performed and various numerical methods are explored. The designed methods also give a framework for neural coding under visual attention theories. We conduct both analysis on real......Visual attention has been extensively studied in psychology, but some fundamental questions remain controversial. We focus on two questions in this study. First, we investigate how a neuron in visual cortex responds to multiple stimuli inside the receptive eld, described by either a response...... system, supported by simulation study. Finally, we present the decoding of multiple temporal stimuli under these visual attention theories, also in a realistic biophysical situation with simulations....

  8. A Visual Detection Learning Model

    Science.gov (United States)

    Beard, Bettina L.; Ahumada, Albert J., Jr.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Our learning model has memory templates representing the target-plus-noise and noise-alone stimulus sets. The best correlating template determines the response. The correlations and the feedback participate in the additive template updating rule. The model can predict the relative thresholds for detection in random, fixed and twin noise.

  9. Immersive visualization of dynamic CFD model results

    International Nuclear Information System (INIS)

    Comparato, J.R.; Ringel, K.L.; Heath, D.J.

    2004-01-01

    With immersive visualization the engineer has the means for vividly understanding problem causes and discovering opportunities to improve design. Software can generate an interactive world in which collaborators experience the results of complex mathematical simulations such as computational fluid dynamic (CFD) modeling. Such software, while providing unique benefits over traditional visualization techniques, presents special development challenges. The visualization of large quantities of data interactively requires both significant computational power and shrewd data management. On the computational front, commodity hardware is outperforming large workstations in graphical quality and frame rates. Also, 64-bit commodity computing shows promise in enabling interactive visualization of large datasets. Initial interactive transient visualization methods and examples are presented, as well as development trends in commodity hardware and clustering. Interactive, immersive visualization relies on relevant data being stored in active memory for fast response to user requests. For large or transient datasets, data management becomes a key issue. Techniques for dynamic data loading and data reduction are presented as means to increase visualization performance. (author)

  10. FLIP for FLAG model visualization

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-15

    A graphical user interface has been developed for FLAG users. FLIP (FLAG Input deck Parser) provides users with an organized view of FLAG models and a means for efficiently and easily navigating and editing nodes, parameters, and variables.

  11. Visual and Computational Modelling of Minority Games

    Directory of Open Access Journals (Sweden)

    Robertas Damaševičius

    2017-02-01

    Full Text Available The paper analyses the Minority Game and focuses on analysis and computational modelling of several variants (variable payoff, coalition-based and ternary voting of Minority Game using UAREI (User-Action-Rule-Entities-Interface model. UAREI is a model for formal specification of software gamification, and the UAREI visual modelling language is a language used for graphical representation of game mechanics. The URAEI model also provides the embedded executable modelling framework to evaluate how the rules of the game will work for the players in practice. We demonstrate flexibility of UAREI model for modelling different variants of Minority Game rules for game design.

  12. Modeling Color Difference for Visualization Design.

    Science.gov (United States)

    Szafir, Danielle Albers

    2018-01-01

    Color is frequently used to encode values in visualizations. For color encodings to be effective, the mapping between colors and values must preserve important differences in the data. However, most guidelines for effective color choice in visualization are based on either color perceptions measured using large, uniform fields in optimal viewing environments or on qualitative intuitions. These limitations may cause data misinterpretation in visualizations, which frequently use small, elongated marks. Our goal is to develop quantitative metrics to help people use color more effectively in visualizations. We present a series of crowdsourced studies measuring color difference perceptions for three common mark types: points, bars, and lines. Our results indicate that peoples' abilities to perceive color differences varies significantly across mark types. Probabilistic models constructed from the resulting data can provide objective guidance for designers, allowing them to anticipate viewer perceptions in order to inform effective encoding design.

  13. Modeling, analysis, and visualization of anisotropy

    CERN Document Server

    Özarslan, Evren; Hotz, Ingrid

    2017-01-01

    This book focuses on the modeling, processing and visualization of anisotropy, irrespective of the context in which it emerges, using state-of-the-art mathematical tools. As such, it differs substantially from conventional reference works, which are centered on a particular application. It covers the following topics: (i) the geometric structure of tensors, (ii) statistical methods for tensor field processing, (iii) challenges in mapping neural connectivity and structural mechanics, (iv) processing of uncertainty, and (v) visualizing higher-order representations. In addition to original research contributions, it provides insightful reviews. This multidisciplinary book is the sixth in a series that aims to foster scientific exchange between communities employing tensors and other higher-order representations of directionally dependent data. A significant number of the chapters were co-authored by the participants of the workshop titled Multidisciplinary Approaches to Multivalued Data: Modeling, Visualization,...

  14. Modeling and visual simulation of Microalgae photobioreactor

    Science.gov (United States)

    Zhao, Ming; Hou, Dapeng; Hu, Dawei

    Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.

  15. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Gollaz Morales, Jose Alejandro

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  16. Model visualization for evaluation of biocatalytic processes

    DEFF Research Database (Denmark)

    Law, HEM; Lewis, DJ; McRobbie, I

    2008-01-01

    Biocatalysis offers great potential as an additional, and in some cases as an alternative, synthetic tool for organic chemists, especially as a route to introduce chirality. However, the implementation of scalable biocatalytic processes nearly always requires the introduction of process and/or bi......,S-EDDS), a biodegradable chelant, and is characterised by the use of model visualization using `windows of operation"....

  17. Modeling Human Aesthetic Perception of Visual Textures

    NARCIS (Netherlands)

    Thumfart, Stefan; Jacobs, Richard H. A. H.; Lughofer, Edwin; Eitzinger, Christian; Cornelissen, Frans W.; Groissboeck, Werner; Richter, Roland

    Texture is extensively used in areas such as product design and architecture to convey specific aesthetic information. Using the results of a psychological experiment, we model the relationship between computational texture features and aesthetic properties of visual textures. Contrary to previous

  18. Towards The Deep Model : Understanding Visual Recognition Through Computational Models

    OpenAIRE

    Wang, Panqu

    2017-01-01

    Understanding how visual recognition is achieved in the human brain is one of the most fundamental questions in vision research. In this thesis I seek to tackle this problem from a neurocomputational modeling perspective. More specifically, I build machine learning-based models to simulate and explain cognitive phenomena related to human visual recognition, and I improve computational models using brain-inspired principles to excel at computer vision tasks.I first describe how a neurocomputat...

  19. Modeling visual problem solving as analogical reasoning.

    Science.gov (United States)

    Lovett, Andrew; Forbus, Kenneth

    2017-01-01

    We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Interactive Visual Analysis within Dynamic Ocean Models

    Science.gov (United States)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  1. Expressing Model Constraints Visually with VMQL

    DEFF Research Database (Denmark)

    Störrle, Harald

    2011-01-01

    ) for specifying constraints on UML models. We examine VMQL's usability by controlled experiments and its expressiveness by a representative sample. We conclude that VMQL is less expressive than OCL, although expressive enough for most of the constraints in the sample. In terms of usability, however, VMQL......OCL is the de facto standard language for expressing constraints and queries on UML models. However, OCL expressions are very difficult to create, understand, and maintain, even with the sophisticated tool support now available. In this paper, we propose to use the Visual Model Query Language (VMQL...

  2. In silico modeling for tumor growth visualization.

    Science.gov (United States)

    Jeanquartier, Fleur; Jean-Quartier, Claire; Cemernek, David; Holzinger, Andreas

    2016-08-08

    Cancer is a complex disease. Fundamental cellular based studies as well as modeling provides insight into cancer biology and strategies to treatment of the disease. In silico models complement in vivo models. Research on tumor growth involves a plethora of models each emphasizing isolated aspects of benign and malignant neoplasms. Biologists and clinical scientists are often overwhelmed by the mathematical background knowledge necessary to grasp and to apply a model to their own research. We aim to provide a comprehensive and expandable simulation tool to visualizing tumor growth. This novel Web-based application offers the advantage of a user-friendly graphical interface with several manipulable input variables to correlate different aspects of tumor growth. By refining model parameters we highlight the significance of heterogeneous intercellular interactions on tumor progression. Within this paper we present the implementation of the Cellular Potts Model graphically presented through Cytoscape.js within a Web application. The tool is available under the MIT license at https://github.com/davcem/cpm-cytoscape and http://styx.cgv.tugraz.at:8080/cpm-cytoscape/ . In-silico methods overcome the lack of wet experimental possibilities and as dry method succeed in terms of reduction, refinement and replacement of animal experimentation, also known as the 3R principles. Our visualization approach to simulation allows for more flexible usage and easy extension to facilitate understanding and gain novel insight. We believe that biomedical research in general and research on tumor growth in particular will benefit from the systems biology perspective.

  3. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular within the neuroimaging community. Such methods attempt...... sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative influence...... be carefully selected, so that the model and its visualization enhance our ability to interpret the brain. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...

  4. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular analysis tools within the neuroimaging community. Such methods...... neuroimaging data sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative...... be carefully selected, so that the model and its visualization enhance our ability to interpret brain function. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...

  5. An interference model of visual working memory.

    Science.gov (United States)

    Oberauer, Klaus; Lin, Hsuan-Yu

    2017-01-01

    The article introduces an interference model of working memory for information in a continuous similarity space, such as the features of visual objects. The model incorporates the following assumptions: (a) Probability of retrieval is determined by the relative activation of each retrieval candidate at the time of retrieval; (b) activation comes from 3 sources in memory: cue-based retrieval using context cues, context-independent memory for relevant contents, and noise; (c) 1 memory object and its context can be held in the focus of attention, where it is represented with higher precision, and partly shielded against interference. The model was fit to data from 4 continuous-reproduction experiments testing working memory for colors or orientations. The experiments involved variations of set size, kind of context cues, precueing, and retro-cueing of the to-be-tested item. The interference model fit the data better than 2 competing models, the Slot-Averaging model and the Variable-Precision resource model. The interference model also fared well in comparison to several new models incorporating alternative theoretical assumptions. The experiments confirm 3 novel predictions of the interference model: (a) Nontargets intrude in recall to the extent that they are close to the target in context space; (b) similarity between target and nontarget features improves recall, and (c) precueing-but not retro-cueing-the target substantially reduces the set-size effect. The success of the interference model shows that working memory for continuous visual information works according to the same principles as working memory for more discrete (e.g., verbal) contents. Data and model codes are available at https://osf.io/wgqd5/. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Visual behaviour analysis and driver cognitive model

    Energy Technology Data Exchange (ETDEWEB)

    Baujon, J.; Basset, M.; Gissinger, G.L. [Mulhouse Univ., (France). MIPS/MIAM Lab.

    2001-07-01

    Recent studies on driver behaviour have shown that perception - mainly visual but also proprioceptive perception - plays a key role in the ''driver-vehicle-road'' system and so considerably affects the driver's decision making. Within the framework of the behaviour analysis and studies low-cost system (BASIL), this paper presents a correlative, qualitative and quantitative study, comparing the information given by visual perception and by the trajectory followed. This information will help to obtain a cognitive model of the Rasmussen type according to different driver classes. Many experiments in real driving situations have been carried out for different driver classes and for a given trajectory profile, using a test vehicle and innovative, specially designed, real-time tools, such as the vision system or the positioning module. (orig.)

  7. A model for visual memory encoding.

    Directory of Open Access Journals (Sweden)

    Rodolphe Nenert

    Full Text Available Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA. All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN. Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  8. A model for visual memory encoding.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  9. Visualization of logistic algorithm in Wilson model

    Science.gov (United States)

    Glushchenko, A. S.; Rodin, V. A.; Sinegubov, S. V.

    2018-05-01

    Economic order quantity (EOQ), defined by the Wilson's model, is widely used at different stages of production and distribution of different products. It is useful for making decisions in the management of inventories, providing a more efficient business operation and thus bringing more economic benefits. There is a large amount of reference material and extensive computer shells that help solving various logistics problems. However, the use of large computer environments is not always justified and requires special user training. A tense supply schedule in a logistics model is optimal, if, and only if, the planning horizon coincides with the beginning of the next possible delivery. For all other possible planning horizons, this plan is not optimal. It is significant that when the planning horizon changes, the plan changes immediately throughout the entire supply chain. In this paper, an algorithm and a program for visualizing models of the optimal value of supplies and their number, depending on the magnitude of the planned horizon, have been obtained. The program allows one to trace (visually and quickly) all main parameters of the optimal plan on the charts. The results of the paper represent a part of the authors’ research work in the field of optimization of protection and support services of ports in the Russian North.

  10. Boxes of Model Building and Visualization.

    Science.gov (United States)

    Turk, Dušan

    2017-01-01

    Macromolecular crystallography and electron microscopy (single-particle and in situ tomography) are merging into a single approach used by the two coalescing scientific communities. The merger is a consequence of technical developments that enabled determination of atomic structures of macromolecules by electron microscopy. Technological progress in experimental methods of macromolecular structure determination, computer hardware, and software changed and continues to change the nature of model building and visualization of molecular structures. However, the increase in automation and availability of structure validation are reducing interactive manual model building to fiddling with details. On the other hand, interactive modeling tools increasingly rely on search and complex energy calculation procedures, which make manually driven changes in geometry increasingly powerful and at the same time less demanding. Thus, the need for accurate manual positioning of a model is decreasing. The user's push only needs to be sufficient to bring the model within the increasing convergence radius of the computing tools. It seems that we can now better than ever determine an average single structure. The tools work better, requirements for engagement of human brain are lowered, and the frontier of intellectual and scientific challenges has moved on. The quest for resolution of new challenges requires out-of-the-box thinking. A few issues such as model bias and correctness of structure, ongoing developments in parameters defining geometric restraints, limitations of the ideal average single structure, and limitations of Bragg spot data are discussed here, together with the challenges that lie ahead.

  11. Behavioral model of visual perception and recognition

    Science.gov (United States)

    Rybak, Ilya A.; Golovan, Alexander V.; Gusakova, Valentina I.

    1993-09-01

    In the processes of visual perception and recognition human eyes actively select essential information by way of successive fixations at the most informative points of the image. A behavioral program defining a scanpath of the image is formed at the stage of learning (object memorizing) and consists of sequential motor actions, which are shifts of attention from one to another point of fixation, and sensory signals expected to arrive in response to each shift of attention. In the modern view of the problem, invariant object recognition is provided by the following: (1) separated processing of `what' (object features) and `where' (spatial features) information at high levels of the visual system; (2) mechanisms of visual attention using `where' information; (3) representation of `what' information in an object-based frame of reference (OFR). However, most recent models of vision based on OFR have demonstrated the ability of invariant recognition of only simple objects like letters or binary objects without background, i.e. objects to which a frame of reference is easily attached. In contrast, we use not OFR, but a feature-based frame of reference (FFR), connected with the basic feature (edge) at the fixation point. This has provided for our model, the ability for invariant representation of complex objects in gray-level images, but demands realization of behavioral aspects of vision described above. The developed model contains a neural network subsystem of low-level vision which extracts a set of primary features (edges) in each fixation, and high- level subsystem consisting of `what' (Sensory Memory) and `where' (Motor Memory) modules. The resolution of primary features extraction decreases with distances from the point of fixation. FFR provides both the invariant representation of object features in Sensor Memory and shifts of attention in Motor Memory. Object recognition consists in successive recall (from Motor Memory) and execution of shifts of attention and

  12. Visualization study of operators' plant knowledge model

    International Nuclear Information System (INIS)

    Kanno, Tarou; Furuta, Kazuo; Yoshikawa, Shinji

    1999-03-01

    Nuclear plants are typically very complicated systems and are required extremely high level safety on the operations. Since it is never possible to include all the possible anomaly scenarios in education/training curriculum, plant knowledge formation is desired for operators to enable thein to act against unexpected anomalies based on knowledge base decision making. The authors have been conducted a study on operators' plant knowledge model for the purpose of supporting operators' effort in forming this kind of plant knowledge. In this report, an integrated plant knowledge model consisting of configuration space, causality space, goal space and status space is proposed. The authors examined appropriateness of this model and developed a prototype system to support knowledge formation by visualizing the operators' knowledge model and decision making process in knowledge-based actions with this model on a software system. Finally the feasibility of this prototype as a supportive method in operator education/training to enhance operators' ability in knowledge-based performance has been evaluated. (author)

  13. Statistical modeling for visualization evaluation through data fusion.

    Science.gov (United States)

    Chen, Xiaoyu; Jin, Ran

    2017-11-01

    There is a high demand of data visualization providing insights to users in various applications. However, a consistent, online visualization evaluation method to quantify mental workload or user preference is lacking, which leads to an inefficient visualization and user interface design process. Recently, the advancement of interactive and sensing technologies makes the electroencephalogram (EEG) signals, eye movements as well as visualization logs available in user-centered evaluation. This paper proposes a data fusion model and the application procedure for quantitative and online visualization evaluation. 15 participants joined the study based on three different visualization designs. The results provide a regularized regression model which can accurately predict the user's evaluation of task complexity, and indicate the significance of all three types of sensing data sets for visualization evaluation. This model can be widely applied to data visualization evaluation, and other user-centered designs evaluation and data analysis in human factors and ergonomics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A physiologically based nonhomogeneous Poisson counter model of visual identification

    DEFF Research Database (Denmark)

    Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus

    2018-01-01

    A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are ......A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects...... that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model...

  15. Visual Saliency Models for Text Detection in Real World.

    Directory of Open Access Journals (Sweden)

    Renwu Gao

    Full Text Available This paper evaluates the degree of saliency of texts in natural scenes using visual saliency models. A large scale scene image database with pixel level ground truth is created for this purpose. Using this scene image database and five state-of-the-art models, visual saliency maps that represent the degree of saliency of the objects are calculated. The receiver operating characteristic curve is employed in order to evaluate the saliency of scene texts, which is calculated by visual saliency models. A visualization of the distribution of scene texts and non-texts in the space constructed by three kinds of saliency maps, which are calculated using Itti's visual saliency model with intensity, color and orientation features, is given. This visualization of distribution indicates that text characters are more salient than their non-text neighbors, and can be captured from the background. Therefore, scene texts can be extracted from the scene images. With this in mind, a new visual saliency architecture, named hierarchical visual saliency model, is proposed. Hierarchical visual saliency model is based on Itti's model and consists of two stages. In the first stage, Itti's model is used to calculate the saliency map, and Otsu's global thresholding algorithm is applied to extract the salient region that we are interested in. In the second stage, Itti's model is applied to the salient region to calculate the final saliency map. An experimental evaluation demonstrates that the proposed model outperforms Itti's model in terms of captured scene texts.

  16. Model-Driven Study of Visual Memory

    National Research Council Canada - National Science Library

    Sekuler, Robert

    2004-01-01

    .... We synthesized concepts, insights, and methods from memory research, and from vision research, working within a coherent, quantitative framework for understanding episodic visual recognition memory...

  17. A dual-trace model for visual sensory memory.

    Science.gov (United States)

    Cappiello, Marcus; Zhang, Weiwei

    2016-11-01

    Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. A visual approach for modeling spatiotemporal relations

    NARCIS (Netherlands)

    R.L. Guimarães (Rodrigo); C.S.S. Neto; L.F.G. Soares

    2008-01-01

    htmlabstractTextual programming languages have proven to be difficult to learn and to use effectively for many people. For this sake, visual tools can be useful to abstract the complexity of such textual languages, minimizing the specification efforts. In this paper we present a visual approach for

  19. Promoting Visualization Skills through Deconstruction Using Physical Models and a Visualization Activity Intervention

    Science.gov (United States)

    Schiltz, Holly Kristine

    Visualization skills are important in learning chemistry, as these skills have been shown to correlate to high ability in problem solving. Students' understanding of visual information and their problem-solving processes may only ever be accessed indirectly: verbalization, gestures, drawings, etc. In this research, deconstruction of complex visual concepts was aligned with the promotion of students' verbalization of visualized ideas to teach students to solve complex visual tasks independently. All instructional tools and teaching methods were developed in accordance with the principles of the theoretical framework, the Modeling Theory of Learning: deconstruction of visual representations into model components, comparisons to reality, and recognition of students' their problemsolving strategies. Three physical model systems were designed to provide students with visual and tangible representations of chemical concepts. The Permanent Reflection Plane Demonstration provided visual indicators that students used to support or invalidate the presence of a reflection plane. The 3-D Coordinate Axis system provided an environment that allowed students to visualize and physically enact symmetry operations in a relevant molecular context. The Proper Rotation Axis system was designed to provide a physical and visual frame of reference to showcase multiple symmetry elements that students must identify in a molecular model. Focus groups of students taking Inorganic chemistry working with the physical model systems demonstrated difficulty documenting and verbalizing processes and descriptions of visual concepts. Frequently asked student questions were classified, but students also interacted with visual information through gestures and model manipulations. In an effort to characterize how much students used visualization during lecture or recitation, we developed observation rubrics to gather information about students' visualization artifacts and examined the effect instructors

  20. A Hierarchical Visualization Analysis Model of Power Big Data

    Science.gov (United States)

    Li, Yongjie; Wang, Zheng; Hao, Yang

    2018-01-01

    Based on the conception of integrating VR scene and power big data analysis, a hierarchical visualization analysis model of power big data is proposed, in which levels are designed, targeting at different abstract modules like transaction, engine, computation, control and store. The regularly departed modules of power data storing, data mining and analysis, data visualization are integrated into one platform by this model. It provides a visual analysis solution for the power big data.

  1. Measuring and Modeling Shared Visual Attention

    Science.gov (United States)

    Mulligan, Jeffrey B.; Gontar, Patrick

    2016-01-01

    Multi-person teams are sometimes responsible for critical tasks, such as flying an airliner. Here we present a method using gaze tracking data to assess shared visual attention, a term we use to describe the situation where team members are attending to a common set of elements in the environment. Gaze data are quantized with respect to a set of N areas of interest (AOIs); these are then used to construct a time series of N dimensional vectors, with each vector component representing one of the AOIs, all set to 0 except for the component corresponding to the currently fixated AOI, which is set to 1. The resulting sequence of vectors can be averaged in time, with the result that each vector component represents the proportion of time that the corresponding AOI was fixated within the given time interval. We present two methods for comparing sequences of this sort, one based on computing the time-varying correlation of the averaged vectors, and another based on a chi-square test testing the hypothesis that the observed gaze proportions are drawn from identical probability distributions. We have evaluated the method using synthetic data sets, in which the behavior was modeled as a series of "activities," each of which was modeled as a first-order Markov process. By tabulating distributions for pairs of identical and disparate activities, we are able to perform a receiver operating characteristic (ROC) analysis, allowing us to choose appropriate criteria and estimate error rates. We have applied the methods to data from airline crews, collected in a high-fidelity flight simulator (Haslbeck, Gontar & Schubert, 2014). We conclude by considering the problem of automatic (blind) discovery of activities, using methods developed for text analysis.

  2. An efficient visual saliency detection model based on Ripplet transform

    Indian Academy of Sciences (India)

    A Diana Andrushia

    human visual attention models is still not well investigated. ... Ripplet transform; visual saliency model; Receiver Operating Characteristics (ROC); .... proposed method has the same resolution as that of an input ... regions are obtained, which are independent of their sizes. ..... impact than those far away from the attention.

  3. Adapting models of visual aesthetics for personalized content creation

    DEFF Research Database (Denmark)

    Liapis, Antonios; Yannakakis, Georgios N.; Togelius, Julian

    2012-01-01

    This paper introduces a search-based approach to personalized content generation with respect to visual aesthetics. The approach is based on a two-step adaptation procedure where (1) the evaluation function that characterizes the content is adjusted to match the visual aesthetics of users and (2......) the content itself is optimized based on the personalized evaluation function. To test the efficacy of the approach we design fitness functions based on universal properties of visual perception, inspired by psychological and neurobiological research. Using these visual properties we generate aesthetically...... spaceships according to their visual taste: the impact of the various visual properties is adjusted based on player preferences and new content is generated online based on the updated computational model of visual aesthetics of the player. Results are presented which show the potential of the approach...

  4. HMMEditor: a visual editing tool for profile hidden Markov model

    Directory of Open Access Journals (Sweden)

    Cheng Jianlin

    2008-03-01

    Full Text Available Abstract Background Profile Hidden Markov Model (HMM is a powerful statistical model to represent a family of DNA, RNA, and protein sequences. Profile HMM has been widely used in bioinformatics research such as sequence alignment, gene structure prediction, motif identification, protein structure prediction, and biological database search. However, few comprehensive, visual editing tools for profile HMM are publicly available. Results We develop a visual editor for profile Hidden Markov Models (HMMEditor. HMMEditor can visualize the profile HMM architecture, transition probabilities, and emission probabilities. Moreover, it provides functions to edit and save HMM and parameters. Furthermore, HMMEditor allows users to align a sequence against the profile HMM and to visualize the corresponding Viterbi path. Conclusion HMMEditor provides a set of unique functions to visualize and edit a profile HMM. It is a useful tool for biological sequence analysis and modeling. Both HMMEditor software and web service are freely available.

  5. Modern Notation of business models: а visual Trend

    OpenAIRE

    Tatiana, Gavrilova; Artem, Alsufyev; Anna-sophia, Yanson

    2014-01-01

    Information overf low and dynamic market changes encourage managers to search for a relevant and eloquent model to describe their business. This paper provides a new framework for visualizing business models, guided by wellshaped visualization based on a mind mapping technique. Due to the simplicity of perception, this approach has a positive impact on managers and employees’ understanding of companies’ business models and promotes a productive exchange of ideas and knowledge. The mindmapping...

  6. Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition.

    Directory of Open Access Journals (Sweden)

    Na Shu

    Full Text Available Humans can easily understand other people's actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1, and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model.

  7. Modeling the shape hierarchy for visually guided grasping

    CSIR Research Space (South Africa)

    Rezai, O

    2014-10-01

    Full Text Available The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modeled shape tuning in visual AIP neurons and its relationship with curvature and gradient...

  8. JPEG2000 COMPRESSION CODING USING HUMAN VISUAL SYSTEM MODEL

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang; Wu Chengke

    2005-01-01

    In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.

  9. Towards the quantitative evaluation of visual attention models.

    Science.gov (United States)

    Bylinskii, Z; DeGennaro, E M; Rajalingham, R; Ruda, H; Zhang, J; Tsotsos, J K

    2015-11-01

    Scores of visual attention models have been developed over the past several decades of research. Differences in implementation, assumptions, and evaluations have made comparison of these models very difficult. Taxonomies have been constructed in an attempt at the organization and classification of models, but are not sufficient at quantifying which classes of models are most capable of explaining available data. At the same time, a multitude of physiological and behavioral findings have been published, measuring various aspects of human and non-human primate visual attention. All of these elements highlight the need to integrate the computational models with the data by (1) operationalizing the definitions of visual attention tasks and (2) designing benchmark datasets to measure success on specific tasks, under these definitions. In this paper, we provide some examples of operationalizing and benchmarking different visual attention tasks, along with the relevant design considerations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Familiarisation: Restructuring Layouts with Visual Learning Models

    OpenAIRE

    Todi, Kashyap; Jokinen, Jussi; Luyten, Kris; Oulasvirta, Antti

    2018-01-01

    In domains where users are exposed to large variations in visuo-spatial features among designs, they often spend excess time searching for common elements (features) in familiar locations. This paper contributes computational approaches to restructuring layouts such that features on a new, unvisited interface can be found quicker. We explore four concepts of familiarisation, inspired by the human visual system (HVS), to automatically generate a familiar design for each user. Given a histor...

  11. Visual modeling in an analysis of multidimensional data

    Science.gov (United States)

    Zakharova, A. A.; Vekhter, E. V.; Shklyar, A. V.; Pak, A. J.

    2018-01-01

    The article proposes an approach to solve visualization problems and the subsequent analysis of multidimensional data. Requirements to the properties of visual models, which were created to solve analysis problems, are described. As a perspective direction for the development of visual analysis tools for multidimensional and voluminous data, there was suggested an active use of factors of subjective perception and dynamic visualization. Practical results of solving the problem of multidimensional data analysis are shown using the example of a visual model of empirical data on the current state of studying processes of obtaining silicon carbide by an electric arc method. There are several results of solving this problem. At first, an idea of possibilities of determining the strategy for the development of the domain, secondly, the reliability of the published data on this subject, and changes in the areas of attention of researchers over time.

  12. Towards a visual modeling approach to designing microelectromechanical system transducers

    Science.gov (United States)

    Dewey, Allen; Srinivasan, Vijay; Icoz, Evrim

    1999-12-01

    In this paper, we address initial design capture and system conceptualization of microelectromechanical system transducers based on visual modeling and design. Visual modeling frames the task of generating hardware description language (analog and digital) component models in a manner similar to the task of generating software programming language applications. A structured topological design strategy is employed, whereby microelectromechanical foundry cell libraries are utilized to facilitate the design process of exploring candidate cells (topologies), varying key aspects of the transduction for each topology, and determining which topology best satisfies design requirements. Coupled-energy microelectromechanical system characterizations at a circuit level of abstraction are presented that are based on branch constitutive relations and an overall system of simultaneous differential and algebraic equations. The resulting design methodology is called visual integrated-microelectromechanical VHDL-AMS interactive design (VHDL-AMS is visual hardware design language for analog and mixed signal).

  13. Standalone visualization tool for three-dimensional DRAGON geometrical models

    International Nuclear Information System (INIS)

    Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.

    2008-01-01

    DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)

  14. A Dynamic Systems Theory Model of Visual Perception Development

    Science.gov (United States)

    Coté, Carol A.

    2015-01-01

    This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen…

  15. Visualizing the process of process modeling with PPMCharts

    NARCIS (Netherlands)

    Claes, J.; Vanderfeesten, I.T.P.; Pinggera, J.; Reijers, H.A.; Weber, B.; Poels, G.; La Rosa, M.; Soffer, P.

    2013-01-01

    In the quest for knowledge about how to make good process models, recent research focus is shifting from studying the quality of process models to studying the process of process modeling (often abbreviated as PPM) itself. This paper reports on our efforts to visualize this specific process in such

  16. A cognitive model for visual attention and its application

    NARCIS (Netherlands)

    Bosse, T.; Maanen, P.P. van; Treur, J.

    2007-01-01

    In this paper a cognitive model for visual attention is introduced. The cognitive model is part of the design of a software agent that supports a naval warfare officer in its task to compile a tactical picture of the situation in the field. An executable formal specification of the cognitive model

  17. Unification of three linear models for the transient visual system

    NARCIS (Netherlands)

    Brinker, den A.C.

    1989-01-01

    Three different linear filters are considered as a model describing the experimentally determined triphasic impulse responses of discs. These impulse responses arc associated with the transient visual system. Each model reveals a different feature of the system. Unification of the models is

  18. Spatial Uncertainty Model for Visual Features Using a Kinect™ Sensor

    Directory of Open Access Journals (Sweden)

    Jae-Han Park

    2012-06-01

    Full Text Available This study proposes a mathematical uncertainty model for the spatial measurement of visual features using Kinect™ sensors. This model can provide qualitative and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. In order to achieve this objective, we derived the propagation relationship of the uncertainties between the disparity image space and the real Cartesian space with the mapping function between the two spaces. Using this propagation relationship, we obtained the mathematical model for the covariance matrix of the measurement error, which represents the uncertainty for spatial position of visual features from Kinect™ sensors. In order to derive the quantitative model of spatial uncertainty for visual features, we estimated the covariance matrix in the disparity image space using collected visual feature data. Further, we computed the spatial uncertainty information by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to the proposed mathematical model. This spatial uncertainty model was verified by comparing the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual features. We expect that this spatial uncertainty model and its analyses will be useful in various Kinect™ sensor applications.

  19. Spatial uncertainty model for visual features using a Kinect™ sensor.

    Science.gov (United States)

    Park, Jae-Han; Shin, Yong-Deuk; Bae, Ji-Hun; Baeg, Moon-Hong

    2012-01-01

    This study proposes a mathematical uncertainty model for the spatial measurement of visual features using Kinect™ sensors. This model can provide qualitative and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. In order to achieve this objective, we derived the propagation relationship of the uncertainties between the disparity image space and the real Cartesian space with the mapping function between the two spaces. Using this propagation relationship, we obtained the mathematical model for the covariance matrix of the measurement error, which represents the uncertainty for spatial position of visual features from Kinect™ sensors. In order to derive the quantitative model of spatial uncertainty for visual features, we estimated the covariance matrix in the disparity image space using collected visual feature data. Further, we computed the spatial uncertainty information by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to the proposed mathematical model. This spatial uncertainty model was verified by comparing the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual features. We expect that this spatial uncertainty model and its analyses will be useful in various Kinect™ sensor applications.

  20. A physiologically based nonhomogeneous Poisson counter model of visual identification.

    Science.gov (United States)

    Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren

    2018-04-30

    A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. The Theory of Visual Attention without the race: a new model of visual selection

    DEFF Research Database (Denmark)

    Andersen, Tobias; Kyllingsbæk, Søren

    2012-01-01

    constrained by a limited processing capacity or rate, which is distributed among target and distractor objects with distractor objects receiving a smaller proportion of resources due to attentional filtering. Encoding into a limited visual short-term memory is implemented as a race model. Given its major...

  2. Star formation history: Modeling of visual binaries

    Science.gov (United States)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  3. How visual cognition influences process model comprehension

    NARCIS (Netherlands)

    Petrusel, Razvan; Mendling, Jan; Reijers, Hajo A.

    2017-01-01

    Process analysts and other professionals extensively use process models to analyze business processes and identify performance improvement opportunities. Therefore, it is important that such models can be easily and properly understood. Previous research has mainly focused on two types of factors

  4. A feedback model of visual attention.

    Science.gov (United States)

    Spratling, M W; Johnson, M H

    2004-03-01

    Feedback connections are a prominent feature of cortical anatomy and are likely to have a significant functional role in neural information processing. We present a neural network model of cortical feedback that successfully simulates neurophysiological data associated with attention. In this domain, our model can be considered a more detailed, and biologically plausible, implementation of the biased competition model of attention. However, our model is more general as it can also explain a variety of other top-down processes in vision, such as figure/ground segmentation and contextual cueing. This model thus suggests that a common mechanism, involving cortical feedback pathways, is responsible for a range of phenomena and provides a unified account of currently disparate areas of research.

  5. Task-specific visual cues for improving process model understanding

    NARCIS (Netherlands)

    Petrusel, Razvan; Mendling, Jan; Reijers, Hajo A.

    2016-01-01

    Context Business process models support various stakeholders in managing business processes and designing process-aware information systems. In order to make effective use of these models, they have to be readily understandable. Objective Prior research has emphasized the potential of visual cues to

  6. Symbolic modeling of human anatomy for visualization and simulation

    Science.gov (United States)

    Pommert, Andreas; Schubert, Rainer; Riemer, Martin; Schiemann, Thomas; Tiede, Ulf; Hoehne, Karl H.

    1994-09-01

    Visualization of human anatomy in a 3D atlas requires both spatial and more abstract symbolic knowledge. Within our 'intelligent volume' model which integrates these two levels, we developed and implemented a semantic network model for describing human anatomy. Concepts for structuring (abstraction levels, domains, views, generic and case-specific modeling, inheritance) are introduced. Model, tools for generation and exploration and applications in our 3D anatomical atlas are presented and discussed.

  7. Visualizations and Mental Models - The Educational Implications of GEOWALL

    Science.gov (United States)

    Rapp, D.; Kendeou, P.

    2003-12-01

    Work in the earth sciences has outlined many of the faulty beliefs that students possess concerning particular geological systems and processes. Evidence from educational and cognitive psychology has demonstrated that students often have difficulty overcoming their na‹ve beliefs about science. Prior knowledge is often remarkably resistant to change, particularly when students' existing mental models for geological principles may be faulty or inaccurate. Figuring out how to help students revise their mental models to include appropriate information is a major challenge. Up until this point, research has tended to focus on whether 2-dimensional computer visualizations are useful tools for helping students develop scientifically correct models. Research suggests that when students are given the opportunity to use dynamic computer-based visualizations, they are more likely to recall the learned information, and are more likely to transfer that knowledge to novel settings. Unfortunately, 2-dimensional visualization systems are often inadequate representations of the material that educators would like students to learn. For example, a 2-dimensional image of the Earth's surface does not adequately convey particular features that are critical for visualizing the geological environment. This may limit the models that students can construct following these visualizations. GEOWALL is a stereo projection system that has attempted to address this issue. It can display multidimensional static geologic images and dynamic geologic animations in a 3-dimensional format. Our current research examines whether multidimensional visualization systems such as GEOWALL may facilitate learning by helping students to develop more complex mental models. This talk will address some of the cognitive issues that influence the construction of mental models, and the difficulty of updating existing mental models. We will also discuss our current work that seeks to examine whether GEOWALL is an

  8. Power spectrum model of visual masking: simulations and empirical data.

    Science.gov (United States)

    Serrano-Pedraza, Ignacio; Sierra-Vázquez, Vicente; Derrington, Andrew M

    2013-06-01

    In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise

  9. MODELLING SYNERGISTIC EYE MOVEMENTS IN THE VISUAL FIELD

    Directory of Open Access Journals (Sweden)

    BARITZ Mihaela

    2015-06-01

    Full Text Available Some theoretical and practical considerations about eye movements in visual field are presented in the first part of this paper. These movements are developed into human body to be synergistic and are allowed to obtain the visual perception in 3D space. The theoretical background of the eye movements’ analysis is founded on the establishment of movement equations of the eyeball, as they consider it a solid body with a fixed point. The exterior actions, the order and execution of the movements are ensured by the neural and muscular external system and thus the position, stability and movements of the eye can be quantified through the method of reverse kinematic. The purpose of these researches is the development of a simulation model of human binocular visual system, an acquisition methodology and an experimental setup for data processing and recording regarding the eye movements, presented in the second part of the paper. The modeling system of ocular movements aims to establish the binocular synergy and limits of visual field changes in condition of ocular motor dysfunctions. By biomechanical movements of eyeball is established a modeling strategy for different sort of processes parameters like convergence, fixation and eye lens accommodation to obtain responses from binocular balance. The results of modelling processes and the positions of eye ball and axis in visual field are presented in the final part of the paper.

  10. Method and apparatus for modeling, visualization and analysis of materials

    KAUST Repository

    Aboulhassan, Amal

    2016-08-25

    A method, apparatus, and computer readable medium are provided for modeling of materials and visualization of properties of the materials. An example method includes receiving data describing a set of properties of a material, and computing, by a processor and based on the received data, geometric features of the material. The example method further includes extracting, by the processor, particle paths within the material based on the computed geometric features, and geometrically modeling, by the processor, the material using the geometric features and the extracted particle paths. The example method further includes generating, by the processor and based on the geometric modeling of the material, one or more visualizations regarding the material, and causing display, by a user interface, of the one or more visualizations.

  11. Neuromorphic model of magnocellular and parvocellular visual paths: spatial resolution

    International Nuclear Information System (INIS)

    Aguirre, Rolando C; Felice, Carmelo J; Colombo, Elisa M

    2007-01-01

    Physiological studies of the human retina show the existence of at least two visual information processing channels, the magnocellular and the parvocellular ones. Both have different spatial, temporal and chromatic features. This paper focuses on the different spatial resolution of these two channels. We propose a neuromorphic model, so that they match the retina's physiology. Considering the Deutsch and Deutsch model (1992), we propose two configurations (one for each visual channel) of the connection between the retina's different cell layers. The responses of the proposed model have similar behaviour to those of the visual cells: each channel has an optimum response corresponding to a given stimulus size which decreases for larger or smaller stimuli. This size is bigger for the magno path than for the parvo path and, in the end, both channels produce a magnifying of the borders of a stimulus

  12. Visual prosthesis wireless energy transfer system optimal modeling.

    Science.gov (United States)

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  13. Modeling DNA structure and processes through animation and kinesthetic visualizations

    Science.gov (United States)

    Hager, Christine

    There have been many studies regarding the effectiveness of visual aids that go beyond that of static illustrations. Many of these have been concentrated on the effectiveness of visual aids such as animations and models or even non-traditional visual aid activities like role-playing activities. This study focuses on the effectiveness of three different types of visual aids: models, animation, and a role-playing activity. Students used a modeling kit made of Styrofoam balls and toothpicks to construct nucleotides and then bond nucleotides together to form DNA. Next, students created their own animation to depict the processes of DNA replication, transcription, and translation. Finally, students worked in teams to build proteins while acting out the process of translation. Students were given a pre- and post-test that measured their knowledge and comprehension of the four topics mentioned above. Results show that there was a significant gain in the post-test scores when compared to the pre-test scores. This indicates that the incorporated visual aids were effective methods for teaching DNA structure and processes.

  14. Experimental validation of a Bayesian model of visual acuity.

    LENUS (Irish Health Repository)

    Dalimier, Eugénie

    2009-01-01

    Based on standard procedures used in optometry clinics, we compare measurements of visual acuity for 10 subjects (11 eyes tested) in the presence of natural ocular aberrations and different degrees of induced defocus, with the predictions given by a Bayesian model customized with aberrometric data of the eye. The absolute predictions of the model, without any adjustment, show good agreement with the experimental data, in terms of correlation and absolute error. The efficiency of the model is discussed in comparison with image quality metrics and other customized visual process models. An analysis of the importance and customization of each stage of the model is also given; it stresses the potential high predictive power from precise modeling of ocular and neural transfer functions.

  15. An Artificial Emotion Model For Visualizing Emotion of Characters

    OpenAIRE

    Junseok Ham; Chansun Jung; Junhyung Park; Jihye Ryeo; Ilju Ko

    2009-01-01

    It is hard to express emotion through only speech when we watch a character in a movie or a play because we cannot estimate the size, kind, and quantity of emotion. So this paper proposes an artificial emotion model for visualizing current emotion with color and location in emotion model. The artificial emotion model is designed considering causality of generated emotion, difference of personality, difference of continual emotional stimulus, and co-relation of various emo...

  16. Measuring and modeling salience with the theory of visual attention.

    Science.gov (United States)

    Krüger, Alexander; Tünnermann, Jan; Scharlau, Ingrid

    2017-08-01

    For almost three decades, the theory of visual attention (TVA) has been successful in mathematically describing and explaining a wide variety of phenomena in visual selection and recognition with high quantitative precision. Interestingly, the influence of feature contrast on attention has been included in TVA only recently, although it has been extensively studied outside the TVA framework. The present approach further develops this extension of TVA's scope by measuring and modeling salience. An empirical measure of salience is achieved by linking different (orientation and luminance) contrasts to a TVA parameter. In the modeling part, the function relating feature contrasts to salience is described mathematically and tested against alternatives by Bayesian model comparison. This model comparison reveals that the power function is an appropriate model of salience growth in the dimensions of orientation and luminance contrast. Furthermore, if contrasts from the two dimensions are combined, salience adds up additively.

  17. Visual Middle-Out Modeling of Problem Spaces

    DEFF Research Database (Denmark)

    Valente, Andrea

    2009-01-01

    Modeling is a complex and central activity in many domains. Domain experts and designers usually work by drawing and create models from the middle-out; however, visual and middle-out style modeling is poorly supported by software tools. In order to define a new class of software-based modeling...... tools, we propose a scenario and identify some requirements. Those requirements are contrasted against features of existing tools from various application domains, and the results show general lack of support for custom visualization and incremental knowledge specification, poor handling of temporal...... information, and little generative capabilities.Satisfaction of the requirements proved difficult, and our first two prototypes did not perform well. A new and streamlined prototype is currently under development: it should enable some useful form of middle-out modeling. Application domains will range from...

  18. Robust Visual Tracking via Exclusive Context Modeling

    KAUST Repository

    Zhang, Tianzhu

    2015-02-09

    In this paper, we formulate particle filter-based object tracking as an exclusive sparse learning problem that exploits contextual information. To achieve this goal, we propose the context-aware exclusive sparse tracker (CEST) to model particle appearances as linear combinations of dictionary templates that are updated dynamically. Learning the representation of each particle is formulated as an exclusive sparse representation problem, where the overall dictionary is composed of multiple {group} dictionaries that can contain contextual information. With context, CEST is less prone to tracker drift. Interestingly, we show that the popular L₁ tracker [1] is a special case of our CEST formulation. The proposed learning problem is efficiently solved using an accelerated proximal gradient method that yields a sequence of closed form updates. To make the tracker much faster, we reduce the number of learning problems to be solved by using the dual problem to quickly and systematically rank and prune particles in each frame. We test our CEST tracker on challenging benchmark sequences that involve heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that CEST consistently outperforms state-of-the-art trackers.

  19. Guidelines for visualizing and annotating rule-based models.

    Science.gov (United States)

    Chylek, Lily A; Hu, Bin; Blinov, Michael L; Emonet, Thierry; Faeder, James R; Goldstein, Byron; Gutenkunst, Ryan N; Haugh, Jason M; Lipniacki, Tomasz; Posner, Richard G; Yang, Jin; Hlavacek, William S

    2011-10-01

    Rule-based modeling provides a means to represent cell signaling systems in a way that captures site-specific details of molecular interactions. For rule-based models to be more widely understood and (re)used, conventions for model visualization and annotation are needed. We have developed the concepts of an extended contact map and a model guide for illustrating and annotating rule-based models. An extended contact map represents the scope of a model by providing an illustration of each molecule, molecular component, direct physical interaction, post-translational modification, and enzyme-substrate relationship considered in a model. A map can also illustrate allosteric effects, structural relationships among molecular components, and compartmental locations of molecules. A model guide associates elements of a contact map with annotation and elements of an underlying model, which may be fully or partially specified. A guide can also serve to document the biological knowledge upon which a model is based. We provide examples of a map and guide for a published rule-based model that characterizes early events in IgE receptor (FcεRI) signaling. We also provide examples of how to visualize a variety of processes that are common in cell signaling systems but not considered in the example model, such as ubiquitination. An extended contact map and an associated guide can document knowledge of a cell signaling system in a form that is visual as well as executable. As a tool for model annotation, a map and guide can communicate the content of a model clearly and with precision, even for large models.

  20. An insect-inspired model for visual binding I: learning objects and their characteristics.

    Science.gov (United States)

    Northcutt, Brandon D; Dyhr, Jonathan P; Higgins, Charles M

    2017-04-01

    Visual binding is the process of associating the responses of visual interneurons in different visual submodalities all of which are responding to the same object in the visual field. Recently identified neuropils in the insect brain termed optic glomeruli reside just downstream of the optic lobes and have an internal organization that could support visual binding. Working from anatomical similarities between optic and olfactory glomeruli, we have developed a model of visual binding based on common temporal fluctuations among signals of independent visual submodalities. Here we describe and demonstrate a neural network model capable both of refining selectivity of visual information in a given visual submodality, and of associating visual signals produced by different objects in the visual field by developing inhibitory neural synaptic weights representing the visual scene. We also show that this model is consistent with initial physiological data from optic glomeruli. Further, we discuss how this neural network model may be implemented in optic glomeruli at a neuronal level.

  1. Visualization of RNA structure models within the Integrative Genomics Viewer.

    Science.gov (United States)

    Busan, Steven; Weeks, Kevin M

    2017-07-01

    Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Elementary Teachers' Selection and Use of Visual Models

    Science.gov (United States)

    Lee, Tammy D.; Gail Jones, M.

    2018-02-01

    As science grows in complexity, science teachers face an increasing challenge of helping students interpret models that represent complex science systems. Little is known about how teachers select and use models when planning lessons. This mixed methods study investigated the pedagogical approaches and visual models used by elementary in-service and preservice teachers in the development of a science lesson about a complex system (e.g., water cycle). Sixty-seven elementary in-service and 69 elementary preservice teachers completed a card sort task designed to document the types of visual models (e.g., images) that teachers choose when planning science instruction. Quantitative and qualitative analyses were conducted to analyze the card sort task. Semistructured interviews were conducted with a subsample of teachers to elicit the rationale for image selection. Results from this study showed that both experienced in-service teachers and novice preservice teachers tended to select similar models and use similar rationales for images to be used in lessons. Teachers tended to select models that were aesthetically pleasing and simple in design and illustrated specific elements of the water cycle. The results also showed that teachers were not likely to select images that represented the less obvious dimensions of the water cycle. Furthermore, teachers selected visual models more as a pedagogical tool to illustrate specific elements of the water cycle and less often as a tool to promote student learning related to complex systems.

  3. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus...... on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification methods. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We...

  4. Low-rank and sparse modeling for visual analysis

    CERN Document Server

    Fu, Yun

    2014-01-01

    This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applic

  5. A human visual model-based approach of the visual attention and performance evaluation

    Science.gov (United States)

    Le Meur, Olivier; Barba, Dominique; Le Callet, Patrick; Thoreau, Dominique

    2005-03-01

    In this paper, a coherent computational model of visual selective attention for color pictures is described and its performances are precisely evaluated. The model based on some important behaviours of the human visual system is composed of four parts: visibility, perception, perceptual grouping and saliency map construction. This paper focuses mainly on its performances assessment by achieving extended subjective and objective comparisons with real fixation points captured by an eye-tracking system used by the observers in a task-free viewing mode. From the knowledge of the ground truth, qualitatively and quantitatively comparisons have been made in terms of the measurement of the linear correlation coefficient (CC) and of the Kulback Liebler divergence (KL). On a set of 10 natural color images, the results show that the linear correlation coefficient and the Kullback Leibler divergence are of about 0.71 and 0.46, respectively. CC and Kl measures with this model are respectively improved by about 4% and 7% compared to the best model proposed by L.Itti. Moreover, by comparing the ability of our model to predict eye movements produced by an average observer, we can conclude that our model succeeds quite well in predicting the spatial locations of the most important areas of the image content.

  6. A model of visual, aesthetic communication focusing on web sites

    DEFF Research Database (Denmark)

    Thorlacius, Lisbeth

    2002-01-01

    Theory books and method books within the field of web design mainly focus on the technical and functional aspects of the construction of web design. There is a lack of a model which weighs the analysis of the visual and aesthetic aspects against the the functional and technical aspects of web...... design. With a point of departure in Roman Jakobson's linguistic communication model, the reader is introduced to a model which covers the communication aspects, the visual aspects, the aesthetic aspects and the net specific aspects of the analysis of media products. The aesthetic aspects rank low...... in the eyes of the media producers even though the most outstanding media products often obtained their success due to aesthetic phenomena. The formal aesthetic function and the inexpressible aesthetic function have therefore been prioritised in the model in regard to the construction and analysis of media...

  7. Visual Modelling of Data Warehousing Flows with UML Profiles

    Science.gov (United States)

    Pardillo, Jesús; Golfarelli, Matteo; Rizzi, Stefano; Trujillo, Juan

    Data warehousing involves complex processes that transform source data through several stages to deliver suitable information ready to be analysed. Though many techniques for visual modelling of data warehouses from the static point of view have been devised, only few attempts have been made to model the data flows involved in a data warehousing process. Besides, each attempt was mainly aimed at a specific application, such as ETL, OLAP, what-if analysis, data mining. Data flows are typically very complex in this domain; for this reason, we argue, designers would greatly benefit from a technique for uniformly modelling data warehousing flows for all applications. In this paper, we propose an integrated visual modelling technique for data cubes and data flows. This technique is based on UML profiling; its feasibility is evaluated by means of a prototype implementation.

  8. Psyplot: Visualizing rectangular and triangular Climate Model Data with Python

    Science.gov (United States)

    Sommer, Philipp

    2016-04-01

    The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.

  9. Immersive Data Comprehension: Visualizing Uncertainty in Measurable Models

    Directory of Open Access Journals (Sweden)

    Pere eBrunet

    2015-09-01

    Full Text Available Recent advances in 3D scanning technologies have opened new possibilities in a broad range of applications includingcultural heritage, medicine, civil engineering and urban planning. Virtual Reality systems can provide new tools toprofessionals that want to understand acquired 3D models. In this paper, we review the concept of data comprehension with an emphasis on visualization and inspection tools on immersive setups. We claim that in most application fields, data comprehension requires model measurements which in turn should be based on the explicit visualization of uncertainty. As 3D digital representations are not faithful, information on their fidelity at local level should be included in the model itself as uncertainty bounds. We propose the concept of Measurable 3D Models as digital models that explicitly encode local uncertainty bounds related to their quality. We claim that professionals and experts can strongly benefit from immersive interaction through new specific, fidelity-aware measurement tools which can facilitate 3D data comprehension. Since noise and processing errors are ubiquitous in acquired datasets, we discuss the estimation, representation and visualization of data uncertainty. We show that, based on typical user requirements in Cultural Heritage and other domains, application-oriented measuring tools in 3D models must consider uncertainty and local error bounds. We also discuss the requirements of immersive interaction tools for the comprehension of huge 3D and nD datasets acquired from real objects.

  10. Encoding model of temporal processing in human visual cortex.

    Science.gov (United States)

    Stigliani, Anthony; Jeska, Brianna; Grill-Spector, Kalanit

    2017-12-19

    How is temporal information processed in human visual cortex? Visual input is relayed to V1 through segregated transient and sustained channels in the retina and lateral geniculate nucleus (LGN). However, there is intense debate as to how sustained and transient temporal channels contribute to visual processing beyond V1. The prevailing view associates transient processing predominately with motion-sensitive regions and sustained processing with ventral stream regions, while the opposing view suggests that both temporal channels contribute to neural processing beyond V1. Using fMRI, we measured cortical responses to time-varying stimuli and then implemented a two temporal channel-encoding model to evaluate the contributions of each channel. Different from the general linear model of fMRI that predicts responses directly from the stimulus, the encoding approach first models neural responses to the stimulus from which fMRI responses are derived. This encoding approach not only predicts cortical responses to time-varying stimuli from milliseconds to seconds but also, reveals differential contributions of temporal channels across visual cortex. Consistent with the prevailing view, motion-sensitive regions and adjacent lateral occipitotemporal regions are dominated by transient responses. However, ventral occipitotemporal regions are driven by both sustained and transient channels, with transient responses exceeding the sustained. These findings propose a rethinking of temporal processing in the ventral stream and suggest that transient processing may contribute to rapid extraction of the content of the visual input. Importantly, our encoding approach has vast implications, because it can be applied with fMRI to decipher neural computations in millisecond resolution in any part of the brain. Copyright © 2017 the Author(s). Published by PNAS.

  11. Interactive 4D Visualization of Sediment Transport Models

    Science.gov (United States)

    Butkiewicz, T.; Englert, C. M.

    2013-12-01

    Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the

  12. Designing visual displays and system models for safe reactor operations

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-12-31

    The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.

  13. Modelling the shape hierarchy for visually guided grasping

    Directory of Open Access Journals (Sweden)

    Omid eRezai

    2014-10-01

    Full Text Available The monkey anterior intraparietal area (AIP encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modelled shape tuning in visual AIP neurons and its relationship with curvature and gradient information from the caudal intraparietal area (CIP. The main goal was to gain insight into the kinds of shape parameterizations that can account for AIP tuning and that are consistent with both the inputs to AIP and the role of AIP in grasping. We first experimented with superquadric shape parameters. We considered superquadrics because they occupy a role in robotics that is similar to AIP, in that superquadric fits are derived from visual input and used for grasp planning. We also experimented with an alternative shape parameterization that was based on an Isomap dimension reduction of spatial derivatives of depth (i.e. distance from the observer to the object surface. We considered an Isomap-based model because its parameters lacked discontinuities between similar shapes. When we matched the dimension of the Isomap to the number of superquadric parameters, the superquadric model fit the AIP data somewhat more closely. However, higher-dimensional Isomaps provided excellent fits. Also, we found that the Isomap parameters could be approximated much more accurately than superquadric parameters by feedforward neural networks with CIP-like inputs. We conclude that Isomaps, or perhaps alternative dimension reductions of visual inputs to AIP, provide a promising model of AIP electrophysiology data. However (in contrast with superquadrics further work is needed to test whether such shape parameterizations actually provide an effective basis for grasp control.

  14. Designing visual displays and system models for safe reactor operations

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.

    1995-01-01

    The material presented in this paper is based on two studies involving the design of visual displays and the user's prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator's perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors

  15. Eksplorasi Pose dalam Pemotretan Model Melalui Kajian Visual Relief Karmawibhangga

    Directory of Open Access Journals (Sweden)

    Noor Latif CM

    2015-10-01

    Full Text Available Karmawibhangga Relief panel located at the foot of Borobudur is a relic of the visual artifacts that contains fragments of past life with a very high historical value. 160 Karmawibhangga panels tell the reality of people's lives at the time wrapped with a moral message plight. The relief provides a lot of visual references to be excavated and reconstructed again for the benefit of the creative industries today. This research digged one small part of the masterpieces of the past through photography. Understanding visual artists who create these reliefs will be beauty in the show gestures in building a very interesting story to be re-examined. Visual communication through gestures in relief Karmawibhangga enables new assumptions about body language dialect differences to current conditions. Through model genre photography, it is very useful in connection with the development of local nuanced scientific photography. Efforts to develop the traditions and culture through new media are expected to be creative commodity with a very strong product differentiation. 

  16. Modeling and Visualization of Human Activities for Multicamera Networks

    Directory of Open Access Journals (Sweden)

    Aswin C. Sankaranarayanan

    2009-01-01

    Full Text Available Multicamera networks are becoming complex involving larger sensing areas in order to capture activities and behavior that evolve over long spatial and temporal windows. This necessitates novel methods to process the information sensed by the network and visualize it for an end user. In this paper, we describe a system for modeling and on-demand visualization of activities of groups of humans. Using the prior knowledge of the 3D structure of the scene as well as camera calibration, the system localizes humans as they navigate the scene. Activities of interest are detected by matching models of these activities learnt a priori against the multiview observations. The trajectories and the activity index for each individual summarize the dynamic content of the scene. These are used to render the scene with virtual 3D human models that mimic the observed activities of real humans. In particular, the rendering framework is designed to handle large displays with a cluster of GPUs as well as reduce the cognitive dissonance by rendering realistic weather effects and illumination. We envision use of this system for immersive visualization as well as summarization of videos that capture group behavior.

  17. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    Science.gov (United States)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  18. Common and Innovative Visuals: A sparsity modeling framework for video.

    Science.gov (United States)

    Abdolhosseini Moghadam, Abdolreza; Kumar, Mrityunjay; Radha, Hayder

    2014-05-02

    Efficient video representation models are critical for many video analysis and processing tasks. In this paper, we present a framework based on the concept of finding the sparsest solution to model video frames. To model the spatio-temporal information, frames from one scene are decomposed into two components: (i) a common frame, which describes the visual information common to all the frames in the scene/segment, and (ii) a set of innovative frames, which depicts the dynamic behaviour of the scene. The proposed approach exploits and builds on recent results in the field of compressed sensing to jointly estimate the common frame and the innovative frames for each video segment. We refer to the proposed modeling framework by CIV (Common and Innovative Visuals). We show how the proposed model can be utilized to find scene change boundaries and extend CIV to videos from multiple scenes. Furthermore, the proposed model is robust to noise and can be used for various video processing applications without relying on motion estimation and detection or image segmentation. Results for object tracking, video editing (object removal, inpainting) and scene change detection are presented to demonstrate the efficiency and the performance of the proposed model.

  19. Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.

    Science.gov (United States)

    El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher

    2018-01-01

    Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

  20. An object-based visual attention model for robotic applications.

    Science.gov (United States)

    Yu, Yuanlong; Mann, George K I; Gosine, Raymond G

    2010-10-01

    By extending integrated competition hypothesis, this paper presents an object-based visual attention model, which selects one object of interest using low-dimensional features, resulting that visual perception starts from a fast attentional selection procedure. The proposed attention model involves seven modules: learning of object representations stored in a long-term memory (LTM), preattentive processing, top-down biasing, bottom-up competition, mediation between top-down and bottom-up ways, generation of saliency maps, and perceptual completion processing. It works in two phases: learning phase and attending phase. In the learning phase, the corresponding object representation is trained statistically when one object is attended. A dual-coding object representation consisting of local and global codings is proposed. Intensity, color, and orientation features are used to build the local coding, and a contour feature is employed to constitute the global coding. In the attending phase, the model preattentively segments the visual field into discrete proto-objects using Gestalt rules at first. If a task-specific object is given, the model recalls the corresponding representation from LTM and deduces the task-relevant feature(s) to evaluate top-down biases. The mediation between automatic bottom-up competition and conscious top-down biasing is then performed to yield a location-based saliency map. By combination of location-based saliency within each proto-object, the proto-object-based saliency is evaluated. The most salient proto-object is selected for attention, and it is finally put into the perceptual completion processing module to yield a complete object region. This model has been applied into distinct tasks of robots: detection of task-specific stationary and moving objects. Experimental results under different conditions are shown to validate this model.

  1. Visualization of Nonlinear Classification Models in Neuroimaging - Signed Sensitivity Maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Schmah, Tanya; Madsen, Kristoffer Hougaard

    2012-01-01

    Classification models are becoming increasing popular tools in the analysis of neuroimaging data sets. Besides obtaining good prediction accuracy, a competing goal is to interpret how the classifier works. From a neuroscientific perspective, we are interested in the brain pattern reflecting...... the underlying neural encoding of an experiment defining multiple brain states. In this relation there is a great desire for the researcher to generate brain maps, that highlight brain locations of importance to the classifiers decisions. Based on sensitivity analysis, we develop further procedures for model...... direction the individual locations influence the classification. We illustrate the visualization procedure on a real data from a simple functional magnetic resonance imaging experiment....

  2. ARTISTIC VISUALIZATION OF TRAJECTORY DATA USING CLOUD MODEL

    Directory of Open Access Journals (Sweden)

    T. Wu

    2017-09-01

    Full Text Available Rapid advance of location acquisition technologies boosts the generation of trajectory data, which track the traces of moving objects. A trajectory is typically represented by a sequence of timestamped geographical locations. Data visualization is an efficient means to represent distributions and structures of datasets and reveal hidden patterns in the data. In this paper, we explore a cloud model-based method for the generation of stylized renderings of trajectory data. The artistic visualizations of the proposed method do not have the goal to allow for data mining tasks or others but instead show the aesthetic effect of the traces of moving objects in a distorted manner. The techniques used to create the images of traces of moving objects include the uncertain line using extended cloud model, stroke-based rendering of geolocation in varying styles, and stylistic shading with aesthetic effects for print or electronic displays, as well as various parameters to be further personalized. The influence of different parameters on the aesthetic qualities of various painted images is investigated, including step size, types of strokes, colour modes, and quantitative comparisons using four aesthetic measures are also involved into the experiment. The experimental results suggest that the proposed method is with advantages of uncertainty, simplicity and effectiveness, and it would inspire professional graphic designers and amateur users who may be interested in playful and creative exploration of artistic visualization of trajectory data.

  3. Artistic Visualization of Trajectory Data Using Cloud Model

    Science.gov (United States)

    Wu, T.; Zhou, Y.; Zhang, L.

    2017-09-01

    Rapid advance of location acquisition technologies boosts the generation of trajectory data, which track the traces of moving objects. A trajectory is typically represented by a sequence of timestamped geographical locations. Data visualization is an efficient means to represent distributions and structures of datasets and reveal hidden patterns in the data. In this paper, we explore a cloud model-based method for the generation of stylized renderings of trajectory data. The artistic visualizations of the proposed method do not have the goal to allow for data mining tasks or others but instead show the aesthetic effect of the traces of moving objects in a distorted manner. The techniques used to create the images of traces of moving objects include the uncertain line using extended cloud model, stroke-based rendering of geolocation in varying styles, and stylistic shading with aesthetic effects for print or electronic displays, as well as various parameters to be further personalized. The influence of different parameters on the aesthetic qualities of various painted images is investigated, including step size, types of strokes, colour modes, and quantitative comparisons using four aesthetic measures are also involved into the experiment. The experimental results suggest that the proposed method is with advantages of uncertainty, simplicity and effectiveness, and it would inspire professional graphic designers and amateur users who may be interested in playful and creative exploration of artistic visualization of trajectory data.

  4. Visualization in hydrological and atmospheric modeling and observation

    Science.gov (United States)

    Helbig, C.; Rink, K.; Kolditz, O.

    2013-12-01

    In recent years, visualization of geoscientific and climate data has become increasingly important due to challenges such as climate change, flood prediction or the development of water management schemes for arid and semi-arid regions. Models for simulations based on such data often have a large number of heterogeneous input data sets, ranging from remote sensing data and geometric information (such as GPS data) to sensor data from specific observations sites. Data integration using such information is not straightforward and a large number of potential problems may occur due to artifacts, inconsistencies between data sets or errors based on incorrectly calibrated or stained measurement devices. Algorithms to automatically detect various of such problems are often numerically expensive or difficult to parameterize. In contrast, combined visualization of various data sets is often a surprisingly efficient means for an expert to detect artifacts or inconsistencies as well as to discuss properties of the data. Therefore, the development of general visualization strategies for atmospheric or hydrological data will often support researchers during assessment and preprocessing of the data for model setup. When investigating specific phenomena, visualization is vital for assessing the progress of the ongoing simulation during runtime as well as evaluating the plausibility of the results. We propose a number of such strategies based on established visualization methods that - are applicable to a large range of different types of data sets, - are computationally inexpensive to allow application for time-dependent data - can be easily parameterized based on the specific focus of the research. Examples include the highlighting of certain aspects of complex data sets using, for example, an application-dependent parameterization of glyphs, iso-surfaces or streamlines. In addition, we employ basic rendering techniques allowing affine transformations, changes in opacity as well

  5. Human visual modeling and image deconvolution by linear filtering

    International Nuclear Information System (INIS)

    Larminat, P. de; Barba, D.; Gerber, R.; Ronsin, J.

    1978-01-01

    The problem is the numerical restoration of images degraded by passing through a known and spatially invariant linear system, and by the addition of a stationary noise. We propose an improvement of the Wiener's filter to allow the restoration of such images. This improvement allows to reduce the important drawbacks of classical Wiener's filter: the voluminous data processing, the lack of consideration of the vision's characteristivs which condition the perception by the observer of the restored image. In a first paragraph, we describe the structure of the visual detection system and a modelling method of this system. In the second paragraph we explain a restoration method by Wiener filtering that takes the visual properties into account and that can be adapted to the local properties of the image. Then the results obtained on TV images or scintigrams (images obtained by a gamma-camera) are commented [fr

  6. SeiVis: An interactive visual subsurface modeling application

    KAUST Repository

    Hollt, Thomas

    2012-12-01

    The most important resources to fulfill today’s energy demands are fossil fuels, such as oil and natural gas. When exploiting hydrocarbon reservoirs, a detailed and credible model of the subsurface structures is crucial in order to minimize economic and ecological risks. Creating such a model is an inverse problem: reconstructing structures from measured reflection seismics. The major challenge here is twofold: First, the structures in highly ambiguous seismic data are interpreted in the time domain. Second, a velocity model has to be built from this interpretation to match the model to depth measurements from wells. If it is not possible to obtain a match at all positions, the interpretation has to be updated, going back to the first step. This results in a lengthy back and forth between the different steps, or in an unphysical velocity model in many cases. This paper presents a novel, integrated approach to interactively creating subsurface models from reflection seismics. It integrates the interpretation of the seismic data using an interactive horizon extraction technique based on piecewise global optimization with velocity modeling. Computing and visualizing the effects of changes to the interpretation and velocity model on the depth-converted model on the fly enables an integrated feedback loop that enables a completely new connection of the seismic data in time domain and well data in depth domain. Using a novel joint time/depth visualization, depicting side-by-side views of the original and the resulting depth-converted data, domain experts can directly fit their interpretation in time domain to spatial ground truth data. We have conducted a domain expert evaluation, which illustrates that the presented workflow enables the creation of exact subsurface models much more rapidly than previous approaches. © 2012 IEEE.

  7. SeiVis: An interactive visual subsurface modeling application

    KAUST Repository

    Hollt, Thomas; Freiler, Wolfgang; Gschwantner, Fritz M.; Doleisch, Helmut; Heinemann, Gabor F.; Hadwiger, Markus

    2012-01-01

    The most important resources to fulfill today’s energy demands are fossil fuels, such as oil and natural gas. When exploiting hydrocarbon reservoirs, a detailed and credible model of the subsurface structures is crucial in order to minimize economic and ecological risks. Creating such a model is an inverse problem: reconstructing structures from measured reflection seismics. The major challenge here is twofold: First, the structures in highly ambiguous seismic data are interpreted in the time domain. Second, a velocity model has to be built from this interpretation to match the model to depth measurements from wells. If it is not possible to obtain a match at all positions, the interpretation has to be updated, going back to the first step. This results in a lengthy back and forth between the different steps, or in an unphysical velocity model in many cases. This paper presents a novel, integrated approach to interactively creating subsurface models from reflection seismics. It integrates the interpretation of the seismic data using an interactive horizon extraction technique based on piecewise global optimization with velocity modeling. Computing and visualizing the effects of changes to the interpretation and velocity model on the depth-converted model on the fly enables an integrated feedback loop that enables a completely new connection of the seismic data in time domain and well data in depth domain. Using a novel joint time/depth visualization, depicting side-by-side views of the original and the resulting depth-converted data, domain experts can directly fit their interpretation in time domain to spatial ground truth data. We have conducted a domain expert evaluation, which illustrates that the presented workflow enables the creation of exact subsurface models much more rapidly than previous approaches. © 2012 IEEE.

  8. SeiVis: An Interactive Visual Subsurface Modeling Application.

    Science.gov (United States)

    Hollt, T; Freiler, W; Gschwantner, F; Doleisch, H; Heinemann, G; Hadwiger, M

    2012-12-01

    The most important resources to fulfill today's energy demands are fossil fuels, such as oil and natural gas. When exploiting hydrocarbon reservoirs, a detailed and credible model of the subsurface structures is crucial in order to minimize economic and ecological risks. Creating such a model is an inverse problem: reconstructing structures from measured reflection seismics. The major challenge here is twofold: First, the structures in highly ambiguous seismic data are interpreted in the time domain. Second, a velocity model has to be built from this interpretation to match the model to depth measurements from wells. If it is not possible to obtain a match at all positions, the interpretation has to be updated, going back to the first step. This results in a lengthy back and forth between the different steps, or in an unphysical velocity model in many cases. This paper presents a novel, integrated approach to interactively creating subsurface models from reflection seismics. It integrates the interpretation of the seismic data using an interactive horizon extraction technique based on piecewise global optimization with velocity modeling. Computing and visualizing the effects of changes to the interpretation and velocity model on the depth-converted model on the fly enables an integrated feedback loop that enables a completely new connection of the seismic data in time domain and well data in depth domain. Using a novel joint time/depth visualization, depicting side-by-side views of the original and the resulting depth-converted data, domain experts can directly fit their interpretation in time domain to spatial ground truth data. We have conducted a domain expert evaluation, which illustrates that the presented workflow enables the creation of exact subsurface models much more rapidly than previous approaches.

  9. An Integrated Biomechanical Model for Microgravity-Induced Visual Impairment

    Science.gov (United States)

    Nelson, Emily S.; Best, Lauren M.; Myers, Jerry G.; Mulugeta, Lealem

    2012-01-01

    When gravitational unloading occurs upon entry to space, astronauts experience a major shift in the distribution of their bodily fluids, with a net headward movement. Measurements have shown that intraocular pressure spikes, and there is a strong suspicion that intracranial pressure also rises. Some astronauts in both short- and long-duration spaceflight develop visual acuity changes, which may or may not reverse upon return to earth gravity. To date, of the 36 U.S. astronauts who have participated in long-duration space missions on the International Space Station, 15 crew members have developed minor to severe visual decrements and anatomical changes. These ophthalmic changes include hyperopic shift, optic nerve distension, optic disc edema, globe flattening, choroidal folds, and elevated cerebrospinal fluid pressure. In order to understand the physical mechanisms behind these phenomena, NASA is developing an integrated model that appropriately captures whole-body fluids transport through lumped-parameter models for the cerebrospinal and cardiovascular systems. This data feeds into a finite element model for the ocular globe and retrobulbar subarachnoid space through time-dependent boundary conditions. Although tissue models and finite element representations of the corneo-scleral shell, retina, choroid and optic nerve head have been integrated to study pathological conditions such as glaucoma, the retrobulbar subarachnoid space behind the eye has received much less attention. This presentation will describe the development and scientific foundation of our holistic model.

  10. Towards computer-based perception by modeling visual perception : A probalistic theory

    NARCIS (Netherlands)

    Ciftcioglu, O.; Bittermann, M.; Sariyildiz, S.

    2006-01-01

    Studies on computer-based perception by vision modelling are described. The visual perception is mathematically modelled where the model receives and interprets visual data from the environment. The perception is defined in probabilistic terms so that it is in the same way quantified. Human visual

  11. Model-base visual navigation of a mobile robot

    International Nuclear Information System (INIS)

    Roening, J.

    1992-08-01

    The thesis considers the problems of visual guidance of a mobile robot. A visual navigation system is formalized consisting of four basic components: world modelling, navigation sensing, navigation and action. According to this formalization an experimental system is designed and realized enabling real-world navigation experiments. A priori knowledge of the world is used for global path finding, aiding scene analysis and providing feedback information to the close the control loop between planned and actual movements. Two world models were developed. The first approach was a map-based model especially designed for low-level description of indoor environments. The other was a higher level and more symbolic representation of the surroundings utilizing the spatial graph concept. Two passive vision approaches were developed to extract navigation information. With passive three- camera stereovision a sparse depth map of the scene was produced. Another approach employed a fish-eye lens to map the entire scene of the surroundings without camera scanning. The local path planning of the system is supported by three-dimensional scene interpreter providing a partial understanding of scene contents. The interpreter consists of data-driven low-level stages and a model-driven high-level stage. Experiments were carried out in a simulator and test vehicle constructed in the laboratory. The test vehicle successfully navigated indoors

  12. Scientific Visualization & Modeling for Earth Systems Science Education

    Science.gov (United States)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  13. Flow visualization in models of high speed centrifugal separators

    International Nuclear Information System (INIS)

    Lagerstedt, T.; Nabo, O.

    1987-01-01

    The modern centrifugal separator is a fluid machine where the high ''G'' forces set up by rotation are utilized to separate phases of different densities. The fluid dynamics of the separator is complex and poorly known. Hundred years of (practical) experience has, however, turned the separator into an efficient machine. The present report shows how straight forward visualization experiments in model rigs provide valuable information on the flow inside the separator. The report concentrates on describing the flow between the closely spaced discs in a separator disc stack

  14. Enhanced learning through scale models and see-thru visualization

    International Nuclear Information System (INIS)

    Kelley, M.D.

    1987-01-01

    The development of PowerSafety International's See-Thru Power Plant has provided the nuclear industry with a bridge that can span the gap between the part-task simulator and the full-scope, high-fidelity plant simulator. The principle behind the See-Thru Power Plant is to provide the use of sensory experience in nuclear training programs. The See-Thru Power Plant is a scaled down, fully functioning model of a commercial nuclear power plant, equipped with a primary system, secondary system, and control console. The major components are constructed of glass, thus permitting visual conceptualization of a working nuclear power plant

  15. A review of visual MODFLOW applications in groundwater modelling

    Science.gov (United States)

    Hariharan, V.; Shankar, M. Uma

    2017-11-01

    Visual MODLOW is a Graphical User Interface for the USGS MODFLOW. It is a commercial software that is popular among the hydrogeologists for its user-friendly features. The software is mainly used for Groundwater flow and contaminant transport models under different conditions. This article is intended to review the versatility of its applications in groundwater modelling for the last 22 years. Agriculture, airfields, constructed wetlands, climate change, drought studies, Environmental Impact Assessment (EIA), landfills, mining operations, river and flood plain monitoring, salt water intrusion, soil profile surveys, watershed analyses, etc., are the areas where the software has been reportedly used till the current date. The review will provide a clarity on the scope of the software in groundwater modelling and research.

  16. Visualization of protein folding funnels in lattice models.

    Directory of Open Access Journals (Sweden)

    Antonio B Oliveira

    Full Text Available Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed.

  17. A Biophysical Neural Model To Describe Spatial Visual Attention

    International Nuclear Information System (INIS)

    Hugues, Etienne; Jose, Jorge V.

    2008-01-01

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations

  18. Creating Shared Mental Models: The Support of Visual Language

    Science.gov (United States)

    Landman, Renske B.; van den Broek, Egon L.; Gieskes, José F. B.

    Cooperative design involves multiple stakeholders that often hold different ideas of the problem, the ways to solve it, and to its solutions (i.e., mental models; MM). These differences can result in miscommunication, misunderstanding, slower decision making processes, and less chance on cooperative decisions. In order to facilitate the creation of a shared mental model (sMM), visual languages (VL) are often used. However, little scientific foundation is behind this choice. To determine whether or not this gut feeling is justified, a research was conducted in which various stakeholders had to cooperatively redesign a process chain, with and without VL. To determine whether or not a sMM was created, scores on agreement in individual MM, communication, and cooperation were analyzed. The results confirmed the assumption that VL can indeed play an important role in the creation of sMM and, hence, can aid the processes of cooperative design and engineering.

  19. Internal models and prediction of visual gravitational motion.

    Science.gov (United States)

    Zago, Myrka; McIntyre, Joseph; Senot, Patrice; Lacquaniti, Francesco

    2008-06-01

    Baurès et al. [Baurès, R., Benguigui, N., Amorim, M.-A., & Siegler, I. A. (2007). Intercepting free falling objects: Better use Occam's razor than internalize Newton's law. Vision Research, 47, 2982-2991] rejected the hypothesis that free-falling objects are intercepted using a predictive model of gravity. They argued instead for "a continuous guide for action timing" based on visual information updated till target capture. Here we show that their arguments are flawed, because they fail to consider the impact of sensori-motor delays on interception behaviour and the need for neural compensation of such delays. When intercepting a free-falling object, the delays can be overcome by a predictive model of the effects of gravity on target motion.

  20. Robustness Analysis of Visual QA Models by Basic Questions

    KAUST Repository

    Huang, Jia-Hong

    2017-09-14

    Visual Question Answering (VQA) models should have both high robustness and accuracy. Unfortunately, most of the current VQA research only focuses on accuracy because there is a lack of proper methods to measure the robustness of VQA models. There are two main modules in our algorithm. Given a natural language question about an image, the first module takes the question as input and then outputs the ranked basic questions, with similarity scores, of the main given question. The second module takes the main question, image and these basic questions as input and then outputs the text-based answer of the main question about the given image. We claim that a robust VQA model is one, whose performance is not changed much when related basic questions as also made available to it as input. We formulate the basic questions generation problem as a LASSO optimization, and also propose a large scale Basic Question Dataset (BQD) and Rscore (novel robustness measure), for analyzing the robustness of VQA models. We hope our BQD will be used as a benchmark for to evaluate the robustness of VQA models, so as to help the community build more robust and accurate VQA models.

  1. Robustness Analysis of Visual Question Answering Models by Basic Questions

    KAUST Repository

    Huang, Jia-Hong

    2017-11-01

    Visual Question Answering (VQA) models should have both high robustness and accuracy. Unfortunately, most of the current VQA research only focuses on accuracy because there is a lack of proper methods to measure the robustness of VQA models. There are two main modules in our algorithm. Given a natural language question about an image, the first module takes the question as input and then outputs the ranked basic questions, with similarity scores, of the main given question. The second module takes the main question, image and these basic questions as input and then outputs the text-based answer of the main question about the given image. We claim that a robust VQA model is one, whose performance is not changed much when related basic questions as also made available to it as input. We formulate the basic questions generation problem as a LASSO optimization, and also propose a large scale Basic Question Dataset (BQD) and Rscore (novel robustness measure), for analyzing the robustness of VQA models. We hope our BQD will be used as a benchmark for to evaluate the robustness of VQA models, so as to help the community build more robust and accurate VQA models.

  2. Robustness Analysis of Visual Question Answering Models by Basic Questions

    KAUST Repository

    Huang, Jia-Hong

    2017-01-01

    Visual Question Answering (VQA) models should have both high robustness and accuracy. Unfortunately, most of the current VQA research only focuses on accuracy because there is a lack of proper methods to measure the robustness of VQA models. There are two main modules in our algorithm. Given a natural language question about an image, the first module takes the question as input and then outputs the ranked basic questions, with similarity scores, of the main given question. The second module takes the main question, image and these basic questions as input and then outputs the text-based answer of the main question about the given image. We claim that a robust VQA model is one, whose performance is not changed much when related basic questions as also made available to it as input. We formulate the basic questions generation problem as a LASSO optimization, and also propose a large scale Basic Question Dataset (BQD) and Rscore (novel robustness measure), for analyzing the robustness of VQA models. We hope our BQD will be used as a benchmark for to evaluate the robustness of VQA models, so as to help the community build more robust and accurate VQA models.

  3. Robustness Analysis of Visual QA Models by Basic Questions

    KAUST Repository

    Huang, Jia-Hong; Alfadly, Modar; Ghanem, Bernard

    2017-01-01

    Visual Question Answering (VQA) models should have both high robustness and accuracy. Unfortunately, most of the current VQA research only focuses on accuracy because there is a lack of proper methods to measure the robustness of VQA models. There are two main modules in our algorithm. Given a natural language question about an image, the first module takes the question as input and then outputs the ranked basic questions, with similarity scores, of the main given question. The second module takes the main question, image and these basic questions as input and then outputs the text-based answer of the main question about the given image. We claim that a robust VQA model is one, whose performance is not changed much when related basic questions as also made available to it as input. We formulate the basic questions generation problem as a LASSO optimization, and also propose a large scale Basic Question Dataset (BQD) and Rscore (novel robustness measure), for analyzing the robustness of VQA models. We hope our BQD will be used as a benchmark for to evaluate the robustness of VQA models, so as to help the community build more robust and accurate VQA models.

  4. Experimental test of contemporary mathematical models of visual letter recognition.

    Science.gov (United States)

    Townsend, J T; Ashby, F G

    1982-12-01

    A letter confusion experiment that used brief durations manipulated payoffs across the four stimulus letters, which were composed of line segments equal in length. The observers were required to report the features they perceived as well as to give a letter response. The early feature-sampling process is separated from the later letter-decision process in the substantive feature models, and predictions are thus obtained for the frequencies of feature report as well as letter report. Four substantive visual feature-processing models are developed and tested against one another and against three models of a more descriptive nature. The substantive models predict the decisional letter report phase much better than they do the feature-sampling phase, but the best overall 4 X 4 letter confusion matrix fits are obtained with one of the descriptive models, the similarity choice model. The present and other recent results suggest that the assumption that features are sampled in a stochastically independent manner may not be generally valid. The traditional high-threshold conceptualization of feature sampling is also falsified by the frequent reporting by observers of features not contained in the stimulus letter.

  5. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex

    OpenAIRE

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and p...

  6. PopPlanner: Visually constructing demographic models for simulation

    Directory of Open Access Journals (Sweden)

    Gregory Bruce Ewing

    2015-04-01

    Full Text Available Currently there are a number of coalescent simulation programs that support a wide range of features, such as arbitrary demographic models, migration, and sub structure. Defining the model is done typically with either text files or command line switches. Although this has proven to be a powerful method of defining models of high complexity, it is often error prone and difficult to read without familiarity both with command lines and the program in question. A intuitive GUI based population structure program that can both read and write applicable command lines would dramatically simplify the construction, modification, and error checking of such models by a wider user base.Results: PopPlanner is a tool to both construct and inspect complicated demographic models visually with a GUI where the user’s primary interaction is through mouse gestures. Because of their popularity, we focus on ms and by extension msms, command line coalescent simulation programs. Our program can be used to find errors with existing command lines, or to build original command lines. Furthermore the graphical output supports a number of editing and output features including export of publication quality figures.

  7. Combined discriminative global and generative local models for visual tracking

    Science.gov (United States)

    Zhao, Liujun; Zhao, Qingjie; Chen, Yanming; Lv, Peng

    2016-03-01

    It is a challenging task to develop an effective visual tracking algorithm due to factors such as pose variation, rotation, and so on. Combined discriminative global and generative local appearance models are proposed to address this problem. Specifically, we develop a compact global object representation by extracting the low-frequency coefficients of the color and texture of the object based on two-dimensional discrete cosine transform. Then, with the global appearance representation, we learn a discriminative metric classifier in an online fashion to differentiate the target object from its background, which is very important to robustly indicate the changes in appearance. Second, we develop a new generative local model that exploits the scale invariant feature transform and its spatial geometric information. To make use of the advantages of the global discriminative model and the generative local model, we incorporate them into Bayesian inference framework. In this framework, the complementary models help the tracker locate the target more accurately. Furthermore, we use different mechanisms to update global and local templates to capture appearance changes. The experimental results demonstrate that the proposed approach performs favorably against state-of-the-art methods in terms of accuracy.

  8. Visualization and modeling of the hydrodynamics of an impinging microjet.

    Science.gov (United States)

    Bitziou, Eleni; Rudd, Nicola C; Edwards, Martin A; Unwin, Patrick R

    2006-03-01

    The use of fluorescence confocal laser scanning microscopy (CLSM) for flow visualization is described, with a focus on elucidating the pattern of flow in the microjet electrode (MJE). The MJE employs a nozzle, formed from a fine glass capillary, with an inner diameter of approximately 100 microm, to direct solution at an electrode surface, using high velocity but at moderate volume flow rates. For CLSM visualization, the jetted solution contains a fluorescent probe, fluorescein at high pH, which flows into a solution buffered at low pH, where the fluorescence is extinguished, thereby highlighting the flow field of the impinging microjet. The morphology of the microjet and the hydrodynamic boundary layer are shown to be highly sensitive to the volume flow rate, with a collimated jet and thin boundary layer formed at the faster flow rates (approximately 1 cm(3) min(-1)). In contrast, at lower flow rates and for relatively large substrates, an unusual recirculation zone is observed experimentally for the first time. This effect can be eliminated by employing small substrates. The experimental observations have been quantified through numerical solution of the Navier-Stokes equations of continuity and momentum balance. The new insights provided by CLSM imaging demonstrate that flow in the MJE, and impinging jets in general, are more complex than predicted by classical models but are well-defined and quantifiable.

  9. Moritz enhancements for visualization of complicated geometry models

    International Nuclear Information System (INIS)

    Van Riper, K. A.

    2009-01-01

    We describe new features implemented in the Moritz geometry editing and visualization program to enhance the accuracy and efficiency of viewing complex geometry models. The 3D display is based on OpenGL and requires conversion of the combinatorial surface and solid body geometry used by MCNP and other transport codes to a set of polygons. Calculation of those polygons can take many minutes for complex models. Once calculated, the polygons can be saved to a file and reused when the same or a derivative model is loaded; the file can be read and processed in under a second. A cell can be filled with a collection of other cells constituting a universe. A new option bypasses use of the filled cell's boundaries when calculating the polygons for the filling universe. This option, when applicable, speeds processing, improves the 3D image, and permits reuse of the universe's polygons when other cells are filled with transformed instances of the universe. Surfaces and solid bodies used in a cell description must be converted to polygons before calculating the polygonal representation of a cell; this conversion requires truncation of infinite surfaces. A new method for truncating transformed surfaces ensures the finite surface intersects the entire model. When a surface or solid body is processed in a cell description, an optional test detects when that object does not contribute additional polygons; if so, that object May be extraneous for the cell description. (authors)

  10. 3D modeling and visualization software for complex geometries

    International Nuclear Information System (INIS)

    Guse, Guenter; Klotzbuecher, Michael; Mohr, Friedrich

    2011-01-01

    The reactor safety depends on reliable nondestructive testing of reactor components. For 100% detection probability of flaws and the determination of their size using ultrasonic methods the ultrasonic waves have to hit the flaws within a specific incidence and squint angle. For complex test geometries like testing of nozzle welds from the outside of the component these angular ranges can only be determined using elaborate mathematical calculations. The authors developed a 3D modeling and visualization software tool that allows to integrate and present ultrasonic measuring data into the 3D geometry. The software package was verified using 1:1 test samples (example: testing of the nozzle edge of the feedwater nozzle of a steam generator from the outside; testing of the reactor pressure vessel nozzle edge from the inside).

  11. A self-organizing model of perisaccadic visual receptive field dynamics in primate visual and oculomotor system.

    Science.gov (United States)

    Mender, Bedeho M W; Stringer, Simon M

    2015-01-01

    We propose and examine a model for how perisaccadic visual receptive field dynamics, observed in a range of primate brain areas such as LIP, FEF, SC, V3, V3A, V2, and V1, may develop through a biologically plausible process of unsupervised visually guided learning. These dynamics are associated with remapping, which is the phenomenon where receptive fields anticipate the consequences of saccadic eye movements. We find that a neural network model using a local associative synaptic learning rule, when exposed to visual scenes in conjunction with saccades, can account for a range of associated phenomena. In particular, our model demonstrates predictive and pre-saccadic remapping, responsiveness shifts around the time of saccades, and remapping from multiple directions.

  12. KENO3D Visualization Tool for KENO V.a and KENO-VI Geometry Models

    International Nuclear Information System (INIS)

    Horwedel, J.E.; Bowman, S.M.

    2000-01-01

    Criticality safety analyses often require detailed modeling of complex geometries. Effective visualization tools can enhance checking the accuracy of these models. This report describes the KENO3D visualization tool developed at the Oak Ridge National Laboratory (ORNL) to provide visualization of KENO V.a and KENO-VI criticality safety models. The development of KENO3D is part of the current efforts to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system

  13. Integrated Visualization Environment for Science Mission Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will provide NASA with an integrated visualization environment providing greater insight and a more intuitive representation of large technical...

  14. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex.

    Science.gov (United States)

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  15. A mouse model of visual perceptual learning reveals alterations in neuronal coding and dendritic spine density in the visual cortex

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2016-03-01

    Full Text Available Visual perceptual learning (VPL can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS and a 55% gain in visual acuity (VA. Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1 than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  16. The development of hand-centred visual representations in the primate brain: a computer modelling study using natural visual scenes.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Galeazzi

    2015-12-01

    Full Text Available Neurons that respond to visual targets in a hand-centred frame of reference have been found within various areas of the primate brain. We investigate how hand-centred visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organisation. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localised receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localised receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centred receptive fields decreased their shape selectivity and started responding to a localised region of hand-centred space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localised, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.

  17. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    Science.gov (United States)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  18. Visual Environment for Rich Data Interpretation (VERDI) program for environmental modeling systems

    Science.gov (United States)

    VERDI is a flexible, modular, Java-based program used for visualizing multivariate gridded meteorology, emissions and air quality modeling data created by environmental modeling systems such as the CMAQ model and WRF.

  19. Modelling auditory attention: Insights from the Theory of Visual Attention (TVA)

    DEFF Research Database (Denmark)

    Roberts, K. L.; Andersen, Tobias; Kyllingsbæk, Søren

    modelled using a log-logistic function than an exponential function. A more challenging difference is that in the partial report task, there is more target-distractor confusion for auditory than visual stimuli. This failure of object-formation (prior to attentional object-selection) is not yet effectively......We report initial progress towards creating an auditory analogue of a mathematical model of visual attention: the ‘Theory of Visual Attention’ (TVA; Bundesen, 1990). TVA is one of the best established models of visual attention. It assumes that visual stimuli are initially processed in parallel......, and that there is a ‘race’ for selection and representation in visual short term memory (VSTM). In the basic TVA task, participants view a brief display of letters and are asked to report either all of the letters (whole report) or a subset of the letters (e.g., the red letters; partial report). Fitting the model...

  20. Software engineering methods for the visualization in the modeling of radiation imaging system

    International Nuclear Information System (INIS)

    Tang Jie; Zhang Li; Chen Zhiqiang; Zhao Ziran; XiaoYongshun

    2003-01-01

    This thesis has accomplished the research in visualization in the modeling of radiation imaging system, and a visualize software was developed using OpenGL and Visual C++ tools. It can load any model files, which are made by the user for every component of the radiation image system, and easily manages the module dynamic link library (DLL) designed by the user for possible movements of those components

  1. Visualization modeling of thin film growth in photodeposition processes

    International Nuclear Information System (INIS)

    Mirchin, N.; Sidi, M.; Muchnik, Y.; Peled, A.

    2003-01-01

    A computer visualization technique, which analyzes and predicts the spatio-temporal evolution of thin film deposition and growth processes is given. It relies on microscopy sampled or computer generated synthetic micrographs of particles. These are then simulated for deposition, aggregation and coagulation during thin film growth by frequency domain transform techniques. Particle sources and diffusion operators on surfaces are used to predict with high temporal resolution, unattained by real world microscopy the surface structure evolution as time samples and time movies. The simulation program was used to investigate deposition and diffusive profiles in photodeposition experiments, starting from initial synthetic micrographs based on real world scanning electron microscopy (SEM) images. The surface microstructure time 'tracking' scheme described here relies on transforming the original image of the deposited particles into a Fourier spatial frequency domain image. The physical models used are that of a material random deposition source and subsequent surface redistribution due to diffusion and other coalescence material surface flow mechanisms. The 2-D inverse Fourier transform (IFT) is finally used to obtain back the real space-time images representing the surface spatio-temporal films morphology changes. False color representation of the images allows for a better discrimination of the films growing details especially during the fast pre-compact thin film layer formation on the substrate

  2. Visualization modeling of thin film growth in photodeposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Mirchin, N.; Sidi, M.; Muchnik, Y.; Peled, A

    2003-03-15

    A computer visualization technique, which analyzes and predicts the spatio-temporal evolution of thin film deposition and growth processes is given. It relies on microscopy sampled or computer generated synthetic micrographs of particles. These are then simulated for deposition, aggregation and coagulation during thin film growth by frequency domain transform techniques. Particle sources and diffusion operators on surfaces are used to predict with high temporal resolution, unattained by real world microscopy the surface structure evolution as time samples and time movies. The simulation program was used to investigate deposition and diffusive profiles in photodeposition experiments, starting from initial synthetic micrographs based on real world scanning electron microscopy (SEM) images. The surface microstructure time 'tracking' scheme described here relies on transforming the original image of the deposited particles into a Fourier spatial frequency domain image. The physical models used are that of a material random deposition source and subsequent surface redistribution due to diffusion and other coalescence material surface flow mechanisms. The 2-D inverse Fourier transform (IFT) is finally used to obtain back the real space-time images representing the surface spatio-temporal films morphology changes. False color representation of the images allows for a better discrimination of the films growing details especially during the fast pre-compact thin film layer formation on the substrate.

  3. A Neural Network Model of the Visual Short-Term Memory

    DEFF Research Database (Denmark)

    Petersen, Anders; Kyllingsbæk, Søren; Hansen, Lars Kai

    2009-01-01

    In this paper a neural network model of Visual Short-Term Memory (VSTM) is presented. The model links closely with Bundesen’s (1990) well-established mathematical theory of visual attention. We evaluate the model’s ability to fit experimental data from a classical whole and partial report study...

  4. Consumer Control Points: Creating a Visual Food Safety Education Model for Consumers.

    Science.gov (United States)

    Schiffman, Carole B.

    Consumer education has always been a primary consideration in the prevention of food-borne illness. Using nutrition education and the new food guide as a model, this paper develops suggestions for a framework of microbiological food safety principles and a compatible visual model for communicating key concepts. Historically, visual food guides in…

  5. Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model.

    Science.gov (United States)

    Fang, Yuming; Zhang, Chi; Li, Jing; Lei, Jianjun; Perreira Da Silva, Matthieu; Le Callet, Patrick

    2017-10-01

    In this paper, we investigate the visual attention modeling for stereoscopic video from the following two aspects. First, we build one large-scale eye tracking database as the benchmark of visual attention modeling for stereoscopic video. The database includes 47 video sequences and their corresponding eye fixation data. Second, we propose a novel computational model of visual attention for stereoscopic video based on Gestalt theory. In the proposed model, we extract the low-level features, including luminance, color, texture, and depth, from discrete cosine transform coefficients, which are used to calculate feature contrast for the spatial saliency computation. The temporal saliency is calculated by the motion contrast from the planar and depth motion features in the stereoscopic video sequences. The final saliency is estimated by fusing the spatial and temporal saliency with uncertainty weighting, which is estimated by the laws of proximity, continuity, and common fate in Gestalt theory. Experimental results show that the proposed method outperforms the state-of-the-art stereoscopic video saliency detection models on our built large-scale eye tracking database and one other database (DML-ITRACK-3D).

  6. Visual service scape aesthetics and consumer response : a holistic model

    OpenAIRE

    Kumar, DS; Purani, K; Sahadev, S

    2017-01-01

    The paper looks at the impact of visual servicescapes at consumer preferences. Using an experimental methodology, we try to understand the imapct of different servicescape aesthetic dimensions on emotional and congnitive responses of customers.

  7. Using Pupillometry to Characterize Visual Perception in Autistic Mouse Models

    OpenAIRE

    Patel, Chirag B; Kissinger, Samuel T; Pak, Alexandr; DiCola, Nicholas; Chubkyin, Alexander A

    2016-01-01

    Fragile X syndrome (FXS) is the leading genetic cause of autism. Individuals with Fragile X Syndrome (FXS) commonly display social, behavioral, and intellectual disabilities. Perceptual deficits and their underlying neural activity remain poorly characterized in FXS and other autism spectrum disorders (ASD’s). To explore visual perception in autism, we developed camera based pupil tracking software using OpenCV (an open-source computer vision library) capable of measuring visually evoked chan...

  8. Digital representations of the real world how to capture, model, and render visual reality

    CERN Document Server

    Magnor, Marcus A; Sorkine-Hornung, Olga; Theobalt, Christian

    2015-01-01

    Create Genuine Visual Realism in Computer Graphics Digital Representations of the Real World: How to Capture, Model, and Render Visual Reality explains how to portray visual worlds with a high degree of realism using the latest video acquisition technology, computer graphics methods, and computer vision algorithms. It explores the integration of new capture modalities, reconstruction approaches, and visual perception into the computer graphics pipeline.Understand the Entire Pipeline from Acquisition, Reconstruction, and Modeling to Realistic Rendering and ApplicationsThe book covers sensors fo

  9. Hierarchical and Matrix Structures in a Large Organizational Email Network: Visualization and Modeling Approaches

    OpenAIRE

    Sims, Benjamin H.; Sinitsyn, Nikolai; Eidenbenz, Stephan J.

    2014-01-01

    This paper presents findings from a study of the email network of a large scientific research organization, focusing on methods for visualizing and modeling organizational hierarchies within large, complex network datasets. In the first part of the paper, we find that visualization and interpretation of complex organizational network data is facilitated by integration of network data with information on formal organizational divisions and levels. By aggregating and visualizing email traffic b...

  10. A New Conceptual Model for Business Ecosystem Visualization and Analysis

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Hupsel Vaz

    2013-01-01

    Full Text Available This study has the objective of plotting the effects of network externalities and superstar software for the visualization and analysis of industry ecosystems. The output is made possible by gathering sales from a tracking website, associating each sale to a single consumer and by using a network visualization software. The result is a graph that shows strategic positioning of publishers and platforms, serving as a strategic tool for both academics and professionals. The approach is scalable to other industries and can be used to support analysis on mergers, acquisitions and alliances.

  11. Linear and quadrature models for data from treshold measurements of the transient visual system

    NARCIS (Netherlands)

    Brinker, den A.C.

    1986-01-01

    III this paper two models are considered for the transient visual system at threshold. One is a linear model and the other a model contain ing a quadrature element. Both models are commonly used on evidence from different experimental sources. It is shown that both models act in a similar fashion

  12. Adapting the Theory of Visual Attention (TVA) to model auditory attention

    DEFF Research Database (Denmark)

    Roberts, Katherine L.; Andersen, Tobias; Kyllingsbæk, Søren

    Mathematical and computational models have provided useful insights into normal and impaired visual attention, but less progress has been made in modelling auditory attention. We are developing a Theory of Auditory Attention (TAA), based on an influential visual model, the Theory of Visual...... Attention (TVA). We report that TVA provides a good fit to auditory data when the stimuli are closely matched to those used in visual studies. In the basic visual TVA task, participants view a brief display of letters and are asked to report either all of the letters (whole report) or a subset of letters (e...... the auditory data, producing good estimates of the rate at which information is encoded (C), the minimum exposure duration required for processing to begin (t0), and the relative attentional weight to targets versus distractors (α). Future work will address the issue of target-distractor confusion, and extend...

  13. JVIEW Visualization for Virtual Airspace Modeling and Simulation

    Science.gov (United States)

    2009-04-01

    23  4.2.2  Translucency ................................................................................................................. 25  4.3... Translucency Used to Display Multiple Visualization Elements .............................. 26  Figure 26 - Textual Labels Feature...been done by Jason Moore and other AFRL/RISF staff and support personnel developing the JView API. JView relies on concrete Object Oriented Design

  14. Visual reconciliation of alternative similarity spaces in climate modeling

    Science.gov (United States)

    J Poco; A Dasgupta; Y Wei; William Hargrove; C.R. Schwalm; D.N. Huntzinger; R Cook; E Bertini; C.T. Silva

    2015-01-01

    Visual data analysis often requires grouping of data objects based on their similarity. In many application domains researchers use algorithms and techniques like clustering and multidimensional scaling to extract groupings from data. While extracting these groups using a single similarity criteria is relatively straightforward, comparing alternative criteria poses...

  15. Advancing Creative Visual Thinking with Constructive Function-Based Modelling

    Science.gov (United States)

    Pasko, Alexander; Adzhiev, Valery; Malikova, Evgeniya; Pilyugin, Victor

    2013-01-01

    Modern education technologies are destined to reflect the realities of a modern digital age. The juxtaposition of real and synthetic (computer-generated) worlds as well as a greater emphasis on visual dimension are especially important characteristics that have to be taken into account in learning and teaching. We describe the ways in which an…

  16. Testing a Conceptual Change Model Framework for Visual Data

    Science.gov (United States)

    Finson, Kevin D.; Pedersen, Jon E.

    2015-01-01

    An emergent data analysis technique was employed to test the veracity of a conceptual framework constructed around visual data use and instruction in science classrooms. The framework incorporated all five key components Vosniadou (2007a, 2007b) described as existing in a learner's schema: framework theory, presuppositions, conceptual domains,…

  17. Relevance Theory as model for analysing visual and multimodal communication

    NARCIS (Netherlands)

    Forceville, C.; Machin, D.

    2014-01-01

    Elaborating on my earlier work (Forceville 1996: chapter 5, 2005, 2009; see also Yus 2008), I will here sketch how discussions of visual and multimodal discourse can be embedded in a more general theory of communication and cognition: Sperber and Wilson’s Relevance Theory/RT (Sperber and Wilson

  18. Visualizing project management: models and frameworks for mastering complex systems

    National Research Council Canada - National Science Library

    Forsberg, Kevin; Mooz, Hal; Cotterman, Howard

    2005-01-01

    ...- and beyond that on parameters such as return on investment, market acceptance, or sustainability. Anyone who has lived with the space program, or any other hightech industrial product development, can immediately appreciate this acclaimed book. It addresses and "visualizes" the multidimensional interactions of project management and systems engineering i...

  19. A picture is worth a thousand words: helping students visualize a conceptual model.

    Science.gov (United States)

    Johnson, S E

    1989-01-01

    Communicating the functional applicability of a conceptual framework to nursing students can be a challenge of considerable magnitude. Nurse educators are convinced that nursing practice and process should stem from theory. However, when attempting to teach this, many educators have struggled with the expressions of confused, skeptical students. To provide a better understanding of a nursing model, the author uses a visual representation of the Neuman Systems Model variables. The student can then visualize application of the Model to nursing practice.

  20. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model

    OpenAIRE

    Zoulinakis, Georgios; Ferrer-Blasco, Teresa

    2017-01-01

    Purpose. To design an intraocular telescopic system (ITS) for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses’ placement in the eye model and their powers. Ray tracing in bot...

  1. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    Science.gov (United States)

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  2. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling

    International Nuclear Information System (INIS)

    2010-01-01

    In the Phase I SBIR we proposed a ParaView-based solution to provide an environment for individuals to actively collaborate in the visualization process. The technical objectives of Phase I were: (1) to determine the set of features required for an effect collaborative system; (2) to implement a two-person collaborative prototype; and (3) to implement key collaborative features such as control locking and annotation. Accordingly, we implemented a ParaView-based collaboration prototype with support for collaborating with up to four simultaneous clients. We also implemented collaborative features such as control locking, chatting, annotation etc. Due to in part of the flexibility provided by the ParaView framework and the design features implemented in the prototype, we were able to support collaboration with multiple views, instead of a simple give as initially proposed in Phase I. In this section we will summarize the results we obtained during the Phase I project. ParaView is complex, scalable, client-server application framework built on top of the VTK visualization engine. During the implementation of the Phase I prototype, we realized that the ParaView framework naturally supports collaboration technology; hence we were able to go beyond the proposed Phase I prototype in several ways. For example, we were able to support for multiple views, enable server-as well as client-side rendering, and manage up to four heterogeneous clients. The success we achieved with Phase I clearly demonstrated the technical feasibility of the ParaView based collaborative framework we are proposing in the Phase II effort. We also investigated using the web browser as one of the means of participating in a collaborative session. This would enable non-visualization experts to participate in the collaboration process without being intimidated by a complex application such as ParaView. Hence we also developed a prototype web visualization applet that makes it possible for interactive

  3. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Schussman, Greg; /SLAC

    2010-08-25

    In the Phase I SBIR we proposed a ParaView-based solution to provide an environment for individuals to actively collaborate in the visualization process. The technical objectives of Phase I were: (1) to determine the set of features required for an effect collaborative system; (2) to implement a two-person collaborative prototype; and (3) to implement key collaborative features such as control locking and annotation. Accordingly, we implemented a ParaView-based collaboration prototype with support for collaborating with up to four simultaneous clients. We also implemented collaborative features such as control locking, chatting, annotation etc. Due to in part of the flexibility provided by the ParaView framework and the design features implemented in the prototype, we were able to support collaboration with multiple views, instead of a simple give as initially proposed in Phase I. In this section we will summarize the results we obtained during the Phase I project. ParaView is complex, scalable, client-server application framework built on top of the VTK visualization engine. During the implementation of the Phase I prototype, we realized that the ParaView framework naturally supports collaboration technology; hence we were able to go beyond the proposed Phase I prototype in several ways. For example, we were able to support for multiple views, enable server-as well as client-side rendering, and manage up to four heterogeneous clients. The success we achieved with Phase I clearly demonstrated the technical feasibility of the ParaView based collaborative framework we are proposing in the Phase II effort. We also investigated using the web browser as one of the means of participating in a collaborative session. This would enable non-visualization experts to participate in the collaboration process without being intimidated by a complex application such as ParaView. Hence we also developed a prototype web visualization applet that makes it possible for interactive

  4. Visual Similarity of Words Alone Can Modulate Hemispheric Lateralization in Visual Word Recognition: Evidence From Modeling Chinese Character Recognition.

    Science.gov (United States)

    Hsiao, Janet H; Cheung, Kit

    2016-03-01

    In Chinese orthography, the most common character structure consists of a semantic radical on the left and a phonetic radical on the right (SP characters); the minority, opposite arrangement also exists (PS characters). Recent studies showed that SP character processing is more left hemisphere (LH) lateralized than PS character processing. Nevertheless, it remains unclear whether this is due to phonetic radical position or character type frequency. Through computational modeling with artificial lexicons, in which we implement a theory of hemispheric asymmetry in perception but do not assume phonological processing being LH lateralized, we show that the difference in character type frequency alone is sufficient to exhibit the effect that the dominant type has a stronger LH lateralization than the minority type. This effect is due to higher visual similarity among characters in the dominant type than the minority type, demonstrating the modulation of visual similarity of words on hemispheric lateralization. Copyright © 2015 Cognitive Science Society, Inc.

  5. Robotic Detection of Marine Litter Using Deep Visual Detection Models

    OpenAIRE

    Fulton, Michael; Hong, Jungseok; Islam, Md Jahidul; Sattar, Junaed

    2018-01-01

    Trash deposits in aquatic environments have a destructive effect on marine ecosystems and pose a long-term economic and environmental threat. Autonomous underwater vehicles (AUVs) could very well contribute to the solution of this problem by finding and eventually removing trash. A step towards this goal is the successful detection of trash in underwater environments. This paper evaluates a number of deep-learning algorithms to the task of visually detecting trash in realistic underwater envi...

  6. Realistic Avatar Eye and Head Animation Using a Neurobiological Model of Visual Attention

    National Research Council Canada - National Science Library

    Itti, L; Dhavale, N; Pighin, F

    2003-01-01

    We describe a neurobiological model of visual attention and eye/head movements in primates, and its application to the automatic animation of a realistic virtual human head watching an unconstrained...

  7. Introduction to Information Visualization (InfoVis) Techniques for Model-Based Systems Engineering

    Science.gov (United States)

    Sindiy, Oleg; Litomisky, Krystof; Davidoff, Scott; Dekens, Frank

    2013-01-01

    This paper presents insights that conform to numerous system modeling languages/representation standards. The insights are drawn from best practices of Information Visualization as applied to aerospace-based applications.

  8. Bio-inspired modeling and implementation of the ocelli visual system of flying insects.

    Science.gov (United States)

    Gremillion, Gregory; Humbert, J Sean; Krapp, Holger G

    2014-12-01

    Two visual sensing modalities in insects, the ocelli and compound eyes, provide signals used for flight stabilization and navigation. In this article, a generalized model of the ocellar visual system is developed for a 3-D visual simulation environment based on behavioral, anatomical, and electrophysiological data from several species. A linear measurement model is estimated from Monte Carlo simulation in a cluttered urban environment relating state changes of the vehicle to the outputs of the ocellar model. A fully analog-printed circuit board sensor based on this model is designed and fabricated. Open-loop characterization of the sensor to visual stimuli induced by self motion is performed. Closed-loop stabilizing feedback of the sensor in combination with optic flow sensors is implemented onboard a quadrotor micro-air vehicle and its impulse response is characterized.

  9. Bio-physically plausible visualization of highly scattering fluorescent neocortical models for in silico experimentation

    KAUST Repository

    Abdellah, Marwan; Bilgili, Ahmet; Eilemann, Stefan; Shillcock, Julian; Markram, Henry; Schü rmann, Felix

    2017-01-01

    to visualize the results of their virtual experiments that are performed in computer simulations, or in silico. The impact of the presented pipeline opens novel avenues for assisting the neuroscientists to build biologically accurate models of the brain

  10. Visual Representation in GENESIS as a tool for Physical Modeling, Sound Synthesis and Musical Composition

    OpenAIRE

    Villeneuve, Jérôme; Cadoz, Claude; Castagné, Nicolas

    2015-01-01

    The motivation of this paper is to highlight the importance of visual representations for artists when modeling and simulating mass-interaction physical networks in the context of sound synthesis and musical composition. GENESIS is a musician-oriented software environment for sound synthesis and musical composition. However, despite this orientation, a substantial amount of effort has been put into building a rich variety of tools based on static or dynamic visual representations of models an...

  11. Sparse representation, modeling and learning in visual recognition theory, algorithms and applications

    CERN Document Server

    Cheng, Hong

    2015-01-01

    This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: provides a thorough introduction to the fundamentals of sparse representation, modeling and learning, and the application of these techniques in visual recognition; describes sparse recovery approaches, robust and efficient sparse represen

  12. Visual fatigue modeling for stereoscopic video shot based on camera motion

    Science.gov (United States)

    Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing

    2014-11-01

    As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.

  13. A biologically inspired neural model for visual and proprioceptive integration including sensory training.

    Science.gov (United States)

    Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi

    2013-12-01

    Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model

  14. A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements.

    Science.gov (United States)

    Mohsenzadeh, Yalda; Dash, Suryadeep; Crawford, J Douglas

    2016-01-01

    In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks.

  15. Google SketchUp Workshop Modeling, Visualizing, and Illustrating

    CERN Document Server

    Brixius, Laurent

    2010-01-01

    Discover the secrets of the Google SketchUp with the 16 real-world professional-level projects including parks, structures, concept art, and illustration. Google SketchUp Workshop includes all the wide variety of projects that SketchUp can be used for-architectural visualization, landscape design, video game and film conception, and more. SketchUp masters in every field will get you up to speed in this agile and intuitive software and then show you the real uses with through projects in architecture, engineering, and design. * Packed with 16 real-world Go

  16. Interactive Scientific Visualization in 3D Virtual Reality Model

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2016-11-01

    Full Text Available Scientific visualization in technology of virtual reality is a graphical representation of virtual environment in the form of images or animation that can be displayed with various devices such as Head Mounted Display (HMD or monitors that can view threedimensional world. Research in real time is a desirable capability for scientific visualization and virtual reality in which we are immersed and make the research process easier. In this scientific paper the interaction between the user and objects in the virtual environment аrе in real time which gives a sense of reality to the user. Also, Quest3D VR software package is used and the movement of the user through the virtual environment, the impossibility to walk through solid objects, methods for grabbing objects and their displacement are programmed and all interactions between them will be possible. At the end some critical analysis were made on all of these techniques on various computer systems and excellent results were obtained.

  17. Slushy weightings for the optimal pilot model. [considering visual tracking task

    Science.gov (United States)

    Dillow, J. D.; Picha, D. G.; Anderson, R. O.

    1975-01-01

    A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.

  18. Visualization of landscape changes and threatening environmental processes using a digital landscape model

    International Nuclear Information System (INIS)

    Svatonova, H; Rybansky, M

    2014-01-01

    Visualizations supported by new geoinformation technologies prove to be appropriate tools for presenting and sharing the research results by professional and general public. The object of the research was to evaluate the benefits of visualizations for the nonexpert users. The subject of evaluation was: the success rate of interpreting the information; forming of a realistic idea of the unknown landscape; and the preference of the users during selection of the appropriate visualization for the purpose of solving the task. The tasks concerned: assessing the current situation and changes of the landscape; assessing the erosion in the landscape; and the ways of their visualizing. To prepare and process the landscape visualizations, it was necessary to select areas that allow tracking of land use changes and representative environmental processes. Then the digital landscape model was created and a number of visualizations were generated. The results of visualization testing show that the users prefer maps to orthophotos, they are able to formulate correct statements concerning the landscape with the help of visualizations, and that the simulated fly throughs represent a very suitable tool supporting formation of a realistic ideas about the landscape

  19. Ocean Modeling and Visualization on Massively Parallel Computer

    Science.gov (United States)

    Chao, Yi; Li, P. Peggy; Wang, Ping; Katz, Daniel S.; Cheng, Benny N.

    1997-01-01

    Climate modeling is one of the grand challenges of computational science, and ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change.

  20. VMQL: A Visual Language for Ad-Hoc Model Querying

    DEFF Research Database (Denmark)

    Störrle, Harald

    2011-01-01

    In large scale model based development, analysis level models are more like knowledge bases than engineering artifacts. Their effectiveness depends, to a large degree, on the ability of domain experts to retrieve information from them ad hoc. For large scale models, however, existing query...

  1. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning.

    Science.gov (United States)

    Bonaccorsi, Joyce; Berardi, Nicoletta; Sale, Alessandro

    2014-01-01

    Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1-5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat.

  2. Feature Fusion Based Audio-Visual Speaker Identification Using Hidden Markov Model under Different Lighting Variations

    Directory of Open Access Journals (Sweden)

    Md. Rabiul Islam

    2014-01-01

    Full Text Available The aim of the paper is to propose a feature fusion based Audio-Visual Speaker Identification (AVSI system with varied conditions of illumination environments. Among the different fusion strategies, feature level fusion has been used for the proposed AVSI system where Hidden Markov Model (HMM is used for learning and classification. Since the feature set contains richer information about the raw biometric data than any other levels, integration at feature level is expected to provide better authentication results. In this paper, both Mel Frequency Cepstral Coefficients (MFCCs and Linear Prediction Cepstral Coefficients (LPCCs are combined to get the audio feature vectors and Active Shape Model (ASM based appearance and shape facial features are concatenated to take the visual feature vectors. These combined audio and visual features are used for the feature-fusion. To reduce the dimension of the audio and visual feature vectors, Principal Component Analysis (PCA method is used. The VALID audio-visual database is used to measure the performance of the proposed system where four different illumination levels of lighting conditions are considered. Experimental results focus on the significance of the proposed audio-visual speaker identification system with various combinations of audio and visual features.

  3. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning

    Science.gov (United States)

    Bonaccorsi, Joyce; Berardi, Nicoletta; Sale, Alessandro

    2014-01-01

    Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1–5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat. PMID:25076874

  4. A GUI visualization system for airborne lidar image data to reconstruct 3D city model

    Science.gov (United States)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2015-10-01

    A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.

  5. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.

    Science.gov (United States)

    Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin

    2018-01-01

    We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.

  6. Choosing colors for map display icons using models of visual search.

    Science.gov (United States)

    Shive, Joshua; Francis, Gregory

    2013-04-01

    We show how to choose colors for icons on maps to minimize search time using predictions of a model of visual search. The model analyzes digital images of a search target (an icon on a map) and a search display (the map containing the icon) and predicts search time as a function of target-distractor color distinctiveness and target eccentricity. We parameterized the model using data from a visual search task and performed a series of optimization tasks to test the model's ability to choose colors for icons to minimize search time across icons. Map display designs made by this procedure were tested experimentally. In a follow-up experiment, we examined the model's flexibility to assign colors in novel search situations. The model fits human performance, performs well on the optimization tasks, and can choose colors for icons on maps with novel stimuli to minimize search time without requiring additional model parameter fitting. Models of visual search can suggest color choices that produce search time reductions for display icons. Designers should consider constructing visual search models as a low-cost method of evaluating color assignments.

  7. Plant Growth Modeling Using L-System Approach and Its Visualization

    Directory of Open Access Journals (Sweden)

    Atris Suyantohadi

    2011-05-01

    Full Text Available The visualizationof plant growth modeling using computer simulation has rarely been conducted with Lindenmayer System (L-System approach. L-System generally has been used as framework for improving and designing realistic modeling on plant growth. It is one kind of tools for representing plant growth based on grammar sintax and mathematic formulation. This research aimed to design modeling and visualizing plant growth structure generated using L-System. The environment on modeling design used three dimension graphic on standart OpenGL format. The visualization on system design has been developed by some of L-System grammar, and the output graphic on three dimension reflected on plant growth as a virtual plant growth system. Using some of samples on grammar L-System rules for describing of the charaterictics of plant growth, the visualization of structure on plant growth has been resulted and demonstrated.

  8. Visual plumes coastal dispersion modeling in southwest Sabah ...

    African Journals Online (AJOL)

    In theory, the dilution capacity of open waters, particularly coastal areas, straits and oceans are enormous. This means that for surface and sub-merged ... Prior to the modeling exercise, field data pertaining to ambient water quality, hydraulic characteristics and tide patterns were collected. The modeling results indicated that ...

  9. Fluorescence Imaging and Streamline Visualization of Hypersonic Flow over Rapid Prototype Wind-Tunnel Models

    Science.gov (United States)

    Danehy, Paul M.; Alderfer, David W.; Inman, Jennifer A.; Berger, Karen T.; Buck, Gregory M.; Schwartz, Richard J.

    2008-01-01

    Reentry models for use in hypersonic wind tunnel tests were fabricated using a stereolithography apparatus. These models were produced in one day or less, which is a significant time savings compared to the manufacture of ceramic or metal models. The models were tested in the NASA Langley Research Center 31-Inch Mach 10 Air Tunnel. Only a few of the models survived repeated tests in the tunnel, and several failure modes of the models were identified. Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the flowfields in the wakes of these models. Pure NO was either seeded through tubes plumbed into the model or via a tube attached to the strut holding the model, which provided localized addition of NO into the model s wake through a porous metal cylinder attached to the end of the tube. Models included several 2- inch diameter Inflatable Reentry Vehicle Experiment (IRVE) models and 5-inch diameter Crew Exploration Vehicle (CEV) models. Various model configurations and NO seeding methods were used, including a new streamwise visualization method based on PLIF. Virtual Diagnostics Interface (ViDI) technology, developed at NASA Langley Research Center, was used to visualize the data sets in post processing. The use of calibration "dotcards" was investigated to correct for camera perspective and lens distortions in the PLIF images.

  10. Visualizing projected Climate Changes - the CMIP5 Multi-Model Ensemble

    Science.gov (United States)

    Böttinger, Michael; Eyring, Veronika; Lauer, Axel; Meier-Fleischer, Karin

    2017-04-01

    Large ensembles add an additional dimension to climate model simulations. Internal variability of the climate system can be assessed for example by multiple climate model simulations with small variations in the initial conditions or by analyzing the spread in large ensembles made by multiple climate models under common protocols. This spread is often used as a measure of uncertainty in climate projections. In the context of the fifth phase of the WCRP's Coupled Model Intercomparison Project (CMIP5), more than 40 different coupled climate models were employed to carry out a coordinated set of experiments. Time series of the development of integral quantities such as the global mean temperature change for all models visualize the spread in the multi-model ensemble. A similar approach can be applied to 2D-visualizations of projected climate changes such as latitude-longitude maps showing the multi-model mean of the ensemble by adding a graphical representation of the uncertainty information. This has been demonstrated for example with static figures in chapter 12 of the last IPCC report (AR5) using different so-called stippling and hatching techniques. In this work, we focus on animated visualizations of multi-model ensemble climate projections carried out within CMIP5 as a way of communicating climate change results to the scientific community as well as to the public. We take a closer look at measures of robustness or uncertainty used in recent publications suitable for animated visualizations. Specifically, we use the ESMValTool [1] to process and prepare the CMIP5 multi-model data in combination with standard visualization tools such as NCL and the commercial 3D visualization software Avizo to create the animations. We compare different visualization techniques such as height fields or shading with transparency for creating animated visualization of ensemble mean changes in temperature and precipitation including corresponding robustness measures. [1] Eyring, V

  11. Invariant visual object and face recognition: neural and computational bases, and a model, VisNet

    Directory of Open Access Journals (Sweden)

    Edmund T eRolls

    2012-06-01

    Full Text Available Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy modelin which invariant representations can be built by self-organizing learning based on the temporal and spatialstatistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associativesynaptic learning rule with a short term memory trace, and/or it can use spatialcontinuity in Continuous Spatial Transformation learning which does not require a temporal trace. The model of visual processing in theventral cortical stream can build representations of objects that are invariant withrespect to translation, view, size, and also lighting. The modelhas been extended to provide an account of invariant representations in the dorsal visualsystem of the global motion produced by objects such as looming, rotation, and objectbased movement. The model has been extended to incorporate top-down feedback connectionsto model the control of attention by biased competition in for example spatial and objectsearch tasks. The model has also been extended to account for how the visual system canselect single objects in complex visual scenes, and how multiple objects can berepresented in a scene. The model has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  12. MENCARI MODEL EVALUASI DENGAN PENDEKATAN YANG SESUAI UNTUK PENDIDIKAN DESAIN KOMUNIKASI VISUAL

    Directory of Open Access Journals (Sweden)

    Maria N D K Indrayana

    2002-01-01

    Full Text Available Visual communication design in coming years seem getting better. It can be seen by the growth of commercial advertisment in the last three years and the pers freedom make the printing media and new electronic media exist. It would make the Visual communication design proffesion is became important. In the other side%2C there is a fact that many of advertisement have been canceled because of many public critical. Because of this%2C the designer as a creatif person has to be responsible. Because of this fenomena%2C education of visual communication design in Indonesia as an institution has to make the best quality designer. The process of study is become very important. Because of that reason%2C the evaluation model with suitable approach is needed for education of visual communication design. Abstract in Bahasa Indonesia : Prospek desain komunikasi visual pada tahun-tahun mendatang tampak lebih cerah dengan fenomena kenaikan belanja iklan tiga tahun terakhir dan kebebasan pers yang memicu kelahiran banyak media cetak dan media elektronik baru. Sehingga profesi ini akan semakin berperan penting. Di pihak lain ada kenyataan ditariknya sejumlah iklan yang tengah ditayangkan karena kritik yang diterimanya%2C sehingga desainer sebagai pengolah kreatif dianggap turut bertanggung jawab . Dengan berbagai latar belakang itulah institusi pendidikan Desain Komunikasi Visual di Indonesia sebagai wadah penggodokan calon desainer dituntut untuk melahirkan desainer dengan kualitas terbaik. Maka proses studi menjadi penting. Untuk itu diperlukan model evaluasi dengan pendekatan yang sekiranya sesuai untuk pendidikan desain komunikasi visual%2C dewasa ini. evaluation model%2C education of visual communication design.

  13. A foreground object features-based stereoscopic image visual comfort assessment model

    Science.gov (United States)

    Jin, Xin; Jiang, G.; Ying, H.; Yu, M.; Ding, S.; Peng, Z.; Shao, F.

    2014-11-01

    Since stereoscopic images provide observers with both realistic and discomfort viewing experience, it is necessary to investigate the determinants of visual discomfort. By considering that foreground object draws most attention when human observing stereoscopic images. This paper proposes a new foreground object based visual comfort assessment (VCA) metric. In the first place, a suitable segmentation method is applied to disparity map and then the foreground object is ascertained as the one having the biggest average disparity. In the second place, three visual features being average disparity, average width and spatial complexity of foreground object are computed from the perspective of visual attention. Nevertheless, object's width and complexity do not consistently influence the perception of visual comfort in comparison with disparity. In accordance with this psychological phenomenon, we divide the whole images into four categories on the basis of different disparity and width, and exert four different models to more precisely predict its visual comfort in the third place. Experimental results show that the proposed VCA metric outperformance other existing metrics and can achieve a high consistency between objective and subjective visual comfort scores. The Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are over 0.84 and 0.82, respectively.

  14. Visual imagery and the user model applied to fuel handling at EBR-II

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.

    1995-01-01

    The material presented in this paper is based on two studies involving visual display designs and the user's perspective model of a system. The studies involved a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices which included the ''comfort parameters'' and ''perspective reality'' of the user's model of the world. (author)

  15. Using a Three-Dimensional Interactive Model To Teach Environmental Concepts to Visually Impaired Children.

    Science.gov (United States)

    Budd, Julia M.; LaGrow, Steven J.

    2000-01-01

    A study investigated the efficacy of using the Buddy Road Kit, an interactive, wooden model, to teach environmental concepts to 4 children with visual impairments ages 7 to 11 years old. Results indicate the model was effective in teaching environmental concepts and traffic safety to the children involved. (Contains references.) (CR)

  16. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    Science.gov (United States)

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  17. Integrated Visualization Environment for Science Mission Modeling, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is emphasizing the use of larger, more integrated models in conjunction with systems engineering tools and decision support systems. These tools place a...

  18. Extracting conceptual models from user stories with Visual Narrator

    NARCIS (Netherlands)

    Lucassen, Garm; Robeer, Marcel; Dalpiaz, Fabiano; van der Werf, Jan Martijn E. M.; Brinkkemper, Sjaak

    2017-01-01

    Extracting conceptual models from natural language requirements can help identify dependencies, redundancies, and conflicts between requirements via a holistic and easy-to-understand view that is generated from lengthy textual specifications. Unfortunately, existing approaches never gained traction

  19. Method and apparatus for modeling, visualization and analysis of materials

    KAUST Repository

    Aboulhassan, Amal; Hadwiger, Markus

    2016-01-01

    processor and based on the received data, geometric features of the material. The example method further includes extracting, by the processor, particle paths within the material based on the computed geometric features, and geometrically modeling

  20. An amalgamation of 3D city models in urban air quality modelling for improving visual impact analysis

    DEFF Research Database (Denmark)

    Ujang, U.; Anton, F.; Ariffin, A.

    2015-01-01

    is predominantly vehicular engines, the situation will become worse when pollutants are trapped between buildings and disperse inside the street canyon and move vertically to create a recirculation vortex. Studying and visualizing the recirculation zone in 3D visualization is conceivable by using 3D city models......,engineers and policy makers to design the street geometry (building height and width, green areas, pedestrian walks, roads width, etc.)....

  1. Biologically Inspired Visual Model With Preliminary Cognition and Active Attention Adjustment.

    Science.gov (United States)

    Qiao, Hong; Xi, Xuanyang; Li, Yinlin; Wu, Wei; Li, Fengfu

    2015-11-01

    Recently, many computational models have been proposed to simulate visual cognition process. For example, the hierarchical Max-Pooling (HMAX) model was proposed according to the hierarchical and bottom-up structure of V1 to V4 in the ventral pathway of primate visual cortex, which could achieve position- and scale-tolerant recognition. In our previous work, we have introduced memory and association into the HMAX model to simulate visual cognition process. In this paper, we improve our theoretical framework by mimicking a more elaborate structure and function of the primate visual cortex. We will mainly focus on the new formation of memory and association in visual processing under different circumstances as well as preliminary cognition and active adjustment in the inferior temporal cortex, which are absent in the HMAX model. The main contributions of this paper are: 1) in the memory and association part, we apply deep convolutional neural networks to extract various episodic features of the objects since people use different features for object recognition. Moreover, to achieve a fast and robust recognition in the retrieval and association process, different types of features are stored in separated clusters and the feature binding of the same object is stimulated in a loop discharge manner and 2) in the preliminary cognition and active adjustment part, we introduce preliminary cognition to classify different types of objects since distinct neural circuits in a human brain are used for identification of various types of objects. Furthermore, active cognition adjustment of occlusion and orientation is implemented to the model to mimic the top-down effect in human cognition process. Finally, our model is evaluated on two face databases CAS-PEAL-R1 and AR. The results demonstrate that our model exhibits its efficiency on visual recognition process with much lower memory storage requirement and a better performance compared with the traditional purely computational

  2. A model of selective visual attention for a stereo pair of images

    Science.gov (United States)

    Park, Min Chul; Kim, Sung Kyu; Son, Jung-Young

    2005-11-01

    Human visual attention system has a remarkable ability to interpret complex scenes with the ease and simplicity by selecting or focusing on a small region of visual field without scanning the whole images. In this paper, a novel selective visual attention model by using 3D image display system for a stereo pair of images is proposed. It is based on the feature integration theory and locates ROI(region of interest) or FOA(focus of attention). The disparity map obtained from a stereo pair of images is exploited as one of spatial visual features to form a set of topographic feature maps in our approach. Though the true human cognitive mechanism on the analysis and integration process might be different from our assumption the proposed attention system matches well with the results found by human observers.

  3. Computational Modelling of the Neural Representation of Object Shape in the Primate Ventral Visual System

    Directory of Open Access Journals (Sweden)

    Akihiro eEguchi

    2015-08-01

    Full Text Available Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognise the whole object.

  4. Model for visualizing high energy laser (HEL) damage

    Science.gov (United States)

    Erten, Gail

    2017-11-01

    This paper describes and presents results from a model created in MATLAB® to calculate and display the time dependent temperature profile on a target aimpoint as it is being engaged by a high energy laser (HEL) beam. The model uses public domain information namely physics equations of heat conduction and phase changes and material properties such as thermal conductivity/diffusivity, latent heat, specific heat, melting and evaporation points as well as user input material type and thickness. The user also provides time varying characteristics of the HEL beam on the aimpoint, including beam size and intensity distribution (in Watts per centimeter square). The model calculates the temperature distribution at and around the aimpoint and also shows the phase changes of the aimpoint with the material first melting and then evaporating. User programmable features (selecting materials and thickness, erosion rates for melting) make the model highly versatile. The objective is to bridge the divide between remaining faithful to theoretical formulations such as the partial differential equations of heat conduction and at the same time serving practical concerns of the model user who needs to rapidly evaluate HEL thermal effects. One possible use of the tool is to assess lethality values of different aimpoints without costly (as well as often dangerous and destructive) experiments.

  5. Modeling, simulation and visual analysis of crowds a multidisciplinary perspective

    CERN Document Server

    Ali, Saad; Manocha, Dinesh; Shah, Mubarak

    2013-01-01

    Over the last several years there has been a growing interest in developing computational methodologies for modeling and analyzing movements and behaviors of 'crowds' of people. This interest spans several scientific areas that includes Computer Vision, Computer Graphics, and Pedestrian Evacuation Dynamics. Despite the fact that these different scientific fields are trying to model the same physical entity (i.e. a crowd of people), research ideas have evolved independently. As a result each discipline has developed techniques and perspectives that are characteristically their own.

  6. Creating shared mental models: The support of visual language

    NARCIS (Netherlands)

    Landman, Renske B.; van den Broek, Egon; Gieskes, J.F.B.; Luo, Yuhua

    Cooperative design involves multiple stakeholders that often hold different ideas of the problem, the ways to solve it, and to its solutions (i.e., mental models; MM). These differences can result in miscommunication, misunderstanding, slower decision making processes, and less chance on cooperative

  7. Biliary System Architecture: Experimental Models and Visualization Techniques

    Czech Academy of Sciences Publication Activity Database

    Sarnová, Lenka; Gregor, Martin

    2017-01-01

    Roč. 66, č. 3 (2017), s. 383-390 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LQ1604; GA ČR GA15-23858S Institutional support: RVO:68378050 Keywords : Biliary system * Mouse model * Cholestasis * Visualisation * Morphology Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 1.461, year: 2016

  8. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    Science.gov (United States)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  9. D Model Visualization Enhancements in Real-Time Game Engines

    Science.gov (United States)

    Merlo, A.; Sánchez Belenguer, C.; Vendrell Vidal, E.; Fantini, F.; Aliperta, A.

    2013-02-01

    This paper describes two procedures used to disseminate tangible cultural heritage through real-time 3D simulations providing accurate-scientific representations. The main idea is to create simple geometries (with low-poly count) and apply two different texture maps to them: a normal map and a displacement map. There are two ways to achieve models that fit with normal or displacement maps: with the former (normal maps), the number of polygons in the reality-based model may be dramatically reduced by decimation algorithms and then normals may be calculated by rendering them to texture solutions (baking). With the latter, a LOD model is needed; its topology has to be quad-dominant for it to be converted to a good quality subdivision surface (with consistent tangency and curvature all over). The subdivision surface is constructed using methodologies for the construction of assets borrowed from character animation: these techniques have been recently implemented in many entertainment applications known as "retopology". The normal map is used as usual, in order to shade the surface of the model in a realistic way. The displacement map is used to finish, in real-time, the flat faces of the object, by adding the geometric detail missing in the low-poly models. The accuracy of the resulting geometry is progressively refined based on the distance from the viewing point, so the result is like a continuous level of detail, the only difference being that there is no need to create different 3D models for one and the same object. All geometric detail is calculated in real-time according to the displacement map. This approach can be used in Unity, a real-time 3D engine originally designed for developing computer games. It provides a powerful rendering engine, fully integrated with a complete set of intuitive tools and rapid workflows that allow users to easily create interactive 3D contents. With the release of Unity 4.0, new rendering features have been added, including Direct

  10. Information processing occurs via critical avalanches in a model of the primary visual cortex

    International Nuclear Information System (INIS)

    Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Tragtenberg, M. H. R.; Pinto, L. T.

    2016-01-01

    We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit. (paper)

  11. Generalized information fusion and visualization using spatial voting and data modeling

    Science.gov (United States)

    Jaenisch, Holger M.; Handley, James W.

    2013-05-01

    We present a novel and innovative information fusion and visualization framework for multi-source intelligence (multiINT) data using Spatial Voting (SV) and Data Modeling. We describe how different sources of information can be converted into numerical form for further processing downstream, followed by a short description of how this information can be fused using the SV grid. As an illustrative example, we show the modeling of cyberspace as cyber layers for the purpose of tracking cyber personas. Finally we describe a path ahead for creating interactive agile networks through defender customized Cyber-cubes for network configuration and attack visualization.

  12. A Probabilistic Palimpsest Model of Visual Short-term Memory

    Science.gov (United States)

    Matthey, Loic; Bays, Paul M.; Dayan, Peter

    2015-01-01

    Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ. PMID:25611204

  13. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.

    Science.gov (United States)

    Rolls, Edmund T

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  14. The Main Cognitive Model of Visual Recognition: Contour Recognition

    OpenAIRE

    Chen, YongHong

    2017-01-01

    In this paper, we will study the following pattern recognition problem: Every pattern is a 3-dimensional graph, its surface can be split up into some regions, every region is composed of the pixels with the approximately same colour value and the approximately same depth value that is distance to eyes, and there may also be some contours, e.g., literal contours, on a surface of every pattern. For this problem we reveal the inherent laws. Moreover, we establish a cognitive model to reflect the...

  15. Visual defects in a mouse model of fetal alcohol spectrum disorder.

    Science.gov (United States)

    Lantz, Crystal L; Pulimood, Nisha S; Rodrigues-Junior, Wandilson S; Chen, Ching-Kang; Manhaes, Alex C; Kalatsky, Valery A; Medina, Alexandre Esteves

    2014-01-01

    Alcohol consumption during pregnancy can lead to a multitude of neurological problems in offspring, varying from subtle behavioral changes to severe mental retardation. These alterations are collectively referred to as Fetal Alcohol Spectrum Disorders (FASD). Early alcohol exposure can strongly affect the visual system and children with FASD can exhibit an amblyopia-like pattern of visual acuity deficits even in the absence of optical and oculomotor disruption. Here, we test whether early alcohol exposure can lead to a disruption in visual acuity, using a model of FASD to mimic alcohol consumption in the last months of human gestation. To accomplish this, mice were exposed to ethanol (5 g/kg i.p.) or saline on postnatal days (P) 5, 7, and 9. Two to three weeks later we recorded visually evoked potentials to assess spatial frequency detection and contrast sensitivity, conducted electroretinography (ERG) to further assess visual function and imaged retinotopy using optical imaging of intrinsic signals. We observed that animals exposed to ethanol displayed spatial frequency acuity curves similar to controls. However, ethanol-treated animals showed a significant deficit in contrast sensitivity. Moreover, ERGs revealed a market decrease in both a- and b-waves amplitudes, and optical imaging suggest that both elevation and azimuth maps in ethanol-treated animals have a 10-20° greater map tilt compared to saline-treated controls. Overall, our findings suggest that binge alcohol drinking restricted to the last months of gestation in humans can lead to marked deficits in visual function.

  16. Modeling the effect of selection history on pop-out visual search.

    Directory of Open Access Journals (Sweden)

    Yuan-Chi Tseng

    Full Text Available While attentional effects in visual selection tasks have traditionally been assigned "top-down" or "bottom-up" origins, more recently it has been proposed that there are three major factors affecting visual selection: (1 physical salience, (2 current goals and (3 selection history. Here, we look further into selection history by investigating Priming of Pop-out (POP and the Distractor Preview Effect (DPE, two inter-trial effects that demonstrate the influence of recent history on visual search performance. Using the Ratcliff diffusion model, we model observed saccadic selections from an oddball search experiment that included a mix of both POP and DPE conditions. We find that the Ratcliff diffusion model can effectively model the manner in which selection history affects current attentional control in visual inter-trial effects. The model evidence shows that bias regarding the current trial's most likely target color is the most critical parameter underlying the effect of selection history. Our results are consistent with the view that the 3-item color-oddball task used for POP and DPE experiments is best understood as an attentional decision making task.

  17. An amodal shared resource model of language-mediated visual attention

    Directory of Open Access Journals (Sweden)

    Alastair Charles Smith

    2013-08-01

    Full Text Available Language-mediated visual attention describes the interaction of two fundamental components of the human cognitive system, language and vision. Within this paper we present an amodal shared resource model of language-mediated visual attention that offers a description of the information and processes involved in this complex multimodal behaviour and a potential explanation for how this ability is acquired. We demonstrate that the model is not only sufficient to account for the experimental effects of Visual World Paradigm studies but also that these effects are emergent properties of the architecture of the model itself, rather than requiring separate information processing channels or modular processing systems. The model provides an explicit description of the connection between the modality-specific input from language and vision and the distribution of eye gaze in language mediated visual attention. The paper concludes by discussing future applications for the model, specifically its potential for investigating the factors driving observed individual differences in language mediated eye gaze.

  18. Visualizing the Impact of Art: An Update and Comparison of Current Psychological Models of Art Experience.

    Science.gov (United States)

    Pelowski, Matthew; Markey, Patrick S; Lauring, Jon O; Leder, Helmut

    2016-01-01

    The last decade has witnessed a renaissance of empirical and psychological approaches to art study, especially regarding cognitive models of art processing experience. This new emphasis on modeling has often become the basis for our theoretical understanding of human interaction with art. Models also often define areas of focus and hypotheses for new empirical research, and are increasingly important for connecting psychological theory to discussions of the brain. However, models are often made by different researchers, with quite different emphases or visual styles. Inputs and psychological outcomes may be differently considered, or can be under-reported with regards to key functional components. Thus, we may lose the major theoretical improvements and ability for comparison that can be had with models. To begin addressing this, this paper presents a theoretical assessment, comparison, and new articulation of a selection of key contemporary cognitive or information-processing-based approaches detailing the mechanisms underlying the viewing of art. We review six major models in contemporary psychological aesthetics. We in turn present redesigns of these models using a unified visual form, in some cases making additions or creating new models where none had previously existed. We also frame these approaches in respect to their targeted outputs (e.g., emotion, appraisal, physiological reaction) and their strengths within a more general framework of early, intermediate, and later processing stages. This is used as a basis for general comparison and discussion of implications and future directions for modeling, and for theoretically understanding our engagement with visual art.

  19. Visualizing the Impact of Art: An Update and Comparison of Current Psychological Models of Art Experience

    Science.gov (United States)

    Pelowski, Matthew; Markey, Patrick S.; Lauring, Jon O.; Leder, Helmut

    2016-01-01

    The last decade has witnessed a renaissance of empirical and psychological approaches to art study, especially regarding cognitive models of art processing experience. This new emphasis on modeling has often become the basis for our theoretical understanding of human interaction with art. Models also often define areas of focus and hypotheses for new empirical research, and are increasingly important for connecting psychological theory to discussions of the brain. However, models are often made by different researchers, with quite different emphases or visual styles. Inputs and psychological outcomes may be differently considered, or can be under-reported with regards to key functional components. Thus, we may lose the major theoretical improvements and ability for comparison that can be had with models. To begin addressing this, this paper presents a theoretical assessment, comparison, and new articulation of a selection of key contemporary cognitive or information-processing-based approaches detailing the mechanisms underlying the viewing of art. We review six major models in contemporary psychological aesthetics. We in turn present redesigns of these models using a unified visual form, in some cases making additions or creating new models where none had previously existed. We also frame these approaches in respect to their targeted outputs (e.g., emotion, appraisal, physiological reaction) and their strengths within a more general framework of early, intermediate, and later processing stages. This is used as a basis for general comparison and discussion of implications and future directions for modeling, and for theoretically understanding our engagement with visual art. PMID:27199697

  20. NCWin — A Component Object Model (COM) for processing and visualizing NetCDF data

    Science.gov (United States)

    Liu, Jinxun; Chen, J.M.; Price, D.T.; Liu, S.

    2005-01-01

    NetCDF (Network Common Data Form) is a data sharing protocol and library that is commonly used in large-scale atmospheric and environmental data archiving and modeling. The NetCDF tool described here, named NCWin and coded with Borland C + + Builder, was built as a standard executable as well as a COM (component object model) for the Microsoft Windows environment. COM is a powerful technology that enhances the reuse of applications (as components). Environmental model developers from different modeling environments, such as Python, JAVA, VISUAL FORTRAN, VISUAL BASIC, VISUAL C + +, and DELPHI, can reuse NCWin in their models to read, write and visualize NetCDF data. Some Windows applications, such as ArcGIS and Microsoft PowerPoint, can also call NCWin within the application. NCWin has three major components: 1) The data conversion part is designed to convert binary raw data to and from NetCDF data. It can process six data types (unsigned char, signed char, short, int, float, double) and three spatial data formats (BIP, BIL, BSQ); 2) The visualization part is designed for displaying grid map series (playing forward or backward) with simple map legend, and displaying temporal trend curves for data on individual map pixels; and 3) The modeling interface is designed for environmental model development by which a set of integrated NetCDF functions is provided for processing NetCDF data. To demonstrate that the NCWin can easily extend the functions of some current GIS software and the Office applications, examples of calling NCWin within ArcGIS and MS PowerPoint for showing NetCDF map animations are given.

  1. Bio-physically plausible visualization of highly scattering fluorescent neocortical models for in silico experimentation

    KAUST Repository

    Abdellah, Marwan

    2017-02-15

    Background We present a visualization pipeline capable of accurate rendering of highly scattering fluorescent neocortical neuronal models. The pipeline is mainly developed to serve the computational neurobiology community. It allows the scientists to visualize the results of their virtual experiments that are performed in computer simulations, or in silico. The impact of the presented pipeline opens novel avenues for assisting the neuroscientists to build biologically accurate models of the brain. These models result from computer simulations of physical experiments that use fluorescence imaging to understand the structural and functional aspects of the brain. Due to the limited capabilities of the current visualization workflows to handle fluorescent volumetric datasets, we propose a physically-based optical model that can accurately simulate light interaction with fluorescent-tagged scattering media based on the basic principles of geometric optics and Monte Carlo path tracing. We also develop an automated and efficient framework for generating dense fluorescent tissue blocks from a neocortical column model that is composed of approximately 31000 neurons. Results Our pipeline is used to visualize a virtual fluorescent tissue block of 50 μm3 that is reconstructed from the somatosensory cortex of juvenile rat. The fluorescence optical model is qualitatively analyzed and validated against experimental emission spectra of different fluorescent dyes from the Alexa Fluor family. Conclusion We discussed a scientific visualization pipeline for creating images of synthetic neocortical neuronal models that are tagged virtually with fluorescent labels on a physically-plausible basis. The pipeline is applied to analyze and validate simulation data generated from neuroscientific in silico experiments.

  2. Modeling apparent color for visual evaluation of camouflage fabrics

    Science.gov (United States)

    Ramsey, S.; Mayo, T.; Shabaev, A.; Lambrakos, S. G.

    2017-08-01

    As the U.S. Navy, Army, and Special Operations Forces progress towards fielding more advanced uniforms with multi-colored and highly detailed camouflage patterning, additional test methodologies are necessary in evaluating color in these types of camouflage textiles. The apparent color is the combination of all visible wavelengths (380-760 nm) of light reflected from large (>=1m2 ) fabric sample sizes for a given standoff distance (10-25ft). Camouflage patterns lose resolution with increasing standoff distance, and eventually all colors within the pattern appear monotone (the "apparent color" of the pattern). This paper presents an apparent color prediction model that can be used for evaluation of camouflage fabrics.

  3. A geometrical description of visual sensation II:A complemented model for visual sensation explicitly taking into account the law of Fechner, and its application to Plateau's irradiation

    OpenAIRE

    Ons, Bart; Verstraelen, Pol

    2010-01-01

    Plateau’s irradiation phenomenon in particular describes what one sees when observing a brighter object on a darker background and a physically congruent darker object on a brighter background: the brighter object is seen as being larger. This phenomenon occurs in many optical visual illusions and it involves some fundamental aspects of human vision. We present a general geometrical model of human visual sensation and perception, hereby taking into account the law of Fechner in addition to th...

  4. Visual Prompts or Volunteer Models: An Experiment in Recycling

    Directory of Open Access Journals (Sweden)

    Zi Yin Lin

    2016-05-01

    Full Text Available Successful long-term programs for urban residential food waste sorting are very rare, despite the established urgent need for them in cities for waste reduction, pollution reduction and circular resource economy reasons. This study meets recent calls to bridge policy makers and academics, and calls for more thorough analysis of operational work in terms of behavioral determinants, to move the fields on. It takes a key operational element of a recently reported successful food waste sorting program—manning of the new bins by volunteers—and considers the behavioral determinants involved in order to design a more scalable and cheaper alternative—the use of brightly colored covers with flower designs on three sides of the bin. The two interventions were tested in a medium-scale, real-life experimental set-up that showed that they had statistically similar results: high effective capture rates of 32%–34%, with low contamination rates. The success, low cost and simple implementation of the latter suggests it should be considered for large-scale use. Candidate behavioral determinants are prompts, emotion and knowledge for the yellow bin intervention, and for the volunteer intervention they are additionally social influence, modeling, role clarification, and moderators of messenger type and interpersonal or tailored messaging.

  5. An Integrated Web-Based 3d Modeling and Visualization Platform to Support Sustainable Cities

    Science.gov (United States)

    Amirebrahimi, S.; Rajabifard, A.

    2012-07-01

    Sustainable Development is found as the key solution to preserve the sustainability of cities in oppose to ongoing population growth and its negative impacts. This is complex and requires a holistic and multidisciplinary decision making. Variety of stakeholders with different backgrounds also needs to be considered and involved. Numerous web-based modeling and visualization tools have been designed and developed to support this process. There have been some success stories; however, majority failed to bring a comprehensive platform to support different aspects of sustainable development. In this work, in the context of SDI and Land Administration, CSDILA Platform - a 3D visualization and modeling platform -was proposed which can be used to model and visualize different dimensions to facilitate the achievement of sustainability, in particular, in urban context. The methodology involved the design of a generic framework for development of an analytical and visualization tool over the web. CSDILA Platform was then implemented via number of technologies based on the guidelines provided by the framework. The platform has a modular structure and uses Service-Oriented Architecture (SOA). It is capable of managing spatial objects in a 4D data store and can flexibly incorporate a variety of developed models using the platform's API. Development scenarios can be modeled and tested using the analysis and modeling component in the platform and the results are visualized in seamless 3D environment. The platform was further tested using number of scenarios and showed promising results and potentials to serve a wider need. In this paper, the design process of the generic framework, the implementation of CSDILA Platform and technologies used, and also findings and future research directions will be presented and discussed.

  6. Making Digital Elevation ModelsAccessible, Comprehensible, and Engaging through Real-Time Visualization

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Kim; Mikkelsen, Peter Trier; Mosegaard, Jesper

    2015-01-01

    In this paper we present our initial experiments with the new high quality digital elevation model, “Danmarks Højdemodel-2015” (DHM) exposed as an interactive 3D visualization on web and in virtual reality. We argue that such data has great opportunities to spawn new business and new insight...

  7. Artist-Teachers' In-Action Mental Models While Teaching Visual Arts

    Science.gov (United States)

    Russo-Zimet, Gila

    2017-01-01

    Studies have examined the assumption that teachers have previous perceptions, beliefs and knowledge about learning (Cochran-Smith & Villegas, 2015). This study presented the In-Action Mental Model of twenty leading artist-teachers while teaching Visual Arts in three Israeli art institutions of higher Education. Data was collected in two…

  8. Improving Image Segmentation with Adaptive, Recurrent, Spiking Neural Network Models of the Primary Visual Cortex

    Science.gov (United States)

    2017-05-19

    Vijay Singh, Martin Tchernookov, Rebecca Butterfield, Ilya Nemenman, Rongrong Ji. Director Field Model of the Primary Visual Cortex for Contour...FTE Equivalent: Total Number: DISCIPLINE Vijay Singh 40 Physics 0.40 1 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Martin Tchernookov 0.20

  9. Learning Visual Forward Models to Compensate for Self-Induced Image Motion.

    NARCIS (Netherlands)

    Ghadirzadeh, A.; Kootstra, G.W.; Maki, A.; Björkman, M.

    2014-01-01

    Predicting the sensory consequences of an agent's own actions is considered an important skill for intelligent behavior. In terms of vision, so-called visual forward models can be applied to learn such predictions. This is no trivial task given the high-dimensionality of sensory data and complex

  10. Explaining neural signals in human visual cortex with an associative learning model.

    Science.gov (United States)

    Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias

    2012-08-01

    "Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.

  11. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    Science.gov (United States)

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  12. Models Provide Specificity: Testing a Proposed Mechanism of Visual Working Memory Capacity Development

    Science.gov (United States)

    Simmering, Vanessa R.; Patterson, Rebecca

    2012-01-01

    Numerous studies have established that visual working memory has a limited capacity that increases during childhood. However, debate continues over the source of capacity limits and its developmental increase. Simmering (2008) adapted a computational model of spatial cognitive development, the Dynamic Field Theory, to explain not only the source…

  13. Video Modeling: A Visually Based Intervention for Children with Autism Spectrum Disorder

    Science.gov (United States)

    Ganz, Jennifer B.; Earles-Vollrath, Theresa L.; Cook, Katherine E.

    2011-01-01

    Visually based interventions such as video modeling have been demonstrated to be effective with students with autism spectrum disorder (ASD). This approach has wide utility, is appropriate for use with students of a range of ages and abilities, promotes independent functioning, and can be used to address numerous learner objectives, including…

  14. Dynamic plan modelling and visualization : converting an urban development plan into a transition scenario

    NARCIS (Netherlands)

    Vries, de B.; Jessurun, A.J.; Sadowski - Rasters, G.; Tidafy, T; Dorta, T

    2009-01-01

    Application of 3D models in urban planning practice is still limited to visualization of existing or newly designed situations. Municipalities are looking for possibilities to communicate the transition process of the urban development area with the citizens. A prototype system was developed to

  15. A Comparative Analysis of Spatial Visualization Ability and Drafting Models for Industrial and Technology Education Students

    Science.gov (United States)

    Katsioloudis, Petros; Jovanovic, Vukica; Jones, Mildred

    2014-01-01

    The main purpose of this study was to determine significant positive effects among the use of three different types of drafting models, and to identify whether any differences exist towards promotion of spatial visualization ability for students in Industrial Technology and Technology Education courses. In particular, the study compared the use of…

  16. The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology

    Science.gov (United States)

    Marshall, Jilll A.; Castillo, Adam J.; Cardenas, M. Bayani

    2015-01-01

    We investigated the effect of modeling and visualization resources on upper-division, undergraduate and graduate students' performance on an open-ended assessment of their understanding of physical hydrology. The students were enrolled in one of five sections of a physical hydrology course. In two of the sections, students completed homework…

  17. Visual persuasion with physically attractive models in ads: An examination of how the ad model influences product evaluations

    OpenAIRE

    Söderlund, Magnus; Lange, Fredrik

    2006-01-01

    This paper examines the prevalent advertising practice of visually juxtaposing an anonymous, physically attractive ad model and a product in terms of its effects on the attitude toward the product. In this appeal, in which there are no explicit verbal claims about how the two objects are connected, we argue that the physically attractive model sets in motion a process in which emotions and the attitude toward the ad model serve as mediating variables, and that this process ultimately results ...

  18. Visual product architecture modelling for structuring data in a PLM system

    DEFF Research Database (Denmark)

    Bruun, Hans Peter Lomholt; Mortensen, Niels Henrik

    2012-01-01

    The goal of this paper is to determine the role of a product architecture model to support communication and to form the basis for developing and maintaining information of product structures in a PLM system. This paper contains descriptions of a modelling tool to represent a product architecture....... Moreover, it is discussed how the sometimes intangible elements and phenomena within an architecture model can be visually modeled in order to form the basis for a data model in a PLM system. © 2012 International Federation for Information Processing....

  19. Visualization of the variability of 3D statistical shape models by animation.

    Science.gov (United States)

    Lamecker, Hans; Seebass, Martin; Lange, Thomas; Hege, Hans-Christian; Deuflhard, Peter

    2004-01-01

    Models of the 3D shape of anatomical objects and the knowledge about their statistical variability are of great benefit in many computer assisted medical applications like images analysis, therapy or surgery planning. Statistical model of shapes have successfully been applied to automate the task of image segmentation. The generation of 3D statistical shape models requires the identification of corresponding points on two shapes. This remains a difficult problem, especially for shapes of complicated topology. In order to interpret and validate variations encoded in a statistical shape model, visual inspection is of great importance. This work describes the generation and interpretation of statistical shape models of the liver and the pelvic bone.

  20. VisTrails SAHM: visualization and workflow management for species habitat modeling

    Science.gov (United States)

    Morisette, Jeffrey T.; Jarnevich, Catherine S.; Holcombe, Tracy R.; Talbert, Colin B.; Ignizio, Drew A.; Talbert, Marian; Silva, Claudio; Koop, David; Swanson, Alan; Young, Nicholas E.

    2013-01-01

    The Software for Assisted Habitat Modeling (SAHM) has been created to both expedite habitat modeling and help maintain a record of the various input data, pre- and post-processing steps and modeling options incorporated in the construction of a species distribution model through the established workflow management and visualization VisTrails software. This paper provides an overview of the VisTrails:SAHM software including a link to the open source code, a table detailing the current SAHM modules, and a simple example modeling an invasive weed species in Rocky Mountain National Park, USA.

  1. Cognitive aging on latent constructs for visual processing capacity: a novel structural equation modeling framework with causal assumptions based on a theory of visual attention.

    Science.gov (United States)

    Nielsen, Simon; Wilms, L Inge

    2014-01-01

    We examined the effects of normal aging on visual cognition in a sample of 112 healthy adults aged 60-75. A testbattery was designed to capture high-level measures of visual working memory and low-level measures of visuospatial attention and memory. To answer questions of how cognitive aging affects specific aspects of visual processing capacity, we used confirmatory factor analyses in Structural Equation Modeling (SEM; Model 2), informed by functional structures that were modeled with path analyses in SEM (Model 1). The results show that aging effects were selective to measures of visual processing speed compared to visual short-term memory (VSTM) capacity (Model 2). These results are consistent with some studies reporting selective aging effects on processing speed, and inconsistent with other studies reporting aging effects on both processing speed and VSTM capacity. In the discussion we argue that this discrepancy may be mediated by differences in age ranges, and variables of demography. The study demonstrates that SEM is a sensitive method to detect cognitive aging effects even within a narrow age-range, and a useful approach to structure the relationships between measured variables, and the cognitive functional foundation they supposedly represent.

  2. Cognitive ageing on latent constructs for visual processing capacity: A novel Structural Equation Modelling framework with causal assumptions based on A Theory of Visual Attention

    Directory of Open Access Journals (Sweden)

    Simon eNielsen

    2015-01-01

    Full Text Available We examined the effects of normal ageing on visual cognition in a sample of 112 healthy adults aged 60-75. A testbattery was designed to capture high-level measures of visual working memory and low-level measures of visuospatial attention and memory. To answer questions of how cognitive ageing affects specific aspects of visual processing capacity, we used confirmatory factor analyses in Structural Equation Modelling (SEM; Model 2, informed by functional structures that were modelled with path analyses in SEM (Model 1. The results show that ageing effects were selective to measures of visual processing speed compared to visual short-term memory (VSTM capacity (Model 2. These results are consistent with some studies reporting selective ageing effects on processing speed, and inconsistent with other studies reporting ageing effects on both processing speed and VSTM capacity. In the discussion we argue that this discrepancy may be mediated by differences in age ranges, and variables of demography. The study demonstrates that SEM is a sensitive method to detect cognitive ageing effects even within a narrow age-range, and a useful approach to structure the relationships between measured variables, and the cognitive functional foundation they supposedly represent.

  3. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    International Nuclear Information System (INIS)

    Schroeder, William J.

    2011-01-01

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem

  4. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally

  5. A Model of Self-Organizing Head-Centered Visual Responses in Primate Parietal Areas

    Science.gov (United States)

    Mender, Bedeho M. W.; Stringer, Simon M.

    2013-01-01

    We present a hypothesis for how head-centered visual representations in primate parietal areas could self-organize through visually-guided learning, and test this hypothesis using a neural network model. The model consists of a competitive output layer of neurons that receives afferent synaptic connections from a population of input neurons with eye position gain modulated retinal receptive fields. The synaptic connections in the model are trained with an associative trace learning rule which has the effect of encouraging output neurons to learn to respond to subsets of input patterns that tend to occur close together in time. This network architecture and synaptic learning rule is hypothesized to promote the development of head-centered output neurons during periods of time when the head remains fixed while the eyes move. This hypothesis is demonstrated to be feasible, and each of the core model components described is tested and found to be individually necessary for successful self-organization. PMID:24349064

  6. Ups and Downs: Modeling the Visual Evolution of Fashion Trends with One-Class Collaborative Filtering

    OpenAIRE

    He, Ruining; McAuley, Julian

    2016-01-01

    Building a successful recommender system depends on understanding both the dimensions of people's preferences as well as their dynamics. In certain domains, such as fashion, modeling such preferences can be incredibly difficult, due to the need to simultaneously model the visual appearance of products as well as their evolution over time. The subtle semantics and non-linear dynamics of fashion evolution raise unique challenges especially considering the sparsity and large scale of the underly...

  7. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    Science.gov (United States)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  8. Aesthetic Perception of Visual Textures: A Holistic Exploration using Texture Analysis, Psychological Experiment and Perception Modeling

    Directory of Open Access Journals (Sweden)

    Jianli eLiu

    2015-11-01

    Full Text Available Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and nonlinear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.

  9. Protection of visual functions by human neural progenitors in a rat model of retinal disease.

    Directory of Open Access Journals (Sweden)

    David M Gamm

    2007-03-01

    Full Text Available A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat.Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90-100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed.Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in

  10. NCS--a software for visual modeling and simulation of PWR nuclear power plant control system

    International Nuclear Information System (INIS)

    Cui Zhenhua

    1998-12-01

    The modeling and simulation of nuclear power plant control system has been investigated. Some mathematical models for rapid and accurate simulation are derived, including core models, pressurizer model, steam generator model, etc. Several numerical methods such as Runge-Kutta Method and Treanor Method are adopted to solve the above system models. In order to model the control system conveniently, a block diagram-oriented visual modeling platform is designed. And the Discrete Similarity Method is used to calculate the control system models. A corresponding simulating software, NCS, is developed for researching on the control systems of commercial nuclear power plant. And some satisfactory results are obtained. The research works will be of referential and applying value to design and analysis of nuclear power plant control system

  11. A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System

    Science.gov (United States)

    Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.

    2005-12-01

    Efficient management of groundwater resources relies on a comprehensive database that represents the characteristics of the natural groundwater system as well as analysis and modeling tools to describe the impacts of decision alternatives. Many agencies in Michigan have spent several years compiling expensive and comprehensive surface water and groundwater inventories and other related spatial data that describe their respective areas of responsibility. However, most often this wealth of descriptive data has only been utilized for basic mapping purposes. The benefits from analyzing these data, using GIS analysis functions or externally developed analysis models or programs, has yet to be systematically realized. In this talk, we present a comprehensive software environment that allows Michigan groundwater resources managers and frontline professionals to make more effective use of the available data and improve their ability to manage and protect groundwater resources, address potential conflicts, design cleanup schemes, and prioritize investigation activities. In particular, we take advantage of the Interactive Ground Water (IGW) modeling system and convert it to a customized software environment specifically for analyzing, modeling, and visualizing the Michigan statewide groundwater database. The resulting Michigan IGW modeling system (IGW-M) is completely window-based, fully interactive, and seamlessly integrated with a GIS mapping engine. The system operates in real-time (on the fly) providing dynamic, hierarchical mapping, modeling, spatial analysis, and visualization. Specifically, IGW-M allows water resources and environmental professionals in Michigan to: * Access and utilize the extensive data from the statewide groundwater database, interactively manipulate GIS objects, and display and query the associated data and attributes; * Analyze and model the statewide groundwater database, interactively convert GIS objects into numerical model features

  12. External and Internal Representations in the Acquisition and Use of Knowledge: Visualization Effects on Mental Model Construction

    Science.gov (United States)

    Schnotz, Wolfgang; Kurschner, Christian

    2008-01-01

    This article investigates whether different formats of visualizing information result in different mental models constructed in learning from pictures, whether the different mental models lead to different patterns of performance in subsequently presented tasks, and how these visualization effects can be modified by further external…

  13. Model-Based Synthesis of Visual Speech Movements from 3D Video

    Directory of Open Access Journals (Sweden)

    Edge JamesD

    2009-01-01

    Full Text Available We describe a method for the synthesis of visual speech movements using a hybrid unit selection/model-based approach. Speech lip movements are captured using a 3D stereo face capture system and split up into phonetic units. A dynamic parameterisation of this data is constructed which maintains the relationship between lip shapes and velocities; within this parameterisation a model of how lips move is built and is used in the animation of visual speech movements from speech audio input. The mapping from audio parameters to lip movements is disambiguated by selecting only the most similar stored phonetic units to the target utterance during synthesis. By combining properties of model-based synthesis (e.g., HMMs, neural nets with unit selection we improve the quality of our speech synthesis.

  14. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    Science.gov (United States)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  15. Implementation of ICARE learning model using visualization animation on biotechnology course

    Science.gov (United States)

    Hidayat, Habibi

    2017-12-01

    ICARE is a learning model that directly ensure the students to actively participate in the learning process using animation media visualization. ICARE have five key elements of learning experience from children and adult that is introduction, connection, application, reflection and extension. The use of Icare system to ensure that participants have opportunity to apply what have been they learned. So that, the message delivered by lecture to students can be understood and recorded by students in a long time. Learning model that was deemed capable of improving learning outcomes and interest to learn in following learning process Biotechnology with applying the ICARE learning model using visualization animation. This learning model have been giving motivation to participate in the learning process and learning outcomes obtained becomes more increased than before. From the results of student learning in subjects Biotechnology by applying the ICARE learning model using Visualization Animation can improving study results of student from the average value of middle test amounted to 70.98 with the percentage of 75% increased value of final test to be 71.57 with the percentage of 68.63%. The interest to learn from students more increasing visits of student activities at each cycle, namely the first cycle obtained average value by 33.5 with enough category. The second cycle is obtained an average value of 36.5 to good category and third cycle the average value of 36.5 with a student activity to good category.

  16. A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation

    Science.gov (United States)

    Hyman, Cody

    2011-01-01

    Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.

  17. Development of the Object-Oriented Dynamic Simulation Models Using Visual C++ Freeware

    Directory of Open Access Journals (Sweden)

    Alexander I. Kozynchenko

    2016-01-01

    Full Text Available The paper mostly focuses on the methodological and programming aspects of developing a versatile desktop framework to provide the available basis for the high-performance simulation of dynamical models of different kinds and for diverse applications. So the paper gives some basic structure for creating a dynamical simulation model in C++ which is built on the Win32 platform with an interactive multiwindow interface and uses the lightweight Visual C++ Express as a free integrated development environment. The resultant simulation framework could be a more acceptable alternative to other solutions developed on the basis of commercial tools like Borland C++ or Visual C++ Professional, not to mention the domain specific languages and more specialized ready-made software such as Matlab, Simulink, and Modelica. This approach seems to be justified in the case of complex research object-oriented dynamical models having nonstandard structure, relationships, algorithms, and solvers, as it allows developing solutions of high flexibility. The essence of the model framework is shown using a case study of simulation of moving charged particles in the electrostatic field. The simulation model possesses the necessary visualization and control features such as an interactive input, real time graphical and text output, start, stop, and rate control.

  18. Discovery learning model with geogebra assisted for improvement mathematical visual thinking ability

    Science.gov (United States)

    Juandi, D.; Priatna, N.

    2018-05-01

    The main goal of this study is to improve the mathematical visual thinking ability of high school student through implementation the Discovery Learning Model with Geogebra Assisted. This objective can be achieved through study used quasi-experimental method, with non-random pretest-posttest control design. The sample subject of this research consist of 62 senior school student grade XI in one of school in Bandung district. The required data will be collected through documentation, observation, written tests, interviews, daily journals, and student worksheets. The results of this study are: 1) Improvement students Mathematical Visual Thinking Ability who obtain learning with applied the Discovery Learning Model with Geogebra assisted is significantly higher than students who obtain conventional learning; 2) There is a difference in the improvement of students’ Mathematical Visual Thinking ability between groups based on prior knowledge mathematical abilities (high, medium, and low) who obtained the treatment. 3) The Mathematical Visual Thinking Ability improvement of the high group is significantly higher than in the medium and low groups. 4) The quality of improvement ability of high and low prior knowledge is moderate category, in while the quality of improvement ability in the high category achieved by student with medium prior knowledge.

  19. Helping students revise disruptive experientially supported ideas about thermodynamics: Computer visualizations and tactile models

    Science.gov (United States)

    Clark, Douglas; Jorde, Doris

    2004-01-01

    This study analyzes the impact of an integrated sensory model within a thermal equilibrium visualization. We hypothesized that this intervention would not only help students revise their disruptive experientially supported ideas about why objects feel hot or cold, but also increase their understanding of thermal equilibrium. The analysis synthesizes test data and interviews to measure the impact of this strategy. Results show that students in the experimental tactile group significantly outperform their control group counterparts on posttests and delayed posttests, not only on tactile explanations, but also on thermal equilibrium explanations. Interview transcripts of experimental and control group students corroborate these findings. Discussion addresses improving the tactile model as well as application of the strategy to other science topics. The discussion also considers possible incorporation of actual kinetic or thermal haptic feedback to reinforce the current audio and visual feedback of the visualization. This research builds on the conceptual change literature about the nature and role of students' experientially supported ideas as well as our understanding of curriculum and visualization design to support students in learning about thermodynamics, a science topic on which students perform poorly as shown by the National Assessment of Educational Progress (NAEP) and Third International Mathematics and Science Study (TIMSS) studies.

  20. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.

    Science.gov (United States)

    Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  1. Visual deficits in a mouse model of Fetal alcohol spectrum disorders

    Directory of Open Access Journals (Sweden)

    Crystal L Lantz

    2014-10-01

    Full Text Available Alcohol consumption during pregnancy can lead to a multitude of neurological problems in offspring, varying from subtle behavioral changes to severe mental retardation. These alterations are collectively referred to as Fetal Alcohol Spectrum Disorders (FASD. Early alcohol exposure can strongly affect the visual system and children with FASD can exhibit an amblyopia-like pattern of visual acuity deficits even in the absence of optical and oculormotor disruption.Here we test whether early alcohol exposure can lead to a disruption in visual acuity, using a model of FASD to mimic alcohol consumption in the last months of human gestation. To accomplish this, mice were exposed to ethanol (5g/kg i.p or saline on postnatal days (P 5, 7 and 9. Two to three weeks later we recorded visually evoked potentials (VEPs to assess spatial frequency detection and contrast sensitivity, conducted electroretinography (ERGs to further assess visual function and imaged retinotopy using optical imaging of intrinsic signals. We observed that animals exposed to ethanol displayed spatial frequency acuity curves similar to controls. However, ethanol-treated animals showed a significant deficit in contrast sensitivity. Moreover, ERGs revealed a market decrease in both a- and b- waves amplitudes, and optical imaging suggest that both elevation and azimuth maps in ethanol-treated animals have a 10-20o greater map tilt compared to saline-treated controls. Overall, our findings suggest that binge alcohol drinking restricted to the last months of gestation in humans can lead to marked deficits in visual function.

  2. Network model of top-down influences on local gain and contextual interactions in visual cortex.

    Science.gov (United States)

    Piëch, Valentin; Li, Wu; Reeke, George N; Gilbert, Charles D

    2013-10-22

    The visual system uses continuity as a cue for grouping oriented line segments that define object boundaries in complex visual scenes. Many studies support the idea that long-range intrinsic horizontal connections in early visual cortex contribute to this grouping. Top-down influences in primary visual cortex (V1) play an important role in the processes of contour integration and perceptual saliency, with contour-related responses being task dependent. This suggests an interaction between recurrent inputs to V1 and intrinsic connections within V1 that enables V1 neurons to respond differently under different conditions. We created a network model that simulates parametrically the control of local gain by hypothetical top-down modification of local recurrence. These local gain changes, as a consequence of network dynamics in our model, enable modulation of contextual interactions in a task-dependent manner. Our model displays contour-related facilitation of neuronal responses and differential foreground vs. background responses over the neuronal ensemble, accounting for the perceptual pop-out of salient contours. It quantitatively reproduces the results of single-unit recording experiments in V1, highlighting salient contours and replicating the time course of contextual influences. We show by means of phase-plane analysis that the model operates stably even in the presence of large inputs. Our model shows how a simple form of top-down modulation of the effective connectivity of intrinsic cortical connections among biophysically realistic neurons can account for some of the response changes seen in perceptual learning and task switching.

  3. Assessing Sexual Dicromatism: The Importance of Proper Parameterization in Tetrachromatic Visual Models.

    Directory of Open Access Journals (Sweden)

    Pierre-Paul Bitton

    Full Text Available Perceptual models of animal vision have greatly contributed to our understanding of animal-animal and plant-animal communication. The receptor-noise model of color contrasts has been central to this research as it quantifies the difference between two colors for any visual system of interest. However, if the properties of the visual system are unknown, assumptions regarding parameter values must be made, generally with unknown consequences. In this study, we conduct a sensitivity analysis of the receptor-noise model using avian visual system parameters to systematically investigate the influence of variation in light environment, photoreceptor sensitivities, photoreceptor densities, and light transmission properties of the ocular media and the oil droplets. We calculated the chromatic contrast of 15 plumage patches to quantify a dichromatism score for 70 species of Galliformes, a group of birds that display a wide range of sexual dimorphism. We found that the photoreceptor densities and the wavelength of maximum sensitivity of the short-wavelength-sensitive photoreceptor 1 (SWS1 can change dichromatism scores by 50% to 100%. In contrast, the light environment, transmission properties of the oil droplets, transmission properties of the ocular media, and the peak sensitivities of the cone photoreceptors had a smaller impact on the scores. By investigating the effect of varying two or more parameters simultaneously, we further demonstrate that improper parameterization could lead to differences between calculated and actual contrasts of more than 650%. Our findings demonstrate that improper parameterization of tetrachromatic visual models can have very large effects on measures of dichromatism scores, potentially leading to erroneous inferences. We urge more complete characterization of avian retinal properties and recommend that researchers either determine whether their species of interest possess an ultraviolet or near-ultraviolet sensitive SWS1

  4. D Modelling and Visualization Based on the Unity Game Engine - Advantages and Challenges

    Science.gov (United States)

    Buyuksalih, I.; Bayburt, S.; Buyuksalih, G.; Baskaraca, A. P.; Karim, H.; Rahman, A. A.

    2017-11-01

    3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema) is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine) as highlighted in this paper.

  5. Visual imagery and the user model applied to fuel handling at EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-06-01

    The material presented in this paper is based on two studies involving visual display designs and the user`s perspective model of a system. The studies involved a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices which included the ``comfort parameters`` and ``perspective reality`` of the user`s model of the world. In developing visual displays for the EBR-II fuel handling system, the focus would be to incorporate the comfort parameters that overlap from each of the representation systems: visual, auditory and kinesthetic then incorporate the comfort parameters of the most prominent group of the population, and last, blend in the other two representational system comfort parameters. The focus of this informal study was to use the techniques of meta-modeling and synesthesia to develop a virtual environment that closely resembled the operator`s perspective of the fuel handling system of Argonne`s Experimental Breeder Reactor - II. An informal study was conducted using NLP as the behavioral model in a v reality (VR) setting.

  6. Visual imagery and the user model applied to fuel handling at EBR-II

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.

    1995-01-01

    The material presented in this paper is based on two studies involving visual display designs and the user's perspective model of a system. The studies involved a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices which included the ''comfort parameters'' and ''perspective reality'' of the user's model of the world. In developing visual displays for the EBR-II fuel handling system, the focus would be to incorporate the comfort parameters that overlap from each of the representation systems: visual, auditory and kinesthetic then incorporate the comfort parameters of the most prominent group of the population, and last, blend in the other two representational system comfort parameters. The focus of this informal study was to use the techniques of meta-modeling and synesthesia to develop a virtual environment that closely resembled the operator's perspective of the fuel handling system of Argonne's Experimental Breeder Reactor - II. An informal study was conducted using NLP as the behavioral model in a v reality (VR) setting

  7. Compact Polarimetric SAR Ship Detection with m-δ Decomposition Using Visual Attention Model

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2016-09-01

    Full Text Available A few previous studies have illustrated the potentials of compact polarimetric Synthetic Aperture Radar (CP SAR in ship detection. In this paper, we design a ship detection algorithm of CP SAR from the perspective of computer vision. A ship detection algorithm using the pulsed cosine transform (PCT visual attention model is proposed to suppress background clutter and highlight conspicuous ship targets. It is the first time that a visual attention model is introduced to CP SAR application. The proposed algorithm is a quick and complete framework for practical use. Polarimetric features—the relative phase δ and volume scattering component—are extracted from m-δ decomposition to eliminate false alarms and modify the PCT model. The constant false alarm rate (CFAR algorithm based on lognormal distribution is adopted to detect ship targets, after a clutter distribution fitting procedure of the modified saliency map. The proposed method is then tested on three simulated circular-transmit-linear-receive (CTLR mode images, which covering East Sea of China. Compared with the detection results of SPAN and the saliency map with only single-channel amplitude, the proposed method achieves the highest detection rates and the lowest misidentification rate and highest figure of merit, proving the effectiveness of polarimetric information of compact polarimetric SAR ship detection and the enhancement from the visual attention model.

  8. Model of rhythmic ball bouncing using a visually controlled neural oscillator.

    Science.gov (United States)

    Avrin, Guillaume; Siegler, Isabelle A; Makarov, Maria; Rodriguez-Ayerbe, Pedro

    2017-10-01

    The present paper investigates the sensory-driven modulations of central pattern generator dynamics that can be expected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of a Matsuoka neural oscillator coupled with the environment through visual sensory feedback. The architecture's ability to reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison of simulated and recorded trials. The results suggest that human visual control of the task is achieved online. The adaptive behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic pattern generator, the musculoskeletal system, and the environment. NEW & NOTEWORTHY The study demonstrates that a behavioral model based on a neural oscillator controlled by visual information is able to accurately reproduce human modulations in a motor action with respect to sensory information during the rhythmic ball-bouncing task. The model attractor dynamics emerging from the interaction between the neuromusculoskeletal system and the environment met task requirements, environmental constraints, and human behavioral choices without relying on movement planning and explicit internal models of the environment. Copyright © 2017 the American Physiological Society.

  9. 3D MODELLING AND VISUALIZATION BASED ON THE UNITY GAME ENGINE – ADVANTAGES AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    I. Buyuksalih

    2017-11-01

    Full Text Available 3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine as highlighted in this paper.

  10. D Modelling and Interactive Web-Based Visualization of Cultural Heritage Objects

    Science.gov (United States)

    Koeva, M. N.

    2016-06-01

    Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria - a country with thousands of years of history and cultural heritage dating back to ancient civilizations. This motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1) image-based modelling using a non-metric hand-held camera; (2) 3D visualization based on spherical panoramic images; (3) and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This comparative study

  11. 3D MODELLING AND INTERACTIVE WEB-BASED VISUALIZATION OF CULTURAL HERITAGE OBJECTS

    Directory of Open Access Journals (Sweden)

    M. N. Koeva

    2016-06-01

    Full Text Available Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria – a country with thousands of years of history and cultural heritage dating back to ancient civilizations. \\this motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1 image-based modelling using a non-metric hand-held camera; (2 3D visualization based on spherical panoramic images; (3 and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This

  12. Introducing memory and association mechanism into a biologically inspired visual model.

    Science.gov (United States)

    Qiao, Hong; Li, Yinlin; Tang, Tang; Wang, Peng

    2014-09-01

    A famous biologically inspired hierarchical model (HMAX model), which was proposed recently and corresponds to V1 to V4 of the ventral pathway in primate visual cortex, has been successfully applied to multiple visual recognition tasks. The model is able to achieve a set of position- and scale-tolerant recognition, which is a central problem in pattern recognition. In this paper, based on some other biological experimental evidence, we introduce the memory and association mechanism into the HMAX model. The main contributions of the work are: 1) mimicking the active memory and association mechanism and adding the top down adjustment to the HMAX model, which is the first try to add the active adjustment to this famous model and 2) from the perspective of information, algorithms based on the new model can reduce the computation storage and have a good recognition performance. The new model is also applied to object recognition processes. The primary experimental results show that our method is efficient with a much lower memory requirement.

  13. ACTIVIS: Visual Exploration of Industry-Scale Deep Neural Network Models.

    Science.gov (United States)

    Kahng, Minsuk; Andrews, Pierre Y; Kalro, Aditya; Polo Chau, Duen Horng

    2017-08-30

    While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ACTIVIS, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance- and subset-level. ACTIVIS has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ACTIVIS may work with different models.

  14. Vector model for mapping of visual space to subjective 4-D sphere

    International Nuclear Information System (INIS)

    Matuzevicius, Dalius; Vaitkevicius, Henrikas

    2014-01-01

    Here we present a mathematical model of binocular vision that maps a visible physical world to a subjective perception of it. The subjective space is a set of 4-D vectors whose components are outputs of four monocular neurons from each of the two eyes. Monocular neurons have one of the four types of concentric receptive fields with Gabor-like weighting coefficients. Next this vector representation of binocular vision is implemented as a pool of neurons where each of them is selective to the object's particular location in a 3-D visual space. Formally each point of the visual space is being projected onto a 4-D sphere. Proposed model allows determination of subjective distances in depth and direction, provides computational means for determination of Panum's area and explains diplopia and allelotropia

  15. Simultaneous modeling of visual saliency and value computation improves predictions of economic choice.

    Science.gov (United States)

    Towal, R Blythe; Mormann, Milica; Koch, Christof

    2013-10-01

    Many decisions we make require visually identifying and evaluating numerous alternatives quickly. These usually vary in reward, or value, and in low-level visual properties, such as saliency. Both saliency and value influence the final decision. In particular, saliency affects fixation locations and durations, which are predictive of choices. However, it is unknown how saliency propagates to the final decision. Moreover, the relative influence of saliency and value is unclear. Here we address these questions with an integrated model that combines a perceptual decision process about where and when to look with an economic decision process about what to choose. The perceptual decision process is modeled as a drift-diffusion model (DDM) process for each alternative. Using psychophysical data from a multiple-alternative, forced-choice task, in which subjects have to pick one food item from a crowded display via eye movements, we test four models where each DDM process is driven by (i) saliency or (ii) value alone or (iii) an additive or (iv) a multiplicative combination of both. We find that models including both saliency and value weighted in a one-third to two-thirds ratio (saliency-to-value) significantly outperform models based on either quantity alone. These eye fixation patterns modulate an economic decision process, also described as a DDM process driven by value. Our combined model quantitatively explains fixation patterns and choices with similar or better accuracy than previous models, suggesting that visual saliency has a smaller, but significant, influence than value and that saliency affects choices indirectly through perceptual decisions that modulate economic decisions.

  16. 3D Visualization of Trees Based on a Sphere-Board Model

    Directory of Open Access Journals (Sweden)

    Jiangfeng She

    2018-01-01

    Full Text Available Because of the smooth interaction of tree systems, the billboard and crossed-plane techniques of image-based rendering (IBR have been used for tree visualization for many years. However, both the billboard-based tree model (BBTM and the crossed-plane tree model (CPTM have several notable limitations; for example, they give an impression of slicing when viewed from the top side, and they produce an unimpressive stereoscopic effect and insufficient lighted effects. In this study, a sphere-board-based tree model (SBTM is proposed to eliminate these defects and to improve the final visual effects. Compared with the BBTM or CPTM, the proposed SBTM uses one or more sphere-like 3D geometric surfaces covered with a virtual texture, which can present more details about the foliage than can 2D planes, to represent the 3D outline of a tree crown. However, the profile edge presented by a continuous surface is overly smooth and regular, and when used to delineate the outline of a tree crown, it makes the tree appear very unrealistic. To overcome this shortcoming and achieve a more natural final visual effect of the tree model, an additional process is applied to the edge of the surface profile. In addition, the SBTM can better support lighted effects because of its cubic geometrical features. Interactive visualization effects for a single tree and a grove are presented in a case study of Sabina chinensis. The results show that the SBTM can achieve a better compromise between realism and performance than can the BBTM or CPTM.

  17. A normalization model suggests that attention changes the weighting of inputs between visual areas.

    Science.gov (United States)

    Ruff, Douglas A; Cohen, Marlene R

    2017-05-16

    Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1-MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations.

  18. The role of cognitive and visual abilities as predictors in the Multifactorial Model of Driving Safety.

    Science.gov (United States)

    Anstey, Kaarin J; Horswill, Mark S; Wood, Joanne M; Hatherly, Christopher

    2012-03-01

    The current study evaluated part of the Multifactorial Model of Driving Safety to elucidate the relative importance of cognitive function and a limited range of standard measures of visual function in relation to the Capacity to Drive Safely. Capacity to Drive Safely was operationalized using three validated screening measures for older drivers. These included an adaptation of the well validated Useful Field of View (UFOV) and two newer measures, namely a Hazard Perception Test (HPT), and a Hazard Change Detection Task (HCDT). Community dwelling drivers (n=297) aged 65-96 were assessed using a battery of measures of cognitive and visual function. Factor analysis of these predictor variables yielded factors including Executive/Speed, Vision (measured by visual acuity and contrast sensitivity), Spatial, Visual Closure, and Working Memory. Cognitive and Vision factors explained 83-95% of age-related variance in the Capacity to Drive Safely. Spatial and Working Memory were associated with UFOV, HPT and HCDT, Executive/Speed was associated with UFOV and HCDT and Vision was associated with HPT. The Capacity to Drive Safely declines with chronological age, and this decline is associated with age-related declines in several higher order cognitive abilities involving manipulation and storage of visuospatial information under speeded conditions. There are also age-independent effects of cognitive function and vision that determine driving safety. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. a Novel Ship Detection Method for Large-Scale Optical Satellite Images Based on Visual Lbp Feature and Visual Attention Model

    Science.gov (United States)

    Haigang, Sui; Zhina, Song

    2016-06-01

    Reliably ship detection in optical satellite images has a wide application in both military and civil fields. However, this problem is very difficult in complex backgrounds, such as waves, clouds, and small islands. Aiming at these issues, this paper explores an automatic and robust model for ship detection in large-scale optical satellite images, which relies on detecting statistical signatures of ship targets, in terms of biologically-inspired visual features. This model first selects salient candidate regions across large-scale images by using a mechanism based on biologically-inspired visual features, combined with visual attention model with local binary pattern (CVLBP). Different from traditional studies, the proposed algorithm is high-speed and helpful to focus on the suspected ship areas avoiding the separation step of land and sea. Largearea images are cut into small image chips and analyzed in two complementary ways: Sparse saliency using visual attention model and detail signatures using LBP features, thus accordant with sparseness of ship distribution on images. Then these features are employed to classify each chip as containing ship targets or not, using a support vector machine (SVM). After getting the suspicious areas, there are still some false alarms such as microwaves and small ribbon clouds, thus simple shape and texture analysis are adopted to distinguish between ships and nonships in suspicious areas. Experimental results show the proposed method is insensitive to waves, clouds, illumination and ship size.

  20. Visualization of laser tattoo removal treatment effects in a mouse model by two-photon microscopy.

    Science.gov (United States)

    Jang, Won Hyuk; Yoon, Yeoreum; Kim, Wonjoong; Kwon, Soonjae; Lee, Seunghun; Song, Duke; Choi, Jong Woon; Kim, Ki Hean

    2017-08-01

    Laser tattoo removal is an effective method of eliminating tattoo particles in the skin. However, laser treatment cannot always remove the unwanted tattoo completely, and there are risks of either temporary or permanent side effects. Studies using preclinical animal models could provide detailed information on the effects of laser treatment in the skin, and might help to minimize side effects in clinical practices. In this study, two-photon microscopy (TPM) was used to visualize the laser treatment effects on tattoo particles in both phantom specimens and in vivo mouse models. Fluorescent tattoo ink was used for particle visualization by TPM, and nanosecond (ns) and picosecond (ps) lasers at 532 nm were used for treatment. In phantom specimens, TPM characterized the fragmentation of individual tattoo particles by tracking them before and after the laser treatment. These changes were confirmed by field emission scanning electron microscopy (FE-SEM). TPM was used to measure the treatment efficiency of the two lasers at different laser fluences. In the mouse model, TPM visualized clusters of tattoo particles in the skin and detected their fragmentation after the laser treatment. Longitudinal TPM imaging observed the migration of cells containing tattoo particles after the laser treatment. These results show that TPM may be useful for the assessment of laser tattoo removal treatment in preclinical studies.

  1. Different developmental trajectories across feature types support a dynamic field model of visual working memory development.

    Science.gov (United States)

    Simmering, Vanessa R; Miller, Hilary E; Bohache, Kevin

    2015-05-01

    Research on visual working memory has focused on characterizing the nature of capacity limits as "slots" or "resources" based almost exclusively on adults' performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to "slot" or "resource" explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children's (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model-purportedly arising through experience-can capture differences across feature types.

  2. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model

    Directory of Open Access Journals (Sweden)

    Georgios Zoulinakis

    2017-01-01

    Full Text Available Purpose. To design an intraocular telescopic system (ITS for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses’ placement in the eye model and their powers. Ray tracing in both centered and decentered situations was carried out for both ITS while visual Strehl ratio (VSOTF was computed using custom-made MATLAB code. Results. The results show that between 0.4 and 0.8 mm of decentration, the VSOTF does not change much either for far or near target distances. The image projection for these decentrations is in the parafoveal zone, and the quality of the image projected is quite similar. Conclusion. Both systems display similar quality while they differ in size; therefore, the choice between them would need to take into account specific parameters from the patient’s eye. Quality does not change too much between 0.4 and 0.8 mm of decentration for either system which gives flexibility to the clinician to adjust decentration to avoid areas of retinal damage.

  3. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model.

    Science.gov (United States)

    Zoulinakis, Georgios; Ferrer-Blasco, Teresa

    2017-01-01

    Purpose. To design an intraocular telescopic system (ITS) for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses' placement in the eye model and their powers. Ray tracing in both centered and decentered situations was carried out for both ITS while visual Strehl ratio (VSOTF) was computed using custom-made MATLAB code. Results. The results show that between 0.4 and 0.8 mm of decentration, the VSOTF does not change much either for far or near target distances. The image projection for these decentrations is in the parafoveal zone, and the quality of the image projected is quite similar. Conclusion. Both systems display similar quality while they differ in size; therefore, the choice between them would need to take into account specific parameters from the patient's eye. Quality does not change too much between 0.4 and 0.8 mm of decentration for either system which gives flexibility to the clinician to adjust decentration to avoid areas of retinal damage.

  4. Regional air-quality and acid-deposition modeling and the role for visualization

    International Nuclear Information System (INIS)

    Novak, J.H.; Dennis, R.L.

    1991-11-01

    The U.S. Environmental Protection Agency (EPA) uses air quality and deposition models to advance the scientific understanding of basic physical and chemical processes related to air pollution, and to assess the effectiveness of alternative emissions control strategies. The paper provides a brief technical description of several regional scale atmospheric models, their current use within EPA, and related data analysis issues. Spatial analysis is a key component in the evaluation and interpretation of the model predictions. Thus, the authors highlight several types of analysis enhancements focusing on those related to issues of spatial scale, user access to models and analysis tools, and consolidation of air quality modeling and graphical analysis capabilities. They discuss their initial experience with a Geographical Information System (GIS) pilot project that generated the initial concepts for the design of an integrated modeling and analysis environment. And finally, they present current plans to evolve this modeling/visualization approach to a distributed, heterogeneous computing environment which enables any research scientist or policy analyst to use high performance visualization techniques from his/her desktop

  5. KENO3D visualization tool for KENO V.a geometry models

    International Nuclear Information System (INIS)

    Bowman, S.M.; Horwedel, J.E.

    1999-01-01

    The standardized computer analyses for licensing evaluations (SCALE) computer software system developed at Oak Ridge National Laboratory (ORNL) is widely used and accepted around the world for criticality safety analyses. SCALE includes the well-known KENO V.a three-dimensional Monte Carlo criticality computer code. Criticality safety analysis often require detailed modeling of complex geometries. Checking the accuracy of these models can be enhanced by effective visualization tools. To address this need, ORNL has recently developed a powerful state-of-the-art visualization tool called KENO3D that enables KENO V.a users to interactively display their three-dimensional geometry models. The interactive options include the following: (1) having shaded or wireframe images; (2) showing standard views, such as top view, side view, front view, and isometric three-dimensional view; (3) rotating the model; (4) zooming in on selected locations; (5) selecting parts of the model to display; (6) editing colors and displaying legends; (7) displaying properties of any unit in the model; (8) creating cutaway views; (9) removing units from the model; and (10) printing image or saving image to common graphics formats

  6. Uncertainty Visualization Using Copula-Based Analysis in Mixed Distribution Models.

    Science.gov (United States)

    Hazarika, Subhashis; Biswas, Ayan; Shen, Han-Wei

    2018-01-01

    Distributions are often used to model uncertainty in many scientific datasets. To preserve the correlation among the spatially sampled grid locations in the dataset, various standard multivariate distribution models have been proposed in visualization literature. These models treat each grid location as a univariate random variable which models the uncertainty at that location. Standard multivariate distributions (both parametric and nonparametric) assume that all the univariate marginals are of the same type/family of distribution. But in reality, different grid locations show different statistical behavior which may not be modeled best by the same type of distribution. In this paper, we propose a new multivariate uncertainty modeling strategy to address the needs of uncertainty modeling in scientific datasets. Our proposed method is based on a statistically sound multivariate technique called Copula, which makes it possible to separate the process of estimating the univariate marginals and the process of modeling dependency, unlike the standard multivariate distributions. The modeling flexibility offered by our proposed method makes it possible to design distribution fields which can have different types of distribution (Gaussian, Histogram, KDE etc.) at the grid locations, while maintaining the correlation structure at the same time. Depending on the results of various standard statistical tests, we can choose an optimal distribution representation at each location, resulting in a more cost efficient modeling without significantly sacrificing on the analysis quality. To demonstrate the efficacy of our proposed modeling strategy, we extract and visualize uncertain features like isocontours and vortices in various real world datasets. We also study various modeling criterion to help users in the task of univariate model selection.

  7. Discrete-Slots Models of Visual Working-Memory Response Times

    Science.gov (United States)

    Donkin, Christopher; Nosofsky, Robert M.; Gold, Jason M.; Shiffrin, Richard M.

    2014-01-01

    Much recent research has aimed to establish whether visual working memory (WM) is better characterized by a limited number of discrete all-or-none slots or by a continuous sharing of memory resources. To date, however, researchers have not considered the response-time (RT) predictions of discrete-slots versus shared-resources models. To complement the past research in this field, we formalize a family of mixed-state, discrete-slots models for explaining choice and RTs in tasks of visual WM change detection. In the tasks under investigation, a small set of visual items is presented, followed by a test item in 1 of the studied positions for which a change judgment must be made. According to the models, if the studied item in that position is retained in 1 of the discrete slots, then a memory-based evidence-accumulation process determines the choice and the RT; if the studied item in that position is missing, then a guessing-based accumulation process operates. Observed RT distributions are therefore theorized to arise as probabilistic mixtures of the memory-based and guessing distributions. We formalize an analogous set of continuous shared-resources models. The model classes are tested on individual subjects with both qualitative contrasts and quantitative fits to RT-distribution data. The discrete-slots models provide much better qualitative and quantitative accounts of the RT and choice data than do the shared-resources models, although there is some evidence for “slots plus resources” when memory set size is very small. PMID:24015956

  8. cellPACK: a virtual mesoscope to model and visualize structural systems biology.

    Science.gov (United States)

    Johnson, Graham T; Autin, Ludovic; Al-Alusi, Mostafa; Goodsell, David S; Sanner, Michel F; Olson, Arthur J

    2015-01-01

    cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10-100 nm) between molecular and cellular biology scales. cellPACK's modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive three-dimensional models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is available as open-source code, with tools for validation of models and with 'recipes' and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org/.

  9. The identification and modeling of visual cue usage in manual control task experiments

    Science.gov (United States)

    Sweet, Barbara Townsend

    Many fields of endeavor require humans to conduct manual control tasks while viewing a perspective scene. Manual control refers to tasks in which continuous, or nearly continuous, control adjustments are required. Examples include flying an aircraft, driving a car, and riding a bicycle. Perspective scenes can arise through natural viewing of the world, simulation of a scene (as in flight simulators), or through imaging devices (such as the cameras on an unmanned aerospace vehicle). Designers frequently have some degree of control over the content and characteristics of a perspective scene; airport designers can choose runway markings, vehicle designers can influence the size and shape of windows, as well as the location of the pilot, and simulator database designers can choose scene complexity and content. Little theoretical framework exists to help designers determine the answers to questions related to perspective scene content. An empirical approach is most commonly used to determine optimum perspective scene configurations. The goal of the research effort described in this dissertation has been to provide a tool for modeling the characteristics of human operators conducting manual control tasks with perspective-scene viewing. This is done for the purpose of providing an algorithmic, as opposed to empirical, method for analyzing the effects of changing perspective scene content for closed-loop manual control tasks. The dissertation contains the development of a model of manual control using a perspective scene, called the Visual Cue Control (VCC) Model. Two forms of model were developed: one model presumed that the operator obtained both position and velocity information from one visual cue, and the other model presumed that the operator used one visual cue for position, and another for velocity. The models were compared and validated in two experiments. The results show that the two-cue VCC model accurately characterizes the output of the human operator with a

  10. Introduction of a methodology for visualization and graphical interpretation of Bayesian classification models.

    Science.gov (United States)

    Balfer, Jenny; Bajorath, Jürgen

    2014-09-22

    Supervised machine learning models are widely used in chemoinformatics, especially for the prediction of new active compounds or targets of known actives. Bayesian classification methods are among the most popular machine learning approaches for the prediction of activity from chemical structure. Much work has focused on predicting structure-activity relationships (SARs) on the basis of experimental training data. By contrast, only a few efforts have thus far been made to rationalize the performance of Bayesian or other supervised machine learning models and better understand why they might succeed or fail. In this study, we introduce an intuitive approach for the visualization and graphical interpretation of naïve Bayesian classification models. Parameters derived during supervised learning are visualized and interactively analyzed to gain insights into model performance and identify features that determine predictions. The methodology is introduced in detail and applied to assess Bayesian modeling efforts and predictions on compound data sets of varying structural complexity. Different classification models and features determining their performance are characterized in detail. A prototypic implementation of the approach is provided.

  11. Task-Difficulty Homeostasis in Car Following Models: Experimental Validation Using Self-Paced Visual Occlusion.

    Directory of Open Access Journals (Sweden)

    Jami Pekkanen

    Full Text Available Car following (CF models used in traffic engineering are often criticized for not incorporating "human factors" well known to affect driving. Some recent work has addressed this by augmenting the CF models with the Task-Capability Interface (TCI model, by dynamically changing driving parameters as function of driver capability. We examined assumptions of these models experimentally using a self-paced visual occlusion paradigm in a simulated car following task. The results show strong, approximately one-to-one, correspondence between occlusion duration and increase in time headway. The correspondence was found between subjects and within subjects, on aggregate and individual sample level. The long time scale aggregate results support TCI-CF models that assume a linear increase in time headway in response to increased distraction. The short time scale individual sample level results suggest that drivers also adapt their visual sampling in response to transient changes in time headway, a mechanism which isn't incorporated in the current models.

  12. Toward Rigorous Parameterization of Underconstrained Neural Network Models Through Interactive Visualization and Steering of Connectivity Generation

    Directory of Open Access Journals (Sweden)

    Christian Nowke

    2018-06-01

    Full Text Available Simulation models in many scientific fields can have non-unique solutions or unique solutions which can be difficult to find. Moreover, in evolving systems, unique final state solutions can be reached by multiple different trajectories. Neuroscience is no exception. Often, neural network models are subject to parameter fitting to obtain desirable output comparable to experimental data. Parameter fitting without sufficient constraints and a systematic exploration of the possible solution space can lead to conclusions valid only around local minima or around non-minima. To address this issue, we have developed an interactive tool for visualizing and steering parameters in neural network simulation models. In this work, we focus particularly on connectivity generation, since finding suitable connectivity configurations for neural network models constitutes a complex parameter search scenario. The development of the tool has been guided by several use cases—the tool allows researchers to steer the parameters of the connectivity generation during the simulation, thus quickly growing networks composed of multiple populations with a targeted mean activity. The flexibility of the software allows scientists to explore other connectivity and neuron variables apart from the ones presented as use cases. With this tool, we enable an interactive exploration of parameter spaces and a better understanding of neural network models and grapple with the crucial problem of non-unique network solutions and trajectories. In addition, we observe a reduction in turn around times for the assessment of these models, due to interactive visualization while the simulation is computed.

  13. The "Carbon Data Explorer": Web-Based Space-Time Visualization of Modeled Carbon Fluxes

    Science.gov (United States)

    Billmire, M.; Endsley, K. A.

    2014-12-01

    The visualization of and scientific "sense-making" from large datasets varying in both space and time is a challenge; one that is still being addressed in a number of different fields. The approaches taken thus far are often specific to a given academic field due to the unique questions that arise in different disciplines, however, basic approaches such as geographic maps and time series plots are still widely useful. The proliferation of model estimates of increasing size and resolution further complicates what ought to be a simple workflow: Model some geophysical phenomen(on), obtain results and measure uncertainty, organize and display the data, make comparisons across trials, and share findings. A new tool is in development that is intended to help scientists with the latter parts of that workflow. The tentatively-titled "Carbon Data Explorer" (http://spatial.mtri.org/flux-client/) enables users to access carbon science and related spatio-temporal science datasets over the web. All that is required to access multiple interactive visualizations of carbon science datasets is a compatible web browser and an internet connection. While the application targets atmospheric and climate science datasets, particularly spatio-temporal model estimates of carbon products, the software architecture takes an agnostic approach to the data to be visualized. Any atmospheric, biophysical, or geophysical quanity that varies in space and time, including one or more measures of uncertainty, can be visualized within the application. Within the web application, users have seamless control over a flexible and consistent symbology for map-based visualizations and plots. Where time series data are represented by one or more data "frames" (e.g. a map), users can animate the data. In the "coordinated view," users can make direct comparisons between different frames and different models or model runs, facilitating intermodal comparisons and assessments of spatio-temporal variability. Map

  14. From phonemes to images : levels of representation in a recurrent neural model of visually-grounded language learning

    NARCIS (Netherlands)

    Gelderloos, L.J.; Chrupala, Grzegorz

    2016-01-01

    We present a model of visually-grounded language learning based on stacked gated recurrent neural networks which learns to predict visual features given an image description in the form of a sequence of phonemes. The learning task resembles that faced by human language learners who need to discover

  15. A model of primate visual cortex based on category-specific redundancies in natural images

    Science.gov (United States)

    Malmir, Mohsen; Shiry Ghidary, S.

    2010-12-01

    Neurophysiological and computational studies have proposed that properties of natural images have a prominent role in shaping selectivity of neurons in the visual cortex. An important property of natural images that has been studied extensively is the inherent redundancy in these images. In this paper, the concept of category-specific redundancies is introduced to describe the complex pattern of dependencies between responses of linear filters to natural images. It is proposed that structural similarities between images of different object categories result in dependencies between responses of linear filters in different spatial scales. It is also proposed that the brain gradually removes these dependencies in different areas of the ventral visual hierarchy to provide a more efficient representation of its sensory input. The authors proposed a model to remove these redundancies and trained it with a set of natural images using general learning rules that are developed to remove dependencies between responses of neighbouring neurons. Results of experiments demonstrate the close resemblance of neuronal selectivity between different layers of the model and their corresponding visual areas.

  16. Incorporating a Wheeled Vehicle Model in a New Monocular Visual Odometry Algorithm for Dynamic Outdoor Environments

    Science.gov (United States)

    Jiang, Yanhua; Xiong, Guangming; Chen, Huiyan; Lee, Dah-Jye

    2014-01-01

    This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC) scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments. PMID:25256109

  17. Effect of pupil size on visual acuity in a laboratory model of pseudophakic monovision.

    Science.gov (United States)

    Kawamorita, Takushi; Uozato, Hiroshi; Handa, Tomoya; Ito, Misae; Shimizu, Kimiya

    2010-05-01

    To investigate the effect of pupil size on visual acuity in pseudophakic monovision. For the simulation, a modified Liou-Brennan model eye was used. The model eye was designed to include a centered optical system, corneal asphericity, an iris pupil, a Stiles-Crawford effect, an intraocular lens, and chromatic aberration. Calculation of the modulation transfer function (MTF) was performed with ZEMAX software. Visual acuity was estimated from the MTF and the retinal threshold curve. The sizes of the entrance pupil were 2.0, 2.5, 3.0, and 4.0 mm. Decreasing pupil diameter and increasing myopia progressively improved near visual acuity. For an entrance pupil size of 2.5 mm and a refractive error of -1.50 diopters, the logMAR value (Snellen; metric) in the non-dominant eye at 40 cm was 0.06 (20/23; 6/6.9). Knowledge of the patient's pupil diameter at near fixation can assist surgeons in determining the optimum degree of myopia for successful monovision.

  18. Incorporating a Wheeled Vehicle Model in a New Monocular Visual Odometry Algorithm for Dynamic Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Yanhua Jiang

    2014-09-01

    Full Text Available This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments.

  19. Visual Analysis of Tumor Control Models for Prediction of Radiotherapy Response

    DEFF Research Database (Denmark)

    Raidou, Renata G.; Casares Magaz, Oscar; Muren, Ludvig

    2016-01-01

    on TCP modeling, to explore the information provided by their models, to discover new knowledge and to confirm or generate hypotheses within their data. Our approach incorporates the following four main components: (1) It supports the exploration of uncertainty and its effect on TCP models; (2...... impact on the modeling outcome, while the models are sensitive to a number of parameter assumptions. Currently, uncertainty and parameter sensitivity are not incorporated in the analysis, due to time and resource constraints. To this end, we propose a visual tool that enables clinical researchers working......) It facilitates parameter sensitivity anal- ysis to common assumptions; (3) It enables the identification of inter-patient response variability; (4) It allows starting the analysis from the desired treatment outcome, to identify treatment strategies that achieve it. We con- ducted an evaluation with nine clinical...

  20. Research on the Collinear Equation Model of Visual Positioning Based on Visible Light Communication

    Directory of Open Access Journals (Sweden)

    Wang Yuqi

    2015-01-01

    Full Text Available A positioning method based on visible light communication is proposed, which receiving visible light information by low-resolution photodiode array and receiving visual information by the front camera of mobile phone. The terminal position is determined by matching spot information provided by photodiode array with visual information and position information provided by visible light communication. A collinear equation model is derived which based on mobile phone front camera. A hardware-in-loop simulation has been conducted to verify the collinear equation. The three-dimensional positioning error is on the level of decimeter. Moreover, the main factors which affect the positioning accuracy are analyzed in order to further improve the positioning accuracy.

  1. Remote sensing image ship target detection method based on visual attention model

    Science.gov (United States)

    Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong

    2017-11-01

    The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.

  2. detecting multiple sclerosis lesions with a fully bioinspired visual attention model

    Science.gov (United States)

    Villalon-Reina, Julio; Gutierrez-Carvajal, Ricardo; Thompson, Paul M.; Romero-Castro, Eduardo

    2013-11-01

    The detection, segmentation and quantification of multiple sclerosis (MS) lesions on magnetic resonance images (MRI) has been a very active field for the last two decades because of the urge to correlate these measures with the effectiveness of pharmacological treatment. A myriad of methods has been developed and most of these are non specific for the type of lesions and segment the lesions in their acute and chronic phases together. On the other hand, radiologists are able to distinguish between several stages of the disease on different types of MRI images. The main motivation of the work presented here is to computationally emulate the visual perception of the radiologist by using modeling principles of the neuronal centers along the visual system. By using this approach we are able to detect the lesions in the majority of the images in our population sample. This type of approach also allows us to study and improve the analysis of brain networks by introducing a priori information.

  3. Model Interpretation of Topological Spatial Analysis for the Visually Impaired (Blind Implemented in Google Maps

    Directory of Open Access Journals (Sweden)

    Marcelo Franco Porto

    2013-06-01

    Full Text Available The technological innovations promote the availability of geographic information on the Internet through Web GIS such as Google Earth and Google Maps. These systems contribute to the teaching and diffusion of geographical knowledge that instigates the recognition of the space we live in, leading to the creation of a spatial identity. In these products available on the Web, the interpretation and analysis of spatial information gives priority to one of the human senses: vision. Due to the fact that this representation of information is transmitted visually (image and vectors, a portion of the population is excluded from part of this knowledge because categories of analysis of geographic data such as borders, territory, and space can only be understood by people who can see. This paper deals with the development of a model of interpretation of topological spatial analysis based on the synthesis of voice and sounds that can be used by the visually impaired (blind.The implementation of a prototype in Google Maps and the usability tests performed are also examined. For the development work it was necessary to define the model of topological spatial analysis, focusing on computational implementation, which allows users to interpret the spatial relationships of regions (countries, states and municipalities, recognizing its limits, neighborhoods and extension beyond their own spatial relationships . With this goal in mind, several interface and usability guidelines were drawn up to be used by the visually impaired (blind. We conducted a detailed study of the Google Maps API (Application Programming Interface, which was the environment selected for prototype development, and studied the information available for the users of that system. The prototype was developed based on the synthesis of voice and sounds that implement the proposed model in C # language and in .NET environment. To measure the efficiency and effectiveness of the prototype, usability

  4. Combining universal beauty and cultural context in a unifying model of visual aesthetic experience.

    Science.gov (United States)

    Redies, Christoph

    2015-01-01

    In this work, I propose a model of visual aesthetic experience that combines formalist and contextual aspects of aesthetics. The model distinguishes between two modes of processing. First, perceptual processing is based on the intrinsic form of an artwork, which may or may not be beautiful. If it is beautiful, a beauty-responsive mechanism is activated in the brain. This bottom-up mechanism is universal amongst humans; it is widespread in the visual brain and responsive across visual modalities. Second, cognitive processing is based on contextual information, such as the depicted content, the intentions of the artist or the circumstances of the presentation of the artwork. Cognitive processing is partially top-down and varies between individuals according to their cultural experience. Processing in the two channels is parallel and largely independent. In the general case, an aesthetic experience is induced if processing in both channels is favorable, i.e., if there is resonance in the perceptual processing channel ("aesthetics of perception"), and successful mastering in the cognitive processing channel ("aesthetics of cognition"). I speculate that this combinatorial mechanism has evolved to mediate social bonding between members of a (cultural) group of people. Primary emotions can be elicited via both channels and modulate the degree of the aesthetic experience. Two special cases are discussed. First, in a subset of (post-)modern art, beauty no longer plays a prominent role. Second, in some forms of abstract art, beautiful form can be enjoyed with minimal cognitive processing. The model is applied to examples of Western art. Finally, implications of the model are discussed. In summary, the proposed model resolves the seeming contradiction between formalist perceptual approaches to aesthetic experience, which are based on the intrinsic beauty of artworks, and contextual approaches, which account for highly individual and culturally dependent aspects of aesthetics.

  5. Combining universal beauty and cultural context in a unifying model of visual aesthetic experience

    Science.gov (United States)

    Redies, Christoph

    2015-01-01

    In this work, I propose a model of visual aesthetic experience that combines formalist and contextual aspects of aesthetics. The model distinguishes between two modes of processing. First, perceptual processing is based on the intrinsic form of an artwork, which may or may not be beautiful. If it is beautiful, a beauty-responsive mechanism is activated in the brain. This bottom–up mechanism is universal amongst humans; it is widespread in the visual brain and responsive across visual modalities. Second, cognitive processing is based on contextual information, such as the depicted content, the intentions of the artist or the circumstances of the presentation of the artwork. Cognitive processing is partially top–down and varies between individuals according to their cultural experience. Processing in the two channels is parallel and largely independent. In the general case, an aesthetic experience is induced if processing in both channels is favorable, i.e., if there is resonance in the perceptual processing channel (“aesthetics of perception”), and successful mastering in the cognitive processing channel (“aesthetics of cognition”). I speculate that this combinatorial mechanism has evolved to mediate social bonding between members of a (cultural) group of people. Primary emotions can be elicited via both channels and modulate the degree of the aesthetic experience. Two special cases are discussed. First, in a subset of (post-)modern art, beauty no longer plays a prominent role. Second, in some forms of abstract art, beautiful form can be enjoyed with minimal cognitive processing. The model is applied to examples of Western art. Finally, implications of the model are discussed. In summary, the proposed model resolves the seeming contradiction between formalist perceptual approaches to aesthetic experience, which are based on the intrinsic beauty of artworks, and contextual approaches, which account for highly individual and culturally dependent aspects of

  6. The monocular visual imaging technology model applied in the airport surface surveillance

    Science.gov (United States)

    Qin, Zhe; Wang, Jian; Huang, Chao

    2013-08-01

    At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.

  7. To be selected or not to be selected : a modeling and behavioral study of the mechanisms underlying stimulus-driven and top-down visual attention

    NARCIS (Netherlands)

    Voort van der Kleij, van der Gwendid T.

    2007-01-01

    This thesis investigates the mechanisms of stimulus-driven visual attention (global saliency), the mechanisms of top-down visual attention, and the interaction between these mechanisms, in visual search. Following the outline of an existing model of top-down visual attention, namely the Closed-Loop

  8. A visual tracking method based on deep learning without online model updating

    Science.gov (United States)

    Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei

    2018-02-01

    The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.

  9. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics.

    Science.gov (United States)

    Boulet, Jason; Balasubramaniam, Ramesh; Daffertshofer, Andreas; Longtin, André

    2010-01-28

    We report on experiments and modelling involving the 'visuo-postural control loop' in the upright stance. We experimentally manipulated an artificial delay to the visual feedback during standing, presented at delays ranging from 0 to 1 s in increments of 250 ms. Using stochastic delay differential equations, we explicitly modelled the centre-of-pressure (COP) and centre-of-mass (COM) dynamics with two independent delay terms for vision and proprioception. A novel 'drifting fixed point' hypothesis was used to describe the fluctuations of the COM with the COP being modelled as a faster, corrective process of the COM. The model was in good agreement with the data in terms of probability density functions, power spectral densities, short- and long-term correlations (Hurst exponents) as well the critical time between the two ranges. This journal is © 2010 The Royal Society

  10. Adaptive Correlation Model for Visual Tracking Using Keypoints Matching and Deep Convolutional Feature

    Directory of Open Access Journals (Sweden)

    Yuankun Li

    2018-02-01

    Full Text Available Although correlation filter (CF-based visual tracking algorithms have achieved appealing results, there are still some problems to be solved. When the target object goes through long-term occlusions or scale variation, the correlation model used in existing CF-based algorithms will inevitably learn some non-target information or partial-target information. In order to avoid model contamination and enhance the adaptability of model updating, we introduce the keypoints matching strategy and adjust the model learning rate dynamically according to the matching score. Moreover, the proposed approach extracts convolutional features from a deep convolutional neural network (DCNN to accurately estimate the position and scale of the target. Experimental results demonstrate that the proposed tracker has achieved satisfactory performance in a wide range of challenging tracking scenarios.

  11. A neural model of motion processing and visual navigation by cortical area MST.

    Science.gov (United States)

    Grossberg, S; Mingolla, E; Pack, C

    1999-12-01

    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.

  12. STUDY ON MODELING AND VISUALIZING THE POSITIONAL UNCERTAINTY OF REMOTE SENSING IMAGE

    Directory of Open Access Journals (Sweden)

    W. Jiao

    2016-06-01

    Full Text Available It is inevitable to bring about uncertainty during the process of data acquisition. The traditional method to evaluate the geometric positioning accuracy is usually by the statistical method and represented by the root mean square errors (RMSEs of control points. It is individual and discontinuous, so it is difficult to describe the error spatial distribution. In this paper the error uncertainty of each control point is deduced, and the uncertainty spatial distribution model of each arbitrary point is established. The error model is proposed to evaluate the geometric accuracy of remote sensing image. Then several visualization methods are studied to represent the discrete and continuous data of geometric uncertainties. The experiments show that the proposed evaluation method of error distribution model compared with the traditional method of RMSEs can get the similar results but without requiring the user to collect control points as checkpoints, and error distribution information calculated by the model can be provided to users along with the geometric image data. Additionally, the visualization methods described in this paper can effectively and objectively represents the image geometric quality, and also can help users probe the reasons of bringing the image uncertainties in some extent.

  13. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    Science.gov (United States)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2017-12-01

    We present the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal. This allows for the dissemination of data, simulation of physical processes, and promotion of climate literacy. The current iteration leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. Moreover, the portal allows for real time visualization and editing of models, cloud based computational simulation, and downloads of relevant data. This allows for faster publication in peer-reviewed journals and adaption of results for educational applications. Through application of this concept to multiple aspects of the Earth System, VESL is able to broaden data applications in the geosciences and beyond. At this stage, we still seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL. As we plan its expansion, we aim to achieve more rapid communication and presentation of scientific results.

  14. Risk factors and visual fatigue of baggage X-ray security screeners: a structural equation modelling analysis.

    Science.gov (United States)

    Yu, Rui-Feng; Yang, Lin-Dong; Wu, Xin

    2017-05-01

    This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue using structural equation modelling approach. Two hundred and five X-ray security screeners participated in a questionnaire survey. The result showed that satisfaction with the VDT's physical features and the work environment conditions were negatively correlated with the intensity of visual fatigue, whereas job stress and job burnout had direct positive influences. The path coefficient between the image quality of VDT and visual fatigue was not significant. The total effects of job burnout, job stress, the VDT's physical features and the work environment conditions on visual fatigue were 0.471, 0.469, -0.268 and -0.251 respectively. These findings indicated that both extrinsic factors relating to VDT and workplace environment and psychological factors including job burnout and job stress should be considered in the workplace design and work organisation of security screening tasks to reduce screeners' visual fatigue. Practitioner Summary: This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue. The findings were of great importance to the workplace design and the work organisation of security screening tasks to reduce screeners' visual fatigue.

  15. Vision-guided ocular growth in a mutant chicken model with diminished visual acuity.

    Science.gov (United States)

    Ritchey, Eric R; Zelinka, Christopher; Tang, Junhua; Liu, Jun; Code, Kimberly A; Petersen-Jones, Simon; Fischer, Andy J

    2012-09-01

    Visual experience is known to guide ocular growth. We tested the hypothesis that vision-guided ocular growth is disrupted in a model system with diminished visual acuity. We examine whether ocular elongation is influenced by form-deprivation (FD) and lens-imposed defocus in the Retinopathy, Globe Enlarged (RGE) chicken. Young RGE chicks have poor visual acuity, without significant retinal pathology, resulting from a mutation in guanine nucleotide-binding protein β3 (GNB3), also known as transducin β3 or Gβ3. The mutation in GNB3 destabilizes the protein and causes a loss of Gβ3 from photoreceptors and ON-bipolar cells (Ritchey et al., 2010). FD increased ocular elongation in RGE eyes in a manner similar to that seen in wild-type (WT) eyes. By comparison, the excessive ocular elongation that results from hyperopic defocus was increased, whereas myopic defocus failed to significantly decrease ocular elongation in RGE eyes. Brief daily periods of unrestricted vision interrupting FD prevented ocular elongation in RGE chicks in a manner similar to that seen in WT chicks. Glucagonergic amacrine cells differentially expressed the immediate early gene Egr1 in response to growth-guiding stimuli in RGE retinas, but the defocus-dependent up-regulation of Egr1 was lesser in RGE retinas compared to that of WT retinas. We conclude that high visual acuity, and the retinal signaling mediated by Gβ3, is not required for emmetropization and the excessive ocular elongation caused by FD and hyperopic defocus. However, the loss of acuity and Gβ3 from RGE retinas causes enhanced responses to hyperopic defocus and diminished responses to myopic defocus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Choi, Hae Yoon; Seong, Jee Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2015-04-01

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches.

  17. Load-based approaches for modelling visual clarity in streams at regional scale.

    Science.gov (United States)

    Elliott, A H; Davies-Colley, R J; Parshotam, A; Ballantine, D

    2013-01-01

    Reduction of visual clarity in streams by diffuse sources of fine sediment is a cause of water quality impairment in New Zealand and internationally. In this paper we introduce the concept of a load of optical cross section (LOCS), which can be used for load-based management of light-attenuating substances and for water quality models that are based on mass accounting. In this approach, the beam attenuation coefficient (units of m(-1)) is estimated from the inverse of the visual clarity (units of m) measured with a black disc. This beam attenuation coefficient can also be considered as an optical cross section (OCS) per volume of water, analogous to a concentration. The instantaneous 'flux' of cross section is obtained from the attenuation coefficient multiplied by the water discharge, and this can be accumulated over time to give an accumulated 'load' of cross section (LOCS). Moreover, OCS is a conservative quantity, in the sense that the OCS of two combined water volumes is the sum of the OCS of the individual water volumes (barring effects such as coagulation, settling, or sorption). The LOCS can be calculated for a water quality station using rating curve methods applied to measured time series of visual clarity and flow. This approach was applied to the sites in New Zealand's National Rivers Water Quality Network (NRWQN). Although the attenuation coefficient follows roughly a power relation with flow at some sites, more flexible loess rating curves are required at other sites. The hybrid mechanistic-statistical catchment model SPARROW (SPAtially Referenced Regressions On Watershed attributes), which is based on a mass balance for mean annual load, was then applied to the NRWQN dataset. Preliminary results from this model are presented, highlighting the importance of factors related to erosion, such as rainfall, slope, hardness of catchment rock types, and the influence of pastoral development on the load of optical cross section.

  18. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    International Nuclear Information System (INIS)

    Song, Min Seop; Choi, Hae Yoon; Seong, Jee Hyun; Kim, Eung Soo

    2015-01-01

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches

  19. Noodles: a tool for visualization of numerical weather model ensemble uncertainty.

    Science.gov (United States)

    Sanyal, Jibonananda; Zhang, Song; Dyer, Jamie; Mercer, Andrew; Amburn, Philip; Moorhead, Robert J

    2010-01-01

    Numerical weather prediction ensembles are routinely used for operational weather forecasting. The members of these ensembles are individual simulations with either slightly perturbed initial conditions or different model parameterizations, or occasionally both. Multi-member ensemble output is usually large, multivariate, and challenging to interpret interactively. Forecast meteorologists are interested in understanding the uncertainties associated with numerical weather prediction; specifically variability between the ensemble members. Currently, visualization of ensemble members is mostly accomplished through spaghetti plots of a single mid-troposphere pressure surface height contour. In order to explore new uncertainty visualization methods, the Weather Research and Forecasting (WRF) model was used to create a 48-hour, 18 member parameterization ensemble of the 13 March 1993 "Superstorm". A tool was designed to interactively explore the ensemble uncertainty of three important weather variables: water-vapor mixing ratio, perturbation potential temperature, and perturbation pressure. Uncertainty was quantified using individual ensemble member standard deviation, inter-quartile range, and the width of the 95% confidence interval. Bootstrapping was employed to overcome the dependence on normality in the uncertainty metrics. A coordinated view of ribbon and glyph-based uncertainty visualization, spaghetti plots, iso-pressure colormaps, and data transect plots was provided to two meteorologists for expert evaluation. They found it useful in assessing uncertainty in the data, especially in finding outliers in the ensemble run and therefore avoiding the WRF parameterizations that lead to these outliers. Additionally, the meteorologists could identify spatial regions where the uncertainty was significantly high, allowing for identification of poorly simulated storm environments and physical interpretation of these model issues.

  20. UNCERT: geostatistics, uncertainty analysis and visualization software applied to groundwater flow and contaminant transport modeling

    International Nuclear Information System (INIS)

    Wingle, W.L.; Poeter, E.P.; McKenna, S.A.

    1999-01-01

    UNCERT is a 2D and 3D geostatistics, uncertainty analysis and visualization software package applied to ground water flow and contaminant transport modeling. It is a collection of modules that provides tools for linear regression, univariate statistics, semivariogram analysis, inverse-distance gridding, trend-surface analysis, simple and ordinary kriging and discrete conditional indicator simulation. Graphical user interfaces for MODFLOW and MT3D, ground water flow and contaminant transport models, are provided for streamlined data input and result analysis. Visualization tools are included for displaying data input and output. These include, but are not limited to, 2D and 3D scatter plots, histograms, box and whisker plots, 2D contour maps, surface renderings of 2D gridded data and 3D views of gridded data. By design, UNCERT's graphical user interface and visualization tools facilitate model design and analysis. There are few built in restrictions on data set sizes and each module (with two exceptions) can be run in either graphical or batch mode. UNCERT is in the public domain and is available from the World Wide Web with complete on-line and printable (PDF) documentation. UNCERT is written in ANSI-C with a small amount of FORTRAN77, for UNIX workstations running X-Windows and Motif (or Lesstif). This article discusses the features of each module and demonstrates how they can be used individually and in combination. The tools are applicable to a wide range of fields and are currently used by researchers in the ground water, mining, mathematics, chemistry and geophysics, to name a few disciplines. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Physiologically based pharmacokinetic modeling using microsoft excel and visual basic for applications.

    Science.gov (United States)

    Marino, Dale J

    2005-01-01

    Abstract Physiologically based pharmacokinetic (PBPK) models are mathematical descriptions depicting the relationship between external exposure and internal dose. These models have found great utility for interspecies extrapolation. However, specialized computer software packages, which are not widely distributed, have typically been used for model development and utilization. A few physiological models have been reported using more widely available software packages (e.g., Microsoft Excel), but these tend to include less complex processes and dose metrics. To ascertain the capability of Microsoft Excel and Visual Basis for Applications (VBA) for PBPK modeling, models for styrene, vinyl chloride, and methylene chloride were coded in Advanced Continuous Simulation Language (ACSL), Excel, and VBA, and simulation results were compared. For styrene, differences between ACSL and Excel or VBA compartment concentrations and rates of change were less than +/-7.5E-10 using the same numerical integration technique and time step. Differences using VBA fixed step or ACSL Gear's methods were generally Excel and VBA PBPK model dose metrics differed by no more than -0.013% or -0.23%, respectively, from ACSL results. These differences are likely attributable to different step sizes rather than different numerical integration techniques. These results indicate that Microsoft Excel and VBA can be useful tools for utilizing PBPK models, and given the availability of these software programs, it is hoped that this effort will help facilitate the use and investigation of PBPK modeling.

  2. Visualizing Experimental Designs for Balanced ANOVA Models using Lisp-Stat

    Directory of Open Access Journals (Sweden)

    Philip W. Iversen

    2004-12-01

    Full Text Available The structure, or Hasse, diagram described by Taylor and Hilton (1981, American Statistician provides a visual display of the relationships between factors for balanced complete experimental designs. Using the Hasse diagram, rules exist for determining the appropriate linear model, ANOVA table, expected means squares, and F-tests in the case of balanced designs. This procedure has been implemented in Lisp-Stat using a software representation of the experimental design. The user can interact with the Hasse diagram to add, change, or delete factors and see the effect on the proposed analysis. The system has potential uses in teaching and consulting.

  3. sbml-diff: A Tool for Visually Comparing SBML Models in Synthetic Biology.

    Science.gov (United States)

    Scott-Brown, James; Papachristodoulou, Antonis

    2017-07-21

    We present sbml-diff, a tool that is able to read a model of a biochemical reaction network in SBML format and produce a range of diagrams showing different levels of detail. Each diagram type can be used to visualize a single model or to visually compare two or more models. The default view depicts species as ellipses, reactions as rectangles, rules as parallelograms, and events as diamonds. A cartoon view replaces the symbols used for reactions on the basis of the associated Systems Biology Ontology terms. An abstract view represents species as ellipses and draws edges between them to indicate whether a species increases or decreases the production or degradation of another species. sbml-diff is freely licensed under the three-clause BSD license and can be downloaded from https://github.com/jamesscottbrown/sbml-diff and used as a python package called from other software, as a free-standing command-line application, or online using the form at http://sysos.eng.ox.ac.uk/tebio/upload.

  4. Coupling Visualization, Simulation, and Deep Learning for Ensemble Steering of Complex Energy Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bugbee, Bruce [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-09

    We have developed a framework for the exploration, design, and planning of energy systems that combines interactive visualization with machine-learning based approximations of simulations through a general purpose dataflow API. Our system provides a visual inter- face allowing users to explore an ensemble of energy simulations representing a subset of the complex input parameter space, and spawn new simulations to 'fill in' input regions corresponding to new enegery system scenarios. Unfortunately, many energy simula- tions are far too slow to provide interactive responses. To support interactive feedback, we are developing reduced-form models via machine learning techniques, which provide statistically sound esti- mates of the full simulations at a fraction of the computational cost and which are used as proxies for the full-form models. Fast com- putation and an agile dataflow enhance the engagement with energy simulations, and allow researchers to better allocate computational resources to capture informative relationships within the system and provide a low-cost method for validating and quality-checking large-scale modeling efforts.

  5. Acquisition, processing, and visualization of big data as applied to robust multivariate impact models

    Science.gov (United States)

    Romeo, L.; Rose, K.; Bauer, J. R.; Dick, D.; Nelson, J.; Bunn, A.; Buenau, K. E.; Coleman, A. M.

    2016-02-01

    Increased offshore oil exploration and production emphasizes the need for environmental, social, and economic impact models that require big data from disparate sources to conduct thorough multi-scale analyses. The National Energy Technology Laboratory's Cumulative Spatial Impact Layers (CSILs) and Spatially Weighted Impact Model (SWIM) are user-driven flexible suites of GIS-based tools that can efficiently process, integrate, visualize, and analyze a wide variety of big datasets that are acquired to better to understand potential impacts for oil spill prevention and response readiness needs. These tools provide solutions to address a range of stakeholder questions and aid in prioritization decisions needed when responding to oil spills. This is particularly true when highlighting ecologically sensitive areas and spatially analyzing which species may be at risk. Model outputs provide unique geospatial visualizations of potential impacts and informational reports based on user preferences. The spatio-temporal capabilities of these tools can be leveraged to a number of anthropogenic and natural disasters enabling decision-makers to be better informed to potential impacts and response needs.

  6. MRI segmentation by active contours model, 3D reconstruction, and visualization

    Science.gov (United States)

    Lopez-Hernandez, Juan M.; Velasquez-Aguilar, J. Guadalupe

    2005-02-01

    The advances in 3D data modelling methods are becoming increasingly popular in the areas of biology, chemistry and medical applications. The Nuclear Magnetic Resonance Imaging (NMRI) technique has progressed at a spectacular rate over the past few years, its uses have been spread over many applications throughout the body in both anatomical and functional investigations. In this paper we present the application of Zernike polynomials for 3D mesh model of the head using the contour acquired of cross-sectional slices by active contour model extraction and we propose the visualization with OpenGL 3D Graphics of the 2D-3D (slice-surface) information for the diagnostic aid in medical applications.

  7. On-chip visual perception of motion: a bio-inspired connectionist model on FPGA.

    Science.gov (United States)

    Torres-Huitzil, César; Girau, Bernard; Castellanos-Sánchez, Claudio

    2005-01-01

    Visual motion provides useful information to understand the dynamics of a scene to allow intelligent systems interact with their environment. Motion computation is usually restricted by real time requirements that need the design and implementation of specific hardware architectures. In this paper, the design of hardware architecture for a bio-inspired neural model for motion estimation is presented. The motion estimation is based on a strongly localized bio-inspired connectionist model with a particular adaptation of spatio-temporal Gabor-like filtering. The architecture is constituted by three main modules that perform spatial, temporal, and excitatory-inhibitory connectionist processing. The biomimetic architecture is modeled, simulated and validated in VHDL. The synthesis results on a Field Programmable Gate Array (FPGA) device show the potential achievement of real-time performance at an affordable silicon area.

  8. Visual Basic, Excel-based fish population modeling tool - The pallid sturgeon example

    Science.gov (United States)

    Moran, Edward H.; Wildhaber, Mark L.; Green, Nicholas S.; Albers, Janice L.

    2016-02-10

    The model presented in this report is a spreadsheet-based model using Visual Basic for Applications within Microsoft Excel (http://dx.doi.org/10.5066/F7057D0Z) prepared in cooperation with the U.S. Army Corps of Engineers and U.S. Fish and Wildlife Service. It uses the same model structure and, initially, parameters as used by Wildhaber and others (2015) for pallid sturgeon. The difference between the model structure used for this report and that used by Wildhaber and others (2015) is that variance is not partitioned. For the model of this report, all variance is applied at the iteration and time-step levels of the model. Wildhaber and others (2015) partition variance into parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level and temporal variance (uncertainty caused by random environmental fluctuations with time) applied at the time-step level. They included implicit individual variance (uncertainty caused by differences between individuals) within the time-step level.The interface developed for the model of this report is designed to allow the user the flexibility to change population model structure and parameter values and uncertainty separately for every component of the model. This flexibility makes the modeling tool potentially applicable to any fish species; however, the flexibility inherent in this modeling tool makes it possible for the user to obtain spurious outputs. The value and reliability of the model outputs are only as good as the model inputs. Using this modeling tool with improper or inaccurate parameter values, or for species for which the structure of the model is inappropriate, could lead to untenable management decisions. By facilitating fish population modeling, this modeling tool allows the user to evaluate a range of management options and implications. The goal of this modeling tool is to be a user-friendly modeling tool for developing fish population models useful to natural resource

  9. A visual LISP program for voxelizing AutoCAD solid models

    Science.gov (United States)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  10. The visual development of hand-centered receptive fields in a neural network model of the primate visual system trained with experimentally recorded human gaze changes.

    Science.gov (United States)

    Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M

    2016-01-01

    Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.

  11. Validity of the growth model of the 'computerized visual perception assessment tool for Chinese characters structures'.

    Science.gov (United States)

    Wu, Huey-Min; Li, Cheng-Hsaun; Kuo, Bor-Chen; Yang, Yu-Mao; Lin, Chin-Kai; Wan, Wei-Hsiang

    2017-08-01

    Morphological awareness is the foundation for the important developmental skills involved with vocabulary, as well as understanding the meaning of words, orthographic knowledge, reading, and writing. Visual perception of space and radicals in two-dimensional positions of Chinese characters' morphology is very important in identifying Chinese characters. The important predictive variables of special and visual perception in Chinese characters identification were investigated in the growth model in this research. The assessment tool is the "Computerized Visual Perception Assessment Tool for Chinese Characters Structures" developed by this study. There are two constructs, basic stroke and character structure. In the basic stroke, there are three subtests of one, two, and more than three strokes. In the character structure, there are three subtests of single-component character, horizontal-compound character, and vertical-compound character. This study used purposive sampling. In the first year, 551 children 4-6 years old participated in the study and were monitored for one year. In the second year, 388 children remained in the study and the successful follow-up rate was 70.4%. This study used a two-wave cross-lagged panel design to validate the growth model of the basic stroke and the character structure. There was significant correlation of the basic stroke and the character structure at different time points. The abilities in the basic stroke and in the character structure steadily developed over time for preschool children. Children's knowledge of the basic stroke effectively predicted their knowledge of the basic stroke and the character structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Computational Modeling of Cephalad Fluid Shift for Application to Microgravity-Induced Visual Impairment

    Science.gov (United States)

    Nelson, Emily S.; Best, Lauren M.; Myers, Jerry G.; Mulugeta, Lealem

    2013-01-01

    An improved understanding of spaceflight-induced ocular pathology, including the loss of visual acuity, globe flattening, optic disk edema and distension of the optic nerve and optic nerve sheath, is of keen interest to space medicine. Cephalad fluid shift causes a profoundly altered distribution of fluid within the compartments of the head and body, and may indirectly generate phenomena that are biomechanically relevant to visual function, such as choroidal engorgement, compromised drainage of blood and cerebrospinal fluid (CSF), and altered translaminar pressure gradient posterior to the eye. The experimental body of evidence with respect to the consequences of fluid shift has not yet been able to provide a definitive picture of the sequence of events. On earth, elevated intracranial pressure (ICP) is associated with idiopathic intracranial hypertension (IIH), which can produce ocular pathologies that look similar to those seen in some astronauts returning from long-duration flight. However, the clinically observable features of the Visual Impairment and Intracranial Pressure (VIIP) syndrome in space and IIH on earth are not entirely consistent. Moreover, there are at present no experimental measurements of ICP in microgravity. By its very nature, physiological measurements in spaceflight are sparse, and the space environment does not lend itself to well-controlled experiments. In the absence of such data, numerical modeling can play a role in the investigation of biomechanical causal pathways that are suspected of involvement in VIIP. In this work, we describe the conceptual framework for modeling the altered compartmental fluid distribution that represents an equilibrium fluid distribution resulting from the loss of hydrostatic pressure gradient.

  13. Subtle alterations in memory systems and normal visual attention in the GAERS model of absence epilepsy.

    Science.gov (United States)

    Marques-Carneiro, J E; Faure, J-B; Barbelivien, A; Nehlig, A; Cassel, J-C

    2016-03-01

    Even if considered benign, absence epilepsy may alter memory and attention, sometimes subtly. Very little is known on behavior and cognitive functions in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model of absence epilepsy. We focused on different memory systems and sustained visual attention, using Non Epileptic Controls (NECs) and Wistars as controls. A battery of cognitive/behavioral tests was used. The functionality of reference, working, and procedural memory was assessed in the Morris water maze (MWM), 8-arm radial maze, T-maze and/or double-H maze. Sustained visual attention was evaluated in the 5-choice serial reaction time task. In the MWM, GAERS showed delayed learning and less efficient working memory. In the 8-arm radial maze and T-maze tests, working memory performance was normal in GAERS, although most GAERS preferred an egocentric strategy (based on proprioceptive/kinesthetic information) to solve the task, but could efficiently shift to an allocentric strategy (based on spatial cues) after protocol alteration. Procedural memory and visual attention were mostly unimpaired. Absence epilepsy has been associated with some learning problems in children. In GAERS, the differences in water maze performance (slower learning of the reference memory task and weak impairment of working memory) and in radial arm maze strategies suggest that cognitive alterations may be subtle, task-specific, and that normal performance can be a matter of strategy adaptation. Altogether, these results strengthen the "face validity" of the GAERS model: in humans with absence epilepsy, cognitive alterations are not easily detectable, which is compatible with subtle deficits. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. A Scalable Cloud Library Empowering Big Data Management, Diagnosis, and Visualization of Cloud-Resolving Models

    Science.gov (United States)

    Zhou, S.; Tao, W. K.; Li, X.; Matsui, T.; Sun, X. H.; Yang, X.

    2015-12-01

    A cloud-resolving model (CRM) is an atmospheric numerical model that can numerically resolve clouds and cloud systems at 0.25~5km horizontal grid spacings. The main advantage of the CRM is that it can allow explicit interactive processes between microphysics, radiation, turbulence, surface, and aerosols without subgrid cloud fraction, overlapping and convective parameterization. Because of their fine resolution and complex physical processes, it is challenging for the CRM community to i) visualize/inter-compare CRM simulations, ii) diagnose key processes for cloud-precipitation formation and intensity, and iii) evaluate against NASA's field campaign data and L1/L2 satellite data products due to large data volume (~10TB) and complexity of CRM's physical processes. We have been building the Super Cloud Library (SCL) upon a Hadoop framework, capable of CRM database management, distribution, visualization, subsetting, and evaluation in a scalable way. The current SCL capability includes (1) A SCL data model enables various CRM simulation outputs in NetCDF, including the NASA-Unified Weather Research and Forecasting (NU-WRF) and Goddard Cumulus Ensemble (GCE) model, to be accessed and processed by Hadoop, (2) A parallel NetCDF-to-CSV converter supports NU-WRF and GCE model outputs, (3) A technique visualizes Hadoop-resident data with IDL, (4) A technique subsets Hadoop-resident data, compliant to the SCL data model, with HIVE or Impala via HUE's Web interface, (5) A prototype enables a Hadoop MapReduce application to dynamically access and process data residing in a parallel file system, PVFS2 or CephFS, where high performance computing (HPC) simulation outputs such as NU-WRF's and GCE's are located. We are testing Apache Spark to speed up SCL data processing and analysis.With the SCL capabilities, SCL users can conduct large-domain on-demand tasks without downloading voluminous CRM datasets and various observations from NASA Field Campaigns and Satellite data to a

  15. VISIBIOweb: visualization and layout services for BioPAX pathway models

    Science.gov (United States)

    Dilek, Alptug; Belviranli, Mehmet E.; Dogrusoz, Ugur

    2010-01-01

    With recent advancements in techniques for cellular data acquisition, information on cellular processes has been increasing at a dramatic rate. Visualization is critical to analyzing and interpreting complex information; representing cellular processes or pathways is no exception. VISIBIOweb is a free, open-source, web-based pathway visualization and layout service for pathway models in BioPAX format. With VISIBIOweb, one can obtain well-laid-out views of pathway models using the standard notation of the Systems Biology Graphical Notation (SBGN), and can embed such views within one's web pages as desired. Pathway views may be navigated using zoom and scroll tools; pathway object properties, including any external database references available in the data, may be inspected interactively. The automatic layout component of VISIBIOweb may also be accessed programmatically from other tools using Hypertext Transfer Protocol (HTTP). The web site is free and open to all users and there is no login requirement. It is available at: http://visibioweb.patika.org. PMID:20460470

  16. Hierarchical neural network model of the visual system determining figure/ground relation

    Science.gov (United States)

    Kikuchi, Masayuki

    2017-07-01

    One of the most important functions of the visual perception in the brain is figure/ground interpretation from input images. Figural region in 2D image corresponding to object in 3D space are distinguished from background region extended behind the object. Previously the author proposed a neural network model of figure/ground separation constructed on the standpoint that local geometric features such as curvatures and outer angles at corners are extracted and propagated along input contour in a single layer network (Kikuchi & Akashi, 2001). However, such a processing principle has the defect that signal propagation requires manyiterations despite the fact that actual visual system determines figure/ground relation within the short period (Zhou et al., 2000). In order to attain speed-up for determining figure/ground, this study incorporates hierarchical architecture into the previous model. This study confirmed the effect of the hierarchization as for the computation time by simulation. As the number of layers increased, the required computation time reduced. However, such speed-up effect was saturatedas the layers increased to some extent. This study attempted to explain this saturation effect by the notion of average distance between vertices in the area of complex network, and succeeded to mimic the saturation effect by computer simulation.

  17. Using EEG and stimulus context to probe the modelling of auditory-visual speech.

    Science.gov (United States)

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2016-02-01

    We investigated whether internal models of the relationship between lip movements and corresponding speech sounds [Auditory-Visual (AV) speech] could be updated via experience. AV associations were indexed by early and late event related potentials (ERPs) and by oscillatory power and phase locking. Different AV experience was produced via a context manipulation. Participants were presented with valid (the conventional pairing) and invalid AV speech items in either a 'reliable' context (80% AVvalid items) or an 'unreliable' context (80% AVinvalid items). The results showed that for the reliable context, there was N1 facilitation for AV compared to auditory only speech. This N1 facilitation was not affected by AV validity. Later ERPs showed a difference in amplitude between valid and invalid AV speech and there was significant enhancement of power for valid versus invalid AV speech. These response patterns did not change over the context manipulation, suggesting that the internal models of AV speech were not updated by experience. The results also showed that the facilitation of N1 responses did not vary as a function of the salience of visual speech (as previously reported); in post-hoc analyses, it appeared instead that N1 facilitation varied according to the relative time of the acoustic onset, suggesting for AV events N1 may be more sensitive to the relationship of AV timing than form. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. Visual Attention Allocation Between Robotic Arm and Environmental Process Control: Validating the STOM Task Switching Model

    Science.gov (United States)

    Wickens, Christopher; Vieanne, Alex; Clegg, Benjamin; Sebok, Angelia; Janes, Jessica

    2015-01-01

    Fifty six participants time shared a spacecraft environmental control system task with a realistic space robotic arm control task in either a manual or highly automated version. The former could suffer minor failures, whose diagnosis and repair were supported by a decision aid. At the end of the experiment this decision aid unexpectedly failed. We measured visual attention allocation and switching between the two tasks, in each of the eight conditions formed by manual-automated arm X expected-unexpected failure X monitoring- failure management. We also used our multi-attribute task switching model, based on task attributes of priority interest, difficulty and salience that were self-rated by participants, to predict allocation. An un-weighted model based on attributes of difficulty, interest and salience accounted for 96 percent of the task allocation variance across the 8 different conditions. Task difficulty served as an attractor, with more difficult tasks increasing the tendency to stay on task.

  19. Continuous modelling study of numerical volumes - Applications to the visualization of anatomical structures

    International Nuclear Information System (INIS)

    Goret, C.

    1990-12-01

    Several technics of imaging (IRM, image scanners, tomoscintigraphy, echography) give numerical informations presented by means of a stack of parallel cross-sectional images. Since many years, 3-D mathematical tools have been developed and allow the 3 D images synthesis of surfaces. In first part, we give the technics of numerical volume exploitation and their medical applications to diagnosis and therapy. The second part is about a continuous modelling of the volume with a tensor product of cubic splines. We study the characteristics of this representation and its clinical validation. Finally, we treat of the problem of surface visualization of objects contained in the volume. The results show the interest of this model and allow to propose specifications for 3-D workstation realization [fr

  20. A model for size- and rotation-invariant pattern processing in the visual system.

    Science.gov (United States)

    Reitboeck, H J; Altmann, J

    1984-01-01

    The mapping of retinal space onto the striate cortex of some mammals can be approximated by a log-polar function. It has been proposed that this mapping is of functional importance for scale- and rotation-invariant pattern recognition in the visual system. An exact log-polar transform converts centered scaling and rotation into translations. A subsequent translation-invariant transform, such as the absolute value of the Fourier transform, thus generates overall size- and rotation-invariance. In our model, the translation-invariance is realized via the R-transform. This transform can be executed by simple neural networks, and it does not require the complex computations of the Fourier transform, used in Mellin-transform size-invariance models. The logarithmic space distortion and differentiation in the first processing stage of the model is realized via "Mexican hat" filters whose diameter increases linearly with eccentricity, similar to the characteristics of the receptive fields of retinal ganglion cells. Except for some special cases, the model can explain object recognition independent of size, orientation and position. Some general problems of Mellin-type size-invariance models-that also apply to our model-are discussed.

  1. The Computable Catchment: An executable document for model-data software sharing, reproducibility and interactive visualization

    Science.gov (United States)

    Gil, Y.; Duffy, C.

    2015-12-01

    This paper proposes the concept of a "Computable Catchment" which is used to develop a collaborative platform for watershed modeling and data analysis. The object of the research is a sharable, executable document similar to a pdf, but one that includes documentation of the underlying theoretical concepts, interactive computational/numerical resources, linkage to essential data repositories and the ability for interactive model-data visualization and analysis. The executable document for each catchment is stored in the cloud with automatic provisioning and a unique identifier allowing collaborative model and data enhancements for historical hydroclimatic reconstruction and/or future landuse or climate change scenarios to be easily reconstructed or extended. The Computable Catchment adopts metadata standards for naming all variables in the model and the data. The a-priori or initial data is derived from national data sources for soils, hydrogeology, climate, and land cover available from the www.hydroterre.psu.edu data service (Leonard and Duffy, 2015). The executable document is based on Wolfram CDF or Computable Document Format with an interactive open-source reader accessible by any modern computing platform. The CDF file and contents can be uploaded to a website or simply shared as a normal document maintaining all interactive features of the model and data. The Computable Catchment concept represents one application for Geoscience Papers of the Future representing an extensible document that combines theory, models, data and analysis that are digitally shared, documented and reused among research collaborators, students, educators and decision makers.

  2. Meta-modelling, visualization and emulation of multi-dimensional data for virtual production intelligence

    Science.gov (United States)

    Schulz, Wolfgang; Hermanns, Torsten; Al Khawli, Toufik

    2017-07-01

    Decision making for competitive production in high-wage countries is a daily challenge where rational and irrational methods are used. The design of decision making processes is an intriguing, discipline spanning science. However, there are gaps in understanding the impact of the known mathematical and procedural methods on the usage of rational choice theory. Following Benjamin Franklin's rule for decision making formulated in London 1772, he called "Prudential Algebra" with the meaning of prudential reasons, one of the major ingredients of Meta-Modelling can be identified finally leading to one algebraic value labelling the results (criteria settings) of alternative decisions (parameter settings). This work describes the advances in Meta-Modelling techniques applied to multi-dimensional and multi-criterial optimization by identifying the persistence level of the corresponding Morse-Smale Complex. Implementations for laser cutting and laser drilling are presented, including the generation of fast and frugal Meta-Models with controlled error based on mathematical model reduction Reduced Models are derived to avoid any unnecessary complexity. Both, model reduction and analysis of multi-dimensional parameter space are used to enable interactive communication between Discovery Finders and Invention Makers. Emulators and visualizations of a metamodel are introduced as components of Virtual Production Intelligence making applicable the methods of Scientific Design Thinking and getting the developer as well as the operator more skilled.

  3. Using visual lateralization to model learning and memory in zebrafish larvae.

    Science.gov (United States)

    Andersson, Madelene Åberg; Ek, Fredrik; Olsson, Roger

    2015-03-02

    Impaired learning and memory are common symptoms of neurodegenerative and neuropsychiatric diseases. Present, there are several behavioural test employed to assess cognitive functions in animal models, including the frequently used novel object recognition (NOR) test. However, although atypical functional brain lateralization has been associated with neuropsychiatric conditions, spanning from schizophrenia to autism, few animal models are available to study this phenomenon in learning and memory deficits. Here we present a visual lateralization NOR model (VLNOR) in zebrafish larvae as an assay that combines brain lateralization and NOR. In zebrafish larvae, learning and memory are generally assessed by habituation, sensitization, or conditioning paradigms, which are all representatives of nondeclarative memory. The VLNOR is the first model for zebrafish larvae that studies a memory similar to the declarative memory described for mammals. We demonstrate that VLNOR can be used to study memory formation, storage, and recall of novel objects, both short and long term, in 10-day-old zebrafish. Furthermore we show that the VLNOR model can be used to study chemical modulation of memory formation and maintenance using dizocilpine (MK-801), a frequently used non-competitive antagonist of the NMDA receptor, used to test putative antipsychotics in animal models.

  4. A reaction-diffusion model to capture disparity selectivity in primary visual cortex.

    Directory of Open Access Journals (Sweden)

    Mohammed Sultan Mohiuddin Siddiqui

    Full Text Available Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.

  5. Annotation of rule-based models with formal semantics to enable creation, analysis, reuse and visualization

    Science.gov (United States)

    Misirli, Goksel; Cavaliere, Matteo; Waites, William; Pocock, Matthew; Madsen, Curtis; Gilfellon, Owen; Honorato-Zimmer, Ricardo; Zuliani, Paolo; Danos, Vincent; Wipat, Anil

    2016-01-01

    Motivation: Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. Results: We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. Availability and implementation: The annotation ontology for rule-based models can be found at http

  6. Robot Visual Tracking via Incremental Self-Updating of Appearance Model

    Directory of Open Access Journals (Sweden)

    Danpei Zhao

    2013-09-01

    Full Text Available This paper proposes a target tracking method called Incremental Self-Updating Visual Tracking for robot platforms. Our tracker treats the tracking problem as a binary classification: the target and the background. The greyscale, HOG and LBP features are used in this work to represent the target and are integrated into a particle filter framework. To track the target over long time sequences, the tracker has to update its model to follow the most recent target. In order to deal with the problems of calculation waste and lack of model-updating strategy with the traditional methods, an intelligent and effective online self-updating strategy is devised to choose the optimal update opportunity. The strategy of updating the appearance model can be achieved based on the change in the discriminative capability between the current frame and the previous updated frame. By adjusting the update step adaptively, severe waste of calculation time for needless updates can be avoided while keeping the stability of the model. Moreover, the appearance model can be kept away from serious drift problems when the target undergoes temporary occlusion. The experimental results show that the proposed tracker can achieve robust and efficient performance in several benchmark-challenging video sequences with various complex environment changes in posture, scale, illumination and occlusion.

  7. Bayesian networks and information theory for audio-visual perception modeling.

    Science.gov (United States)

    Besson, Patricia; Richiardi, Jonas; Bourdin, Christophe; Bringoux, Lionel; Mestre, Daniel R; Vercher, Jean-Louis

    2010-09-01

    Thanks to their different senses, human observers acquire multiple information coming from their environment. Complex cross-modal interactions occur during this perceptual process. This article proposes a framework to analyze and model these interactions through a rigorous and systematic data-driven process. This requires considering the general relationships between the physical events or factors involved in the process, not only in quantitative terms, but also in term of the influence of one factor on another. We use tools from information theory and probabilistic reasoning to derive relationships between the random variables of interest, where the central notion is that of conditional independence. Using mutual information analysis to guide the model elicitation process, a probabilistic causal model encoded as a Bayesian network is obtained. We exemplify the method by using data collected in an audio-visual localization task for human subjects, and we show that it yields a well-motivated model with good predictive ability. The model elicitation process offers new prospects for the investigation of the cognitive mechanisms of multisensory perception.

  8. PhenoLines: Phenotype Comparison Visualizations for Disease Subtyping via Topic Models.

    Science.gov (United States)

    Glueck, Michael; Naeini, Mahdi Pakdaman; Doshi-Velez, Finale; Chevalier, Fanny; Khan, Azam; Wigdor, Daniel; Brudno, Michael

    2018-01-01

    PhenoLines is a visual analysis tool for the interpretation of disease subtypes, derived from the application of topic models to clinical data. Topic models enable one to mine cross-sectional patient comorbidity data (e.g., electronic health records) and construct disease subtypes-each with its own temporally evolving prevalence and co-occurrence of phenotypes-without requiring aligned longitudinal phenotype data for all patients. However, the dimensionality of topic models makes interpretation challenging, and de facto analyses provide little intuition regarding phenotype relevance or phenotype interrelationships. PhenoLines enables one to compare phenotype prevalence within and across disease subtype topics, thus supporting subtype characterization, a task that involves identifying a proposed subtype's dominant phenotypes, ages of effect, and clinical validity. We contribute a data transformation workflow that employs the Human Phenotype Ontology to hierarchically organize phenotypes and aggregate the evolving probabilities produced by topic models. We introduce a novel measure of phenotype relevance that can be used to simplify the resulting topology. The design of PhenoLines was motivated by formative interviews with machine learning and clinical experts. We describe the collaborative design process, distill high-level tasks, and report on initial evaluations with machine learning experts and a medical domain expert. These results suggest that PhenoLines demonstrates promising approaches to support the characterization and optimization of topic models.

  9. Visual cognition

    Science.gov (United States)

    Cavanagh, Patrick

    2011-01-01

    Visual cognition, high-level vision, mid-level vision and top-down processing all refer to decision-based scene analyses that combine prior knowledge with retinal input to generate representations. The label “visual cognition” is little used at present, but research and experiments on mid- and high-level, inference-based vision have flourished, becoming in the 21st century a significant, if often understated part, of current vision research. How does visual cognition work? What are its moving parts? This paper reviews the origins and architecture of visual cognition and briefly describes some work in the areas of routines, attention, surfaces, objects, and events (motion, causality, and agency). Most vision scientists avoid being too explicit when presenting concepts about visual cognition, having learned that explicit models invite easy criticism. What we see in the literature is ample evidence for visual cognition, but few or only cautious attempts to detail how it might work. This is the great unfinished business of vision research: at some point we will be done with characterizing how the visual system measures the world and we will have to return to the question of how vision constructs models of objects, surfaces, scenes, and events. PMID:21329719

  10. Visual cognition.

    Science.gov (United States)

    Cavanagh, Patrick

    2011-07-01

    Visual cognition, high-level vision, mid-level vision and top-down processing all refer to decision-based scene analyses that combine prior knowledge with retinal input to generate representations. The label "visual cognition" is little used at present, but research and experiments on mid- and high-level, inference-based vision have flourished, becoming in the 21st century a significant, if often understated part, of current vision research. How does visual cognition work? What are its moving parts? This paper reviews the origins and architecture of visual cognition and briefly describes some work in the areas of routines, attention, surfaces, objects, and events (motion, causality, and agency). Most vision scientists avoid being too explicit when presenting concepts about visual cognition, having learned that explicit models invite easy criticism. What we see in the literature is ample evidence for visual cognition, but few or only cautious attempts to detail how it might work. This is the great unfinished business of vision research: at some point we will be done with characterizing how the visual system measures the world and we will have to return to the question of how vision constructs models of objects, surfaces, scenes, and events. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Object selection costs in visual working memory: A diffusion model analysis of the focus of attention.

    Science.gov (United States)

    Sewell, David K; Lilburn, Simon D; Smith, Philip L

    2016-11-01

    A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record (c) 2016

  12. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    Science.gov (United States)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  13. A neural model of visual figure-ground segregation from kinetic occlusion.

    Science.gov (United States)

    Barnes, Timothy; Mingolla, Ennio

    2013-01-01

    Freezing is an effective defense strategy for some prey, because their predators rely on visual motion to distinguish objects from their surroundings. An object moving over a background progressively covers (deletes) and uncovers (accretes) background texture while simultaneously producing discontinuities in the optic flow field. These events unambiguously specify kinetic occlusion and can produce a crisp edge, depth perception, and figure-ground segmentation between identically textured surfaces--percepts which all disappear without motion. Given two abutting regions of uniform random texture with different motion velocities, one region appears to be situated farther away and behind the other (i.e., the ground) if its texture is accreted or deleted at the boundary between the regions, irrespective of region and boundary velocities. Consequently, a region with moving texture appears farther away than a stationary region if the boundary is stationary, but it appears closer (i.e., the figure) if the boundary is moving coherently with the moving texture. A computational model of visual areas V1 and V2 shows how interactions between orientation- and direction-selective cells first create a motion-defined boundary and then signal kinetic occlusion at that boundary. Activation of model occlusion detectors tuned to a particular velocity results in the model assigning the adjacent surface with a matching velocity to the far depth. A weak speed-depth bias brings faster-moving texture regions forward in depth in the absence of occlusion (shearing motion). These processes together reproduce human psychophysical reports of depth ordering for key cases of kinetic occlusion displays. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.

  15. Modeling visual search using three-parameter probability functions in a hierarchical Bayesian framework.

    Science.gov (United States)

    Lin, Yi-Shin; Heinke, Dietmar; Humphreys, Glyn W

    2015-04-01

    In this study, we applied Bayesian-based distributional analyses to examine the shapes of response time (RT) distributions in three visual search paradigms, which varied in task difficulty. In further analyses we investigated two common observations in visual search-the effects of display size and of variations in search efficiency across different task conditions-following a design that had been used in previous studies (Palmer, Horowitz, Torralba, & Wolfe, Journal of Experimental Psychology: Human Perception and Performance, 37, 58-71, 2011; Wolfe, Palmer, & Horowitz, Vision Research, 50, 1304-1311, 2010) in which parameters of the response distributions were measured. Our study showed that the distributional parameters in an experimental condition can be reliably estimated by moderate sample sizes when Monte Carlo simulation techniques are applied. More importantly, by analyzing trial RTs, we were able to extract paradigm-dependent shape changes in the RT distributions that could be accounted for by using the EZ2 diffusion model. The study showed that Bayesian-based RT distribution analyses can provide an important means to investigate the underlying cognitive processes in search, including stimulus grouping and the bottom-up guidance of attention.

  16. Practical Stabilization of Uncertain Nonholonomic Mobile Robots Based on Visual Servoing Model with Uncalibrated Camera Parameters

    Directory of Open Access Journals (Sweden)

    Hua Chen

    2013-01-01

    Full Text Available The practical stabilization problem is addressed for a class of uncertain nonholonomic mobile robots with uncalibrated visual parameters. Based on the visual servoing kinematic model, a new switching controller is presented in the presence of parametric uncertainties associated with the camera system. In comparison with existing methods, the new design method is directly used to control the original system without any state or input transformation, which is effective to avoid singularity. Under the proposed control law, it is rigorously proved that all the states of closed-loop system can be stabilized to a prescribed arbitrarily small neighborhood of the zero equilibrium point. Furthermore, this switching control technique can be applied to solve the practical stabilization problem of a kind of mobile robots with uncertain parameters (and angle measurement disturbance which appeared in some literatures such as Morin et al. (1998, Hespanha et al. (1999, Jiang (2000, and Hong et al. (2005. Finally, the simulation results show the effectiveness of the proposed controller design approach.

  17. The study of infrared target recognition at sea background based on visual attention computational model

    Science.gov (United States)

    Wang, Deng-wei; Zhang, Tian-xu; Shi, Wen-jun; Wei, Long-sheng; Wang, Xiao-ping; Ao, Guo-qing

    2009-07-01

    Infrared images at sea background are notorious for the low signal-to-noise ratio, therefore, the target recognition of infrared image through traditional methods is very difficult. In this paper, we present a novel target recognition method based on the integration of visual attention computational model and conventional approach (selective filtering and segmentation). The two distinct techniques for image processing are combined in a manner to utilize the strengths of both. The visual attention algorithm searches the salient regions automatically, and represented them by a set of winner points, at the same time, demonstrated the salient regions in terms of circles centered at these winner points. This provides a priori knowledge for the filtering and segmentation process. Based on the winner point, we construct a rectangular region to facilitate the filtering and segmentation, then the labeling operation will be added selectively by requirement. Making use of the labeled information, from the final segmentation result we obtain the positional information of the interested region, label the centroid on the corresponding original image, and finish the localization for the target. The cost time does not depend on the size of the image but the salient regions, therefore the consumed time is greatly reduced. The method is used in the recognition of several kinds of real infrared images, and the experimental results reveal the effectiveness of the algorithm presented in this paper.

  18. Development of an exergy-electrical analogy for visualizing and modeling building integrated energy systems

    International Nuclear Information System (INIS)

    Saloux, E.; Teyssedou, A.; Sorin, M.

    2015-01-01

    Highlights: • The exergy-electrical analogy is developed for energy systems used in buildings. • This analogy has been developed for a complete set of system arrangement options. • Different possibilities of inter-connections are illustrated using analog switches. • Adaptability and utility of the diagram over traditional ones are emphasized. - Abstract: An exergy-electrical analogy, similar to the heat transfer electrical one, is developed and applied to the case of integrated energy systems operating in buildings. Its construction is presented for the case of space heating with electric heaters, heat pumps and solar collectors. The proposed analogy has been applied to a set of system arrangement options proposed for satisfying the building heating demand (space heating, domestic hot water); different alternatives to connect the units have been presented with switches in a visualization scheme. The analogy for such situation has been performed and the study of a solar assisted heat pump using ice storage has been investigated. This diagram directly permits energy paths and their associated exergy destruction to be visualized; hence, sources of irreversibility are identifiable. It can be helpful for the comprehension of the global process and its operation as well as for identifying exergy losses. The method used to construct the diagram makes it easily adaptable to others units or structures or to others models depending on the complexity of the process. The use of switches could be very useful for optimization purposes

  19. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    Science.gov (United States)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  20. Wave propagation visualization in an experimental model for a control rod drive mechanism assembly

    International Nuclear Information System (INIS)

    Lee, Jung-Ryul; Jeong, Hyomi; Kong, Churl-Won

    2011-01-01

    , respectively. The ultrasonic propagation patterns before and after cracks in the weld and nozzle of the CRDM assembly were also analyzed. Since this visualization method is not limited in the flat cross section, it will be useful in developing ultrasound-based structural health monitoring technologies, advanced nondestructive methods, and numerical models. In addition, the proposed laser UPI system could be a useful tool in optimizing the receiver and transmitter locations, the ultrasonic path, and the ultrasonic frequency.

  1. Conveying Clinical Reasoning Based on Visual Observation via Eye-Movement Modelling Examples

    Science.gov (United States)

    Jarodzka, Halszka; Balslev, Thomas; Holmqvist, Kenneth; Nystrom, Marcus; Scheiter, Katharina; Gerjets, Peter; Eika, Berit

    2012-01-01

    Complex perceptual tasks, like clinical reasoning based on visual observations of patients, require not only conceptual knowledge about diagnostic classes but also the skills to visually search for symptoms and interpret these observations. However, medical education so far has focused very little on how visual observation skills can be…

  2. A study on dynamic model of steady-state visual evoked potentials.

    Science.gov (United States)

    Zhang, Shangen; Han, Xu; Chen, Xiaogang; Wang, Yijun; Gao, Shangkai; Gao, Xiaorong

    2018-04-04

    Significant progress has been made in the past two decades to considerably improve the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). However, there are still some unsolved problems that may help us to improve BCI performance, one of which is that our understanding of the dynamic process of SSVEP is still superficial, especially for the transient-state response. This study introduced an antiphase stimulation method (antiphase: phase 0/π), which can simultaneously separate and extract SSVEP and event-related potential (ERP) signals from EEG, and eliminate the interference of ERP to SSVEP. Based on the SSVEP signals obtained by the antiphase stimulation method, the envelope of SSVEP was extracted by the Hilbert transform, and the dynamic model of SSVEP was quantitatively studied by mathematical modeling. The step response of a second-order linear system was used to fit the envelope of SSVEP, and its characteristics were represented by four parameters with physical and physiological meanings: one was amplitude related, one was latency related and two were frequency related. This study attempted to use pre-stimulation paradigms to modulate the dynamic model parameters, and quantitatively analyze the results by applying the dynamic model to further explore the pre-stimulation methods that had the potential to improve BCI performance. The results showed that the dynamic model had good fitting effect with SSVEP under three pre-stimulation paradigms. The test results revealed that the parameters of SSVEP dynamic models could be modulated by the pre-stimulation baseline luminance, and the gray baseline luminance pre-stimulation obtained the highest performance. This study proposed a dynamic model which was helpful to understand and utilize the transient characteristics of SSVEP. This study also found that pre-stimulation could be used to adjust the parameters of SSVEP model, and had the potential to improve the performance

  3. Towards an Integrated Visualization Of Semantically Enriched 3D City Models: An Ontology of 3D Visualization Techniques

    OpenAIRE

    Métral, Claudine; Ghoula, Nizar; Falquet, Gilles

    2012-01-01

    3D city models - which represent in 3 dimensions the geometric elements of a city - are increasingly used for an intended wide range of applications. Such uses are made possible by using semantically enriched 3D city models and by presenting such enriched 3D city models in a way that allows decision-making processes to be carried out from the best choices among sets of objectives, and across issues and scales. In order to help in such a decision-making process we have defined a framework to f...

  4. Testing a Poisson Counter Model for Visual Identification of Briefly Presented, Mutually Confusable Single Stimuli in Pure Accuracy Tasks

    Science.gov (United States)

    Kyllingsbaek, Soren; Markussen, Bo; Bundesen, Claus

    2012-01-01

    The authors propose and test a simple model of the time course of visual identification of briefly presented, mutually confusable single stimuli in pure accuracy tasks. The model implies that during stimulus analysis, tentative categorizations that stimulus i belongs to category j are made at a constant Poisson rate, v(i, j). The analysis is…

  5. A Comparison between Elementary School Students' Mental Models and Visualizations in Textbooks for the Concept of Atom

    Science.gov (United States)

    Polat-Yaseen, Zeynep

    2012-01-01

    This study was designed for two major goals, which are to describe students' mental models about atom concept from 6th to 8th grade and to compare students' mental models with visual representations of atom in textbooks. Qualitative and quantitative data were collected with 4 open-ended questions including drawings which were quantified using the…

  6. Associating Animations with Concrete Models to Enhance Students' Comprehension of Different Visual Representations in Organic Chemistry

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Hajri, Sheikha H.

    2014-01-01

    The purpose of the current study is to explore the impact of associating animations with concrete models on eleventh-grade students' comprehension of different visual representations in organic chemistry. The study used a post-test control group quasi-experimental design. The experimental group (N = 28) used concrete models, submicroscopic…

  7. Visual cognition

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, S.

    1985-01-01

    This book consists of essays covering issues in visual cognition presenting experimental techniques from cognitive psychology, methods of modeling cognitive processes on computers from artificial intelligence, and methods of studying brain organization from neuropsychology. Topics considered include: parts of recognition; visual routines; upward direction; mental rotation, and discrimination of left and right turns in maps; individual differences in mental imagery, computational analysis and the neurological basis of mental imagery: componental analysis.

  8. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Lei Qin

    2014-05-01

    Full Text Available We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences.

  9. Visual momentum: an example of cognitive models applied to interface design

    International Nuclear Information System (INIS)

    Woods, D.D.

    1982-01-01

    The growth of computer applications has radically changed the nature of the man-machine interface. Through increased automation, the nature of the human's task has shifted from an emphasis on perceptual-motor skills to an emphasis on cognitive activities (e.g., problem solving and decision making). The result is a need to improve the cognitive coupling of person and machine. The goal of this paper is to describe how knowledge from cognitive psychology can be used to provide guidance to display system designers and to solve human performance problems in person-machine systems. The mechanism is to explore one example of a principle of man-machine interaction - visual momentum - that was developed on the basis of a general model of human front-end cognitive processing

  10. Fusing Visual and Behavioral Cues for Modeling User Experience in Games

    DEFF Research Database (Denmark)

    Shaker, Noor; Asteriadis, Stylianos; Yannakakis, Georgios N.

    2013-01-01

    Estimating affective and cognitive states in condi- tions of rich human-computer interaction, such as in games, is a field of growing academic and commercial interest. Entertain- ment and serious games can benefit from recent advances in the field as, having access to predictors of the current...... state of the player (or learner) can provide useful information for feeding adaptation mechanisms that aim to maximize engagement or learning effects. In this paper, we introduce a large data corpus derived from 58 participants that play the popular Super Mario Bros platform game and attempt to create...... accurate models of player experience for this game genre. Within the view of the current research, features extracted both from player gameplay behavior and game levels, and player visual characteristics have been utilized as potential indicators of reported affect expressed as pairwise preferences between...

  11. Modeling multiple visual words assignment for bag-of-features based medical image retrieval

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-01-01

    In this paper, we investigate the bag-of-features based medical image retrieval methods, which represent an image as a collection of local features, such as image patch and key points with SIFT descriptor. To improve the bag-of-features method, we first model the assignment of local descriptor as contribution functions, and then propose a new multiple assignment strategy. By assuming the local feature can be reconstructed by its neighboring visual words in vocabulary, we solve the reconstruction weights as a QP problem and then use the solved weights as contribution functions, which results in a new assignment method called the QP assignment. We carry our experiments on ImageCLEFmed datasets. Experiments\\' results show that our proposed method exceeds the performances of traditional solutions and works well for the bag-of-features based medical image retrieval tasks.

  12. Modeling multiple visual words assignment for bag-of-features based medical image retrieval

    KAUST Repository

    Wang, Jim Jing-Yan; Almasri, Islam

    2012-01-01

    In this paper, we investigate the bag-of-features based medical image retrieval methods, which represent an image as a collection of local features, such as image patch and key points with SIFT descriptor. To improve the bag-of-features method, we first model the assignment of local descriptor as contribution functions, and then propose a new multiple assignment strategy. By assuming the local feature can be reconstructed by its neighboring visual words in vocabulary, we solve the reconstruction weights as a QP problem and then use the solved weights as contribution functions, which results in a new assignment method called the QP assignment. We carry our experiments on ImageCLEFmed datasets. Experiments' results show that our proposed method exceeds the performances of traditional solutions and works well for the bag-of-features based medical image retrieval tasks.

  13. Final Report: Phase II Nevada Water Resources Data, Modeling, and Visualization (DMV) Center

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Thomas [Desert Research Institute; Minor, Timothy [Desert Research Institute; Pohll, Gregory [Desert Research Institute

    2013-07-22

    Water is unquestionably a critical resource throughout the United States. In the semi-arid west -- an area stressed by increase in human population and sprawl of the built environment -- water is the most important limiting resource. Crucially, science must understand factors that affect availability and distribution of water. To sustain growing consumptive demand, science needs to translate understanding into reliable and robust predictions of availability under weather conditions that could be average but might be extreme. These predictions are needed to support current and long-term planning. Similar to the role of weather forecast and climate prediction, water prediction over short and long temporal scales can contribute to resource strategy, governmental policy and municipal infrastructure decisions, which are arguably tied to the natural variability and unnatural change to climate. Change in seasonal and annual temperature, precipitation, snowmelt, and runoff affect the distribution of water over large temporal and spatial scales, which impact the risk of flooding and the groundwater recharge. Anthropogenic influences and impacts increase the complexity and urgency of the challenge. The goal of this project has been to develop a decision support framework of data acquisition, digital modeling, and 3D visualization. This integrated framework consists of tools for compiling, discovering and projecting our understanding of processes that control the availability and distribution of water. The framework is intended to support the analysis of the complex interactions between processes that affect water supply, from controlled availability to either scarcity or deluge. The developed framework enables DRI to promote excellence in water resource management, particularly within the Lake Tahoe basin. In principle, this framework could be replicated for other watersheds throughout the United States. Phase II of this project builds upon the research conducted during

  14. Fechner’s law in metacognition: a quantitative model of visual working memory confidence

    Science.gov (United States)

    van den Berg, Ronald; Yoo, Aspen H.; Ma, Wei Ji

    2016-01-01

    Although visual working memory (VWM) has been studied extensively, it is unknown how people form confidence judgments about their memories. Peirce (1878) speculated that Fechner’s law – which states that sensation is proportional to the logarithm of stimulus intensity – might apply to confidence reports. Based on this idea, we hypothesize that humans map the precision of their VWM contents to a confidence rating through Fechner’s law. We incorporate this hypothesis into the best available model of VWM encoding and fit it to data from a delayed-estimation experiment. The model provides an excellent account of human confidence rating distributions as well as the relation between performance and confidence. Moreover, the best-fitting mapping in a model with a highly flexible mapping closely resembles the logarithmic mapping, suggesting that no alternative mapping exists that accounts better for the data than Fechner's law. We propose a neural implementation of the model and find that this model also fits the behavioral data well. Furthermore, we find that jointly fitting memory errors and confidence ratings boosts the power to distinguish previously proposed VWM encoding models by a factor of 5.99 compared to fitting only memory errors. Finally, we show that Fechner's law also accounts for metacognitive judgments in a word recognition memory task, which is a first indication that it may be a general law in metacognition. Our work presents the first model to jointly account for errors and confidence ratings in VWM and could lay the groundwork for understanding the computational mechanisms of metacognition. PMID:28221087

  15. Efficient spiking neural network model of pattern motion selectivity in visual cortex.

    Science.gov (United States)

    Beyeler, Michael; Richert, Micah; Dutt, Nikil D; Krichmar, Jeffrey L

    2014-07-01

    Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available.

  16. A rabbit model of atherosclerosis at carotid artery: MRI visualization and histopathological characterization

    International Nuclear Information System (INIS)

    Ma, Zhan-Long; Teng, Gao-Jun; Chen, Jun; Zhang, Hong-Ying; Cao, Ai-Hong; Ni, Yicheng

    2008-01-01

    To induce a rabbit model of atherosclerosis at carotid artery, to visualize the lesion evolution with magnetic resonance imaging (MRI), and to characterize the lesion types by histopathology. Atherosclerosis at the right common carotid artery (RCCA) was induced in 23 rabbits by high-lipid diet following balloon catheter injury to the endothelium. The rabbits were examined in vivo with a 1.5-T MRI and randomly divided into three groups of 6 weeks (n=6), 12 weeks (n=8) and 15 weeks (n=9) for postmortem histopathology. The lesions on both MRI and histology were categorized according to the American Heart Association (AHA) classifications of atherosclerosis. Type I and type II of atherosclerotic changes were detected at week 6, i.e., nearly normal signal intensity (SI) of the injured RCCA wall without stenosis on MRI, but with subendothelial inflammatory infiltration and proliferation of smooth muscle cells on histopathology. At week 12, 75.0% and 62.5% of type III changes were encountered on MRI and histopathology respectively with thicker injured RCCA wall of increased SI on T 1 -weighted and proton density (PD)-weighted MRI and microscopically a higher degree of plaque formation. At week 15, carotid atherosclerosis became more advanced, i.e., type IV and type V in 55.6% and 22.2% of the lesions with MRI and 55.6% and 33.3% of the lesions with histopathology, respectively. Statistical analysis revealed a significant agreement (p<0.05) between the MRI and histological findings for lesion classification (r=0.96). A rabbit model of carotid artery atherosclerosis has been successfully induced and noninvasively visualized. The atherosclerotic plaque formation evolved from type I to type V with time, which could be monitored with 1.5-T MRI and confirmed with histomorphology. This experimental setting can be applied in preclinical research on atherosclerosis. (orig.)

  17. Visible Earthquakes: a web-based tool for visualizing and modeling InSAR earthquake data

    Science.gov (United States)

    Funning, G. J.; Cockett, R.

    2012-12-01

    InSAR (Interferometric Synthetic Aperture Radar) is a technique for measuring the deformation of the ground using satellite radar data. One of the principal applications of this method is in the study of earthquakes; in the past 20 years over 70 earthquakes have been studied in this way, and forthcoming satellite missions promise to enable the routine and timely study of events in the future. Despite the utility of the technique and its widespread adoption by the research community, InSAR does not feature in the teaching curricula of most university geoscience departments. This is, we believe, due to a lack of accessibility to software and data. Existing tools for the visualization and modeling of interferograms are often research-oriented, command line-based and/or prohibitively expensive. Here we present a new web-based interactive tool for comparing real InSAR data with simple elastic models. The overall design of this tool was focused on ease of access and use. This tool should allow interested nonspecialists to gain a feel for the use of such data and greatly facilitate integration of InSAR into upper division geoscience courses, giving students practice in comparing actual data to modeled results. The tool, provisionally named 'Visible Earthquakes', uses web-based technologies to instantly render the displacement field that would be observable using InSAR for a given fault location, geometry, orientation, and slip. The user can adjust these 'source parameters' using a simple, clickable interface, and see how these affect the resulting model interferogram. By visually matching the model interferogram to a real earthquake interferogram (processed separately and included in the web tool) a user can produce their own estimates of the earthquake's source parameters. Once satisfied with the fit of their models, users can submit their results and see how they compare with the distribution of all other contributed earthquake models, as well as the mean and median

  18. epidemix—An interactive multi-model application for teaching and visualizing infectious disease transmission

    Directory of Open Access Journals (Sweden)

    Ulrich Muellner

    2018-06-01

    Full Text Available Mathematical models of disease transmission are used to improve our understanding of patterns of infection and to identify factors influencing them. During recent public and animal health crises, such as pandemic influenza, Ebola, Zika, foot-and-mouth disease, models have made important contributions in addressing policy questions, especially through the assessment of the trajectory and scale of outbreaks, and the evaluation of control interventions. However, their mathematical formulation means that they may appear as a “black box” to those without the appropriate mathematical background. This may lead to a negative perception of their utility for guiding policy, and generate expectations, which are not in line with what these models can deliver. It is therefore important for policymakers, as well as public health and animal health professionals and researchers who collaborate with modelers and use results generated by these models for policy development or research purpose, to understand the key concepts and assumptions underlying these models.The software application epidemix (http://shinyapps.rvc.ac.uk presented here aims to make mathematical models of disease transmission accessible to a wider audience of users. By developing a visual interface for a suite of eight models, users can develop an understanding of the impact of various modelling assumptions – especially mixing patterns – on the trajectory of an epidemic and the impact of control interventions, without having to directly deal with the complexity of mathematical equations and programming languages. Models are compartmental or individual-based, deterministic or stochastic, and assume homogeneous or heterogeneous-mixing patterns (with the probability of transmission depending on the underlying structure of contact networks, or the spatial distribution of hosts. This application is intended to be used by scientists teaching mathematical modelling short courses to non

  19. Airflow visualization in a model of human glottis near the self-oscillating vocal folds model

    Czech Academy of Sciences Publication Activity Database

    Horáček, Jaromír; Uruba, Václav; Radolf, Vojtěch; Veselý, Jan; Bula, Vítězslav

    2011-01-01

    Roč. 5, č. 1 (2011), s. 21-28 ISSN 1802-680X R&D Projects: GA ČR GA101/08/1155 Institutional research plan: CEZ:AV0Z20760514 Keywords : biomechanics of human voice * voice production modelling * PIV measurement of streamline patterns Subject RIV: BI - Acoustics

  20. Forward Models Applied in Visual Servoing for a Reaching Task in the iCub Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Daniel Fernando Tello Gamarra

    2009-01-01

    Full Text Available This paper details the application of a forward model to improve a reaching task. The reaching task must be accomplished by a humanoid robot with 53 degrees of freedom (d.o.f. and a stereo-vision system. We have explored via simulations a new way of constructing and utilizing a forward model that encodes eye–hand relationships. We constructed a forward model using the data obtained from only a single reaching attempt. ANFIS neural networks are used to construct the forward model, but the forward model is updated online with new information that comes from each reaching attempt. Using the obtained forward model, an initial image Jacobian is estimated and is used with a visual servoing controller. Simulation results demonstrate that errors are lower when the initial image Jacobian is derived from the forward model. This paper is one of the few attempts at applying visual servoing in a complete humanoid robot.

  1. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    Science.gov (United States)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality

  2. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    Science.gov (United States)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2016-12-01

    We introduce the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal for dissemination of data, simulation of physical processes, and promotion of climate literacy. The current prototype leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. This will allow for faster publication in peer-reviewed journals and adaption of results for educational applications. Through future application of this concept to multiple aspects of the Earth System, VESL has the potential to broaden data applications in the geosciences and beyond. At this stage, we seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL, as we plan its expansion, and aim to achieve more rapid communication and presentation of scientific results.

  3. A Multi-Area Stochastic Model for a Covert Visual Search Task.

    Directory of Open Access Journals (Sweden)

    Michael A Schwemmer

    Full Text Available Decisions typically comprise several elements. For example, attention must be directed towards specific objects, their identities recognized, and a choice made among alternatives. Pairs of competing accumulators and drift-diffusion processes provide good models of evidence integration in two-alternative perceptual choices, but more complex tasks requiring the coordination of attention and decision making involve multistage processing and multiple brain areas. Here we consider a task in which a target is located among distractors and its identity reported by lever release. The data comprise reaction times, accuracies, and single unit recordings from two monkeys' lateral interparietal area (LIP neurons. LIP firing rates distinguish between targets and distractors, exhibit stimulus set size effects, and show response-hemifield congruence effects. These data motivate our model, which uses coupled sets of leaky competing accumulators to represent processes hypothesized to occur in feature-selective areas and limb motor and pre-motor areas, together with the visual selection process occurring in LIP. Model simulations capture the electrophysiological and behavioral data, and fitted parameters suggest that different connection weights between LIP and the other cortical areas may account for the observed behavioral differences between the animals.

  4. TRACX2: a connectionist autoencoder using graded chunks to model infant visual statistical learning.

    Science.gov (United States)

    Mareschal, Denis; French, Robert M

    2017-01-05

    Even newborn infants are able to extract structure from a stream of sensory inputs; yet how this is achieved remains largely a mystery. We present a connectionist autoencoder model, TRACX2, that learns to extract sequence structure by gradually constructing chunks, storing these chunks in a distributed manner across its synaptic weights and recognizing these chunks when they re-occur in the input stream. Chunks are graded rather than all-or-nothing in nature. As chunks are learnt their component parts become more and more tightly bound together. TRACX2 successfully models the data from five experiments from the infant visual statistical learning literature, including tasks involving forward and backward transitional probabilities, low-salience embedded chunk items, part-sequences and illusory items. The model also captures performance differences across ages through the tuning of a single-learning rate parameter. These results suggest that infant statistical learning is underpinned by the same domain-general learning mechanism that operates in auditory statistical learning and, potentially, in adult artificial grammar learning.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  5. Development of the RETRAN input model for Ulchin 3/4 visual system analyzer

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, K. D.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.; Hwang, M. K.

    2004-01-01

    As a part of the Long-Term Nuclear R and D program, KAERI has developed the so-called Visual System Analyzer (ViSA) based on best-estimate codes. The MARS and RETRAN codes are used as the best-estimate codes for ViSA. Between these two codes, the RETRAN code is used for realistic analysis of Non-LOCA transients and small-break loss-of-coolant accidents, of which break size is less than 3 inch diameter. So it is necessary to develop the RETRAN input model for Ulchin 3/4 plants (KSNP). In recognition of this, the RETRAN input model for Ulchin 3/4 plants has been developed. This report includes the input model requirements and the calculation note for the input data generation (see the Appendix). In order to confirm the validity of the input data, the calculations are performed for a steady state at 100 % power operation condition, inadvertent reactor trip and RCP trip. The results of the steady-state calculation agree well with the design data. The results of the other transient calculations seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the RETRAN input data can be used as a base input deck for the RETRAN transient analyzer for Ulchin 3/4. Moreover, it is found that Core Protection Calculator (CPC) module, which is modified by Korea Electric Power Research Institute (KEPRI), is well adapted to ViSA

  6. ChromaStarPy: A Stellar Atmosphere and Spectrum Modeling and Visualization Lab in Python

    Science.gov (United States)

    Short, C. Ian; Bayer, Jason H. T.; Burns, Lindsey M.

    2018-02-01

    We announce ChromaStarPy, an integrated general stellar atmospheric modeling and spectrum synthesis code written entirely in python V. 3. ChromaStarPy is a direct port of the ChromaStarServer (CSServ) Java modeling code described in earlier papers in this series, and many of the associated JavaScript (JS) post-processing procedures have been ported and incorporated into CSPy so that students have access to ready-made data products. A python integrated development environment (IDE) allows a student in a more advanced course to experiment with the code and to graphically visualize intermediate and final results, ad hoc, as they are running it. CSPy allows students and researchers to compare modeled to observed spectra in the same IDE in which they are processing observational data, while having complete control over the stellar parameters affecting the synthetic spectra. We also take the opportunity to describe improvements that have been made to the related codes, ChromaStar (CS), CSServ, and ChromaStarDB (CSDB), that, where relevant, have also been incorporated into CSPy. The application may be found at the home page of the OpenStars project: http://www.ap.smu.ca/OpenStars/.

  7. Impact of oral health education by audio aids, braille and tactile models on the oral health status of visually impaired children of Bhopal City

    OpenAIRE

    Anjali Gautam; Ajay Bhambal; Swapnil Moghe

    2018-01-01

    Context: Children with special needs face unique challenges in day-to-day practice. They are dependent on their close ones for everything. To improve oral hygiene in such visually impaired children, undue training and education are required. Braille is an important language for reading and writing for the visually impaired. It helps them understand and visualize the world via touch. Audio aids are being used to impart health education to the visually impaired. Tactile models help them perceiv...

  8. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    Science.gov (United States)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry

  9. A Closed-Loop Model of Operator Visual Attention, Situation Awareness, and Performance Across Automation Mode Transitions.

    Science.gov (United States)

    Johnson, Aaron W; Duda, Kevin R; Sheridan, Thomas B; Oman, Charles M

    2017-03-01

    This article describes a closed-loop, integrated human-vehicle model designed to help understand the underlying cognitive processes that influenced changes in subject visual attention, mental workload, and situation awareness across control mode transitions in a simulated human-in-the-loop lunar landing experiment. Control mode transitions from autopilot to manual flight may cause total attentional demands to exceed operator capacity. Attentional resources must be reallocated and reprioritized, which can increase the average uncertainty in the operator's estimates of low-priority system states. We define this increase in uncertainty as a reduction in situation awareness. We present a model built upon the optimal control model for state estimation, the crossover model for manual control, and the SEEV (salience, effort, expectancy, value) model for visual attention. We modify the SEEV attention executive to direct visual attention based, in part, on the uncertainty in the operator's estimates of system states. The model was validated using the simulated lunar landing experimental data, demonstrating an average difference in the percentage of attention ≤3.6% for all simulator instruments. The model's predictions of mental workload and situation awareness, measured by task performance and system state uncertainty, also mimicked the experimental data. Our model supports the hypothesis that visual attention is influenced by the uncertainty in system state estimates. Conceptualizing situation awareness around the metric of system state uncertainty is a valuable way for system designers to understand and predict how reallocations in the operator's visual attention during control mode transitions can produce reallocations in situation awareness of certain states.

  10. Experience-driven formation of parts-based representations in a model of layered visual memory

    Directory of Open Access Journals (Sweden)

    Jenia Jitsev

    2009-09-01

    Full Text Available Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character modulated by an oscillatory rhythm. These neural mechanisms lay down the basis for cooperation and competition between the distributed units and their synaptic connections. Choosing human face recognition as a test task, we show that, under the condition of open-ended, unsupervised incremental learning, the system is able to form memory traces for individual faces in a parts-based fashion. On a lower memory layer the synaptic structure is developed to represent local facial features and their interrelations, while the identities of different persons are captured explicitly on a higher layer. An additional property of the resulting representations is the sparseness of both the activity during the recall and the synaptic patterns comprising the memory traces.

  11. Scalable Inference and Learning in Very Large Graphical Models Patterned after the Primate Visual Cortex

    National Research Council Canada - National Science Library

    Dean, Thomas

    2008-01-01

    Human-level visual performance has remained largely beyond the reach of engineered systems despite decades of research and significant advances in problem formulation, algorithms and computing power...

  12. Capacity and precision in an animal model of visual short-term memory.

    Science.gov (United States)

    Lara, Antonio H; Wallis, Jonathan D

    2012-03-14

    Temporary storage of information in visual short-term memory (VSTM) is a key component of many complex cognitive abilities. However, it is highly limited in capacity. Understanding the neurophysiological nature of this capacity limit will require a valid animal model of VSTM. We used a multiple-item color change detection task to measure macaque monkeys' VSTM capacity. Subjects' performance deteriorated and reaction times increased as a function of the number of items in memory. Additionally, we measured the precision of the memory representations by varying the distance between sample and test colors. In trials with similar sample and test colors, subjects made more errors compared to trials with highly discriminable colors. We modeled the error distribution as a Gaussian function and used this to estimate the precision of VSTM representations. We found that as the number of items in memory increases the precision of the representations decreases dramatically. Additionally, we found that focusing attention on one of the objects increases the precision with which that object is stored and degrades the precision of the remaining. These results are in line with recent findings in human psychophysics and provide a solid foundation for understanding the neurophysiological nature of the capacity limit of VSTM.

  13. Electromagnetic Computation and Visualization of Transmission Particle Model and Its Simulation Based on GPU

    Directory of Open Access Journals (Sweden)

    Yingnian Wu

    2014-01-01

    Full Text Available Electromagnetic calculation plays an important role in both military and civic fields. Some methods and models proposed for calculation of electromagnetic wave propagation in a large range bring heavy burden in CPU computation and also require huge amount of memory. Using the GPU to accelerate computation and visualization can reduce the computational burden on the CPU. Based on forward ray-tracing method, a transmission particle model (TPM for calculating electromagnetic field is presented to combine the particle method. The movement of a particle obeys the principle of the propagation of electromagnetic wave, and then the particle distribution density in space reflects the electromagnetic distribution status. The algorithm with particle transmission, movement, reflection, and diffraction is described in detail. Since the particles in TPM are completely independent, it is very suitable for the parallel computing based on GPU. Deduction verification of TPM with the electric dipole antenna as the transmission source is conducted to prove that the particle movement itself represents the variation of electromagnetic field intensity caused by diffusion. Finally, the simulation comparisons are made against the forward and backward ray-tracing methods. The simulation results verified the effectiveness of the proposed method.

  14. Comparison of L-system applications towards plant modelling, music rendering and score generation using visual language programming

    Science.gov (United States)

    Lim, Chen Kim; Tan, Kian Lam; Yusran, Hazwanni; Suppramaniam, Vicknesh

    2017-10-01

    Visual language or visual representation has been used in the past few years in order to express the knowledge in graphic. One of the important graphical elements is fractal and L-Systems is a mathematic-based grammatical model for modelling cell development and plant topology. From the plant model, L-Systems can be interpreted as music sound and score. In this paper, LSound which is a Visual Language Programming (VLP) framework has been developed to model plant to music sound and generate music score and vice versa. The objectives of this research has three folds: (i) To expand the grammar dictionary of L-Systems music based on visual programming, (ii) To design and produce a user-friendly and icon based visual language framework typically for L-Systems musical score generation which helps the basic learners in musical field and (iii) To generate music score from plant models and vice versa using L-Systems method. This research undergoes a four phases methodology where the plant is first modelled, then the music is interpreted, followed by the output of music sound through MIDI and finally score is generated. LSound is technically compared to other existing applications in the aspects of the capability of modelling the plant, rendering the music and generating the sound. It has been found that LSound is a flexible framework in which the plant can be easily altered through arrow-based programming and the music score can be altered through the music symbols and notes. This work encourages non-experts to understand L-Systems and music hand-in-hand.

  15. Deep learning-based fine-grained car make/model classification for visual surveillance

    Science.gov (United States)

    Gundogdu, Erhan; Parıldı, Enes Sinan; Solmaz, Berkan; Yücesoy, Veysel; Koç, Aykut

    2017-10-01

    Fine-grained object recognition is a potential computer vision problem that has been recently addressed by utilizing deep Convolutional Neural Networks (CNNs). Nevertheless, the main disadvantage of classification methods relying on deep CNN models is the need for considerably large amount of data. In addition, there exists relatively less amount of annotated data for a real world application, such as the recognition of car models in a traffic surveillance system. To this end, we mainly concentrate on the classification of fine-grained car make and/or models for visual scenarios by the help of two different domains. First, a large-scale dataset including approximately 900K images is constructed from a website which includes fine-grained car models. According to their labels, a state-of-the-art CNN model is trained on the constructed dataset. The second domain that is dealt with is the set of images collected from a camera integrated to a traffic surveillance system. These images, which are over 260K, are gathered by a special license plate detection method on top of a motion detection algorithm. An appropriately selected size of the image is cropped from the region of interest provided by the detected license plate location. These sets of images and their provided labels for more than 30 classes are employed to fine-tune the CNN model which is already trained on the large scale dataset described above. To fine-tune the network, the last two fully-connected layers are randomly initialized and the remaining layers are fine-tuned in the second dataset. In this work, the transfer of a learned model on a large dataset to a smaller one has been successfully performed by utilizing both the limited annotated data of the traffic field and a large scale dataset with available annotations. Our experimental results both in the validation dataset and the real field show that the proposed methodology performs favorably against the training of the CNN model from scratch.

  16. Utilizing Visual Effects Software for Efficient and Flexible Isostatic Adjustment Modelling

    Science.gov (United States)

    Meldgaard, A.; Nielsen, L.; Iaffaldano, G.

    2017-12-01

    The isostatic adjustment signal generated by transient ice sheet loading is an important indicator of past ice sheet extent and the rheological constitution of the interior of the Earth. Finite element modelling has proved to be a very useful tool in these studies. We present a simple numerical model for 3D visco elastic Earth deformation and a new approach to the design of such models utilizing visual effects software designed for the film and game industry. The software package Houdini offers an assortment of optimized tools and libraries which greatly facilitate the creation of efficient numerical algorithms. In particular, we make use of Houdini's procedural work flow, the SIMD programming language VEX, Houdini's sparse matrix creation and inversion libraries, an inbuilt tetrahedralizer for grid creation, and the user interface, which facilitates effortless manipulation of 3D geometry. We mitigate many of the time consuming steps associated with the authoring of efficient algorithms from scratch while still keeping the flexibility that may be lost with the use of commercial dedicated finite element programs. We test the efficiency of the algorithm by comparing simulation times with off-the-shelf solutions from the Abaqus software package. The algorithm is tailored for the study of local isostatic adjustment patterns, in close vicinity to present ice sheet margins. In particular, we wish to examine possible causes for the considerable spatial differences in the uplift magnitude which are apparent from field observations in these areas. Such features, with spatial scales of tens of kilometres, are not resolvable with current global isostatic adjustment models, and may require the inclusion of local topographic features. We use the presented algorithm to study a near field area where field observations are abundant, namely, Disko Bay in West Greenland with the intention of constraining Earth parameters and ice thickness. In addition, we assess how local

  17. Models of deletion for visualizing bacterial variation: an application to tuberculosis spoligotypes

    Directory of Open Access Journals (Sweden)

    Francis Andrew R

    2008-11-01

    Full Text Available Abstract Background Molecular typing methods are commonly used to study genetic relationships among bacterial isolates. Many of these methods have become standardized and produce portable data. A popular approach for analyzing such data is to construct graphs, including phylogenies. Inferences from graph representations of data assist in understanding the patterns of transmission of bacterial pathogens, and basing these graph constructs on biological models of evolution of the molecular marker helps make these inferences. Spoligotyping is a widely used method for genotyping isolates of Mycobacterium tuberculosis that exploits polymorphism in the direct repeat region. Our goal was to examine a range of models describing the evolution of spoligotypes in order to develop a visualization method to represent likely relationships among M. tuberculosis isolates. Results We found that inferred mutations of spoligotypes frequently involve the loss of a single or very few adjacent spacers. Using a second-order variant of Akaike's Information Criterion, we selected the Zipf model as the basis for resolving ambiguities in the ancestry of spoligotypes. We developed a method to construct graphs of spoligotypes (which we call spoligoforests. To demonstrate this method, we applied it to a tuberculosis data set from Cuba and compared the method to some existing methods. Conclusion We propose a new approach in analyzing relationships of M. tuberculosis isolates using spoligotypes. The spoligoforest recovers a plausible history of transmission and mutation events based on the selected deletion model. The method may be suitable to study markers based on loci of similar structure from other bacteria. The groupings and relationships in the spoligoforest can be analyzed along with the clinical features of strains to provide an understanding of the evolution of spoligotypes.

  18. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models

    Directory of Open Access Journals (Sweden)

    Mundackal S. Divya

    2017-09-01

    Full Text Available Retinal ganglion cell (RGC transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC to RGC lineage, capable of retinal ganglion cell layer (GCL integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP were transplanted into N-Methyl-D-Aspartate (NMDA injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J having sustained higher intra ocular pressure (IOP. Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.

  19. Testing the generality of the zoom-lens model: Evidence for visual-pathway specific effects of attended-region size on perception.

    Science.gov (United States)

    Goodhew, Stephanie C; Lawrence, Rebecca K; Edwards, Mark

    2017-05-01

    There are volumes of information available to process in visual scenes. Visual spatial attention is a critically important selection mechanism that prevents these volumes from overwhelming our visual system's limited-capacity processing resources. We were interested in understanding the effect of the size of the attended area on visual perception. The prevailing model of attended-region size across cognition, perception, and neuroscience is the zoom-lens model. This model stipulates that the magnitude of perceptual processing enhancement is inversely related to the size of the attended region, such that a narrow attended-region facilitates greater perceptual enhancement than a wider region. Yet visual processing is subserved by two major visual pathways (magnocellular and parvocellular) that operate with a degree of independence in early visual processing and encode contrasting visual information. Historically, testing of the zoom-lens has used measures of spatial acuity ideally suited to parvocellular processing. This, therefore, raises questions about the generality of the zoom-lens model to different aspects of visual perception. We found that while a narrow attended-region facilitated spatial acuity and the perception of high spatial frequency targets, it had no impact on either temporal acuity or the perception of low spatial frequency targets. This pattern also held up when targets were not presented centrally. This supports the notion that visual attended-region size has dissociable effects on magnocellular versus parvocellular mediated visual processing.

  20. Visualizing water

    Science.gov (United States)

    Baart, F.; van Gils, A.; Hagenaars, G.; Donchyts, G.; Eisemann, E.; van Velzen, J. W.

    2016-12-01

    A compelling visualization is captivating, beautiful and narrative. Here we show how melding the skills of computer graphics, art, statistics, and environmental modeling can be used to generate innovative, attractive and very informative visualizations. We focus on the topic of visualizing forecasts and measurements of water (water level, waves, currents, density, and salinity). For the field of computer graphics and arts, water is an important topic because it occurs in many natural scenes. For environmental modeling and statistics, water is an important topic because the water is essential for transport, a healthy environment, fruitful agriculture, and a safe environment.The different disciplines take different approaches to visualizing water. In computer graphics, one focusses on creating water as realistic looking as possible. The focus on realistic perception (versus the focus on the physical balance pursued by environmental scientists) resulted in fascinating renderings, as seen in recent games and movies. Visualization techniques for statistical results have benefited from the advancement in design and journalism, resulting in enthralling infographics. The field of environmental modeling has absorbed advances in contemporary cartography as seen in the latest interactive data-driven maps. We systematically review the design emerging types of water visualizations. The examples that we analyze range from dynamically animated forecasts, interactive paintings, infographics, modern cartography to web-based photorealistic rendering. By characterizing the intended audience, the design choices, the scales (e.g. time, space), and the explorability we provide a set of guidelines and genres. The unique contributions of the different fields show how the innovations in the current state of the art of water visualization have benefited from inter-disciplinary collaborations.

  1. The role of visual and spatial working memory in forming mental models derived from survey and route descriptions.

    Science.gov (United States)

    Meneghetti, Chiara; Labate, Enia; Pazzaglia, Francesca; Hamilton, Colin; Gyselinck, Valérie

    2017-05-01

    This study examines the involvement of spatial and visual working memory (WM) in the construction of flexible spatial models derived from survey and route descriptions. Sixty young adults listened to environment descriptions, 30 from a survey perspective and the other 30 from a route perspective, while they performed spatial (spatial tapping [ST]) and visual (dynamic visual noise [DVN]) secondary tasks - believed to overload the spatial and visual working memory (WM) components, respectively - or no secondary task (control, C). Their mental representations of the environment were tested by free recall and a verification test with both route and survey statements. Results showed that, for both recall tasks, accuracy was worse in the ST than in the C or DVN conditions. In the verification test, the effect of both ST and DVN was a decreasing accuracy for sentences testing spatial relations from the opposite perspective to the one learnt than if the perspective was the same; only ST had a stronger interference effect than the C condition for sentences from the opposite perspective from the one learnt. Overall, these findings indicate that both visual and spatial WM, and especially the latter, are involved in the construction of perspective-flexible spatial models. © 2016 The British Psychological Society.

  2. Contrast normalization contributes to a biologically-plausible model of receptive-field development in primary visual cortex (V1)

    Science.gov (United States)

    Willmore, Ben D.B.; Bulstrode, Harry; Tolhurst, David J.

    2012-01-01

    Neuronal populations in the primary visual cortex (V1) of mammals exhibit contrast normalization. Neurons that respond strongly to simple visual stimuli – such as sinusoidal gratings – respond less well to the same stimuli when they are presented as part of a more complex stimulus which also excites other, neighboring neurons. This phenomenon is generally attributed to generalized patterns of inhibitory connections between nearby V1 neurons. The Bienenstock, Cooper and Munro (BCM) rule is a neural network learning rule that, when trained on natural images, produces model neurons which, individually, have many tuning properties in common with real V1 neurons. However, when viewed as a population, a BCM network is very different from V1 – each member of the BCM population tends to respond to the same dominant features of visual input, producing an incomplete, highly redundant code for visual information. Here, we demonstrate that, by adding contrast normalization into the BCM rule, we arrive at a neurally-plausible Hebbian learning rule that can learn an efficient sparse, overcomplete representation that is a better model for stimulus selectivity in V1. This suggests that one role of contrast normalization in V1 is to guide the neonatal development of receptive fields, so that neurons respond to different features of visual input. PMID:22230381

  3. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors

    International Nuclear Information System (INIS)

    Zhou, Dan; Liu, Yuan; Ye, Josephine; Ying, Weiwen; Ogawa, Luisa Shin; Inoue, Takayo; Tatsuta, Noriaki; Wada, Yumiko; Koya, Keizo; Huang, Qin; Bates, Richard C.; Sonderfan, Andrew J.

    2013-01-01

    In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG and NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24 h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6 h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6 h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential. - Highlights: • In human trials some Hsp90 inhibitors cause visual disorders, others do not. • Prolonged inhibition of Hsp90 in the rat eye results in photoreceptor cell death. • Retina/plasma ratio and retinal

  4. Mathematical pointing model establishment of the visual tracking theodolite for satellites in two kinds of observation methods.

    Science.gov (United States)

    Zhang, Yuncheng

    The mathematical pointing model is establishment of the visual tracking theodolite for satellites in two kinds of observation methods at Yunnan Observatory, which is related to the digitalisation reform and the optical-electronic technique reform, is introduced respectively in this paper.

  5. Individuals with Visual Impairments Teaching in Nepal's Mainstream Schools: A Model for Inclusion

    Science.gov (United States)

    Lamichhane, Kamal

    2016-01-01

    This paper explores the challenges and strengths of teachers with a visual impairments teaching in Nepal's mainstream schools, using qualitative interviews of teachers and principals, as well as a student survey data set. Results showed that teachers with visual impairments tend not to teach subjects such as science and mathematics that require…

  6. GEOSPATIAL DATA PROCESSING FOR 3D CITY MODEL GENERATION, MANAGEMENT AND VISUALIZATION

    Directory of Open Access Journals (Sweden)

    I. Toschi

    2017-05-01

    Full Text Available Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA and national mapping agencies (NMA involved in “smart city” applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above – http://seneca.fbk.eu. State-of-the-art processing solutions are investigated in order to (i efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching, (ii derive topologically and geometrically accurate 3D geo-objects (i.e. building models at various levels of detail and (iii link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy and Graz (Austria. Both spatial (i.e. nadir and oblique imagery and non-spatial (i.e. cadastral information and building energy consumptions data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.

  7. Visual Trajectory-Tracking Model-Based Control for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Andrej Zdešar

    2013-09-01

    Full Text Available In this paper we present a visual-control algorithm for driving a mobile robot along the reference trajectory. The configuration of the system consists of a two-wheeled differentially driven mobile robot that is observed by an overhead camera, which can be placed at arbitrary, but reasonable, inclination with respect to the ground plane. The controller must be capable of generating appropriate tangential and angular control velocities for the trajectory-tracking problem, based on the information received about the robot position obtained in the image. To be able to track the position of the robot through a sequence of images in real-time, the robot is marked with an artificial marker that can be distinguishably recognized by the image recognition subsystem. Using the property of differential flatness, a dynamic feedback compensator can be designed for the system, thereby extending the system into a linear form. The presented control algorithm for reference tracking combines a feedforward and a feedback loop, the structure also known as a two DOF control scheme. The feedforward part should drive the system to the vicinity of the reference trajectory and the feedback part should eliminate any errors that occur due to noise and other disturbances etc. The feedforward control can never achieve accurate reference following, but this deficiency can be eliminated with the introduction of the feedback loop. The design of the model predictive control is based on the linear error model. The model predictive control is given in analytical form, so the computational burden is kept at a reasonable level for real-time implementation. The control algorithm requires that a reference trajectory is at least twice differentiable function. A suitable approach to design such a trajectory is by exploiting some useful properties of the Bernstein-Bézier parametric curves. The simulation experiments as well as real system experiments on a robot normally used in the

  8. Geospatial Data Processing for 3d City Model Generation, Management and Visualization

    Science.gov (United States)

    Toschi, I.; Nocerino, E.; Remondino, F.; Revolti, A.; Soria, G.; Piffer, S.

    2017-05-01

    Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models) in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA) and national mapping agencies (NMA) involved in "smart city" applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above - http://seneca.fbk.eu). State-of-the-art processing solutions are investigated in order to (i) efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching), (ii) derive topologically and geometrically accurate 3D geo-objects (i.e. building models) at various levels of detail and (iii) link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy) and Graz (Austria). Both spatial (i.e. nadir and oblique imagery) and non-spatial (i.e. cadastral information and building energy consumptions) data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.

  9. Can theory be embedded in visual interventions to promote self-management? A proposed model and worked example.

    Science.gov (United States)

    Williams, B; Anderson, A S; Barton, K; McGhee, J

    2012-12-01

    Nurses are increasingly involved in a range of strategies to encourage patient behaviours that improve self-management. If nurses are to be involved in, or indeed lead, the development of such interventions then processes that enhance the likelihood that they will lead to evidence that is both robust and usable in practice are required. Although behavioural interventions have been predominantly based on written text or the spoken word increasing numbers are now drawing on visual media to communicate their message, despite only a growing evidence base to support it. The use of such media in health interventions is likely to increase due to technological advances enabling easier and cheaper production, and an increasing social preference for visual forms of communication. However, the development of such media is often highly pragmatic and developed intuitively rather than with theory and evidence informing their content and form. Such a process may be at best inefficient and at worst potentially harmful. This paper performs two functions. Firstly, it discusses and argues why visual based interventions may be a powerful media for behaviour change; and secondly, it proposes a model, developed from the MRC Framework for the Development and Evaluation of Complex Interventions, to guide the creation of theory informed visual interventions. It employs a case study of the development of an intervention to motivate involvement in a lifestyle intervention among people with increased cardiovascular risk. In doing this we argue for a step-wise model which includes: (1) the identification of a theoretical basis and associated concepts; (2) the development of visual narrative to establish structure; (3) the visual rendering of narrative and concepts; and (4) the assessment of interpretation and impact among the intended patient group. We go on to discuss the theoretical and methodological limitations of the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A Novel Active Imaging Model to Design Visual Systems: A Case of Inspection System for Specular Surfaces

    Directory of Open Access Journals (Sweden)

    Jorge Azorin-Lopez

    2017-06-01

    Full Text Available The use of visual information is a very well known input from different kinds of sensors. However, most of the perception problems are individually modeled and tackled. It is necessary to provide a general imaging model that allows us to parametrize different input systems as well as their problems and possible solutions. In this paper, we present an active vision model considering the imaging system as a whole (including camera, lighting system, object to be perceived in order to propose solutions to automated visual systems that present problems that we perceive. As a concrete case study, we instantiate the model in a real application and still challenging problem: automated visual inspection. It is one of the most used quality control systems to detect defects on manufactured objects. However, it presents problems for specular products. We model these perception problems taking into account environmental conditions and camera parameters that allow a system to properly perceive the specific object characteristics to determine defects on surfaces. The validation of the model has been carried out using simulations providing an efficient way to perform a large set of tests (different environment conditions and camera parameters as a previous step of experimentation in real manufacturing environments, which more complex in terms of instrumentation and more expensive. Results prove the success of the model application adjusting scale, viewpoint and lighting conditions to detect structural and color defects on specular surfaces.

  11. explICU: A web-based visualization and predictive modeling toolkit for mortality in intensive care patients.

    Science.gov (United States)

    Chen, Robert; Kumar, Vikas; Fitch, Natalie; Jagadish, Jitesh; Lifan Zhang; Dunn, William; Duen Horng Chau

    2015-01-01

    Preventing mortality in intensive care units (ICUs) has been a top priority in American hospitals. Predictive modeling has been shown to be effective in prediction of mortality based upon data from patients' past medical histories from electronic health records (EHRs). Furthermore, visualization of timeline events is imperative in the ICU setting in order to quickly identify trends in patient histories that may lead to mortality. With the increasing adoption of EHRs, a wealth of medical data is becoming increasingly available for secondary uses such as data exploration and predictive modeling. While data exploration and predictive modeling are useful for finding risk factors in ICU patients, the process is time consuming and requires a high level of computer programming ability. We propose explICU, a web service that hosts EHR data, displays timelines of patient events based upon user-specified preferences, performs predictive modeling in the back end, and displays results to the user via intuitive, interactive visualizations.

  12. Enhancing the T-shaped learning profile when teaching hydrology using data, modeling, and visualization activities

    Science.gov (United States)

    Sanchez, Christopher A.; Ruddell, Benjamin L.; Schiesser, Roy; Merwade, Venkatesh

    2016-03-01

    Previous research has suggested that the use of more authentic learning activities can produce more robust and durable knowledge gains. This is consistent with calls within civil engineering education, specifically hydrology, that suggest that curricula should more often include professional perspective and data analysis skills to better develop the "T-shaped" knowledge profile of a professional hydrologist (i.e., professional breadth combined with technical depth). It was expected that the inclusion of a data-driven simulation lab exercise that was contextualized within a real-world situation and more consistent with the job duties of a professional in the field, would provide enhanced learning and appreciation of job duties beyond more conventional paper-and-pencil exercises in a lower-division undergraduate course. Results indicate that while students learned in both conditions, learning was enhanced for the data-driven simulation group in nearly every content area. This pattern of results suggests that the use of data-driven modeling and visualization activities can have a significant positive impact on instruction. This increase in learning likely facilitates the development of student perspective and conceptual mastery, enabling students to make better choices about their studies, while also better preparing them for work as a professional in the field.

  13. Model-based ultrasound temperature visualization during and following HIFU exposure.

    Science.gov (United States)

    Ye, Guoliang; Smith, Penny Probert; Noble, J Alison

    2010-02-01

    This paper describes the application of signal processing techniques to improve the robustness of ultrasound feedback for displaying changes in temperature distribution in treatment using high-intensity focused ultrasound (HIFU), especially at the low signal-to-noise ratios that might be expected in in vivo abdominal treatment. Temperature estimation is based on the local displacements in ultrasound images taken during HIFU treatment, and a method to improve robustness to outliers is introduced. The main contribution of the paper is in the application of a Kalman filter, a statistical signal processing technique, which uses a simple analytical temperature model of heat dispersion to improve the temperature estimation from the ultrasound measurements during and after HIFU exposure. To reduce the sensitivity of the method to previous assumptions on the material homogeneity and signal-to-noise ratio, an adaptive form is introduced. The method is illustrated using data from HIFU exposure of ex vivo bovine liver. A particular advantage of the stability it introduces is that the temperature can be visualized not only in the intervals between HIFU exposure but also, for some configurations, during the exposure itself. 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Visual comparison for information visualization

    KAUST Repository

    Gleicher, M.; Albers, D.; Walker, R.; Jusufi, I.; Hansen, C. D.; Roberts, J. C.

    2011-01-01

    Data analysis often involves the comparison of complex objects. With the ever increasing amounts and complexity of data, the demand for systems to help with these comparisons is also growing. Increasingly, information visualization tools support such comparisons explicitly, beyond simply allowing a viewer to examine each object individually. In this paper, we argue that the design of information visualizations of complex objects can, and should, be studied in general, that is independently of what those objects are. As a first step in developing this general understanding of comparison, we propose a general taxonomy of visual designs for comparison that groups designs into three basic categories, which can be combined. To clarify the taxonomy and validate its completeness, we provide a survey of work in information visualization related to comparison. Although we find a great diversity of systems and approaches, we see that all designs are assembled from the building blocks of juxtaposition, superposition and explicit encodings. This initial exploration shows the power of our model, and suggests future challenges in developing a general understanding of comparative visualization and facilitating the development of more comparative visualization tools. © The Author(s) 2011.

  15. Visual comparison for information visualization

    KAUST Repository

    Gleicher, M.

    2011-09-07

    Data analysis often involves the comparison of complex objects. With the ever increasing amounts and complexity of data, the demand for systems to help with these comparisons is also growing. Increasingly, information visualization tools support such comparisons explicitly, beyond simply allowing a viewer to examine each object individually. In this paper, we argue that the design of information visualizations of complex objects can, and should, be studied in general, that is independently of what those objects are. As a first step in developing this general understanding of comparison, we propose a general taxonomy of visual designs for comparison that groups designs into three basic categories, which can be combined. To clarify the taxonomy and validate its completeness, we provide a survey of work in information visualization related to comparison. Although we find a great diversity of systems and approaches, we see that all designs are assembled from the building blocks of juxtaposition, superposition and explicit encodings. This initial exploration shows the power of our model, and suggests future challenges in developing a general understanding of comparative visualization and facilitating the development of more comparative visualization tools. © The Author(s) 2011.

  16. Modeling eye movements in visual agnosia with a saliency map approach: bottom-up guidance or top-down strategy?

    Science.gov (United States)

    Foulsham, Tom; Barton, Jason J S; Kingstone, Alan; Dewhurst, Richard; Underwood, Geoffrey

    2011-08-01

    Two recent papers (Foulsham, Barton, Kingstone, Dewhurst, & Underwood, 2009; Mannan, Kennard, & Husain, 2009) report that neuropsychological patients with a profound object recognition problem (visual agnosic subjects) show differences from healthy observers in the way their eye movements are controlled when looking at images. The interpretation of these papers is that eye movements can be modeled as the selection of points on a saliency map, and that agnosic subjects show an increased reliance on visual saliency, i.e., brightness and contrast in low-level stimulus features. Here we review this approach and present new data from our own experiments with an agnosic patient that quantifies the relationship between saliency and fixation location. In addition, we consider whether the perceptual difficulties of individual patients might be modeled by selectively weighting the different features involved in a saliency map. Our data indicate that saliency is not always a good predictor of fixation in agnosia: even for our agnosic subject, as for normal observers, the saliency-fixation relationship varied as a function of the task. This means that top-down processes still have a significant effect on the earliest stages of scanning in the setting of visual agnosia, indicating severe limitations for the saliency map model. Top-down, active strategies-which are the hallmark of our human visual system-play a vital role in eye movement control, whether we know what we are looking at or not. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Brain circuits underlying visual stability across eye movements - converging evidence for a neuro-computational model of area LIP

    Directory of Open Access Journals (Sweden)

    Arnold eZiesche

    2014-03-01

    Full Text Available The understanding of the subjective experience of a visually stable world despite the occurrence of an observer's eye movements has been the focus of extensive research for over 20 years. These studies have revealed fundamental mechanisms such as anticipatory receptive field shifts and the saccadic suppression of stimulus displacements, yet there currently exists no single explanatory framework for these observations. We show that a previously presented neuro-computational model of peri-saccadic mislocalization accounts for the phenomenon of predictive remapping and for the observation of saccadic suppression of displacement (SSD. This converging evidence allows us to identify the potential ingredients of perceptual stability that generalize beyond different data sets in a formal physiology-based model. In particular we propose that predictive remapping stabilizes the visual world across saccades by introducing a feedback loop and, as an emergent result, small displacements of stimuli are not noticed by the visual system. The model provides a link from neural dynamics, to neural mechanism and finally to behavior, and thus offers a testable comprehensive framework of visual stability.

  18. Visual perception and interception of falling objects: a review of evidence for an internal model of gravity.

    Science.gov (United States)

    Zago, Myrka; Lacquaniti, Francesco

    2005-09-01

    Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. However, there are limitations in the visual system that raise questions about the general validity of these theories. Most notably, vision is poorly sensitive to arbitrary accelerations. How then does the brain deal with the motion of objects accelerated by Earth's gravity? Here we review evidence in favor of the view that the brain makes the best estimate about target motion based on visually measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from the expected kinetics in the Earth's gravitational field.

  19. A morphologically preserved multi-resolution TIN surface modeling and visualization method for virtual globes

    Science.gov (United States)

    Zheng, Xianwei; Xiong, Hanjiang; Gong, Jianya; Yue, Linwei

    2017-07-01

    Virtual globes play an important role in representing three-dimensional models of the Earth. To extend the functioning of a virtual globe beyond that of a "geobrowser", the accuracy of the geospatial data in the processing and representation should be of special concern for the scientific analysis and evaluation. In this study, we propose a method for the processing of large-scale terrain data for virtual globe visualization and analysis. The proposed method aims to construct a morphologically preserved multi-resolution triangulated irregular network (TIN) pyramid for virtual globes to accurately represent the landscape surface and simultaneously satisfy the demands of applications at different scales. By introducing cartographic principles, the TIN model in each layer is controlled with a data quality standard to formulize its level of detail generation. A point-additive algorithm is used to iteratively construct the multi-resolution TIN pyramid. The extracted landscape features are also incorporated to constrain the TIN structure, thus preserving the basic morphological shapes of the terrain surface at different levels. During the iterative construction process, the TIN in each layer is seamlessly partitioned based on a virtual node structure, and tiled with a global quadtree structure. Finally, an adaptive tessellation approach is adopted to eliminate terrain cracks in the real-time out-of-core spherical terrain rendering. The experiments undertaken in this study confirmed that the proposed method performs well in multi-resolution terrain representation, and produces high-quality underlying data that satisfy the demands of scientific analysis and evaluation.

  20. Virtual inspector: a flexible visualizer for dense 3D scanned models

    OpenAIRE

    Callieri, Marco; Ponchio, Federico; Cignoni, Paolo; Scopigno, Roberto

    2008-01-01

    The rapid evolution of automatic shape acquisition technologies will make huge amount of sampled 3D data available in the near future. Cul- tural Heritage (CH) domain is one of the ideal fields of application of 3D scanned data, while some issues in the use of those data are: how to visualize at interactive rates and full quality on commodity computers; how to improve visualization ease of use; how to support the integrated visualization of a virtual 3D artwork and the multimedia data which t...

  1. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    Science.gov (United States)

    Born, Jannis; Galeazzi, Juan M; Stringer, Simon M

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning

  2. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system

    Science.gov (United States)

    Born, Jannis; Stringer, Simon M.

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning

  3. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    Directory of Open Access Journals (Sweden)

    Jannis Born

    Full Text Available A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior

  4. Developmental changes in reading do not alter the development of visual processing skills: An application of explanatory item response models in grades K-2

    Directory of Open Access Journals (Sweden)

    Kristi L Santi

    2015-02-01

    Full Text Available Visual processing has been widely studied in regard to its impact on a students’ ability to read. A less researched area is the role of reading in the development of visual processing skills. A cohort-sequential, accelerated-longitudinal design was utilized with 932 kindergarten, first, and second grade students to examine the impact of reading acquisition on the processing of various types of visual discrimination and visual motor test items. Students were assessed four times per year on a variety of reading measures and reading precursors and two popular measures of visual processing over a three-year period. Explanatory item response models were used to examine the roles of person and item characteristics on changes in visual processing abilities and changes in item difficulties over time. Results showed different developmental patterns for five types of visual processing test items, but most importantly failed to show consistent effects of learning to read on changes in item difficulty. Thus, the present study failed to find support for the hypothesis that learning to read alters performance on measures of visual processing. Rather, visual processing and reading ability improved together over time with no evidence to suggest cross-domain influences from reading to visual processing. Results are discussed in the context of developmental theories of visual processing and brain-based research on the role of visual skills in learning to read.

  5. Savage Modeling and Analysis Language (SMAL): Metadata for Tactical Simulations and X3D Visualizations

    National Research Council Canada - National Science Library

    Rauch, Travis M

    2006-01-01

    Visualizing operations environments in three-dimensions is in keeping with the military's drive to increase the speed and accuracy with which warfighters make decisions in the command center and in the field. Three-dimensional (3D...

  6. Brain atrophy in the visual cortex and thalamus induced by severe stress in animal model.

    Science.gov (United States)

    Yoshii, Takanobu; Oishi, Naoya; Ikoma, Kazuya; Nishimura, Isao; Sakai, Yuki; Matsuda, Kenichi; Yamada, Shunji; Tanaka, Masaki; Kawata, Mitsuhiro; Narumoto, Jin; Fukui, Kenji

    2017-10-06

    Psychological stress induces many diseases including post-traumatic stress disorder (PTSD); however, the causal relationship between stress and brain atrophy has not been clarified. Applying single-prolonged stress (SPS) to explore the global effect of severe stress, we performed brain magnetic resonance imaging (MRI) acquisition and Voxel-based morphometry (VBM). Significant atrophy was detected in the bilateral thalamus and right visual cortex. Fluorescent immunohistochemistry for Iba-1 as the marker of activated microglia indicates regional microglial activation as stress-reaction in these atrophic areas. These data certify the impact of severe psychological stress on the atrophy of the visual cortex and the thalamus. Unexpectedly, these results are similar to chronic neuropathic pain rather than PTSD clinical research. We believe that some sensitisation mechanism from severe stress-induced atrophy in the visual cortex and thalamus, and the functional defect of the visual system may be a potential therapeutic target for stress-related diseases.

  7. Visual Defects in a Mouse Model of Fetal Alcohol Spectrum Disorder

    OpenAIRE

    Lantz, Crystal L.; Pulimood, Nisha S.; Rodrigues-Junior, Wandilson S.; Chen, Ching-Kang; Manhaes, Alex C.; Kalatsky, Valery A.; Medina, Alexandre Esteves

    2014-01-01

    Alcohol consumption during pregnancy can lead to a multitude of neurological problems in offspring, varying from subtle behavioral changes to severe mental retardation. These alterations are collectively referred to as Fetal Alcohol Spectrum Disorders (FASD). Early alcohol exposure can strongly affect the visual system and children with FASD can exhibit an amblyopia-like pattern of visual acuity deficits even in the absence of optical and oculomotor disruption. Here, we test whether early alc...

  8. Toward a Visualization-Supported Workflow for Cyber Alert Management using Threat Models and Human-Centered Design

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, Lyndsey; Pirrung, Megan A.; Blaha, Leslie M.; Dowling, Michelle V.; Feng, Mi

    2017-10-09

    Cyber network analysts follow complex processes in their investigations of potential threats to their network. Much research is dedicated to providing automated tool support in the effort to make their tasks more efficient, accurate, and timely. This tool support comes in a variety of implementations from machine learning algorithms that monitor streams of data to visual analytic environments for exploring rich and noisy data sets. Cyber analysts, however, often speak of a need for tools which help them merge the data they already have and help them establish appropriate baselines against which to compare potential anomalies. Furthermore, existing threat models that cyber analysts regularly use to structure their investigation are not often leveraged in support tools. We report on our work with cyber analysts to understand they analytic process and how one such model, the MITRE ATT&CK Matrix [32], is used to structure their analytic thinking. We present our efforts to map specific data needed by analysts into the threat model to inform our eventual visualization designs. We examine data mapping for gaps where the threat model is under-supported by either data or tools. We discuss these gaps as potential design spaces for future research efforts. We also discuss the design of a prototype tool that combines machine-learning and visualization components to support cyber analysts working with this threat model.

  9. Creative user-centered visualization design for energy analysts and modelers.

    Science.gov (United States)

    Goodwin, Sarah; Dykes, Jason; Jones, Sara; Dillingham, Iain; Dove, Graham; Duffy, Alison; Kachkaev, Alexander; Slingsby, Aidan; Wood, Jo

    2013-12-01

    We enhance a user-centered design process with techniques that deliberately promote creativity to identify opportunities for the visualization of data generated by a major energy supplier. Visualization prototypes developed in this way prove effective in a situation whereby data sets are largely unknown and requirements open - enabling successful exploration of possibilities for visualization in Smart Home data analysis. The process gives rise to novel designs and design metaphors including data sculpting. It suggests: that the deliberate use of creativity techniques with data stakeholders is likely to contribute to successful, novel and effective solutions; that being explicit about creativity may contribute to designers developing creative solutions; that using creativity techniques early in the design process may result in a creative approach persisting throughout the process. The work constitutes the first systematic visualization design for a data rich source that will be increasingly important to energy suppliers and consumers as Smart Meter technology is widely deployed. It is novel in explicitly employing creativity techniques at the requirements stage of visualization design and development, paving the way for further use and study of creativity methods in visualization design.

  10. A computational model of the development of separate representations of facial identity and expression in the primate visual system.

    Science.gov (United States)

    Tromans, James Matthew; Harris, Mitchell; Stringer, Simon Maitland

    2011-01-01

    Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence that cells within the inferior temporal gyrus (TE) respond primarily to facial identity, while cells within the superior temporal sulcus (STS) respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC) of non-human primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to facial expression. How might the primate visual system develop physically separate representations of facial identity and expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is composed of a hierarchical series of four Self-Organising Maps (SOMs), with associative learning in the feedforward synaptic connections between successive layers. During learning, the network develops separate clusters of cells that respond exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression.

  11. A computational model of the development of separate representations of facial identity and expression in the primate visual system.

    Directory of Open Access Journals (Sweden)

    James Matthew Tromans

    Full Text Available Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence that cells within the inferior temporal gyrus (TE respond primarily to facial identity, while cells within the superior temporal sulcus (STS respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC of non-human primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to facial expression. How might the primate visual system develop physically separate representations of facial identity and expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is composed of a hierarchical series of four Self-Organising Maps (SOMs, with associative learning in the feedforward synaptic connections between successive layers. During learning, the network develops separate clusters of cells that respond exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression.

  12. High-frequency spectral ultrasound imaging (SUSI) visualizes early post-traumatic heterotopic ossification (HO) in a mouse model.

    Science.gov (United States)

    Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin

    2018-04-01

    Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Reading The Sun: A Three Dimensional Visual Model of The Solar Environment During Solar Cycle 24

    Science.gov (United States)

    Carranza-fulmer, T. L.; Moldwin, M.

    2014-12-01

    The sun is a powerful force that has proven to our society that it has a large impact on our lives. Unfortunately, there is still a lack of awareness on how the sun is capable of affecting Earth. The over all idea of "Reading The Sun" installation is to help demonstrate how the sun impacts the Earth, by compiling various data sources from satellites (SOHO, SDO, and STERO) with solar and solar wind models (MAS and ENLIL) to create a comprehensive three dimensional display of the solar environment. It focuses on the current solar maximum of solar cycle 24 and a CME that impacted Earth's magnetic field on February 27, 2014, which triggered geomagnetic storms around the Earth's poles. The CME was an after-effect of a class X4.9 solar flare, which was released from the sun on February 25, 2014. "Reading The Sun" is a 48" x 48" x 48" hanging model of the sun with color coded open opposing magnetic field lines along with various layers of the solar atmosphere, the heliospheric current sheet, and the inner planets. At the center of the xyz axis is the sun with the open magnetic field lines and the heliospheric current sheet permeating inner planetary space. The xyz axes are color coded to represent various types of information with corresponding visual images for the viewer to be able to read the model. Along the z-axis are three colors (yellow, orange, and green) that represent the different layers of the solar atmosphere (photosphere, chromosphere, and corona) that correspond to three satellite images in various spectrums related to a CME and Solar Flare and the xy-plane shows where the inner planets are in relation to the sun. The exhibit in which "Reading The Sun "is being displayed is called, The Rotation of Language at the Wheather Again Gallery in Rockaway, New York. The intent of the exhibit is to both celebrate as well as present a cautionary tale on the ability of human language to spark and ignite the individual and collective imagination towards an experience

  14. Modeling of the positioning system and visual mark-up of historical cadastral maps

    Directory of Open Access Journals (Sweden)

    Tomislav Jakopec

    2013-03-01

    Full Text Available The aim of the paper is to present of the possibilities of positioning and visual markup of historical cadastral maps onto Google maps using open source software. The corpus is stored in the Croatian State Archives in Zagreb, in the Maps Archive for Croatia and Slavonia. It is part of cadastral documentation that consists of cadastral material from the period of first cadastral survey conducted in the Kingdom of Croatia and Slavonia from 1847 to 1877, and which is used extensively according to the data provided by the customer service of the Croatian State Archives. User needs on the one side and the possibilities of innovative implementation of ICT on the other have motivated the development of the system which would use digital copies of original cadastral maps and connect them with systems like Google maps, and thus both protect the original materials and open up new avenues of research related to the use of originals. With this aim in mind, two cadastral map presentation models have been created. Firstly, there is a detailed display of the original, which enables its viewing using dynamic zooming. Secondly, the interactive display is facilitated through blending the cadastral maps with Google maps, which resulted in establishing links between the coordinates of the digital and original plans through transformation. The transparency of the original can be changed, and the user can intensify the visibility of the underlying layer (Google map or the top layer (cadastral map, which enables direct insight into parcel dynamics over a longer time-span. The system also allows for the mark-up of cadastral maps, which can lead to the development of the cumulative index of all terms found on cadastral maps. The paper is an example of the implementation of ICT for providing new services, strengthening cooperation with the interested public and related institutions, familiarizing the public with the archival material, and offering new possibilities for

  15. Visualization of phase evolution in model organic photovoltaic structures via energy-filtered transmission electron microscopy.

    Science.gov (United States)

    Herzing, Andrew A; Ro, Hyun Wook; Soles, Christopher L; DeLongchamp, Dean M

    2013-09-24

    The morphology of the active layer in an organic photovoltaic bulk-heterojunction device is controlled by the extent and nature of phase separation during processing. We have studied the effects of fullerene crystallinity during heat treatment in model structures consisting of a layer of poly(3-hexylthiophene) (P3HT) sandwiched between two layers of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Utilizing a combination of focused ion-beam milling and energy-filtered transmission electron microscopy, we monitored the local changes in phase distribution as a function of annealing time at 140 °C. In both cases, dissolution of PCBM within the surrounding P3HT was directly visualized and quantitatively described. In the absence of crystalline PCBM, the overall phase distribution remained stable after intermediate annealing times up to 60 s, whereas microscale PCBM aggregates were observed after annealing for 300 s. Aggregate growth proceeded vertically from the substrate interface via uptake of PCBM from the surrounding region, resulting in a large PCBM-depleted region in their vicinity. When precrystallized PCBM was present, amorphous PCBM was observed to segregate from the intermediate P3HT layer and ripen the crystalline PCBM underneath, owing to the far lower solubility of crystalline PCBM within P3HT. This process occurred rapidly, with segregation already evident after annealing for 10 s and with uptake of nearly all of the amorphous PCBM by the crystalline layer after 60 s. No microscale aggregates were observed in the precrystallized system, even after annealing for 300 s.

  16. Extending models of visual-word recognition to semicursive scripts: Evidence from masked priming in Uyghur.

    Science.gov (United States)

    Yakup, Mahire; Abliz, Wayit; Sereno, Joan; Perea, Manuel

    2015-12-01

    One basic feature of the Arabic script is its semicursive style: some letters are connected to the next, but others are not, as in the Uyghur word [see text]/ya xʃi/ ("good"). None of the current orthographic coding schemes in models of visual-word recognition, which were created for the Roman script, assign a differential role to the coding of within letter "chunks" and between letter "chunks" in words in the Arabic script. To examine how letter identity/position is coded at the earliest stages of word processing in the Arabic script, we conducted 2 masked priming lexical decision experiments in Uyghur, an agglutinative Turkic language. The target word was preceded by an identical prime, by a transposed-letter nonword prime (that either kept the ligation pattern or did not), or by a 2-letter replacement nonword prime. Transposed-letter primes were as effective as identity primes when the letter transposition in the prime kept the same ligation pattern as the target word (e.g., [see text]/inta_jin/-/itna_jin/), but not when the transposed-letter prime didn't keep the ligation pattern (e.g., [see text]/so_w_ʁa_t/-/so_ʁw_a_t/). Furthermore, replacement-letter primes were more effective when they kept the ligation pattern of the target word than when they did not (e.g., [see text]/so_d_ʧa_t/-/so_w_ʁa_t/ faster than [see text]/so_ʧd_a_t/-/so_w_ʁa_t/). We examined how input coding schemes could be extended to deal with the intricacies of semicursive scripts. (c) 2015 APA, all rights reserved).

  17. Assessment of the effect of visual impairment on mortality through multiple health pathways: structural equation modeling.

    Science.gov (United States)

    Christ, Sharon L; Lee, David J; Lam, Byron L; Zheng, D Diane; Arheart, Kristopher L

    2008-08-01

    To estimate the direct effects of self-reported visual impairment (VI) on health, disability, and mortality and to estimate the indirect effects of VI on mortality through health and disability mediators. The National Health Interview Survey (NHIS) is a population-based annual survey designed to be representative of the U.S. civilian noninstitutionalized population. The National Death Index of 135,581 NHIS adult participants, 18 years of age and older, from 1986 to 1996 provided the mortality linkage through 2002. A generalized linear structural equation model (GSEM) with latent variable was used to estimate the results of a system of equations with various outcomes. Standard errors and test statistics were corrected for weighting, clustering, and stratification. VI affects mortality, when direct adjustment was made for the covariates. Severe VI increases the hazard rate by a factor of 1.28 (95% CI: 1.07-1.53) compared with no VI, and some VI increases the hazard by a factor of 1.13 (95% CI: 1.07-1.20). VI also affects mortality indirectly through self-rated health and disability. The total effects (direct effects plus mediated effects) on the hazard of mortality of severe VI and some VI relative to no VI are hazard ratio (HR) 1.54 (95% CI: 1.28-1.86) and HR 1.23 (95% CI: 1.16-1.31), respectively. In addition to the direct link between VI and mortality, the effects of VI on general health and disability contribute to an increased risk of death. Ignoring the latter may lead to an underestimation of the substantive impact of VI on mortality.

  18. Visual search, visual streams, and visual architectures.

    Science.gov (United States)

    Green, M

    1991-10-01

    Most psychological, physiological, and computational models of early vision suggest that retinal information is divided into a parallel set of feature modules. The dominant theories of visual search assume that these modules form a "blackboard" architecture: a set of independent representations that communicate only through a central processor. A review of research shows that blackboard-based theories, such as feature-integration theory, cannot easily explain the existing data. The experimental evidence is more consistent with a "network" architecture, which stresses that: (1) feature modules are directly connected to one another, (2) features and their locations are represented together, (3) feature detection and integration are not distinct processing stages, and (4) no executive control process, such as focal attention, is needed to integrate features. Attention is not a spotlight that synthesizes objects from raw features. Instead, it is better to conceptualize attention as an aperture which masks irrelevant visual information.

  19. Fourier power, subjective distance, and object categories all provide plausible models of BOLD responses in scene-selective visual areas

    Science.gov (United States)

    Lescroart, Mark D.; Stansbury, Dustin E.; Gallant, Jack L.

    2015-01-01

    Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the Occipital Place Area (OPA). It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1) 2D features related to Fourier power; (2) 3D spatial features such as the distance to objects in a scene; or (3) abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of 1386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue. PMID:26594164

  20. Integrated and visual performance evaluation model for thermal systems and its application to an HTGR cogeneration system

    International Nuclear Information System (INIS)

    Qi, Zhang; Yoshikawa, Hidekazu; Ishii, Hirotake; Shimoda, Hiroshi

    2010-01-01

    An integrated and visual model EXCEM-MFM (EXergy, Cost, Energy and Mass - Multilevel Flow Model) has been proposed in this study to comprehensively analyze and evaluate the performances of thermal systems by coupling two models: EXCEM model and MFM. In the EXCEM-MFM model, MFM is used to provide analysis frameworks for exergy, cost, energy and mass four parameters, and EXCEM is used to calculate the flow values of these four parameters for MFM based on the provided framework. In this study, we used the tools and technologies of computer science and software engineering to materialize the model. Moreover, the feasibility and application potential of this proposed EXCEM-MFM model has been demonstrated by the example application of a comprehensive performance study of a typical High Temperature Gas Reactor (HTGR) cogeneration system by taking into account the thermodynamic and economic perspectives. (author)

  1. Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37

    Directory of Open Access Journals (Sweden)

    Alfredo Ardila

    2015-01-01

    Full Text Available Background. Understanding the functions of different brain areas has represented a major endeavor of neurosciences. Historically, brain functions have been associated with specific cortical brain areas; however, modern neuroimaging developments suggest cognitive functions are associated to networks rather than to areas. Objectives. The purpose of this paper was to analyze the connectivity of Brodmann area (BA 37 (posterior, inferior, and temporal/fusiform gyrus in relation to (1 language and (2 visual processing. Methods. Two meta-analyses were initially conducted (first level analysis. The first one was intended to assess the language network in which BA37 is involved. The second one was intended to assess the visual perception network. A third meta-analysis (second level analysis was then performed to assess contrasts and convergence between the two cognitive domains (language and visual perception. The DataBase of Brainmap was used. Results. Our results support the role of BA37 in language but by means of a distinct network from the network that supports its second most important function: visual perception. Conclusion. It was concluded that left BA37 is a common node of two distinct networks—visual recognition (perception and semantic language functions.

  2. Language and visual perception associations: meta-analytic connectivity modeling of Brodmann area 37.

    Science.gov (United States)

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica

    2015-01-01

    Understanding the functions of different brain areas has represented a major endeavor of neurosciences. Historically, brain functions have been associated with specific cortical brain areas; however, modern neuroimaging developments suggest cognitive functions are associated to networks rather than to areas. The purpose of this paper was to analyze the connectivity of Brodmann area (BA) 37 (posterior, inferior, and temporal/fusiform gyrus) in relation to (1) language and (2) visual processing. Two meta-analyses were initially conducted (first level analysis). The first one was intended to assess the language network in which BA37 is involved. The second one was intended to assess the visual perception network. A third meta-analysis (second level analysis) was then performed to assess contrasts and convergence between the two cognitive domains (language and visual perception). The DataBase of Brainmap was used. Our results support the role of BA37 in language but by means of a distinct network from the network that supports its second most important function: visual perception. It was concluded that left BA37 is a common node of two distinct networks-visual recognition (perception) and semantic language functions.

  3. NewsPaperBox - Online News Space: a visual model for representing the social space of a website

    Directory of Open Access Journals (Sweden)

    Selçuk Artut

    2010-02-01

    Full Text Available NewsPaperBox * propounds an alternative visual model utilizing the treemap algorithm to represent the collective use of a website that evolves in response to user interaction. While the technology currently exists to track various user behaviors such as number of clicks, duration of stay on a given web site, these statistics are not yet employed to influence the visual representation of that site's design in real time. In that sense, this project propounds an alternative modeling of a representational outlook of a website that is developed by collaborations and competitions of its global users. This paper proposes the experience of cyberspace as a generative process driven by its effective user participation.

  4. Why people see things that are not there: a novel Perception and Attention Deficit model for recurrent complex visual hallucinations.

    Science.gov (United States)

    Collerton, Daniel; Perry, Elaine; McKeith, Ian

    2005-12-01

    As many as two million people in the United Kingdom repeatedly see people, animals, and objects that have no objective reality. Hallucinations on the border of sleep, dementing illnesses, delirium, eye disease, and schizophrenia account for 90% of these. The remainder have rarer disorders. We review existing models of recurrent complex visual hallucinations (RCVH) in the awake person, including cortical irritation, cortical hyperexcitability and cortical release, top-down activation, misperception, dream intrusion, and interactive models. We provide evidence that these can neither fully account for the phenomenology of RCVH, nor for variations in the frequency of RCVH in different disorders. We propose a novel Perception and Attention Deficit (PAD) model for RCVH. A combination of impaired attentional binding and poor sensory activation of a correct proto-object, in conjunction with a relatively intact scene representation, bias perception to allow the intrusion of a hallucinatory proto-object into a scene perception. Incorporation of this image into a context-specific hallucinatory scene representation accounts for repetitive hallucinations. We suggest that these impairments are underpinned by disturbances in a lateral frontal cortex-ventral visual stream system. We show how the frequency of RCVH in different diseases is related to the coexistence of attentional and visual perceptual impairments; how attentional and perceptual processes can account for their phenomenology; and that diseases and other states with high rates of RCVH have cholinergic dysfunction in both frontal cortex and the ventral visual stream. Several tests of the model are indicated, together with a number of treatment options that it generates.

  5. Ube3a loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice.

    Science.gov (United States)

    Wallace, Michael L; van Woerden, Geeske M; Elgersma, Ype; Smith, Spencer L; Philpot, Benjamin D

    2017-07-01

    Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3A Ube3a STOP/p+ mice recapitulate major features of AS in humans and allow conditional reinstatement of maternal Ube3a with the expression of Cre recombinase. We have recently shown that AS model mice exhibit reduced inhibitory drive onto layer (L)2/3 pyramidal neurons of visual cortex, which contributes to a synaptic excitatory/inhibitory imbalance. However, it remains unclear how this loss of inhibitory drive affects neural circuits in vivo. Here we examined visual cortical response properties in individual neurons to explore the consequences of Ube3a loss on intact cortical circuits and processing. Using in vivo patch-clamp electrophysiology, we measured the visually evoked responses to square-wave drifting gratings in L2/3 regular-spiking (RS) neurons in control mice, Ube3a -deficient mice, and mice in which Ube3a was conditionally reinstated in GABAergic neurons. We found that Ube3a -deficient mice exhibited enhanced pyramidal neuron excitability in vivo as well as weaker orientation tuning. These observations are the first to show alterations in cortical computation in an AS model, and they suggest a basis for cortical dysfunction in AS. NEW & NOTEWORTHY Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of the gene UBE3A Using electrophysiological recording in vivo, we describe visual cortical dysfunctions in a mouse model of AS. Aberrant cellular properties in AS model mice could be improved by reinstating Ube3a in inhibitory neurons. These findings suggest that inhibitory neurons play a substantial role in the pathogenesis of AS. Copyright © 2017 the American Physiological Society.

  6. Static and Dynamic Flow Visualization Studies of Two Double-Delta Wing Models at High Angles of Attack

    Science.gov (United States)

    1992-03-01

    body, ft U.= free-stream velocity, ft/sec In the case of a wing pitching about its mid-chord location, it can be interpreted as the ratio of the...Over Moderately Swept Delta Wings," HTP -5 Workshop On Vortical Flow Breakdown and Structural Interactions, NASA Langley Research Center, August 15-16...January 6- 9,1992/Reno,Nevada. 18. User’s Manual , Flow Visualization Water Tunnel Operation for Model 1520, Eidelic International, Inc., Torrance

  7. Multiple Concurrent Visual-Motor Mappings: Implications for Models of Adaptation

    Science.gov (United States)

    Cunningham, H. A.; Welch, Robert B.

    1994-01-01

    Previous research on adaptation to visual-motor rearrangement suggests that the central nervous system represents accurately only 1 visual-motor mapping at a time. This idea was examined in 3 experiments where subjects tracked a moving target under repeated alternations between 2 initially interfering mappings (the 'normal' mapping characteristic of computer input devices and a 108' rotation of the normal mapping). Alternation between the 2 mappings led to significant reduction in error under the rotated mapping and significant reduction in the adaptation aftereffect ordinarily caused by switching between mappings. Color as a discriminative cue, interference versus decay in adaptation aftereffect, and intermanual transfer were also examined. The results reveal a capacity for multiple concurrent visual-motor mappings, possibly controlled by a parametric process near the motor output stage of processing.

  8. Effect of the small-world structure on encoding performance in the primary visual cortex: an electrophysiological and modeling analysis.

    Science.gov (United States)

    Shi, Li; Niu, Xiaoke; Wan, Hong

    2015-05-01

    The biological networks have been widely reported to present small-world properties. However, the effects of small-world network structure on population's encoding performance remain poorly understood. To address this issue, we applied a small world-based framework to quantify and analyze the response dynamics of cell assemblies recorded from rat primary visual cortex, and further established a population encoding model based on small world-based generalized linear model (SW-GLM). The electrophysiological experimental results show that the small world-based population responses to different topological shapes present significant variation (t test, p 0.8), while no significant variation was found for control networks without considering their spatial connectivity (t test, p > 0.05; effect size: Hedge's g < 0.5). Furthermore, the numerical experimental results show that the predicted response under SW-GLM is more accurate and reliable compared to the control model without small-world structure, and the decoding performance is also improved about 10 % by taking the small-world structure into account. The above results suggest the important role of the small-world neural structure in encoding visual information for the neural population by providing electrophysiological and theoretical evidence, respectively. The study helps greatly to well understand the population encoding mechanisms of visual cortex.

  9. Learning Deep Visual Object Models From Noisy Web Data: How to Make it Work

    OpenAIRE

    Massouh, Nizar; Babiloni, Francesca; Tommasi, Tatiana; Young, Jay; Hawes, Nick; Caputo, Barbara

    2017-01-01

    Deep networks thrive when trained on large scale data collections. This has given ImageNet a central role in the development of deep architectures for visual object classification. However, ImageNet was created during a specific period in time, and as such it is prone to aging, as well as dataset bias issues. Moving beyond fixed training datasets will lead to more robust visual systems, especially when deployed on robots in new environments which must train on the objects they encounter there...

  10. PRISMA-MAR: An Architecture Model for Data Visualization in Augmented Reality Mobile Devices

    Science.gov (United States)

    Gomes Costa, Mauro Alexandre Folha; Serique Meiguins, Bianchi; Carneiro, Nikolas S.; Gonçalves Meiguins, Aruanda Simões

    2013-01-01

    This paper proposes an extension to mobile augmented reality (MAR) environments--the addition of data charts to the more usual text, image and video components. To this purpose, we have designed a client-server architecture including the main necessary modules and services to provide an Information Visualization MAR experience. The server side…

  11. Modeling the length effect: Specifying the relation with visual and phonological correlates of reading

    NARCIS (Netherlands)

    van den Boer, M.; de Jong, P.F.; Haentjens-van Meeteren, M.M.

    2013-01-01

    Beginning readers' reading latencies increase as words become longer. This length effect is believed to be a marker of a serial reading process. We examined the effects of visual and phonological skills on the length effect. Participants were 184 second-grade children who read 3- to 5-letter words

  12. Developing Interview Skills and Visual Literacy: A New Model of Engagement for Academic Libraries

    Science.gov (United States)

    Denda, Kayo

    2015-01-01

    This case study presents a cocurricular initiative at the Margery Somers Foster Center at Rutgers University Libraries in New Brunswick, NJ. The initiative resulted in an interview workshop for the course Knowledge and Power, a "mission course" of the Douglass Residential College. This discussion-based workshop uses visual and multimedia…

  13. Academic Supports, Cognitive Disability and Mathematics Acheivement for Visually Imparied Youth: A Multilevel Modeling Approach

    Science.gov (United States)

    Giesen, J. Martin; Cavenaugh, Brenda S.; McDonnall, Michele Capella

    2012-01-01

    Elementary and middle school students who are blind or visually impaired (VI) lag up to three years behind non-disabled peers in mathematics achievement. We investigated the impact of academic supports in the school on mathematics achievement, controlling grade, gender, cognitive disability, and family SES. Data were from SEELS (Special Education…

  14. A Two-Phase Model of Resource Allocation in Visual Working Memory

    Science.gov (United States)

    Ye, Chaoxiong; Hu, Zhonghua; Li, Hong; Ristaniemi, Tapani; Liu, Qiang; Liu, Taosheng

    2017-01-01

    Two broad theories of visual working memory (VWM) storage have emerged from current research, a discrete slot-based theory and a continuous resource theory. However, neither the discrete slot-based theory or continuous resource theory clearly stipulates how the mental commodity for VWM (discrete slot or continuous resource) is allocated.…

  15. A dual visual-local feedback model of the vergence eye movement system

    NARCIS (Netherlands)

    Erkelens, C.J.

    2011-01-01

    Pure vergence movements are the eye movements that we make when we change our binocular fixation between targets differing in distance but not in direction relative to the head. Pure vergence is slow and controlled by visual feedback. Saccades are the rapid eye movements that we make between targets

  16. A computational model of fMRI activity in the intraparietal sulcus that supports visual working memory.

    Science.gov (United States)

    Domijan, Dražen

    2011-12-01

    A computational model was developed to explain a pattern of results of fMRI activation in the intraparietal sulcus (IPS) supporting visual working memory for multiobject scenes. The model is based on the hypothesis that dendrites of excitatory neurons are major computational elements in the cortical circuit. Dendrites enable formation of a competitive queue that exhibits a gradient of activity values for nodes encoding different objects, and this pattern is stored in working memory. In the model, brain imaging data are interpreted as a consequence of blood flow arising from dendritic processing. Computer simulations showed that the model successfully simulates data showing the involvement of inferior IPS in object individuation and spatial grouping through representation of objects' locations in space, along with the involvement of superior IPS in object identification through representation of a set of objects' features. The model exhibits a capacity limit due to the limited dynamic range for nodes and the operation of lateral inhibition among them. The capacity limit is fixed in the inferior IPS regardless of the objects' complexity, due to the normalization of lateral inhibition, and variable in the superior IPS, due to the different encoding demands for simple and complex shapes. Systematic variation in the strength of self-excitation enables an understanding of the individual differences in working memory capacity. The model offers several testable predictions regarding the neural basis of visual working memory.

  17. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.

    Science.gov (United States)

    Zago, Myrka; Lacquaniti, Francesco

    2005-08-01

    Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.

  18. Visual Storytelling

    OpenAIRE

    Ting-Hao; Huang; Ferraro, Francis; Mostafazadeh, Nasrin; Misra, Ishan; Agrawal, Aishwarya; Devlin, Jacob; Girshick, Ross; He, Xiaodong; Kohli, Pushmeet; Batra, Dhruv; Zitnick, C. Lawrence; Parikh, Devi; Vanderwende, Lucy; Galley, Michel

    2016-01-01

    We introduce the first dataset for sequential vision-to-language, and explore how this data may be used for the task of visual storytelling. The first release of this dataset, SIND v.1, includes 81,743 unique photos in 20,211 sequences, aligned to both descriptive (caption) and story language. We establish several strong baselines for the storytelling task, and motivate an automatic metric to benchmark progress. Modelling concrete description as well as figurative and social language, as prov...

  19. Testing a Poisson counter model for visual identification of briefly presented, mutually confusable single stimuli in pure accuracy tasks.

    Science.gov (United States)

    Kyllingsbæk, Søren; Markussen, Bo; Bundesen, Claus

    2012-06-01

    The authors propose and test a simple model of the time course of visual identification of briefly presented, mutually confusable single stimuli in pure accuracy tasks. The model implies that during stimulus analysis, tentative categorizations that stimulus i belongs to category j are made at a constant Poisson rate, v(i, j). The analysis is continued until the stimulus disappears, and the overt response is based on the categorization made the greatest number of times. The model was evaluated by Monte Carlo tests of goodness of fit against observed probability distributions of responses in two extensive experiments and also by quantifications of the information loss of the model compared with the observed data by use of information theoretic measures. The model provided a close fit to individual data on identification of digits and an apparently perfect fit to data on identification of Landolt rings.

  20. Correspondence between audio and visual deep models for musical instrument detection in video recordings

    OpenAIRE

    Slizovskaia, Olga; Gómez, Emilia; Haro, Gloria

    2017-01-01

    This work aims at investigating cross-modal connections between audio and video sources in the task of musical instrument recognition. We also address in this work the understanding of the representations learned by convolutional neural networks (CNNs) and we study feature correspondence between audio and visual components of a multimodal CNN architecture. For each instrument category, we select the most activated neurons and investigate exist- ing cross-correlations between neurons from the ...

  1. Multiresolution Algorithms for Processing Giga-Models: Real-time Visualization, Reasoning, and Interaction

    Science.gov (United States)

    2012-04-23

    Interactive Virtual Hair Salon , Presence, (05 2007): 237. doi: 2012/04/17 12:55:26 31 Theodore Kim, Jason Sewall, Avneesh Sud, Ming Lin. Fast...in Games , Utrecht, Netherlands, Nov. 2009. Keynote Speaker, IADIS International Conference on Computer Graphics and Visualization, Portugal, June 2009...Keynote Speaker, ACM Symposium on Virtual Reality Software and Technology, Bordeaux, France, October 2008. Invited Speaker, Motion in Games , Utrecht

  2. Visual Debugging of Object-Oriented Systems With the Unified Modeling Language

    Science.gov (United States)

    2004-03-01

    to be “the systematic and imaginative use of the technology of interactive computer graphics and the disciplines of graphic design, typography ...Traditional debugging involves the user creating a mental image of the structure and execution path based on source code. According to Miller, the 7 ± 2...of each FigClass (the class that represents the image of a class), the DOI and LOD for each, and finally calls a method to apply the visual

  3. Minor isotope safeguards techniques (MIST): Analysis and visualization of gas centrifuge enrichment plant process data using the MSTAR model

    Science.gov (United States)

    Shephard, Adam M.; Thomas, Benjamin R.; Coble, Jamie B.; Wood, Houston G.

    2018-05-01

    This paper presents a development related to the use of minor isotope safeguards techniques (MIST) and the MSTAR cascade model as it relates to the application of international nuclear safeguards at gas centrifuge enrichment plants (GCEPs). The product of this paper is a derivation of the universal and dimensionless MSTAR cascade model. The new model can be used to calculate the minor uranium isotope concentrations in GCEP product and tails streams or to analyze, visualize, and interpret GCEP process data as part of MIST. Applications of the new model include the detection of undeclared feed and withdrawal streams at GCEPs when used in conjunction with UF6 sampling and/or other isotopic measurement techniques.

  4. Bridging the gap between physiology and behavior: evidence from the sSoTS model of human visual attention.

    Science.gov (United States)

    Mavritsaki, Eirini; Heinke, Dietmar; Allen, Harriet; Deco, Gustavo; Humphreys, Glyn W

    2011-01-01

    We present the case for a role of biologically plausible neural network modeling in bridging the gap between physiology and behavior. We argue that spiking-level networks can allow "vertical" translation between physiological properties of neural systems and emergent "whole-system" performance-enabling psychological results to be simulated from implemented networks and also inferences to be made from simulations concerning processing at a neural level. These models also emphasize particular factors (e.g., the dynamics of performance in relation to real-time neuronal processing) that are not highlighted in other approaches and that can be tested empirically. We illustrate our argument from neural-level models that select stimuli by biased competition. We show that a model with biased competition dynamics can simulate data ranging from physiological studies of single-cell activity (Study 1) to whole-system behavior in human visual search (Study 2), while also capturing effects at an intermediate level, including performance breakdown after neural lesion (Study 3) and data from brain imaging (Study 4). We also show that, at each level of analysis, novel predictions can be derived from the biologically plausible parameters adopted, which we proceed to test (Study 5). We argue that, at least for studying the dynamics of visual attention, the approach productively links single-cell to psychological data.

  5. LitPathExplorer: a confidence-based visual text analytics tool for exploring literature-enriched pathway models.

    Science.gov (United States)

    Soto, Axel J; Zerva, Chrysoula; Batista-Navarro, Riza; Ananiadou, Sophia

    2018-04-15

    Pathway models are valuable resources that help us understand the various mechanisms underpinning complex biological processes. Their curation is typically carried out through manual inspection of published scientific literature to find information relevant to a model, which is a laborious and knowledge-intensive task. Furthermore, models curated manually cannot be easily updated and maintained with new evidence extracted from the literature without automated support. We have developed LitPathExplorer, a visual text analytics tool that integrates advanced text mining, semi-supervised learning and interactive visualization, to facilitate the exploration and analysis of pathway models using statements (i.e. events) extracted automatically from the literature and organized according to levels of confidence. LitPathExplorer supports pathway modellers and curators alike by: (i) extracting events from the literature that corroborate existing models with evidence; (ii) discovering new events which can update models; and (iii) providing a confidence value for each event that is automatically computed based on linguistic features and article metadata. Our evaluation of event extraction showed a precision of 89% and a recall of 71%. Evaluation of our confidence measure, when used for ranking sampled events, showed an average precision ranging between 61 and 73%, which can be improved to 95% when the user is involved in the semi-supervised learning process. Qualitative evaluation using pair analytics based on the feedback of three domain experts confirmed the utility of our tool within the context of pathway model exploration. LitPathExplorer is available at http://nactem.ac.uk/LitPathExplorer_BI/. sophia.ananiadou@manchester.ac.uk. Supplementary data are available at Bioinformatics online.

  6. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models.

    Science.gov (United States)

    Marvel, Skylar W; To, Kimberly; Grimm, Fabian A; Wright, Fred A; Rusyn, Ivan; Reif, David M

    2018-03-05

    Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org .

  7. Bottlenecks of motion processing during a visual glance: the leaky flask model.

    Directory of Open Access Journals (Sweden)

    Haluk Öğmen

    Full Text Available Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic memory, visual short-term memory (VSTM, and long-term memory (LTM. It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.

  8. Bottlenecks of motion processing during a visual glance: the leaky flask model.

    Science.gov (United States)

    Öğmen, Haluk; Ekiz, Onur; Huynh, Duong; Bedell, Harold E; Tripathy, Srimant P

    2013-01-01

    Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.

  9. Visual interaction: models, systems, prototypes. The Pictorial Computing Laboratory at the University of Rome La Sapienza.

    Science.gov (United States)

    Bottoni, Paolo; Cinque, Luigi; De Marsico, Maria; Levialdi, Stefano; Panizzi, Emanuele

    2006-06-01

    This paper reports on the research activities performed by the Pictorial Computing Laboratory at the University of Rome, La Sapienza, during the last 5 years. Such work, essentially is based on the study of humancomputer interaction, spans from metamodels of interaction down to prototypes of interactive systems for both synchronous multimedia communication and groupwork, annotation systems for web pages, also encompassing theoretical and practical issues of visual languages and environments also including pattern recognition algorithms. Some applications are also considered like e-learning and collaborative work.

  10. Intuitive and interpretable visual communication of a complex statistical model of disease progression and risk.

    Science.gov (United States)

    Jieyi Li; Arandjelovic, Ognjen

    2017-07-01

    Computer science and machine learning in particular are increasingly lauded for their potential to aid medical practice. However, the highly technical nature of the state of the art techniques can be a major obstacle in their usability by health care professionals and thus, their adoption and actual practical benefit. In this paper we describe a software tool which focuses on the visualization of predictions made by a recently developed method which leverages data in the form of large scale electronic records for making diagnostic predictions. Guided by risk predictions, our tool allows the user to explore interactively different diagnostic trajectories, or display cumulative long term prognostics, in an intuitive and easily interpretable manner.

  11. MNRSIM: an interactive visual model which links thermal hydraulics, neutron production and other phenomena

    International Nuclear Information System (INIS)

    Gilbert, D.; Garland, W.J.; Ha, T.

    2004-01-01

    The goal for the McMaster Nuclear Reactor Simulator (MNRSIM) is a first order visual approximation of the major elements of the reactor including flux calculations, reactor control, thermal hydraulic calculations and eventually fuel management all within a graphical windows environment. The main purpose in the development of this tool is not to provide the staff and researchers at the reactor with a tool for understanding the reactor as an integrated system of simulations. The tool follows an extensible modular program design. (author)

  12. Designing visual displays and system models for safe reactor operations based on the user`s perspective of the system

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-12-31

    Most designers are not schooled in the area of human-interaction psychology and therefore tend to rely on the traditional ergonomic aspects of human factors when designing complex human-interactive workstations related to reactor operations. They do not take into account the differences in user information processing behavior and how these behaviors may affect individual and team performance when accessing visual displays or utilizing system models in process and control room areas. Unfortunately, by ignoring the importance of the integration of the user interface at the information process level, the result can be sub-optimization and inherently error- and failure-prone systems. Therefore, to minimize or eliminate failures in human-interactive systems, it is essential that the designers understand how each user`s processing characteristics affects how the user gathers information, and how the user communicates the information to the designer and other users. A different type of approach in achieving this understanding is Neuro Linguistic Programming (NLP). The material presented in this paper is based on two studies involving the design of visual displays, NLP, and the user`s perspective model of a reactor system. The studies involve the methodology known as NLP, and its use in expanding design choices from the user`s ``model of the world,`` in the areas of virtual reality, workstation design, team structure, decision and learning style patterns, safety operations, pattern recognition, and much, much more.

  13. Designing visual displays and system models for safe reactor operations based on the user's perspective of the system

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.

    1995-01-01

    Most designers are not schooled in the area of human-interaction psychology and therefore tend to rely on the traditional ergonomic aspects of human factors when designing complex human-interactive workstations related to reactor operations. They do not take into account the differences in user information processing behavior and how these behaviors may affect individual and team performance when accessing visual displays or utilizing system models in process and control room areas. Unfortunately, by ignoring the importance of the integration of the user interface at the information process level, the result can be sub-optimization and inherently error- and failure-prone systems. Therefore, to minimize or eliminate failures in human-interactive systems, it is essential that the designers understand how each user's processing characteristics affects how the user gathers information, and how the user communicates the information to the designer and other users. A different type of approach in achieving this understanding is Neuro Linguistic Programming (NLP). The material presented in this paper is based on two studies involving the design of visual displays, NLP, and the user's perspective model of a reactor system. The studies involve the methodology known as NLP, and its use in expanding design choices from the user's ''model of the world,'' in the areas of virtual reality, workstation design, team structure, decision and learning style patterns, safety operations, pattern recognition, and much, much more

  14. Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis

    Directory of Open Access Journals (Sweden)

    Ting Gong

    2007-01-01

    Full Text Available Genes mostly interact with each other to form transcriptional modules for performing single or multiple functions. It is important to unravel such transcriptional modules and to determine how disturbances in them may lead to disease. Here, we propose a non-negative independent component analysis (nICA approach for transcriptional module discovery. nICA method utilizes the non-negativity constraint to enforce the independence of biological processes within the participated genes. In such, nICA decomposes the observed gene expression into positive independent components, which fi ts better to the reality of corresponding putative biological processes. In conjunction with nICA modeling, visual statistical data analyzer (VISDA is applied to group genes into modules in latent variable space. We demonstrate the usefulness of the approach through the identification of composite modules from yeast data and the discovery of pathway modules in muscle regeneration.

  15. The Perceptual Root of Object-Based Storage: An Interactive Model of Perception and Visual Working Memory

    Science.gov (United States)

    Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei

    2011-01-01

    Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…

  16. The role of whiskers in compensation of visual deficit in a mouse model of retinal degeneration.

    Science.gov (United States)

    Voller, Jaroslav; Potužáková, Barbora; Šimeček, Vojtěch; Vožeh, František

    2014-01-13

    Sensory deprivation in one modality can enhance the development of the remaining modalities via mechanisms of synaptic plasticity. Mice of the C3H strain suffer from RD1 retinal degeneration that leads to visual impairment at weaning age. We examined a role of whiskers in compensation of the visual deficit. In order to differentiate the contribution of the whiskers from other mechanisms that can take part in the compensation, we investigated the effect of both chronic and acute tactile deprivation. Three-month-old mice were used. We examined motor skills (rotarod, beam walking test), gait control (CatWalk system), spontaneous motor activity (open field) and CNS excitability to an acoustic stimulus for assessment of compensatory changes in auditory system (audiogenic epilepsy). In the sighted mice, the only effect was a decline in their rotarod test performance after acute whisker removal. In the blind animals, chronic tactile deprivation caused changes in their gait and impaired the performance in motor tests. Some other compensatory mechanisms were involved but the whiskers are essential for the compensation as it emerged from more marked change of gait and the worsening of the motor performance after the acute whisker removal. Both chronic and acute tactile deprivation induced anxiety-like behaviour. Only a combination of blindness and chronic tactile deprivation led to an increased sense of hearing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration.

    Science.gov (United States)

    Lakshminarasimhan, Kaushik J; Petsalis, Marina; Park, Hyeshin; DeAngelis, Gregory C; Pitkow, Xaq; Angelaki, Dora E

    2018-06-20

    Path integration is a strategy by which animals track their position by integrating their self-motion velocity. To identify the computational origins of bias in visual path integration, we asked human subjects to navigate in a virtual environment using optic flow and found that they generally traveled beyond the goal location. Such a behavior could stem from leaky integration of unbiased self-motion velocity estimates or from a prior expectation favoring slower speeds that causes velocity underestimation. Testing both alternatives using a probabilistic framework that maximizes expected reward, we found that subjects' biases were better explained by a slow-speed prior than imperfect integration. When subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias reversal due to buildup of uncertainty, which we also confirmed experimentally. These results suggest that visual path integration in noisy environments is limited largely by biases in processing optic flow rather than by leaky integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Automaticity of phasic alertness: Evidence for a three-component model of visual cueing.

    Science.gov (United States)

    Lin, Zhicheng; Lu, Zhong-Lin

    2016-10-01

    The automaticity of phasic alertness is investigated using the attention network test. Results show that the cueing effect from the alerting cue-double cue-is strongly enhanced by the task relevance of visual cues, as determined by the informativeness of the orienting cue-single cue-that is being mixed (80 % vs. 50 % valid in predicting where the target will appear). Counterintuitively, the cueing effect from the alerting cue can be negatively affected by its visibility, such that masking the cue from awareness can reveal a cueing effect that is otherwise absent when the cue is visible. Evidently, then, top-down influences-in the form of contextual relevance and cue awareness-can have opposite influences on the cueing effect from the alerting cue. These findings lead us to the view that a visual cue can engage three components of attention-orienting, alerting, and inhibition-to determine the behavioral cueing effect. We propose that phasic alertness, particularly in the form of specific response readiness, is regulated by both internal, top-down expectation and external, bottom-up stimulus properties. In contrast to some existing views, we advance the perspective that phasic alertness is strongly tied to temporal orienting, attentional capture, and spatial orienting. Finally, we discuss how translating attention research to clinical applications would benefit from an improved ability to measure attention. To this end, controlling the degree of intraindividual variability in the attentional components and improving the precision of the measurement tools may prove vital.

  19. The role of visual similarity and memory in body model distortions.

    Science.gov (United States)

    Saulton, Aurelie; Longo, Matthew R; Wong, Hong Yu; Bülthoff, Heinrich H; de la Rosa, Stephan

    2016-02-01

    Several studies have shown that the perception of one's own hand size is distorted in proprioceptive localization tasks. It has been suggested that those distortions mirror somatosensory anisotropies. Recent research suggests that non-corporeal items also show some spatial distortions. In order to investigate the psychological processes underlying the localization task, we investigated the influences of visual similarity and memory on distortions observed on corporeal and non-corporeal items. In experiment 1, participants indicated the location of landmarks on: their own hand, a rubber hand (rated as most similar to the real hand), and a rake (rated as least similar to the real hand). Results show no significant differences between rake and rubber hand distortions but both items were significantly less distorted than the hand. Experiments 2 and 3 explored the role of memory in spatial distance judgments of the hand, the rake and the rubber hand. Spatial representations of items measured in experiments 2 and 3 were also distorted but showed the tendency to be smaller than in localization tasks. While memory and visual similarity seem to contribute to explain qualitative similarities in distortions between the hand and non-corporeal items, those factors cannot explain the larger magnitude observed in hand distortions. Copyright © 2015. Published by Elsevier B.V.

  20. The design and implementation of a visual user interface for a structured model management system

    OpenAIRE

    O'Dell, David D.

    1988-01-01

    In the scheme of an integrated decision support system, model management holds a position comparable with data management. Unfortunately, the development and formalizing of model management techniques historically have lagged far behind data management concepts, although the increased interest in spreadsheets has rekindled an interest in models as productivity enhancing tools. Model management systems offer one way of integrating models into the overall structure of an organizational informat...

  1. A 3-D Approach for Teaching and Learning about Surface Water Systems through Computational Thinking, Data Visualization and Physical Models

    Science.gov (United States)

    Caplan, B.; Morrison, A.; Moore, J. C.; Berkowitz, A. R.

    2017-12-01

    Understanding water is central to understanding environmental challenges. Scientists use `big data' and computational models to develop knowledge about the structure and function of complex systems, and to make predictions about changes in climate, weather, hydrology, and ecology. Large environmental systems-related data sets and simulation models are difficult for high school teachers and students to access and make sense of. Comp Hydro, a collaboration across four states and multiple school districts, integrates computational thinking and data-related science practices into water systems instruction to enhance development of scientific model-based reasoning, through curriculum, assessment and teacher professional development. Comp Hydro addresses the need for 1) teaching materials for using data and physical models of hydrological phenomena, 2) building teachers' and students' comfort or familiarity with data analysis and modeling, and 3) infusing the computational knowledge and practices necessary to model and visualize hydrologic processes into instruction. Comp Hydro teams in Baltimore, MD and Fort Collins, CO are integrating teaching about surface water systems into high school courses focusing on flooding (MD) and surface water reservoirs (CO). This interactive session will highlight the successes and challenges of our physical and simulation models in helping teachers and students develop proficiency with computational thinking about surface water. We also will share insights from comparing teacher-led vs. project-led development of curriculum and our simulations.

  2. IFIS Model-Plus: A Web-Based GUI for Visualization, Comparison and Evaluation of Distributed Flood Forecasts and Hindcasts

    Science.gov (United States)

    Krajewski, W. F.; Della Libera Zanchetta, A.; Mantilla, R.; Demir, I.

    2017-12-01

    This work explores the use of hydroinformatics tools to provide an user friendly and accessible interface for executing and assessing the output of realtime flood forecasts using distributed hydrological models. The main result is the implementation of a web system that uses an Iowa Flood Information System (IFIS)-based environment for graphical displays of rainfall-runoff simulation results for both real-time and past storm events. It communicates with ASYNCH ODE solver to perform large-scale distributed hydrological modeling based on segmentation of the terrain into hillslope-link hydrologic units. The cyber-platform also allows hindcast of model performance by testing multiple model configurations and assumptions of vertical flows in the soils. The scope of the currently implemented system is the entire set of contributing watersheds for the territory of the state of Iowa. The interface provides resources for visualization of animated maps for different water-related modeled states of the environment, including flood-waves propagation with classification of flood magnitude, runoff generation, surface soil moisture and total water column in the soil. Additional tools for comparing different model configurations and performing model evaluation by comparing to observed variables at monitored sites are also available. The user friendly interface has been published to the web under the URL http://ifis.iowafloodcenter.org/ifis/sc/modelplus/.

  3. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    Science.gov (United States)

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  4. Face it a visual reference for multi-ethnic facial modeling

    CERN Document Server

    Beckmann Wells, Patricia

    2013-01-01

    Face It  presents practical hands-on techniques, 3D modeling and sculpting tools with Maya and ZBrush production pipelines, uniquely focused on the facial modeling of 7 ethnicity models, featuring over 100 different models ranging in age from newborn to elderly characters. Face It is a resource for academic and professionals alike. Explore the modeling possibilities beyond the digital reference galleries online. No more having to adapt medical anatomy texts to your own models! Explore the finite details of facial anatomy with focus on skull development, muscle structure, e

  5. Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints

    International Nuclear Information System (INIS)

    Dudek, M.A.; Hunter, L.; Kranz, S.; Williams, J.J.; Lau, S.H.; Chawla, N.

    2010-01-01

    The volume, size, and dispersion of porosity in solder joints are known to affect mechanical performance and reliability. Most of the techniques used to characterize the three-dimensional (3D) nature of these defects are destructive. With the enhancements in high resolution computed tomography (CT), the detection limits of intrinsic microstructures have been significantly improved. Furthermore, the 3D microstructure of the material can be used in finite element models to understand their effect on microscopic deformation. In this paper we describe a technique utilizing high resolution (< 1 μm) X-ray tomography for the three-dimensional (3D) visualization of pores in Sn-3.9Ag-0.7Cu/Cu joints. The characteristics of reflow porosity, including volume fraction and distribution, were investigated for two reflow profiles. The size and distribution of porosity size were visualized in 3D for four different solder joints. In addition, the 3D virtual microstructure was incorporated into a finite element model to quantify the effect of voids on the lap shear behavior of a solder joint. The presence, size, and location of voids significantly increased the severity of strain localization at the solder/copper interface.

  6. Reporting, Visualization, and Modeling of Immunogenicity Data to Assess Its Impact on Pharmacokinetics, Efficacy, and Safety of Monoclonal Antibodies.

    Science.gov (United States)

    Passey, Chaitali; Suryawanshi, Satyendra; Sanghavi, Kinjal; Gupta, Manish

    2018-02-26

    The rapidly increasing number of therapeutic biologics in development has led to a growing recognition of the need for improvements in immunogenicity assessment. Published data are often inadequate to assess the impact of an antidrug antibody (ADA) on pharmacokinetics, safety, and efficacy, and enable a fully informed decision about patient management in the event of ADA development. The recent introduction of detailed regulatory guidance for industry should help address many past inadequacies in immunogenicity assessment. Nonetheless, careful analysis of gathered data and clear reporting of results are critical to a full understanding of the clinical relevance of ADAs, but have not been widely considered in published literature to date. Here, we review visualization and modeling of immunogenicity data. We present several relatively simple visualization techniques that can provide preliminary information about the kinetics and magnitude of ADA responses, and their impact on pharmacokinetics and clinical endpoints for a given therapeutic protein. We focus on individual sample- and patient-level data, which can be used to build a picture of any trends, thereby guiding analysis of the overall study population. We also discuss methods for modeling ADA data to investigate the impact of immunogenicity on pharmacokinetics, efficacy, and safety.

  7. Using a model of human visual perception to improve deep learning.

    Science.gov (United States)

    Stettler, Michael; Francis, Gregory

    2018-04-17

    Deep learning algorithms achieve human-level (or better) performance on many tasks, but there still remain situations where humans learn better or faster. With regard to classification of images, we argue that some of those situations are because the human visual system represents information in a format that promotes good training and classification. To demonstrate this idea, we show how occluding objects can impair performance of a deep learning system that is trained to classify digits in the MNIST database. We describe a human inspired segmentation and interpolation algorithm that attempts to reconstruct occluded parts of an image, and we show that using this reconstruction algorithm to pre-process occluded images promotes training and classification performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Impact of oral health education by audio aids, braille and tactile models on the oral health status of visually impaired children of Bhopal City.

    Science.gov (United States)

    Gautam, Anjali; Bhambal, Ajay; Moghe, Swapnil

    2018-01-01

    Children with special needs face unique challenges in day-to-day practice. They are dependent on their close ones for everything. To improve oral hygiene in such visually impaired children, undue training and education are required. Braille is an important language for reading and writing for the visually impaired. It helps them understand and visualize the world via touch. Audio aids are being used to impart health education to the visually impaired. Tactile models help them perceive things which they cannot visualize and hence are an important learning tool. This study aimed to assess the improvement in oral hygiene by audio aids and Braille and tactile models in visually impaired children aged 6-16 years of Bhopal city. This was a prospective study. Sixty visually impaired children aged 6-16 years were selected and randomly divided into three groups (20 children each). Group A: audio aids + Braille, Group B: audio aids + tactile models, and Group C: audio aids + Braille + tactile models. Instructions were given for maintaining good oral hygiene and brushing techniques were explained to all children. After 3 months' time, the oral hygiene status was recorded and compared using plaque and gingival index. ANNOVA test was used. The present study showed a decrease in the mean plaque and gingival scores at all time intervals in individual group as compared to that of the baseline that was statistically significant. The study depicts that the combination of audio aids, Braille and tactile models is an effective way to provide oral health education and improve oral health status of visually impaired children.

  9. Impact of oral health education by audio aids, braille and tactile models on the oral health status of visually impaired children of Bhopal City

    Directory of Open Access Journals (Sweden)

    Anjali Gautam

    2018-01-01

    Full Text Available Context: Children with special needs face unique challenges in day-to-day practice. They are dependent on their close ones for everything. To improve oral hygiene in such visually impaired children, undue training and education are required. Braille is an important language for reading and writing for the visually impaired. It helps them understand and visualize the world via touch. Audio aids are being used to impart health education to the visually impaired. Tactile models help them perceive things which they cannot visualize and hence are an important learning tool. Aim: This study aimed to assess the improvement in oral hygiene by audio aids and Braille and tactile models in visually impaired children aged 6–16 years of Bhopal city. Settings and Design: This was a prospective study. Materials and Methods: Sixty visually impaired children aged 6–16 years were selected and randomly divided into three groups (20 children each. Group A: audio aids + Braille, Group B: audio aids + tactile models, and Group C: audio aids + Braille + tactile models. Instructions were given for maintaining good oral hygiene and brushing techniques were explained to all children. After 3 months' time, the oral hygiene status was recorded and compared using plaque and gingival index. Statistical Analysis Used: ANNOVA test was used. Results: The present study showed a decrease in the mean plaque and gingival scores at all time intervals in individual group as compared to that of the baseline that was statistically significant. Conclusions: The study depicts that the combination of audio aids, Braille and tactile models is an effective way to provide oral health education and improve oral health status of visually impaired children.

  10. Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model

    OpenAIRE

    Lu, Jiasen; Kannan, Anitha; Yang, Jianwei; Parikh, Devi; Batra, Dhruv

    2017-01-01

    We present a novel training framework for neural sequence models, particularly for grounded dialog generation. The standard training paradigm for these models is maximum likelihood estimation (MLE), or minimizing the cross-entropy of the human responses. Across a variety of domains, a recurring problem with MLE trained generative neural dialog models (G) is that they tend to produce 'safe' and generic responses ("I don't know", "I can't tell"). In contrast, discriminative dialog models (D) th...

  11. Eye Tracking Meets the Process of Process Modeling: a Visual Analytic Approach

    DEFF Research Database (Denmark)

    Burattin, Andrea; Kaiser, M.; Neurauter, Manuel

    2017-01-01

    Research on the process of process modeling (PPM) studies how process models are created. It typically uses the logs of the interactions with the modeling tool to assess the modeler’s behavior. In this paper we suggest to introduce an additional stream of data (i.e., eye tracking) to improve the ...

  12. Visualization of the Evolution of Layout Metrics for Business Process Models

    DEFF Research Database (Denmark)

    Haisjackl, Cornelia; Burattin, Andrea; Soffer, Pnina

    2017-01-01

    Considerable progress regarding impact factors of process model understandability has been achieved. For example, it has been shown that layout features of process models have an effect on model understandability. Even so, it appears that our knowledge about the modeler’s behavior regarding the l...

  13. The mechanisms of feature inheritance as predicted by a systems-level model of visual attention and decision making.

    Science.gov (United States)

    Hamker, Fred H

    2008-07-15

    Feature inheritance provides evidence that properties of an invisible target stimulus can be attached to a following mask. We apply a systemslevel model of attention and decision making to explore the influence of memory and feedback connections in feature inheritance. We find that the presence of feedback loops alone is sufficient to account for feature inheritance. Although our simulations do not cover all experimental variations and focus only on the general principle, our result appears of specific interest since the model was designed for a completely different purpose than to explain feature inheritance. We suggest that feedback is an important property in visual perception and provide a description of its mechanism and its role in perception.

  14. Zebrafish (Danio rerio) as a model to visualize infection dynamics of Vibrio anguillarum following intraperitoneal injection and bath exposure

    DEFF Research Database (Denmark)

    Schmidt, Jacob Günther; Korbut, Rozalia; Ohtani, Maki

    2017-01-01

    , for which the vaccines are targeted. The zebrafish is by now a well established practical vertebrate model species due in part to its size and ease of maintenance and genetic manipulation. Here we use zebrafish as a model to visualize and compare the development of infection of Vibrio anguillarum......Vaccine development is important for sustainable fish farming and novel vaccines need to be efficacy tested before release to the market. Challenge of fish with the pathogen towards which the vaccine has been produced can be conducted either by external exposure though bathing or cohabitation...... on and in the fish following injection or bathing. Injection of 103 bacteria per fish resulted in approximately 50% mortality by day 4 post-injection. Similar mortality levels were reached in the other group by bathing in 1.25 × 109 bacteria for 1 min. The spreading of bacteria was followed for the first 24 h after...

  15. GRNsight: a web application and service for visualizing models of small- to medium-scale gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Kam D. Dahlquist

    2016-09-01

    Full Text Available GRNsight is a web application and service for visualizing models of gene regulatory networks (GRNs. A gene regulatory network (GRN consists of genes, transcription factors, and the regulatory connections between them which govern the level of expression of mRNA and protein from genes. The original motivation came from our efforts to perform parameter estimation and forward simulation of the dynamics of a differential equations model of a small GRN with 21 nodes and 31 edges. We wanted a quick and easy way to visualize the weight parameters from the model which represent the direction and magnitude of the influence of a transcription factor on its target gene, so we created GRNsight. GRNsight automatically lays out either an unweighted or weighted network graph based on an Excel spreadsheet containing an adjacency matrix where regulators are named in the columns and target genes in the rows, a Simple Interaction Format (SIF text file, or a GraphML XML file. When a user uploads an input file specifying an unweighted network, GRNsight automatically lays out the graph using black lines and pointed arrowheads. For a weighted network, GRNsight uses pointed and blunt arrowheads, and colors the edges and adjusts their thicknesses based on the sign (positive for activation or negative for repression and magnitude of the weight parameter. GRNsight is written in JavaScript, with diagrams facilitated by D3.js, a data visualization library. Node.js and the Express framework handle server-side functions. GRNsight’s diagrams are based on D3.js’s force graph layout algorithm, which was then extensively customized to support the specific needs of GRNs. Nodes are rectangular and support gene labels of up to 12 characters. The edges are arcs, which become straight lines when the nodes are close together. Self-regulatory edges are indicated by a loop. When a user mouses over an edge, the numerical value of the weight parameter is displayed. Visualizations can

  16. Math for visualization, visualizing math

    NARCIS (Netherlands)

    Wijk, van J.J.; Hart, G.; Sarhangi, R.

    2013-01-01

    I present an overview of our work in visualization, and reflect on the role of mathematics therein. First, mathematics can be used as a tool to produce visualizations, which is illustrated with examples from information visualization, flow visualization, and cartography. Second, mathematics itself

  17. Visual art and visual perception

    NARCIS (Netherlands)

    Koenderink, Jan J.

    2015-01-01

    Visual art and visual perception ‘Visual art’ has become a minor cul-de-sac orthogonal to THE ART of the museum directors and billionaire collectors. THE ART is conceptual, instead of visual. Among its cherished items are the tins of artist’s shit (Piero Manzoni, 1961, Merda d’Artista) “worth their

  18. Influence of bushenhuoxue on primary visual cortex' BDNF damage in rat model of chronic elevated intraocular pressure

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2013-04-01

    Full Text Available AIM: To observe the effect of traditional Chinese medicine(TCMof bushenhuoxue on primary visual cortex(PVCbrain-derived neurotrophic factor(BDNFin rat model of chronic elevated intraocular pressure(EIOP, and explore the mechanism of it initially. METHODS: The rat model of chronic EIOP was established by unilaterally cauterizing 3 episcleral veins, then 30 rats were divided into 3 groups randomly: control group, model group, and treatment group. After given drugs or normal saline for 8 weeks, the rats were put to death. The effect of intraocular pressure(IOP, expression of BDNF and ultrastructure of neuron cell in the PVC was observed. RESULTS: Unilaterally cauterizing episcleral veins increased IOP of the rat model obviously, there was significant difference compared with pre-operation(P<0.01. Semi-quantitative pathological analysis on PVC showed that BDNF of total area in the model group was(82438±2597.39S/μm2,mean optical density was(1155.9±123.14, integrated optical density was(12915±673.28, compared with the control group {total area was(132370±7588.47S/μm2, mean optical density was(5365±379.65, integrated optical density was(35102±2648.5}, there were statistical differences(all P<0.05,there was statistical difference in BDNF of total area between model group and treatment group{(108980±9126.77S/μm2, P<0.05}, significant difference in mean optical density between the model group and treatment group(3220.4±413.67, P<0.05, statistical difference in integrated optical density between the model group and treatment group(23821±3431.68, P<0.05. CONCLUSION: TCM of bushenhuoxue can repair the PVC damage in the rat model of chronic EIOP by enhancing expression of BDNF, improving ultrastructure of neuron cell.

  19. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers.

    Science.gov (United States)

    Li, Ye; Miao, Xiaoqing; Chen, Tongkai; Yi, Xiang; Wang, Ruibing; Zhao, Haitao; Lee, Simon Ming-Yuen; Wang, Xueqing; Zheng, Ying

    2017-08-01

    With the wide application of nanotechnology to drug delivery systems, a simple, dynamic and visual in vivo model for high-throughput screening of novel formulations with fluorescence markers across biological barriers is desperately needed. In vitro cell culture models have been widely used, although they are far from a complimentary in vivo system. Mammalian animal models are common predictive models to study transport, but they are costly and time consuming. Zebrafish (Danio rerio), a small vertebrate model, have the potential to be developed as an "intermediate" model for quick evaluations. Based on our previously established coumarin 6 nanocrystals (C6-NCs), which have two different sizes, the present study investigates the transportation of C6-NCs across four biological barriers, including the chorion, blood brain barrier (BBB), blood retinal barrier (BRB) and gastrointestinal (GI) barrier, using zebrafish embryos and larvae as in vivo models. The biodistribution and elimination of C6 from different organs were quantified in adult zebrafish. The results showed that compared to 200nm C6-NCs, 70nm C6-NCs showed better permeability across these biological barriers. A FRET study suggested that intact C6-NCs together with the free dissolved form of C6 were absorbed into the larval zebrafish. More C6 was accumulated in different organs after incubation with small sized NCs via lipid raft-mediated endocytosis in adult zebrafish, which is consistent with the findings from in vitro cell monolayers and the zebrafish larvae model. C6-NCs could be gradually eliminated in each organ over time. This study demonstrated the successful application of zebrafish as a simple and dynamic model to simultaneously assess the transport of nanosized drug delivery systems across several biological barriers and biodistribution in different organs, especially in the brain, which could be used for central nervous system (CNS) drug and delivery system screening. Copyright © 2017 Elsevier B

  20. Parameter Identification and Uncertainty Analysis for Visual MODFLOW based Groundwater Flow Model in a Small River Basin, Eastern India

    Science.gov (United States)

    Jena, S.

    2015-12-01

    The overexploitation of groundwater resulted in abandoning many shallow tube wells in the river Basin in Eastern India. For the sustainability of groundwater resources, basin-scale modelling of groundwater flow is essential for the efficient planning and management of the water resources. The main intent of this study is to develope a 3-D groundwater flow model of the study basin using the Visual MODFLOW package and successfully calibrate and validate it using 17 years of observed data. The sensitivity analysis was carried out to quantify the susceptibility of aquifer system to the river bank seepage, recharge from rainfall and agriculture practices, horizontal and vertical hydraulic conductivities, and specific yield. To quantify the impact of parameter uncertainties, Sequential Uncertainty Fitting Algorithm (SUFI-2) and Markov chain Monte Carlo (MCMC) techniques were implemented. Results from the two techniques were compared and the advantages and disadvantages were analysed. Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R2) were adopted as two criteria during calibration and validation of the developed model. NSE and R2 values of groundwater flow model for calibration and validation periods were in acceptable range. Also, the MCMC technique was able to provide more reasonable results than SUFI-2. The calibrated and validated model will be useful to identify the aquifer properties, analyse the groundwater flow dynamics and the change in groundwater levels in future forecasts.