WorldWideScience

Sample records for viscous fluid dynamics

  1. Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations

    Science.gov (United States)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.

  2. The stochastic dynamics of tethered microcantilevers in a viscous fluid

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Brian A.; Paul, Mark R. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Radiom, Milad; Ducker, William A. [Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Walz, John Y. [Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-10-28

    We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto- and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude of the correlations which can be used in a measurement to probe the properties of an attached tethering substance. For the configurations of current interest using micron scale cantilevers in water, we show that the magnitude of the fluid coupling between the cantilevers is sufficiently small such that the influence of the tether can be significant. Our results show that the cross-correlation is more sensitive to tether stiffness than the auto-correlation indicating that a two-cantilever measurement has improved sensitivity when compared with a measurement using a single cantilever.

  3. Dynamics of two coaxial cylindrical shells containing viscous fluid

    International Nuclear Information System (INIS)

    Yeh, T.T.; Chen, S.S.

    1976-09-01

    This study was motivated by the need to design the thermal shield in reactor internals and other system components to avoid detrimental flow-induced vibrations. The system component is modeled as two coaxial shells separated by a viscous fluid. In the analysis, Flugge's shell equations of motion and linearized Navier-Stokes equation for viscous fluid are employed. First, a traveling-wave type solution is taken for shells and fluid. Then, from the interface conditions between the shells and fluid, the solution for the fluid medium is expressed in terms of shell displacements. Finally, using the shell equations of motion gives the frequency equation, from which the natural frequency, mode shape, and modal damping ratio of coupled modes can be calculated. The analytical results show a fairly good qualitative agreement with the published experimental data. Some important conclusions are as follows: (1) In computing the natural frequencies and mode shapes of uncoupled modes and coupled modes, the fluid may be considered inviscid and incompressible. (2) There exists out-of-phase and in-phase modes. The lowest natural frequency is always associated with the out-of-phase mode. (3) The lowest natural frequency of coupled modes is lower than the uncoupled modes. (4) The fluid viscosity contributes significantly to damping, in particular, the modal damping of the out-of-phase modes isrelatively large for small gaps. (5) If the fluid gap is small, or the fluid viscosity is relatively high, the simulation of the vibration Reynolds number should be included to ensure that modal damping of the model is properly accounted for. With the presented analysis and results, the frequency and damping characteristics can be analyzed and design parameters can be related to frequency and damping

  4. Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.

    Science.gov (United States)

    Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind

    2018-01-26

    Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    Science.gov (United States)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  6. Experimental Observations of Multiscale Dynamics of Viscous Fluid Behavior: Implications in Volcanic Systems

    Science.gov (United States)

    Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.

  7. The Correlated Dynamics of Micron-Scale Cantilevers in a Viscous Fluid

    Science.gov (United States)

    Robbins, Brian A.

    A number of microcantilever systems of fundamental importance are explored using theoretical and numerical methods to quantify and provide physical insights into the dynamics of experimentally accessible systems that include a variety of configurations and viscous fluids. It is first shown that the correlated dynamics of both a laterally and vertically offset cantilever pair can be accurately predicted by numerical simulations. This is verified by comparing the correlated dynamics yielded by numerical simulations with experimental measurement. It is also demonstrated that in order to obtain these accurate predictions, geometric details of the cantilever must be included in the numerical simulation to directly reflect the experimental cantilever. A microrheology technique that utilizes the fluctuation-dissipation theorem is proposed. It is shown that by including the frequency dependence of the fluid damping, improvements in accuracy of the predictions of the rheological properties of the surrounding fluid are observed over current techniques. The amplitude spectrum of a 2-D cantilever in a power-law fluid is studied. The resulting amplitude spectrum yielded a curve similar to an overdamped system. It is observed that the amplitude and noise spectrum yield the same qualitative response for a 2-D cantilever in a shear-thinning, power-law fluid. The correlated dynamics of a tethered vertically offset cantilever pair is investigated. It is shown that for a range of stiffness ratios, which is the ratio of the spring constant of the tethering relative to the cantilever spring constant, the change in the correlated dynamics of a Hookean spring tethered cantilever pair can be seen in the presence of fluid coupling. The dynamics of a spring-mass tethered, vertically offset cantilever pair is qualitatively studied by simplifying the model to an array of springs and masses. The resulting study found that the correlated dynamics of the displacement of mass of the tethered

  8. Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics

    Science.gov (United States)

    Jiang, Yin; Shi, Shuzhe; Yin, Yi; Liao, Jinfeng

    2018-01-01

    The Chiral Magnetic Effect (CME) is a macroscopic manifestation of fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as an anomalous transport current in the fluid dynamics framework. Experimental observation of the CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to look for the CME in heavy ion collisions. Critically needed for such a search is the theoretical prediction for the CME signal. In this paper we report a first quantitative modeling framework, Anomalous Viscous Fluid Dynamics (AVFD), which computes the evolution of fermion currents on top of realistic bulk evolution in heavy ion collisions and simultaneously accounts for both anomalous and normal viscous transport effects. AVFD allows a quantitative understanding of the generation and evolution of CME-induced charge separation during the hydrodynamic stage, as well as its dependence on theoretical ingredients. With reasonable estimates of key parameters, the AVFD simulations provide the first phenomenologically successful explanation of the measured signal in 200 AGeV AuAu collisions. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration. The work is also supported in part by the National Science Foundation under Grant No. PHY-1352368 (SS and JL), by the National Science Foundation of China under Grant No. 11735007 (JL) and by the U.S. Department of Energy under grant Contract Number No. DE- SC0012704 (BNL)/DE-SC0011090 (MIT) (YY). JL is grateful to the Institute for Nuclear Theory for hospitality during the INT-16-3 Program. The computation of this research was performed on IU’s Big Red II cluster, supported in part by Lilly Endowment, Inc. (through its support for the Indiana University Pervasive Technology Institute) and in part by the Indiana METACyt

  9. Modelling the normal bouncing dynamics of spheres in a viscous fluid

    Directory of Open Access Journals (Sweden)

    Izard Edouard

    2017-01-01

    Full Text Available Bouncing motions of spheres in a viscous fluid are numerically investigated by an immersed boundary method to resolve the fluid flow around solids which is combined to a discrete element method for the particles motion and contact resolution. Two well-known configurations of bouncing are considered: the normal bouncing of a sphere on a wall in a viscous fluid and a normal particle-particle bouncing in a fluid. Previous experiments have shown the effective restitution coefficient to be a function of a single parameter, namely the Stokes number which compares the inertia of the solid particle with the fluid viscous dissipation. The present simulations show a good agreement with experimental observations for the whole range of investigated parameters. However, a new definition of the coefficient of restitution presented here shows a dependence on the Stokes number as in previous works but, in addition, on the fluid to particle density ratio. It allows to identify the viscous, inertial and dry regimes as found in experiments of immersed granular avalanches of Courrech du Pont et al. Phys. Rev. Lett. 90, 044301 (2003, e.g. in a multi-particle configuration.

  10. Using Incremental Dynamic Analysis to Visualize the Effects of Viscous Fluid Dampers on Steel Moment Frame Drift

    OpenAIRE

    Kruep, Stephanie Jean

    2007-01-01

    This thesis presents the details of a study regarding both the use of linear viscous fluid dampers in controlling the interstory drift in steel moment frames, and the use of incremental dynamic analysis as a method of visualizing the behavior of these moment frames when subjected to seismic load effects. Models of three story and nine story steel moment frames were designed to meet typical strength requirements for office buildings in Seattle, Washington. These models were intentionally des...

  11. Dynamic viscous behavior of magneto-rheological fluid in coupled mode operation

    International Nuclear Information System (INIS)

    Kaluvan, Suresh; Park, JinHyuk; Choi, Seung-Hyun; Kim, Pyunghwa; Choi, Seung-Bok

    2015-01-01

    A new method of measuring the coupled mode viscosity behavior of magneto-rheological (MR) fluid using the resonance concept is proposed. The coupled mode viscosity measurement device is designed as a resonant system using a cantilever beam probing with the rotating shaft mechanism. The ‘C’ shaped iron core of an electromagnetic coil, mounted in a resonating cantilever beam is used as a probing tip. The MR fluid between the probing tip and the rotating shaft mechanism experiences both squeeze and shear force. The vibration induced by the resonating cantilever beam creates only squeeze force on the MR fluid when the shaft is stationary. When the cantilever beam is vibrating at resonance and the shaft is rotating, the MR fluid experiences coupled (shear and squeeze) force. The cantilever beam is vibrated at its resonant frequency using the piezoelectric actuation technique and the resonance is maintained using simple closed loop resonator electronics. The input current to the probing coil is varied to produce a variable magnetic field which causes the viscosity change of the MR fluid. The viscosity change of the MR fluid produces a coupled force, which induces an additional stiffness on the resonating cantilever beam and alters its initial resonant frequency. The shift in resonant frequency due to the change in viscosity of the MR fluid is measured with the help of a resonator electronics circuit and its viscosity is related to the field dependent coupled mode yield stress of the MR fluid. The proposed measurement device is analytically derived and experimentally evaluated. (technical note)

  12. Viscous Flow with Large Fluid-Fluid Interface Displacement

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild

    1998-01-01

    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....

  13. Computational Fluid Dynamics Modeling of Bubbling in a Viscous Fluid for Validation of Waste Glass Melter Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander William [Idaho National Laboratory; Guillen, Donna Post [Idaho National Laboratory

    2016-01-01

    At the Hanford site, radioactive waste stored in underground tanks is slated for vitrification for final disposal. A comprehensive knowledge of the glass batch melting process will be useful in optimizing the process, which could potentially reduce the cost and duration of this multi-billion dollar cleanup effort. We are developing a high-fidelity heat transfer model of a Joule-heated ceramic lined melter to improve the understanding of the complex, inter-related processes occurring with the melter. The glass conversion rates in the cold cap layer are dependent on promoting efficient heat transfer. In practice, heat transfer is augmented by inserting air bubblers into the molten glass. However, the computational simulations must be validated to provide confidence in the solutions. As part of a larger validation procedure, it is beneficial to split the physics of the melter into smaller systems to validate individually. The substitution of molten glass for a simulant liquid with similar density and viscosity at room temperature provides a way to study mixing through bubbling as an isolated effect without considering the heat transfer dynamics. The simulation results are compared to experimental data obtained by the Vitreous State Laboratory at the Catholic University of America using bubblers placed within a large acrylic tank that is similar in scale to a pilot glass waste melter. Comparisons are made for surface area of the rising air bubbles between experiments and CFD simulations for a variety of air flow rates and bubble injection depths. Also, computed bubble rise velocity is compared to a well-accepted expression for bubble terminal velocity.

  14. Design method for fluid viscous dampers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jiuhong; Hua, Hongxing [Shanghai Jiaotong University, State Key Laboratory of Mechanical System and Vibration, Shanghai (China); Du, Jianye; Wang, Yu [Naval Arming Academy, Institute of Naval Vessels, Beijing (China)

    2008-09-15

    A basic design method of doubly acting fluid viscous dampers with double guide bars is presented. The flow of the viscoelastic fluid between two parallel plates, one of which is started suddenly and the other of which is still, is analyzed. According to this solution, the velocity and the shear stress of the fluid at the fringe of the piston are solved approximately. A mathematical model of viscous dampers is derived, and the shock test is carried out. From experimental results, the parameters of the mathematical model are determined. Consequently, a semi-empirical design equation is obtained. Applying this equation to a certain practical damper, the damping material is chosen and the physical dimensions of the damper are determined. Shock tests using this damper are performed. Theoretical results are in good agreement with experimental results, which validates the reliability of the calculated physical dimensions of the specimen damper and the validity of the basic design equation. (orig.)

  15. Simulation of swimming strings immersed in a viscous fluid flow

    Science.gov (United States)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  16. Development of a Model Foamy Viscous Fluid

    Directory of Open Access Journals (Sweden)

    Vial C.

    2013-08-01

    Full Text Available The objective is to develop a model viscous foamy fluid, i.e. below the very wet limit, the rheological and stability properties of which can be tuned. First, the method used for the preparation of foamy fluids is detailed, including process and formulation. Then, experimental results highlight that stable foamy fluids with a monomodal bubble size distribution can be prepared with a void fraction between 25% and 50% (v/v. Their viscoelastic properties under flow and low-strain oscillatory conditions are shown to result from the interplay between the formulation of the continuous phase, void fraction and bubble size. Their apparent viscosity can be described using the Cross equation and zero-shear Newtonian viscosity may be predicted by a Mooney equation up to a void fraction about 40%. The Cox-Merz and the Laun’s rules apply when the capillary number Ca is lower than 0.1. The upper limit of the zero-shear plateau region decreases when void fraction increases or bubble size decreases. In the shear-thinning region, shear stress varies with Ca1/2, as in wet foams with immobile surfaces. Finally, foamy fluids can be sheared up to Ca about 0.1 without impairing their microstructure. Their stability at rest achieves several hours and increases with void fraction due to compact packing constraints. These constitute, therefore, versatile model fluids to investigate the behaviour of foamy fluids below the very wet limit in process conditions.

  17. DYNAMICS OF THIN VISCOUS LAYERS

    OpenAIRE

    ROJAS, NICOLAS

    2011-01-01

    As Isaac Newton discovered in Mechanics, and published in his Principia Mathematica in 1687, inertial effects are essential to describe natural phenomena. In the case of Fluid Dynamics, inertia was included by Claude-Louis Navier and George Gabriel Stokes almost two centuries after in 1822 when calculating the mass and momentum conservation of au infinitesimal fluid elemeut. Although Navier-Stokes equations are very useful for describing any event of any liquid or gas and there...

  18. Nonlinear Dynamic Response of an Unbalanced Flexible Rotor Supported by Elastic Bearings Lubricated with Piezo-Viscous Polar Fluids

    Directory of Open Access Journals (Sweden)

    Mustapha Lahmar

    2015-04-01

    Full Text Available On the basis of the V. K. Stokes micro-continuum theory, the effects of couple stresses on the nonlinear dynamic response of the unbalanced Jeffcott’s flexible rotor supported by layered hydrodynamic journal bearings is presented in this paper. A nonlinear transient modified Reynolds’ equation is derived and discretized by the finite element method to obtain the fluid-film pressure field as well as the film thickness by means of the implicit Euler method. The nonlinear orbits of the rotor center are determined by solving the nonlinear differential equations of motion with the explicit Euler’s scheme taking into account the flexibility of rotor. According to the obtained results, the combined effects of couple stresses due to the presence of polymer additives in lubricant and the pressure dependent viscosity on the nonlinear dynamic response of the rotor-bearing system are significant and cannot be ignored or overlooked. As expected, these effects are more noticeable for polymers characterized by higher length molecular chains.

  19. Singular limits in thermodynamics of viscous fluids

    CERN Document Server

    Feireisl, Eduard

    2017-01-01

    This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorný (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapt...

  20. Diffusion on Viscous Fluids, Existence and Asymptotic Properties of Solutions,

    Science.gov (United States)

    1983-09-01

    Matematica - Politecuico di Milano (1982). 11.* P. Secchi "On the Initial Value ProbleM for the Nquations of Notion of Viscous Incompressible Fluids In...of two viscous Incompressible Fluids’, preprint DepartLmento dl matematica - Politecuico di Milano (1982). -15- 11. P. Secchi 00n the XnitiaI Value

  1. Ten themes of viscous liquid dynamics

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2007-01-01

    Ten ‘themes' of viscous liquid physics are discussed with a focus on how they point to a general description of equilibrium viscous liquid dynamics (i.e., fluctuations) at a given temperature. This description is based on standard time-dependent Ginzburg-Landau equations for the density fields...

  2. Rheology of granular flows immersed in a viscous fluid

    International Nuclear Information System (INIS)

    Amarsid, Lhassan

    2015-01-01

    We investigate the behavior of granular materials immersed in a viscous fluid by means of extensive simulations based on the Discrete Element Method for particle dynamics coupled with the Lattice Boltzmann method for the fluid. We show that, for a broad range of parameters such as shear rate, confining stress and viscosity, the internal friction coefficient and packing fraction are well described by a single 'visco-inertial' dimensionless parameter combining inertial and Stokes numbers. The frictional behavior under constant confining pressure is mapped into a viscous behavior under volume-controlled conditions, leading to the divergence of the effective normal and shear viscosities in inverse square of the distance to the critical packing fraction. The results are in excellent agreement with the experimental data of Boyer et al. (2011). The evolution of the force network in terms of connectivity and anisotropy as a function of the visco-inertial number, indicates that the increase of frictional strength is a direct consequence of structural anisotropy enhanced by both fluid viscosity and grain inertia. In view of application to a potential nuclear accident, we also study the fragmentation and flow of confined porous aggregates in a fluid under the action of local overpressures and pressure gradients as well as gravity-driven flow of immersed particles in an hourglass. (author)

  3. Special Fluid Viscous Dampers For The Messina Strait Bridge

    International Nuclear Information System (INIS)

    Colato, Gian Paolo; Infanti, Samuele; Castellano, Maria Gabriella

    2008-01-01

    The Messina Strait Bridge would be the world's longest suspension bridge, with a design earthquake characterised by a PGA value of 0.58 g and a distance between the ipocenter and the bridge of 15 km. Said critical structure of course would need a suitable restraint system for traffic braking loads, wind and seismic actions. Each type of load requires a specific behaviour of the restraint system, making its design a big challenge.The restraint system comprises special types of fluid viscous dampers, installed both in longitudinal and transverse direction, both at the towers and at the anchorages. In seismic conditions they behave as viscous dampers, to reduce the forces on the structural elements and the movements of the bridge deck. But in service dynamic conditions, e.g. under traffic or wind load, the devices shall behave like shock transmission units, thus preventing the longitudinal and transverse movements of the deck.FIP Industriale cooperated with the selected General Contractor, a consortium lead by Impregilo, in the design of said viscous dampers. This paper describes the main features of said devices

  4. Handbook of mathematical analysis in mechanics of viscous fluids

    CERN Document Server

    Novotný, Antonín

    2018-01-01

    Mathematics has always played a key role for researches in fluid mechanics. The purpose of this handbook is to give an overview of items that are key to handling problems in fluid mechanics. Since the field of fluid mechanics is huge, it is almost impossible to cover many topics. In this handbook, we focus on mathematical analysis on viscous Newtonian fluid. The first part is devoted to mathematical analysis on incompressible fluids while part 2 is devoted to compressible fluids.

  5. A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes

    Science.gov (United States)

    Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.

    1988-01-01

    A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.

  6. Hydrodynamic response of viscous fluids under seismic excitation

    International Nuclear Information System (INIS)

    Ma, D.C.

    1993-01-01

    Hydrodynamic response of liquid-tank systems, such as reactor vessels, spent-fuel pools and liquid storage tanks have been studied extensively in the last decade (Chang et al. 1988; Ma et al. 1991). However, most of the studies are conducted with the assumption of an inviscid fluid. In recent years, the hydrodynamic response of viscous fluids has received increasing attention in high level waste storage tanks containing viscous waste material. This paper presents a numerical study on the hydrodynamic response of viscous fluids in a large 2-D fluid-tank system under seismic excitation. Hydrodynamic responses (i.e. sloshing wave height, fluid pressures, shear stress, etc.) are calculated for a fluid with various viscosities. Four fluid viscosities are considered. They are 1 cp, 120 cp, 1,000 cp and 12,000 cp (1 cp = 1.45 x 10 -7 lb-sec/in 2 ). Note that the liquid sodium of the Liquid-Metal Reactor (LMR) reactor has a viscosity of 1.38 x 10 -5 lb-sec/in 2 (about 95 cp) at an operational temperature of 900 degree F. Section 2 describes the pertinent features of the mathematical model. In Section 3, the fundamental sloshing phenomena of viscous fluid are examined. Sloshing wave height and shear stress for fluid with different viscosities are compared. The conclusions are given in Section 4

  7. Mathematical Theory of Compressible Viscous, and Heat Conducting Fluids

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard

    2007-01-01

    Roč. 33, č. 4 (2007), s. 461-490 ISSN 0898-1221 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : compressible fluid * viscous fluid * entropy Subject RIV: BA - General Mathematics Impact factor: 0.720, year: 2007

  8. Non self-propelled swimmer in a confined viscous fluid

    Science.gov (United States)

    Choudhary, Priyanka; Mandal, Subhayan

    2018-05-01

    As we know that in a low Reynolds number regime, the swimming strategies that are used in high Reynolds number swimming are inefficient because of the dominating viscous forces. Therefore, micro-swimmers have developed different moving strategies that have fruitfully overcome and have exploited drag. Hydrodynamic interactions due to the objects in the vicinity are also one of the ingredients that can make a micro-swimmer motile. To show the importance of such kind of hydrodynamic interactions, here we investigate a 2-D scallop near no-slip boundaries in a viscous fluid using bead spring model together with multi-particle collision dynamics. Here, we show that if we place a scallop near a wall, it gets rotated and the direction of rotation depends upon the orientation of the scallop as expected. Instead of one wall, if we place the scallop between two closely spaced walls, initially it rotates and then slowly starts moving in backward direction due to the hydrodynamic interaction with the walls. Then we show that how the speed of the scallop is affected as we change the width of the channel. Our results can endue important guidance in the construction of robotic micro-swimmers.

  9. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  10. Microjet Generator for Highly Viscous Fluids

    Science.gov (United States)

    Onuki, Hajime; Oi, Yuto; Tagawa, Yoshiyuki

    2018-01-01

    This paper describes a simple system for generating a highly viscous microjet. The jet is produced inside a wettable thin tube partially submerged in a liquid. The gas-liquid interface inside the tube, which is initially concave, is kept much deeper than that outside the tube. An impulsive force applied at the bottom of a liquid container leads to significant acceleration of the liquid inside the tube followed by flow focusing due to the concave interface. The jet generation process can be divided into two parts that occur in different time scales, i.e., the impact interval [impact duration ≤O (10-4) s ] and the focusing interval [focusing duration ≫O (10-4) s ]. During the impact interval, the liquid accelerates suddenly due to the impact. During the focusing interval, the microjet emerges due to flow focusing. In order to explain the sudden acceleration inside the tube during the impact interval, we develop a physical model based on a pressure impulse approach. Numerical simulations confirm the proposed model, indicating that the basic mechanism of the acceleration of the liquid due to the impulsive force is elucidated. Remarkably, the viscous effect is negligible during the impact interval. In contrast, during the focusing interval, the viscosity plays an important role in the microjet generation. We experimentally and numerically investigate the velocity of microjets with various viscosities. We find that higher viscosities lead to reduction of the jet velocity, which can be described by using the Reynolds number (the ratio between the inertia force and the viscous force). This device may be a starting point for next-generation technologies, such as high-viscosity inkjet printers including bioprinters and needle-free injection devices for minimally invasive medical treatments.

  11. The viscous dynamics of a rotating plasma

    International Nuclear Information System (INIS)

    James, B.W.; Simpson, S.W.

    1978-01-01

    The rotational velocity of a high-density, partially-ionized neon plasma has been calculated as a function of time using a dynamical model in which J x B and viscous forces act on the plasma. The calculation of appropriate transport coefficients is discussed in detail. The model is used to predict measured voltages in a plasma centrifuge experiment. Observations of neon isotope separation in this experiment have been reported in a previous paper (James and Simpson 1976). (author)

  12. Effective description of dark matter as a viscous fluid

    CERN Document Server

    Floerchinger, S.; Tetradis, N.; Wiedemann, U.A.

    2016-10-28

    Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.

  13. A Thermodynamically Consistent Approach to Phase-Separating Viscous Fluids

    Science.gov (United States)

    Anders, Denis; Weinberg, Kerstin

    2018-04-01

    The de-mixing properties of heterogeneous viscous fluids are determined by an interplay of diffusion, surface tension and a superposed velocity field. In this contribution a variational model of the decomposition, based on the Navier-Stokes equations for incompressible laminar flow and the extended Korteweg-Cahn-Hilliard equations, is formulated. An exemplary numerical simulation using C1-continuous finite elements demonstrates the capability of this model to compute phase decomposition and coarsening of the moving fluid.

  14. Effective description of dark matter as a viscous fluid

    International Nuclear Information System (INIS)

    Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2016-01-01

    Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory

  15. Viscous coupled fluids in inflationary cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Brevik, I., E-mail: iver.h.brevik@ntnu.no [Norwegian University of Science and Technology (Norway); Timoshkin, A. V., E-mail: timoshkinAV@tspu.edu.ru [Tomsk State Pedagogical University (Russian Federation)

    2016-04-15

    We consider the inflation produced by two coupled fluids in a flat Friedmann–Robertson–Walker universe. Different cosmological models for describing inflation with the use of an inhomogeneous equation of state for the fluid are investigated. The gravitational equations for energy and matter are solved, and analytic representations for the Hubble parameter and the energy density are obtained. Corrections to the energy density for matter inducing the inflation and the coupling to energy are discussed. We analyze the description of inflation induced by nonconstant equation-of-state parameters from fluid viscosity. The correspondence between the spectral index and the tensor-to-scalar ratio recently observed by the Planck satellite is considered.

  16. Instabilities in a Relativistic Viscous Fluid

    Science.gov (United States)

    Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.

    1990-11-01

    RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY

  17. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  18. Spatiotemporal resonances in mixing of open viscous fluids

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Tabeling, Patrick

    2004-01-01

    In this Letter, we reveal a new dynamical phenomenon, called "spatiotemporal resonance," which is expected to take place in a broad range of viscous, periodically forced, open systems. The observation originates from a numerical and theoretical analysis of a micromixer, and is supported...

  19. Spectral analysis of viscous static compressible fluid equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    2001-05-25

    It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)

  20. Steady fall of a rigid body in viscous fluid

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka

    2005-01-01

    Roč. 63, Sp. Is. (2005), s. 2113-2119 ISSN 0362-546X. [Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004). Orlando , 30.7.2004-7.8.2004] R&D Projects: GA ČR(CZ) GA201/02/0684 Institutional research plan: CEZ:AV0Z1019905 Keywords : steady fall * rigid body * viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.519, year: 2005

  1. Mathematical theory of viscous fluids: retrospective and future perspectives

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard

    2010-01-01

    Roč. 27, č. 2 (2010), s. 533-555 ISSN 1078-0947 R&D Projects: GA ČR GA201/08/0315 Institutional research plan: CEZ:AV0Z10190503 Keywords : viscous fluid * Navier-Stokes-Fourier system * global-intime solutions Subject RIV: BA - General Mathematics Impact factor: 0.986, year: 2010 http://www.aimsciences.org/journals/displayArticles.jsp?paperID=4942

  2. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  3. Slow Waves in Fractures Filled with Viscous Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri

    2008-01-08

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  4. Performance of a viscous damper using electro-rheological fluid

    International Nuclear Information System (INIS)

    Otani, A.; Kobayashi, H.; Kobayashi, N.; Tadaishi, Y.

    1994-01-01

    A new damper has been developed that suppresses small-amplitude vibrations over a wide frequency range. The damper has been tested using both an electro-rheological fluid (ERF) and a highly viscous liquid, which are enclosed in the damper's casing (a metal bellows). The apparent viscosity of the ERF can be changed by varying the strength of the applied electrical field. Initially, a simple L-shaped piping model excited by a rotary-type exciter was used to investigate the performance of the damper, utilizing both fluids. The experimental results demonstrate the effectiveness of the passive damper. Based on the experimental results, application of the damper to an actual piping system with a big pump was carried out analytical

  5. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    Science.gov (United States)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  6. Essentials of fluid dynamics with applications to hydraulics, aeronautics, meteorology and other subjets

    CERN Document Server

    Prandtl, Ludwig

    1953-01-01

    Equilibrium of liquids and gases ; kinematics : dynamics of frictionless fluids ; motion of viscous fluids : turbulence : fluid resistance : practical applications ; flow with appreciable volume changes (dynamics of gases) ; miscellaneous topics.

  7. Modern fluid dynamics

    CERN Document Server

    Kleinstreuer, Clement

    2018-01-01

    Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.

  8. How to dip nectar: optimal time apportionment in natural viscous fluid transport

    Science.gov (United States)

    Wu, Jianing; Shi, Guanya; Zhao, Yiwei; Yan, Shaoze

    2018-06-01

    The mouthparts of some animals are highly evolved fluid transporters. Most honeybees dip viscous nectar in a cyclic fashion by using protrusible tongues with active hairs that can erect rhythmically. The glossal hairs flatten when the tongue extends into the nectar, and then erect outwards like an umbrella to catch nectar while retracting. This paper examines the potential capability of honeybees in allocating the duration of the tongue protraction and retraction phases for the sake of energy saving. A physical model is established to analyze energy consumption induced by viscous drag, considering tongue kinematics and variation of the surface profile in different phases of tongue movements. The results indicate that the theoretically optimal time apportionment ratio at which the energy consumption is the minimum, is directly related to the square root of the tongue’s diameter ratio between the protraction and retraction phase. Through dipping observations, we validate that the duration for the protraction and retraction phases show high accordance with the theoretical prediction. These findings not only broaden the insights into honeybee’s foraging strategy but inspire the design of high-performance microfluidic pumps with dynamic surfaces to transport viscous fluid.

  9. A dynamic counterpart of Lamb vector in viscous compressible aerodynamics

    International Nuclear Information System (INIS)

    Liu, L Q; Wu, J Z; Shi, Y P; Zhu, J Y

    2014-01-01

    The Lamb vector is known to play a key role in incompressible fluid dynamics and vortex dynamics. In particular, in low-speed steady aerodynamics it is solely responsible for the total force acting on a moving body, known as the vortex force, with the classic two-dimensional (exact) Kutta–Joukowski theorem and three-dimensional (linearized) lifting-line theory as the most famous special applications. In this paper we identify an innovative dynamic counterpart of the Lamb vector in viscous compressible aerodynamics, which we call the compressible Lamb vector. Mathematically, we present a theorem on the dynamic far-field decay law of the vorticity and dilatation fields, and thereby prove that the generalized Lamb vector enjoys exactly the same integral properties as the Lamb vector does in incompressible flow, and hence the vortex-force theory can be generalized to compressible flow with exactly the same general formulation. Moreover, for steady flow of polytropic gas, we show that physically the force exerted on a moving body by the gas consists of a transverse force produced by the original Lamb vector and a new longitudinal force that reflects the effects of compression and irreversible thermodynamics. (paper)

  10. Bianchi I cosmology in the presence of a causally regularized viscous fluid

    Energy Technology Data Exchange (ETDEWEB)

    Montani, Giovanni [ENEA, FSN-FUSPHY-TSM, R.C. Frascati, Frascati (Italy); Universita degli Studi di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); Venanzi, Marta [Universita degli Studi di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); University of Southampton, Department of Physics and Astronomy, Southampton (United Kingdom)

    2017-07-15

    We analyze the dynamics of a Bianchi I cosmology in the presence of a viscous fluid, causally regularized according to the Lichnerowicz approach. We show how the effect induced by shear viscosity is still able to produce a matter creation phenomenon, meaning that also in the regularized theory we address, the Universe is emerging from a singularity with a vanishing energy density value. We discuss the structure of the singularity in the isotropic limit, when bulk viscosity is the only retained contribution. We see that, as far as viscosity is not a dominant effect, the dynamics of the isotropic Universe possesses the usual non-viscous power-law behaviour but in correspondence to an effective equation of state, depending on the bulk viscosity coefficient. Finally, we show that, in the limit of a strong non-thermodynamical equilibrium of the Universe mimicked by a dominant contribution of the effective viscous pressure, a power-law inflation behaviour of the Universe appears, the cosmological horizons are removed and a significant amount of entropy is produced. (orig.)

  11. Evolutionary pulsational mode dynamics in nonthermal turbulent viscous astrofluids

    Science.gov (United States)

    Karmakar, Pralay Kumar; Dutta, Pranamika

    2017-11-01

    The pulsational mode of gravitational collapse in a partially ionized self-gravitating inhomogeneous viscous nonthermal nonextensive astrofluid in the presence of turbulence pressure is illustratively analyzed. The constitutive thermal species, lighter electrons and ions, are thermostatistically treated with the nonthermal κ-distribution laws. The inertial species, such as identical heavier neutral and charged dust microspheres, are modelled in the turbulent fluid framework. All the possible linear processes responsible for dust-dust collisions are accounted. The Larson logatropic equations of state relating the dust thermal (linear) and turbulence (nonlinear) pressures with dust densities are included. A regular linear normal perturbation analysis (local) over the complex astrocloud ensues in a generalized quartic dispersion relation with unique nature of plasma-dependent multi-parametric coefficients. A numerical standpoint is provided to showcase the basic mode features in a judicious astronomical paradigm. It is shown that both the kinematic viscosity of the dust fluids and nonthermality parameter (kappa, the power-law tail index) of the thermal species act as stabilizing (damping) agent against the gravity; and so forth. The underlying evolutionary microphysics is explored. The significance of redistributing astrofluid material via waveinduced accretion in dynamic nonhomologic structureless cloud collapse leading to hierarchical astrostructure formation is actualized.

  12. Analytical solution for pulsatile viscous flow in a straight elliptic annulus and application to the motion of the cerebrospinal fluid

    Science.gov (United States)

    Gupta, Sumeet; Poulikakos, Dimos; Kurtcuoglu, Vartan

    2008-09-01

    We present here the analytical solution of transient, laminar, viscous flow of an incompressible, Newtonian fluid driven by a harmonically oscillating pressure gradient in a straight elliptic annulus. The analytical formulation is based on the exact solution of the governing fluid flow equations known as Navier-Stokes equations. We validate the analytical solution using a finite-volume computational fluid dynamics approach. As the analytical solution includes Mathieu and modified Mathieu functions, we also present a stepwise procedure for their evaluation for large complex arguments typically associated with viscous flows. We further outline the procedure for evaluating the associated Fourier coefficients and their eigenvalues. We finally apply the analytical solution to investigate the cerebrospinal fluid flow in the human spinal cavity, which features a shape similar to an elliptic annulus.

  13. Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Myeong, Hyeon Guk

    1999-06-01

    This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.

  14. Rotational friction coefficient of a permeable cylinder in a viscous fluid

    NARCIS (Netherlands)

    Wiegel, F.W.

    1979-01-01

    An exact expression is derived for the rotational friction coefficient of a cylinder of infinite length and constant permeability immersed in an incompressible viscous fluid. An asymptotic expression for the translational friction coefficient of a permeable cylinder moving in a sheet of viscous

  15. Dynamics of amorphous solids and viscous liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    -square displacement as function of time. The 15 publications are related to each other in the following way. P1-P7 is a continuously progressing attempt to explain the AC properties of extremely disordered solids (with P2 as a digression). P8 discusses a simple model for viscous liquids and the glass transition. In P...... with the title "Viscous Liquids and the Glass Transition" reviews and comments P8-P10. In P8 from 1987 a simple model for the glass transition is proposed in which there is only one relevant degree of freedom, the potential energy of a region in the liquid. The model was originally constructed to explain the non......This thesis consists of fifteen publications (P1-P15) published between 1987 and 1996 and a summary. In this abstract an overview of the main results is given by following the summary's three Chapters. The first Chapter with the title "AC Conduction in Disordered Solids" reviews and comments P1-P7...

  16. Violations of conservation laws in viscous liquid dynamics

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2007-01-01

    The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover,......, although particle number conservation applies strictly for any liquid, the solidity of viscous liquids implies that even this conservation law is apparently violated in coarse-grained descriptions of density fluctuations.......The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover...

  17. Study of the motion of a vertically falling sphere in a viscous fluid

    International Nuclear Information System (INIS)

    Soares, A A; Caramelo, L; Andrade, M A P M

    2012-01-01

    This paper aims at contributing to a better understanding of the motion of spherical particles in viscous fluids. The classical problem of spheres falling through viscous fluids for small Reynolds numbers was solved taking into account the effects of added mass. The analytical solution for the motion of a falling sphere, from the beginning to the end of the fall, was combined with an iterative numerical method to determine the fluid viscosity coefficient, diameter of the sphere and terminal velocity. The proposed solution was validated with experimental literature data. The study presented may also help understanding the fluid-particle interactions from both theoretical and educational standpoints. (paper)

  18. Linear and nonlinear viscous flow in two-dimensional fluids

    International Nuclear Information System (INIS)

    Gravina, D.; Ciccotti, G.; Holian, B.L.

    1995-01-01

    We report on molecular dynamics simulations of shear viscosity η of a dense two-dimensional fluid as a function of the shear rate γ. We find an analytic dependence of η on γ, and do not find any evidence whatsoever of divergence in the Green-Kubo (GK) value that would be caused by the well-known long-time tail for the shear-stress autocorrelation function, as predicted by the mode-coupling theory. In accordance with the linear response theory, the GK value of η agrees remarkably well with nonequilibrium values at small shear rates. (c) 1995 The American Physical Society

  19. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  20. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K

    1998-01-01

    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  1. Gravitational collision efficiency of nonspherical aerosols II: motion of an oblate spheroid in a viscous fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, R.F.; Loyalka, S.K.

    1985-06-01

    The collisional dynamics of nonspherical aerosols is modeled by the introduction of a shape factor, US . Mechanistic calculation of US requires knowledge of the flow fields around the aerosols. Since actual aerosols can be complicated in shape and since the computation of flow fields can be quite difficult, insights into the nature of US are gained by using the superposition technique and studying aerosols that have tractable flow fields. The motion of an oblate spheroid in a viscous fluid is considered. The Navier-Stokes equations and associated boundary conditions are represented in oblate spheroidal coordinates. A combination of finite differences and spline-interpolation techniques is used to transform these equations to a form suitable for numerical computations. Converged results for the flow fields are obtained for a 0 to 5 range of Reynolds numbers. In the limit of zero Reynolds number, the results are found to be in agreement with the analytical solutions of Oberbeck.

  2. Combined Effect of Pressure and Temperature on the Viscous Behaviour of All-Oil Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Hermoso J.

    2014-12-01

    Full Text Available The overall objective of this research was to study the combined influence of pressure and temperature on the complex viscous behaviour of two oil-based drilling fluids. The oil-based fluids were formulated by dispersing selected organobentonites in mineral oil, using a high-shear mixer, at room temperature. Drilling fluid viscous flow characterization was performed with a controlled-stress rheometer, using both conventional coaxial cylinder and non-conventional geometries for High Pressure/High Temperature (HPHT measurements. The rheological data obtained confirm that a helical ribbon geometry is a very useful tool to characterise the complex viscous flow behaviour of these fluids under extreme conditions. The different viscous flow behaviours encountered for both all-oil drilling fluids, as a function of temperature, are related to changes in polymer-oil pair solvency and oil viscosity. Hence, the resulting structures have been principally attributed to changes in the effective volume fraction of disperse phase due to thermally induced processes. Bingham’s and Herschel-Bulkley’s models describe the rheological properties of these drilling fluids, at different pressures and temperatures, fairly well. It was found that Herschel-Bulkley’s model fits much better B34-based oil drilling fluid viscous flow behaviour under HPHT conditions. Yield stress values increase linearly with pressure in the range of temperature studied. The pressure influence on yielding behaviour has been associated with the compression effect of different resulting organoclay microstructures. A factorial WLF-Barus model fitted the combined effect of temperature and pressure on the plastic viscosity of both drilling fluids fairly well, being this effect mainly influenced by the piezo-viscous properties of the continuous phase.

  3. On the dynamics of viscous masonry beams

    Czech Academy of Sciences Publication Activity Database

    Lucchesi, M.; Pintucchi, B.; Šilhavý, Miroslav; Zani, N.

    2015-01-01

    Roč. 27, č. 3 (2015), s. 349-365 ISSN 0935-1175 R&D Projects: GA ČR GA201/09/0473 Institutional support: RVO:67985840 Keywords : non-linear dynamics * no-tension material * masonry slender towers and arches * coupling phenomena * Galerkin method Subject RIV: BA - General Mathematics Impact factor: 1.849, year: 2015 http://link.springer.com/article/10.1007%2Fs00161-014-0352-y

  4. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  5. Three-dimensional problems of the hydrodynamic interaction between bodies in a viscous fluid in the vicinity of their contact

    Czech Academy of Sciences Publication Activity Database

    Petrov, A. G.; Kharlamov, Alexander A.

    2013-01-01

    Roč. 48, č. 5 (2013), s. 577-587 ISSN 0015-4628 R&D Projects: GA ČR(CZ) GA103/09/2066 Grant - others:Development of the Scientific Potential of the Higher Schoo(RU) 2.1.2/3604; Russian Foundation for Basic Research (RU) 11- 01-005355 Institutional support: RVO:67985874 Keywords : lubrication layer theory * viscous and inviscid fluids * thin layer * vicinity of a contact * three-dimensional problems Subject RIV: BK - Fluid Dynamics Impact factor: 0.320, year: 2013

  6. Balance equations for a viscous fluid from a Hamilton type variational principle

    International Nuclear Information System (INIS)

    Fierros Palacios, A.

    1992-01-01

    The partial differential field equations for any viscous fluid are obtained from the Lagrangian formalism as in classical field theory. An action functional is introduced as a space-time integral over a region of three-dimensional Euclidean space, of a Lagrangian density function of certain field variables. A Hamilton type extremum action principle is postulated with adequate boundary conditions, and a set of differential field equations is derived. With an appropriate Lagrangian density of the T-V type, the equation of motion for any viscous fluid is reproduced. A theorem referring to the invariance of the action under time variations lead to the generalized energy balance equation for the viscous fluid and to the energy balance equation proper. The same theoretical approach can be used to solve the problem of potential flow. (Author)

  7. Dynamics of charged viscous dissipative cylindrical collapse with full causal approach

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.M.; Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-11-15

    The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical source by using the Misner approach. To this end, we have considered the more general charged dissipative fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from such charged cylindrical dissipative source have been coupled with the causal transport equations for heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat coupling coefficients. The results are compared with the previous works in which such coefficients were excluded and viscosity variables do not satisfy the casual transportation equations. (orig.)

  8. Bulk viscous Zel'dovich fluid model and its asymptotic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Nair, K.R.; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2016-10-15

    In this paper we consider a flat FLRW universe with bulk viscous Zel'dovich fluid as the cosmic component. Considering the bulk viscosity as characterized by a constant bulk viscous coefficient, we analyze the evolution of the Hubble parameter. Type Ia Supernovae data is used for constraining the model and for extracting the constant bulk viscous parameter and present the Hubble parameter. We also present the analysis of the scale factor, equation of state, and deceleration parameter. The model predicts the later time acceleration and is also compatible with the age of the universe as given by the oldest globular clusters. Study of the phase-space behavior of the model shows that a universe dominated by bulk viscous Zel'dovich fluid is stable. But the inclusion of a radiation component in addition to the Zel'dovich fluid makes the model unstable. Hence, even though the bulk viscous Zel'dovich fluid dominated universe is a feasible one, the model as such fails to predict a prior radiation dominated phase. (orig.)

  9. An adaptive meshfree method for phase-field models of biomembranes. Part II: A Lagrangian approach for membranes in viscous fluids

    OpenAIRE

    Peco, C.; Rosolen, A.; Arroyo, M.

    2013-01-01

    We present a Lagrangian phase-field method to study the low Reynolds number dynamics of vesicles embedded in a viscous fluid. In contrast to previous approaches, where the field variables are the phase-field and the fluid velocity, here we exploit the fact that the phasefield tracks a material interface to reformulate the problem in terms of the Lagrangian motion of a background medium, containing both the biomembrane and the fluid. We discretize the equations in space with maximum-entr...

  10. Unsteady Flow of Reactive Viscous, Heat Generating/Absorbing Fluid with Soret and Variable Thermal Conductivity

    Directory of Open Access Journals (Sweden)

    I. J. Uwanta

    2014-01-01

    Full Text Available This study investigates the unsteady natural convection and mass transfer flow of viscous reactive, heat generating/absorbing fluid in a vertical channel formed by two infinite parallel porous plates having temperature dependent thermal conductivity. The motion of the fluid is induced due to natural convection caused by the reactive property as well as the heat generating/absorbing nature of the fluid. The solutions for unsteady state temperature, concentration, and velocity fields are obtained using semi-implicit finite difference schemes. Perturbation techniques are used to get steady state expressions of velocity, concentration, temperature, skin friction, Nusselt number, and Sherwood number. The effects of various flow parameters such as suction/injection (γ, heat source/sinks (S, Soret number (Sr, variable thermal conductivity δ, Frank-Kamenetskii parameter λ, Prandtl number (Pr, and nondimensional time t on the dynamics are analyzed. The skin friction, heat transfer coefficients, and Sherwood number are graphically presented for a range of values of the said parameters.

  11. One-Dimensional Problem of a Conducting Viscous Fluid with One Relaxation Time

    Directory of Open Access Journals (Sweden)

    Angail A. Samaan

    2011-01-01

    Full Text Available We introduce a magnetohydrodynamic model of boundary-layer equations for conducting viscous fluids. This model is applied to study the effects of free convection currents with thermal relaxation time on the flow of a viscous conducting fluid. The method of the matrix exponential formulation for these equations is introduced. The resulting formulation together with the Laplace transform technique is applied to a variety problems. The effects of a plane distribution of heat sources on the whole and semispace are studied. Numerical results are given and illustrated graphically for the problem.

  12. Fluid Dynamics for Physicists

    Science.gov (United States)

    Faber, T. E.

    1995-08-01

    This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.

  13. Bulk viscous cosmological model with interacting dark fluids

    International Nuclear Information System (INIS)

    Kremer, Gilberto M.; Sobreiro, Octavio A.S.

    2012-01-01

    We study a cosmological model for a spatially flat Universe whose constituents are a dark energy field and a matter field comprising baryons and dark matter. The constituents are assumed to interact with each other, and a non-equilibrium pressure is introduced to account for irreversible processes. We take the nonequilibrium pressure to be proportional to the Hubble parameter within the framework of a first-order thermodynamic theory. The dark energy and matter fields are coupled by their barotropic indexes, which depend on the ratio between their energy densities. We adjust the free parameters of the model to optimize the fits to the Hubble parameter data. We compare the viscous model with the non-viscous one, and show that the irreversible processes cause the dark-energy and matter-density parameters to become equal and the decelerated-accelerated transition to occur at earlier times. Furthermore, the density and deceleration parameters and the distance modulus have the correct behavior, consistent with a viable scenario of the present status of the Universe . (author)

  14. The fluid dynamics of the chocolate fountain

    International Nuclear Information System (INIS)

    Townsend, Adam K; Wilson, Helen J

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work. (paper)

  15. The fluid dynamics of the chocolate fountain

    Science.gov (United States)

    Townsend, Adam K.; Wilson, Helen J.

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.

  16. Initial value problem for Rayleigh--Taylor instability of viscous fluids

    International Nuclear Information System (INIS)

    Menikoff, R.; Mjolsness, R.C.; Sharp, D.H.; Zemach, C.; Doyle, B.J.

    1978-01-01

    The initial value problem associated with the development of small amplitude disturbances in Rayleigh--Taylor unstable, viscous, incompressible fluids is studied. Solutions to the linearized equations of motion which satisfy general initial conditions are obtained in terms of Fourier--Laplace transforms of the hydrodynamic variables, without restriction on the density or viscosity of either fluid. When the two fluids have equal kinematic viscosities, these transforms can be inverted explicitly to express the fluid variables as integrals of Green's functions multiplied by initial data. In addition to normal modes, a set of continuum modes, not treated explicitly in the literature, makes an important contribution to the development of the fluid motion

  17. Viscous dipping, application to the capture of fluids in living organisms

    Science.gov (United States)

    Lechantre, Amandine; Michez, Denis; Damman, Pascal

    Some insects, birds and mammals use flower nectar as their energy resources. For this purpose, they developed specific skills to ingest viscous fluids. Depending on the sugar content, i.e., the viscosity, different strategies are observed in vivo. Indeed, butterflies use simple suction for low viscosity nectars; hummingbirds have a tongue made from two thin flexible sheets that bend to form a tube when immersed in a fluid; other animals exhibit in contrast complex papillary structures. We focus on this last method generally used for very viscous nectars. More specifically, bees and bats possess a tongue decorated with microstructures that, according to biologists, would be optimized for fluid capture by viscous dipping. In this talk, we will discuss this assumption by comparing physical models of viscous dipping to in vivo measurements. To mimic the tongue morphology, we used various rod shapes obtained by 3D printing. The influence of the type and size of lateral microstructures was then investigated and used to build a global framework describing viscous dipping for structured rods/tongues.

  18. The motion of a compressible viscous fluid around rotating body

    Czech Academy of Sciences Publication Activity Database

    Kračmar, S.; Nečasová, Šárka; Novotný, A.

    2014-01-01

    Roč. 60, č. 1 (2014), s. 189-208 ISSN 0430-3202 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : compressible fluids * rotating fluids * Navier-Stokes equations Subject RIV: BA - General Mathematics http://link.springer.com/article/10.1007%2Fs11565-014-0212-5

  19. Bounds on fluid permeability for viscous flow through porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1985-01-01

    General properties of variational bounds on Darcy's constant for slow viscous flow through porous media are studied. The bounds are also evaluated numerically for the penetrable sphere model. The bound of Doi depending on two-point correlations and the analytical bound of Weissberg and Prager give comparable results in the low density limit but the analytical bound is superior for higher densities. Prager's bound depending on three-point correlation functions is worse than the analytical bound at low densities but better (although comparable to it) at high densities. A procedure for methodically improving Prager's three point bound is presented. By introducing a Gaussian trial function, the three-point bound is improved by an order of magnitude for moderate values of porosity. The new bounds are comparable in magnitude to the Kozeny--Carman empirical relation for porous materials

  20. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    Science.gov (United States)

    Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.

    2018-02-01

    Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.

  1. Dynamics of flexible fibers transported in confined viscous flows

    Science.gov (United States)

    Cappello, Jean; Duprat, Camille; Du Roure, Olivia; Nagel, Mathias; Gallaire, François; Lindner, Anke

    2017-11-01

    The dynamics of elongated objects has been extensively studied in unbounded media as for example the sedimentation of fibers at low Reynolds numbers. It has recently been shown that these transport dynamics are strongly modified by bounding walls. Here we focus on the dynamics of flexible fibers confined by the top and bottom walls of a microchannel and transported in pressure-driven flows. We combine well-controlled microfluidic experiments and simulations using modified Brinkmann equations. We control shape, orientation, and mechanical properties of our fibers using micro-fabrication techniques and in-situ characterization methods. These elastic fibers can be deformed by viscous and pressure forces leading to very rich transport dynamics coupling lateral drift with shape evolution. We show that the bending of a perpendicular fiber is proportional to an elasto-viscous number and we fully characterize the influence of the confinement on the deformation of the fiber. Experiments on parallel flexible fibers reveal the existence of a buckling threshold. The European Research Council is acknowledged for funding the work through a consolidator Grant (ERC PaDyFlow 682367).

  2. MHD flow and heat transfer of a viscous reacting fluid over a ...

    African Journals Online (AJOL)

    This paper presents a boundary layer flow analysis for a viscous, incompressible, electrically conducting reacting fluid over a stretching sheet in the presence of a magnetic field. It is shown that the Hartmann, Prandtl and the Eckert numbers have effect on the velocity and temperature fields. Journal of the Nigerian ...

  3. On natural convection in enclosures filled with fluid-saturated porous media including viscous dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, V.A.F. [Departamento de Engenharia Mecanica, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2006-07-15

    Care needs to be taken when considering the viscous dissipation in the energy conservation formulation of the natural convection problem in fluid-saturated porous media. The unique energy formulation compatible with the First Law of Thermodynamics informs us that if the viscous dissipation term is taken into account, also the work of pressure forces term needs to be taken into account. In integral terms, the work of pressure forces must equal the energy dissipated by viscous effects, and the net energy generation in the overall domain must be zero. If only the (positive) viscous dissipation term is considered in the energy conservation equation, the domain behaves as a heat multiplier, with an heat output greater than the heat input. Only the energy formulation consistent with the First Law of Thermodynamics leads to the correct flow and temperature fields, as well as of the heat transfer parameters characterizing the involved porous device. Attention is given to the natural convection problem in a square enclosure filled with a fluid-saturated porous medium, using the Darcy Law to describe the fluid flow, but the main ideas and conclusions apply equally for any general natural or mixed convection heat transfer problem. It is also analyzed the validity of the Oberbeck-Boussinesq approximation when applied to natural convection problems in fluid-saturated porous media. (author)

  4. Improving total-building seismic performance using linear fluid viscous dampers

    OpenAIRE

    Del Gobbo, GM; Blakeborough, A; Williams, MS

    2018-01-01

    Previous research has revealed that Eurocode-compliant structures can experience structural and nonstructural damage during earthquakes. Retrofitting buildings with fluid viscous dampers (FVDs) can improve interstorey drifts and floor accelerations, two structural parameters that characterize seismic demand. Previous research focusing on FVD applications for improving seismic performance has focused on structural performance. Structural parameters such as interstorey drifts and floor accelera...

  5. Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint

    Science.gov (United States)

    Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob

    2018-02-01

    Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and

  6. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2017-01-01

    This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...

  7. Numerical solution of viscous and viscoelastic fluids flow through the branching channel by finite volume scheme

    Science.gov (United States)

    Keslerová, Radka; Trdlička, David

    2015-09-01

    This work deals with the numerical modelling of steady flows of incompressible viscous and viscoelastic fluids through the three dimensional channel with T-junction. The fundamental system of equations is the system of generalized Navier-Stokes equations for incompressible fluids. This system is based on the system of balance laws of mass and momentum for incompressible fluids. Two different mathematical models for the stress tensor are used for simulation of Newtonian and Oldroyd-B fluids flow. Numerical solution of the described models is based on cetral finite volume method using explicit Runge-Kutta time integration.

  8. Dynamics of viscous cosmologies in the full Israel-Stewart formalism

    Science.gov (United States)

    Lepe, Samuel; Otalora, Giovanni; Saavedra, Joel

    2017-07-01

    A detailed dynamical analysis for a bulk viscosity model in the full Israel-Stewart formalism for a spatially flat Friedmann-Robertson-Walker universe is performed. In our study we have considered the total cosmic fluid constituted by radiation, dark matter, and dark energy. The dark matter fluid is treated as an imperfect fluid which has a bulk viscosity that depends on its energy density in the usual form ξ (ρm)=ξ0ρm1 /2, whereas the other components are assumed to behave as perfect fluids with constant equation of state parameter. We show that the thermal history of the Universe is reproduced provided that the viscous coefficient satisfies the condition ξ0≪1 , either for a zero or a suitable nonzero coupling between dark energy and viscous dark matter. In this case, the final attractor is a dark-energy-dominated, accelerating universe, with an effective equation of state parameter in the quintessence-like, cosmological constant-like, or phantom-like regime, in agreement with observations. As our main result, we show that in order to obtain a viable cosmological evolution and at the same time alleviating the cosmological coincidence problem via the mechanism of scaling solution, an explicit interaction between dark energy and viscous dark matter seems inevitable. This result is consistent with the well-known fact that models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. Furthermore, by insisting on above, we show that in the present context a phantom nature of this interacting dark energy fluid is also favored.

  9. Viscous-Fluid-Spring Damper Retrofit of a Steel Moment Frame Structure

    International Nuclear Information System (INIS)

    Hussain, Saif; Van Benschoten, Paul; Al Satari, Mohamed; Lin, Silian

    2008-01-01

    The subject building is a peculiar pre-Northridge steel moment resisting frame building. Upon investigating the existing lateral resisting system, numerous significant deficiencies were identified; inherent lack of redundancy, poor geometry and inadequate stiffness of the lateral resisting system. All of which resulted in an extremely soft 5-story structure with a primary torsional mode of vibration at T 1 = 5.46 s. Significant structural modifications were deemed necessary to meet the ''life-safety'' performance objective as outlined in rehabilitation standards such as ASCE 41. Both increased stiffness and damping were required to adequately retrofit the building. Furthermore, adjacent building separation as well as deformation compatibility issues needed to be addressed and resolved. A three-dimensional computer model of the building was created using ETABS mathematically simulating the building's dynamic characteristics in its current condition. Multiple seismic retrofit systems were investigated such as Buckling Restrained Braced Frames (BRBF's). However, based on the performance effectiveness and constructability of the retrofit schemes studied, the Viscous-Fluid-Spring Damper (VFSD) system was proposed as the ''optimum'' solution for the building. The VFSD, was chosen because it combines the relatively compact size and minimally invasive constructability with the required properties (an elastomeric spring in parallel with a nonlinear velocity dependent viscous damper). A site-specific response spectrum was developed for the Design Basis Earthquake (DBE, 475 year return period) event, and three pairs of representative earthquake horizontal ground motion time-histories were scaled to match this DBE. The proposed scheme reduced the building maximum inter-story drift ratio from 5.4% to about 1%. Similarly, the maximum roof displacement was reduced by about 70% (23'' to 7'')

  10. Mixed convective flow of immiscible viscous fluids confined between ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology ... finite difference methods to analyze the problem of natural convection boundary layer flow along a complex vertical surface ... analyzed the flow of two immiscible fluids in a parallel plate channel ... wavy and flat walls are maintained at constant temperatures w.

  11. Linear study of Kelvin-Helmholtz instability for a viscous compressible fluid

    International Nuclear Information System (INIS)

    Hallo, L.; Gauthier, S.

    1992-01-01

    The linear phase of the process leading to a developed turbulence is particularly important for the study of flow stability. A Galerkin spectral method adapted to the study of the mixture layer of one fluid is proposed from a sheared initial velocity profile. An algebraic mapping is developed to improve accuracy near high gradient zone. Validation is obtained by analytic methods for non-viscous flow and multi-domain spectral methods for viscous and compressible flow. Rates of growth are presented for subsonic and slightly supersonic flow. An extension of the method is presented for the study of the linear stability of a mixture with variable concentration and transport properties

  12. Self-propelled motion in a viscous compressible fluid

    Czech Academy of Sciences Publication Activity Database

    Mácha, Václav; Nečasová, Šárka

    2016-01-01

    Roč. 146, č. 2 (2016), s. 415-433 ISSN 0308-2105 R&D Projects: GA ČR(CZ) GAP201/11/1304; GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : self-propelled motion * compressible fluid * deformable structure Subject RIV: BA - General Mathematics Impact factor: 1.158, year: 2016 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10065194&fileId=S0308210515000487

  13. Numerical Study on Mass Transfer of a Vapor Bubble Rising in Very High Viscous Fluid

    Directory of Open Access Journals (Sweden)

    T. Kunugi

    2014-09-01

    Full Text Available This study focused on a bubble rising behavior in a molten glass because it is important to improve the efficiency of removal of bubbles from the molten glass. On the other hand, it is expected that some gas species which exists in a bubble are transferred into the molten glass through the bubble interface, i.e., the mass transfer, subsequently, it may cause a bubble contraction in the molten glass. In this paper, in order to understand the bubble rising behavior with its contraction caused by the mass transfer through the bubble interface in the very high viscous fluid such as the molten glass, a bubble contraction model has been developed. The direct numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver coupled with the mass transfer equation and the bubble contraction model regarding the mass transfer from the rising bubble in very high viscous fluid have been performed. Here, the working fluids were water vapor as the gas species and the molten glass as the very high viscous fluid. Also, the jump conditions at the bubble interface for the mass transfer were examined. Furthermore, the influence of the bubble contraction for the bubble rising compared to that in the water as a normal viscous fluid was investigated. From the result of the numerical simulations, it was found that the bubble rising behavior was strongly affected not only by the viscosity of the working fluid but also by the bubble contraction due to the mass transfer through the bubble interface.

  14. CONSIDERATIONS ON FLUID DYNAMICS INSIDE A HYDRAULIC SEISMIC ENERGY ABSORBER

    Directory of Open Access Journals (Sweden)

    ȘCHEAUA Fănel

    2013-06-01

    Full Text Available This study presents a method for obtaining a simplified model of a seismic energy dissipation device whose operating principle is based on viscous fluid as a solution for structural isolation against seismic actions. The device operation is based on the resistance force developed by the working fluid when the piston tends to move due to occurrence of a seismic motion. A 3D model achieved is introduced in CFD analysis for emphasize dynamic fluid flow inside the device dissipation cylinder.

  15. Modeling of Dynamic Fluid Forces in Fast Switching Valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen

    2015-01-01

    Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...

  16. Computational modelling of the flow of viscous fluids in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Khosravian, N [Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Rafii-Tabar, H [Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2007-11-21

    Carbon nanotubes will have extensive application in all areas of nano-technology, and in particular in the field of nano-fluidics, wherein they can be used for molecular separation, nano-scale filtering and as nano-pipes for conveying fluids. In the field of nano-medicine, nanotubes can be functionalized with various types of receptors to act as bio-sensors for the detection and elimination of cancer cells, or be used as bypasses and even neural connections. Modelling fluid flow inside nanotubes is a very challenging problem, since there is a complex interplay between the motion of the fluid and the stability of the walls. A critical issue in the design of nano-fluidic devices is the induced vibration of the walls, due to the fluid flow, which can promote structural instability. It has been established that the resonant frequencies depend on the flow velocity. We have studied, for the first time, the flow of viscous fluids through multi-walled carbon nanotubes, using the Euler-Bernoulli classical beam theory to model the nanotube as a continuum structure. Our aim has been to compute the effect of the fluid flow on the structural stability of the nanotubes, without having to consider the details of the fluid-walls interaction. The variations of the resonant frequencies with the flow velocity are obtained for both unembedded nanotubes, and when they are embedded in an elastic medium. It is found that a nanotube conveying a viscous fluid is more stable against vibration-induced buckling than a nanotube conveying a non-viscous fluid, and that the aspect ratio plays the same role in both cases.

  17. Computational modelling of the flow of viscous fluids in carbon nanotubes

    International Nuclear Information System (INIS)

    Khosravian, N; Rafii-Tabar, H

    2007-01-01

    Carbon nanotubes will have extensive application in all areas of nano-technology, and in particular in the field of nano-fluidics, wherein they can be used for molecular separation, nano-scale filtering and as nano-pipes for conveying fluids. In the field of nano-medicine, nanotubes can be functionalized with various types of receptors to act as bio-sensors for the detection and elimination of cancer cells, or be used as bypasses and even neural connections. Modelling fluid flow inside nanotubes is a very challenging problem, since there is a complex interplay between the motion of the fluid and the stability of the walls. A critical issue in the design of nano-fluidic devices is the induced vibration of the walls, due to the fluid flow, which can promote structural instability. It has been established that the resonant frequencies depend on the flow velocity. We have studied, for the first time, the flow of viscous fluids through multi-walled carbon nanotubes, using the Euler-Bernoulli classical beam theory to model the nanotube as a continuum structure. Our aim has been to compute the effect of the fluid flow on the structural stability of the nanotubes, without having to consider the details of the fluid-walls interaction. The variations of the resonant frequencies with the flow velocity are obtained for both unembedded nanotubes, and when they are embedded in an elastic medium. It is found that a nanotube conveying a viscous fluid is more stable against vibration-induced buckling than a nanotube conveying a non-viscous fluid, and that the aspect ratio plays the same role in both cases

  18. A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows

    Science.gov (United States)

    Veerapaneni, Shravan K.; Gueyffier, Denis; Biros, George; Zorin, Denis

    2009-10-01

    We extend [Shravan K. Veerapaneni, Denis Gueyffier, Denis Zorin, George Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, Journal of Computational Physics 228(7) (2009) 2334-2353] to the case of three-dimensional axisymmetric vesicles of spherical or toroidal topology immersed in viscous flows. Although the main components of the algorithm are similar in spirit to the 2D case—spectral approximation in space, semi-implicit time-stepping scheme—the main differences are that the bending and viscous force require new analysis, the linearization for the semi-implicit schemes must be rederived, a fully implicit scheme must be used for the toroidal topology to eliminate a CFL-type restriction and a novel numerical scheme for the evaluation of the 3D Stokes single layer potential on an axisymmetric surface is necessary to speed up the calculations. By introducing these novel components, we obtain a time-scheme that experimentally is unconditionally stable, has low cost per time step, and is third-order accurate in time. We present numerical results to analyze the cost and convergence rates of the scheme. To verify the solver, we compare it to a constrained variational approach to compute equilibrium shapes that does not involve interactions with a viscous fluid. To illustrate the applicability of method, we consider a few vesicle-flow interaction problems: the sedimentation of a vesicle, interactions of one and three vesicles with a background Poiseuille flow.

  19. Three-dimensional viscous fingering of miscible fluids in porous media

    Science.gov (United States)

    Suekane, Tetsuya; Ono, Jei; Hyodo, Akimitsu; Nagatsu, Yuichiro

    2017-10-01

    Viscous fingering is a flow instability that is induced at the displacement front when a less-viscous fluid (LVF) displaces a more-viscous fluid (MVF). Because of the opaque nature of porous media, most experimental investigations of the structure of viscous fingering and its development in time have been limited to two-dimensional porous media or Hele-Shaw cells. In this study, we investigate the three-dimensional characteristics of viscous fingering in porous media using a microfocused x-ray computer tomography (CT) scanner. Similar to two-dimensional experiments, characteristic events such as tip-splitting, shielding, and coalescence were observed in three-dimensional viscous fingering as well. With an increase in the Péclet number at a fixed viscosity ratio, M , the fingers appearing on the interface tend to be fine; however, the locations of the tips of the fingers remain the same for the same injected volume of the LVF. The finger extensions increase in proportion to ln M , and the number of fingers emerging at the initial interface increases with M . This fact agrees qualitatively with linear stability analyses. Within the fingers, the local concentration of NaI, which is needed for the x-ray CT scanner, linearly decreases, whereas it sharply decreases at the tips of the fingers. A locally high Péclet number as well as unsteady motions in lateral directions may enhance the dispersion at the tips of the fingers. As the viscosity ratio increases, the efficiency of each sweep monotonically decreases and reaches an asymptotic state; in addition, the degree of mixing increases with the viscosity ratio. For high flow rates, the asymptotic value of the sweep efficiency is low for high viscosity ratios, while there is no clear dependence of the asymptotic value on the Péclet number.

  20. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...

  1. Roll and Yaw of Paramecium swimming in a viscous fluid

    Science.gov (United States)

    Jung, Sunghwan; Jana, Saikat; Giarra, Matt; Vlachos, Pavlos

    2012-11-01

    Many free-swimming microorganisms like ciliates, flagellates, and invertebrates exhibit helical trajectories. In particular, the Paramecium spirally swims along its anterior direction by the beating of cilia. Due to the oblique beating stroke of cilia, the Paramecium rotates along its long axis as it swims forward. Simultaneously, this long axis turns toward the oral groove side. Combined roll and yaw motions of Paramecium result in swimming along a spiral course. Using Particle Image Velocimetry, we measure and quantify the flow field and fluid stress around Paramecium. We will discuss how the non-uniform stress distribution around the body induces this yaw motion.

  2. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  3. Data on mixing of viscous fluids by helical screw impellers in cylindrical vessels

    Directory of Open Access Journals (Sweden)

    Houari Ameur

    2016-09-01

    Full Text Available In this article, the data assembled regarding the mixing of Newtonian and shear thinning fluids by screw impellers in a cylindrical tank is disclosed. The data summarizing some information on the efficiency of such impellers are obtained via 3D calculations of velocities and viscous dissipation in the whole vessel volume. The data presented herein may be useful for those who want to outline the mixing characteristics in terms of fluid circulation and power consumption for this kind of impellers, therefore, avoiding a great effort for achieving a high number of experiments. Keyword: Mixing, Helical screw agitator, Power consumption, Fluid circulation, Cylindrical tanks

  4. The equivalence of perfect fluid space-times and viscous magnetohydrodynamic space-times in general relativity

    International Nuclear Information System (INIS)

    Tupper, B.O.J.

    1983-01-01

    The work of a previous article is extended to show that space-times which are the exact solutions of the field equations for a perfect fluid also may be exact solutions of the field equations for a viscous magnetohydrodynamic fluid. Conditions are found for this equivalence to exist and viscous magnetohydrodynamic solutions are found for a number of known perfect fluid space-times. (author)

  5. Flow of viscous fluid along an exponentially stretching curved surface

    Directory of Open Access Journals (Sweden)

    N.F. Okechi

    Full Text Available In this paper, we present the boundary layer analysis of flow induced by rapidly stretching curved surface with exponential velocity. The governing boundary value problem is reduced into self-similar form using a new similarity transformation. The resulting equations are solved numerically using shooting and Runge-Kutta methods. The numerical results depicts that the fluid velocity as well as the skin friction coefficient increases with the surface curvature, similar trend is also observed for the pressure. The dimensionless wall shear stress defined for this problem is greater than that of a linearly stretching curved surface, but becomes comparably less for a surface stretching with a power-law velocity. In addition, the result for the plane surface is a special case of this study when the radius of curvature of the surface is sufficiently large. The numerical investigations presented in terms of the graphs are interpreted with the help of underlying physics of the fluid flow and the consequences arising from the curved geometry. Keywords: Boundary layer flow, Curved surface, Exponential stretching, Curvature

  6. Research on the porous flow of the mechanism of viscous-elastic fluids displacing residual oil droplets in micro pores

    Science.gov (United States)

    Dong, Guanyu

    2018-03-01

    In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.

  7. Efficient Simulation of Compressible, Viscous Fluids using Multi-rate Time Integration

    Science.gov (United States)

    Mikida, Cory; Kloeckner, Andreas; Bodony, Daniel

    2017-11-01

    In the numerical simulation of problems of compressible, viscous fluids with single-rate time integrators, the global timestep used is limited to that of the finest mesh point or fastest physical process. This talk discusses the application of multi-rate Adams-Bashforth (MRAB) integrators to an overset mesh framework to solve compressible viscous fluid problems of varying scale with improved efficiency, with emphasis on the strategy of timescale separation and the application of the resulting numerical method to two sample problems: subsonic viscous flow over a cylinder and a viscous jet in crossflow. The results presented indicate the numerical efficacy of MRAB integrators, outline a number of outstanding code challenges, demonstrate the expected reduction in time enabled by MRAB, and emphasize the need for proper load balancing through spatial decomposition in order for parallel runs to achieve the predicted time-saving benefit. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  8. Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    Energy Technology Data Exchange (ETDEWEB)

    Javadzadegan, A.; Esmaeili, M.; Majidi, S. [University of Tehran, Tehran (Iran, Islamic Republic of); Fakhimghanbarzadeh, B. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-09-15

    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration

  9. Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    International Nuclear Information System (INIS)

    Javadzadegan, A.; Esmaeili, M.; Majidi, S.; Fakhimghanbarzadeh, B.

    2009-01-01

    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration

  10. Improved seismic response of rc frame structures by using fluid viscous dampers

    International Nuclear Information System (INIS)

    Khan, Q.S.; Qazi, A.U.; Ilyas, M.

    2013-01-01

    In modern era passive control devices are used to improve the seismic response of structures during large magnitude earthquakes. In this research an analytical study is carried out on commercial FEM program SAP 2000 by modeling five, seven and nine storey RC frame structures. Response to four earthquake ground motions on modeled frame structures is studied and is effectively controlled by varying the characteristic properties of Fluid viscous dampers (FVD). Response in terms of frequency, displacement, velocity, acceleration, storey drift, base shear and energy dissipation is studied. Quantitatively in the modeled frames damage in terms of percentage change in global stiffness and natural frequency is determined. Qualitatively damage in terms of performance levels as per ATC-40 and FEMA-440 is considered. With an increase in Additional Stiffness Ratio of FVD corresponding increase in natural frequency and reduction in dynamic response is observed. FVDs significantly improve structural performance level of frames from Completely Damage to Immediate Occupancy/Operational Level during large magnitude earthquakes. (author)

  11. Fluid dynamics an introduction

    CERN Document Server

    Rieutord, Michel

    2015-01-01

    This book is dedicated to readers who want to learn fluid dynamics from the beginning. It assumes a basic level of mathematics knowledge that would correspond to that of most second-year undergraduate physics students and examines fluid dynamics from a physicist’s perspective. As such, the examples used primarily come from our environment on Earth and, where possible, from astrophysics. The text is arranged in a progressive and educational format, aimed at leading readers from the simplest basics to more complex matters like turbulence and magnetohydrodynamics. Exercises at the end of each chapter help readers to test their understanding of the subject (solutions are provided at the end of the book), and a special chapter is devoted to introducing selected aspects of mathematics that beginners may not be familiar with, so as to make the book self-contained.

  12. Perspectives in Fluid Dynamics

    Science.gov (United States)

    Batchelor, G. K.; Moffatt, H. K.; Worster, M. G.

    2002-12-01

    With applications ranging from modelling the environment to automotive design and physiology to astrophysics, conventional textbooks cannot hope to give students much information on what topics in fluid dynamics are currently being researched, or how to choose between them. This book rectifies matters. It consists of eleven chapters that introduce and review different branches of the subject for graduate-level courses, or for specialists seeking introductions to other areas. Hb ISBN (2001): 0-521-78061-6

  13. Influence of Slip Condition on Unsteady Free Convection Flow of Viscous Fluid with Ramped Wall Temperature

    Directory of Open Access Journals (Sweden)

    Sami Ul Haq

    2015-01-01

    Full Text Available The objective of this study is to explore the influence of wall slip condition on a free convection flow of an incompressible viscous fluid with heat transfer and ramped wall temperature. Exact solution of the problem is obtained by using Laplace transform technique. Graphical results to see the effects of Prandtl number Pr, time t, and slip parameter η on velocity and skin friction for the case of ramped and constant temperature of the plate are provided and discussed.

  14. Supporting brace sizing in structures with added linear viscous fluid dampers: A filter design solution

    OpenAIRE

    Londono, J.M.; Wagg, D.; Neild, S.A.

    2014-01-01

    Viscous fluid dampers have proved to be effective in suppressing unwanted vibrations in a range of engineering structures. When dampers are fitted in a structure, a brace is typically used to attach them to the main structure. The stiffness of this brace can significantly alter the effectiveness of the damper, and in structures with multiple dampers, this can be a complex scenario to model. In this paper, we demonstrate that the effects of the brace compliance on the damper performance can be...

  15. A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids

    Science.gov (United States)

    Ciancio, Vincenzo; Palumbo, Annunziata

    2018-04-01

    In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.

  16. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1982-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  17. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1979-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  18. The influence of tip clearance on performance and internal flow condition of fluid food pump using low viscous fluid

    International Nuclear Information System (INIS)

    Kubo, S; Ishioka, T; Fukutomi, J; Shigemitsu, T

    2012-01-01

    Fluid machines for fluid food have been used in wide variety of fields i.e. transportation, the filling, and for the improvement of quality of fluid foods. However, flow conditions of it are quite complicated because fluid foods are different from water. Therefore, design methods based on internal flow conditions have not been conducted. In this research, turbo-pumps having a small number of blades were used to decrease shear loss and keep wide flow passage. The influence of the tip clearance was investigated by the numerical analysis using the model with and without the tip clearance. In this paper, the influence of tip clearance on performances and internal flow conditions of turbo-pump using low viscous fluid were clarified by experimental and numerical analysis results. In addition, design methods based on the internal flow were considered. Further, the influences of viscosity on the performance characteristic and internal flow were investigated.

  19. VBM with viscous fluid registration of grey matter segments in SPM.

    Directory of Open Access Journals (Sweden)

    João M. S. Pereira

    2013-07-01

    Full Text Available Improved registration of grey matter segments in SPM has been achieved with the DARTEL algorithm. Previous work from our group suggested, however, that such improvements may not translate to studies of clinical groups. To address the registration issue in atrophic brains, this paper relaxed the condition of diffeomorphism, central to DARTEL, and made use of a viscous fluid registration model with limited regularisation constraints to register the modulated grey matter probability maps to an intra-population template. Quantitative analysis of the registration results after the additional viscous fluid step showed no worsening of co-localisation of fiducials compared to DARTEL or unified segmentation methods, and the resulting voxel based morphometry (VBM analyses were able to better identify atrophic regions and to produce results with fewer apparent false positives. DARTEL showed great sensitivity to atrophy, but the resulting VBM maps presented broad, amorphous regions of significance that are hard to interpret. We propose that the condition of diffeomorphism is not necessary for basic VBM studies in atrophic populations, but also that it has disadvantages that must be taken into consideration before a study. The presented viscous fluid registration method is proposed for VBM studies to enhance sensitivity and localizing power.

  20. Computational Fluid Dynamic (CFD) Analysis of a Generic Missile With Grid Fins

    National Research Council Canada - National Science Library

    DeSpirito, James

    2000-01-01

    This report presents the results of a study demonstrating an approach for using viscous computational fluid dynamic simulations to calculate the flow field and aerodynamic coefficients for a missile with grid fin...

  1. Analysis on the Viscous Pumping in a Magnetic Fluid Seal Under a Rotating Load and the Seal Design

    OpenAIRE

    長屋, 幸助; 大沼, 浩身; 佐藤, 淳

    1990-01-01

    This paper discusses effects of viscous pumping in a magnetic fluid seal under a rotating load. The Reynolds equation was presented for the seal based on magnetic fluid mechanics, and the expressions for obtaining pressures in the seal, eccentricities of the rotating shaft due to the viscous pumping and seal pressures were given. Numerical Calculations were carried out for some sample problems, and the effect of magnetic flux densities on the pressure in the seal and the seal pressures were c...

  2. On the sound attenuation in fluid due to the thermal diffusion and viscous dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hanping, E-mail: hphu@ustc.edu.cn; Wang, Yandong; Wang, Dongdong

    2015-09-11

    We review the sound attenuation in fluid due to the thermal diffusion and viscous dissipation and derive the formula of the sound attenuation coefficient in fluid by solving a fully thermally–mechanically coupled equation set. Problem occurring in Stokes–Kirchhoff relation, the well-known and widely used classical formula for sound attenuation coefficient, is therefore found and pointed out. The reason for its generation is analyzed and verified. An improved formula to replace Stokes–Kirchhoff relation is suggested and the typical case for the error in calculating sound pressure level (SPL) of attenuated sound wave in fluid between the two formulas is also given. - Highlights: • Problem with Stokes–Kirchhoff relation. • Generation reason of defect in Stokes–Kirchhoff relation. • An improved formula for sound attenuation coefficient in fluid. • Typical cases of the calculation error by Stokes–Kirchhoff relation.

  3. Thermal-diffusion and diffusion-thermo effects on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation

    Directory of Open Access Journals (Sweden)

    S. Srinivas

    2016-01-01

    Full Text Available The present work investigates the effects of thermal-diffusion and diffusion-thermo on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. The partial differential equations governing the flow problem under consideration have been transformed by a similarity transformation into a system of coupled nonlinear ordinary differential equations. An analytical approach, namely the homotopy analysis method is employed in order to obtain the solutions of the ordinary differential equations. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. Comparison of the HAM solutions with the numerical solutions is performed.

  4. Essential Computational Fluid Dynamics

    CERN Document Server

    Zikanov, Oleg

    2011-01-01

    This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the `black box’ of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and

  5. Dynamics of radiating fluids

    International Nuclear Information System (INIS)

    Mihalas, D.; Weaver, R.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is essential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations, and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved is presented

  6. An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities

    Science.gov (United States)

    Gong, Yuezheng; Zhao, Jia; Wang, Qi

    2017-10-01

    A quasi-incompressible hydrodynamic phase field model for flows of fluid mixtures of two incompressible viscous fluids of distinct densities and viscosities is derived by using the generalized Onsager principle, which warrants the variational structure, the mass conservation and energy dissipation law. We recast the model in an equivalent form and discretize the equivalent system in space firstly to arrive at a time-dependent ordinary differential and algebraic equation (DAE) system, which preserves the mass conservation and energy dissipation law at the semi-discrete level. Then, we develop a temporal discretization scheme for the DAE system, where the mass conservation and the energy dissipation law are once again preserved at the fully discretized level. We prove that the fully discretized algorithm is unconditionally energy stable. Several numerical examples, including drop dynamics of viscous fluid drops immersed in another viscous fluid matrix and mixing dynamics of binary polymeric solutions, are presented to show the convergence property as well as the accuracy and efficiency of the new scheme.

  7. Axisymmetric capillary-gravity waves at the interface of two viscous, immiscible fluids - Initial value problem

    Science.gov (United States)

    Farsoiya, Palas Kumar; Dasgupta, Ratul

    2017-11-01

    When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.

  8. On the viscous dissipation modeling of thermal fluid flow in a porous medium

    KAUST Repository

    Salama, Amgad

    2011-02-24

    The problem of viscous dissipation and thermal dispersion in saturated porous medium is numerically investigated for the case of non-Darcy flow regime. The fluid is induced to flow upward by natural convection as a result of a semi-infinite vertical wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non-dimensionalized and solved using the finite elements method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e.; viscous dissipation) resulted in insignificant generation of heat for the range of parameters considered in this study. On the other hand, thermal dispersion has shown to disperse heat energy normal to the wall more effectively compared with the normal diffusion mechanism. © 2011 Springer-Verlag.

  9. Swimming of a sphere in a viscous incompressible fluid with inertia

    International Nuclear Information System (INIS)

    Felderhof, B U; Jones, R B

    2017-01-01

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier–Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid. (paper)

  10. Rayleigh-Taylor instability of two superposed conducting Walters B' elastico-viscous fluids in hydromagnetics

    International Nuclear Information System (INIS)

    Sharma, R.C.; Kumar, Pardeep

    1998-01-01

    The Rayleigh-Taylor instability of two superposed electrically conducting Walters elastico-viscous fluids (Model B') of uniform densities when the whole system is immersed in a uniform horizontal magnetic field has been studied. The stability analysis has been carried out, for mathematical simplicity, for two highly viscoelastic fluids of equal kinematic viscosities and equal kinematic viscoelasticities. For the stable configuration as in hydrodynamic case, the system is found to be stable or unstable for the wave-number range k (2v') -12 depending on kinematic viscoelasticity v'. For the unstable configuration, the magnetic field has got stabilizing effect and completely stabilizes certain wave-number range which was always unstable in the absence of magnetic field. The behaviour of growth rates with respect kinematic viscosity and kinematic viscoelasticity parameters are examined analytically. (author)

  11. Swimming of a sphere in a viscous incompressible fluid with inertia

    Energy Technology Data Exchange (ETDEWEB)

    Felderhof, B U [Institut für Theorie der Statistischen Physik RWTH Aachen University, Templergraben 55, D-52056 Aachen (Germany); Jones, R B, E-mail: ufelder@physik.rwth-aachen.de, E-mail: r.b.jones@qmul.ac.uk [Queen Mary University of London, The School of Physics and Astronomy, Mile End Road, London E1 4NS (United Kingdom)

    2017-08-15

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier–Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid. (paper)

  12. Swimming of a sphere in a viscous incompressible fluid with inertia

    Science.gov (United States)

    Felderhof, B. U.; Jones, R. B.

    2017-08-01

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier-Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid.

  13. Nonlinear hydromagnetic Rayleigh-Taylor instability for strong viscous fluids in porous media

    CERN Document Server

    El-Dib, Y O

    2003-01-01

    In the present work a weakly nonlinear stability for magnetic fluid is discussed. The research of an interface between two strong viscous homogeneous incompressible fluids through porous medium is investigated theoretically and graphically. The effect of the vertical magnetic field has been demonstrated in this study. The linear form of equation of motion is solved in the light of the nonlinear boundary conditions. The boundary value problem leads to construct nonlinear characteristic equation having complex coefficients in elevation function. The nonlinearity is kept to third-order expansion. The nonlinear characteristic equation leads to derive the well-known nonlinear Schroedinger equation. This equation having complex coefficients of the disturbance amplitude varies in both space and time. Stability criteria have been performed for nonlinear Chanderasekhar dispersion relation including the porous effects. Stability conditions are discussed through the assumption of equal kinematic viscosity. The calculati...

  14. Nonlocal vibration of Y-shaped CNT conveying nano-magnetic viscous fluid under magnetic field

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2015-06-01

    Full Text Available This study deals with the vibration and stability analysis of a Y-shaped single-walled carbon nanotube (SWCNT embedded in visco-Pasternak foundation and conveying nano-magnetic viscous fluid (NMF based on nonlocal elasticity theory and Euler–Bernoulli beam model. The fluid is two-phases due to the existence of magnetic nanoparticles which its volume fraction is much little in comparison with the base fluid where the influence of 2D magnetic field is taken into account. Also, Knudsen number is used to correct the velocity profile of fluid. The Galerkin method is applied to solve the equation of motion which is obtained by employing Hamilton’s principle. The detail parametric study is conducted, focusing on the combined effects of carbon nanotube and Y-shaped junction fitted at the downstream end, fluid velocity, Knudsen number and elastic medium. The results indicate that increasing the angle between centerline of the CNT and the downstream elbows decreases stability of system.

  15. Hydrodynamics of the interaction between bodies in a viscous fluid in the vicinity of their contact at low and high Reynolds numbers

    Czech Academy of Sciences Publication Activity Database

    Petrov, A. G.; Kharlamov, Alexander

    2013-01-01

    Roč. 48, č. 2 (2013), s. 179-191 ISSN 0015-4628 R&D Projects: GA ČR GA103/09/2066 Grant - others:Russian Foundation for Basic Research (RU) 11-01-00535; Russian Foundation for Basic Research (RU) 11-01-00857; Target Analytical Program; Development of the Scientific Potential of the Higher School(RU) 2.1.2/3604 Institutional support: RVO:67985874 Keywords : lubrication layer theory * viscous and inviscid fluids * thin layer * contact vicinity Subject RIV: BK - Fluid Dynamics Impact factor: 0.320, year: 2013

  16. Comparison of elastic-viscous-plastic and viscous-plastic dynamics models using a high resolution Arctic sea ice model

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, E.C. [Los Alamos National Lab., NM (United States); Zhang, Y. [Naval Postgraduate School, Monterey, CA (United States)

    1997-12-31

    A nonlinear viscous-plastic (VP) rheology proposed by Hibler (1979) has been demonstrated to be the most suitable of the rheologies commonly used for modeling sea ice dynamics. However, the presence of a huge range of effective viscosities hinders numerical implementations of this model, particularly on high resolution grids or when the ice model is coupled to an ocean or atmosphere model. Hunke and Dukowicz (1997) have modified the VP model by including elastic waves as a numerical regularization in the case of zero strain rate. This modification (EVP) allows an efficient, fully explicit discretization that adapts well to parallel architectures. The authors present a comparison of EVP and VP dynamics model results from two 5-year simulations of Arctic sea ice, obtained with a high resolution sea ice model. The purpose of the comparison is to determine how differently the two dynamics models behave, and to decide whether the elastic-viscous-plastic model is preferable for high resolution climate simulations, considering its high efficiency in parallel computation. Results from the first year of this experiment (1990) are discussed in detail in Hunke and Zhang (1997).

  17. Computational fluid dynamic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  18. Steady fall of isothermal, resistive-viscous, compressible fluid across magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Low, B. C., E-mail: low@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80301 (United States); Egan, A. K., E-mail: andrea.egan@colorado.edu [Barnard College, New York, New York 10027, USA and Department of Physics, Colorado University, Boulder, Colorado 80309 (United States)

    2014-06-15

    This is a basic MHD study of the steady fall of an infinite, vertical slab of isothermal, resistive-viscous, compressible fluid across a dipped magnetic field in uniform gravity. This double-diffusion steady flow in unbounded space poses a nonlinear but numerically tractable, one-dimensional (1D) free-boundary problem, assuming constant coefficients of resistivity and viscosity. The steady flow is determined by a dimensionless number μ{sub 1} proportional to the triple product of the two diffusion coefficients and the square of the linear total mass. For a sufficiently large μ{sub 1}, the Lorentz, viscous, fluid-pressure, and gravitational forces pack and collimate the fluid into a steady flow of a finite width defined by the two zero-pressure free-boundaries of the slab with vacuum. The viscous force is essential in this collimation effect. The study conjectures that in the regime μ{sub 1}→0, the 1D steady state exists only for μ{sub 1}∈Ω, a spectrum of an infinite number of discrete values, including μ{sub 1} = 0 that corresponds to two steady states, the classical zero-resistivity static slab of Kippenhahn and Schlüter [R. Kippenhahn and A. Schlüter, Z. Astrophys. 43, 36 (1957)] and its recent generalization [B. C. Low et al., Astrophys. J. 755, 34 (2012)] to admit an inviscid resistive flow. The pair of zero-pressure boundaries of each of the μ{sub 1}→0 steady-state slabs are located at infinity. Computational evidence suggests that the Ω steady-states are densely distributed around μ{sub 1} = 0, as an accumulation point, but are sparsely separated by open intervals of μ{sub 1}-values for which the slab must be either time-dependent or spatially multi-dimensional. The widths of these intervals are vanishingly small as μ{sub 1}→0. This topological structure of physical states is similar to that described by Landau and Liftshitz [L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, Reading, MA, 1959)] to explain the onset

  19. Thermal development of the laminar flow of a Bingham fluid between two plane plates with viscous dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Boualit, A.; Boualit, S. [Unite de recherche appliquee en energies renouvelables, Ghardaia (Algeria); Zeraibi, N. [Universite de Boumerdes, Faculte des hydrocarbures dept. Transport et equipement, Boumerdes (Algeria); Amoura, M. [Universite des Sciences et de la Technologie Houari Boumedienne, Faculte de Physique, Dept. Energetique, Alger (Algeria)

    2011-01-15

    The thermal development of the hydrodynamically developing laminar flow of a viscoplastic fluid (fluid of Bingham) between two plane plates maintained at a constant temperature has been studied numerically. This analysis has shown the effect caused by inertia and the rheological behaviour of the fluid on the velocity, pressure and temperature fields. The effects of Bingham and Peclet numbers on the Nusselt values with the inclusion of viscous dissipation are also discussed. (authors)

  20. Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field

    Science.gov (United States)

    Bandopadhyay, Aditya; Hardt, Steffen

    2017-12-01

    The stability of a horizontal interface between two viscous fluids, one of which is conducting and the other is dielectric, acted upon by a vertical time-periodic electric field is considered theoretically. The two fluids are bounded by electrodes separated by a finite distance. For an applied ac electric field, the unstable interface deforms in a time periodic manner, owing to the time dependent Maxwell stress, and is characterized by the oscillation frequency which may or may not be the same as the frequency of the ac electric field. The stability curve, which relates the critical voltage, manifested through the Mason number—the ratio of normal electric stress and viscous stress, and the instability wavenumber at the onset of the instability, is obtained by means of the Floquet theory for a general arbitrary time periodic electric field. The limit of vanishing viscosities is shown to be in excellent agreement with the marginal stability curves predicted by means of a Mathieu equation. The influence of finite viscosity and electrode separation is discussed in relation to the ideal case of inviscid fluids. The methodology to obtain the marginal stability curves developed here is applicable to any arbitrary but time periodic signal, as demonstrated for the case of a signal with two different frequencies, and four different frequencies with a dc offset. The mode coupling in the interfacial normal stress leads to appearance of harmonic and subharmonic modes, characterized by the frequency of the oscillating interface at an integral or half-integral multiple of the applied frequency, respectively. This is in contrast to the application of a voltage with a single frequency which always leads to a harmonic mode oscillation of the interface. Whether a harmonic or subharmonic mode is the most unstable one depends on details of the excitation signal.

  1. Magnetohydrodynamics of unsteady viscous fluid on boundary layer past a sliced sphere

    Science.gov (United States)

    Nursalim, Rahmat; Widodo, Basuki; Imron, Chairul

    2017-10-01

    Magnetohydrodynamics (MHD) is important study in engineering and industrial fields. By study on MHD, we can reach the fluid flow characteristics that can be used to minimize its negative effect to an object. In decades, MHD has been widely studied in various geometry forms and fluid types. The sliced sphere is a geometry form that has not been investigated. In this paper we study magnetohydrodynamics of unsteady viscous fluid on boundary layer past a sliced sphere. Assumed that the fluid is incompressible, there is no magnetic field, there is no electrical voltage, the sliced sphere is fix and there is no barrier around the object. In this paper we focus on velocity profile at stagnation point (x = 0°). Mathematical model is governed by continuity and momentum equation. It is converted to non-dimensional, stream function, and similarity equation. Solution of the mathematical model is obtained by using Keller-Box numerical method. By giving various of slicing angle and various of magnetic parameter we get the simulation results. The simulation results show that increasing the slicing angle causes the velocity profile be steeper. Also, increasing the value of magnetic parameter causes the velocity profile be steeper. On the large slicing angle there is no significant effect of magnetic parameter to velocity profile, and on the high the value of magnetic parameter there is no significant effect of slicing angle to velocity profile.

  2. The fluid dynamics of climate

    CERN Document Server

    Palazzi, Elisa; Fraedrich, Klaus

    2016-01-01

    This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.

  3. Damage in agitated vessels of large visco-elastic particles dispersed in a highly viscous fluid.

    Science.gov (United States)

    Bouvier, Laurent; Moreau, Anne; Line, Alain; Fatah, Nouria; Delaplace, Guillaume

    2011-01-01

    Many food recipes entail several homogenization steps for solid particles in hot or cold viscous liquids, such as pureed fruit and sugar, jam or sauce with mushroom pieces. Unfortunately, these unavoidable processes induce damage to the solid particles. To date, little is known of the extent and nature of the damage caused. Consequently, few clear guidelines are available for monitoring solid particle integrity when mixing solid/liquid suspensions in an agitated tank. In this study, an attempt is made to quantify the impact of various physical parameters including the influence of the rotational speed of the impeller and the processing time on particle attrition, when a suspension of large visco-elastic particles in a highly viscous fluid is mixed under isothermal condition. Pectin gel particles were immerged in a viscous liquid and homogenized for various times and rotational speeds, while the evolution of the particle's morphological parameters was monitored. Then, a set of dimensionless numbers governing the attrition mechanism is established and some empirical process relationships are proposed to correlate these numbers to the morphological characteristics and mass balance ratios. From the conditions observed, it is clear that 2 dimensionless ratios could be responsible for a change in the damaging mechanisms. These 2 ratios are the Froude and impeller rotation numbers. Finally, in the conditions tested, mass balance ratios appear to be mainly sensitive to the impeller rotational number, while the shape ratios are both impacted by the Froude and impeller rotational numbers. Damage to solid particles suspended in a stirred vessel reduce the final product quality in industrial cooking processes. Examples of this are fruit in jam or sauces with mushroom pieces. The attrition phenomenon was measured and the influences of the impeller rotational speed and processing time were evaluated quantitatively in function of dimensionless numbers. This study contributes key

  4. Onset of Absolute Instability Induced by Viscous Dissipation in the Poiseuille-Darcy-Benard Convection of a Newtonian Fluid

    International Nuclear Information System (INIS)

    Brandão, P V; Alves, L S de B; Barletta, A

    2014-01-01

    The present paper investigates the transition from convective to absolute instability induced by viscous dissipation. As far as the authors are aware, this is the first time such a study is reported in the literature. Its framework is provided by the Poiseuille-Darcy-Benard convection of a Newtonian fluid. We found the same behaviour observed in the absence of viscous dissipation whenever the Gebhart number is smaller than Ge < 0.95, which is the stabilising effect of the cross flow. When 0.95 < Ge < 4.31, weak cross flows still stabilise the onset of absolute instability but stronger cross flows destabilise it. For a stronger viscous dissipation, i.e. Ge > 4.31, the cross flow always destabilises this onset. The latter two conditions create a scenario where viscous dissipation is capable of inducing a transition to absolute instability in the absence of wall heating, i.e. with a zero Rayleigh number

  5. Damping characteristics and flow behaviors of an ER fluid with a piston sine vibration in a viscous damper

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Zhang, Xin-Rong; Niu, Xiao-Dong

    2010-01-01

    The damping characteristics and flow behaviors of ER fluids inside a piston–cylinder viscous damper subjected to external electric fields are studied based on experiment, theoretical analysis and numerical simulation. The viscous damper is a closed system with an inner piston and an outer cylinder, which is designed and constructed in our laboratory. In the experiment, the test ER fluid is enclosed in the gap of a piston–cylinder system. To examine the damping characteristics of the test ER fluid, a piston sine vibration experiment is performed with accompanying theoretical analyses. In addition, in order to investigate the ER flow behaviors inside the damper, a numerical simulation is carried out. The present study discloses the damping characteristics and the fluid mechanism of the ER fluid in the piston–cylinder damper with an applied external electric field

  6. Technical fluid dynamics. 7. rev. ed.

    International Nuclear Information System (INIS)

    Becker, E.; Piltz, E.

    1993-01-01

    An introductory textbook for students of engineering containing the following subjects: Definition and properties of fluids, hydrostatics, Bernoulli's equation, theorem of momentum for steadystate flows, wing lattice and single wing, plane parallel flow of a viscous fluid, pipe flow, boundary layers, gas flows. (orig.) [de

  7. Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids

    Science.gov (United States)

    Woodard, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2008-01-01

    An innovative method has been developed for acquiring fluid-level measurements. This method eliminates the need for the fluid-level sensor to have a physical connection to a power source or to data acquisition equipment. The complete system consists of a lightweight, thin-film magnetic-field-response fluid-level sensor (see Figure 1) and a magnetic field response recorder that was described in Magnetic-Field-Response Measurement-Acquisition System (LAR-16908-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28. The sensor circuit is a capacitor connected to an inductor. The response recorder powers the sensor using a series of oscillating magnetic fields. Once electrically active, the sensor responds with its own harmonic magnetic field. The sensor will oscillate at its resonant electrical frequency, which is dependent upon the capacitance and inductance values of the circuit.

  8. Conveyor belt effect in the flow through a tube of a viscous fluid with spinning particles.

    Science.gov (United States)

    Felderhof, B U

    2012-04-28

    The extended Navier-Stokes equations describing the steady-state hydrodynamics of a viscous fluid with spinning particles are solved for flow through a circular cylindrical tube. The flow caused by an applied torque density in the azimuthal direction and linear in the radial distance from the axis is compared with the flow caused by a uniform applied force density directed along the axis of the tube. In both cases the flow velocity is of Poiseuille type plus a correction. In the first case the flow velocity is caused by the conveyor belt effect of spinning particles. The corrections to the Poiseuille flow pattern in the two cases differ only by a proportionality factor. The spin velocity profiles in the two cases are also proportional.

  9. Spherical top-hat collapse of a viscous unified dark fluid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [Bohai University, Department of Physics, Jinzhou (China); Dalian University of Technology, Institute of Theoretical Physics, Dalian (China); Xu, Lixin [Dalian University of Technology, Institute of Theoretical Physics, Dalian (China)

    2014-05-15

    In this paper, we test the spherical collapse of a viscous unified dark fluid (VUDF) which has constant adiabatic sound speed and show the nonlinear collapse for VUDF, baryons, and darkmatter, which are important in forming the large-scale structure of our Universe. By varying the values of the model parameters α and ζ{sub 0}, we discuss their effects on the nonlinear collapse of the VUDF model, and we compare its result to the ΛCDM model. The results of the analysis show that, within the spherical top-hat collapse framework, larger values of α and smaller values of ζ{sub 0} make the structure formation earlier and faster, and the other collapse curves are almost distinguished with the curve of ΛCDM model if the bulk viscosity coefficient ζ{sub 0} is less than 10{sup -3}. (orig.)

  10. Nonlinear electrorheological instability of two Rivlin-Ericksen elastico-viscous fluids

    CERN Document Server

    El-Dib, Y O

    2003-01-01

    The behaviour of surface waves propagating between two Rivlin-Ericksen elastico-viscous fluids is examined. The investigation is made in the presence of a vertical electric field and a relative horizontal constant velocity. The influence of both surface tension and gravity force is taken into account. Due to the inclusion of streaming flow a mathematical simplification is considered. The viscoelastic contribution is demonstrated in the boundary conditions. From this point of view the approximation equations of motion are solved in the absence of viscoelastic effects. The solutions of the linearized equations of motion under nonlinear boundary conditions lead to derivation of a nonlinear equation governing the interfacial displacement and having damping terms with complex coefficients. This equation is accomplished by utilizing the cubic nonlinearity. The use of the Gardner-Morikawa transformation yields a simplified linear dispersion relation so that the periodic solution for the linear form is utilized. The ...

  11. Anisotropic Bianchi Type-III Bulk Viscous Fluid Universe in Lyra Geometry

    Directory of Open Access Journals (Sweden)

    Priyanka Kumari

    2013-01-01

    Full Text Available An anisotropic Bianchi type-III cosmological model is investigated in the presence of a bulk viscous fluid within the framework of Lyra geometry with time-dependent displacement vector. It is shown that the field equations are solvable for any arbitrary function of a scale factor. To get the deterministic model of the universe, we have assumed that (i a simple power-law form of a scale factor and (ii the bulk viscosity coefficient are proportional to the energy density of the matter. The exact solutions of the Einstein’s field equations are obtained which represent an expanding, shearing, and decelerating model of the universe. Some physical and kinematical behaviors of the cosmological model are briefly discussed.

  12. The Variety of Fluid Dynamics.

    Science.gov (United States)

    Barnes, Francis; And Others

    1980-01-01

    Discusses three research topics which are concerned with eminently practical problems and deal at the same time with fundamental fluid dynamical problems. These research topics come from the general areas of chemical and biological engineering, geophysics, and pure mathematics. (HM)

  13. Nonisothermal flow of a non-Newtonian fluid with viscous heating between two parallel plates

    International Nuclear Information System (INIS)

    Imal, M.; Pinarbasi, A.

    2004-01-01

    In this study the pressure gradient-flow rate relationship for steady-state nonisothermal pressure-driven flow of a non-Newtonian fluid in a channel is investigated including the effect of viscous heating is taken into account. The viscosity of the fluid depends on both temperature and shear-rate. Exponential dependence of viscosity on temperature is modelled through Arrhenius law. Non-Newtonian behaviour of the fluid is modelled according to the Carreau rheological equation, which reflects the characteristics of most polymers adequately with an exponential temperature dependence of viscosity. Flow governing motion and energy balance equations are coupled and solution of this non-linear boundary value problem is found iteratively using a pseudo spectral method based on Chebyshev polynomials. The effect of activation energy parameter and Brinkman number, as well as the power-law index and material time constant on the flow is studied. It is found that while the pressure gradient-flow rate graph is monotonic for certain ranges of flow controlling parameters, there is a large jump in the graph under certain values of these parameters.(1 table and 5 figures are included.)

  14. Substance advection by a steady 2D stream of the viscous fluid in a lengthy free-surfaced canal

    NARCIS (Netherlands)

    Hanjalic, K.; Nadolin, K.A.; Peeters, T.W.J; Bochev, Mikhail A.; Nicolayev, I.A.

    1997-01-01

    Spreading of a low-concentrated admixture in the 2D (length - depth) stream of the viscous fluid in an open lengthy canal is considered; the admixture's dissipation and diffusion are taken into account. Apart from being long, the canal is assumed to be low-sloping, with a given shape of the

  15. About the stability of the rotational motion of a top with a cavity filled up with a viscous fluid

    International Nuclear Information System (INIS)

    Parada, R.F.; Collar, A.F.

    1995-09-01

    The linear stability problem of the rotational motion of a top around a fixed point containing an inner cavity filled up with a viscous fluid is considered. The effect of the viscosity in the stability problem is studied. (author). 15 refs

  16. Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border

    Directory of Open Access Journals (Sweden)

    Svetlana S. Vlasova

    2016-09-01

    Full Text Available The exact stationary solution of the boundary-value problem that describes the convective motion of an incompressible viscous fluid in the two-dimensional layer with the square heating of a free surface in Stokes's approach is found. The linearization of the Oberbeck–Boussinesq equations allows one to describe the flow of fluid in extreme points of pressure and temperature. The condition under which the counter-current flows (two counter flows in the fluid can be observed, is introduced. If the stagnant point in the fluid exists, six non-closed whirlwinds can be observed.

  17. Noncommutative geometry and fluid dynamics

    International Nuclear Information System (INIS)

    Das, Praloy; Ghosh, Subir

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  18. Noncommutative geometry and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)

    2016-11-15

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  19. Vortex dynamics in the two-fluid model

    International Nuclear Information System (INIS)

    Thouless, D. J.; Geller, M. R.; Vinen, W. F.; Fortin, J.-Y.; Rhee, S. W.

    2001-01-01

    We have used two-fluid dynamics to study the discrepancy between the work of Thouless, Ao, and Niu (TAN) and that of Iordanskii. In TAN no transverse force on a vortex due to normal fluid flow was found, whereas the earlier work found a transverse force proportional to normal fluid velocity u n and normal fluid density ρ n . We have linearized the time-independent two-fluid equations about the exact solution for a vortex, and find three solutions that are important in the region far from the vortex. Uniform superfluid flow gives rise to the usual superfluid Magnus force. Uniform normal fluid flow gives rise to no forces in the linear region, but does not satisfy reasonable boundary conditions at short distances. A logarithmically increasing normal fluid flow gives a viscous force. As in classical hydrodynamics, and as in the early work of Hall and Vinen, this logarithmic increase must be cut off by nonlinear effects at large distances; this gives a viscous force proportional to u n /lnu n , and a transverse contribution that goes like u n /(lnu n ) 2 , even in the absence of an explicit Iordanskii force. In the limit u n ->0 the TAN result is obtained, but at nonzero u n there are important corrections that were not found in TAN. We argue that the Magnus force in a superfluid at nonzero temperature is an example of a topological relation for which finite-size corrections may be large

  20. Experimental study of oscillating plates in viscous fluids: Qualitative and quantitative analysis of the flow physics and hydrodynamic forces

    Science.gov (United States)

    Shrestha, Bishwash; Ahsan, Syed N.; Aureli, Matteo

    2018-01-01

    In this paper, we present a comprehensive experimental study on harmonic oscillations of a submerged rigid plate in a quiescent, incompressible, Newtonian, viscous fluid. The fluid-structure interaction problem is analyzed from both qualitative and quantitative perspectives via a detailed particle image velocimetry (PIV) experimental campaign conducted over a broad range of oscillation frequency and amplitude parameters. Our primary goal is to identify the effect of the oscillation characteristics on the mechanisms of fluid-structure interaction and on the dynamics of vortex shedding and convection and to elucidate the behavior of hydrodynamic forces on the oscillating structure. Towards this goal, we study the flow in terms of qualitative aspects of its pathlines, vortex shedding, and symmetry breaking phenomena and identify distinct hydrodynamic regimes in the vicinity of the oscillating structure. Based on these experimental observations, we produce a novel phase diagram detailing the occurrence of distinct hydrodynamic regimes as a function of relevant governing nondimensional parameters. We further study the hydrodynamic forces associated with each regime using both PIV and direct force measurement via a load cell. Our quantitative results on experimental estimation of hydrodynamic forces show good agreement against predictions from the literature, where numerical and semi-analytical models are available. The findings and observations in this work shed light on the relationship between flow physics, vortex shedding, and convection mechanisms and the hydrodynamic forces acting on a rigid oscillating plate and, as such, have relevance to various engineering applications, including energy harvesting devices, biomimetic robotic system, and micro-mechanical sensors and actuators.

  1. Dynamic simulation of an electrorheological fluid

    International Nuclear Information System (INIS)

    Bonnecaze, R.T.; Brady, J.F.

    1992-01-01

    A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma=10 -4 to ∞. The effective viscosity of the suspension increases as Ma -1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma -1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected ''snapshots'' of the suspension microstructure

  2. Motion of two spheres translating and rotating through a viscous fluid with slip surfaces

    International Nuclear Information System (INIS)

    Saad, E I

    2012-01-01

    The axisymmetrical motion of two spherical particles translating along and rotating about a common line that joins their centers in viscous fluid with slip flow boundary conditions on their surfaces has been studied numerically. The particles may differ in radius and in translational and angular velocities. Under the Stokesian approximation, a general solution is constructed from the superposition of the basic functions in the two spherical coordinate systems based on the centers of the particles. The boundary conditions at their surfaces are satisfied by the collocation technique. Numerical results for the normalized drag force and couple acting on each sphere are obtained for various values of the slip coefficients, size ratio, separation parameter, and velocity ratio of the particles. The normalized force and couple on each particle reach the single particle limit as the distance between the centers grows large enough and each particle may then be translated and rotated independently of each other. The accuracy of the numerical technique has been tested against the known analytical solution for two spheres with no-slip surfaces. (paper)

  3. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design

    Directory of Open Access Journals (Sweden)

    A. Ras

    2016-09-01

    Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.

  4. Seismic Retrofitting of an Existing Steel Railway Bridge by Fluid Viscous Dampers

    Science.gov (United States)

    Gangopadhyay, Avijit; Ghosh, Aparna Dey

    2016-09-01

    There are over a lakh of bridges in the Indian Railways, many of which have become seismically deficient, either through aging or due to inadequate seismic design considerations. The extensive damage of bridges all over the world in recent earthquakes has propelled significant advancement in earthquake protection and retrofitting of bridges. Amongst various passive control systems that are reliable as well as cost-effective, Fluid Viscous Dampers (FVDs) are proving to be successful in bridge vibration control. Orificed FVDs, commercially available as Taylor Devices, have already been successfully installed in several bridges worldwide. However, there has been no such application or study related to Indian railway bridges. In this paper, an existing thirty years' old railway bridge in Jharkhand, India, has been analyzed in SAP2000v14 considering reduced stiffness and found deficient when subjected to spectrum-compatible accelerograms. Subsequent retrofitting of the bridge superstructure with FVDs has been carried out and the results indicate substantial reductions in the responses of the bridge deck.

  5. Probabilistic analysis of wind-induced vibration mitigation of structures by fluid viscous dampers

    Science.gov (United States)

    Chen, Jianbing; Zeng, Xiaoshu; Peng, Yongbo

    2017-11-01

    The high-rise buildings usually suffer from excessively large wind-induced vibrations, and thus vibration control systems might be necessary. Fluid viscous dampers (FVDs) with nonlinear power law against velocity are widely employed. With the transition of design method from traditional frequency domain approaches to more refined direct time domain approaches, the difficulty of time integration of these systems occurs sometimes. In the present paper, firstly the underlying reason of the difficulty is revealed by identifying that the equations of motion of high-rise buildings installed with FVDs are sometimes stiff differential equations. Thus, an approach effective for stiff differential systems, i.e., the backward difference formula (BDF), is then introduced, and verified to be effective for the equation of motion of wind-induced vibration controlled systems. Comparative studies are performed among some methods, including the Newmark method, KR-alpha method, energy-based linearization method and the statistical linearization method. Based on the above results, a 20-story steel frame structure is taken as a practical example. Particularly, the randomness of structural parameters and of wind loading input is emphasized. The extreme values of the responses are examined, showing the effectiveness of the proposed approach, and also necessitating the refined probabilistic analysis in the design of wind-induced vibration mitigation systems.

  6. Research on Fluid Viscous Damper Parameters of Cable-Stayed Bridge in Northwest China

    Directory of Open Access Journals (Sweden)

    Xiongjun He

    2017-01-01

    Full Text Available To optimize the aseismic performance of nonlinear fluid viscous dampers (FVD of cable-stayed bridge in the highly seismic zone, Xigu Yellow River Bridge in northwest China is taken as an example. Nonlinear time-history analysis method is used to research on the relation among the internal forces, displacements, and damping parameters of the 650 tonnage FVD. The method of getting the minimum of binary functions is used to obtain the optimal parameters of FVD. Also, the 1 : 1 full-scale FVD model is made and used in the constitutive relation test. Then the test result of the damping parameters can be got by normal equation method. The optimized method to obtain the damping parameters is further verified. The results indicate that seismic response in key positions of the cable-stayed bridge can be reduced by installing longitudinal nonlinear FVD between the towers and girders if choosing reasonable damping parameters C and ξ. The optimal damping parameters can be calculated accurately by the proposed method of optimizing damping parameters of nonlinear FVD, and the constitutive relation test verifies the correctness of the optimization analysis method. Conclusions concerned can be applied to the design of nonlinear FVD for cable-stayed bridges.

  7. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...

  8. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  9. Hall current and Joule heating effects on peristaltic flow of viscous fluid in a rotating channel with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The present article has been arranged to study the Hall current and Joule heating effects on peristaltic flow of viscous fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Convective conditions for heat transfer in the formulation are adopted. Viscous dissipation in energy expression is taken into account. Resulting differential systems after invoking small Reynolds number and long wavelength considerations are numerically solved. Runge-Kutta scheme of order four is implemented for the results of axial and secondary velocities, temperature and heat transfer coefficient. Comparison with previous limiting studies is shown. Outcome of new parameters of interest is analyzed. Keywords: Rotating frame, Hall current, Joule heating, Convective conditions, Wall properties

  10. Numerical study on the rotation of an elastic rod in a viscous fluid using an immersed boundary method

    International Nuclear Information System (INIS)

    Maniyeri, Ranjith; Kang, Sang Mo

    2012-01-01

    We present a three dimensional computational model based on an immersed boundary (IB) method to study the hydrodynamic features of a solid flexible cylindrical rod in a viscous fluid driven at one side by a tiny motor. The elastic rod is modelled by a number of circular cross-sections with twelve IB points on each cross-section. Three types of elastic links are created from each IB point to obtain an elastic network model of the rod and the first cross-section is modelled as the motor part. The elastic forces are computed based on an elastic energy approach and the motor forces are obtained from the applied angular frequency of rotation of the motor. The Stokes equations governing the fluid are solved on a staggered Cartesian grid system using the fractional-step based finite-volume method. Numerical simulations are performed to demonstrate the three dynamical stages of rod motion- twirling, whirling and overwhirling for different rotational frequency of the motor. It is revealed that for low rotational frequencies, the rod undergoes stable rigid body motion known as twirling. For high rotational frequencies of the motor, it is observed that the rod initially undergoes whirling motion and attains an unstable helical shape. Further, it is noticed that a discontinuous shape transition occurs for the rod and it folds back on itself. This unstable motion is referred to as overwhirling. It is also found that there exists a critical value of angular frequency of rotation of the motor below which the rod is subjected to twirling motion and above which it undergoes overwhirling motion

  11. A new geometrical model for mixing of highly viscous fluids by combining two-blade and helical screw agitators

    OpenAIRE

    Hadjeb Abdessalam; Bouzit Mohamed; Kamla Youcef; Ameur Houari

    2017-01-01

    Mixing processes are becoming today a huge concern for industrialists in various domains like the pharmaceutical production, oil refining, food industry and manufacture of cosmetic products especially when the processes are related to the mixing of highly viscous products. So the choice of a stirring system for this category of products or fluids must be rigorously examined before use because of the flows which are laminar in the most cases, something that is not good to obtain homogeneous pa...

  12. Surface perturbations of a shallow viscous fluid heated from below and the (2+1)-dimensional Burgers equation

    International Nuclear Information System (INIS)

    Kraenkel, R.A.; Pereira, J.G.; Manna, M.A.

    1991-01-01

    The (2+1)-dimensional Burgers equation is obtained as the equation of motion governing the surface perturbations of a shallow viscous fluid heated from below, provided the Rayleigh number of the system satisfy the condition R ≠ 30. A solution to this equation is explicity exhibited and it is argued that it describes the nonlinear evolution of a nearly one-dimensional kink. (author)

  13. Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid-particle suspension

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.

    2018-03-01

    The impact of Marangoni convection on dusty Casson fluid boundary layer flow with Joule heating and viscous dissipation aspects is addressed. The surface tension is assumed to vary linearly with temperature. Physical aspects of magnetohydrodynamics and thermal radiation are also accounted. The governing problem is modelled under boundary layer approximations for fluid phase and dust particle phase and then Runge-Kutta-Fehlberg method based numeric solutions are established. The momentum and heat transport mechanisms are focused on the result of distinct governing parameters. The Nusselt number is also calculated. It is established that the rate of heat transfer can be enhanced by suspending dust particles in the base fluid. The temperature field of fluid phase and temperature of dust phase are quite reverse for thermal dust parameter. The radiative heat, viscous dissipation and Joule heating aspects are constructive for thermal fields of fluid and dust phases. The velocity of dusty Casson fluid dominates the velocity of dusty fluid while this trend is opposite in the case of temperature. Moreover qualitative behaviour of fluid phase and dust phase temperature/velocity are similar.

  14. Dynamics of charged bulk viscous collapsing cylindrical source with heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.M.; Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-04-15

    In this paper, we have explored the effects of dissipation on the dynamics of charged bulk viscous collapsing cylindrical source which allows the out-flow of heat flux in the form of radiations. The Misner-Sharp formalism has been implemented to drive the dynamical equation in terms of proper time and radial derivatives. We have investigated the effects of charge and bulk viscosity on the dynamics of collapsing cylinder. To determine the effects of radial heat flux, we have formulated the heat transport equations in the context of Mueller-Israel-Stewart theory by assuming that thermodynamics viscous/heat coupling coefficients can be neglected within some approximations. In our discussion, we have introduced the viscosity by the standard (non-causal) thermodynamics approach. The dynamical equations have been coupled with the heat transport equation; the consequences of the resulting coupled heat equation have been analyzed in detail. (orig.)

  15. Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation

    Directory of Open Access Journals (Sweden)

    Yu Bai

    2017-12-01

    Full Text Available This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.

  16. Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation

    Science.gov (United States)

    Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan

    2017-12-01

    This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.

  17. Large-scale thermal convection of viscous fluids in a faulted system: 3D test case for numerical codes

    Science.gov (United States)

    Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro

    2017-04-01

    In contrast to simple homogeneous 1D and 2D systems, no appropriate analytical solutions exist to test onset of thermal convection against numerical models of complex 3D systems that account for variable fluid density and viscosity as well as permeability heterogeneity (e.g. presence of faults). Owing to the importance of thermal convection for the transport of energy and minerals, the development of a benchmark test for density/viscosity driven flow is crucial to ensure that the applied numerical models accurately simulate the physical processes at hands. The presented study proposes a 3D test case for the simulation of thermal convection in a faulted system that accounts for temperature dependent fluid density and viscosity. The linear stability analysis recently developed by Malkovsky and Magri (2016) is used to estimate the critical Rayleigh number above which thermal convection of viscous fluids is triggered. The numerical simulations are carried out using the finite element technique. OpenGeoSys (Kolditz et al., 2012) and Moose (Gaston et al., 2009) results are compared to those obtained using the commercial software FEFLOW (Diersch, 2014) to test the ability of widely applied codes in matching both the critical Rayleigh number and the dynamical features of convective processes. The methodology and Rayleigh expressions given in this study can be applied to any numerical model that deals with 3D geothermal processes in faulted basins as by example the Tiberas Basin (Magri et al., 2016). References Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B., 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental

  18. Acoustic propagation in viscous fluid with uniform flow and a novel design methodology for ultrasonic flow meter.

    Science.gov (United States)

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-02-01

    Ultrasonic flow meter with non-invasive no-moving-parts construction has good prospective application for space on-orbit fluid gauging. In traditional pulse transit time flow meter, inconsistency of ultrasonic transducers leads to measurement error and plane wave theory, bases of transit time flow meter, is valuable only for low-frequency wave propagation in inviscid fluid and will lose feasibility when fluid viscosity is considered. In this paper, based on the hydrodynamics of viscous fluid, wave propagation with uniform flow profile is mathematically formulated and a novel solution for viscous fluid using potential theory is firstly presented. Then a novel design methodology of continuous ultrasonic flow meter is proposed, where high measurement rangeability and accuracy are guaranteed individually by solving the integral ambiguity using multi-tone wide laning strategy and the fractional phase shift using phase lock loop tracking method. A comparison with transit time ultrasonic flow meter shows the advantage of proposed methodology. In the end, parametric analysis of viscosity on wave propagation and ultrasonic flow meter is compressively investigated. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  19. Fundamentals of Geophysical Fluid Dynamics

    Science.gov (United States)

    McWilliams, James C.

    2006-07-01

    Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org

  20. Collective dynamics of particles from viscous to turbulent flows

    CERN Document Server

    2017-01-01

    The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such met...

  1. Viscous Dissipation Effects on the Motion of Casson Fluid over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution: Boundary Layer Analysis

    Directory of Open Access Journals (Sweden)

    T. M. Ajayi

    2017-01-01

    Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.

  2. DYNAMICAL EVOLUTION OF VISCOUS DISKS AROUND Be STARS. I. PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Haubois, X.; Carciofi, A. C. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP 05508-900 (Brazil); Rivinius, Th. [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Bjorkman, J. E., E-mail: xhaubois@astro.iag.usp.br [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2012-09-10

    Be stars possess gaseous circumstellar disks that modify in many ways the spectrum of the central B star. Furthermore, they exhibit variability at several timescales and for a large number of observables. Putting the pieces together of this dynamical behavior is not an easy task and requires a detailed understanding of the physical processes that control the temporal evolution of the observables. There is an increasing body of evidence that suggests that Be disks are well described by standard {alpha}-disk theory. This paper is the first of a series that aims at studying the possibility of inferring several disk and stellar parameters through the follow-up of various observables. Here we study the temporal evolution of the disk density for different dynamical scenarios, including the disk build-up as a result of a long and steady mass injection from the star, the disk dissipation that occurs after mass injection is turned off, as well as scenarios in which active periods are followed by periods of quiescence. For those scenarios, we investigate the temporal evolution of continuum photometric observables using a three-dimensional non-LTE radiative transfer code. We show that light curves for different wavelengths are specific of a mass loss history, inclination angle, and {alpha} viscosity parameter. The diagnostic potential of those light curves is also discussed.

  3. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  4. Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2016-01-01

    Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.

  5. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    Science.gov (United States)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  6. An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller

    2013-01-01

    are solved using extended boundary conditions that account for: i) negligible temperature fluctuations at the boundary, and ii) normal and tangential matching of the boundary’s particle velocity. The proposed model does not require constructing a special mesh for the viscous and thermal boundary layers...

  7. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube.

    Science.gov (United States)

    Painter, Page R

    2008-07-29

    The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV). The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for more than fifty years is analyzed and shown to yield

  8. A new geometrical model for mixing of highly viscous fluids by combining two-blade and helical screw agitators

    Directory of Open Access Journals (Sweden)

    Hadjeb Abdessalam

    2017-09-01

    Full Text Available Mixing processes are becoming today a huge concern for industrialists in various domains like the pharmaceutical production, oil refining, food industry and manufacture of cosmetic products especially when the processes are related to the mixing of highly viscous products. So the choice of a stirring system for this category of products or fluids must be rigorously examined before use because of the flows which are laminar in the most cases, something that is not good to obtain homogeneous particles or suspensions after the mixing operation. This CFD study allows developing a new geometrical model of mechanical agitator with high performance for mixing of highly viscous fluids. It consists of a combination of two bladed and helical screw agitators. The investigations of the flow structure generated in the vessel are made by using the computer code ANSYS CFX (version 13.0, which allows us to realize and test the effectiveness of the new stirrer on the resulting mixture and power consumption.

  9. Swimming at small Reynolds number of a planar assembly of spheres in an incompressible viscous fluid with inertia

    Science.gov (United States)

    Felderhof, B. U.

    2017-09-01

    Translational and rotational swimming at small Reynolds numbers of a planar assembly of identical spheres immersed in an incompressible viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The translational and rotational swimming velocities of the assembly are deduced from momentum and angular momentum balance equations. The mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocities and the mean power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated for prescribed periodic displacements. Explicit calculations are performed for three spheres interacting such that they form an equilateral triangle in the rest frame of the configuration.

  10. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions

    International Nuclear Information System (INIS)

    Zhang, Rui; Schweizer, Kenneth S.

    2015-01-01

    We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant

  11. Computational methods for fluid dynamics

    CERN Document Server

    Ferziger, Joel H

    2002-01-01

    In its 3rd revised and extended edition the book offers an overview of the techniques used to solve problems in fluid mechanics on computers and describes in detail those most often used in practice. Included are advanced methods in computational fluid dynamics, like direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, free surface flows. The 3rd edition contains a new section dealing with grid quality and an extended description of discretization methods. The book shows common roots and basic principles for many different methods. The book also contains a great deal of practical advice for code developers and users, it is designed to be equally useful to beginners and experts. The issues of numerical accuracy, estimation and reduction of numerical errors are dealt with in detail, with many examples. A full-feature user-friendly demo-version of a commercial CFD software has been added, which ca...

  12. Principles of computational fluid dynamics

    CERN Document Server

    Wesseling, Pieter

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state-of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and ho...

  13. A Two-Phase Flow Solver for Incompressible Viscous Fluids, Using a Pure Streamfunction Formulation and the Volume of Fluid Technique

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variable...... of the flow. Contrary to fractional step methods, the streamfunction formulation eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds numbers. The interface is tracked...

  14. A Two-Phase Flow Solver for Incompressible Viscous Fluids, Using a Pure Streamfunction Formulation and the Volume of Fluid Technique

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2014-01-01

    Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variable...... of the flow. Contrary to fractional step methods, the streamfunction formulation eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds numbers. The interface is tracked...

  15. Application of mathematical model for high viscous damper to dynamic analysis of NPP pipings

    International Nuclear Information System (INIS)

    Kostarev, V.V.; Bercovsky, A.M.; Kireev, O.B.; Vasiliev, P.S.

    1993-01-01

    The problems of dynamic analysis of Nuclear Power Plants (NPP) piping systems are considered in the paper. The special calculation program for PC has been developed that enables to estimate the seismic margin for any piping system with different antiseismic devices having nonlinear characteristics. The calculated comparison has been done for two antiseismic supports that are widely used now, namely: a High Viscous Damper (HVD) and a Seismic Stop Support (SSS) with the application, as an example, to the well known pipeline BM3 (USNRC). (author)

  16. Application of mathematical model for high viscous damper to dynamic analysis of NPP pipings

    Energy Technology Data Exchange (ETDEWEB)

    Kostarev, V V; Bercovsky, A M; Kireev, O B; Vasiliev, P S [CKTI VIBROSEISM (CVS), St. Petersburg (Russian Federation)

    1993-07-01

    The problems of dynamic analysis of Nuclear Power Plants (NPP) piping systems are considered in the paper. The special calculation program for PC has been developed that enables to estimate the seismic margin for any piping system with different antiseismic devices having nonlinear characteristics. The calculated comparison has been done for two antiseismic supports that are widely used now, namely: a High Viscous Damper (HVD) and a Seismic Stop Support (SSS) with the application, as an example, to the well known pipeline BM3 (USNRC). (author)

  17. A numerical model for dynamic crustal-scale fluid flow

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  18. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    Energy Technology Data Exchange (ETDEWEB)

    Hogg, J. Drew; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-07-10

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ − ϕ stress that is less than the generic r − ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.

  19. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    International Nuclear Information System (INIS)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs

  20. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

  1. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  2. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  3. Principles of computational fluid dynamics

    International Nuclear Information System (INIS)

    Wesseling, P.

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state- of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and how to overcome it by means of slope-limited schemes is discussed. An introduction is given to efficient iterative solution methods, using Krylov subspace and multigrid acceleration. Many pointers are given to recent literature, to help the reader to quickly reach the current research frontier. (orig.)

  4. Fluid dynamics of Ribbed Annuli

    International Nuclear Information System (INIS)

    McCreery, G. E.; Pink, R. J.; Condie, K. G.; McEligot, D. M.

    2003-01-01

    Typical advanced gas-cooled reactor designs use periodic spacer ribs to center rods in circular cooling channels, e.g., as for control rods (General Atomics and others) and fuel rods (HTTR). In contrast to classical studies of axisymmetric annuli, the flow becomes three-dimensional but is typically periodic in the circumferential direction and - in some cases - in the streamwise direction. Fundamental measurements have been obtained for two idealizations of these complex geometries: an annulus with three ribs circumferentially and one with four. Laser Doppler Velocimetry (LDV) was employed with INEEL's unique Matched-Index-of-Refraction (MIR) flow facility to determine the velocity and turbulence fields. The initial experiment was aimed at obtaining benchmark data to test the capabilities of CFD (Computational Fluid Dynamics) codes to handle ribbed annular geometries without the complications of turbulent transport. The Reynolds number was about 1120. These conditions correspond to some stages during a pressurized cooldown (LOFA) event. Power spectral densities were obtained to determine the eddy shedding frequency downstream of the ribs. For the second experiment LDV measurements were obtained in another ribbed-annular model at a higher flow rate. For this nominally turbulent flow, evidence of laminarization appears in the flow converging to pass between ribs. The measurements indicated flow details which could be useful for assessment of CFD codes

  5. Translational friction coefficient of a permeable cylinder in a sheet of viscous fluid

    NARCIS (Netherlands)

    Wiegel, F.W.

    1979-01-01

    The author calculates the translational friction coefficient and the translational diffusion coefficient of a permeable cylinder moving in a sheet of fluid which is embedded on both sides in a fluid of much lower viscosity. The result, which is an asymptotic expression valid in the limit of small

  6. Quasiadiabatic modes from viscous inhomogeneities

    CERN Document Server

    Giovannini, Massimo

    2016-04-20

    The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...

  7. Kaluza-Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R, T) Gravity

    Science.gov (United States)

    Samanta, Gauranga Charan; Myrzakulov, Ratbay; Shah, Parth

    2017-04-01

    The authors considered the bulk viscous fluid in f(R, T) gravity within the framework of Kaluza-Klein space time. The bulk viscous coefficient (ξ) expressed as ξ = {ξ_0} + {ξ_1}{{\\dot a} \\over a} + {ξ_2}{{\\ddot a} \\over {\\dot a}}, where ξ0, ξ1, and ξ2 are positive constants. We take p=(γ-1)ρ, where 0≤γ≤2 as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are given by assuming a particular model of the form of f(R, T)=R+2f(T), where f(T)=λT, λ is constant. We studied the cosmological model in two stages, in first stage: we studied the model with no viscosity, and in second stage: we studied the model involve with viscosity. The cosmological model involve with viscosity is studied by five possible scenarios for bulk viscous fluid coefficient (ξ). The total bulk viscous coefficient seems to be negative, when the bulk viscous coefficient is proportional to {ξ _2}{{\\ddot a} \\over {\\dot a}}, hence, the second law of thermodynamics is not valid; however, it is valid with the generalised second law of thermodynamics. The total bulk viscous coefficient seems to be positive, when the bulk viscous coefficient is proportional to ξ = {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}} and ξ = {ξ _0} + {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}}, so the second law of thermodynamics and the generalised second law of thermodynamics is satisfied throughout the evolution. We calculate statefinder parameters of the model and observed that it is different from the ∧CDM model. Finally, some physical and geometrical properties of the models are discussed.

  8. Effect of inertia on laminar swimming and flying of an assembly of rigid spheres in an incompressible viscous fluid

    Science.gov (United States)

    Felderhof, B. U.

    2015-11-01

    A mechanical model of swimming and flying in an incompressible viscous fluid in the absence of gravity is studied on the basis of assumed equations of motion. The system is modeled as an assembly of rigid spheres subject to elastic direct interactions and to periodic actuating forces which sum to zero. Hydrodynamic interactions are taken into account in the virtual mass matrix and in the friction matrix of the assembly. An equation of motion is derived for the velocity of the geometric center of the assembly. The mean power is calculated as the mean rate of dissipation. The full range of viscosity is covered, so that the theory can be applied to the flying of birds, as well as to the swimming of fish or bacteria. As an example a system of three equal spheres moving along a common axis is studied.

  9. Phase space density representations in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1989-01-01

    Phase space density representations of inviscid fluid dynamics were recently discussed by Abarbanel and Rouhi. Here it is shown that such representations may be simply derived and interpreted by means of the Liouville equation corresponding to the dynamical system of ordinary differential equations that describes fluid particle trajectories. The Hamiltonian and Poisson bracket for the phase space density then emerge as immediate consequences of the corresponding structure of the dynamics. For barotropic fluids, this approach leads by direct construction to the formulation presented by Abarbanel and Rouhi. Extensions of this formulation to inhomogeneous incompressible fluids and to fluids in which the state equation involves an additional transported scalar variable are constructed by augmenting the single-particle dynamics and phase space to include the relevant additional variable

  10. Natural convection in Bingham plastic fluids from an isothermal spheroid: Effects of fluid yield stress, viscous dissipation and temperature-dependent viscosity

    Science.gov (United States)

    Gupta, Anoop Kumar; Gupta, Sanjay; Chhabra, Rajendra Prasad

    2017-08-01

    In this work, the buoyancy-induced convection from an isothermal spheroid is studied in a Bingham plastic fluid. Extensive results on the morphology of approximate yield surfaces, temperature profiles, and the local and average Nusselt numbers are reported to elucidate the effects of the pertinent dimensionless parameters: Rayleigh number, 102 ≤ Ra ≤ 106; Prandtl number, 20 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 103, and aspect ratio, 0.2 ≤ e ≤ 5. Due to the fluid yield stress, fluid-like (yielded) and solid-like (unyielded) regions coexist in the flow domain depending upon the prevailing stress levels vis-a-vis the value of the fluid yield stress. The yielded parts progressively grow in size with the rising Rayleigh number while this tendency is countered by the increasing Bingham and Prandtl numbers. Due to these two competing effects, a limiting value of the Bingham number ( Bn max) is observed beyond which heat transfer occurs solely by conduction due to the solid-like behaviour of the fluid everywhere in the domain. Such limiting values bear a positive dependence on the Rayleigh number ( Ra) and aspect ratio ( e). In addition to this, oblate shapes ( e 1) impede it. Finally, simple predictive expressions for the maximum Bingham number and the average Nusselt number are developed which can be used to predict a priori the overall heat transfer coefficient in a new application. Also, a criterion is developed in terms of the composite parameter Bn• Gr-1/2 which predicts the onset of convection in such fluids. Similarly, another criterion is developed which delineates the conditions for the onset of settling due to buoyancy effects. The paper is concluded by presenting limited results to delineate the effects of viscous dissipation and the temperature-dependent viscosity on the Nusselt number. Both these effects are seen to be rather small in Bingham plastic fluids.

  11. An introduction to Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    1999-01-01

    CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building.......CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building....

  12. Time-asymptotic interaction of flocking particles and an incompressible viscous fluid

    International Nuclear Information System (INIS)

    Bae, Hyeong-Ohk; Choi, Young-Pil; Ha, Seung-Yeal; Kang, Moon-Jin

    2012-01-01

    We present a new coupled kinetic-fluid model for the interactions between Cucker–Smale (C–S) flocking particles and incompressible fluid on the periodic spatial domain T d . Our coupled system consists of the kinetic C–S equation and the incompressible Navier–Stokes equations, and these two systems are coupled through the drag force. For the proposed model, we provide a global existence of weak solutions and a priori time-asymptotic exponential flocking estimates for any smooth flow, when the kinematic viscosity of the fluid is sufficiently large. The velocity of individual C–S particles and fluid velocity tend to the averaged time-dependent particle velocities exponentially fast

  13. On the dynamics of liquids in their viscous regime approaching the glass transition.

    Science.gov (United States)

    Chen, Z; Angell, C A; Richert, R

    2012-07-01

    Recently, Mallamace et al. (Eur. Phys. J. E 34, 94 (2011)) proposed a crossover temperature, T(×), and claimed that the dynamics of many supercooled liquids follow an Arrhenius-type temperature dependence between T(×) and the glass transition temperature T(g). The opposite, namely super-Arrhenius behavior in this viscous regime, has been demonstrated repeatedly for molecular glass-former, for polymers, and for the majority of the exhaustively studied inorganic glasses of technological interest. Therefore, we subject the molecular systems of the Mallamace et al. study to a "residuals" analysis and include not only viscosity data but also the more precise data available from dielectric relaxation experiments over the same temperature range. Although many viscosity data sets are inconclusive due to their noise level, we find that Arrhenius behavior is not a general feature of viscosity in the T(g) to T(×) range. Moreover, the residuals of dielectric relaxation times with respect to an Arrhenius law clearly reveal systematic curvature consistent with super-Arrhenius behavior being an endemic feature of transport properties in this viscous regime. We also observe a common pattern of how dielectric relaxation times decouple slightly from viscosity.

  14. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Shilling, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Zelenyuk, Alla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Liu, Jiumeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Bell, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. of Atmospheric Chemistry; D’Ambro, Emma L. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Gaston, Cassandra J. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences; Univ. of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Thornton, Joel A. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Laskin, Alexander [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Lin, Peng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Wilson, Jacqueline [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Easter, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Wang, Jian [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental & Climate Sciences Dept.; Bertram, Allan K. [Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Chemistry; Martin, Scot T. [Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences (SEAS) and Dept. of Earth and Planetary Sciences; Seinfeld, John H. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Div. of Chemistry and Chemical Engineering and Div. of Engineering and Applied Science; Worsnop, Douglas R. [Aerodyne Research, Billerica, MA (United States). Center for Aerosol and Cloud Chemistry

    2017-12-15

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.

  15. A study to investigate viscous coupling effects on the hydraulic conductance of fluid layers in two-phase flow at the pore level.

    Science.gov (United States)

    Shams, Mosayeb; Raeini, Ali Q; Blunt, Martin J; Bijeljic, Branko

    2018-07-15

    This paper examines the role of momentum transfer across fluid-fluid interfaces in two-phase flow. A volume-of-fluid finite-volume numerical method is used to solve the Navier-Stokes equations for two-phase flow at the micro-scale. The model is applied to investigate viscous coupling effects as a function of the viscosity ratio, the wetting phase saturation and the wettability, for different fluid configurations in simple pore geometries. It is shown that viscous coupling effects can be significant for certain pore geometries such as oil layers sandwiched between water in the corner of mixed wettability capillaries. A simple parametric model is then presented to estimate general mobility terms as a function of geometric properties and viscosity ratio. Finally, the model is validated by comparison with the mobilities computed using direct numerical simulation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Introduction to mathematical fluid dynamics

    CERN Document Server

    Meyer, Richard E

    2010-01-01

    An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.

  17. Experimental and theoretical advances in fluid dynamics

    CERN Document Server

    Klapp, Jaime; Fuentes, Oscar Velasco

    2011-01-01

    The book is comprised of lectures and selected contributions presented at the Enzo Levi and XVI Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2010. It is aimed at fourth year undergraduate and graduate students, as well as scientists in the fields of physics, engineering and chemistry with an interest in fluid dynamics from the experimental and theoretical point of view. The lectures are introductory and avoid the use of complicated mathematics. The other selected contributions are also geared to fourth year undergraduate and graduate students. The fluid dynam

  18. Bubble dynamics equations in Newton fluid

    International Nuclear Information System (INIS)

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  19. Fluid dynamics computer programs for NERVA turbopump

    Science.gov (United States)

    Brunner, J. J.

    1972-01-01

    During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.

  20. Parallel processing for fluid dynamics applications

    International Nuclear Information System (INIS)

    Johnson, G.M.

    1989-01-01

    The impact of parallel processing on computational science and, in particular, on computational fluid dynamics is growing rapidly. In this paper, particular emphasis is given to developments which have occurred within the past two years. Parallel processing is defined and the reasons for its importance in high-performance computing are reviewed. Parallel computer architectures are classified according to the number and power of their processing units, their memory, and the nature of their connection scheme. Architectures which show promise for fluid dynamics applications are emphasized. Fluid dynamics problems are examined for parallelism inherent at the physical level. CFD algorithms and their mappings onto parallel architectures are discussed. Several example are presented to document the performance of fluid dynamics applications on present-generation parallel processing devices

  1. Relativistic Fluid Dynamics Far From Local Equilibrium

    Science.gov (United States)

    Romatschke, Paul

    2018-01-01

    Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.

  2. Self-propelled motion in a viscous compressible fluid –unbounded domains

    Czech Academy of Sciences Publication Activity Database

    Mácha, Václav; Nečasová, Šárka

    2016-01-01

    Roč. 26, č. 4 (2016), s. 627-643 ISSN 0218-2025 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : self-propelled motion * compressible fluid * deformable structure Subject RIV: BA - General Mathematics Impact factor: 2.860, year: 2016 http://www.worldscientific.com/doi/10.1142/S0218202516500123

  3. Feeding of swimming Paramecium with fore-aft asymmetry in viscous fluid

    Science.gov (United States)

    Zhang, Peng; Jana, Saikat; Giarra, Matthew; Vlachos, Pavlos; Jung, Sunghwan

    2013-11-01

    Swimming behaviours and feeding efficiencies of Paramecium Multimicronucleatum with fore-aft asymmetric body shapes are studied experimentally and numerically. Among various possible swimming ways, ciliates typically exhibit only one preferred swimming directions in favorable conditions. Ciliates, like Paramecia, with fore-aft asymmetric shapes preferably swim towards the slender anterior while feeding fluid to the oral groove located at the center of the body. Since both feeding and swimming efficiencies are influenced by fluid motions around the body, it is important to reveal the fluid mechanics around a moving object. Experimentally, μ-PIV methods are employed to characterize the source-dipole streamline patterns and fluid motions around Paramecium. Numerical simulations by boundary element methods are also used to evaluate surface stresses and velocities, which give insights into the efficiencies of swimming and feeding depending on body asymmetry. It is concluded that a slender anterior and fat posterior increases the combined efficiency of swimming and feeding, which matches well with actual shapes of Paramecium. Discrepancies between experiments and simulations are also discussed.

  4. Robustness of one-dimensional viscous fluid motion under multidimensional perturbations

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Sun, Y.

    2015-01-01

    Roč. 259, č. 12 (2015), s. 7529-7539 ISSN 0022-0396 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes equations * 1-D compressible fluid flow * relative energy Subject RIV: BA - General Mathematics Impact factor: 1.821, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022039615004325

  5. The magnetic interaction of Janus magnetic particles suspended in a viscous fluid

    NARCIS (Netherlands)

    Seong, Y.; Kang, T.G.; Hulsen, M.A.; den Toonder, J.M.J.; Anderson, P.D.

    2016-01-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and non-magnetic sides. A direct numerical scheme is

  6. One-dimensional reduction of viscous jets. II. Applications

    Science.gov (United States)

    Pitrou, Cyril

    2018-04-01

    In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.

  7. Blockage effects on viscous fluid flow and heat transfer past a magnetic obstacle in a duct

    International Nuclear Information System (INIS)

    Zhang Xi-Dong; Huang Hu-Lin

    2013-01-01

    The effect of lateral walls on fluid flow and heat transfer is investigated when a fluid passes a magnetic obstacle. The blockage ratio β that represents the ratio between the width of external magnet M y and the spanwise width L y is employed to depict the effect. The finite volume method (FVM) based on the PISO algorithm is applied for the blockage ratios of 0.2, 0.3, and 0.4. The results show that the value of Strouhal number St increases as the blockage ratio β increases, and for small β, the variation of St is very small when the interaction parameter and Reynolds number are increasing. Moreover, the cross-stream mixing induced by the magnetic obstacle can enhance the wall-heat transfer and the maximum value of the overall heat transfer increment is about 50.5%

  8. Construction of a Lyapunov functional for 1D-viscous compressible barotropic fluid equations admitting vacua

    Czech Academy of Sciences Publication Activity Database

    Penel, P.; Straškraba, Ivan

    2010-01-01

    Roč. 134, č. 3 (2010), s. 278-294 ISSN 0007-4497 R&D Projects: GA ČR GA201/08/0012 Institutional research plan: CEZ:AV0Z10190503 Keywords : compressible fluid * Navier-Stokes equations * asymptotic behavior Subject RIV: BA - General Mathematics Impact factor: 0.722, year: 2010 http://www.sciencedirect.com/science/article/pii/S0007449709000153

  9. Technical Competencies Applied in Experimental Fluid Dynamics

    Science.gov (United States)

    Tagg, Randall

    2017-11-01

    The practical design, construction, and operation of fluid dynamics experiments require a broad range of competencies. Three types are instrumental, procedural, and design. Respective examples would be operation of a spectrum analyzer, soft-soldering or brazing flow plumbing, and design of a small wind tunnel. Some competencies, such as the selection and installation of pumping systems, are unique to fluid dynamics and fluids engineering. Others, such as the design and construction of electronic amplifiers or optical imaging systems, overlap with other fields. Thus the identification and development of learning materials and methods for instruction are part of a larger effort to identify competencies needed in active research and technical innovation.

  10. Modern fluid dynamics for physics and astrophysics

    CERN Document Server

    Regev, Oded; Yecko, Philip A

    2016-01-01

    This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It...

  11. International Conference on Mathematical Fluid Dynamics

    CERN Document Server

    Suzuki, Yukihito

    2016-01-01

    This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.

  12. Essential Fluid Dynamics for Scientists

    Science.gov (United States)

    Braithwaite, Jonathan

    2017-12-01

    The book is an introduction to the subject of fluid mechanics, essential for students and researchers in many branches of science. It illustrates its fundamental principles with a variety of examples drawn mainly from astrophysics and geophysics as well as from everyday experience. Prior familiarity with basic thermodynamics and vector calculus is assumed.

  13. Vortex dynamics in plasmas and fluids

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Lynov, Jens-Peter; Hesthaven, J.S.

    1994-01-01

    The existence and dynamics of vortical structures in both homogeneous and inhomogeneous systems will be discussed. In particular the dynamics of monopolar and dipolar vortices in a plasma with nonuniform density and in a rotating fluid with varying Coriolis force is described. The role of vortica...

  14. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio Enrique [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    Injection of carbon dioxide (CO2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO2 and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO2-H2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO2) the viscosity of carbon

  15. Relativistic fluid dynamics with spin

    Science.gov (United States)

    Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico

    2018-04-01

    Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.

  16. Modeling of fiber orientation in viscous fluid flow with application to self-compacting concrete

    Science.gov (United States)

    Kolařík, Filip; Patzák, Bořek

    2013-10-01

    In recent years, unconventional concrete reinforcement is of growing popularity. Especially fiber reinforcement has very wide usage in high performance concretes like "Self Compacting Concrete" (SCC). The design of advanced tailor-made structures made of SCC can take advantage of anisotropic orientation of fibers. Tools for fiber orientation predictions can contribute to design of tailor made structure and allow to develop casting procedures that enable to achieve the desired fiber distribution and orientation. This paper deals with development and implementation of suitable tool for prediction of fiber orientation in a fluid based on the knowledge of the velocity field. Statistical approach to the topic is employed. Fiber orientation is described by a probability distribution of the fiber angle.

  17. Effect of viscous dissipation of a magneto hydrodynamic micropolar fluid with momentum and temperature dependent slip flow

    Science.gov (United States)

    Gangadhar, K.; Kumar, Sathies; Lakshmi Narayana, K.; Subhakar, M. J.; Rushi Kumar, B.

    2017-11-01

    In this paper, MHD flow and heat transfer of electrically conducting micro polar fluid over a permeable stretching surface with slip flow in the existence of viscous dissipation and temperature dependent slip flow are investigated. With the help of similarity transformations, the fundamental equations have been altered into a system of ordinary differential equations. It is difficult to solve these equations methodically. That’s why we used bvp4c MATLAB solver. We found the Numerical values for the wall couple stress, skin-friction coefficient, and the local Nusselt number in addition to the micro rotation, velocity, and temperature reports for diverse values of the principal parameters like thermal slip parameter, material parameter, magnetic parameter, heat generation/absorption parameter, velocity slip parameter and Eckert number It is observed that the values of suction/injection parameters rise corresponding to the lessening in the values of velocity, angular velocity, and temperature. Moreover, the change in the values of the Eckert number is opposite to the change in the values of the local Nusselt number.

  18. Unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface

    Science.gov (United States)

    Dholey, S.

    2018-04-01

    In this paper, we have investigated numerically the laminar unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface in the presence of a time dependent free stream velocity which causes the unsteadiness of this flow problem. The plate is assumed to move in the same or opposite direction of the free stream velocity. The flow is therefore governed by the velocity ratio parameter λ (ratio of the plate velocity to the free stream velocity) and the unsteadiness parameter β. When the plate surface moves in the same direction of the free stream velocity (i.e., when λ > 0), the solution of this flow problem continues for any given value of β. On the other hand, when they move in opposite directions (i.e., when λ heat transfer analysis is that for a given value of λ(= 0), first the heat transfer rate increases with the increase of the Prandtl number Pr and after attaining a maximum value, it decreases and finally tends to be zero for large values of Pr depending upon the values of β > 0. On the contrary, for a given value of β(≤ 0), the rate of heat transfer increases consistently with the increase of Pr.

  19. Directed motion of spheres induced by unbiased driving forces in viscous fluids beyond the Stokes' law regime

    Science.gov (United States)

    Casado-Pascual, Jesús

    2018-03-01

    The emergence of directed motion is investigated in a system consisting of a sphere immersed in a viscous fluid and subjected to time-periodic forces of zero average. The directed motion arises from the combined action of a nonlinear drag force and the applied driving forces, in the absence of any periodic substrate potential. Necessary conditions for the existence of such directed motion are obtained and an analytical expression for the average terminal velocity is derived within the adiabatic approximation. Special attention is paid to the case of two mutually perpendicular forces with sinusoidal time dependence, one with twice the period of the other. It is shown that, although neither of these two forces induces directed motion when acting separately, when added together, the resultant force generates directed motion along the direction of the force with the shortest period. The dependence of the average terminal velocity on the system parameters is analyzed numerically and compared with that obtained using the adiabatic approximation. Among other results, it is found that, for appropriate parameter values, the direction of the average terminal velocity can be reversed by varying the forcing strength. Furthermore, certain aspects of the observed phenomenology are explained by means of symmetry arguments.

  20. Experimental and computational fluid dynamics studies of mixing of complex oral health products

    Science.gov (United States)

    Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team

    2017-11-01

    Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).

  1. Surface Waves and Flow-Induced Oscillations along an Underground Elliptic Cylinder Filled with a Viscous Fluid

    Science.gov (United States)

    Sakuraba, A.

    2015-12-01

    I made a linear analysis of flow-induced oscillations along an underground cylindrical conduit with an elliptical cross section on the basis of the hypothesis that volcanic tremor is a result of magma movement through a conduit. As a first step to understand how the self oscillation occurs because of magma flow, I investigated surface wave propagation and attenuation along an infinitely long fluid-filled elliptic cylinder in an elastic medium. The boundary element method is used to obtain the two-dimensional wave field around the ellipse in the frequency-wavenumber domain. When the major axis is much greater than the minor axis of the ellipse, we obtain the analytic form of the dispersion relation of both the crack-wave mode (Korneev 2008, Lipovsky & Dunham 2015) and the Rayleigh-wave mode with flexural deformation. The crack-wave mode generally has a slower phase speed and a higher attenuation than the Rayleigh-wave mode. In the long-wavelength limit, the crack-wave mode disappears because of fluid viscosity, but the Rayleigh-wave mode exists with a constant Q-value that depends on viscosity. When the aspect ratio of the ellipse is finite, the surface waves can basically be understood as those propagating along a fluid pipe. The flexural mode does exist even when the wavelength is much longer than the major axis, but its phase speed coincides with that of the surrounding S-wave (Randall 1991). As its attenuation is zero in the long-wavelength limit, the flexural mode differs in nature from surface wave. I also obtain a result on linear stability of viscous flow through an elliptic cylinder. In this analysis, I made an assumption that the fluid inertia is so small that the Stokes equation can be used. As suggested by the author's previous study (Sakuraba & Yamauchi 2014), the flexural (Rayleigh-wave) mode is destabilized at a critical flow speed that decreases with the wavelength. However, when the wavelength is much greater than the major axis of the ellipse, the

  2. Colour in visualisation for computational fluid dynamics

    OpenAIRE

    Kinnear, D; Atherton, MA; Collins, MW; Dokhan, J; Karayiannis, TG

    2006-01-01

    Colour is used in computational fluid dynamic (CFD) simulations in two key ways. First it is used to visualise the geometry and allow the engineers to be confident that the model constructed is a good representation of the engineering situation. Once an analysis has been completed, colour is used in post-processing the data from the simulations to illustrate the complex fluid mechanic phenomena under investigation. This paper describes these two uses of colour and provides some examples to il...

  3. Cochlear Outer-Hair-Cell Power Generation and Viscous Fluid Loss

    Science.gov (United States)

    Wang, Yanli; Steele, Charles R.; Puria, Sunil

    2016-01-01

    Since the discovery of otoacoustic emissions and outer hair cell (OHC) motility, the fundamental question of whether the cochlea produces mechanical power remains controversial. In the present work, direct calculations are performed on power loss due to fluid viscosity and power generated by the OHCs. A three-dimensional box model of the mouse cochlea is used with a feed-forward/feed-backward approximation representing the organ of Corti cytoarchitecture. The model is fit to in vivo basilar membrane motion with one free parameter for the OHCs. The calculations predict that the total power output from the three rows of OHCs can be over three orders of magnitude greater than the acoustic input power at 10 dB sound pressure level (SPL). While previous work shows that the power gain, or the negative damping, diminishes with intensity, we show explicitly based on our model that OHC power output increases and saturates with SPL. The total OHC power output is about 2 pW at 80 dB SPL, with a maximum of about 10 fW per OHC.

  4. Performance of Twin-Fluid Atomizers for Atomization of Viscous Solutions

    Directory of Open Access Journals (Sweden)

    Mlkvik Marek

    2015-01-01

    Full Text Available Presented paper deals with a comparison of two internally mixing twin fluid atomizers. The well - known Y- jet atomizer and so called outside-in-liquid effervescent atomizer (OUIL were investigated. The working regimes were defined by the pressure drop (Δp and the gas to the liquid ratio (GLR. The internal and the external two-phase flows of both atomizers were studied. The influence of the mixing mechanism on the internal flow was evaluated by the gas to the liquid momentum ratio (Φ. In advance, the stability of the separated flow (liquid film was examined in term of the critical wavelength of the surface disturbances (λc. The external flow was observed by the high – speed camera. The influence of the basic forces on the deformation of the liquid was determined by a dimensionless criterion w·μ / σ. The values of Φ 3, where the liquid momentum overcomes the gas momentum. The values of w·μ / σ> 20 for both atomizers indicates the dominant influence of the viscosity and the drag force on the breakup process.

  5. Chaotic dynamics in dense fluids

    International Nuclear Information System (INIS)

    Posch, H.A.; Hoover, W.G.

    1987-09-01

    We present calculations of the full spectra of Lyapunov exponents for 8- and 32-particle systems with periodic boundary conditions and interacting with the repulsive part of a Lennard-Jones potential both in equilibrium and nonequilibrium steady states. Lyapunov characteristic exponents λ/sub n/ describe the mean exponential rates of divergence and convergence of neighbouring trajectories in phase-space. They are useful in characterizing the stochastic properties of a dynamical system. A new algorithm for their calculation is presented which incorporates ideas from control theory and constraint nonequilibrium molecular dynamics. 4 refs., 1 fig

  6. Computational Fluid Dynamics and Room Air Movement

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2004-01-01

    on the mass fraction transport equation. The importance of ?false? or numerical diffusion is also addressed in connection with the simple description of a supply opening. The different aspects of boundary conditions in the indoor environment as e.g. the simulation of Air Terminal Devices and the simulation......Nielsen, P.V. Computational Fluid Dynamics and Room Air Movement. Indoor Air, International Journal of Indoor Environment and Health, Vol. 14, Supplement 7, pp. 134-143, 2004. ABSTRACT Computational Fluid Dynamics (CFD) and new developments of CFD in the indoor environment as well as quality...... considerations are important elements in the study of energy consumption, thermal comfort and indoor air quality in buildings. The paper discusses the quality level of Computational Fluid Dynamics and the involved schemes (first, second and third order schemes) by the use of the Smith and Hutton problem...

  7. Modeling of heat and high viscous fluid distributions with variable viscosity in a permeable channel

    Directory of Open Access Journals (Sweden)

    J Hona

    2016-10-01

    Full Text Available The flow field under study is characterized by velocity components, temperature and pressure in non-dimensional formulation. The flow is driven by suction through the horizontal channel with permeable walls fixed at different temperatures. In order to ascertain a better understanding of the dynamic behavior of the flow, the Navier-Stokes equations and the energy equation are solved concurrently applying a similarity transformation technique. The hydrodynamic structures obtained from the numerical integration include flow reversal or backward flow, collision zones due to the coexistence of wall suction and flow reversal inside the channel, the inflection through temperature distribution, the growth of thermal gradients near the walls, and the sensitivity of normal pressure gradients to the difference of temperatures at boundaries. These hydrodynamic structures are investigated considering the influences of the Péclet number P and the sensitivity of viscosity to thermal variations α which are the main control parameters of the problem.

  8. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam

    International Nuclear Information System (INIS)

    Khosravian, N; Rafii-Tabar, H

    2008-01-01

    In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities

  9. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam

    Energy Technology Data Exchange (ETDEWEB)

    Khosravian, N; Rafii-Tabar, H [Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: rafii-tabar@nano.ipm.ac.ir

    2008-07-09

    In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities.

  10. Challenges in fluid dynamics a new approach

    CERN Document Server

    Zeytounian, R Kh

    2017-01-01

    This monograph presents a synopsis of fluid dynamics based on the personal scientific experience of the author who has contributed immensely to the field. The interested reader will also benefit from the general historical context in which the material is presented in the book. The book covers a wide range of relevant topics of the field, and the main tool being rational asymptotic modelling (RAM) approach. The target audience primarily comprises experts in the field of fluid dynamics, but the book may also be beneficial for graduate students.

  11. Dynamics of a Highly Viscous Circular Blob in Homogeneous Porous Media

    Directory of Open Access Journals (Sweden)

    Vandita Sharma

    2017-06-01

    Full Text Available Viscous fingering is ubiquitous in miscible displacements in porous media, in particular, oil recovery, contaminant transport in aquifers, chromatography separation, and geological CO2 sequestration. The viscosity contrasts between heavy oil and water is several orders of magnitude larger than typical viscosity contrasts considered in the majority of the literature. We use the finite element method (FEM-based COMSOL Multiphysics simulator to simulate miscible displacements in homogeneous porous media with very large viscosity contrasts. Our numerical model is suitable for a wide range of viscosity contrasts covering chromatographic separation as well as heavy oil recovery. We have successfully captured some interesting and previously unexplored dynamics of miscible blobs with very large viscosity contrasts in homogeneous porous media. We study the effect of viscosity contrast on the spreading and the degree of mixing of the blob. Spreading (variance of transversely averaged concentration follows the power law t 3 . 34 for the blobs with viscosity ∼ O ( 10 2 and higher, while degree of mixing is found to vary non-monotonically with log-mobility ratio. Moreover, in the limit of very large viscosity contrast, the circular blob behaves like an erodible solid body and the degree of mixing approaches the viscosity-matched case.

  12. Fluid dynamics of bubbly flows

    International Nuclear Information System (INIS)

    Ziegenhein, Thomas

    2016-01-01

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  13. Fluid dynamics of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenhein, Thomas

    2016-07-08

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  14. Mesoscale Models of Fluid Dynamics

    Science.gov (United States)

    Boghosian, Bruce M.; Hadjiconstantinou, Nicolas G.

    During the last half century, enormous progress has been made in the field of computational materials modeling, to the extent that in many cases computational approaches are used in a predictive fashion. Despite this progress, modeling of general hydrodynamic behavior remains a challenging task. One of the main challenges stems from the fact that hydrodynamics manifests itself over a very wide range of length and time scales. On one end of the spectrum, one finds the fluid's "internal" scale characteristic of its molecular structure (in the absence of quantum effects, which we omit in this chapter). On the other end, the "outer" scale is set by the characteristic sizes of the problem's domain. The resulting scale separation or lack thereof as well as the existence of intermediate scales are key to determining the optimal approach. Successful treatments require a judicious choice of the level of description which is a delicate balancing act between the conflicting requirements of fidelity and manageable computational cost: a coarse description typically requires models for underlying processes occuring at smaller length and time scales; on the other hand, a fine-scale model will incur a significantly larger computational cost.

  15. Self-organization phenomena and decaying self-similar state in two-dimensional incompressible viscous fluids

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi; Serizawa, Shunsuke; Nakano, Akihiro; Takahashi, Toshiki; Van Dam, James W.

    2004-01-01

    The final self-similar state of decaying two-dimensional (2D) turbulence in 2D incompressible viscous flow is analytically and numerically investigated for the case with periodic boundaries. It is proved by theoretical analysis and simulations that the sinh-Poisson state cω=-sinh(βψ) is not realized in the dynamical system of interest. It is shown by an eigenfunction spectrum analysis that a sufficient explanation for the self-organization to the decaying self-similar state is the faster energy decay of higher eigenmodes and the energy accumulation to the lowest eigenmode for given boundary conditions due to simultaneous normal and inverse cascading by nonlinear mode couplings. The theoretical prediction is demonstrated to be correct by simulations leading to the lowest eigenmode of {(1,0)+(0,1)} of the dissipative operator for the periodic boundaries. It is also clarified that an important process during nonlinear self-organization is an interchange between the dominant operators, which leads to the final decaying self-similar state

  16. A Blast Wave Model With Viscous Corrections

    Science.gov (United States)

    Yang, Z.; Fries, R. J.

    2017-04-01

    Hadronic observables in the final stage of heavy ion collision can be described well by fluid dynamics or blast wave parameterizations. We improve existing blast wave models by adding shear viscous corrections to the particle distributions in the Navier-Stokes approximation. The specific shear viscosity η/s of a hadron gas at the freeze-out temperature is a new parameter in this model. We extract the blast wave parameters with viscous corrections from experimental data which leads to constraints on the specific shear viscosity at kinetic freeze-out. Preliminary results show η/s is rather small.

  17. A Blast Wave Model With Viscous Corrections

    International Nuclear Information System (INIS)

    Yang, Z; Fries, R J

    2017-01-01

    Hadronic observables in the final stage of heavy ion collision can be described well by fluid dynamics or blast wave parameterizations. We improve existing blast wave models by adding shear viscous corrections to the particle distributions in the Navier-Stokes approximation. The specific shear viscosity η/s of a hadron gas at the freeze-out temperature is a new parameter in this model. We extract the blast wave parameters with viscous corrections from experimental data which leads to constraints on the specific shear viscosity at kinetic freeze-out. Preliminary results show η/s is rather small. (paper)

  18. The Fluid Dynamics of Competitive Swimming

    Science.gov (United States)

    Wei, Timothy; Mark, Russell; Hutchison, Sean

    2014-01-01

    Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.

  19. Fluid dynamics in porous media with Sailfish

    International Nuclear Information System (INIS)

    Coelho, Rodrigo C V; Neumann, Rodrigo F

    2016-01-01

    In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny–Carman equation, which is a well-known permeability–porosity relation, to our artificial samples. (paper)

  20. Fluid dynamics in porous media with Sailfish

    Science.gov (United States)

    Coelho, Rodrigo C. V.; Neumann, Rodrigo F.

    2016-09-01

    In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny-Carman equation, which is a well-known permeability-porosity relation, to our artificial samples.

  1. Fluid dynamics via examples and solutions

    CERN Document Server

    Nazarenko, Sergey

    2014-01-01

    "This is an excellent book for fluid dynamics students. It gives a good overview of the theory through a large set of worthy example problems. After many classical textbooks on the subject, there is finally one with solved exercises. I fully appreciate the selection of topics."-Professor Miguel Onorato, Physics Department, University of Torino.

  2. Modern Fluid Dynamics Intermediate Theory and Applications

    CERN Document Server

    Kleinstreuer, Clement

    2010-01-01

    Features pedagogical elements that include consistent 50/50 physics-mathematics approach when introducing material, illustrating concepts, showing flow visualizations, and solving problems. This title intends to help serious undergraduate student solve basic fluid dynamics problems independently, and suggest system design improvements

  3. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, C.; van der Sluis, L.W.M.; Basrani, B.

    2015-01-01

    Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system

  4. Engineering applications of computational fluid dynamics

    CERN Document Server

    Awang, Mokhtar

    2015-01-01

    This volume presents the results of Computational Fluid Dynamics (CFD) analysis that can be used for conceptual studies of product design, detail product development, process troubleshooting. It demonstrates the benefit of CFD modeling as a cost saving, timely, safe and easy to scale-up methodology.

  5. Mathematical problems of the dynamics of incompressible fluid on a rotating sphere

    CERN Document Server

    Skiba, Yuri N

    2017-01-01

    This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.

  6. Computation of Viscous Incompressible Flows

    CERN Document Server

    Kwak, Dochan

    2011-01-01

    This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engine...

  7. Effects of Second-Order Slip and Viscous Dissipation on the Analysis of the Boundary Layer Flow and Heat Transfer Characteristics of a Casson Fluid

    Directory of Open Access Journals (Sweden)

    Mohammad M. Rahman

    2016-11-01

    Full Text Available The aim of the present study is to analyze numerically the steady boundary layer flow and heat transfer characteristics of Casson fluid with variable temperature and viscous dissipation past a permeable shrinking sheet with second order slip velocity. Using appropriate similarity transformations, the basic nonlinear partial differential equations have been transformed into ordinary differential equations. These equations have been solved numerically for different values of the governing parameters namely: shrinking parametersuction parameterCasson parameterfirst order slip parametersecond order slip parameter  Prandtl number  and the Eckert number  using the bvp4c function from MATLAB. A stability analysis has also been performed. Numerical results have been obtained for the reduced skin-friction, heat transfer and the velocity and temperature profiles. The results indicate that dual solutions exist for the shrinking surface for certain values of the parameter space. The stability analysis indicates that the lower solution branch is unstable, while the upper solution branch is stable and physically realizable. In addition, it is shown that for a viscous fluida very good agreement exists between the present numerical results and those reported in the open literature. The present results are original and new for the boundary-layer flow and heat transfer past a shrinking sheet in a Casson fluid. Therefore, this study has importance for researchers working in the area of non-Newtonian fluids, in order for them to become familiar with the flow behavior and properties of such fluids.

  8. Cardiac fluid dynamics meets deformation imaging.

    Science.gov (United States)

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  9. Computational fluid dynamics in ventilation design

    CERN Document Server

    Allard, Francis; Awbi, Hazim B; Davidson, Lars; Schälin, Alois

    2007-01-01

    CFD-calculations have been rapidly developed to a powerful tool for the analysis of air pollution distribution in various spaces. However, the user of CFD-calculation should be aware of the basic principles of calculations and specifically the boundary conditions. Computational Fluid Dynamics (CFD) – in Ventilation Design models is written by a working group of highly qualified international experts representing research, consulting and design.

  10. Domain decomposition methods for fluid dynamics

    International Nuclear Information System (INIS)

    Clerc, S.

    1995-01-01

    A domain decomposition method for steady-state, subsonic fluid dynamics calculations, is proposed. The method is derived from the Schwarz alternating method used for elliptic problems, extended to non-linear hyperbolic problems. Particular emphasis is given on the treatment of boundary conditions. Numerical results are shown for a realistic three-dimensional two-phase flow problem with the FLICA-4 code for PWR cores. (from author). 4 figs., 8 refs

  11. Fluid Dynamics of Pressurized, Entrained Coal Gasifiers

    International Nuclear Information System (INIS)

    1997-01-01

    Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena like erosion, heat transfer and solid capture. In this context, we are conducting a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea is to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employ a unique entrained gas-solid flow facility with the flexibility to recycle--rather than discard--gases other than air. By matching five dimensionless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-upon the fluid dynamics of PECGs. Because it operates under cold, atmospheric conditions, the laboratory facility is ideal for detailed measurements

  12. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    Directory of Open Access Journals (Sweden)

    Ivo Stachiv

    2015-11-01

    Full Text Available Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

  13. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell

    Science.gov (United States)

    Bunton, Patrick H.; Tullier, Michael P.; Meiburg, Eckart; Pojman, John A.

    2017-10-01

    Viscous fingering can occur in fluid motion whenever a high mobility fluid displaces a low mobility fluid in a Darcy type flow. When the mobility difference is primarily attributable to viscosity (e.g., flow between the two horizontal plates of a Hele-Shaw cell), viscous fingering (VF) occurs, which is sometimes termed the Saffman-Taylor instability. Alternatively, in the presence of differences in density in a gravity field, buoyancy-driven convection can occur. These instabilities have been studied for decades, in part because of their many applications in pollutant dispersal, ocean currents, enhanced petroleum recovery, and so on. More recent interest has emerged regarding the effects of chemical reactions on fingering instabilities. As chemical reactions change the key flow parameters (densities, viscosities, and concentrations), they may have either a destabilizing or stabilizing effect on the flow. Hence, new flow patterns can emerge; moreover, one can then hope to gain some control over flow instabilities through reaction rates, flow rates, and reaction products. We report effects of chemical reactions on VF in a Hele-Shaw cell for a reactive step-growth cross-linking polymerization system. The cross-linked reaction product results in a non-monotonic viscosity profile at the interface, which affects flow stability. Furthermore, three-dimensional internal flows influence the long-term pattern that results.

  14. Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data

    Science.gov (United States)

    Anderson, B. H.; Putt, C. W.; Giamati, C. C.

    1981-01-01

    Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.

  15. Investigation of the fluid flow dynamic parameters for Newtonian and non-Newtonian materials: an approach to understanding the fluid flow-like structures within fault zones

    Science.gov (United States)

    Tanaka, H.; Shiomi, Y.; Ma, K.-F.

    2017-11-01

    To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.

  16. The partially filled viscous ring damper.

    Science.gov (United States)

    Alfriend, K. T.

    1973-01-01

    The problem of a spinning satellite with a partially filled viscous ring damper is investigated. It is shown that there are two distinct modes of motion, the nutation-synchronous mode and spin-synchronous mode. From an approximate solution of the equations of motion a time constant is obtained for each mode. From a consideration of the fluid dynamics several methods are developed for determining the damping constant.

  17. Some Fluid Dynamic Effects in Large-Scale MHD Generators

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J. C.R. [University of Warwick, Coventry (United Kingdom)

    1966-10-15

    At the present time we are unable to carry out a complete analysis of the fluid dynamics and electrodynamics of an MHD generator. However, various aspects of the behaviour of an MHD generator may be examined by the use of simplified models, for example: (1) one-dimensional gas dynamics (Louis et al. 1964); (2) the current distribution can be found if the velocity is assumed constant across the duct (Witalis, 1965); (3) the skin friction and heat transfer to the walls can be calculated by boundary layer analysis if the flow is assumed to be laminar (Kerrebrock, 1961), and (4) a complete description of the velocity and current distribution across the duct can be given if the flow is assumed to be uniform, laminar, incompressible and not varying in the flow direction (Hunt and Stewartson, 1965). Taken together, these and other models will enable us to describe most of the effects in an MHD generator. In this paper another simplification is considered in which the electromagnetic forces are assumed to be much larger than the inertial forces. The ratio of these two forces is measured by the parameter, S = aB{sup 2}{sub 0}d/pU, where o is the conductivity, B{sub 0} the magnetic field, d the width of the duct, p the density and U the mean velocity. Thus S >> 1. We also assume that the magnetic Reynolds number is very much less than one. In the largest experimental generators now being built S {approx} 2 . Thus, though the results of this model are not immediately applicable, they should indicate the effects of increasing the magnetic field strength and the size of MHD generators. When S >> 1, one can can consider the duct to be divided into 2 regions: (1) a core region where electromagnetic forces are balanced by the pressure gradient and where inertial as well as viscous forces are negligible, and (2) boundary layers on the walls where again inertial forces are negligible but where the viscous, electromagnetic and pressure forces are of the same order. We show how it is

  18. Fluid dynamics of out of equilibrium boost invariant plasmas

    Science.gov (United States)

    Blaizot, Jean-Paul; Yan, Li

    2018-05-01

    By solving a simple kinetic equation, in the relaxation time approximation, and for a particular set of moments of the distribution function, we establish a set of equations which, on the one hand, capture exactly the dynamics of the kinetic equation, and, on the other hand, coincide with the hierarchy of equations of viscous hydrodynamics, to arbitrary order in the viscous corrections. This correspondence sheds light on the underlying mechanism responsible for the apparent success of hydrodynamics in regimes that are far from local equilibrium.

  19. A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation

    Directory of Open Access Journals (Sweden)

    Natal'ya V. Burmasheva

    2017-12-01

    Full Text Available In this paper a new exact solution of an overdetermined system of Oberbeck–Boussinesq equations that describes a stationary shear flow of a viscous incompressible fluid in an infinite layer is under study. The given exact solution is a generalization of the Ostroumov–Birich class for a layered unidirectional flow. In the proposed solution, the horizontal velocities depend only on the transverse coordinate z. The temperature field and the pressure field are three-dimensional. In contradistinction to the Ostroumov–Birich solution, in the solution presented in the paper the horizontal temperature gradients are linear functions of the $z$ coordinate. This structure of the exact solution allows us to find a nontrivial solution of the Oberbeck–Boussinesq equations by means of the identity zero of the incompressibility equation. This exact solution is suitable for investigating large-scale flows of a viscous incompressible fluid by quasi-two-dimensional equations. Convective fluid motion is caused by the setting of tangential stresses on the free boundary of the layer. Inhomogeneous thermal sources are given on both boundaries. The pressure in the fluid at the upper boundary coincides with the atmospheric pressure. The paper focuses on the study of temperature and pressure fields, which are described by polynomials of three variables. The features of the distribution of the temperature and pressure profiles, which are polynomials of the seventh and eighth degree, respectively, are discussed in detail. To analyze the properties of temperature and pressure, algebraic methods are used to study the number of roots on a segment. It is shown that the background temperature and the background pressure are nonmonotonic functions. The temperature field is stratified into zones that form the thermocline and the thermal boundary layer near the boundaries of the fluid layer. Investigation of the properties of the pressure field showed that it is stratified

  20. Topological fluid dynamics of interfacial flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1994-01-01

    The topological description of flows in the vicinity of a solid boundary, that is familiar from the aerodynamics literature, has recently been extended to the case of flow at a liquid–gas interface or a free surface by Lugt [Phys. Fluids 30, 3647 (1987)]. Lugt's work is revisited in a more general...... setting, including nonconstant curvature of the interface and gradients of surface tension, using tools of modern nonlinear dynamics. Bifurcations of the flow pattern occur at degenerate configurations. Using the theory of unfolding, this paper gives a complete description of the bifurcations that depend...... on terms up to the second order. The general theory of this paper is applied to the topology of streamlines during the breaking of a wave and to the flow below a stagnant surface film. Physics of Fluids is copyrighted by The American Institute of Physics....

  1. In search of invariants for viscous liquids in the density scaling regime: investigations of dynamic and thermodynamic moduli.

    Science.gov (United States)

    Jedrzejowska, Agnieszka; Grzybowski, Andrzej; Paluch, Marian

    2017-07-19

    In this paper, we report the nontrivial results of our investigations of dynamic and thermodynamic moduli in search of invariants for viscous liquids in the density scaling regime by using selected supercooled van der Waals liquids as representative materials. Previously, the dynamic modulus M p-T (defined in the pressure-temperature representation by the ratio of isobaric activation energy and activation volume) as well as the ratio B T /M p-T (where B T is the thermodynamic modulus defined as the inverse isothermal compressibility) have been suggested as some kinds of material constants. We have established that they are not valid in the explored wide range of temperatures T over a dozen decades of structural relaxation times τ. The temperature dependences of M p-T and B T /M p-T have been elucidated by comparison with the well-known measure of the relative contribution of temperature and density fluctuations to molecular dynamics near the glass transition, i.e., the ratio of isochoric and isobaric activation energies. Then, we have implemented an idea to transform the definition of the dynamic modulus M p-T from the p-T representation to the V-T one. This idea relied on the disentanglement of combined temperature and density fluctuations involved in isobaric parameters and has resulted in finding an invariant for viscous liquids in the density scaling regime, which is the ratio of thermodynamic and dynamic moduli, B T /M V-T . In this way, we have constituted a characteristic of thermodynamics and molecular dynamics, which remains unchanged in the supercooled liquid state for a given material, the molecular dynamics of which obeys the power density scaling law.

  2. Direct modeling for computational fluid dynamics

    Science.gov (United States)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  3. Three-Dimensional Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Haworth, D.C.; O' Rourke, P.J.; Ranganathan, R.

    1998-09-01

    Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.

  4. Computational fluid dynamics a practical approach

    CERN Document Server

    Tu, Jiyuan; Liu, Chaoqun

    2018-01-01

    Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems.

  5. Investigation of the motion of a viscous fluid in the vitreous cavity induced by eye rotations and implications for drug delivery

    International Nuclear Information System (INIS)

    Bonfiglio, Andrea; Repetto, Rodolfo; Stocchino, Alessandro; Siggers, Jennifer H

    2013-01-01

    Intravitreal drug delivery is a commonly used treatment for several retinal diseases. The objective of this research is to characterize and quantify the role of the vitreous humor motion, induced by saccadic movements, on drug transport processes in the vitreous chamber. A Perspex model of the human vitreous chamber was created, and filled with a purely viscous fluid, representing eyes with a liquefied vitreous humor or those containing viscous tamponade fluids. Periodic movements were applied to the model and the resulting three-dimensional (3D) flow fields were measured. Drug delivery within the vitreous chamber was investigated by calculating particle trajectories using integration over time of the experimental velocity fields. The motion of the vitreous humor generated by saccadic eye movements is intrinsically 3D. Advective mass transport largely overcomes molecular diffusive transport and is significantly anisotropic, leading to a much faster drug dispersion than in the case of stationary vitreous humor. Disregarding the effects of vitreous humor motion due to eye movements when predicting the efficiency of drug delivery treatments leads to significant underestimation of the drug transport coefficients, and this, in turn, will lead to significantly erroneous predictions of the concentration levels on the retina. (paper)

  6. Transient forced convection with viscous dissipation to power-law fluids in thermal entrance region of circular ducts with constant wall heat flux

    International Nuclear Information System (INIS)

    Dehkordi, Asghar Molaei; Mohammadi, Ali Asghar

    2009-01-01

    A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local Nusselt number of steady state conditions was correlated in terms of the power-law index and wall heat flux and compared with literature data, which were obtained by an analytic solution for Newtonian fluids. Furthermore, a relationship was proposed for the thermal entrance length

  7. Optics and Fluid Dynamics Department annual progress report for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S.G.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.

    1996-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following two programme areas: (1) optical diagnostics and information processing and (2) plasma and fluid dynamics. The optical activities are concentrated on optical materials, diagnostics and sensors. The plasma and fluid dynamics activities are concentrated on nonlinear dynamics in fluids, plasmas and optics as well as on plasma and fluid diagnostics. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1995 is presented. (au) 36 ills., 166 refs.

  8. Optics and Fluid Dynamics Department annual progress report for 1995

    International Nuclear Information System (INIS)

    Hanson, S.G.; Lading, L.; Lynov, J.P.; Skaarup, B.

    1996-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following two programme areas: (1) optical diagnostics and information processing and (2) plasma and fluid dynamics. The optical activities are concentrated on optical materials, diagnostics and sensors. The plasma and fluid dynamics activities are concentrated on nonlinear dynamics in fluids, plasmas and optics as well as on plasma and fluid diagnostics. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1995 is presented. (au) 36 ills., 166 refs

  9. Dynamics of the Gay-Berne fluid

    International Nuclear Information System (INIS)

    de Miguel, E.; Rull, L.F.; Gubbins, K.E.

    1992-01-01

    Using molecular-dynamics computer simulation, we study the dynamical behavior of the isotropic and nematic phases of highly anisotropic molecular fluids. The interactions are modeled by means of the Gay-Berne potential with anisotropy parameters κ=3 and κ'=5. The linear-velocity autocorrelation function shows no evidence of a negative region in the isotropic phase, even at the higher densities considered. The self-diffusion coefficient parallel to the molecular axis shows an anomalous increase with density as the system enters the nematic region. This enhancement in parallel diffusion is also observed in the isotropic side of the transition as a precursor effect. The molecular reorientation is discussed in the light of different theoretical models. The Debye diffusion model appears to explain the reorientational mechanism in the nematic phase. None of the models gives a satisfactory account of the reorientation process in the isotropic phase

  10. Fluid dynamic effects on precision cleaning with supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.R.; Hogan, M.O.; Silva, L.J.

    1994-06-01

    Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.

  11. Zonal methods and computational fluid dynamics

    International Nuclear Information System (INIS)

    Atta, E.H.

    1985-01-01

    Recent advances in developing numerical algorithms for solving fluid flow problems, and the continuing improvement in the speed and storage of large scale computers have made it feasible to compute the flow field about complex and realistic configurations. Current solution methods involve the use of a hierarchy of mathematical models ranging from the linearized potential equation to the Navier Stokes equations. Because of the increasing complexity of both the geometries and flowfields encountered in practical fluid flow simulation, there is a growing emphasis in computational fluid dynamics on the use of zonal methods. A zonal method is one that subdivides the total flow region into interconnected smaller regions or zones. The flow solutions in these zones are then patched together to establish the global flow field solution. Zonal methods are primarily used either to limit the complexity of the governing flow equations to a localized region or to alleviate the grid generation problems about geometrically complex and multicomponent configurations. This paper surveys the application of zonal methods for solving the flow field about two and three-dimensional configurations. Various factors affecting their accuracy and ease of implementation are also discussed. From the presented review it is concluded that zonal methods promise to be very effective for computing complex flowfields and configurations. Currently there are increasing efforts to improve their efficiency, versatility, and accuracy

  12. AFDM: An Advanced Fluid-Dynamics Model

    International Nuclear Information System (INIS)

    Wilhelm, D.

    1990-09-01

    This volume describes the Advanced Fluid-Dynamics Model (AFDM) for topologies, flow regimes, and interfacial areas. The objective of these models is to provide values for the interfacial areas between all components existing in a computational cell. The interfacial areas are then used to evaluate the mass, energy, and momentum transfer between the components. A new approach has been undertaken in the development of a model to convect the interfacial areas of the discontinuous velocity fields in the three-velocity-field environment of AFDM. These interfacial areas are called convectible surface areas. The continuous and discontinuous components are chosen using volume fraction and levitation criteria. This establishes so-called topologies for which the convectible surface areas can be determined. These areas are functions of space and time. Solid particulates that are limited to being discontinuous within the bulk fluid are assumed to have a constant size. The convectible surface areas are subdivided to model contacts between two discontinuous components or discontinuous components and the structure. The models have been written for the flow inside of large pools. Therefore, the structure is tracked only as a boundary to the fluid volume without having a direct influence on velocity or volume fraction distribution by means of flow regimes or boundary layer models. 17 refs., 7 tabs., 18 figs

  13. The Future with Cryogenic Fluid Dynamics

    Science.gov (United States)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  14. Bulk viscous cosmology with causal transport theory

    International Nuclear Information System (INIS)

    Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried

    2011-01-01

    We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8

  15. Computational Fluid Dynamics in Ventilation Design

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2008-01-01

    This paper is based on the new REHVA Guidebook Computational Fluid  Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people....... The guidebook introduces rules for good quality prediction work, and it is the purpose of the guidebook to improve the technical level of CFD work in ventilation.......This paper is based on the new REHVA Guidebook Computational Fluid  Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people...... who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD. The guidebook is also written for people working with CFD who have to be more aware of how this numerical method is applied in the area of ventilation...

  16. Modeling quantum fluid dynamics at nonzero temperatures

    Science.gov (United States)

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  17. Numerical Analysis of Constrained Dynamical Systems, with Applications to Dynamic Contact of Solids, Nonlinear Elastodynamics and Fluid-Structure Interactions

    National Research Council Canada - National Science Library

    Armero, Francisco

    2000-01-01

    ... dissipation for the tangential frictional laws. We have also developed new arbitrary Eulerian-Lagrangian finite element methods with a direct application to the Lagrangian treatment of viscous fluids...

  18. Leapfrogging of multiple coaxial viscous vortex rings

    International Nuclear Information System (INIS)

    Cheng, M.; Lou, J.; Lim, T. T.

    2015-01-01

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior

  19. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  20. Dynamic characteristics of Non Newtonian fluid Squeeze film damper

    Science.gov (United States)

    Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.

    2016-09-01

    The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.

  1. AFDM: An Advanced Fluid-Dynamics Model

    International Nuclear Information System (INIS)

    Bohl, W.R.; Parker, F.R.; Wilhelm, D.; Goutagny, L.; Ninokata, H.

    1990-09-01

    AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs

  2. Spreading dynamics of power-law fluid droplets

    International Nuclear Information System (INIS)

    Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay

    2009-01-01

    This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.

  3. Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium

    International Nuclear Information System (INIS)

    Soltani, P; Farshidianfar, A; Taherian, M M

    2010-01-01

    In this study, for the first time, the transverse vibrational model of a viscous-fluid-conveying single-walled carbon nanotube (SWCNT) embedded in biological soft tissue is developed. Nonlocal Euler-Bernoulli beam theory has been used to investigate fluid-induced vibration of the SWCNT while visco-elastic behaviour of the surrounding tissue is simulated by the Kelvin-Voigt model. The results indicate that the resonant frequencies and the critical flow velocity at which structural instability of nanotubes emerges are significantly dependent on the properties of the medium around the nanotube, the boundary conditions, the viscosity of the fluid and the nonlocal parameter. Detailed results are demonstrated for the dependence of damping and elastic properties of the medium on the resonant frequencies and the critical flow velocity. Three standard boundary conditions, namely clamped-clamped, clamped-pinned and pinned-pinned, are applied to study the effect of the supported end conditions. Furthermore, it is found that the visco-elastic foundation causes an obvious reduction in the critical velocity in comparison with the elastic foundation, in particular for a compliant medium, pinned-pinned boundary condition, high viscosity of the fluid and small values of the nonlocal coefficient.

  4. Collective dynamics in dense fluid mixtures

    International Nuclear Information System (INIS)

    Sinha, S.

    1992-01-01

    This thesis deals with the short wavelength collective dynamics of dense binary fluid mixtures. The analysis shows that at the level of linearized generalized hydrodynamics, the longitudinal modes of the system separates essentially into two parts - one involves the coupling of partial density fluctuations of the two species and the other involves coupling of longitudinal momentum and temperature fluctuations. The authors have shown that the coupling of longitudinal momentum and temperature fluctuations leads to an adequate description of sound propagation in such systems. In particular, they show that structural disorder controls the trapping of sound waves in dense mixtures. The coupling of the partial density fluctuations of the two species leads to a simple description of the partial dynamic structure factors. The results are in agreement with the molecular dynamics simulations of soft sphere mixtures. The partial density fluctuations are the slowest decaying fluctuations on molecular length scales and it turns out that nonlinear coupling of these slow modes leads to important corrections to the long time behavior of the time correlation functions determining the shear viscosity in dense mixtures

  5. Electro-capillary effects in capillary filling dynamics of electrorheological fluids.

    Science.gov (United States)

    Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman

    2015-09-21

    The flow of electrorheological fluids is characterized by an apparent increase in viscosity manifested by the yield stress property of the fluid, which is a function of the applied electric field and the concentration of the suspended solute phase within the dielectric medium. This property of electrorheological fluids generally hinders flow through a capillary if the imposed shear stress is lower than the induced yield stress. This results in a plug-like zone in the flow profile, thus giving the fluid Bingham plastic properties. In the present work, we study such influences of the yield stress on the capillary filling dynamics of an electrorheological fluid by employing a rheologically consistent reduced order formalism. One important feature of the theoretical formalism is its ability to address the intricate interplay between the surface tension and viscous forces, both of which depend sensitively on the electric field. Our analysis reveals that the progress of the capillary front is hindered at an intermediate temporal regime, which is attributable to the increase of the span of the plug-zone across the channel width with time. With a preliminary understanding on the cessation of the capillary front advancement due to the yield stress property of the electrorheological fluids, we further strive to achieve a basic comparison with an experimental study made earlier. Reasonable agreements with the reported data support our theoretical framework. Comprehensive scaling analysis brings further insight to our reported observations over various temporal regimes.

  6. The use of computers for instruction in fluid dynamics

    Science.gov (United States)

    Watson, Val

    1987-01-01

    Applications for computers which improve instruction in fluid dynamics are examined. Computers can be used to illustrate three-dimensional flow fields and simple fluid dynamics mechanisms, to solve fluid dynamics problems, and for electronic sketching. The usefulness of computer applications is limited by computer speed, memory, and software and the clarity and field of view of the projected display. Proposed advances in personal computers which will address these limitations are discussed. Long range applications for computers in education are considered.

  7. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    International Nuclear Information System (INIS)

    Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo

    2016-01-01

    Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier

  8. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Peshkov, Ilya, E-mail: peshkov@math.nsc.ru [Open and Experimental Center for Heavy Oil, Université de Pau et des Pays de l' Adour, Avenue de l' Université, 64012 Pau (France); Romenski, Evgeniy, E-mail: evrom@math.nsc.ru [Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk (Russian Federation); Zanotti, Olindo, E-mail: olindo.zanotti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy)

    2016-06-01

    Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier

  9. Fluid flow dynamics in MAS systems

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  10. CFDLIB05, Computational Fluid Dynamics Library

    International Nuclear Information System (INIS)

    Kashiwa, B.A.; Padial, N.T.; Rauenzahn, R.M.; VanderHeyden, W.B.

    2007-01-01

    1 - Description of program or function: CFDLib05 is the Los Alamos Computational Fluid Dynamics Library. This is a collection of hydro-codes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conversation laws is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary. 2 - Methods: Cells-centered Implicit Continuous-fluid Eulerian (ICE) method

  11. Variational approach to nuclear fluid dynamics

    International Nuclear Information System (INIS)

    Da Providencia, J.P.; Holzwarth, G.

    1983-01-01

    A variational derivation of a fluid-dynamical formalism for finite Fermi systems is presented which is based on a single determinant as variational function and does not exclude the possibility of transverse flow. Therefore the explicit specification of the time-odd part has to go beyond the local chi-approximation, while the time-even part is taken in the generalized scaling form. The necessary boundary conditions are derived from the variation of the lagrangian. The results confirm previous simplified approaches to a remarkable degree for quadrupole modes; for other multipolarities the deviations are much less than might be expected according to a sizeable change in the transverse sound speed. (orig.)

  12. Graphics supercomputer for computational fluid dynamics research

    Science.gov (United States)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  13. Artificial Intelligence In Computational Fluid Dynamics

    Science.gov (United States)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  14. Visualization of unsteady computational fluid dynamics

    Science.gov (United States)

    Haimes, Robert

    1994-11-01

    A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.

  15. Simplified dynamic analysis to evaluate liquefaction-induced lateral deformation of earth slopes: a computational fluid dynamics approach

    Science.gov (United States)

    Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid

    2014-09-01

    Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.

  16. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka

    2013-01-01

    Roč. 6, č. 5 (2013), s. 1193-1213 ISSN 1937-1632 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : motion of rigid bodies * incompressible fluid * compressible fluid Subject RIV: BA - General Mathematics https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=8331

  17. Effects of Thermal Radiation on Mixed Convection Flow of a Micropolar Fluid from an Unsteady Stretching Surface with Viscous Dissipation and Heat Generation/Absorption

    Directory of Open Access Journals (Sweden)

    Khilap Singh

    2016-01-01

    Full Text Available A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.

  18. Dual Solutions in a Boundary Layer Flow of a Power Law Fluid over a Moving Permeable Flat Plate with Thermal Radiation, Viscous Dissipation and Heat Generation/Absorption

    Directory of Open Access Journals (Sweden)

    Aftab Ahmed

    2018-01-01

    Full Text Available The aim of the present study is to investigate the combined effects of the thermal radiation, viscous dissipation, suction/injection and internal heat generation/absorption on the boundary layer flow of a non-Newtonian power law fluid over a semi infinite permeable flat plate moving in parallel or reversely to a free stream. The resulting system of partial differential equations (PDEs is first transformed into a system of coupled nonlinear ordinary differential equations (ODEs which are then solved numerically by using the shooting technique. It is found that the dual solutions exist when the flat plate and the free stream move in the opposite directions. Dimensionless boundary layer velocity and temperature distributions are plotted and discussed for various values of the emerging physical parameters. Finally, the tables of the relevant boundary derivatives are presented for some values of the governing physical parameters.

  19. Dynamics of vortex structures in a stratified rotating fluid

    CERN Document Server

    Sokolovskiy, Mikhail A

    2013-01-01

    This book presents an extensive analysis of the dynamics of discrete and distributed baroclinic vortices in a multi-layer fluid that characterizes the main features of the large and mesoscales dynamics of the atmosphere and the ocean.

  20. Computational fluid dynamics modelling in cardiovascular medicine.

    Science.gov (United States)

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. Published by the BMJ Publishing Group Limited. For permission

  1. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  2. Optics and Fluid Dynamics Department annual progress report for 1999

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Johansen, Per Michael; Lynov, Jens-Peter

    2000-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within the three programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has core competences in:optical sensors, optical materials, biooptics...

  3. Computational Fluid Dynamics Methods and Their Applications in Medical Science

    Directory of Open Access Journals (Sweden)

    Kowalewski Wojciech

    2016-12-01

    Full Text Available As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.

  4. EDITORIAL: Changes to Fluid Dynamics Research in 2009 Changes to Fluid Dynamics Research in 2009

    Science.gov (United States)

    Funakoshi, Mitsuaki

    2009-02-01

    Welcome to the first issue of the modified Fluid Dynamics Research (FDR) journal, which is now being published by IOP Publishing on behalf of the Japan Society of Fluid Mechanics. Since its launch in 1986, FDR has become a well-established international journal that publishes theoretical, numerical and experimental studies contributing to the fundamental understanding and application of fluid phenomena. It has also been an invaluable resource for physicists and researchers in engineering interested in problems relevant to the motion of fluids. From 2009, FDR will be edited by a new international Editorial Board, with the strong intention of establishing the journal further and bringing it to a wider audience. In this new-look FDR, which will be published six times per year, readers will find several special sections containing high quality invited reviews and papers written by leading researchers who have been selected by the international Editorial Board. This is in addition to the regular papers on a variety of topical subjects by active researchers in the field. As before, there are no publication charges for standard articles, and now article numbering has been adopted, enabling accepted papers to be published online more quickly, ahead of print publication. In order to maintain a balanced and up-to-date perspective, we welcome feedback from our readers regarding the content of the journal, as well as suggestions for topics to cover and areas to highlight. Finally, I would like to thank our authors, members of the international Editorial Board, and the staff at IOP Publishing for producing this first issue. We hope you will enjoy reading this renewed and exciting journal for the international fluid dynamics community.

  5. Fluid dynamics theoretical and computational approaches

    CERN Document Server

    Warsi, ZUA

    2005-01-01

    Important Nomenclature Kinematics of Fluid Motion Introduction to Continuum Motion Fluid Particles Inertial Coordinate Frames Motion of a Continuum The Time Derivatives Velocity and Acceleration Steady and Nonsteady Flow Trajectories of Fluid Particles and Streamlines Material Volume and Surface Relation between Elemental Volumes Kinematic Formulas of Euler and Reynolds Control Volume and Surface Kinematics of Deformation Kinematics of Vorticity and Circulation References Problems The Conservation Laws and the Kinetics of Flow Fluid Density and the Conservation of Mass Prin

  6. Viscous, Resistive Magnetorotational Modes

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2008-01-01

    We carry out a comprehensive analysis of the behavior of the magnetorotational instability (MRI) in viscous, resistive plasmas. We find exact, non-linear solutions of the non-ideal magnetohydrodynamic (MHD) equations describing the local dynamics of an incompressible, differentially rotating...

  7. Computational fluid dynamics principles and applications

    CERN Document Server

    Blazek, J

    2005-01-01

    Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies. The accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) as well as of grid generators. Provided are also tools for Von Neumann stability analysis of 1-D model equations. Finally, the companion website includes the source code of a dedicated visualisation so...

  8. AFDM: An advanced fluid-dynamics model

    International Nuclear Information System (INIS)

    Henneges, G.; Kleinheins, S.

    1994-01-01

    This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices

  9. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    Science.gov (United States)

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  10. The Fluid Dynamics of Nascent Biofilms

    Science.gov (United States)

    Farthing, Nicola; Snow, Ben; Wilson, Laurence; Bees, Martin

    2017-11-01

    Many anti-biofilm approaches target mature biofilms with biochemical or physio-chemical interventions. We investigate the mechanics of interventions at an early stage that aim to inhibit biofilm maturation, focusing on hydrodynamics as cells transition from planktonic to surface-attached. Surface-attached cells generate flow fields that are relatively long-range compared with cells that are freely-swimming. We look at the effect of these flows on the biofilm formation. In particular, we use digital inline holographic microscopy to determine the three-dimensional flow due to a surface-attached cell and the effect this flow has on both tracers and other cells in the fluid. We compare experimental data with two models of cells on boundaries. The first approach utilizes slender body theory and captures many of the features of the experimental field. The second model develops a simple description in terms of singularity solutions of Stokes' flow, which produces qualitatively similar dynamics to both the experiments and more complex model but with significant computational savings. The range of validity of multiple cell arrangements is investigated. These two descriptions can be used to investigate the efficacy of actives developed by Unilever on nascent biofilms.

  11. Computational fluid dynamics in ventilation: Practical approach

    Science.gov (United States)

    Fontaine, J. R.

    The potential of computation fluid dynamics (CFD) for conceiving ventilation systems is shown through the simulation of five practical cases. The following examples are considered: capture of pollutants on a surface treating tank equipped with a unilateral suction slot in the presence of a disturbing air draft opposed to suction; dispersion of solid aerosols inside fume cupboards; performances comparison of two general ventilation systems in a silkscreen printing workshop; ventilation of a large open painting area; and oil fog removal inside a mechanical engineering workshop. Whereas the two first problems are analyzed through two dimensional numerical simulations, the three other cases require three dimensional modeling. For the surface treating tank case, numerical results are compared to laboratory experiment data. All simulations are carried out using EOL, a CFD software specially devised to deal with air quality problems in industrial ventilated premises. It contains many analysis tools to interpret the results in terms familiar to the industrial hygienist. Much experimental work has been engaged to validate the predictions of EOL for ventilation flows.

  12. The Fluid Dynamics Demo Kit: Part I

    Science.gov (United States)

    Flack, Karen; Underhill, Patrick; Prestridge, Kathy

    2012-11-01

    The goal of this project is to develop a fluid dynamics demonstration/experiment kit that can be used by professors and graduate students at high school outreach events. The demonstrations in the kit will be easy to use and true crowd pleasers in order to inspire understanding and pique curiosity about the physics of flow. The kits will be inexpensive, containing readily available materials so that teachers can duplicate the demonstrations and experiments. The kits will be left with the teachers as a gift from the American Physics Society. The experiments and demonstrations cover the concepts of conservation of mass, momentum, and energy, Bernoulli's equation, frictional losses and the ideal gas law. For each experiment, the teachers will receive presentation material, access to instructional videos, plus a worksheet that can be used in a high school physics classroom. This kit has been developed through the efforts of the APS-DFD Mentoring and Outreach Committee and has received funding from the APS-DFD. Work funded by the APS-DFD.

  13. NUMERICAL STUDY OF NON-DARCIAN NATURAL CONVECTION HEAT TRANSFER IN A RECTANGULAR ENCLOSURE FILLED WITH POROUS MEDIUM SATURATED WITH VISCOUS FLUID

    Directory of Open Access Journals (Sweden)

    Mahmood H. Ali

    2015-02-01

    Full Text Available A numerical study of non-Darcian natural convection heat transfer in a rectangular enclosure filled with porous medium saturated with viscous fluid was carried out. The effects of medium Rayleigh number, porosity, particle to fluid thermal conductivity ratio, Darcy number and enclosure aspect ratio on heat transfer were examined to demonstrate the ability of using this construction in thermal insulation of buildings walls.A modified Brinkman-Forchheimer-extended Darcy flow model was used and no-slip boundary conditions were imposed for velocity at the walls and the governing equations were expressed in dimensionless stream function, vorticity, and temperature formulation. The resulting algebraic equations obtained from finite difference discritization of vorticity and temperature equations are solved using (ADI method which uses Three Diagonal Matrix Algorithm (TDMA in each direction, while that of the stream function equation solved using successive iteration method.The study was done for the range of enclosure aspect ratio ( which is in the tall layers region at medium Rayleigh number ( , Darcy number (Da=10-3, 10-4, 10-5 , porosity (e=0.35, 0.45, 0.55, particle to fluid thermal conductivity (kS/kf=5.77, 38.5, 1385.5.The results showed that the Nusselt number is direct proportional to medium Rayleigh number and porosity and reversely proportional to Darcy number, ratio of particle to fluid thermal conductivity and enclosure aspect ratio. The variables that affect the heat transfer in the above arrangement was correlated in a mathematical equation that account better for their affects on heat transfer which is represented by mean Nusselt number (Nu.

  14. Effect of slip on heat transfer and entropy generation characteristics of simplified Phan-Thien–Tanner fluids with viscous dissipation under uniform heat flux boundary conditions: Exponential formulation

    International Nuclear Information System (INIS)

    Anand, Vishal

    2016-01-01

    Highlights: • Exponential formulation of s-PTT model used. • Heat transfer and entropy generation characteristics studied. • Effects of three slip laws examined. • Exponential formulation more accurate than linear formulation. - Abstract: This study concerns the heat transfer and entropy generation characteristics of viscoelastic fluid flow modeled by the exponential formulation of simplified Phan-Thien–Tanner (s-PTT) model. This is the first such study in literature of thermal behavior of viscoelastic fluids modeled by the exponential formulation of s-PTT model. The flow between two parallel plates is laminar, hydrodynamically and thermally fully developed, viscous dissipative and subject to uniform heat flux on the walls. The slip velocity boundary condition is imposed on the fluid–solid interface and the slip is captured by three slip laws, namely, Navier's non-linear slip law, Hatzikiriakos slip law, and asymptotic slip law. The governing equations have been solved analytically. Closed form solutions for the velocity distribution have been derived while the temperature distribution is presented in terms of an infinite but convergent series. The results pertaining to the three slip laws have been presented in detail. Finally, a comparison has been made between the results for exponential formulation and those for the linear formulation of the s-PTT model. The comparison shows that results for linear formulation deviate significantly from those for exponential formulation and thus the accuracy of the exponential formulation justifies the extra mathematical complexity which it entails.

  15. Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface

    Science.gov (United States)

    Gnaneswara Reddy, Machireddy

    2017-12-01

    The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.

  16. Optics and Fluid Dynamics Department annual progress report for 2003

    OpenAIRE

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter; Petersen, Paul Michael; Skaarup, Bitten

    2004-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several ...

  17. Optics and Fluid Dynamics Department annual progress report for 2000

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Johansen, Per Michael; Lynov, Jens-Peter

    2001-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has corecompetences in: optical sensors, optical materials......, optical storage, biooptics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danishresearch councils and by industry. A summary of the activities in 2000 is presented....

  18. Optics and Fluid Dynamics Department annual progress report for 2003

    DEFF Research Database (Denmark)

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter

    2004-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EUprogrammes, including EURATOM, by Danish research councils and by industry. A summary of the activities...

  19. Optics and Fluid Dynamics Department annual progress report for 2002

    DEFF Research Database (Denmark)

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter

    2003-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, includingEURATOM, by Danish research councils and by industry. A summary of the activities in 2002...

  20. A note on a nonlinear equation arising in discussions of the steady fall of a resistive, viscous, isothermal fluid across a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Lerche, I., E-mail: lercheian@yahoo.com [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle, D-06099 Halle (Germany)

    2015-11-15

    This note considers the evolution of steady isothermal flow across a uniform magnetic field from an analytic standpoint. This problem is of concern in developments of magnetic fields in the solar corona and for prominence dynamics. Limiting behaviors are obtained to the nonlinear equation describing the flow depending on the value of a single parameter. For the situation where the viscous drag is a small correction to the inviscid flow limiting structures are also outlined. The purpose of the note is to show how one can evaluate some of the analytic properties of the highly nonlinear equation that are of use in considering the numerical evolution as done in Low and Egan [Phys. Plasmas 21, 062105 (2014)].

  1. Viscous Design of TCA Configuration

    Science.gov (United States)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  2. Feasibility of a single-parameter description of equilibrium viscous liquid dynamics

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Christensen, Tage Emil; Schrøder, Thomas

    2008-01-01

    Molecular dynamics results for the dynamic Prigogine-Defay ratio are presented for two glass-forming liquids, thus evaluating the experimentally relevant quantity for testing whether metastable-equilibrium liquid dynamics is described by a single parameter to a good approximation. For the Kob......-Andersen binary Lennard-Jones mixture as well as for an asymmetric dumbbell model liquid, a single-parameter description works quite well. This is confirmed by time-domain results where it is found that energy and pressure fluctuations are strongly correlated on the alpha time scale in the constant...

  3. Weak solutions for the motion of a self-propelled deformable structure in a viscous incompressible fluid

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka; Takahashi, T.; Tucsnak, M.

    2011-01-01

    Roč. 116, č. 3 (2011), s. 329-352 ISSN 0167-8019 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes equations * fluid-structure integration * weak solutions * free boundary Subject RIV: BA - General Mathematics Impact factor: 0.899, year: 2011 http://rd.springer.com/article/10.1007/s10440-011-9646-2#

  4. A Computational fluid dynamics model of viscous coupling of sensory hairs

    DEFF Research Database (Denmark)

    Lewin, Gregory C.; Hallam, John

    2010-01-01

    Center Academic, IBIDS, Index Copernicus, INIS Atomindex, Journal Citation Reports/Science Edition, Neuroscience Citation Index, OCLC, PubMed/Medline, Science Citation Index, Science Citation Index Expanded (SciSearch), SCOPUS, Summon by Serial Solutions, VINITI - Russian Academy of Science, Zoological...

  5. [Computational fluid dynamics simulation of different impeller combinations in high viscosity fermentation and its application].

    Science.gov (United States)

    Dong, Shuhao; Zhu, Ping; Xu, Xiaoying; Li, Sha; Jiang, Yongxiang; Xu, Hong

    2015-07-01

    Agitator is one of the essential factors to realize high efficient fermentation for high aerobic and viscous microorganisms, and the influence of different impeller combination on the fermentation process is very important. Welan gum is a microbial exopolysaccharide produced by Alcaligenes sp. under high aerobic and high viscos conditions. Computational fluid dynamics (CFD) numerical simulation was used for analyzing the distribution of velocity, shear rate and gas holdup in the welan fermentation reactor under six different impeller combinations. The best three combinations of impellers were applied to the fermentation of welan. By analyzing the fermentation performance, the MB-4-6 combination had better effect on dissolved oxygen and velocity. The content of welan was increased by 13%. Furthermore, the viscosity of production were also increased.

  6. Testing Procedures for High Output Fluid Viscous Dampers Used in Building and Bridge Structures to Dissipate Seismic Energy

    Directory of Open Access Journals (Sweden)

    Douglas P. Taylor

    1995-01-01

    Full Text Available Today's economic climate demands that conversion of military technology for commerical applications be a part of an aerospace and defense company's strategic planning. Toward this goal, a successful defense conversion has occurred recently with the application of high capacity fluid damping devices from the defense community for use as seismic energy dissipation elements in commercial buildings, bridges, and related structures. These products have been used by the military for many years for attenuation of weapons grade shock, typically applied to shipboard equipment or land based strategic weapons. Commercial energy dissipation devices historically have involved heavy yielding sections or hysteretic joints.

  7. Slow viscous flow

    CERN Document Server

    Langlois, William E

    2014-01-01

    Leonardo wrote, 'Mechanics is the paradise of the mathematical sciences, because by means of it one comes to the fruits of mathematics' ; replace 'Mechanics' by 'Fluid mechanics' and here we are." -    from the Preface to the Second Edition Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the nearly half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity a...

  8. Dynamic Characteristics of Magneto-Fluid Supports

    Directory of Open Access Journals (Sweden)

    V. A. Chernobai

    2008-01-01

    Full Text Available The paper considers a vibro-protective magneto-fluid support that uses elastic properties of magnetic fluid with a free surface in magnetic field.The paper has experimentally revealed that the analyzed structure is characterized by better noise absorbing characteristics.The conducted experiments have made it possible to conclude that there is a possibility to use vibro-protective magneto-fluid supports within the frequency range from 0 to 300 Hz, amplitudes up to 2 mm and unit load up to 2,5 · 10 4 Н/м².

  9. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    Science.gov (United States)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  10. Computational fluid dynamics incompressible turbulent flows

    CERN Document Server

    Kajishima, Takeo

    2017-01-01

    This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...

  11. Verification and validation in computational fluid dynamics

    Science.gov (United States)

    Oberkampf, William L.; Trucano, Timothy G.

    2002-04-01

    Verification and validation (V&V) are the primary means to assess accuracy and reliability in computational simulations. This paper presents an extensive review of the literature in V&V in computational fluid dynamics (CFD), discusses methods and procedures for assessing V&V, and develops a number of extensions to existing ideas. The review of the development of V&V terminology and methodology points out the contributions from members of the operations research, statistics, and CFD communities. Fundamental issues in V&V are addressed, such as code verification versus solution verification, model validation versus solution validation, the distinction between error and uncertainty, conceptual sources of error and uncertainty, and the relationship between validation and prediction. The fundamental strategy of verification is the identification and quantification of errors in the computational model and its solution. In verification activities, the accuracy of a computational solution is primarily measured relative to two types of highly accurate solutions: analytical solutions and highly accurate numerical solutions. Methods for determining the accuracy of numerical solutions are presented and the importance of software testing during verification activities is emphasized. The fundamental strategy of validation is to assess how accurately the computational results compare with the experimental data, with quantified error and uncertainty estimates for both. This strategy employs a hierarchical methodology that segregates and simplifies the physical and coupling phenomena involved in the complex engineering system of interest. A hypersonic cruise missile is used as an example of how this hierarchical structure is formulated. The discussion of validation assessment also encompasses a number of other important topics. A set of guidelines is proposed for designing and conducting validation experiments, supported by an explanation of how validation experiments are different

  12. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    DEFF Research Database (Denmark)

    Cohen, Benjamin; Voorhees, Abram; Vedel, Søren

    2009-01-01

    Background: To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservat...

  13. Contribution to the viscous fluid flow simulation around flexible circular arrays; Contribution a la modelisation de l'ecoulement de fluide visqueux autour de faisceaux de cylindres circulaires

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, St.

    1999-09-01

    To compute the viscous flow around flexible circular cylinders arrays, a numerical model has been set up so solve the Reynolds averaged Navier-Stokes equations (RANSE). A domain decomposition method has been chosen to ensure the great flexibility of structures in the fluid domain. It consists in solving the RANS equations in a Eulerian way near the bodies and in a Lagrangian way in the wake(s). Then, we concentrate calculations in interest areas and we avoid mesh distortions. The resolution in the turbulent regime has been realized with k - {omega} and k - {epsilon} models. Compared with experiments, mix k - {omega} and k - {epsilon} models give the best results. Applications concern with the modeling of shielding and vortex-induced vibrations (VIV) phenomena in arrays of flexible cylinders. Results are validated by comparisons with experimental data. (authors)

  14. Effect of Fluid Dynamic Viscosity on the Strength of Chalk

    DEFF Research Database (Denmark)

    Hedegaard, K.; Fabricius, Ida Lykke

    The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....

  15. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  16. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    Science.gov (United States)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  17. Thermal radiation from an evolving viscous quark gluon plasma

    International Nuclear Information System (INIS)

    Mitra, Sukanya; Mohanty, Payal; Sarkar, Sourav; Alam, Jan-E

    2013-01-01

    The effects of viscosity on the space-time evolution of quark gluon plasma produced in nuclear collisions at relativistic heavy ion collider energies have been studied. The entropy generated due to the viscous motion of the fluid has been taken into account in constraining the initial temperature by the final multiplicity (measured at the freeze-out point). The viscous effects on the photon spectra has been introduced consistently through the evolution dynamics and phase space factors of all the participating partons/hadrons in the production process. In contrast to some of the recent calculations the present work includes the contribution from the hadronic phase. A small change in the transverse momentum (p T ) distribution of photons is observed due to viscous effects. (author)

  18. Meta fluid dynamic as a gauge field theory

    International Nuclear Information System (INIS)

    Mendes, A.C.R.; Neves, C.; Oliveira, W.; Takakura, F.I.

    2003-01-01

    In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the meta fluid dynamics, is extended in order to reformulate the meta fluid dynamics as a gauge field theory. That analogy opens up the possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning of the physics behind the meta fluid theory. Also, the geometrical interpretation to the gauge symmetries is discussed. (author)

  19. Heat transfer effects on a viscous dissipative fluid flow past a vertical plate in the presence of induced magnetic field

    Directory of Open Access Journals (Sweden)

    M.C. Raju

    2015-03-01

    Full Text Available A theoretical analysis is performed to study induced magnetic field effects on free convection flow past a vertical plate. The x¯-axis is taken vertically upwards along the plate, y¯-axis normal to the plate into the fluid region. It is assumed that the plate is electrically non-conducting and the applied magnetic field is of uniform strength (H0 and perpendicular to the plate. The magnetic Reynolds number of the flow is not taken to be small enough so that the induced magnetic field is taken into account. The coupled nonlinear partial differential equations are solved by Perturbation technique and the effects of various physical parameters on velocity, temperature, and induced magnetic fields are studied through graphs and tables. Variations in Skin friction and rate of heat transfer are also studied. It is observed that an increase in magnetic parameter decreases the velocity for both water and air. It is also seen that there is a fall in induced magnetic field as magnetic Prandtl number, and magnetic field parameter increase.

  20. Low-Reynolds number flow of a viscous fluid in a channel partially filled with a porous medium

    International Nuclear Information System (INIS)

    Deng, C.; Martinez, D.M.

    2003-01-01

    Steady flow inside a rectangular channel with wall suction and partially filled with a porous material is examined. We solve the Navier-Stokes equations in the clear fluid region of the channel and the Brinkman extended Darcy's law in the porous material. The stress jump conditions outlined by Ochoa-Tapia and Whitaker are employed at the interface between these two regions. Ochoa-Tapia and Whitaker's conditions contain an empirical constant β which is unknown a priori. In this work we propose a method to estimate β. To do so, we solve for the flow field using two different approaches. In the first approach, the flow is assumed to be of similarity form and a new asymmetric solution is reported; β is retained in this formulation. In the second approach, we re-pose the equations of motion over the entire domain by considering the porous medium as a sink-term (which can be turned on and off); β is not required in this formulation. We estimate the value of β by comparing the resulting flow fields. (author)

  1. Methods of fluid dynamics in nuclear physics

    International Nuclear Information System (INIS)

    Zweifel, P.F.

    1984-01-01

    The author summaries the contributions to an interdisciplinary workshop attended by physicist and mathematicians at the University of Catania in Italy. The purpose of the workshop was to bring together physicists and mathematicians with an interest in fluid mechanical calculations. Several applications to nuclear structure and heavy ion collisions are outlined

  2. Cerebral venous outflow and cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Clive B. Beggs

    2014-12-01

    Full Text Available In this review, the impact of restricted cerebral venous outflow on the biomechanics of the intracranial fluid system is investigated. The cerebral venous drainage system is often viewed simply as a series of collecting vessels channeling blood back to the heart. However there is growing evidence that it plays an important role in regulating the intracranial fluid system. In particular, there appears to be a link between increased cerebrospinal fluid (CSF pulsatility in the Aqueduct of Sylvius and constricted venous outflow. Constricted venous outflow also appears to inhibit absorption of CSF into the superior sagittal sinus. The compliance of the cortical bridging veins appears to be critical to the behaviour of the intracranial fluid system, with abnormalities at this location implicated in normal pressure hydrocephalus. The compliance associated with these vessels appears to be functional in nature and dependent on the free egress of blood out of the cranium via the extracranial venous drainage pathways. Because constricted venous outflow appears to be linked with increased aqueductal CSF pulsatility, it suggests that inhibited venous blood outflow may be altering the compliance of the cortical bridging veins.

  3. Generalised fluid dynamics and quantum mechanics

    NARCIS (Netherlands)

    Broer, L.J.F.

    1974-01-01

    A generalised theory of irrotational fluid flow is developed in hamiltonian form. This allows a systematic derivation of equations for momentum, energy and the rate of work. It is shown that a nonlinear field equation for weakly interacting condensed bosons as given by Gross1) and the one-electron

  4. Viscous Fingering in Deformable Systems

    Science.gov (United States)

    Guan, Jian Hui; MacMinn, Chris

    2017-11-01

    Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.

  5. Energetics and dynamics of excess electrons in simple fluids

    International Nuclear Information System (INIS)

    Space, B.

    1992-01-01

    Excess electronic dynamical and equilibrium properties are modeled in both polarizable and nonpolarizable noble gas fluids. Explicit dynamical calculations are carried out for excess electrons in fluid helium, where excess electronic eigenstates are localized. Energetics and dynamics are considered for fluids which span the entire range of polarizability present in the rare gases. Excess electronic eigenstates and eigenvalues are calculated for fluids of helium, argon and xenon. Both equilibrium and dynamical information is obtained from the calculation of these wavefunctions. A surface hopping trajectory method for studying nonadiabatic excess electronic relaxation in condensed systems is used to explore the nonadiabatic relaxation after photoexciting an equilibrated excess electron in dense fluid helium. The different types on nonadiabatic phenomena which are important in excess electronic relaxation are surveyed. The same surface hopping trajectory method is also used to study the rapid nonadiabatic relaxation after an excess electron is injected into unperturbed fluid helium. Several distinctively different relaxation processes, characterized by their relative importance at different times during the relaxation to a localized equilibrium state, are detailed. Though the dynamical properties of excess electrons under the conditions considered here have never been studied before, the behavior is remarkably similar to that observed in both experimental and theoretical studies of electron hydration dynamics, indicating that the processes described may be very general relaxation mechanisms for localization and trapping in fluids. Additionally, ground state energies of an excess electron, e 0 , are computed as a function of solvent density using model electron-atom pseudopotentials in fluid helium, argon, and xenon. The nonuniqueness of the pseudopotential description of electron-molecule interactions is demonstrated

  6. Optics and Fluid Dynamics Department. Annual progress report for 2003

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2004-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 laser systems and optical materials, (2 optical diagnostics and information processing and (3 plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2003 is presented. (au)

  7. Optics and Fluid Dynamics Department annual progress report for 2001

    DEFF Research Database (Denmark)

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter

    2002-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biooptics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM,by Danish research councils and by industry. A summary of the activities in 2001 is presented....

  8. Optics and Fluid Dynamics Department annual progress report for 2000

    International Nuclear Information System (INIS)

    Hanson, S.G.; Johansen, P.M.; Lynov, J.P.; Skaarup, B.

    2001-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2000 is presented. (au)

  9. TDHF and fluid dynamics of nuclear collective motions

    International Nuclear Information System (INIS)

    Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.

    1983-01-01

    The nuclear fluid dynamical equations are derived from a mean field description of the nuclear dynamics. Simple approximate solutions, corresponding to generalized scaling modes, are worked out for rotations and vibrations, with the evaluation of inertial parameters and flow patterns. Giant resonances are shown to be quite well described within an irrotational ansatz, which is equivalent to a lowest multipoles (up to lsub(max)=2) distortion of the momentum distribution. The physical meaning of a higher order truncation of the TDHF-Fluid-Dynamics chain is finally discussed with its implication on low lying states and on some description of the Landau damping. (author)

  10. Optics and Fluid Dynamics Department. Annual Progress Report for 2002

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2003-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 Laser systems and optical materials (2 Optical diagnostics and information processing and (3 Plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2002 is presented. (au)

  11. Optics and Fluid Dynamics Department. Annual progress report for 2001

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2002-03-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: 1) laser systems and optical materials, 2) optical diagnostics and information processing and 3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2001 is presented. (au)

  12. Optics and Fluid Dynamics Department. Annual Progress Report for 2002

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H; Hanson, S G; Lynov, J P; Petersen, P M; Skaarup, B

    2003-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) Laser systems and optical materials (2) Optical diagnostics and information processing and (3) Plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2002 is presented. (au)

  13. Some fluid dynamical problems in astrophysics

    International Nuclear Information System (INIS)

    Drury, L.O.

    1979-06-01

    Certain aspects of the cosmic turbulence theory of galaxy formation are considered. Using a generalized form of a transformation due to Kurskov and Ozernoi I exhibit a formal equivalence between the problem of turbulence in an expanding universe containing a coupled matter-radiation fluid and in a non-expanding fluid with a time-dependent viscosity. This enables me to extend the Olson-Sachs formula for vorticity generation in cosmic turbulence to a matter-radiation fluid and to show that, the turbulence can not have an inertial subrange at the epoch of recombination. The linear inviscid stability of axisymmetric flows is considered. Using the projective form of the perturbation equations I obtain a simple proof of a generalised Richardson criterion which holds for all boundary conditions which do not actively feed energy to the perturbation. Further analysis shows the uniform density and pressure discs with self-similar rotation laws, are stable to perturbations which are incompressible in character, but that instability is a generic feature of differentially rotating compressible systems. The problem of numerically solving boundary value problems of the Orr-Sommerfeld type by shooting methods is considered, and a unifying geometrical interpretation of the principal methods is described. (author)

  14. Viscous Ricci dark energy

    International Nuclear Information System (INIS)

    Feng Chaojun; Li Xinzhou

    2009-01-01

    We investigate the viscous Ricci dark energy (RDE) model by assuming that there is bulk viscosity in the linear barotropic fluid and the RDE. In the RDE model without bulk viscosity, the universe is younger than some old objects at certain redshifts. Since the age of the universe should be longer than any objects living in the universe, the RDE model suffers the age problem, especially when we consider the object APM 08279+5255 at z=3.91 with age t=2.1 Gyr. In this Letter, we find that once the viscosity is taken into account, this age problem is alleviated.

  15. The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper

    International Nuclear Information System (INIS)

    Zhang, X Z; Li, W H; Gong, X L

    2008-01-01

    This paper presents a study of the rheological properties of shear thickening fluid (STF) and its application as a damper. The STF samples, with different weight fractions, were prepared by dispersing nanosized silica particles in a solvent. By using a parallel-plate rheometer, both steady-state and dynamic experiments were carried out to investigate the rheological properties of STFs. Experimental results indicated that these suspensions show an abrupt increase in complex viscosity beyond a critical dynamic shear rate, as well as this increase being reversible. Working with the fabricated STF materials, a prototype damper was fabricated and its dynamic performances were experimentally evaluated. An equivalent linear model through effective elastic stiffness and viscous damping was developed to address both the damping and the stiffness capabilities of the damper. Also, a mathematical model was developed to investigate working mechanisms of STF-based devices

  16. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    International Nuclear Information System (INIS)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-01-01

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  17. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnikov, Alexander, E-mail: pshenichnikov@icmm.ru; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-15

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  18. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    NARCIS (Netherlands)

    Reid, Daniel A. P.; Hildenbrandt, H.; Hemelrijk, C. K.; Padding, J.T.

    2012-01-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed

  19. Periodic folding of viscous sheets

    Science.gov (United States)

    Ribe, Neil M.

    2003-09-01

    The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.

  20. Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver

    KAUST Repository

    Frisch, Jerome

    2012-06-01

    Computational Fluid Dynamics simulations require an enormous computational effort if a physically reasonable accuracy should be reached. Therefore, a parallel implementation is inevitable. This paper describes the basics of our implemented fluid solver with a special aspect on the hierarchical data structure, unique cell and grid identification, and the neighbourhood relations in-between grids on different processes. A special server concept keeps track of every grid over all processes while minimising data transfer between the nodes. © 2012 IEEE.

  1. Self-study manual for introduction to computational fluid dynamics

    OpenAIRE

    Nabatov, Andrey

    2017-01-01

    Computational Fluid Dynamics (CFD) is the branch of Fluid Mechanics and Computational Physics that plays a decent role in modern Mechanical Engineering Design process due to such advantages as relatively low cost of simulation comparing with conduction of real experiment, an opportunity to easily correct the design of a prototype prior to manufacturing of the final product and a wide range of application: mixing, acoustics, cooling and aerodynamics. This makes CFD particularly and Computation...

  2. Computational fluid dynamic modelling of cavitation

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  3. Lagrangian particle method for compressible fluid dynamics

    Science.gov (United States)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  4. Nonlinear transport processes and fluid dynamics: Cylindrical Couette flow of Lennard-Jones fluids

    International Nuclear Information System (INIS)

    Khayat, R.E.; Eu, B.C.

    1988-01-01

    In this paper we report on calculations of flow profiles for cylindrical Couette flow of a Lennard-Jones fluid. The flow is subjected to a temperature gradient and thermoviscous effects are taken into consideration. We apply the generalized fluid dynamic equations which are provided by the modified moment method for the Boltzmann equation reported previously. The results of calculations are in good agreement with the Monte Carlo direct simulation method by K. Nanbu [Phys. Fluids 27, 2632 (1984)] for most of Knudsen numbers for which the simulation data are available

  5. arXiv (3+1)-dimensional anisotropic fluid dynamics with a lattice QCD equation of state

    CERN Document Server

    McNelis, M.; Heinz, U.

    2018-06-01

    Anisotropic hydrodynamics improves upon standard dissipative fluid dynamics by treating certain large dissipative corrections non-perturbatively. Relativistic heavy-ion collisions feature two such large dissipative effects: (i) Strongly anisotropic expansion generates a large shear stress component which manifests itself in very different longitudinal and transverse pressures, especially at early times. (ii) Critical fluctuations near the quark-hadron phase transition lead to a large bulk viscous pressure on the conversion surface between hydrodynamics and a microscopic hadronic cascade description of the final collision stage. We present a new dissipative hydrodynamic formulation for non-conformal fluids where both of these effects are treated nonperturbatively. The evolution equations are derived from the Boltzmann equation in the 14-moment approximation, using an expansion around an anisotropic leading-order distribution function with two momentum-space deformation parameters, accounting for the longitudin...

  6. A dynamic neutral fluid model for the PIC scheme

    Science.gov (United States)

    Wu, Alan; Lieberman, Michael; Verboncoeur, John

    2010-11-01

    Fluid diffusion is an important aspect of plasma simulation. A new dynamic model is implemented using the continuity and boundary equations in OOPD1, an object oriented one-dimensional particle-in-cell code developed at UC Berkeley. The model is described and compared with analytical methods given in [1]. A boundary absorption parameter can be adjusted from ideal absorption to ideal reflection. Simulations exhibit good agreement with analytic time dependent solutions for the two ideal cases, as well as steady state solutions for mixed cases. For the next step, fluid sources and sinks due to particle-particle or particle-fluid collisions within the simulation volume and to surface reactions resulting in emission or absorption of fluid species will be implemented. The resulting dynamic interaction between particle and fluid species will be an improvement to the static fluid in the existing code. As the final step in the development, diffusion for multiple fluid species will be implemented. [4pt] [1] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd Ed, Wiley, 2005.

  7. Viscous properties of isotropic fluids composed of linear molecules: departure from the classical Navier-Stokes theory in nano-confined geometries.

    Science.gov (United States)

    Hansen, J S; Daivis, Peter J; Todd, B D

    2009-10-01

    In this paper we present equilibrium molecular-dynamics results for the shear, rotational, and spin viscosities for fluids composed of linear molecules. The density dependence of the shear viscosity follows a stretched exponential function, whereas the rotational viscosity and the spin viscosities show approximately power-law dependencies. The frequency-dependent shear and spin viscosities are also studied. It is found that viscoelastic behavior is first manifested in the shear viscosity and that the real part of the spin viscosities features a maximum for nonzero frequency. The calculated transport coefficients are used together with the extended Navier-Stokes equations to investigate the effect of the coupling between the intrinsic angular momentum and linear momentum for highly confined fluids. Both steady and oscillatory flows are studied. It is shown, for example, that the fluid flow rate for Poiseuille flow is reduced by up to 10% in a 2 nm channel for a buta-triene fluid at density 236 kg m(-3) and temperature 306 K. The coupling effect may, therefore, become very important for nanofluidic applications.

  8. BMS3 invariant fluid dynamics at null infinity

    Science.gov (United States)

    Penna, Robert F.

    2018-02-01

    We revisit the boundary dynamics of asymptotically flat, three dimensional gravity. The boundary is governed by a momentum conservation equation and an energy conservation equation, which we interpret as fluid equations, following the membrane paradigm. We reformulate the boundary’s equations of motion as Hamiltonian flow on the dual of an infinite-dimensional, semi-direct product Lie algebra equipped with a Lie–Poisson bracket. This gives the analogue for boundary fluid dynamics of the Marsden–Ratiu–Weinstein formulation of the compressible Euler equations on a manifold, M, as Hamiltonian flow on the dual of the Lie algebra of \

  9. Optics and fluid dynamics department annual progress report for 1992

    International Nuclear Information System (INIS)

    Lading, L.; Lynov, J.P.; Skaarup, B.

    1993-01-01

    Research in the Optics and FLuid Dynamics Department is performed within two sections. The Optics Section has activities within (a) optical materials, (b) quasielastic light scattering and diagnostics in solids, fluids and plasmas, and (c) optical and electronic information processing. The Continuum Physics Section performs (a) studies of nonlinear dynamical processes in continuum systems, (b) investigations of other problems in fusion plasma physics, and (c) develops pellet injectors for fusion experiments. Most of these activities are done in connection with the Euratom Association. A summary of activities in 1992 is presented. (au) (25 ills., 36 refs.)

  10. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  11. MINIMUM QUANTITY LUBRICANT FLOW ANALYSIS IN END MILLING PROCESSES: A COMPUTATIONAL FLUID DYNAMICS APPROACH

    Directory of Open Access Journals (Sweden)

    M. S. Najiha

    2012-12-01

    Full Text Available This paper presents a two-dimensional steady-state incompressible analysis for the minimum quantity of lubricant flow in milling operations using a computational fluid dynamics (CFD approach. The analysis of flow and heat transfer in a four-teeth milling cutter operation was undertaken. The domain of the rotating cutter along with the spray nozzle is defined. Operating cutting and boundary conditions are taken from the literature. A steady-state, pressure-based, planar analysis was performed with a viscous, realizable k-ε model. A mixture of oils and air were sprayed on the tool, which is considered to be rotating and is at a temperature near the melting temperature of the workpiece. Flow fields are obtained from the study. The vector plot of the flow field shows that the flow is not evenly distributed over the cutter surface, as well as the uneven distribution of the lubricant in the direction of the cutter rotation. It can be seen that the cutting fluid has not completely penetrated the tool edges. The turbulence created by the cutter rotation in the proximity of the tool throws oil drops out of the cutting zone. The nozzle position in relation to the feed direction is very important in order to obtain the optimum effect of the MQL flow.

  12. Remarks on the global existence in the dynamics of a viscous, heat-conducting, one-dimensional gas

    International Nuclear Information System (INIS)

    Song Jiang

    1994-01-01

    We consider initial boundary value problems for the equations of the motion of a viscous, heat-conducting, one-dimensional gas which is confined to a fixed tube with impermeable ends and whose viscosity varies with density, and prove the global existence of smooth (large) solutions. (author). 17 refs

  13. Equilibrium and nonequilibrium dynamics of soft sphere fluids.

    Science.gov (United States)

    Ding, Yajun; Mittal, Jeetain

    2015-07-14

    We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the case of IPP fluids, density and temperature are not independent variables and can be combined to obtain a coupling parameter to define the thermodynamic state of the system. We find that the rescaled coupling parameter, based on its value at the freezing point, can approximately collapse the diffusivity and viscosity data for IPP fluids over a wide range of particle softness. Even though the collapse is far from perfect, the freezing-point scaling relationship provides a convenient and effective way to compare the structure and dynamics of fluid systems with different particle softness. We further show that an alternate scaling relationship based on two-body excess entropy can provide an almost perfect collapse of the diffusivity and viscosity data below the freezing transition. Next, we perform nonequilibrium molecular dynamics simulations to calculate the shear-dependent viscosity and to identify the distinct role of particle softness in underlying structural changes associated with rheological properties. Qualitatively, we find a similar shear-thinning behavior for IPP fluids with different particle softness, though softer particles exhibit stronger shear-thinning tendency. By investigating the distance and angle-dependent pair correlation functions in these systems, we find different structural features in the case of IPP fluids with hard-sphere like and softer particle interactions. Interestingly, shear-thinning in hard-sphere like fluids is accompanied by enhanced translational order, whereas softer fluids exhibit loss of order with shear. Our results provide a systematic evaluation

  14. Green Algae as Model Organisms for Biological Fluid Dynamics

    Science.gov (United States)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  15. Fluid Dynamics in Rotary Piston Blood Pumps.

    Science.gov (United States)

    Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas

    2017-03-01

    Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.

  16. Partial chemical equilibrium in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1980-01-01

    An analysis is given for the flow of a multicomponent fluid in which an arbitrary number of chemical reactions may occur, some of which are in equilibrium while the others proceed kinetically. The primitive equations describing this situation are inconvenient to use because the progress rates omega-dot/sub s/ for the equilibrium reactions are determined implicitly by the associated equilibrium constraint conditions. Two alternative equivalent equation systems that are more pleasant to deal with are derived. In the first system, the omega-dot/sub s/ are eliminated by replacing the transport equations for the chemical species involved in the equilibrium reactions with transport equations for the basic components of which these species are composed. The second system retains the usual species transport equations, but eliminates the nonlinear algebraic equilibrium constraint conditions by deriving an explicit expression for the omega-dot/sub s/. Both systems are specialized to the case of an ideal gas mixture. Considerations involved in solving these equation systems numerically are discussed briefly

  17. Dynamic Modeling of ThermoFluid Systems

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch

    2003-01-01

    The objective of the present study has been to developed dynamic models for two-phase flow in pipes (evaporation and condensation). Special attention has been given to modeling evaporators for refrigeration plant particular dry-expansion evaporators. Models of different complexity have been...... formulated. The different models deviate with respect to the detail¿s included and calculation time in connection with simulation. The models have been implemented in a new library named ThermoTwoPhase to the programming language Modelica. A test rig has been built with an evaporator instrumented in a way...

  18. Dynamical stability in fluid-structure interaction

    International Nuclear Information System (INIS)

    Planchard, J.; Thomas, B.

    1991-01-01

    The aim of the paper is to investigate the dynamical stability of a group of elastic tubes placed in a cross-flow which obeys to the Navier-Stokes equations. The stability of this coupled system is deduced from the study of a quadratic eigenvalue problem arising in the linearized equations. The instability occurs when the real part of one of the eigenvalues becomes positive; the steady state is then replaced by a time-periodic state which is stable (Hopf bifurcation phenomenon). Some numerical methods for solving the quadratic eigenvalue problem are described [fr

  19. Dynamics of polymeric liquids. Vol. 1, 2nd Ed.: Fluid mechanics

    International Nuclear Information System (INIS)

    Bird, R.B.; Armstrong, R.C.; Hassager, O.

    1987-01-01

    This book examines Newtonian liquids and polymer fluid mechanics. It begins with a review of the main ideas of fluid dynamics as well as key points of Newtonian fluids. Major revisions include extensive updating of all material and a greater emphasis on fluid dynamics problem solving. It presents summaries of experiments describing the difference between polymeric and simple fluids. In addition, it traces, roughly in historical order, various methods for solving polymer fluid dynamics problems

  20. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    International Nuclear Information System (INIS)

    Mullick, Shanta; Ahluwalia, P. K.; Pathania, Y.

    2011-01-01

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12σ, 14σ and 16σ and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  1. Dynamic analysis of multibody system immersed in a fluid medium

    International Nuclear Information System (INIS)

    Wu, R.W.; Liu, L.K.; Levy, S.

    1977-01-01

    This paper is concerned primarily with the development and evaluation of an analysis method for the reponse prediction of immersed systems to seismic and other dynamic excitations. For immersed multibody systems, the hydrodynamic interaction causes coupled motion among the solid bodies. Also, under intense external excitations, impact between bodies may occur. The complex character of such systems inhibit the use of conventional analytical solutions in closed form. Therefore, approximate numerical schemes have been devised. For an incompressible, inviscid fluid, the hydrodynamic forces exerted by the fluid on solid bodies are determined to be linearly proportional to the acceleration of the vibrating solid bodies; i.e., the presence of the fluid only affects the inertia of the solid body system. A finite element computer program has been developed for computing this hydrodynamic (or added) mass effect. This program can be used to determine the hydrodynamic mass of a two-dimensional fluid field with solid bodies of arbitrary geometry. Triangular elements and linear pressure interpolation function are used to discretize the fluid region. The component element method is used to determine the dynamic response of the multibody system to externally applied mechanical loading or support excitation. The present analysis method for predicting the dynamic response of submerged multibody system is quite general and pertains to any number of solid bodies. However in this paper, its application is demonstrated only for 4 and 25 body systems. (Auth.)

  2. FLOWPLOT2, 2-D, 3-D Fluid Dynamic Plots

    International Nuclear Information System (INIS)

    Cobb, C.K.; Tunstall, J.N.

    1989-01-01

    1 - Description of program or function: FLOWPLOT2 is a plotting program used with numerical or analytical fluid dynamics codes to create velocity vector plots, contour plots of up to three fluid parameters (e.g. pressure, density, and temperature), two-dimensional profile plots, three-dimensional curve plots, and/or three-dimensional surface plots for either the u or v velocity components. If the fluid dynamics code computes a transient or simulated time related solution, FLOWPLOT2 can also be used to generate these plots for any specified time interval. Multiple cases generating different plots for different time intervals may be run in one execution of the program. In addition, plots can be created for selected two- dimensional planes of three-dimensional steady-state problems. The user has the option of producing plots on CalComp or Versatec plotters or microfiche and of creating a compressed dataset before plotting. 2 - Method of solution: FLOWPLOT2 reads a dataset written by the fluid dynamics code. This dataset must be written in a specified format and must contain parametric data at the nodal points of a uniform or non-uniform rectangular grid formed by the intersection of the grid lines of the model. 3 - Restrictions on the complexity of the problem - Maxima of: 2500 nodes, 40 y-values for 2-D profile plots and 3-D curve plots, 20 contour values, 3 fluid parameters

  3. Cellular-automata supercomputers for fluid-dynamics modeling

    International Nuclear Information System (INIS)

    Margolus, N.; Toffoli, T.; Vichniac, G.

    1986-01-01

    We report recent developments in the modeling of fluid dynamics, and give experimental results (including dynamical exponents) obtained using cellular automata machines. Because of their locality and uniformity, cellular automata lend themselves to an extremely efficient physical realization; with a suitable architecture, an amount of hardware resources comparable to that of a home computer can achieve (in the simulation of cellular automata) the performance of a conventional supercomputer

  4. Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yijie [ORNL; Lim, Hyun-Kyung [ORNL; de Almeida, Valmor F [ORNL; Navamita, Ray [State University of New York, Stony Brook; Wang, Shuqiang [State University of New York, Stony Brook; Glimm, James G [ORNL; Li, Xiao-lin [State University of New York, Stony Brook; Jiao, Xiangmin [ORNL

    2012-06-01

    This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical development and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.

  5. Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel

    Science.gov (United States)

    Dewangan, Satish Kumar

    2018-05-01

    Nanofluid is becoming a promising heat transfer fluids due to its improved thermo-physical properties and heat transfer performance. Micro channel heat transfer has potential application in the cooling high power density microchips in CPU system, micro power systems and many such miniature thermal systems which need advanced cooling capacity. Use of nanofluids enhances the effectiveness of t=scu systems. Computational Fluid Dynamics (CFD) is a very powerful tool in computational analysis of the various physical processes. It application to the situations of flow and heat transfer analysis of the nano fluids is catching up very fast. Present research paper gives a brief account of the methodology of the CFD and also summarizes its application on nano fluid and heat transfer for microchannel cases.

  6. Magnetohydrodynamics and fluid dynamics action principles and conservation laws

    CERN Document Server

    Webb, Gary

    2018-01-01

    This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helici...

  7. Four-fluid description of turbulent plasma focus dynamics

    International Nuclear Information System (INIS)

    Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.

    1984-06-01

    The dynamic phenomena in the compression, pinch and late phases of the plasma focus experiment POSEIDON in its operational mode at 60 kV, 280 kJ, were previously calculated from a two-fluid theory using the new hybrid code REDUCE/FORTRAN. Two important results were found: the neutron production already in the pinch phase for currents larger than 500 kA and filamentary structures on and around the pinch axis. In a continuation of this work, a four-fluid system of dynamical equations was formulated and programmed with the REDUCE/FORTRAN code. Besides macro-turbulence, the new four-fluid theory includes micro-instabilities and anomalous transport properties, as well as the runaway effect for electrons and ions. First results from calculations with this new theory are presented and are compared with previous calculations and with recent experimental observations. (orig.)

  8. A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer

    Science.gov (United States)

    Jespersen, Dennis C.; Levit, Creon

    1989-01-01

    The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.

  9. Nonequilibrium chiral fluid dynamics including dissipation and noise

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Herold, Christoph; Bleicher, Marcus; Leupold, Stefan

    2011-01-01

    We present a consistent theoretical approach for the study of nonequilibrium effects in chiral fluid dynamics within the framework of the linear σ model with constituent quarks. Treating the quarks as an equilibrated heat bath, we use the influence functional formalism to obtain a Langevin equation for the σ field. This allows us to calculate the explicit form of the damping coefficient and the noise correlators. For a self-consistent derivation of both the dynamics of the σ field and the quark fluid, we have to employ the 2PI (two-particle irreducible) effective action formalism. The energy dissipation from the field to the fluid is treated in the exact formalism of the 2PI effective action where a conserved energy-momentum tensor can be constructed. We derive its form and comment on approximations generating additional terms in the energy-momentum balance of the entire system.

  10. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  11. Blending and nudging in fluid dynamics: some simple observations

    Energy Technology Data Exchange (ETDEWEB)

    Germano, M, E-mail: mg234@duke.edu [Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States of America (United States)

    2017-10-15

    Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed. (paper)

  12. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  13. Modelling Emission from Building Materials with Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    This paper presents a numerical model that by means of computational fluid dynamics (CFD) is capable of dealing with both pollutant transport across the boundary layer and internal diffusion in the source without prior knowledge of which is the limiting process. The model provides the concentration...

  14. On Computational Fluid Dynamics Tools in Architectural Design

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hougaard, Mads; Stærdahl, Jesper Winther

    engineering computational fluid dynamics (CFD) simulation program ANSYS CFX and a CFD based representative program RealFlow are investigated. These two programs represent two types of CFD based tools available for use during phases of an architectural design process. However, as outlined in two case studies...

  15. Lagrangian fluid dynamics using the Voronoi-Delauanay mesh

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1981-01-01

    A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed

  16. What Does Dynamical Systems Theory Teach Us about Fluids?

    International Nuclear Information System (INIS)

    Bosetti, Hadrien; Posch, Harald A.

    2014-01-01

    We use molecular dynamics simulations to compute the Lyapunov spectra of many-particle systems resembling simple fluids in thermal equilibrium and in non-equilibrium stationary states. Here we review some of the most interesting results and point to open questions. (general)

  17. Spinodal decomposition in multicomponent fluid mixtures: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.; Toxvaerd, Søren

    1996-01-01

    parameter, leading to large growth-exponent values, the dynamics in multicomponent fluids (p = 3, 4) is found to follow a t(1/3) growth law, where t is time, which we relate to a long-wavelength evaporation-condensation process. These findings, which are proposed to be consequences of the compact domain...

  18. Prospects for Computational Fluid Dynamics in Room Air Contaminant Control

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The fluid dynamics research is strongly influenced by the increasing computer power which has been available for the last decades. This development is obvious from the curve in figure 1 which shows the computation cost as a function of years. It is obvious that the cost for a given job will decre...

  19. Blending and nudging in fluid dynamics: some simple observations

    International Nuclear Information System (INIS)

    Germano, M

    2017-01-01

    Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed. (paper)

  20. Blending and nudging in fluid dynamics: some simple observations

    Science.gov (United States)

    Germano, M.

    2017-10-01

    Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed.

  1. Viscous entrainment on hairy surfaces

    Science.gov (United States)

    Nasto, Alice; Brun, P.-T.; Hosoi, A. E.

    2018-02-01

    Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.

  2. IUTAM Symposium on Lubricated Transport of Viscous Materials

    CERN Document Server

    1998-01-01

    The main objective of the First International Symposium on Lubricated Transport of Viscous Materials was to bring together scientists and engineers from academia and industryto discuss current research work and exchange ideas in this newly emerging field. It is an area offluid dynamics devoted to laying bare the principlesofthe lubricated transport of viscous materials such as crude oil, concentrated oil/water emulsion, slurries and capsules. It encompasses several types of problem. Studies of migration of particulates away from walls, Segre-Silverberg effects, lubrication versus lift and shear-induced migration belong to one category. Some of the technological problems are the fluid dynamics ofcore flows emphasizing studies ofstability, problems of start-up, lift-off and eccentric flow where gravity causes the core flow to stratify. Another category of problems deals with the fouling of pipe walls with oil, with undesirable increases in pressure gradients and even blocking. This study involves subjects like ...

  3. A History of constitutive modeling via molecular dynamics: Shock waves in fluids and gases

    Directory of Open Access Journals (Sweden)

    Holian B.L.

    2011-01-01

    Full Text Available From its inception in the mid-Fifties, the method of molecular-dynamics (MD computer simulations has been used to probe the foundations of statistical mechanics, first for equilibrium equation-of-state averages, and then for transport properties from equilibrium fluctuations. Traditional statistical mechanical theoreticians were shocked to see that this new-fangled computational physics approach was feasible, even with incredibly tiny samples (on the order of a hundred atoms. When direct measurement of transport coefficients by non-equilibrium molecular dynamics (NEMD was proposed in the early Seventies, even greater resistance was encountered from the traditionalists – though evidence for convergence with the equilibrium fluctuation method gradually accumulated. In the late Seventies and early Eighties, shock-wave simulations by NEMD made it possible to test directly the principal continuum constitutive theory for fluids, namely, Navier-Stokes viscous flow and Fourier’s Law of heat conduction. To everyone’s surprise – and the consternation of many – NEMD, once again, demonstrated that continuum theory applies at embarrassingly small (atomistic time and length scales. We pursue this early line of work into the modern era, showing how NEMD shock-wave simulations can still provide surprising insights and improvements upon our understanding of constitutive modeling.

  4. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  5. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations.

    Science.gov (United States)

    Hariharan, Prasanna; D'Souza, Gavin A; Horner, Marc; Morrison, Tina M; Malinauskas, Richard A; Myers, Matthew R

    2017-01-01

    A "credible" computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing "model credibility" is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a "threshold-based" validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results ("S") of velocity and viscous shear stress were compared with inter-laboratory experimental measurements ("D"). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student's t-test. However, following the threshold-based approach, a Student's t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be

  6. On the characteristics of a numerical fluid dynamics simulator

    International Nuclear Information System (INIS)

    Winkler, K.H.A.; Norman, M.L.; Norton, J.L.

    1986-01-01

    John von Neumann envisioned scientists and mathematicians analyzing and controlling their numerical experiments on nonlinear dynamic systems interactively. The authors describe their concept of a real-time Numerical Fluid Dynamics Simulator NFDS. The authors envision the NFDS to be composed of simulation processors, data storage devices, and image processing devices of extremely high power and capacity, interconnected by very high throughput communication channels. They present individual component performance requirements for both real-time and playback operating modes of the NFDS, using problems of current interest in fluid dynamics as examples. Scaling relations are derived showing the dependence of system requirements on the dimensionality and complexity of the numerical model. The authors conclude by extending their analysis to the system requirements posed in modeling the more involved physics of radiation hydrodynamics

  7. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    Science.gov (United States)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  8. Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time.

    Science.gov (United States)

    Yu, Alex; Jackson, Trachette; Tsume, Yasuhiro; Koenigsknecht, Mark; Wysocki, Jeffrey; Marciani, Luca; Amidon, Gordon L; Frances, Ann; Baker, Jason R; Hasler, William; Wen, Bo; Pai, Amit; Sun, Duxin

    2017-11-01

    Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.

  9. Connection Between Thermodynamics and Dynamics of Simple Fluids in Pores: Impact of Fluid-Fluid Interaction Range and Fluid-Solid Interaction Strength.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-08-03

    Using molecular simulations, we investigate how the range of fluid-fluid (adsorbate-adsorbate) interactions and the strength of fluid-solid (adsorbate-adsorbent) interactions impact the strong connection between distinct adsorptive regimes and distinct self-diffusivity regimes reported in [Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Langmuir 2013 , 29 , 14527-14535]. Although increasing the fluid-fluid interaction range changes both the thermodynamics and the dynamic properties of adsorbed fluids, the previously reported connection between adsorptive filling regimes and self-diffusivity regimes remains. Increasing the fluid-fluid interaction range leads to enhanced layering and decreased self-diffusivity in the multilayer-formation regime but has little effect on the properties within film-formation and pore-filling regimes. We also find that weakly attractive adsorbents, which do not display distinct multilayer formation, are hard-sphere-like at super- and subcritical temperatures. In this case, the self-diffusivity of the confined and bulk fluid has a nearly identical scaling-relationship with effective density.

  10. Fluid dynamics of the shock wave reactor

    Science.gov (United States)

    Masse, Robert Kenneth

    2000-10-01

    High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter

  11. Unsteady bio-fluid dynamics in flying and swimming

    Science.gov (United States)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  12. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  13. Non-intuitive fluid dynamics from reactor and containment technology

    International Nuclear Information System (INIS)

    Moody, F.J.

    1986-01-01

    One exciting aspect of fluid dynamics is that the subject has many surprises. The surprises can be good, but if not anticipated, they sometimes can be costly and embarrassing. Several non-intuitive fluid responses have emerged from studies in nuclear reactor and containment design. These responses include bubble behavior, blowdown, and waterhammer phenomena. Apologies are extended to those who are not surprised by the results. However, many will find the examples interesting; some have been amazed; a few have declared a personal crisis in their engineering perception

  14. Symposium on computational fluid dynamics: technology and applications

    International Nuclear Information System (INIS)

    1988-01-01

    A symposium on the technology and applications of computational fluid dynamics (CFD) was held in Pretoria from 21-23 Nov 1988. The following aspects were covered: multilevel adaptive methods and multigrid solvers in CFD, a symbolic processing approach to CFD, interplay between CFD and analytical approximations, CFD on a transfer array, the application of CFD in high speed aerodynamics, numerical simulation of laminar blood flow, two-phase flow modelling in nuclear accident analysis, and the finite difference scheme for the numerical solution of fluid flow

  15. Cellular Biotechnology Operations Support System Fluid Dynamics Investigation

    Science.gov (United States)

    2003-01-01

    Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.

  16. Dynamic analysis of structures with solid-fluid interaction

    International Nuclear Information System (INIS)

    Nahavandi, A.N.; Pedrido, R.R.; Cloud, R.L.

    1977-01-01

    This study develops a finite element model for interaction between an elastic solid and fluid medium (flow-induced vibrations in nuclear reactor components). Plane triangular finite elements have been used separately for fluid, solid, and solid-fluid continuua and the equivalent mass, damping, and stiffness matrices and interaction load arrays for all elements are derived and assembled into global matrices. The global matrix differential equation of motion developed is solved in time to obtain the pressure and velocity distributions in the fluid, as well as the displacements in the solid. Two independent computer programs are used to obtain the dynamic solution. The first program is a finite element program developed for solid-fluid interaction studies. This program uses the modal superposition technique in which the eigenvalues and eigenvectors for the system are found and used to uncouple the equations. This approach allows an analytic solution in each integration time step. The second program is WECAN finite element program in which a new element library subroutine for solid-fluid interaction was incorporated. This program can employ a NASTRAN direct integration scheme based on a central difference formula for the acceleration and velocity terms and an implicit representation of the displacement term. This reduces the problem to a matrix equation whose right hand side is updated in every time step and is solved by a variation of the Gaussian elimination method known as the wave front technique. Results have been obtained for the case of water, between two flat elastic parallel plates, initially at rest and accelerated suddenly by applying a step pressure. The results obtained from the above-mentioned two independent finite element programs are in full agreement. This verification provides the confidence needed to initiate parametric studies. Both rigid wall (no solid-fluid interaction) and flexible wall (including solid-fluid interaction) cases were examined

  17. Particle hopping vs. fluid-dynamical models for traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  18. A future for computational fluid dynamics at CERN

    CERN Document Server

    Battistin, M

    2005-01-01

    Computational Fluid Dynamics (CFD) is an analysis of fluid flow, heat transfer and associated phenomena in physical systems using computers. CFD has been used at CERN since 1993 by the TS-CV group, to solve thermo-fluid related problems, particularly during the development, design and construction phases of the LHC experiments. Computer models based on CFD techniques can be employed to reduce the effort required for prototype testing, saving not only time and money but offering possibilities of additional investigations and design optimisation. The development of a more efficient support team at CERN depends on to two important factors: available computing power and experienced engineers. Available computer power IS the limiting resource of CFD. Only the recent increase of computer power had allowed important high tech and industrial applications. Computer Grid is already now (OpenLab at CERN) and will be more so in the future natural environment for CFD science. At CERN, CFD activities have been developed by...

  19. Skylab viscous damper study

    Science.gov (United States)

    1978-01-01

    The proposed magnetically anchored viscous fluid damper can maintain the Skylab in a gravity-gradient stabilized mode at the anticipated reboost altitudes. The parameters influencing damper performance (and thereby affecting the degree of risk) are: (1) amount of skylab pitch bias in the orbit plane which will result from aerodynamic trim conditions of the post-reboost configuration Skylab; (2) the lowest altitude to which the post-reboost Skylab will be allowed to decay prior to the next rendezvous; (3) maximum allowable weight and size of the proposed damper in order to match shuttle/TRS mission constraints; (4) the amount of magnetic materials expected to be in the vicinity of the damper.

  20. Optics and Fluid Dynamics Department annual progress report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.

    1998-04-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing and storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena for optical components and systems. Scientific computing is an integral part of the work. Biomedical optics is a new activity and the work on polymer optics is enhanced considerably. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1997 is presented. (au) 1 tab., 63 ills., 249 refs.

  1. Optics and Fluid Dynamics Department annual progress report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.

    1997-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing an storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1996 is presented. (au) 53 ills., 232 refs.

  2. Moving interface problems and applications in fluid dynamics

    CERN Document Server

    Khoo, Boo Cheong; Lin, Ping

    2008-01-01

    This volume is a collection of research papers presented at the program on Moving Interface Problems and Applications in Fluid Dynamics, which was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences (IMS) of the National University of Singapore. The topics discussed include modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications including biological treatments with experimental verification, multi-medium flow or multi-phase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas. Readers can benefit from some recent research results in these areas.

  3. Fluid dynamics applications of the Illiac IV computer

    Science.gov (United States)

    Maccormack, R. W.; Stevens, K. G., Jr.

    1976-01-01

    The Illiac IV is a parallel-structure computer with computing power an order of magnitude greater than that of conventional computers. It can be used for experimental tasks in fluid dynamics which can be simulated more economically, for simulating flows that cannot be studied by experiment, and for combining computer and experimental simulations. The architecture of Illiac IV is described, and the use of its parallel operation is demonstrated on the example of its solution of the one-dimensional wave equation. For fluid dynamics problems, a special FORTRAN-like vector programming language was devised, called CFD language. Two applications are described in detail: (1) the determination of the flowfield around the space shuttle, and (2) the computation of transonic turbulent separated flow past a thick biconvex airfoil.

  4. Optics and Fluid Dynamics Department annual progress report for 1996

    International Nuclear Information System (INIS)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B.

    1997-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing an storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1996 is presented. (au) 53 ills., 232 refs

  5. Activities and interconnections of thermal-fluid dynamics

    International Nuclear Information System (INIS)

    Celata, G.P.

    1999-01-01

    Thermal-fluid dynamics is a field of fundamental interest for a wide spectrum of past and present advanced 'applications': in nature, in the 'machines' of our everyday life and in industry. In particular, in today industry, its knowledge and the developments are of fundamental importance in understanding, modelling and in the advance design of heat and mass transfer process in energy conversion and transformation plants. Various examples of the role of the thermal-fluid dynamics to increase efficiency in energy utilization and in the design and in the development of new components and high performance system are exposed. New thermodynamic models and advanced analysis techniques together with necessary balance between theoretical advances codes for modelling and their experimental specific verifications are throughout discussed and illustrated

  6. Optics and Fluid Dynamics Department annual progress report for 1997

    International Nuclear Information System (INIS)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B.

    1998-04-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing and storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena for optical components and systems. Scientific computing is an integral part of the work. Biomedical optics is a new activity and the work on polymer optics is enhanced considerably. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1997 is presented. (au)

  7. Basic Coandă MAV Fluid Dynamics and Flight Mechanics

    Science.gov (United States)

    Djojodihardjo, H.; Ahmed, RI

    2017-04-01

    Capitalizing on the basic fundamental principles, the Fluid Dynamics and Flight Mechanics of a semi-spherical Coandă MAV configurations are revisited and analyzed as a baseline. A mathematical model for a spherical Coandă MAV in hover and translatory motion is developed and analyzed from first physical principles. To gain further insight into the prevailing flow field around a Coandă MAV, as well as to verify the theoretical prediction presented in the work, a computational fluid dynamic CFD simulations for a Coandă MAV generic model are elaborated. The mathematical model and derived performance measures are shown to be capable in describing the physical phenomena of the flow field of the semi-spherical Coandă MAV. The relationships between the relevant parameters of the mathematical model of the Coandă MAV to the forces acting on it are elaborated subsequently.

  8. Computational Fluid and Particle Dynamics in the Human Respiratory System

    CERN Document Server

    Tu, Jiyuan; Ahmadi, Goodarz

    2013-01-01

    Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researcher...

  9. Contributions to thermal and fluid dynamic problems in nuclear technology

    International Nuclear Information System (INIS)

    Mueller, U.; Krebs, L.; Rust, K.

    1984-02-01

    The majority of contributions compiled in this report deals with thermal and fluid dynamic problems in nuclear engineering. Especially problems of heat transfer and cooling are represented which may arise during and afer a loss-of-coolant accident both in light water reactors and in liquid metal cooled fast breeder reactors. Papers on the mass transfer in pressurized water, tribological problems in sodium cooled reactors, the fluid dynamics of pulsed column, and fundamental investigations of convective flows supplement these contributions on problems connected with accidents. Furthermore, a keynote paper presents the individual activities relating to the reliability of reactor components, a field recently included in our research program. Technical solutions to special problems are closely connected to the investigations based on experiments. Therefore, several contributions deal with new developments in technology and measuring techniques. (orig.) [de

  10. Optics and Fluid Dynamics Department annual progress report for 1993

    International Nuclear Information System (INIS)

    Hanson, S.G.; Lading, L.; Michelsen, P.; Skaarup, B.

    1994-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials, (b) quasi-elastic light scattering and diagnostics in solids, fluids, and plasmas, and (c) optical and electronic information processing. Within continuum physics the activities are within (a) studies of non-linear dynamical processes in continuum systems, (b) investigations of problems with relevance to fusion plasma physics. The injection of pellets in fusion experiments has been investigated and pellet injectors to European fusion experiments are manufactured. The department is also responsible for the EURATOM collaboration within fusion plasma physics. A summary of activities in 1993 is presented. (au) (27 ills., 24 refs.)

  11. Dissolution Dynamic Nuclear Polarization capability study with fluid path

    DEFF Research Database (Denmark)

    Malinowski, Ronja Maja; Lipsø, Hans Kasper Wigh; Lerche, Mathilde Hauge

    2016-01-01

    Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperp......Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden...... of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling...

  12. Influence of viscous dissipation and radiation on MHD Couette flow ...

    African Journals Online (AJOL)

    The overall analysis of the study of these parameters in various degrees show an increase in the velocity profile of the fluid, while radiation parameter decreases the temperature profile; viscous dissipation and Reynolds number increase the temperature profile of the fluid. Key word: Couette flow, viscous dissipation, ...

  13. Algorithmic trends in computational fluid dynamics; The Institute for Computer Applications in Science and Engineering (ICASE)/LaRC Workshop, NASA Langley Research Center, Hampton, VA, US, Sep. 15-17, 1991

    Science.gov (United States)

    Hussaini, M. Y. (Editor); Kumar, A. (Editor); Salas, M. D. (Editor)

    1993-01-01

    The purpose here is to assess the state of the art in the areas of numerical analysis that are particularly relevant to computational fluid dynamics (CFD), to identify promising new developments in various areas of numerical analysis that will impact CFD, and to establish a long-term perspective focusing on opportunities and needs. Overviews are given of discretization schemes, computational fluid dynamics, algorithmic trends in CFD for aerospace flow field calculations, simulation of compressible viscous flow, and massively parallel computation. Also discussed are accerelation methods, spectral and high-order methods, multi-resolution and subcell resolution schemes, and inherently multidimensional schemes.

  14. Fluid dynamics following flow shut-off in bottle filling

    Science.gov (United States)

    Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman

    2012-11-01

    Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.

  15. Computational fluid dynamics modelling of displacement natural ventilation.

    OpenAIRE

    Ji, Yingchun

    2005-01-01

    Natural ventilation is widely recognised as contributing towards low-energy building design. The requirement to reduce energy usage in new buildings has rejuvenated interest in natural ventilation. This thesis deals with computer modelling of natural displacement ventilation driven either by buoyancy or buoyancy combined with wind forces. Two benchmarks have been developed using computational fluid dynamics (CFD) in order to evaluate the accuracy with which CFD is able to mo...

  16. Quantum molecular dynamics simulations of thermophysical properties of fluid ethane

    OpenAIRE

    Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping

    2012-01-01

    We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present new results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition...

  17. On the Schrodinger equation in fluid-dynamical form

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1976-01-01

    The fluid-dynamical form of the Schrodinger equations is studied to examine the nature of the quantum forces arising from the quantum potential of Madelung and Bohm. It is found that they are in the form of a stress tensor having diagonal and nondiagonal components. Future studies of these quantum stress tensors in a many-body system may shed some light on the mechanism of spontaneous symmetry breaking and the generation of vorticity in many nuclear systems

  18. Attractors of equations of non-Newtonian fluid dynamics

    International Nuclear Information System (INIS)

    Zvyagin, V G; Kondrat'ev, S K

    2014-01-01

    This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles

  19. Quality control of computational fluid dynamics in indoor environments

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Nielsen, P. V.

    2003-01-01

    Computational fluid dynamics (CFD) is used routinely to predict air movement and distributions of temperature and concentrations in indoor environments. Modelling and numerical errors are inherent in such studies and must be considered when the results are presented. Here, we discuss modelling as...... the quality of CFD calculations, as well as guidelines for the minimum information that should accompany all CFD-related publications to enable a scientific judgment of the quality of the study....

  20. Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell

    Science.gov (United States)

    Okumura, Ko; Yahashi, Misato; Kimoto, Natsuki

    2016-11-01

    We study both experimentally and theoretically the descending motion due to gravity of a fluid drop surrounded by another immiscible fluid in a confined space between two parallel plates, i.e., in the Hele-Shaw cell. As a result, we show a new scaling regime of a nonlinear drag friction in viscous liquid that replaces the well-known Stokes' drag friction through a clear collapse of experimental data thanks to the scaling law. In the novel regime, the dissipation in the liquid thin film formed between the drop and cell walls governs the dynamics. The crossover of this scaling regime to another scaling regime in which the dissipation inside the droplet is dominant is clearly demonstrated and a phase diagram separating these scaling regimes is presented. To be published as, Y. Yahashi, N. Kimoto and K. Okumura, Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell, Sci. Rep.(CC BY 4.0). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

  1. Optics and fluid dynamics department annual progress report for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S G; Lading, L; Lynov, J P; Michelsen, P

    1995-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials and electromagnetic propagation, (b) diagnostics and sensors, and (c) information processing. In continuum physics the activities are (a) nonlinear dynamics and (b) computer physics. The activities are supported by several EU programmes, including EURATOM, by research councils, and by industry. A special activity is the implementation of pellet injectors for fusion research. A summary of activities in 1994 is presented. (au) (27 ills., 44 refs.).

  2. Techniques for animation of CFD results. [computational fluid dynamics

    Science.gov (United States)

    Horowitz, Jay; Hanson, Jeffery C.

    1992-01-01

    Video animation is becoming increasingly vital to the computational fluid dynamics researcher, not just for presentation, but for recording and comparing dynamic visualizations that are beyond the current capabilities of even the most powerful graphic workstation. To meet these needs, Lewis Research Center has recently established a facility to provide users with easy access to advanced video animation capabilities. However, producing animation that is both visually effective and scientifically accurate involves various technological and aesthetic considerations that must be understood both by the researcher and those supporting the visualization process. These considerations include: scan conversion, color conversion, and spatial ambiguities.

  3. Optics and fluid dynamics department annual progress report for 1994

    International Nuclear Information System (INIS)

    Hanson, S.G.; Lading, L.; Lynov, J.P.; Michelsen, P.

    1995-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials and electromagnetic propagation, (b) diagnostics and sensors, and (c) information processing. In continuum physics the activities are (a) nonlinear dynamics and (b) computer physics. The activities are supported by several EU programmes, including EURATOM, by research councils, and by industry. A special activity is the implementation of pellet injectors for fusion research. A summary of activities in 1994 is presented. (au) (27 ills., 44 refs.)

  4. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-01

    The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1-10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  5. Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating

    Science.gov (United States)

    Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.

    2017-09-01

    Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.

  6. Comparative study of sea ice dynamics simulations with a Maxwell elasto-brittle rheology and the elastic-viscous-plastic rheology in NEMO-LIM3

    Science.gov (United States)

    Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme

    2017-04-01

    Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.

  7. Rheological Modeling of Macro Viscous Flows of Granular Suspension of Regular and Irregular Particles

    Directory of Open Access Journals (Sweden)

    Anna Maria Pellegrino

    2017-12-01

    Full Text Available This paper refers to complex granular-fluid mixtures involved into geophysical flows, such as debris and hyper-concentrated flows. For such phenomena, the interstitial fluids play a role when they are in the viscous regime. Referring to experiments on granular-fluid mixture carried out with pressure imposed annular shear cell, we study the rheological behaviour of dense mixture involving both spheres and irregular-shaped particles. For the case of viscous suspensions with irregular grains, a significant scatter of data from the trend observed for mixtures with spherical particles was evident. In effect, the shape of the particles likely plays a fundamental role in the flow dynamics, and the constitutive laws proposed by the frictional theory for the spheres are no longer valid. Starting from the frictional approach successfully applied to suspension of spheres, we demonstrate that also in case of irregular particles the mixture rheology may be fully characterized by the two relationships involving friction coefficient µ and volume concentration Ф as a function of the dimensionless viscous number Iv. To this goal, we provided a new consistent general model, referring to the volume fraction law and friction law, which accounts for the particle shape. In this way, the fitting parameters reduce just to the static friction angle µ1, and the two parameters, k and fs related to the grain shape. The resulting general model may apply to steady fully developed flows of saturated granular fluid mixture in the viscous regime, no matter of granular characteristics.

  8. Instrumentation, measurements, and experiments in fluids

    CERN Document Server

    Rathakrishnan, E

    2007-01-01

    NEED AND OBJECTIVE OF EXPERIMENTAL STUDY Some Fluid Mechanics MeasurementsMeasurement SystemsSome of the Important Quantities Associated with FluidFlow MeasurementsFUNDAMENTALS OF FLUID MECHANICSProperties of FluidsThermodynamic PropertiesSurface TensionAnalysis of Fluid FlowBasic and Subsidiary Laws for Continuous MediaKinematics of Fluid FlowStreamlinesPotential FlowViscous FlowsGas DynamicsWIND TUNNELSLow-Speed Wind TunnelsPower Losses in a Wind TunnelHigh-Speed Wind TunnelsHypersonic TunnelsInstrume

  9. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    International Nuclear Information System (INIS)

    Yépez, L.D.; Carrillo, J.L.; Donado, F.; Sausedo-Solorio, J.M.; Miranda-Romagnoli, P.

    2016-01-01

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena. - Highlights: • A weighted average of the time-dependent Mason number is proposed. • The self-propelling clusters appear when a vertical rotating magnetic field is applied. • The largest average chain lengths are reached when frequencies are multiples one another. • Rotating and unidirectional alternating fields produce the largest average chain length values.

  10. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    Energy Technology Data Exchange (ETDEWEB)

    Yépez, L.D.; Carrillo, J.L. [Instituto de Física de la Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. 110 A, Puebla 72570 (Mexico); Donado, F.; Sausedo-Solorio, J.M.; Miranda-Romagnoli, P. [Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo, Pachuca 42090, Pachuca (Mexico)

    2016-06-15

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena. - Highlights: • A weighted average of the time-dependent Mason number is proposed. • The self-propelling clusters appear when a vertical rotating magnetic field is applied. • The largest average chain lengths are reached when frequencies are multiples one another. • Rotating and unidirectional alternating fields produce the largest average chain length values.

  11. Dynamics of solutions and fluid mixtures by NMR

    International Nuclear Information System (INIS)

    Delpuech, J.J.

    1994-01-01

    After a short introduction to NMR spectroscopy, with a special emphasis on dynamical aspects, an overview on two fundamental aspects of molecular dynamics, NMR relaxation and its relationship with molecular reorientation, and magnetization transfer phenomena induced by molecular rate processes (dynamic NMR) is presented, followed by specific mechanisms of relaxation encountered in paramagnetic systems or with quadrupolar nuclei. Application fields are then reviewed: solvent exchange on metal ions with a variable pressure NMR approach, applications of field gradients in NMR, aggregation phenomena and micro-heterogeneity in surfactant solutions, polymers and biopolymers in the liquid state, liquid-like molecules in rigid matrices and in soft matter (swollen polymers and gels, fluids in and on inorganic materials, food)

  12. Issues in computational fluid dynamics code verification and validation

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W.L.; Blottner, F.G.

    1997-09-01

    A broad range of mathematical modeling errors of fluid flow physics and numerical approximation errors are addressed in computational fluid dynamics (CFD). It is strongly believed that if CFD is to have a major impact on the design of engineering hardware and flight systems, the level of confidence in complex simulations must substantially improve. To better understand the present limitations of CFD simulations, a wide variety of physical modeling, discretization, and solution errors are identified and discussed. Here, discretization and solution errors refer to all errors caused by conversion of the original partial differential, or integral, conservation equations representing the physical process, to algebraic equations and their solution on a computer. The impact of boundary conditions on the solution of the partial differential equations and their discrete representation will also be discussed. Throughout the article, clear distinctions are made between the analytical mathematical models of fluid dynamics and the numerical models. Lax`s Equivalence Theorem and its frailties in practical CFD solutions are pointed out. Distinctions are also made between the existence and uniqueness of solutions to the partial differential equations as opposed to the discrete equations. Two techniques are briefly discussed for the detection and quantification of certain types of discretization and grid resolution errors.

  13. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Vedel Søren

    2009-09-01

    Full Text Available Abstract Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis.

  14. Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube

    Science.gov (United States)

    Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake

    2017-11-01

    A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.

  15. Fluid dynamics parallel computer development at NASA Langley Research Center

    Science.gov (United States)

    Townsend, James C.; Zang, Thomas A.; Dwoyer, Douglas L.

    1987-01-01

    To accomplish more detailed simulations of highly complex flows, such as the transition to turbulence, fluid dynamics research requires computers much more powerful than any available today. Only parallel processing on multiple-processor computers offers hope for achieving the required effective speeds. Looking ahead to the use of these machines, the fluid dynamicist faces three issues: algorithm development for near-term parallel computers, architecture development for future computer power increases, and assessment of possible advantages of special purpose designs. Two projects at NASA Langley address these issues. Software development and algorithm exploration is being done on the FLEX/32 Parallel Processing Research Computer. New architecture features are being explored in the special purpose hardware design of the Navier-Stokes Computer. These projects are complementary and are producing promising results.

  16. Data Point Averaging for Computational Fluid Dynamics Data

    Science.gov (United States)

    Norman, Jr., David (Inventor)

    2016-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  17. Distributed interactive graphics applications in computational fluid dynamics

    International Nuclear Information System (INIS)

    Rogers, S.E.; Buning, P.G.; Merritt, F.J.

    1987-01-01

    Implementation of two distributed graphics programs used in computational fluid dynamics is discussed. Both programs are interactive in nature. They run on a CRAY-2 supercomputer and use a Silicon Graphics Iris workstation as the front-end machine. The hardware and supporting software are from the Numerical Aerodynamic Simulation project. The supercomputer does all numerically intensive work and the workstation, as the front-end machine, allows the user to perform real-time interactive transformations on the displayed data. The first program was written as a distributed program that computes particle traces for fluid flow solutions existing on the supercomputer. The second is an older post-processing and plotting program modified to run in a distributed mode. Both programs have realized a large increase in speed over that obtained using a single machine. By using these programs, one can learn quickly about complex features of a three-dimensional flow field. Some color results are presented

  18. Fast reactor safety and computational thermo-fluid dynamics approaches

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Shimizu, Takeshi

    1993-01-01

    This article provides a brief description of the safety principle on which liquid metal cooled fast breeder reactors (LMFBRs) is based and the roles of computations in the safety practices. A number of thermohydraulics models have been developed to date that successfully describe several of the important types of fluids and materials motion encountered in the analysis of postulated accidents in LMFBRs. Most of these models use a mixture of implicit and explicit numerical solution techniques in solving a set of conservation equations formulated in Eulerian coordinates, with special techniques included to specific situations. Typical computational thermo-fluid dynamics approaches are discussed in particular areas of analyses of the physical phenomena relevant to the fuel subassembly thermohydraulics design and that involve describing the motion of molten materials in the core over a large scale. (orig.)

  19. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.

  20. Fluid mechanics and heat transfer advances in nonlinear dynamics modeling

    CERN Document Server

    Asli, Kaveh Hariri

    2015-01-01

    This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.

  1. [Fluid dynamics of supercritical helium within internally cooled cabled superconductors

    International Nuclear Information System (INIS)

    Van Sciver, S.W.

    1995-01-01

    The Applied Superconductivity Center of the University of Wisconsin-Madison proposes to conduct research on low temperature helium fluid dynamics as it applies to the cooling of internally cooled cabled superconductors (ICCS). Such conductors are used in fusion reactor designs including most of the coils in ITER. The proposed work is primarily experimental involving measurements of transient and steady state pressure drop in a variety of conductor configurations. Both model and prototype conductors for actual magnet designs will be investigated. The primary goal will be to measure and model the friction factor for these complex geometries. In addition, an effort will be made to study transient processes such as heat transfer and fluid expulsion associated with quench conditions

  2. Fluid phonons, protoinflationary dynamics and large-scale gravitational fluctuations

    CERN Document Server

    Giovannini, Massimo

    2013-01-01

    We explore what can be said on the effective temperature and sound speed of a statistical ensemble of fluid phonons present at the onset of a conventional inflationary phase. The phonons are the actual normal modes of the gravitating and irrotational fluid that dominates the protoinflationary dynamics. The bounds on the tensor to scalar ratio result in a class of novel constraints involving the slow roll parameter, the sound speed of the phonons and the temperature of the plasma prior to the onset of inflation. If the current size of the Hubble radius coincides with the inflationary event horizon redshifted down to the present epoch, the sound speed of the phonons can be assessed from independent measurements of the tensor to scalar ratio and of the tensor spectral index.

  3. Fluid-solid boundary conditions for multiparticle collision dynamics

    International Nuclear Information System (INIS)

    Whitmer, Jonathan K; Luijten, Erik

    2010-01-01

    The simulation of colloidal particles suspended in solvent requires an accurate representation of the interactions between the colloids and the solvent molecules. Using the multiparticle collision dynamics method, we examine several proposals for stick boundary conditions, studying their properties in both plane Poiseuille flow (where fluid interacts with the boundary of a stationary macroscopic solid) and particle-based colloid simulations (where the boundaries are thermally affected and in motion). In addition, our simulations compare various collision rules designed to remove spurious slip near solid surfaces, and the effects of these rules on the thermal motion of colloidal particles. Furthermore, we demonstrate that stochastic reflection of the fluid at solid boundaries fails to faithfully represent stick boundary conditions, and conclude that bounce-back conditions should be applied at both mobile and stationary surfaces. Finally, we generalize these ideas to create partial slip boundary conditions at both stationary and mobile surfaces.

  4. FAST - A multiprocessed environment for visualization of computational fluid dynamics

    International Nuclear Information System (INIS)

    Bancroft, G.V.; Merritt, F.J.; Plessel, T.C.; Kelaita, P.G.; Mccabe, R.K.

    1991-01-01

    The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed. 20 refs

  5. Applied Computational Fluid Dynamics at NASA Ames Research Center

    Science.gov (United States)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  6. Quantum molecular dynamics simulations of thermophysical properties of fluid ethane.

    Science.gov (United States)

    Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping

    2012-12-01

    We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition, that ethane dissociates significantly into molecular and/or atomic hydrogen and some long alkane chains, has been systematically studied by analyzing the optical conductivity spectra, pair correlation functions, electronic density of states, and charge density distribution of fluid ethane.

  7. Energy dissipation of rigid dipoles in a viscous fluid under the action of a time-periodic field: The influence of thermal bath and dipole interaction

    Science.gov (United States)

    Lyutyy, T. V.; Reva, V. V.

    2018-05-01

    Ferrofluid heating by an external alternating field is studied based on the rigid dipole model, where the magnetization of each particle in a fluid is supposed to be firmly fixed in the crystal lattice. Equations of motion, employing Newton's second law for rotational motion, the condition of rigid body rotation, and the assumption that the friction torque is proportional to angular velocity are used. This oversimplification permits us to expand the model easily: to take into account the thermal noise and interparticle interaction that allows us to estimate from unified positions the role of thermal activation and dipole interaction in the heating process. Our studies are conducted in three stages. The exact expressions for the average power loss of a single particle are obtained within the dynamical approximation. Then, in the stochastic case, the power loss of a single particle is estimated analytically using the Fokker-Planck equation and numerically using the effective Langevin equation. Finally, the power loss for the particle ensemble is obtained using the molecular dynamics method. Here, the local dipole fields are calculated approximately based on the Barnes-Hut algorithm. The revealed trends in the behavior of both a single particle and the particle ensemble suggest the way of choosing the conditions for obtaining the maximum heating efficiency. The competitiveness character of the interparticle interaction and thermal noise is investigated in detail. Two situations, when the thermal noise rectifies the power loss reduction caused by the interaction, are described. The first of them is related to the complete destruction of dense clusters at high noise intensity. The second one originates from the rare switching of the particles in clusters due to thermal activation, when the noise intensity is relatively weak. In this way, the constructive role of noise appears in the system.

  8. PREFACE: Complex dynamics of fluids in disordered and crowded environments Complex dynamics of fluids in disordered and crowded environments

    Science.gov (United States)

    Coslovich, Daniele; Kahl, Gerhard; Krakoviack, Vincent

    2011-06-01

    Over the past two decades, the dynamics of fluids under nanoscale confinement has attracted much attention. Motivation for this rapidly increasing interest is based on both practical and fundamental reasons. On the practical and rather applied side, problems in a wide range of scientific topics, such as polymer and colloidal sciences, rheology, geology, or biophysics, benefit from a profound understanding of the dynamical behaviour of confined fluids. Further, effects similar to those observed in confinement are expected in fluids whose constituents have strong size or mass asymmetry, and in biological systems where crowding and obstruction phenomena in the cytosol are responsible for clear separations of time scales for macromolecular transport in the cell. In fundamental research, on the other hand, the interest focuses on the complex interplay between confinement and structural relaxation, which is responsible for the emergence of new phenomena in the dynamics of the system: in confinement, geometric constraints associated with the pore shape are imposed to the adsorbed fluids and an additional characteristic length scale, i.e. the pore size, comes into play. For many years, the topic has been mostly experimentally driven. Indeed, a broad spectrum of systems has been investigated by sophisticated experimental techniques, while theoretical and simulation studies were rather scarce due to conceptual and computational issues. In the past few years, however, theory and simulations could largely catch up with experiments. On one side, new theories have been put forward that duly take into account the porosity, the connectivity, and the randomness of the confinement. On the other side, the ever increasing available computational power now allows investigations that were far out of reach a few years ago. Nowadays, instead of isolated state points, systematic investigations on the dynamics of confined fluids, covering a wide range of system parameters, can be realized

  9. Dynamical Heterogeneity in Granular Fluids and Structural Glasses

    Science.gov (United States)

    Avila, Karina E.

    Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than

  10. Fluid dynamic interaction between water hammer and centrifugal pumps

    International Nuclear Information System (INIS)

    Ismaier, A.; Schluecker, E.

    2009-01-01

    Centrifugal pumps generate in piping systems noticeable pressure pulsations. In this paper the dynamic interaction between water hammer and pressure pulsations is presented. The experimental investigations were performed at a piping system with nominal diameter DN 100 (respectively NPS 4) and 75 m total length, built at the Institute for Process Technology and Machinery. Different measurements at this testing facility show that pulsating centrifugal pumps can damp pressure surges generated by fast valve closing. It is also shown that 1-dimensional fluid codes can be used to calculate this phenomenon. Furthermore it is presented that pressure surges pass centrifugal pumps almost unhindered, because they are hydraulic open.

  11. Modeling fires in adjacent ship compartments with computational fluid dynamics

    International Nuclear Information System (INIS)

    Wix, S.D.; Cole, J.K.; Koski, J.A.

    1998-01-01

    This paper presents an analysis of the thermal effects on radioactive (RAM) transportation pack ages with a fire in an adjacent compartment. An assumption for this analysis is that the adjacent hold fire is some sort of engine room fire. Computational fluid dynamics (CFD) analysis tools were used to perform the analysis in order to include convective heat transfer effects. The analysis results were compared to experimental data gathered in a series of tests on the United States Coast Guard ship Mayo Lykes located at Mobile, Alabama. (authors)

  12. Computational fluid dynamics in fire engineering theory, modelling and practice

    CERN Document Server

    Yuen, Kwok Kit

    2009-01-01

    Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the f

  13. Application of coarse-mesh methods to fluid dynamics equations

    International Nuclear Information System (INIS)

    Romstedt, P.; Werner, W.

    1977-01-01

    An Asymmetric Weighted Residual (ASWR) method for fluid dynamics equations is described. It leads to local operators with a 7-point Finite Difference (FD) structure, which is independent of the degree of the approximating polynomials. An 1-dimensional problem was solved by both this ASWR-method and a commonly used FD-method. The numerical results demonstrate that the ASWR-method combines high accuracy on a coarse computational mesh with short computing time per space point. The posibility of using fewer space points consequently brings about a considerable reduction in total running time for the ASWR-method as compared with conventional FD-methods. (orig.) [de

  14. Relativistic nuclear fluid dynamics and VUU kinetic theory

    International Nuclear Information System (INIS)

    Molitoris, J.J.; Hahn, D.; Alonso, C.; Collazo, I.; D'Alessandris, P.; McAbee, T.; Wilson, J.; Zingman, J.

    1987-01-01

    Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs

  15. Tensor viscosity method for convection in numerical fluid dynamics

    International Nuclear Information System (INIS)

    Dukowicz, J.K.; Ramshaw, J.D.

    1979-01-01

    A new method, called the tensor viscosity method, is described for differencing the convective terms in multidimensional numerical fluid dynamics. The method is the proper generalization to two or three dimensions of interpolated donor cell differencing in one dimension, and is designed to achieve numerical stability with minimal numerical damping. It is a single-step method that is distinguished by simplicity and case of implementation, even in the case of an arbitrary non-rectangular mesh. It should therefore be useful in finite-element as well as finite-difference formulations

  16. Torque converter transient characteristics prediction using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaguchi, T; Tanaka, K

    2012-01-01

    The objective of this research is to investigate the transient torque converter performance used in an automobile. A new technique in computational fluid dynamics is introduced, which includes the inertia of the turbine in a three dimensional simulation of the torque converter during a launch condition. The simulation results are compared to experimental test data with good agreement across the range of data. In addition, the simulated flow structure inside the torque converter is visualized and compared to results from a steady-state calculation.

  17. Approaching multiphase flows from the perspective of computational fluid dynamics

    International Nuclear Information System (INIS)

    Banas, A.O.

    1992-01-01

    Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with regard to the established thermalhydraulic methods of analysis is indicated. (author). 8 refs

  18. Morphing-Based Shape Optimization in Computational Fluid Dynamics

    Science.gov (United States)

    Rousseau, Yannick; Men'Shov, Igor; Nakamura, Yoshiaki

    In this paper, a Morphing-based Shape Optimization (MbSO) technique is presented for solving Optimum-Shape Design (OSD) problems in Computational Fluid Dynamics (CFD). The proposed method couples Free-Form Deformation (FFD) and Evolutionary Computation, and, as its name suggests, relies on the morphing of shape and computational domain, rather than direct shape parameterization. Advantages of the FFD approach compared to traditional parameterization are first discussed. Then, examples of shape and grid deformations by FFD are presented. Finally, the MbSO approach is illustrated and applied through an example: the design of an airfoil for a future Mars exploration airplane.

  19. Multitasking the code ARC3D. [for computational fluid dynamics

    Science.gov (United States)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  20. A fluid dynamic approach to the dust-acoustic soliton

    International Nuclear Information System (INIS)

    McKenzie, J.F.; Doyle, T.B.

    2002-01-01

    The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave