A semi-elliptic analysis of internal viscous flows
International Nuclear Information System (INIS)
Ghia, U.; Ramamurti, R.; Ghia, K.N.
1986-01-01
The increased demands placed presently on the performance of compressors and turbines of gas-turbine engines have, for some time, pointed the need for accurate analysis of viscous flows in turbomachinery. With the recent developments of advanced computational facilities, much effort has been made to respond to this need. Various mathematical formulations, grid systems and numerical techniques have been developed for the numerical solution of the viscous flow equations (Refs. 1-4). The full Navier-Stokes equations as well as their corresponding thin-layer approximate form have been employed in H- as well as C-grids, using explicit or implicit methods, including convergence enhancement techniques based on multi-grid methodology. Nevertheless, obtaining converged solutions for general geometries on acceptably refined grids remains a computationally demanding task. The present paper discusses a reduced form on the governing equations which can capture much of the physics, while requiring less computer resources than the full Navier-Stokes equations
The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet
International Nuclear Information System (INIS)
Sajid, M.; Hayat, T.
2009-01-01
This work is concerned with the magnetohydrodynamic (MHD) viscous flow due to a shrinking sheet. The cases of two dimensional and axisymmetric shrinking have been discussed. Exact series solution is obtained using the homotopy analysis method (HAM). The convergence of the obtained series solution is discussed explicitly. The obtained HAM solution is valid for all values of the suction parameter and Hartman number.
Directory of Open Access Journals (Sweden)
Mukesh Kumar Awasthi
2013-01-01
Full Text Available The instability of a thin sheet of viscous and dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field has been carried out using viscous potential flow theory. It is observed that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, viscosity ratio of two fluids, the electric field, and the dielectric constant values. Liquid viscosity has stabilizing effect in the stability analysis, while air viscosity has destabilizing effect.
Langlois, William E
2014-01-01
Leonardo wrote, 'Mechanics is the paradise of the mathematical sciences, because by means of it one comes to the fruits of mathematics' ; replace 'Mechanics' by 'Fluid mechanics' and here we are." - from the Preface to the Second Edition Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the nearly half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity a...
On Analysis of Stationary Viscous Incompressible Flow Through a Radial Blade Machine
Neustupa, Tomáš
2010-09-01
The paper is concerned with the analysis of the two dimensional model of incompressible, viscous, stationary flow through a radial blade machine. This type of turbine is sometimes called Kaplan's turbine. In the technical area the use is either to force some regular characteristic to the flow of the medium going through the turbine (flow of melted iron, air conditioning) or to gain some energy from the flowing medium (water). The inflow and outflow part of boundary are in general a concentric circles. The larger one represents an inflow part of boundary the smaller one the outflow part of boundary. Between them are regularly spaced the blades of the machine. We study the existence of the weak solution in the case of nonlinear boundary condition of the "do-nothing" type. The model is interesting for study the behavior of the flow when the boundary is formed by mutually disjoint and separated parts.
Computation of Viscous Incompressible Flows
Kwak, Dochan
2011-01-01
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engine...
Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint
Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob
2018-02-01
Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and
International Nuclear Information System (INIS)
Shirani, E.; Zirak, S.
2001-01-01
Compressible flows for unsteady, inviscid and viscous cases have been studied. Important features of flows such as formation of shock waves across the flow in an unsteady flow as well as interaction of shock waves with boundary layers and their effects on the flow around the blades have been analyzed. Jameson control volume approach was used to spatially integrate the flow equations and the fourth order Runge-Kutta method was used for time integration. The obtained finite difference equations were used to simulate inviscid and viscous flows in V KI cascades and the effects of viscosity, angle of attack, bal de pitches and back pressure on the flow were obtained. It was shown that when the flow was assumed inviscid, the error on the distribution of pressure on the blades were about ten percent. Finally, unsteady flow were simulated and formation of shock waves and their motions were analyzed
Dorney, Suzanne; Dorney, Daniel J.; Huber, Frank; Sheffler, David A.; Turner, James E. (Technical Monitor)
2001-01-01
The advent of advanced computer architectures and parallel computing have led to a revolutionary change in the design process for turbomachinery components. Two- and three-dimensional steady-state computational flow procedures are now routinely used in the early stages of design. Unsteady flow analyses, however, are just beginning to be incorporated into design systems. This paper outlines the transition of a three-dimensional unsteady viscous flow analysis from the research environment into the design environment. The test case used to demonstrate the analysis is the full turbine system (high-pressure turbine, inter-turbine duct and low-pressure turbine) from an advanced turboprop engine.
Viscous potential flow analysis of magnetohydrodynamic interfacial stability through porous media
International Nuclear Information System (INIS)
Obied Allah, M.H.
2013-01-01
In the view of viscous potential flow theory, the hydromagnetic stability of the interface between two infinitely conducting, incompressible plasmas, streaming parallel to the interface and subjected to a constant magnetic field parallel to the streaming direction will be considered. The plasmas are flowing through porous media between two rigid planes and surface tension is taken into account. A general dispersion relation is obtained analytically and solved numerically. For Kelvin-Helmholtz instability problem, the stability criterion is given by a critical value of the relative velocity. On the other hand, a comparison between inviscid and viscous potential flow solutions has been made and it has noticed that viscosity plays a dual role, destabilizing for Rayleigh-Taylor problem and stabilizing for Kelvin-Helmholtz. For Rayleigh-Taylor instability, a new dispersion relation has been obtained in terms of a critical wave number. It has been found that magnetic field, surface tension, and rigid planes have stabilizing effects, whereas critical wave number and porous media have destabilizing effects. (author)
Viscous flows the practical use of theory
Brenner, Howard
1988-01-01
Representing a unique approach to the study of fluid flows, Viscous Flows demonstrates the utility of theoretical concepts and solutions for interpreting and predicting fluid flow in practical applications. By critically comparing all relevant classes of theoretical solutions with experimental data and/or general numerical solutions, it focuses on the range of validity of theoretical expressions rather than on their intrinsic character.This book features extensive use of dimensional analysis on both models and variables, and extensive development of theoretically based correlating equations.
Influence of viscous dissipation and radiation on MHD Couette flow ...
African Journals Online (AJOL)
The overall analysis of the study of these parameters in various degrees show an increase in the velocity profile of the fluid, while radiation parameter decreases the temperature profile; viscous dissipation and Reynolds number increase the temperature profile of the fluid. Key word: Couette flow, viscous dissipation, ...
Directory of Open Access Journals (Sweden)
N. Khan
2015-05-01
Full Text Available The investigation of heat transfer analysis on steady MHD axi-symmetric flow between two infinite stretching disks in the presence of viscous dissipation and Joule heating is basic objective of this paper. Attention has been focused to acquire the similarity solutions of the equations governing the flow and thermal fields. The transformed boundary value problem is solved analytically using homotopy analysis method. The series solutions are developed and the convergence of these solutions is explicitly discussed. The analytical expressions for fluid velocity, pressure and temperature are constructed and analyzed for various set of parameter values. The numerical values for skin friction coefficient and the Nusselt number are presented in tabular form. Particular attention is given to the variations of Prandtl and Eckert numbers. We examined that the dimensionless temperature field is enhanced when we increase the values of Eckert number and Prandtl number.
Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube
Zhou, Guangzhao; Xu, Kun; Liu, Feng
2018-01-01
The flow in a shock tube is extremely complex with dynamic multi-scale structures of sharp fronts, flow separation, and vortices due to the interaction of the shock wave, the contact surface, and the boundary layer over the side wall of the tube. Prediction and understanding of the complex fluid dynamics are of theoretical and practical importance. It is also an extremely challenging problem for numerical simulation, especially at relatively high Reynolds numbers. Daru and Tenaud ["Evaluation of TVD high resolution schemes for unsteady viscous shocked flows," Comput. Fluids 30, 89-113 (2001)] proposed a two-dimensional model problem as a numerical test case for high-resolution schemes to simulate the flow field in a square closed shock tube. Though many researchers attempted this problem using a variety of computational methods, there is not yet an agreed-upon grid-converged solution of the problem at the Reynolds number of 1000. This paper presents a rigorous grid-convergence study and the resulting grid-converged solutions for this problem by using a newly developed, efficient, and high-order gas-kinetic scheme. Critical data extracted from the converged solutions are documented as benchmark data. The complex fluid dynamics of the flow at Re = 1000 are discussed and analyzed in detail. Major phenomena revealed by the numerical computations include the downward concentration of the fluid through the curved shock, the formation of the vortices, the mechanism of the shock wave bifurcation, the structure of the jet along the bottom wall, and the Kelvin-Helmholtz instability near the contact surface. Presentation and analysis of those flow processes provide important physical insight into the complex flow physics occurring in a shock tube.
Analysis of Three-dimension Viscous Flow in the Model Axial Compressor Stage K1002L
Tribunskaia, K.; Kozhukhov, Y. V.
2017-08-01
The main investigation subject considered in this paper is axial compressor model stage K1002L. Three simulation models were designed: Scheme 1 - inlet stage model consisting of IGV (Inlet Guide Vane), rotor and diffuser; Scheme 2 - two-stage model: IGV, first-stage rotor, first-stage diffuser, second-stage rotor, EGV (Exit Guide Vane); Scheme 3 - full-round model: IGV, rotor, diffuser. Numerical investigation of the model stage was held for four circumferential velocities at the outer diameter (Uout=125,160,180,210 m/s) within the range of flow coefficient: ϕ = 0.4 - 0.6. The computational domain was created with ANSYS CFX Workbench. According to simulation results, there were constructed aerodynamic characteristic curves of adiabatic efficiency and the adiabatic head coefficient calculated for total parameters were compared with data from the full-scale test received at the Central Boiler and Turbine Institution (CBTI), thus, verification of the calculated data was carried out. Moreover, there were conducted the following studies: comparison of aerodynamic characteristics of the schemes 1, 2; comparison of the sector and full-round models. The analysis and conclusions are supplemented by gas-dynamic method calculation for axial compressor stages.
Paramecia swimming in viscous flow
Zhang, P.; Jana, S.; Giarra, M.; Vlachos, P. P.; Jung, S.
2015-12-01
Ciliates like Paramecia exhibit fore-aft asymmetry in their body shapes, and preferentially swim in the direction of the slender anterior rather than the wider posterior. However, the physical reasons for this preference are not well understood. In this work, we propose that specific features of the fluid flow around swimming Paramecia confer some energetic advantage to the preferred swimming direction. Therefore, we seek to understand the effects of body asymmetry and swimming direction on the efficiency of swimming and the flux of fluid into the cilia layer (and thus of food into the oral groove), which we assumed to be primary factors in the energy budgets of these organisms. To this end, we combined numerical techniques (the boundary element method) and laboratory experiments (micro particle image velocimetry) to develop a quantitative model of the flow around a Paramecium and investigate the effect of the body shape on the velocity fields, as well as on the swimming and feeding behaviors. Both simulation and experimental results show that velocity fields exhibit fore-aft asymmetry. Moreover, the shape asymmetry revealed an increase of the fluid flux into the cilia layer compared to symmetric body shapes. Under the assumption that cilia fluid intake and feeding efficiency are primary factors in the energy budgets of Paramecia, our model predicts that the anterior swimming direction is energetically favorable to the posterior swimming direction.
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...
Boundary Asymptotic Analysis for an Incompressible Viscous Flow: Navier Wall Laws
International Nuclear Information System (INIS)
El Jarroudi, M.; Brillard, A.
2008-01-01
We consider a new way of establishing Navier wall laws. Considering a bounded domain Ω of R N , N=2,3, surrounded by a thin layer Σ ε , along a part Γ 2 of its boundary ∂Ω, we consider a Navier-Stokes flow in Ω union ∂Ω union Σ ε with Reynolds' number of order 1/ε in Σ ε . Using Γ-convergence arguments, we describe the asymptotic behaviour of the solution of this problem and get a general Navier law involving a matrix of Borel measures having the same support contained in the interface Γ 2 . We then consider two special cases where we characterize this matrix of measures. As a further application, we consider an optimal control problem within this context
Multidomain spectral solution of compressible viscous flows
International Nuclear Information System (INIS)
Kopriva, D.A.
1994-01-01
We develop a nonoverlapping mutidomain spectral collocation method to solve compressible viscous flows. At the interfaces, the advection terms are treated with a characteristic correction method. The diffusion terms are treated with a penalty method. Spectral accuracy is demonstrated on linear model problems in one and two space dimensions. The method is applied to a subsonic and supersonic flow over a flat plate. The results are compared to solutions of the boundary-layer equations which show that two digit accuracy in the adiabatic plate temperature is obtained with 16 points in the boundary layer for a freestream Mach number of two. A second application is to a transonic flow in a two-dimensional converging-diverging nozzle, where the computed results are compared to experimental data
Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid
Directory of Open Access Journals (Sweden)
Zeeshan Khan
2016-01-01
Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.
Directory of Open Access Journals (Sweden)
O. D. Makinde
2014-01-01
Full Text Available Heat transfer characteristics of a Berman flow of water based nanofluids containing copper (Cu and alumina (Al2O3 as nanoparticles in a porous channel with Navier slip, viscous dissipation, and convective cooling are investigated. It is assumed that the exchange of heat with the ambient surrounding takes place at the channel walls following Newton’s law of cooling. The governing partial differential equations and boundary conditions are converted into a set of nonlinear ordinary differential equations using appropriate similarity transformations. These equations are solved analytically by regular perturbation methods with series improvement technique and numerically using an efficient Runge-Kutta Fehlberg integration technique coupled with shooting scheme. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, pressure drop, and Nusselt numbers are presented graphically and discussed quantitatively.
Directory of Open Access Journals (Sweden)
Mohammad M. Rahman
2016-11-01
Full Text Available The aim of the present study is to analyze numerically the steady boundary layer flow and heat transfer characteristics of Casson fluid with variable temperature and viscous dissipation past a permeable shrinking sheet with second order slip velocity. Using appropriate similarity transformations, the basic nonlinear partial differential equations have been transformed into ordinary differential equations. These equations have been solved numerically for different values of the governing parameters namely: shrinking parametersuction parameterCasson parameterfirst order slip parametersecond order slip parameter Prandtl number and the Eckert number using the bvp4c function from MATLAB. A stability analysis has also been performed. Numerical results have been obtained for the reduced skin-friction, heat transfer and the velocity and temperature profiles. The results indicate that dual solutions exist for the shrinking surface for certain values of the parameter space. The stability analysis indicates that the lower solution branch is unstable, while the upper solution branch is stable and physically realizable. In addition, it is shown that for a viscous fluida very good agreement exists between the present numerical results and those reported in the open literature. The present results are original and new for the boundary-layer flow and heat transfer past a shrinking sheet in a Casson fluid. Therefore, this study has importance for researchers working in the area of non-Newtonian fluids, in order for them to become familiar with the flow behavior and properties of such fluids.
Simulation of swimming strings immersed in a viscous fluid flow
Huang, Wei-Xi; Sung, Hyung Jin
2006-11-01
In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.
Shrestha, Bishwash; Ahsan, Syed N.; Aureli, Matteo
2018-01-01
In this paper, we present a comprehensive experimental study on harmonic oscillations of a submerged rigid plate in a quiescent, incompressible, Newtonian, viscous fluid. The fluid-structure interaction problem is analyzed from both qualitative and quantitative perspectives via a detailed particle image velocimetry (PIV) experimental campaign conducted over a broad range of oscillation frequency and amplitude parameters. Our primary goal is to identify the effect of the oscillation characteristics on the mechanisms of fluid-structure interaction and on the dynamics of vortex shedding and convection and to elucidate the behavior of hydrodynamic forces on the oscillating structure. Towards this goal, we study the flow in terms of qualitative aspects of its pathlines, vortex shedding, and symmetry breaking phenomena and identify distinct hydrodynamic regimes in the vicinity of the oscillating structure. Based on these experimental observations, we produce a novel phase diagram detailing the occurrence of distinct hydrodynamic regimes as a function of relevant governing nondimensional parameters. We further study the hydrodynamic forces associated with each regime using both PIV and direct force measurement via a load cell. Our quantitative results on experimental estimation of hydrodynamic forces show good agreement against predictions from the literature, where numerical and semi-analytical models are available. The findings and observations in this work shed light on the relationship between flow physics, vortex shedding, and convection mechanisms and the hydrodynamic forces acting on a rigid oscillating plate and, as such, have relevance to various engineering applications, including energy harvesting devices, biomimetic robotic system, and micro-mechanical sensors and actuators.
Capillary and viscous perturbations to Helmholtz flows
Moore, M. R.; Ockendon, H.; Ockendon, J. R.; Oliver, J. M.
2014-01-01
Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p.Â 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.
Capillary and viscous perturbations to Helmholtz flows
Moore, M. R.
2014-02-21
Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p.Â 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.
Numerical optimization of conical flow waveriders including detailed viscous effects
Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego
1987-01-01
A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.
Unsteady Viscous Flow Past an Impulsively Started Porous Vertical ...
African Journals Online (AJOL)
This paper presents a new numerical approach for solving unsteady two dimensional boundary layer flow past an infinite vertical porous surface with the flow generated by Newtonian heating and impulsive motion in the presence of viscous dissipation and temperature dependent viscosity. The viscosity of the fluid under ...
Free-surface viscous flow solution methods for ship hydrodynamics
Wackers, J.; Koren, B.; Raven, H.C.; Ploeg, van der A.; Starke, A.R.; Deng, G.; Queutey, P.; Visonneau, M.; Hino, T.; Ohashi, K.
2011-01-01
The simulation of viscous free-surface water flow is a subject that has reached a certain maturity and is nowadays used in industrial applications, like the simulation of the flow around ships. While almost all methods used are based on the Navier-Stokes equations, the discretisation methods for the
Numerical simulation of energy equation with viscous dissipation for compressible flow over cones
International Nuclear Information System (INIS)
Asif, M.; Chughtai, I.R.
1998-01-01
A finite volume discretization technique has been used to solve the energy equation with viscous dissipation. The effects of viscous heat dissipation for Mach numbers 1.5 and 2.0, at an angle of attack of 0 degree, over sharp and blunt cones have been studied. Algebraic equations have been solved using line-by-line Tda method. Supersonic flow over cones has been analyzed and discussed with and without considering the viscous dissipation effects. It has been found that the effects of viscous dissipation increase with the increase in Mach number. Viscous dissipation affects the temperature distribution of the body. However, the temperature difference in these cases was insignificant. This may be due to the fact that these analysis have been done at 0 km altitude. (author)
Viscous Flow over Nonlinearly Stretching Sheet with Effects of Viscous Dissipation
Directory of Open Access Journals (Sweden)
Javad Alinejad
2012-01-01
Full Text Available The flow and heat transfer characteristics of incompressible viscous flow over a nonlinearly stretching sheet with the presence of viscous dissipation is investigated numerically. The similarity transformation reduces the time-independent boundary layer equations for momentum and thermal energy into a set of coupled ordinary differential equations. The obtained equations, including nonlinear equation for the velocity field and differential equation by variable coefficient for the temperature field , are solved numerically by using the fourth order of Runge-Kutta integration scheme accompanied by shooting technique with Newton-Raphson iteration method. The effect of various values of Prandtl number, Eckert number and nonlinear stretching parameter are studied. The results presented graphically show some behaviors such as decrease in dimensionless temperature due to increase in Pr number, and curve relocations are observed when heat dissipation is considered.
Viscous flows stretching and shrinking of surfaces
Mehmood, Ahmer
2017-01-01
This authored monograph provides a detailed discussion of the boundary layer flow due to a moving plate. The topical focus lies on the 2- and 3-dimensional case, considering axially symmetric and unsteady flows. The author derives a criterion for the self-similar and non-similar flow, and the turbulent flow due to a stretching or shrinking sheet is also discussed. The target audience primarily comprises research experts in the field of boundary layer flow, but the book will also be beneficial for graduate students.
Anisotropic plastic deformation by viscous flow in ion tracks
van Dillen, T; Polman, A; Onck, PR; van der Giessen, E
2005-01-01
A model describing the origin of ion beam-induced anisotropic plastic deformation is derived and discussed. It is based on a viscoelastic thermal spike model for viscous flow in single ion tracks derived by Trinkaus and Ryazanov. Deviatoric (shear) stresses, brought about by the rapid thermal
Creeping Viscous Flow around a Heat-Generating Solid Sphere
DEFF Research Database (Denmark)
Krenk, Steen
1981-01-01
The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in closed...... form and an application to the storage of heat-generating nuclear waste is discussed....
Viscous Flow with Large Fluid-Fluid Interface Displacement
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild
1998-01-01
The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....
Modeling of brittle-viscous flow using discrete particles
Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.
2017-04-01
Many geological processes involve both viscous flow and brittle fractures, e.g. boudinage, folding and magmatic intrusions. Numerical modeling of such viscous-brittle materials poses challenges: one has to account for the discrete fracturing, the continuous viscous flow, the coupling between them, and potential pressure dependence of the flow. The Discrete Element Method (DEM) is a numerical technique, widely used for studying fracture of geomaterials. However, the implementation of viscous fluid flow in discrete element models is not trivial. In this study, we model quasi-viscous fluid flow behavior using Esys-Particle software (Abe et al., 2004). We build on the methodology of Abe and Urai (2012) where a combination of elastic repulsion and dashpot interactions between the discrete particles is implemented. Several benchmarks are presented to illustrate the material properties. Here, we present extensive, systematic material tests to characterize the rheology of quasi-viscous DEM particle packing. We present two tests: a simple shear test and a channel flow test, both in 2D and 3D. In the simple shear tests, simulations were performed in a box, where the upper wall is moved with a constant velocity in the x-direction, causing shear deformation of the particle assemblage. Here, the boundary conditions are periodic on the sides, with constant forces on the upper and lower walls. In the channel flow tests, a piston pushes a sample through a channel by Poisseuille flow. For both setups, we present the resulting stress-strain relationships over a range of material parameters, confining stress and strain rate. Results show power-law dependence between stress and strain rate, with a non-linear dependence on confining force. The material is strain softening under some conditions (which). Additionally, volumetric strain can be dilatant or compactant, depending on porosity, confining pressure and strain rate. Constitutive relations are implemented in a way that limits the
International Nuclear Information System (INIS)
Yashiki, Taturou; Yagawa, Genki; Okuda, Hiroshi
1995-01-01
The adaptive finite element method based on an 'a posteriori error estimation' is known to be a powerful technique for analyzing the engineering practical problems, since it excludes the instinctive aspect of the mesh subdivision and gives high accuracy with relatively low computational cost. In the adaptive procedure, both the error estimation and the mesh generation according to the error estimator are essential. In this paper, the adaptive procedure is realized by the automatic mesh generation based on the control of node density distribution, which is decided according to the error estimator. The global percentage error, CPU time, the degrees of freedom and the accuracy of the solution of the adaptive procedure are compared with those of the conventional method using regular meshes. Such numerical examples as the driven cavity flows of various Reynolds numbers and the flows around a cylinder have shown the very high performance of the proposed adaptive procedure. (author)
Directory of Open Access Journals (Sweden)
Giancarlo Alfonsi
2017-01-01
Full Text Available Due to its relevance in ocean engineering, the subject of the flow field generated by water waves around a vertical circular cylinder piercing the free surface has recently started to be considered by several research groups. In particular, we studied this problem starting from the velocity-potential framework, then the implementation of the numerical solution of the Euler equations in their velocity-pressure formulation, and finally the performance of the integration of the Navier-Stokes equations in primitive variables. We also developed and applied methods of extraction of the flow coherent structures and most energetic modes. In this work, we present some new results of our research directed, in particular, toward the clarification of the main nonintuitive character of the phenomenon of interaction between a wave and a surface-piercing cylinder, namely, the fact that the wave exerts its maximum force and exhibits its maximum run-up on the cylindrical obstacle at different instants. The understanding of this phenomenon becomes of crucial importance in the perspective of governing the entity of the wave run-up on the obstacle by means of wave-flow-control techniques.
Directory of Open Access Journals (Sweden)
R. Fares
2012-01-01
Full Text Available We study the nonsteady Stokes flow in a thin tube structure composed by two thin rectangles with lateral elastic boundaries which are connected by a domain with rigid boundaries. After a variational approach of the problem which gives us existence, uniqueness, regularity results, and some a priori estimates, we construct an asymptotic solution. The existence of a junction region between the two rectangles imposes to consider, as part of the asymptotic solution, some boundary layer correctors that correspond to this region. We present and solve the problems for all the terms of the asymptotic expansion. For two different cases, we describe the order of steps of the algorithm of solving the problem and we construct the main term of the asymptotic expansion. By means of the a priori estimates, we justify our asymptotic construction, by obtaining a small error between the exact and the asymptotic solutions.
European Research Program on Viscous Flows
1980-11-01
etc 4.31a M. Goossens A fast programmable multichannel datalogger, micro- A. Haverbeke processors and their applications. H. De Doncker Nort-Holland...vertical fin with a turbulent boundary VKI layer B.E. Richards o 9.11; Tran3onic shock/boundary layer interaction DFVLR(ES) Co E. Stanewsky 9.14 Effect...12.12 Laminar and turbulent heat transfer on surfaces at high VKI angles to hypersonic flow B.E. Richards 12.14 Heat and mass transfer at nozzle wall
Directory of Open Access Journals (Sweden)
S. Srinivas
2016-01-01
Full Text Available The present work investigates the effects of thermal-diffusion and diffusion-thermo on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. The partial differential equations governing the flow problem under consideration have been transformed by a similarity transformation into a system of coupled nonlinear ordinary differential equations. An analytical approach, namely the homotopy analysis method is employed in order to obtain the solutions of the ordinary differential equations. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. Comparison of the HAM solutions with the numerical solutions is performed.
Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.
Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.
Viscous and gravitational fingering in multiphase compositional and compressible flow
Moortgat, Joachim
2016-03-01
Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.
Mathematical aspects of finite element methods for incompressible viscous flows
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
MHD flow and heat transfer of a viscous reacting fluid over a ...
African Journals Online (AJOL)
This paper presents a boundary layer flow analysis for a viscous, incompressible, electrically conducting reacting fluid over a stretching sheet in the presence of a magnetic field. It is shown that the Hartmann, Prandtl and the Eckert numbers have effect on the velocity and temperature fields. Journal of the Nigerian ...
The Chimera Method of Simulation for Unsteady Three-Dimensional Viscous Flow
Meakin, Robert L.
1996-01-01
The Chimera overset grid method is reviewed and discussed in the context of a method of solution and analysis of unsteady three-dimensional viscous flows. The state of maturity of the various pieces of support software required to use the approach is discussed. A variety of recent applications of the method is presented. Current limitations of the approach are defined.
Theory of viscous transonic flow over airfoils at high Reynolds number
Melnik, R. E.; Chow, R.; Mead, H. R.
1977-01-01
This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.
Circulation shedding in viscous starting flow past a flat plate
International Nuclear Information System (INIS)
Nitsche, Monika; Xu, Ling
2014-01-01
Numerical simulations of viscous flow past a flat plate moving in the direction normal to itself reveal details of the vortical structure of the flow. At early times, most of the vorticity is attached to the plate. This paper introduces a definition of the shed circulation at all times and shows that it indeed represents vorticity that separates and remains separated from the plate. During a large initial time period, the shed circulation satisfies the scaling laws predicted for self-similar inviscid separation. Various contributions to the circulation shedding rate are presented. The results show that during this initial time period, viscous diffusion of vorticity out of the vortex is significant but appears to be independent of the value of the Reynolds number. At later times, the departure of the shed circulation from its large Reynolds number behaviour is significantly affected by diffusive loss of vorticity through the symmetry axis. A timescale is proposed that describes when the viscous loss through the axis becomes relevant. The simulations provide benchmark results to evaluate simpler separation models such as point vortex and vortex sheet models. A comparison with vortex sheet results is included. (paper)
Spectral analysis of viscous static compressible fluid equilibria
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
2001-05-25
It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)
Rheology of granular flows immersed in a viscous fluid
International Nuclear Information System (INIS)
Amarsid, Lhassan
2015-01-01
We investigate the behavior of granular materials immersed in a viscous fluid by means of extensive simulations based on the Discrete Element Method for particle dynamics coupled with the Lattice Boltzmann method for the fluid. We show that, for a broad range of parameters such as shear rate, confining stress and viscosity, the internal friction coefficient and packing fraction are well described by a single 'visco-inertial' dimensionless parameter combining inertial and Stokes numbers. The frictional behavior under constant confining pressure is mapped into a viscous behavior under volume-controlled conditions, leading to the divergence of the effective normal and shear viscosities in inverse square of the distance to the critical packing fraction. The results are in excellent agreement with the experimental data of Boyer et al. (2011). The evolution of the force network in terms of connectivity and anisotropy as a function of the visco-inertial number, indicates that the increase of frictional strength is a direct consequence of structural anisotropy enhanced by both fluid viscosity and grain inertia. In view of application to a potential nuclear accident, we also study the fragmentation and flow of confined porous aggregates in a fluid under the action of local overpressures and pressure gradients as well as gravity-driven flow of immersed particles in an hourglass. (author)
Dynamics of flexible fibers transported in confined viscous flows
Cappello, Jean; Duprat, Camille; Du Roure, Olivia; Nagel, Mathias; Gallaire, François; Lindner, Anke
2017-11-01
The dynamics of elongated objects has been extensively studied in unbounded media as for example the sedimentation of fibers at low Reynolds numbers. It has recently been shown that these transport dynamics are strongly modified by bounding walls. Here we focus on the dynamics of flexible fibers confined by the top and bottom walls of a microchannel and transported in pressure-driven flows. We combine well-controlled microfluidic experiments and simulations using modified Brinkmann equations. We control shape, orientation, and mechanical properties of our fibers using micro-fabrication techniques and in-situ characterization methods. These elastic fibers can be deformed by viscous and pressure forces leading to very rich transport dynamics coupling lateral drift with shape evolution. We show that the bending of a perpendicular fiber is proportional to an elasto-viscous number and we fully characterize the influence of the confinement on the deformation of the fiber. Experiments on parallel flexible fibers reveal the existence of a buckling threshold. The European Research Council is acknowledged for funding the work through a consolidator Grant (ERC PaDyFlow 682367).
Computation of viscous transonic flow about a lifting airfoil
Walitt, L.; Liu, C. Y.
1976-01-01
The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.
Instability of a cantilevered flexible plate in viscous channel flow
Balint, T. S.; Lucey, A. D.
2005-10-01
The stability of a flexible cantilevered plate in viscous channel flow is studied as a representation of the dynamics of the human upper airway. The focus is on instability mechanisms of the soft palate (flexible plate) that cause airway blockage during sleep. We solve the Navier Stokes equations for flow with Reynolds numbers up to 1500 fully coupled with the dynamics of the plate motion solved using finite-differences. The study is 2-D and based upon linearized plate mechanics. When both upper and lower airways are open, the plate is found to lose its stability through a flutter mechanism and a critical Reynolds number exists. When one airway is closed, the plate principally loses its stability through a divergence mechanism and a critical flow speed exists. However, below the divergence-onset flow speed, flutter can exist for low levels of structural damping in the flexible plate. Our results serve to extend understanding of flow-induced instability of cantilevered flexible plates and will ultimately improve the diagnosis and treatment of upper-airway disorders.
Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity
Jiang, Fei
2018-04-01
We investigate the thermal instability of a smooth equilibrium state, in which the density function satisfies Schwarzschild's (instability) condition, to a compressible heat-conducting viscous flow without heat conductivity in the presence of a uniform gravitational field in a three-dimensional bounded domain. We show that the equilibrium state is linearly unstable by a modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further construct the initial data of linearly unstable solutions to be the one of the original nonlinear problem, and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we finally show that the equilibrium state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap instability argument.
Bounds on fluid permeability for viscous flow through porous media
International Nuclear Information System (INIS)
Berryman, J.G.
1985-01-01
General properties of variational bounds on Darcy's constant for slow viscous flow through porous media are studied. The bounds are also evaluated numerically for the penetrable sphere model. The bound of Doi depending on two-point correlations and the analytical bound of Weissberg and Prager give comparable results in the low density limit but the analytical bound is superior for higher densities. Prager's bound depending on three-point correlation functions is worse than the analytical bound at low densities but better (although comparable to it) at high densities. A procedure for methodically improving Prager's three point bound is presented. By introducing a Gaussian trial function, the three-point bound is improved by an order of magnitude for moderate values of porosity. The new bounds are comparable in magnitude to the Kozeny--Carman empirical relation for porous materials
Three-dimensional simulation of viscous-flow agglomerate sintering.
Kirchhof, M J; Schmid, H -J; Peukert, W
2009-08-01
The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.
Energy Technology Data Exchange (ETDEWEB)
Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)
2014-04-11
Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.
Turbulent flow through channels in a viscously deforming matrix
Meyer, Colin; Hewitt, Ian; Neufeld, Jerome
2017-11-01
Channels of liquid melt form within a surrounding solid matrix in a variety of natural settings, for example, lava tubes and water flow through glaciers. Channels of water on the underside of glaciers, known as Rothlisberger (R-) channels, are essential components of subglacial hydrologic systems and can control the rate of glacier sliding. Water flow through these channels is turbulent, and dissipation melts open the channel while viscous creep of the surrounding closes the channel leading to the possibility of a steady state. Here we present an analogous laboratory experiment for R-channels. We pump warm water from the bottom into a tank of corn syrup and a channel forms. The pressure is lower in the water than in the corn syrup, therefore the syrup creeps inward. At the same time, the water ablates the corn syrup through dissolution and shear erosion, which we measure by determining the change in height of the syrup column over the course of the experiment. We find that the creep closure is much stronger than turbulent ablation which leads to traveling solitary waves along the water-syrup interface. These waves or `magmons' have been previously observed in experiments and theory for laminar magma melt conduits. We compliment our experiments with numerical simulations. David Crighton Fellowship.
Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.
2016-01-01
The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip bounda...
Lectures on Mathematical Foundation of Turbulent Viscous Flows
Miyakawa, Tetsuro
2006-01-01
Five leading specialists reflect on different and complementary approaches to fundamental questions in the study of the Fluid Mechanics and Gas Dynamics equations. Constantin presents the Euler equations of ideal incompressible fluids and discusses the blow-up problem for the Navier-Stokes equations of viscous fluids, describing some of the major mathematical questions of turbulence theory. These questions are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations that is explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on several nonlinear evolution equations - in particular Navier-Stokes - and some related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, whenever it is localized in space or in time variable. Ukai presents the asymptotic analysis th...
Veerapaneni, Shravan K.; Gueyffier, Denis; Biros, George; Zorin, Denis
2009-10-01
We extend [Shravan K. Veerapaneni, Denis Gueyffier, Denis Zorin, George Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, Journal of Computational Physics 228(7) (2009) 2334-2353] to the case of three-dimensional axisymmetric vesicles of spherical or toroidal topology immersed in viscous flows. Although the main components of the algorithm are similar in spirit to the 2D case—spectral approximation in space, semi-implicit time-stepping scheme—the main differences are that the bending and viscous force require new analysis, the linearization for the semi-implicit schemes must be rederived, a fully implicit scheme must be used for the toroidal topology to eliminate a CFL-type restriction and a novel numerical scheme for the evaluation of the 3D Stokes single layer potential on an axisymmetric surface is necessary to speed up the calculations. By introducing these novel components, we obtain a time-scheme that experimentally is unconditionally stable, has low cost per time step, and is third-order accurate in time. We present numerical results to analyze the cost and convergence rates of the scheme. To verify the solver, we compare it to a constrained variational approach to compute equilibrium shapes that does not involve interactions with a viscous fluid. To illustrate the applicability of method, we consider a few vesicle-flow interaction problems: the sedimentation of a vesicle, interactions of one and three vesicles with a background Poiseuille flow.
Quasi-Simultaneous Viscous-Inviscid Interaction for Transonic Airfoil Flow
Veldman, Arthur E.P.
2005-01-01
Following Prandtl, a viscous-inviscid interaction (VII) method is presented, where the flow field is divided into a viscous shear layer and an inviscid outer region. Their coupling is performed with the quasi-simultaneous approach, making use of an appropriately chosen interaction law. Firstly, an
Chen, Yong; Huang, Yiyong; Chen, Xiaoqian
2013-02-01
Ultrasonic flow meter with non-invasive no-moving-parts construction has good prospective application for space on-orbit fluid gauging. In traditional pulse transit time flow meter, inconsistency of ultrasonic transducers leads to measurement error and plane wave theory, bases of transit time flow meter, is valuable only for low-frequency wave propagation in inviscid fluid and will lose feasibility when fluid viscosity is considered. In this paper, based on the hydrodynamics of viscous fluid, wave propagation with uniform flow profile is mathematically formulated and a novel solution for viscous fluid using potential theory is firstly presented. Then a novel design methodology of continuous ultrasonic flow meter is proposed, where high measurement rangeability and accuracy are guaranteed individually by solving the integral ambiguity using multi-tone wide laning strategy and the fractional phase shift using phase lock loop tracking method. A comparison with transit time ultrasonic flow meter shows the advantage of proposed methodology. In the end, parametric analysis of viscosity on wave propagation and ultrasonic flow meter is compressively investigated. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
On compressible and piezo-viscous flow in thin porous media.
Pérez-Ràfols, F; Wall, P; Almqvist, A
2018-01-01
In this paper, we study flow through thin porous media as in, e.g. seals or fractures. It is often useful to know the permeability of such systems. In the context of incompressible and iso-viscous fluids, the permeability is the constant of proportionality relating the total flow through the media to the pressure drop. In this work, we show that it is also relevant to define a constant permeability when compressible and/or piezo-viscous fluids are considered. More precisely, we show that the corresponding nonlinear equation describing the flow of any compressible and piezo-viscous fluid can be transformed into a single linear equation. Indeed, this linear equation is the same as the one describing the flow of an incompressible and iso-viscous fluid. By this transformation, the total flow can be expressed as the product of the permeability and a nonlinear function of pressure, which represents a generalized pressure drop.
Second law analysis of a reacting temperature dependent viscous ...
African Journals Online (AJOL)
In this paper, entropy generation during the flow of a reacting viscous fluid through an inclined Channel with isothermal walls are investigated. The coupled energy and momentum equations were solved numerically. Previous results in literature (Adesanya et al 2006 [[17]) showed both velocity and temperature have two ...
On some Approximation Schemes for Steady Compressible Viscous Flow
Bause, M.; Heywood, J. G.; Novotny, A.; Padula, M.
This paper continues our development of approximation schemes for steady compressible viscous flow based on an iteration between a Stokes like problem for the velocity and a transport equation for the density, with the aim of improving their suitability for computations. Such schemes seem attractive for computations because they offer a reduction to standard problems for which there is already highly refined software, and because of the guidance that can be drawn from an existence theory based on them. Our objective here is to modify a recent scheme of Heywood and Padula [12], to improve its convergence properties. This scheme improved upon an earlier scheme of Padula [21], [23] through the use of a special ``effective pressure'' in linking the Stokes and transport problems. However, its convergence is limited for several reasons. Firstly, the steady transport equation itself is only solvable for general velocity fields if they satisfy certain smallness conditions. These conditions are met here by using a rescaled variant of the steady transport equation based on a pseudo time step for the equation of continuity. Another matter limiting the convergence of the scheme in [12] is that the Stokes linearization, which is a linearization about zero, has an inevitably small range of convergence. We replace it here with an Oseen or Newton linearization, either of which has a wider range of convergence, and converges more rapidly. The simplicity of the scheme offered in [12] was conducive to a relatively simple and clearly organized proof of its convergence. The proofs of convergence for the more complicated schemes proposed here are structured along the same lines. They strengthen the theorems of existence and uniqueness in [12] by weakening the smallness conditions that are needed. The expected improvement in the computational performance of the modified schemes has been confirmed by Bause [2], in an ongoing investigation.
Influences of viscous losses and end effects on liquid metal flow in electromagnetic pumps
International Nuclear Information System (INIS)
Kim, Hee Reyoung; Seo, Joon Ho; Hong, Sang Hee; Cho, Su won; Nam, Ho Yun; Cho, Man
1996-01-01
Analyses of the viscous and end effects on electromagnetic (EM) pumps of annular linear induction type for the sodium coolant circulation in Liquid Metal Fast Breeder Reactors have been carried out based on the MHD laminar flow analysis and the electromagnetic field theory. A one-dimensional MHD analysis for the liquid metal flowing through an annular channel has been performed on the basis of a simplified model of equivalent current sheets instead of three-phase currents in the discrete primary windings. The calculations show that the developed pressure difference resulted from electromagnetic and viscous forces in the liquid metal is expressed in terms of the slip, and that the viscous loss effects are negligible compared with electromagnetic driving forces except in the low-slip region where the pumps operate with very high flow velocities comparable with the synchronous velocity of the electromagnetic fields, which is not applicable to the practical EM pumps. A two-dimensional electromagnetic field analysis based on an equivalent current sheet model has found the vector potentials in closed form by means of the Fourier transform method. The resultant magnetic fields and driving forces exerted on the liquid metal reveal that the end effects due to finiteness of the pump length are formidable. In addition, a two-dimensional numerical analysis for vector potentials has been performed by the SOR iterative method on a realistic EM pump model with discretely-distributed currents in the primary windings. The numerical computations for the distributions of magnetic fields and developed pressure differences along the pump axial length also show considerable end effects at both inlet and outlet ends, especially at high flow velocities. Calculations of each magnetic force contribution indicate that the end effects are originated from the magnetic force caused by the induced current (υxB) generated by the liquid metal movement across the magnetic field rather than the one
High-Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids
2016-05-05
AFRL-AFOSR-VA-TR-2016-0192 High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids Marsha Berger NEW YORK UNIVERSITY Final...TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 30/04/2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) High- Reynolds 4. TITLE AND...SUBTITLE High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1
International Nuclear Information System (INIS)
Renskij, I.A.; Rudnitskaya, A.A.; Fialkov, Yu.A.
2003-01-01
The Gibbs activation energy of the viscous flow of the alkali metal iodides aqueous solutions MI (M = Li, Na, K, Cs) and from its temperature dependence - the enthalpy and entropy of this process are calculated by the Eyring modified equation. The kinetic compensation effects, related to the viscous flow of the unbound water and to the ion-hydrate complexes are established. The relative contribution of the enthalpy and entropy constituents for these solution components is analyzed [ru
Sloshing analysis of viscous liquid storage tanks
International Nuclear Information System (INIS)
Uras, R.Z.
1995-01-01
The effect of viscosity on the sloshing response of tanks containing viscous liquids is studied using the in-house finite element computer code, FLUSTR-ANL. Two different tank sizes each filled at two levels, are modeled, and their dynamic responses under harmonic and seismic ground motions are simulated. The results are presented in terms of the wave height, and pressures at selected nodes and elements in the finite element mesh. The viscosity manifests itself as a damping effect, reducing the amplitudes. Under harmonic excitation, the dynamic response reaches the steady-state faster as the viscosity value becomes larger. The fundamental sloshing frequency for each study case stays virtually unaffected by an increase in viscosity. For the small tank case, a 5% difference is observed in the fundamental frequency of the smallest (1 cP) and the highest (1000 cP) viscosity cases considered in this study. The fundamental frequencies of the large tank are even less sensitive
SLIPPER PERFORMANCE INVESTIGATION IN AXIAL PISTON PUMPS AND MOTORS-FLOW AND VISCOUS POWER LOSSES
Directory of Open Access Journals (Sweden)
A. Osman KURBAN
1997-01-01
Full Text Available In this study, the slippers being the most effective on the performance of swash plate type axial piston pumps and motors, which is a good example of hydrodynamic-hydrostatic bearing applications, have been investigated. With respect to this, having derived the viscous moment loss, viscous flow leakage loss and power loss equations, the variations of these parameters under different operating conditions have been examined experimentally.
A novel potential/viscous flow coupling technique for computing helicopter flow fields
Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul
1993-01-01
The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.
Kluitenberg, G.A.; Groot, S.R. de; Mazur, P.
1953-01-01
The relativistic thermodynamics of irreversible processes is developed for an isotropic mixture in which heat conduction, diffusion, viscous flow, chemical reactions and their cross-phenomena may occur. The four-vectors, representing the relative flows of matter, are defined in such a way that, in
Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil
Directory of Open Access Journals (Sweden)
Slouka Martin
2016-01-01
Full Text Available This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.
Flow of viscous fluid along an exponentially stretching curved surface
Directory of Open Access Journals (Sweden)
N.F. Okechi
Full Text Available In this paper, we present the boundary layer analysis of flow induced by rapidly stretching curved surface with exponential velocity. The governing boundary value problem is reduced into self-similar form using a new similarity transformation. The resulting equations are solved numerically using shooting and Runge-Kutta methods. The numerical results depicts that the fluid velocity as well as the skin friction coefficient increases with the surface curvature, similar trend is also observed for the pressure. The dimensionless wall shear stress defined for this problem is greater than that of a linearly stretching curved surface, but becomes comparably less for a surface stretching with a power-law velocity. In addition, the result for the plane surface is a special case of this study when the radius of curvature of the surface is sufficiently large. The numerical investigations presented in terms of the graphs are interpreted with the help of underlying physics of the fluid flow and the consequences arising from the curved geometry. Keywords: Boundary layer flow, Curved surface, Exponential stretching, Curvature
Howlett, James T.; Bland, Samuel R.
1987-01-01
A method is described for calculating unsteady transonic flow with viscous interaction by coupling a steady integral boundary-layer code with an unsteady, transonic, inviscid small-disturbance computer code in a quasi-steady fashion. Explicit coupling of the equations together with viscous -inviscid iterations at each time step yield converged solutions with computer times about double those required to obtain inviscid solutions. The accuracy and range of applicability of the method are investigated by applying it to four AGARD standard airfoils. The first-harmonic components of both the unsteady pressure distributions and the lift and moment coefficients have been calculated. Comparisons with inviscid calcualtions and experimental data are presented. The results demonstrate that accurate solutions for transonic flows with viscous effects can be obtained for flows involving moderate-strength shock waves.
Estimation of Rheological Properties of Viscous Debris Flow Using a Belt Conveyor
Hübl, J.; Steinwendtner, H.
2000-09-01
Rheological parameters of viscous debris flows are influenced by a great amount of factors and are therefore extremely difficult to estimate. Because of this uncertainties a belt conveyor (conveyor channel) was constructed to measure flow behaviour and rheological properties of natural debris flow material. The upward movement of the smooth rubberised belt between fixed lateral plastic walls causes a stationary wave relative to these bends. This special experimental design enables to study behaviour of viscous ebris flow material with maximum grain diameters up to 20 mm within several minutes and to hold measuring equipment very simple. The conveyor channel was calibrated first with Xanthan, a natural polysaccharide used as thickener in food technology, whose rheological properties are similar to viscous debris flow material. In a second step natural debris flow material was investigated. Velocities and rheological parameters were measured with varying solid concentration and slope of the channel. In cases where concentration of coarse particles exceed around 15% by volume the conveyor channel obtains an alternative to expensive commercial viscometers for determination of rheological parameters of viscous debris flows.
Handbook of mathematical analysis in mechanics of viscous fluids
Novotný, Antonín
2018-01-01
Mathematics has always played a key role for researches in fluid mechanics. The purpose of this handbook is to give an overview of items that are key to handling problems in fluid mechanics. Since the field of fluid mechanics is huge, it is almost impossible to cover many topics. In this handbook, we focus on mathematical analysis on viscous Newtonian fluid. The first part is devoted to mathematical analysis on incompressible fluids while part 2 is devoted to compressible fluids.
Directory of Open Access Journals (Sweden)
Zeeshan Khan
Full Text Available Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC and low and high density polyethylene (LDPE/HDPE, nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD. Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM. The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM. The effect of important parameters such as magnetic parameter Mi, the dilatant constant α, the Pseodoplastic constant β, the radii ratio δ, the pressure gradient Ω, the speed of fiber optics V, and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero. Keywords: Non-Newtonian fluid, Oldroyd 8-constant fluid, MHD flow, Double-layer fiber coating, OHAM, ADM, Wet-on-wet coating process
Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage
Ristic, D.; Lakshminarayana, B.
1997-01-01
The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On
Three-dimensional attached viscous flow basic principles and theoretical foundations
Hirschel, Ernst Heinrich; Kordulla, Wilhelm
2014-01-01
Viscous flow is usually treated in the frame of boundary-layer theory and as a two-dimensional flow. At best, books on boundary layers provide the describing equations for three-dimensional boundary layers, and solutions only for certain special cases. This book presents the basic principles and theoretical foundations of three-dimensional attached viscous flows as they apply to aircraft of all kinds. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice. The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility con...
Energy Technology Data Exchange (ETDEWEB)
Boualit, A.; Boualit, S. [Unite de recherche appliquee en energies renouvelables, Ghardaia (Algeria); Zeraibi, N. [Universite de Boumerdes, Faculte des hydrocarbures dept. Transport et equipement, Boumerdes (Algeria); Amoura, M. [Universite des Sciences et de la Technologie Houari Boumedienne, Faculte de Physique, Dept. Energetique, Alger (Algeria)
2011-01-15
The thermal development of the hydrodynamically developing laminar flow of a viscoplastic fluid (fluid of Bingham) between two plane plates maintained at a constant temperature has been studied numerically. This analysis has shown the effect caused by inertia and the rheological behaviour of the fluid on the velocity, pressure and temperature fields. The effects of Bingham and Peclet numbers on the Nusselt values with the inclusion of viscous dissipation are also discussed. (authors)
Viscous wing theory development. Volume 1: Analysis, method and results
Chow, R. R.; Melnik, R. E.; Marconi, F.; Steinhoff, J.
1986-01-01
Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers.
Numerical Simulation of 3D Viscous MHD Flows
National Research Council Canada - National Science Library
Golovachov, Yurii P; Kurakin, Yurii A; Schmidt, Alexander A; Van Wie, David M
2003-01-01
.... Flows in hypersonic intakes are considered. Preliminary results showed that local MHD interaction in the inlet part of the intake model was the most effective for control over plasma flow field...
International Nuclear Information System (INIS)
Hopper, R.W.
1984-01-01
The coalescence of two equal viscous cylinders under the influence of capillarity is of interest in the theory of sintering. Although the flow in typical cylinder coalescence experiments is not planar, the plane-flow case is of general interest and is a good approximation in the early stage. An essentially exact analytic solution giving the shape as a function of time for slow plane flow is presented in simple closed form. 16 references, 2 figures, 1 table
Deformation and transport of micro-fibers and helices in viscous flows
Lindner, Anke
Fluid-structure interactions between flexible objects and viscous flows are, to a large extent, governed by the shape of the flexible object. Using microfabrication methods, we obtain complex ``particles'' in fiber and helix form with perfect control not only over the material properties, but also the particle geometry. We then perform an experimental study on the deformation and transport of these particles in microfluidic flows. Fibers are shown to drift laterally in confined flows due to the transport anisotropy of the elongated object. When these fibers interact with lateral walls, complex dynamics are observed, such as fiber oscillation. Fiber flexibility modifies these dynamics. Flexible microhelices are easily stretched by a viscous flow and we characterize the overall shape as a function of the frictional properties. The deformation of these helices is well-described by non-linear finite extensibility. Due to the non-uniform distribution of the pitch of a helix subject to viscous drag, linear and nonlinear behavior is identified along the contour length of a single helix. When a polymer solution is used for the viscous flow, an interesting multiscale problem arises and the typical polymer size needs to be compared not only to the global size of the helix, but also to the dimensions of the ribbon.
Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.
2016-09-01
The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.
International Nuclear Information System (INIS)
Yamaguchi, Hiroshi; Zhang, Xin-Rong; Niu, Xiao-Dong
2010-01-01
The damping characteristics and flow behaviors of ER fluids inside a piston–cylinder viscous damper subjected to external electric fields are studied based on experiment, theoretical analysis and numerical simulation. The viscous damper is a closed system with an inner piston and an outer cylinder, which is designed and constructed in our laboratory. In the experiment, the test ER fluid is enclosed in the gap of a piston–cylinder system. To examine the damping characteristics of the test ER fluid, a piston sine vibration experiment is performed with accompanying theoretical analyses. In addition, in order to investigate the ER flow behaviors inside the damper, a numerical simulation is carried out. The present study discloses the damping characteristics and the fluid mechanism of the ER fluid in the piston–cylinder damper with an applied external electric field
International Nuclear Information System (INIS)
Kubo, S; Ishioka, T; Fukutomi, J; Shigemitsu, T
2012-01-01
Fluid machines for fluid food have been used in wide variety of fields i.e. transportation, the filling, and for the improvement of quality of fluid foods. However, flow conditions of it are quite complicated because fluid foods are different from water. Therefore, design methods based on internal flow conditions have not been conducted. In this research, turbo-pumps having a small number of blades were used to decrease shear loss and keep wide flow passage. The influence of the tip clearance was investigated by the numerical analysis using the model with and without the tip clearance. In this paper, the influence of tip clearance on performances and internal flow conditions of turbo-pump using low viscous fluid were clarified by experimental and numerical analysis results. In addition, design methods based on the internal flow were considered. Further, the influences of viscosity on the performance characteristic and internal flow were investigated.
A Level-set based framework for viscous simulation of particle-laden supersonic flows
Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2017-06-01
Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.
Cross-coupling effects in chemically non-equilibrium viscous compressible flows
International Nuclear Information System (INIS)
Kustova, E.V.; Giordano, D.
2011-01-01
Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.
Directory of Open Access Journals (Sweden)
Anna Maria Pellegrino
2017-12-01
Full Text Available This paper refers to complex granular-fluid mixtures involved into geophysical flows, such as debris and hyper-concentrated flows. For such phenomena, the interstitial fluids play a role when they are in the viscous regime. Referring to experiments on granular-fluid mixture carried out with pressure imposed annular shear cell, we study the rheological behaviour of dense mixture involving both spheres and irregular-shaped particles. For the case of viscous suspensions with irregular grains, a significant scatter of data from the trend observed for mixtures with spherical particles was evident. In effect, the shape of the particles likely plays a fundamental role in the flow dynamics, and the constitutive laws proposed by the frictional theory for the spheres are no longer valid. Starting from the frictional approach successfully applied to suspension of spheres, we demonstrate that also in case of irregular particles the mixture rheology may be fully characterized by the two relationships involving friction coefficient µ and volume concentration Ф as a function of the dimensionless viscous number Iv. To this goal, we provided a new consistent general model, referring to the volume fraction law and friction law, which accounts for the particle shape. In this way, the fitting parameters reduce just to the static friction angle µ1, and the two parameters, k and fs related to the grain shape. The resulting general model may apply to steady fully developed flows of saturated granular fluid mixture in the viscous regime, no matter of granular characteristics.
Two Experiments to Approach the Boltzmann Factor: Chemical Reaction and Viscous Flow
Fazio, Claudio; Battaglia, Onofrio R.; Guastella, Ivan
2012-01-01
In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms…
Practical application of viscous-flow calculations for the simulation of manoeuvring ships
Toxopeus, S.L.
2011-01-01
The present work was initiated in order to improve traditional manoeuvring simulations based on empirical equations to model the forces and moments on the ship. With the evolution of the capability of viscous-flow solvers to predict forces and moments on ships, it was decided to develop a practical
Streng, Martin; Streng, M.; ten Cate, Eric; ten Cate, Eric (H.H.); Geurts, Bernardus J.; Kuerten, Johannes G.M.
1998-01-01
We consider several aspects of efficient numerical simulation of viscous compressible flow on both homogeneous and heterogeneous workstation-clusters. We consider dedicated systems, as well as clusters operating in a multi-user environment. For dedicated homogeneous clusters, we show that with
MATHEMATICAL MODEL NON-ISOTHERMAL FLOW HIGHLY VISCOUS MEDIA CHANNELS MATRIX EXTRUDER
Directory of Open Access Journals (Sweden)
A. S. Sidorenko
2015-01-01
Full Text Available We consider a one-dimensional steady flow of highly viscous medium in a cylindrical channel with Dissipation and dependence of the viscosity on the temperature. It is assumed that a relatively small intervals of temperature variation of the dynamic viscosity with a sufficient degree of accuracy can be assumed to be linear. The model was based on the equations of hydrodynamics and the heat transfer fluid. In the task channel wall temperature is assumed constant. An approximate solution of the problem, according to which the distribution of velocity, pressure and temperature is sought in the form of an expansion in powers of the dimensionless transverse coordinates. A special case, when the ratio of the velocity distribution, pressure and temperature is allowed to restrict the number of terms in the expansion as follows: for speed - the first 3 to the pressure - the first two for the temperature - the first 5. The expressions to determine the temperature profile of the medium in the channel and characterization dissipative heating. To simulate the process of heat transfer highly viscous media developed a program for personal electronic computers. The calculation was performed using experimental research data melt flow grain mixture of buckwheat and soybeans for the load speed of 0.08 mm / s. The method of computer simulation carried out checks on the adequacy of the solutions to the real process of heat transfer. Analysis of the results indicates that for small values of the length of the channel influence dissipation function appears mainly at the wall. By increasing the reduced length of this phenomenon applies to all section of the channel. At high temperature profile along the channel length is determined entirely by dissipation. In the case of heat transfer due to frictional heat only, the form of curves of temperature distribution is a consequence of the interaction effects of heating due to viscous shear effects cooling by conduction. The
Mixed convective flow of immiscible viscous fluids confined between ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology ... finite difference methods to analyze the problem of natural convection boundary layer flow along a complex vertical surface ... analyzed the flow of two immiscible fluids in a parallel plate channel ... wavy and flat walls are maintained at constant temperatures w.
Pulsatile flow of viscous and viscoelastic fluids in constricted tubes
Energy Technology Data Exchange (ETDEWEB)
Javadzadegan, A.; Esmaeili, M.; Majidi, S. [University of Tehran, Tehran (Iran, Islamic Republic of); Fakhimghanbarzadeh, B. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2009-09-15
The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration
Pulsatile flow of viscous and viscoelastic fluids in constricted tubes
International Nuclear Information System (INIS)
Javadzadegan, A.; Esmaeili, M.; Majidi, S.; Fakhimghanbarzadeh, B.
2009-01-01
The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration
Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes
Muhammad, Taseer; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed
2018-03-01
The present research explores the three-dimensional stretched flow of viscous fluid in the presence of prescribed heat (PHF) and concentration (PCF) fluxes. Mathematical formulation is developed in the presence of chemical reaction, viscous dissipation and Joule heating effects. Fluid is electrically conducting in the presence of an applied magnetic field. Appropriate transformations yield the nonlinear ordinary differential systems. The resulting nonlinear system has been solved. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are computed and analyzed.
Viscous and Joule heating effects on MHD free convection flow with variable plate temperature
International Nuclear Information System (INIS)
Hossain, M.A.
1990-09-01
A steady two-dimensional laminar boundary layer flow of a viscous incompressible and electrically conducting fluid past a vertical heated plate with variable temperature in the presence of a transverse uniform magnetic field has been investigated by bringing the effect of viscous and Joules heating. The non-dimensional boundary layer equations are solved using the implicit finite difference method along with Newton's approximation for small Prandtl number chosen as typical of coolant liquid metals at operating temperature. (author). 10 refs, 2 figs, 1 tab
Bistability of heat transfer of a viscous liquid under conditions of flow channel
International Nuclear Information System (INIS)
Melkikh, A.V.; Seleznev, V.D.
2001-01-01
The heat exchange model for a viscous liquid flowing under the pressure drop effect in a tube, surrounded by the medium with a lower temperature, is considered. It is shown that the system bistable behavior is possible by availability of the liquid viscosity exponential dependence on the temperature and by negligible dissipative heat release. The transitions between cold and hot flows in this case should proceed by a jump. The liquid and channel parameters, whereby the bistability may be observed, are determined [ru
Collective dynamics of particles from viscous to turbulent flows
2017-01-01
The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such met...
International Nuclear Information System (INIS)
Hossain, M.A.; Arbad, O.
1988-07-01
Effect of buoyancy force in a laminar uniform forced convection flow past a semi-infinite vertical plate has been analyzed near the leading edge, taking into account the viscous dissipation. The coupled non-linear locally similar equations, which govern the flow, are solved by the method of parametric differentiation. Effects of the buoyancy force and the heat due to viscous dissipation on the flow and the temperature fields as well as on the wall shear-stress and the heat transfer at the surface of the plate are shown graphically for the values of the Prandtl number σ ranging from 10 -1 to 1.0. (author). 20 refs, 3 figs, 2 tabs
Generalized derivation of the added-mass and circulatory forces for viscous flows
Limacher, Eric; Morton, Chris; Wood, David
2018-01-01
The concept of added mass arises from potential flow analysis and is associated with the acceleration of a body in an inviscid irrotational fluid. When shed vorticity is modeled as vortex singularities embedded in this irrotational flow, the associated force can be superimposed onto the added-mass force due to the linearity of the governing Laplace equation. This decomposition of force into added-mass and circulatory components remains common in modern aerodynamic models, but its applicability to viscous separated flows remains unclear. The present work addresses this knowledge gap by presenting a generalized derivation of the added-mass and circulatory force decomposition which is valid for a body of arbitrary shape in an unbounded, incompressible fluid domain, in both two and three dimensions, undergoing arbitrary motions amid continuous distributions of vorticity. From the general expression, the classical added-mass force is rederived for well-known canonical cases and is seen to be additive to the circulatory force for any flow. The formulation is shown to be equivalent to existing theoretical work under the specific conditions and assumptions of previous studies. It is also validated using a numerical simulation of a pitching plate in a steady freestream flow, conducted by Wang and Eldredge [Theor. Comput. Fluid Dyn. 27, 577 (2013), 10.1007/s00162-012-0279-5]. In response to persistent confusion in the literature, a discussion of the most appropriate physical interpretation of added mass is included, informed by inspection of the derived equations. The added-mass force is seen to account for the dynamic effect of near-body vorticity and is not (as is commonly claimed) associated with the acceleration of near-body fluid which "must" somehow move with the body. Various other consequences of the derivation are discussed, including a concept which has been labeled the conservation of image-vorticity impulse.
Moortgat, J.; Amooie, M. A.; Soltanian, M. R.
2016-12-01
Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows
Goal-oriented model adaptivity for viscous incompressible flows
van Opstal, T. M.
2015-04-04
© 2015, Springer-Verlag Berlin Heidelberg. In van Opstal et al. (Comput Mech 50:779–788, 2012) airbag inflation simulations were performed where the flow was approximated by Stokes flow. Inside the intricately folded initial geometry the Stokes assumption is argued to hold. This linearity assumption leads to a boundary-integral representation, the key to bypassing mesh generation and remeshing. It therefore enables very large displacements with near-contact. However, such a coarse assumption cannot hold throughout the domain, where it breaks down one needs to revert to the original model. The present work formalizes this idea. A model adaptive approach is proposed, in which the coarse model (a Stokes boundary-integral equation) is locally replaced by the original high-fidelity model (Navier–Stokes) based on a-posteriori estimates of the error in a quantity of interest. This adaptive modeling framework aims at taking away the burden and heuristics of manually partitioning the domain while providing new insight into the physics. We elucidate how challenges pertaining to model disparity can be addressed. Essentially, the solution in the interior of the coarse model domain is reconstructed as a post-processing step. We furthermore present a two-dimensional numerical experiments to show that the error estimator is reliable.
Numerical study of unsteady viscous flow past oscillating airfoil
Energy Technology Data Exchange (ETDEWEB)
Jin Yan; Yuan Xin [Tsinghua Univ., Dept. of Thermal Engineering, Beijing (China)
2001-07-01
Accurate simulation of the dynamic stall of an oscillating airfoil is of major importance to wing and wind turbine blade design. However, dynamic stall is complicated and influenced by many factors, such as geometry shape of the airfoil, reduced frequency, etc. The difficulties of simulation are both mathematical (numerical method) and physical (turbulence model). The present paper has introduced a new numerical method (new LU-type scheme and fourth-order higher resolution MUSCL TVD scheme) and q-{omega} turbulence modelling to calculate the unsteady flowfields of an oscillating NACA0015 airfoil. The test targets include attached flow, light-stall and deep-stall of the airfoil. The calculated results for attached flow and light-stall are in good agreement with those of experiments. The calculated results for deep-stall also show improvement, especially during the downstroke of the oscillation. However, there is still a significant difference between the results of calculation and experiment in the hysteresis curves of the drag coefficient. One reason is that the q-{omega} turbulence model still has limitations. Another is that the drag coefficient is difficult to measure and the experiments are not reliable. (Author)
A Gas-kinetic Discontinuous Galerkin Method for Viscous Flow Equations
International Nuclear Information System (INIS)
Liu, Hongwei; Xu, Kun
2007-01-01
This paper presents a Runge-Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at the cell interface through a simple hybrid gas distribution function. Due to the intrinsic connection between the gaskinetic BGK model and the Navier-Stokes equations, the Navier-Stokes flux is automatically obtained by the present method. Numerical examples for both one dimensional (10) and two dimensional(20) compressible viscous flows are presented to demonstrate the accuracy and shock capturing capability of the current RKDG method
Directory of Open Access Journals (Sweden)
Sami Ul Haq
2015-01-01
Full Text Available The objective of this study is to explore the influence of wall slip condition on a free convection flow of an incompressible viscous fluid with heat transfer and ramped wall temperature. Exact solution of the problem is obtained by using Laplace transform technique. Graphical results to see the effects of Prandtl number Pr, time t, and slip parameter η on velocity and skin friction for the case of ramped and constant temperature of the plate are provided and discussed.
The application of finite element method for mhd viscous flow over a porous stretching sheet
International Nuclear Information System (INIS)
Mahmood, R.; Sajid, M.
2007-01-01
This work is concerned with the magnetohydrodynamic (MHD) viscous flow due to a porous stretching sheet. The similarity solution of the problem is obtained using finite element method. The physical quantities of interest like the fluid velocity and skin friction coefficient is obtained and discussed under the influence of suction parameter and Hartman number. It is evident from the results that MHD can be used to control the boundary layer thickness. (author)
On the research of flow around obstacle using the viscous Cartesian grid technique
Directory of Open Access Journals (Sweden)
Liu Yan-Hua
2012-01-01
Full Text Available A new 2-D viscous Cartesian grid is proposed in current research. It is a combination of the existent body-fitted grid and Cartesian grid technology. On the interface of the two different type of grid, a fined triangular mesh is used to connect the two grids. Tests with flow around the cylinder and aerofoil NACA0012 show that the proposed scheme is easy for implement with high accuracy.
Evanescent-Wave Visualizations of the Viscous Sublayer in Turbulent Channel Flow
2015-09-02
SECURITY CLASSIFICATION OF: The study of wall turbulence dates back more than a century. Recently, however, a number of studies suggest that the flow...in the inner region (i.e., the viscous sublayer and buffer layer) is not “universal”—and actually depends upon the specific type of wall turbulence ...Many of these new insights on wall turbulence are recent because we have only recently developed the experimental techniques, such as volumetric
A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows
Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2017-09-01
A Cartesian grid-based sharp interface method is presented for viscous simulations of shocked particle-laden flows. The moving solid-fluid interfaces are represented using level sets. A moving least-squares reconstruction is developed to apply the no-slip boundary condition at solid-fluid interfaces and to supply viscous stresses to the fluid. The algorithms developed in this paper are benchmarked against similarity solutions for the boundary layer over a fixed flat plate and against numerical solutions for moving interface problems such as shock-induced lift-off of a cylinder in a channel. The framework is extended to 3D and applied to calculate low Reynolds number steady supersonic flow over a sphere. Viscous simulation of the interaction of a particle cloud with an incident planar shock is demonstrated; the average drag on the particles and the vorticity field in the cloud are compared to the inviscid case to elucidate the effects of viscosity on momentum transfer between the particle and fluid phases. The methods developed will be useful for obtaining accurate momentum and heat transfer closure models for macro-scale shocked particulate flow applications such as blast waves and dust explosions.
Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.
2016-08-01
The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.
Conveyor belt effect in the flow through a tube of a viscous fluid with spinning particles.
Felderhof, B U
2012-04-28
The extended Navier-Stokes equations describing the steady-state hydrodynamics of a viscous fluid with spinning particles are solved for flow through a circular cylindrical tube. The flow caused by an applied torque density in the azimuthal direction and linear in the radial distance from the axis is compared with the flow caused by a uniform applied force density directed along the axis of the tube. In both cases the flow velocity is of Poiseuille type plus a correction. In the first case the flow velocity is caused by the conveyor belt effect of spinning particles. The corrections to the Poiseuille flow pattern in the two cases differ only by a proportionality factor. The spin velocity profiles in the two cases are also proportional.
Mathematical theory of compressible viscous fluids analysis and numerics
Feireisl, Eduard; Pokorný, Milan
2016-01-01
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...
Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing.
Burnishev, Yuri; Steinberg, Victor
2015-08-01
We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ(t) and pressure p(t) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Re turb c =Re TDR c ≃(4.8±0.2)×10(5) independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Re turb c and Re TDR c depending on polymer concentration ϕ . Both regimes differ by the values of C f and C p , by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998); Phys. Rev. E 47, R28(R) (1993); and J. Phys.: Condens. Matter 17, S1195 (2005)] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.
Computational modelling of the flow of viscous fluids in carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Khosravian, N [Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Rafii-Tabar, H [Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)
2007-11-21
Carbon nanotubes will have extensive application in all areas of nano-technology, and in particular in the field of nano-fluidics, wherein they can be used for molecular separation, nano-scale filtering and as nano-pipes for conveying fluids. In the field of nano-medicine, nanotubes can be functionalized with various types of receptors to act as bio-sensors for the detection and elimination of cancer cells, or be used as bypasses and even neural connections. Modelling fluid flow inside nanotubes is a very challenging problem, since there is a complex interplay between the motion of the fluid and the stability of the walls. A critical issue in the design of nano-fluidic devices is the induced vibration of the walls, due to the fluid flow, which can promote structural instability. It has been established that the resonant frequencies depend on the flow velocity. We have studied, for the first time, the flow of viscous fluids through multi-walled carbon nanotubes, using the Euler-Bernoulli classical beam theory to model the nanotube as a continuum structure. Our aim has been to compute the effect of the fluid flow on the structural stability of the nanotubes, without having to consider the details of the fluid-walls interaction. The variations of the resonant frequencies with the flow velocity are obtained for both unembedded nanotubes, and when they are embedded in an elastic medium. It is found that a nanotube conveying a viscous fluid is more stable against vibration-induced buckling than a nanotube conveying a non-viscous fluid, and that the aspect ratio plays the same role in both cases.
Computational modelling of the flow of viscous fluids in carbon nanotubes
International Nuclear Information System (INIS)
Khosravian, N; Rafii-Tabar, H
2007-01-01
Carbon nanotubes will have extensive application in all areas of nano-technology, and in particular in the field of nano-fluidics, wherein they can be used for molecular separation, nano-scale filtering and as nano-pipes for conveying fluids. In the field of nano-medicine, nanotubes can be functionalized with various types of receptors to act as bio-sensors for the detection and elimination of cancer cells, or be used as bypasses and even neural connections. Modelling fluid flow inside nanotubes is a very challenging problem, since there is a complex interplay between the motion of the fluid and the stability of the walls. A critical issue in the design of nano-fluidic devices is the induced vibration of the walls, due to the fluid flow, which can promote structural instability. It has been established that the resonant frequencies depend on the flow velocity. We have studied, for the first time, the flow of viscous fluids through multi-walled carbon nanotubes, using the Euler-Bernoulli classical beam theory to model the nanotube as a continuum structure. Our aim has been to compute the effect of the fluid flow on the structural stability of the nanotubes, without having to consider the details of the fluid-walls interaction. The variations of the resonant frequencies with the flow velocity are obtained for both unembedded nanotubes, and when they are embedded in an elastic medium. It is found that a nanotube conveying a viscous fluid is more stable against vibration-induced buckling than a nanotube conveying a non-viscous fluid, and that the aspect ratio plays the same role in both cases
Kannan, R. M.; Pullepu, Bapuji; Immanuel, Y.
2018-04-01
A two dimensional mathematical model is formulated for the transient laminar free convective flow with heat transfer over an incompressible viscous fluid past a vertical cone with uniform surface heat flux with combined effects of viscous dissipation and radiation. The dimensionless boundary layer equations of the flow which are transient, coupled and nonlinear Partial differential equations are solved using the Network Simulation Method (NSM), a powerful numerical technique which demonstrates high efficiency and accuracy by employing the network simulator computer code Pspice. The velocity and temperature profiles have been investigated for various factors, namely viscous dissipation parameter ε, Prandtl number Pr and radiation Rd are analyzed graphically.
Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating
International Nuclear Information System (INIS)
Cheng Xue-Tao; Liang Xin-Gang
2013-01-01
Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. (general)
Keslerová, Radka; Trdlička, David
2015-09-01
This work deals with the numerical modelling of steady flows of incompressible viscous and viscoelastic fluids through the three dimensional channel with T-junction. The fundamental system of equations is the system of generalized Navier-Stokes equations for incompressible fluids. This system is based on the system of balance laws of mass and momentum for incompressible fluids. Two different mathematical models for the stress tensor are used for simulation of Newtonian and Oldroyd-B fluids flow. Numerical solution of the described models is based on cetral finite volume method using explicit Runge-Kutta time integration.
Transonic Airfoil Flow Simulation. Part II: Inviscid-Viscous Coupling Scheme
Directory of Open Access Journals (Sweden)
Vladimir CARDOŞ
2010-09-01
Full Text Available A calculation method for the subsonic and transonic viscous flow over airfoil using the displacement surface concept is described. This modelling technique uses a finite volume method for the time-dependent Euler equations and laminar and turbulent boundary-layer integral methods. In additional special models for transition, laminar or turbulent separation bubbles and trailing edge treatment have been selected. However, the flow is limited to small parts of trailing edge-type separation. Comparisons with experimental data and other methods are shown.
International Nuclear Information System (INIS)
Chee, Yi Shen; Ting, Tiew Wei; Hung, Yew Mun
2015-01-01
The effect of thermal asymmetrical boundaries on entropy generation of viscous dissipative flow of forced convection in thermal non-equilibrium porous media is analytically studied. The two-dimensional temperature, Nusselt number and entropy generation contours are analysed comprehensively to provide insights into the underlying physical significance of the effect on entropy generation. By incorporating the effects of viscous dissipation and thermal non-equilibrium, the first-law and second-law characteristics of porous-medium flow are investigated via various pertinent parameters, i.e. heat flux ratio, effective thermal conductivity ratio, Darcy number, Biot number and averaged fluid velocity. For the case of symmetrical wall heat flux, an optimum condition with a high Nusselt number and a low entropy generation is identified at a Darcy number of 10 −4 , providing an ideal operating condition from the second-law aspect. This type of heat and fluid transport in porous media covers a wide range of engineering applications, involving porous insulation, packed-bed catalytic process in nuclear reactors, filtration transpiration cooling, and modelling of transport phenomena of microchannel heat sinks. - Highlights: • Effects of thermal asymmetries on convection in porous-medium are studied. • Exergetic effectiveness of porous media with thermal asymmetries is investigated. • 2-D temperature, Nusselt number and entropy generation contours are analyzed. • Significance of viscous dissipation in entropy generation is scrutinized. • Significance of thermal non-equilibrium in entropy generation is studied
Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow
Howlett, J. T.
1985-01-01
An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flows.
Similar solutions for viscous hypersonic flow over a slender three-fourths-power body of revolution
Lin, Chin-Shun
1987-01-01
For hypersonic flow with a shock wave, there is a similar solution consistent throughout the viscous and inviscid layers along a very slender three-fourths-power body of revolution The strong pressure interaction problem can then be treated by the method of similarity. Numerical calculations are performed in the viscous region with the edge pressure distribution known from the inviscid similar solutions. The compressible laminar boundary-layer equations are transformed into a system of ordinary differential equations. The resulting two-point boundary value problem is then solved by the Runge-Kutta method with a modified Newton's method for the corresponding boundary conditions. The effects of wall temperature, mass bleeding, and body transverse curvature are investigated. The induced pressure, displacement thickness, skin friction, and heat transfer due to the previously mentioned parameters are estimated and analyzed.
The new high resolution method of Godunov`s type for 3D viscous flow calculations
Energy Technology Data Exchange (ETDEWEB)
Yershov, S.V.; Rusanov, A.V. [Ukranian National Academy of Sciences, Kahrkov (Ukraine)
1996-12-31
The numerical method is suggested for the calculations of the 3D viscous compressible flows described by the thin-layer Reynolds-averaged Navier-Stokes equations. The method is based on the Godunov`s finite-difference scheme and it uses the ENO reconstruction suggested by Harten to achieve the uniformly high-order accuracy. The computational efficiency is provided with the simplified multi grid approach and the implicit step written in {delta} -form. The turbulent effects are simulated with the Baldwin - Lomax turbulence model. The application package FlowER is developed to calculate the 3D turbulent flows within complex-shape channels. The numerical results for the 3D flow around a cylinder and through the complex-shaped channels show the accuracy and the reliability of the suggested method. (author)
The new high resolution method of Godunov`s type for 3D viscous flow calculations
Energy Technology Data Exchange (ETDEWEB)
Yershov, S V; Rusanov, A V [Ukranian National Academy of Sciences, Kahrkov (Ukraine)
1997-12-31
The numerical method is suggested for the calculations of the 3D viscous compressible flows described by the thin-layer Reynolds-averaged Navier-Stokes equations. The method is based on the Godunov`s finite-difference scheme and it uses the ENO reconstruction suggested by Harten to achieve the uniformly high-order accuracy. The computational efficiency is provided with the simplified multi grid approach and the implicit step written in {delta} -form. The turbulent effects are simulated with the Baldwin - Lomax turbulence model. The application package FlowER is developed to calculate the 3D turbulent flows within complex-shape channels. The numerical results for the 3D flow around a cylinder and through the complex-shaped channels show the accuracy and the reliability of the suggested method. (author)
Viscous flow features in scaled-up physical models of normal and pathological vocal phonation
Energy Technology Data Exchange (ETDEWEB)
Erath, Byron D., E-mail: berath@purdue.ed [School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 (United States); Plesniak, Michael W., E-mail: plesniak@gwu.ed [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street NW, Suite 739, Washington, DC 20052 (United States)
2010-06-15
Unilateral vocal fold paralysis results when the recurrent laryngeal nerve, which innervates the muscles of the vocal folds becomes damaged. The loss of muscle and tension control to the damaged vocal fold renders it ineffectual. The mucosal wave disappears during phonation, and the vocal fold becomes largely immobile. The influence of unilateral vocal fold paralysis on the viscous flow development, which impacts speech quality within the glottis during phonation was investigated. Driven, scaled-up vocal fold models were employed to replicate both normal and pathological patterns of vocal fold motion. Spatial and temporal velocity fields were captured using particle image velocimetry, and laser Doppler velocimetry. Flow parameters were scaled to match the physiological values associated with human speech. Loss of motion in one vocal fold resulted in a suppression of typical glottal flow fields, including decreased spatial variability in the location of the flow separation point throughout the phonatory cycle, as well as a decrease in the vorticity magnitude.
Viscous flow features in scaled-up physical models of normal and pathological vocal phonation
International Nuclear Information System (INIS)
Erath, Byron D.; Plesniak, Michael W.
2010-01-01
Unilateral vocal fold paralysis results when the recurrent laryngeal nerve, which innervates the muscles of the vocal folds becomes damaged. The loss of muscle and tension control to the damaged vocal fold renders it ineffectual. The mucosal wave disappears during phonation, and the vocal fold becomes largely immobile. The influence of unilateral vocal fold paralysis on the viscous flow development, which impacts speech quality within the glottis during phonation was investigated. Driven, scaled-up vocal fold models were employed to replicate both normal and pathological patterns of vocal fold motion. Spatial and temporal velocity fields were captured using particle image velocimetry, and laser Doppler velocimetry. Flow parameters were scaled to match the physiological values associated with human speech. Loss of motion in one vocal fold resulted in a suppression of typical glottal flow fields, including decreased spatial variability in the location of the flow separation point throughout the phonatory cycle, as well as a decrease in the vorticity magnitude.
CFD Prediction of Airfoil Drag in Viscous Flow Using the Entropy Generation Method
Directory of Open Access Journals (Sweden)
Wei Wang
2018-01-01
Full Text Available A new aerodynamic force of drag prediction approach was developed to compute the airfoil drag via entropy generation rate in the flow field. According to the momentum balance, entropy generation and its relationship to drag were derived for viscous flow. Model equations for the calculation of the local entropy generation in turbulent flows were presented by extending the RANS procedure to the entropy balance equation. The accuracy of algorithm and programs was assessed by simulating the pressure coefficient distribution and dragging coefficient of different airfoils under different Reynolds number at different attack angle. Numerical data shows that the total entropy generation rate in the flow field and the drag coefficient of the airfoil can be related by linear equation, which indicates that the total drag could be resolved into entropy generation based on its physical mechanism of energy loss.
Viscous-inviscid method for the simulation of turbulent unsteady wind turbine airfoil flow
Energy Technology Data Exchange (ETDEWEB)
Bermudez, L.; Velazquez, A.; Matesanz, A. [Thermal Engineering Area, Carlos III University of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain)
2002-06-01
A Viscous-inviscid interaction method is presented that allows for the simulation of unsteady airfoil flow in the context of wind turbine applications. The method couples a 2-D external unsteady potential flow to a 2-D unsteady turbulent boundary layer. The separation point on the airfoil leeward side is determined in a self-consistent way from the boundary-layer equations, and the separated flow region is modelled independently. Wake shape and motion are also determined in a self-consistent way, while an unsteady Kutta condition is implemented. The method is able to deal with attached flow and light stall situations characterised by unsteady turbulent boundary-layer separation size up to 50% of the airfoil chord length. The results of the validation campaign show that the method could be used for industrial design purposes because of its numerical robustness, reasonable accuracy, and limited computational time demands.
Turbulence modeling of the Von Karman flow: Viscous and inertial stirrings
International Nuclear Information System (INIS)
Poncet, Sebastien; Schiestel, Roland; Monchaux, Romain
2008-01-01
The present work considers the turbulent Von Karman flow generated by two counter-rotating smooth flat (viscous stirring) or bladed (inertial stirring) disks. Numerical predictions based on one-point statistical modeling using a low-Reynolds number second-order full stress transport closure (RSM model) are compared to velocity measurements performed at CEA (Commissariat a l'Energie Atomique, France). The main and significant novelty of this paper is the use of a drag force in the momentum equations to reproduce the effects of inertial stirring instead of modeling the blades themselves. The influences of the rotational Reynolds number, the aspect ratio of the cavity, the rotating disk speed ratio and of the presence or not of impellers are investigated to get a precise knowledge of both the dynamics and the turbulence properties in the Von Karman configuration. In particular, we highlighted the transition between the merged and separated boundary layer regimes and the one between the Batchelor [Batchelor, G.K., 1951. Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Quat. J. Mech. Appl. Math. 4 (1), 29-41] and the Stewartson [Stewartson, K., 1953. On the flow between two rotating coaxial disks. Proc. Camb. Philos. Soc. 49, 333-341] flow structures in the smooth disk case. We determined also the transition between the one cell and the two cell regimes for both viscous and inertial stirrings
SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY
Energy Technology Data Exchange (ETDEWEB)
Lee, Seong-Jae; Hyung, Siek [School of Science Education (Astronomy), Chungbuk National University, Chungbuk 28644 (Korea, Republic of); Chattopadhyay, Indranil; Kumar, Rajiv [ARIES, Manora Peak, Nainital-263002, Uttarakhand (India); Ryu, Dongsu, E-mail: seong@chungbuk.ac.kr [Department of Physics, School of Natural Sciences UNIST, Ulsan 44919 (Korea, Republic of)
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.
Directory of Open Access Journals (Sweden)
Norfifah Bachok
Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
Hydromagnetic flow of a Cu-water nanofluid past a moving wedge with viscous dissipation
M. Salem, A.; Galal, Ismail; Rania, Fathy
2014-04-01
A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter λ, solid volume fraction φ, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.
Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf
Brunt, Kelly M.; MacAyeal, Douglas R.
2014-01-01
Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.
An implicit multigrid algorithm for computing hypersonic, chemically reacting viscous flows
International Nuclear Information System (INIS)
Edwards, J.R.
1996-01-01
An implicit algorithm for computing viscous flows in chemical nonequilibrium is presented. Emphasis is placed on the numerical efficiency of the time integration scheme, both in terms of periteration workload and overall convergence rate. In this context, several techniques are introduced, including a stable, O(m 2 ) approximate factorization of the chemical source Jacobian and implementations of V-cycle and filtered multigrid acceleration methods. A five species-seventeen reaction air model is used to calculate hypersonic viscous flow over a cylinder at conditions corresponding to flight at 5 km/s, 60 km altitude and at 11.36 km/s, 76.42 km altitude. Inviscid calculations using an eleven-species reaction mechanism including ionization are presented for a case involving 11.37 km/s flow at an altitude of 84.6 km. Comparisons among various options for the implicit treatment of the chemical source terms and among different multilevel approaches for convergence acceleration are presented for all simulations
On the thermal stability for a model reactive flow with viscous dissipation
International Nuclear Information System (INIS)
Okoya, S.S.
2006-12-01
We study the thermal stability of a reactive flow of a third-grade fluid with viscous heating and chemical reaction between two horizontal flat plates, where the top is moving with a uniform speed and the bottom plate is fixed in the presence of an imposed pressure gradient. This study is a natural continuation of earlier work on rectilinear shear flows. The governing equations are non-dimensionalized and the resulting system of equations are not coupled. An approximate explicit solution is found for the flow velocity using homotopy - perturbation technique and the range of validity is determined. After the velocity is known, the heat transport may be analyzed. It is found that the temperature solution depends on the non-Newtonian material parameter of the fluid, Λ, viscous heating parameter, Γ, and an exponent, m. Attention is focused upon the disappearance of criticality of the solution set {β, δ, θ max } for various values of Λ, Γ and m, and the numerical computations are presented graphically to show salient features of the solution set. (author)
Jiang, Zhen-Hua; Yan, Chao; Yu, Jian
2013-08-01
Two types of implicit algorithms have been improved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on triangular grids. A block lower-upper symmetric Gauss-Seidel (BLU-SGS) approach is implemented as a nonlinear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the original LU-SGS approach. Both implicit schemes have the significant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock transition and the designed high-order accuracy simultaneously.
On the viscous dissipation modeling of thermal fluid flow in a porous medium
Salama, Amgad
2011-02-24
The problem of viscous dissipation and thermal dispersion in saturated porous medium is numerically investigated for the case of non-Darcy flow regime. The fluid is induced to flow upward by natural convection as a result of a semi-infinite vertical wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non-dimensionalized and solved using the finite elements method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e.; viscous dissipation) resulted in insignificant generation of heat for the range of parameters considered in this study. On the other hand, thermal dispersion has shown to disperse heat energy normal to the wall more effectively compared with the normal diffusion mechanism. © 2011 Springer-Verlag.
Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation
Energy Technology Data Exchange (ETDEWEB)
Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)
2016-12-30
Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.
Directory of Open Access Journals (Sweden)
S. Das
2015-06-01
Full Text Available The combined effects of viscous dissipation and Joule heating on the momentum and thermal transport for the magnetohydrodynamic flow past an inclined plate in both aiding and opposing buoyancy situations have been carried out. The governing non-linear partial differential equations are transformed into a system of coupled non-linear ordinary differential equations using similarity transformations and then solved numerically using the Runge–Kutta fourth order method with shooting technique. Numerical results are obtained for the fluid velocity, temperature as well as the shear stress and the rate of heat transfer at the plate. The results show that there are significant effects of pertinent parameters on the flow fields.
Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions
Energy Technology Data Exchange (ETDEWEB)
Hussain, T. [Faculty of Computing, Mohammad Ali Jinnah University, Islamabad 44000 (Pakistan); Shehzad, S. A., E-mail: ali-qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2015-08-15
This article investigates the magnetohydrodynamic flow of third grade nanofluid with thermophoresis and Brownian motion effects. Energy equation is considered in the presence of thermal radiation and viscous dissipation. Rosseland’s approximation is employed for thermal radiation. The heat and concentration flux conditions are taken into account. The governing nonlinear mathematical expressions of velocity, temperature and concentration are converted into dimensionless expressions via transformations. Series solutions of the dimensionless velocity, temperature and concentration are developed. Convergence of the constructed solutions is checked out both graphically and numerically. Effects of interesting physical parameters on the temperature and concentration are plotted and discussed in detail. Numerical values of skin-friction coefficient are computed for the hydrodynamic and hydromagnetic flow cases.
Simulation of Free Airfoil Vibrations in Incompressible Viscous Flow — Comparison of FEM and FVM
Directory of Open Access Journals (Sweden)
Petr Sváček
2012-01-01
Full Text Available This paper deals with a numerical solution of the interaction of two-dimensional (2-D incompressible viscous flow and a vibrating profile NACA 0012 with large amplitudes. The laminar flow is described by the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian form. The profile with two degrees of freedom (2-DOF can rotate around its elastic axis and oscillate in the vertical direction. Its motion is described by a nonlinear system of two ordinary differential equations. Deformations of the computational domain due to the profile motion are treated by the arbitrary Lagrangian-Eulerianmethod. The finite volume method and the finite element method are applied, and the numerical results are compared.
Dong, Guanyu
2018-03-01
In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.
Nonisothermal flow of a non-Newtonian fluid with viscous heating between two parallel plates
International Nuclear Information System (INIS)
Imal, M.; Pinarbasi, A.
2004-01-01
In this study the pressure gradient-flow rate relationship for steady-state nonisothermal pressure-driven flow of a non-Newtonian fluid in a channel is investigated including the effect of viscous heating is taken into account. The viscosity of the fluid depends on both temperature and shear-rate. Exponential dependence of viscosity on temperature is modelled through Arrhenius law. Non-Newtonian behaviour of the fluid is modelled according to the Carreau rheological equation, which reflects the characteristics of most polymers adequately with an exponential temperature dependence of viscosity. Flow governing motion and energy balance equations are coupled and solution of this non-linear boundary value problem is found iteratively using a pseudo spectral method based on Chebyshev polynomials. The effect of activation energy parameter and Brinkman number, as well as the power-law index and material time constant on the flow is studied. It is found that while the pressure gradient-flow rate graph is monotonic for certain ranges of flow controlling parameters, there is a large jump in the graph under certain values of these parameters.(1 table and 5 figures are included.)
The break-up of a viscous liquid drop in a high Reynolds number shear flow
Ng, Chin Hei; Aliseda, Alberto
2015-11-01
The break-up of a viscous liquid droplet in a sheared turbulent flow evolves in several steps, the most visually dominant of which is the formation of high aspect ratio ligaments. This feature takes them apart from the various break-up models based on the Hinze-Kolmogorov paradigm of eddy-spherical particle collisions. We investigate the development of ligaments in a high Reynolds number (up to 250,000) submerged round jet, within the high viscosity, near-unity density ratio regime. Unlike in H-K theory, applicable to the break-up of inviscid fluid particles, break-up of inertial-scale viscous droplets occurs through a sequence of eddy collisions and long-term deformation, as evidenced by measurements of the aspect ratio that fluctuates and increases progressively during the deformation stage, and results in non-binary break-up. Additionally, the ligament formation stretches a droplet to multiple times its original size, bringing the influence of integral-scale structures. High speed imaging has been statistically analyzed to inform and validate theoretical models for the break-up time and the break-up probability. In addition, a particle size scaling model has been developed and compared with the experimental measurements of the frozen-state particle size.
Viscous Flow Behaviour of Karanja Oil Based Bio-lubricant Base Oil.
Sharma, Umesh Chandra; Sachan, Sadhana; Trivedi, Rakesh Kumar
2018-01-01
Karanja oil (KO) is widely used for synthesis of bio-fuel karanja oil methyl ester (KOME) due to its competitive price, good energy values and environmentally friendly combustion properties. Bio-lubricant is another value added product that can be synthesized from KO via chemical modification. In this work karanja oil trimethylolpropane ester (KOTMPE) bio-lubricant was synthesized and evaluated for its viscous flow behaviour. A comparison of viscous flow behaviours of natural KO and synthesized bio-fuel KOME and bio-lubricant KOTMPE was also made. The aim of this comparison was to validate the superiority of KOTMPE bio-lubricant over its precursors KO and KOME in terms of stable viscous flow at high temperature and high shear rate conditions usually encountered in engine operations and industrial processes. The free fatty acid (FFA) content of KO was 5.76%. KOME was synthesized from KO in a two-step, acid catalyzed esterification followed by base catalyzed transesterification, process at 65°C for 5 hours with oil-methanol ratio 1:6, catalysts H 2 SO 4 and KOH (1 and 1.25% w/w KO, respectively). In the final step, KOTMPE was prepared from KOME via transesterification with trimethylolpropane (TMP) at 150°C for 3 hours with KOME-TMP ratio 4:1 and H 2 SO 4 (2% w/w KOME) as catalyst. The viscosity versus temperature studies were made at 0-80°C temperatures in shear rate ranges of 10-1000 s -1 using a Discovery Hybrid Rheometer, model HR-3 (TA instruments, USA). The study found that viscosities of all three samples decreased with increase in temperature, though KOTMPE was able to maintain a good enough viscosity at elevated temperatures due to chemical modifications in its molecular structure. The viscosity index (VI) value for KOTMPE was 206.72. The study confirmed that the synthesized bio-lubricant KOTMPE can be used at high temperatures as a good lubricant, though some additives may be required to improve properties other than viscosity.
Improved flux calculations for viscous incompressible flow by the variable penalty method
International Nuclear Information System (INIS)
Kheshgi, H.; Luskin, M.
1985-01-01
The Navier-Stokes system for viscous, incompressible flow is considered, taking into account a replacement of the continuity equation by the perturbed continuity equation. The introduction of the approximation allows the pressure variable to be eliminated to obtain the system of equations for the approximate velocity. The penalty approximation is often applied to numerical discretizations since it provides a reduction in the size and band-width of the system of equations. Attention is given to error estimates, and to two numerical experiments which illustrate the error estimates considered. It is found that the variable penalty method provides an accurate solution for a much wider range of epsilon than the classical penalty method. 8 references
Directory of Open Access Journals (Sweden)
Poonia Hemant
2010-01-01
Full Text Available An unsteady, two-dimensional, hydromagnetic, laminar mixed convective boundary layer flow of an incompressible and electrically-conducting fluid along an infinite vertical plate embedded in the porous medium with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer are discussed. The results show that increased cooling (Gr > 0 of the plate and the Eckert number leads to a rise in the velocity profile. Also, an increase in Eckert number leads to an increase in the temperature. Effects of Sc on velocity and concentration are discussed and shown graphically.
A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids
Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.
Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate
International Nuclear Information System (INIS)
Tajvidi, T.; Razzaghi, M.; Dehghan, M.
2008-01-01
A numerical method for solving the classical Blasius' equation is proposed. The Blasius' equation is a third order nonlinear ordinary differential equation , which arises in the problem of the two-dimensional laminar viscous flow over a semi-infinite flat plane. The approach is based on a modified rational Legendre tau method. The operational matrices for the derivative and product of the modified rational Legendre functions are presented. These matrices together with the tau method are utilized to reduce the solution of Blasius' equation to the solution of a system of algebraic equations. A numerical evaluation is included to demonstrate the validity and applicability of the method and a comparison is made with existing results
Viscous flow considerations in the design of the Busemann hypersonic air inlet
International Nuclear Information System (INIS)
Walsh, P.C.; Tahir, R.B.; Molder, S.
2002-01-01
A cost effective means of traveling to a low earth orbit is using an aircraft that relies on air-breathing engine technology for most of its trajectory while in the atmosphere. The scramjets that would be used to provide propulsion require inlet air diffusion with minimal total pressure losses to maintain efficiency. The Busemann inlet was designed using inviscid flow assumptions specifically for such purposes. This paper presents an investigation into the effects of viscosity on inlet performance in terms of static pressure rise and internal shockwave configuration. The viscous effects within the inlet can alter the design pressure ratio as much as 50%. It was shown that a correction based on a displacement radius calculation was sufficient to restore the static pressure performance of the inviscid design. An improvement of 16% in total pressure losses was observed with the corrected Busemann profile. Results are compared to experimentally determined surface pressure values. (author)
Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows
Chen, Z.; Shu, C.; Tan, D.
2018-05-01
An immersed boundary-simplified lattice Boltzmann method is developed in this paper for simulations of two-dimensional incompressible viscous flows with immersed objects. Assisted by the fractional step technique, the problem is resolved in a predictor-corrector scheme. The predictor step solves the flow field without considering immersed objects, and the corrector step imposes the effect of immersed boundaries on the velocity field. Different from the previous immersed boundary-lattice Boltzmann method which adopts the standard lattice Boltzmann method (LBM) as the flow solver in the predictor step, a recently developed simplified lattice Boltzmann method (SLBM) is applied in the present method to evaluate intermediate flow variables. Compared to the standard LBM, SLBM requires lower virtual memories, facilitates the implementation of physical boundary conditions, and shows better numerical stability. The boundary condition-enforced immersed boundary method, which accurately ensures no-slip boundary conditions, is implemented as the boundary solver in the corrector step. Four typical numerical examples are presented to demonstrate the stability, the flexibility, and the accuracy of the present method.
Dholey, S.
2018-04-01
In this paper, we have investigated numerically the laminar unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface in the presence of a time dependent free stream velocity which causes the unsteadiness of this flow problem. The plate is assumed to move in the same or opposite direction of the free stream velocity. The flow is therefore governed by the velocity ratio parameter λ (ratio of the plate velocity to the free stream velocity) and the unsteadiness parameter β. When the plate surface moves in the same direction of the free stream velocity (i.e., when λ > 0), the solution of this flow problem continues for any given value of β. On the other hand, when they move in opposite directions (i.e., when λ heat transfer analysis is that for a given value of λ(= 0), first the heat transfer rate increases with the increase of the Prandtl number Pr and after attaining a maximum value, it decreases and finally tends to be zero for large values of Pr depending upon the values of β > 0. On the contrary, for a given value of β(≤ 0), the rate of heat transfer increases consistently with the increase of Pr.
Yang, Yong; Chai, Xueguang
2018-05-01
When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.
Buckling of thin viscous sheets with inhomogenous viscosity under extensional flows
Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.
2016-11-01
We investigate the dynamics, shape and stability of a thin viscous sheet subjected to an extensional flow under an imposed non-uniform temperature field. Using finite element simulations, we first solve for the stretching flow to determine the pre-buckling sheet thickness and in-plane flow velocities. Next, we use this solution as the base state and solve the linearized partial differential equation governing the out-of-plane deformation of the mid-surface as a function of two dimensionless operating parameters: the normalized stretching ratio α and a dimensionless width of the heating zone β. We show the sheet can become unstable via a buckling instability driven by the development of localized compressive stresses, and determine the global shape and growth rates of the most unstable mode. The growth rate is shown to exhibit a transition from stationary to oscillatory modes in region upstream of the heating zone. Finally, we investigate the effect of surface tension and present an operating diagram that indicates regions of the parameter space that minimizes or entirely suppresses the instability while achieving desired outlet sheet thickness. Therefore, our work is directly relevant to various industrial processes including the glass redraw & float-glass method.
Dimas, Athanassios A.; Kolokythas, Gerasimos A.
Numerical simulations of the free-surface flow, developing by the propagation of nonlinear water waves over a rippled bottom, are performed assuming that the corresponding flow is two-dimensional, incompressible and viscous. The simulations are based on the numerical solution of the Navier-Stokes equations subject to the fully-nonlinear free-surface boundary conditions and appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. For the spatial discretization, a hybrid scheme is used where central finite-differences, in the horizontal direction, and a pseudo-spectral approximation method with Chebyshev polynomials, in the vertical direction, are applied. A fractional time-step scheme is used for the temporal discretization. Over the rippled bed, the wave boundary layer thickness increases significantly, in comparison to the one over flat bed, due to flow separation at the ripple crests, which generates alternating circulation regions. The amplitude of the wall shear stress over the ripples increases with increasing ripple height or decreasing Reynolds number, while the corresponding friction force is insensitive to the ripple height change. The amplitude of the form drag forces due to dynamic and hydrostatic pressures increase with increasing ripple height but is insensitive to the Reynolds number change, therefore, the percentage of friction in the total drag force decreases with increasing ripple height or increasing Reynolds number.
Directory of Open Access Journals (Sweden)
Kumar Hitesh
2009-01-01
Full Text Available The boundary layer steady flow and heat transfer of a viscous incompressible fluid due to a stretching plate with viscous dissipation effect in the presence of a transverse magnetic field is studied. The equations of motion and heat transfer are reduced to non-linear ordinary differential equations and the exact solutions are obtained using properties of confluent hypergeometric function. It is assumed that the prescribed heat flux at the stretching porous wall varies as the square of the distance from origin. The effects of the various parameters entering into the problem on the velocity field and temperature distribution are discussed.
Liska, Sebastian; Colonius, Tim
2017-02-01
A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.
Gupta, Sumeet; Poulikakos, Dimos; Kurtcuoglu, Vartan
2008-09-01
We present here the analytical solution of transient, laminar, viscous flow of an incompressible, Newtonian fluid driven by a harmonically oscillating pressure gradient in a straight elliptic annulus. The analytical formulation is based on the exact solution of the governing fluid flow equations known as Navier-Stokes equations. We validate the analytical solution using a finite-volume computational fluid dynamics approach. As the analytical solution includes Mathieu and modified Mathieu functions, we also present a stepwise procedure for their evaluation for large complex arguments typically associated with viscous flows. We further outline the procedure for evaluating the associated Fourier coefficients and their eigenvalues. We finally apply the analytical solution to investigate the cerebrospinal fluid flow in the human spinal cavity, which features a shape similar to an elliptic annulus.
Schwab, J. R.; Povinelli, L. A.
1984-01-01
A comparison of the secondary flows computed by the viscous Kreskovsky-Briley-McDonald code and the inviscid Denton code with benchmark experimental data for turning duct is presented. The viscous code is a fully parabolized space-marching Navier-Stokes solver while the inviscid code is a time-marching Euler solver. The experimental data were collected by Taylor, Whitelaw, and Yianneskis with a laser Doppler velocimeter system in a 90 deg turning duct of square cross-section. The agreement between the viscous and inviscid computations was generally very good for the streamwise primary velocity and the radial secondary velocity, except at the walls, where slip conditions were specified for the inviscid code. The agreement between both the computations and the experimental data was not as close, especially at the 60.0 deg and 77.5 deg angular positions within the duct. This disagreement was attributed to incomplete modelling of the vortex development near the suction surface.
A Quadtree-gridding LBM with Immersed Boundary for Two-dimension Viscous Flows
Yao, Jieke; Feng, Wenliang; Chen, Bin; Zhou, Wei; Cao, Shikun
2017-07-01
An un-uniform quadtree grids lattice Boltzmann method (LBM) with immersed boundary is presented in this paper. In overlapping for different level grids, temporal and spatial interpolation are necessary to ensure the continuity of physical quantity. In order to take advantage of the equation for temporal and spatial step in the same level grids, equal interval interpolation, which is simple to apply to any refined boundary grids in the LBM, is adopted in temporal and spatial aspects to obtain second-order accuracy. The velocity correction, which can guarantee more preferably no-slip boundary condition than the direct forcing method and the momentum exchange method in the traditional immersed-boundary LBM, is used for solid boundary to make the best of Cartesian grid. In present quadtree-gridding immersed-boundary LBM, large eddy simulation (LES) is adopted to simulate the flows over obstacle in higher Reynolds number (Re). The incompressible viscous flows over circular cylinder are carried out, and a great agreement is obtained.
Directory of Open Access Journals (Sweden)
I. J. Uwanta
2014-01-01
Full Text Available This study investigates the unsteady natural convection and mass transfer flow of viscous reactive, heat generating/absorbing fluid in a vertical channel formed by two infinite parallel porous plates having temperature dependent thermal conductivity. The motion of the fluid is induced due to natural convection caused by the reactive property as well as the heat generating/absorbing nature of the fluid. The solutions for unsteady state temperature, concentration, and velocity fields are obtained using semi-implicit finite difference schemes. Perturbation techniques are used to get steady state expressions of velocity, concentration, temperature, skin friction, Nusselt number, and Sherwood number. The effects of various flow parameters such as suction/injection (γ, heat source/sinks (S, Soret number (Sr, variable thermal conductivity δ, Frank-Kamenetskii parameter λ, Prandtl number (Pr, and nondimensional time t on the dynamics are analyzed. The skin friction, heat transfer coefficients, and Sherwood number are graphically presented for a range of values of the said parameters.
Numerical simulations of incompressible laminar flows using viscous-inviscid interaction procedures
Shatalov, Alexander V.
The present method is based on Helmholtz velocity decomposition where velocity is written as a sum of irrotational (gradient of a potential) and rotational (correction due to vorticity) components. Substitution of the velocity decomposition into the continuity equation yields an equation for the potential, while substitution into the momentum equations yields equations for the velocity corrections. A continuation approach is used to relate the pressure to the gradient of the potential through a modified Bernoulli's law, which allows the elimination of the pressure variable from the momentum equations. The present work considers steady and unsteady two-dimensional incompressible flows over an infinite cylinder and NACA 0012 airfoil shape. The numerical results are compared against standard methods (stream function-vorticity and SMAC methods) and data available in literature. The results demonstrate that the proposed formulation leads to a good approximation with some possible benefits compared to the available formulations. The method is not restricted to two-dimensional flows and can be used for viscous-inviscid domain decomposition calculations.
Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes
Capuano, M.; Bogey, C.; Spelt, P. D. M.
2018-05-01
A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.
Temporal Entropy Generation in the Viscous Layers of Laterally-converging Duct Flows
International Nuclear Information System (INIS)
McEligot, Donald M.; Brodkey, Robert S.; Eckelmann, Helmut
2008-01-01
Since insight into entropy generation is a key to increasing efficiency and thereby reducing fuel consumption and/or waste and--for wall-bounded flows--most entropy is generated in the viscous layer, we examine the transient behavior of its dominant contributor there for a non-canonical flow. New measurements in oil flow are presented for the effects of favorable streamwise mean pressure gradients on temporal entropy generation rates and, in the process, on key Reynolds-stress-producing events such as sweep front passage and on the deceleration/outflow phase of the overall bursting process. Two extremes have been considered: (1) a high pressure gradient, nearing 'laminarization', and (2), for comparison, a low pressure gradient corresponding to many earlier experiments. In both cases, the peak temporal entropy generation rate occurs shortly after passage of the ejection/sweep interface. Whether sweep and ejection rates appear to decrease or increase with the pressure gradient depends on the feature examined and the manner of sampling. When compared using wall coordinates for velocities, distances and time, the trends and magnitudes of the transient behaviors are mostly the same. The main effects of the higher pressure gradient are (1) changes in the time lag between detections--representing modification of the shape of the sweep front and the sweep angle with the wall, (2) modification of the magnitude of an instantaneous Reynolds shear stress with wall distance and (3) enlarging the sweeps and ejections. Results new for both low and high pressure gradients are the temporal behaviors of the dominant contribution to entropy generation; it is found to be much more sensitive to distance from the wall than to streamwise pressure gradient
Directory of Open Access Journals (Sweden)
Jens Kobelke
2017-01-01
Full Text Available We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT technique. The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.
Air-driven viscous film flow coating the interior of a vertical tube
Ogrosky, H. Reed; Camassa, Roberto; Olander, Jeffrey
2017-11-01
We discuss a model for the flow of a viscous liquid film coating the interior of a vertical tube when the film is driven upwards against gravity by airflow through the center of the tube. The model consists of two components: (i) a nonlinear model, exploiting the slowly-varying liquid-air interface, for the interfacial stresses created by the airflow, and (ii) a long-wave asymptotic model for the air-liquid interface. The stability of small interfacial disturbances is studied analytically, and it is shown that the modeled free surface stresses contribute to both an increased upwards disturbance velocity and a more rapid instability growth than those of a previously developed model. Numerical solutions to the long-wave model exhibit saturated waves whose profiles and velocities show improvement, with respect to the previous model, in matching experiments. The model results are then compared with additional experiments for a slightly modified version of the problem. We gratefully acknowledge funding from NSF DMS-0509423, DMS-0908423, DMS-1009750, DMS-1517879, RTG DMS-0943851, CMG ARC-1025523 and NIEHS 534197-3411.
Energy Technology Data Exchange (ETDEWEB)
Marc O Delchini; Jean E. Ragusa; Ray A. Berry
2015-07-01
We present a new version of the entropy viscosity method, a viscous regularization technique for hyperbolic conservation laws, that is well-suited for low-Mach flows. By means of a low-Mach asymptotic study, new expressions for the entropy viscosity coefficients are derived. These definitions are valid for a wide range of Mach numbers, from subsonic flows (with very low Mach numbers) to supersonic flows, and no longer depend on an analytical expression for the entropy function. In addition, the entropy viscosity method is extended to Euler equations with variable area for nozzle flow problems. The effectiveness of the method is demonstrated using various 1-D and 2-D benchmark tests: flow in a converging–diverging nozzle; Leblanc shock tube; slow moving shock; strong shock for liquid phase; low-Mach flows around a cylinder and over a circular hump; and supersonic flow in a compression corner. Convergence studies are performed for smooth solutions and solutions with shocks present.
Viscous dissipation effects on heat transfer in flow past a continuous moving plate
Digital Repository Service at National Institute of Oceanography (India)
Soundalgekar, V.M.; Murty, T.V.R.
The study of thermal boundary layer on taking into account the viscous dissipative heat, on a continuously moving semi-infinite flat plate is presented here.Similarity solutions are derived and the resulting equations are integrated numerically...
Non-linear effects in vortex viscous flow in superconductors-role of finite heat removal velocity
International Nuclear Information System (INIS)
Bezuglyj, A.I.; Shklovskij, V.A.
1991-01-01
The role of finite heat removal velocity in experiments on non-linear effects in vortex viscous flow in superconducting films near critical temperature was investigated. It was shown that the account of thermal effects permits to explain the experimentally observed dependence of electron energy relaxation time and current break-down in voltage-current characteristic from magnetic field value. 5 refs.; 1 fig. (author)
Yang, L M; Shu, C; Wang, Y
2016-03-01
In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.
Energy Technology Data Exchange (ETDEWEB)
Rusanov, A V; Yershov, S V [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)
1998-12-31
The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.
Directory of Open Access Journals (Sweden)
Prasad K.V.
2017-02-01
Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.
Energy Technology Data Exchange (ETDEWEB)
Rusanov, A.V.; Yershov, S.V. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)
1997-12-31
The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.
Directory of Open Access Journals (Sweden)
Yu Bai
2017-12-01
Full Text Available This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Sakuraba, A.
2015-12-01
I made a linear analysis of flow-induced oscillations along an underground cylindrical conduit with an elliptical cross section on the basis of the hypothesis that volcanic tremor is a result of magma movement through a conduit. As a first step to understand how the self oscillation occurs because of magma flow, I investigated surface wave propagation and attenuation along an infinitely long fluid-filled elliptic cylinder in an elastic medium. The boundary element method is used to obtain the two-dimensional wave field around the ellipse in the frequency-wavenumber domain. When the major axis is much greater than the minor axis of the ellipse, we obtain the analytic form of the dispersion relation of both the crack-wave mode (Korneev 2008, Lipovsky & Dunham 2015) and the Rayleigh-wave mode with flexural deformation. The crack-wave mode generally has a slower phase speed and a higher attenuation than the Rayleigh-wave mode. In the long-wavelength limit, the crack-wave mode disappears because of fluid viscosity, but the Rayleigh-wave mode exists with a constant Q-value that depends on viscosity. When the aspect ratio of the ellipse is finite, the surface waves can basically be understood as those propagating along a fluid pipe. The flexural mode does exist even when the wavelength is much longer than the major axis, but its phase speed coincides with that of the surrounding S-wave (Randall 1991). As its attenuation is zero in the long-wavelength limit, the flexural mode differs in nature from surface wave. I also obtain a result on linear stability of viscous flow through an elliptic cylinder. In this analysis, I made an assumption that the fluid inertia is so small that the Stokes equation can be used. As suggested by the author's previous study (Sakuraba & Yamauchi 2014), the flexural (Rayleigh-wave) mode is destabilized at a critical flow speed that decreases with the wavelength. However, when the wavelength is much greater than the major axis of the ellipse, the
Directory of Open Access Journals (Sweden)
Tasawar Hayat
Full Text Available The present article has been arranged to study the Hall current and Joule heating effects on peristaltic flow of viscous fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Convective conditions for heat transfer in the formulation are adopted. Viscous dissipation in energy expression is taken into account. Resulting differential systems after invoking small Reynolds number and long wavelength considerations are numerically solved. Runge-Kutta scheme of order four is implemented for the results of axial and secondary velocities, temperature and heat transfer coefficient. Comparison with previous limiting studies is shown. Outcome of new parameters of interest is analyzed. Keywords: Rotating frame, Hall current, Joule heating, Convective conditions, Wall properties
International Nuclear Information System (INIS)
Umegaki, Kikuo; Miki, Kazuyoshi
1990-01-01
A numerical method is developed to solve three-dimensional incompressible viscous flow in complicated geometry using curvilinear coordinate transformation and domain decomposition technique. In this approach, a complicated flow domain is decomposed into several subdomains, each of which has an overlapping region with neighboring subdomains. Curvilinear coordinates are numerically generated in each subdomain using the boundary-fitted coordinate transformation technique. The modified SMAC scheme is developed to solve Navier-Stokes equations in which the convective terms are discretized by the QUICK method. A fully vectorized computer program is developed on the basis of the proposed method. The program is applied to flow analysis in a semicircular curved, 90deg elbow and T-shape branched pipes. Computational time with the vector processor of the HITAC S-810/20 supercomputer system, is reduced to 1/10∼1/20 of that with a scalar processor. (author)
Viscous shear in the Kerr metric
International Nuclear Information System (INIS)
Anderson, M.R.; Lemos, J.P.S.
1988-01-01
Models of viscous flows on to black holes commonly assume a zero-torque boundary condition at the radius of the last stable Keplerian orbit. It is here shown that this condition is wrong. The viscous torque is generally non-zero at both the last stable orbit and the horizon itself. The existence of a non-zero viscous torque at the horizon does not require the transfer of energy or angular momentum across any spacelike distance, and so does not violate causality. Further, in comparison with the viscous torque in the distant, Newtonian regime, the viscous torque on the horizon is often reversed, so that angular momentum is viscously advected inwards rather than outwards. This phenomenon is first suggested by an analysis of the quasi-stationary case, and then demonstrated explicitly for a series of cold, dynamical flows which fall freely from the last stable orbit in the Schwarzschild and Kerr metrics. In the steady flows constructed here, the net torque on the hole is always directed in the usual sense; any reversal in the viscous torque is offset by an increase in the convected flux of angular momentum. (author)
Effect of viscous dissipation on mixed convection flow in a vertical ...
African Journals Online (AJOL)
The reference temperature of the external fluid is considered to be equal and different. The perturbation method which is valid for small values of perturbation parameter is used to find the combined effects of buoyancy forces and viscous dissipation. The limitation imposed on the perturbation parameter is relaxed by solving ...
Energy Technology Data Exchange (ETDEWEB)
Knudsen, M
1909-07-01
Experimental data from studies of the flow of H/sub 2/, O/sub 2/, and CO/ sub 2/ through glass capillary tubes were collected and treated to determine the effect of tube dimensions and physical properties of the gases on molecular flow. Laws governing the transition from viscous to molecular flow were also sought. (T.R.H.)
Asymptotic properties of axisymmetric Stokes flow of a viscous liquid with intersecting boundaries
International Nuclear Information System (INIS)
Voinov, O.V.
2004-01-01
The general axisymmetric problem on the liquid flow by the low Reynolds number when the boundary surfaces (both of the solid body and free one) are intersecting at the certain angle on the moving line, is considered. The work is aimed at establishing the asymptotic regularities of the behavior of the current function and voltages in the small vicinity of the intersection (contact) line of the boundary surfaces. The asymptotic analysis makes it possible to consider the arbitrary axisymmetric Stokes flow with the intersecting boundaries [ru
Directory of Open Access Journals (Sweden)
K. Majidi
2000-01-01
Full Text Available The flow field in volute and circular casings interacting with a centrifugal impeller is obtained by numerical analysis. In the present study, effects of the volute and circular casings on the flow pattern have been investigated by successively combining a volute casing and a circular casing with a single centrifugal impeller. The numerical calculations are carried out with a multiple frame of reference to predict the flow field inside the entire impeller and casings. The impeller flow field is solved in a rotating frame and the flow field in the casings in a stationary frame. The static pressure and velocity in the casing and impeller, and the static pressures and secondary velocity vectors at several cross-sectional planes of the casings are calculated. The calculations show that the curvature of the casings creates pressure gradients that cause vortices at cross-sectional planes of the casings.
Directory of Open Access Journals (Sweden)
Çilingir Süngü İnci
2017-01-01
Full Text Available This study is to examine the steady two dimensional laminar flow of a viscous incompressible electrically conducting fluid over a continuous surface. In this study DTM-Padé method is used to solve which is a combination of differential transform method (DTM and Padé approximant. Comparisons between the solutions obtained by DTM and DTM-Padé and are shown that DTM-Padé is the completely powerful method then DTM for solving the problems in which boundary conditions at infinity. Also in this study the effect of Magnetic and Radiation parameters, Prandtl number and Eckert number for velocity and temperature distributions are investigated.
Alfriend, K. T.
1973-01-01
A ring partially filled with a viscous fluid has been analyzed as a nutation damper for a spinning satellite. The fluid has been modelled as a rigid slug of finite length moving in a tube and resisted by a linear viscous force. It is shown that there are two distinct modes of motion, called the spin synchronous mode and the nutation synchronous mode. Time constants for each mode are obtained for both the symmetric and asymmetric satellite. The effects of a stop in the tube and an offset of the ring from the spin axis are also investigated. An analysis of test results is also given including a determination of the effect of gravity on the time constants in the two modes.
International Nuclear Information System (INIS)
McHugh, P.R.; Ramshaw, J.D.
1991-11-01
MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs
Russew, K.; Stojanova, L.; Yankova, S.; Fazakas, E.; Varga, L. K.
2009-01-01
Six Cu100-xZrx amorphous alloys (x in the range 35.7 - 60 at. percent) were prepared via chill block melt spinning (CBMS) method under low pressure Helium atmosphere. Their crystallization and viscous flow behavior was studied with the aid of Perkin Elmer DSC 2C and Perkin Elmer TMS 2 devices, respectively. The viscous flow temperature dependencies at a heating rate of 20 K min-1 were interpreted on the basis of the f ree volume model. The DSC and TMS data were used to determine the fragility number m of Angell in three different ways as a function of alloy composition. It has been shown that the fragility number goes over a maximum and has a minimum at x very near to the alloy composition Cu64Zr36 in good agreement with the results of Donghua Xu et al. and Wang D et al. The experimental techniques and model interpretation used provide a tool for understanding the glass forming ability (GFA) and relaxation phenomena in metallic glasses.
Energy Technology Data Exchange (ETDEWEB)
McHugh, P.R.; Ramshaw, J.D.
1991-11-01
MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.
International Nuclear Information System (INIS)
Russew, K; Stojanova, L; Yankova, S; Fazakas, E; Varga, L K
2009-01-01
Six Cu 100-x Zr x amorphous alloys (x in the range 35.7 - 60 at. percent) were prepared via chill block melt spinning (CBMS) method under low pressure Helium atmosphere. Their crystallization and viscous flow behavior was studied with the aid of Perkin Elmer DSC 2C and Perkin Elmer TMS 2 devices, respectively. The viscous flow temperature dependencies at a heating rate of 20 K min -1 were interpreted on the basis of the f ree volume model. The DSC and TMS data were used to determine the fragility number m of Angell in three different ways as a function of alloy composition. It has been shown that the fragility number goes over a maximum and has a minimum at x very near to the alloy composition Cu 64 Zr 36 in good agreement with the results of Donghua Xu et al. and Wang D et al. The experimental techniques and model interpretation used provide a tool for understanding the glass forming ability (GFA) and relaxation phenomena in metallic glasses.
Shahnazari, M. R.; Maleka Ashtiani, I.; Saberi, A.
2018-03-01
In this paper, the effect of channeling on viscous fingering instability of miscible displacement in porous media is studied. In fact, channeling is introduced as a solution to stabilize the viscous fingering instability. In this solution, narrow channels were placed next to the walls, and by considering an exponential function to model the channeling effect, a heterogeneous media is assumed. In linear stability analysis, the governing equations are transferred to Fourier space, and by introducing a novel numerical method, the transferred equations are analyzed. The growth rate based on the wave number diagram has been drawn up in three sections of the medium. It is found that the flow becomes more stable at the center and unstable along the walls when the permeability ratio is increased. Also when the permeability ratio is approximately equal to one, the channeling has no significant effect. In nonlinear simulations, by using stream function and vortices, new equations have been rewritten and it is shown that channeling has a profound effect on the growth of the fingers and mechanisms. In addition to the superposition of velocity vectors and concentration contours, the development of instability is investigated using the mixing length and sweep efficiency diagram. The results show that although channeling reduces instability, it increases the displacement process time.
Jusoh, Rahimah; Nazar, Roslinda
2018-04-01
The magnetohydrodynamic (MHD) stagnation point flow and heat transfer of an electrically conducting nanofluid over a nonlinear stretching/shrinking sheet is studied numerically. Mathematical modelling and analysis are attended in the presence of viscous dissipation. Appropriate similarity transformations are used to reduce the boundary layer equations for momentum, energy and concentration into a set of ordinary differential equations. The reduced equations are solved numerically using the built in bvp4c function in Matlab. The numerical and graphical results on the effects of various parameters on the velocity and temperature profiles as well as the skin friction coefficient and the local Nusselt number are analyzed and discussed in this paper. The study discovers the existence of dual solutions for a certain range of the suction parameter. The conducted stability analysis reveals that the first solution is stable and feasible, while the second solution is unstable.
Flow chemistry vs. flow analysis.
Trojanowicz, Marek
2016-01-01
The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations
International Nuclear Information System (INIS)
Xu Kun; He Xiaoyi
2003-01-01
Both lattice Boltzmann method (LBM) and the gas-kinetic BGK scheme are based on the numerical discretization of the Boltzmann equation with collisional models, such as, the Bhatnagar-Gross-Krook (BGK) model. LBM tracks limited number of particles and the viscous flow behavior emerges automatically from the intrinsic particle stream and collisions process. On the other hand, the gas-kinetic BGK scheme is a finite volume scheme, where the time-dependent gas distribution function with continuous particle velocity space is constructed and used in the evaluation of the numerical fluxes across cell interfaces. Currently, LBM is mainly used for low Mach number, nearly incompressible flow simulation. For the gas-kinetic scheme, the application is focusing on the high speed compressible flows. In this paper, we are going to compare both schemes in the isothermal low-Mach number flow simulations. The methodology for developing both schemes will be clarified through the introduction of operator splitting Boltzmann model and operator averaging Boltzmann model. From the operator splitting Boltzmann model, the error rooted in many kinetic schemes, which are based on the decoupling of particle transport and collision, can be easily understood. As to the test case, we choose to use the 2D cavity flow since it is one of the most extensively studied cases. Detailed simulation results with different Reynolds numbers, as well as the benchmark solutions, are presented
Application of mathematical model for high viscous damper to dynamic analysis of NPP pipings
International Nuclear Information System (INIS)
Kostarev, V.V.; Bercovsky, A.M.; Kireev, O.B.; Vasiliev, P.S.
1993-01-01
The problems of dynamic analysis of Nuclear Power Plants (NPP) piping systems are considered in the paper. The special calculation program for PC has been developed that enables to estimate the seismic margin for any piping system with different antiseismic devices having nonlinear characteristics. The calculated comparison has been done for two antiseismic supports that are widely used now, namely: a High Viscous Damper (HVD) and a Seismic Stop Support (SSS) with the application, as an example, to the well known pipeline BM3 (USNRC). (author)
Application of mathematical model for high viscous damper to dynamic analysis of NPP pipings
Energy Technology Data Exchange (ETDEWEB)
Kostarev, V V; Bercovsky, A M; Kireev, O B; Vasiliev, P S [CKTI VIBROSEISM (CVS), St. Petersburg (Russian Federation)
1993-07-01
The problems of dynamic analysis of Nuclear Power Plants (NPP) piping systems are considered in the paper. The special calculation program for PC has been developed that enables to estimate the seismic margin for any piping system with different antiseismic devices having nonlinear characteristics. The calculated comparison has been done for two antiseismic supports that are widely used now, namely: a High Viscous Damper (HVD) and a Seismic Stop Support (SSS) with the application, as an example, to the well known pipeline BM3 (USNRC). (author)
Energy Technology Data Exchange (ETDEWEB)
Li, Mao; Qiu, Zihua; Liang, Chunlei; Sprague, Michael; Xu, Min
2017-01-13
In the present study, a new spectral difference (SD) method is developed for viscous flows on meshes with a mixture of triangular and quadrilateral elements. The standard SD method for triangular elements, which employs Lagrangian interpolating functions for fluxes, is not stable when the designed accuracy of spatial discretization is third-order or higher. Unlike the standard SD method, the method examined here uses vector interpolating functions in the Raviart-Thomas (RT) spaces to construct continuous flux functions on reference elements. Studies have been performed for 2D wave equation and Euler equa- tions. Our present results demonstrated that the SDRT method is stable and high-order accurate for a number of test problems by using triangular-, quadrilateral-, and mixed- element meshes.
Putnam, L. E.; Hodges, J.
1983-01-01
The Langley Research Center of the National Aeronautics and Space Administration and the Royal Aircraft Establishment have undertaken a cooperative program to conduct an assessment of their patched viscous-inviscid interaction methods for predicting the transonic flow over nozzle afterbodies. The assessment was made by comparing the predictions of the two methods with experimental pressure distributions and boattail pressure drag for several convergent circular-arc nozzle configurations. Comparisons of the predictions of the two methods with the experimental data showed that both methods provided good predictions of the flow characteristics of nozzles with attached boundary layer flow. The RAE method also provided reasonable predictions of the pressure distributions and drag for the nozzles investigated that had separated boundary layers. The NASA method provided good predictions of the pressure distribution on separated flow nozzles that had relatively thin boundary layers. However, the NASA method was in poor agreement with experiment for separated nozzles with thick boundary layers due primarily to deficiencies in the method used to predict the separation location.
Walitt, L.
1982-01-01
The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.
Gangadhar, K.; Kumar, Sathies; Lakshmi Narayana, K.; Subhakar, M. J.; Rushi Kumar, B.
2017-11-01
In this paper, MHD flow and heat transfer of electrically conducting micro polar fluid over a permeable stretching surface with slip flow in the existence of viscous dissipation and temperature dependent slip flow are investigated. With the help of similarity transformations, the fundamental equations have been altered into a system of ordinary differential equations. It is difficult to solve these equations methodically. That’s why we used bvp4c MATLAB solver. We found the Numerical values for the wall couple stress, skin-friction coefficient, and the local Nusselt number in addition to the micro rotation, velocity, and temperature reports for diverse values of the principal parameters like thermal slip parameter, material parameter, magnetic parameter, heat generation/absorption parameter, velocity slip parameter and Eckert number It is observed that the values of suction/injection parameters rise corresponding to the lessening in the values of velocity, angular velocity, and temperature. Moreover, the change in the values of the Eckert number is opposite to the change in the values of the local Nusselt number.
DEFF Research Database (Denmark)
Dyre, Jeppe; Olsen, Niels Boye; Christensen, Tage Emil
1996-01-01
A model for the viscosity of glass-forming molecular liquids is proposed in which a "flow event" requires a local volume increase. The activation energy for a flow event is identified with the work done in shoving aside the surrounding liquid; this work is proportional to the high-frequency shear...
Decaying quasi-two-dimensional viscous flow on a square domain
DEFF Research Database (Denmark)
Konijnenberg, J.A. van de; Flor, J.B.; Heijst, G.J.F. van
1998-01-01
A comparison is made between experimental, numerical and analytical results for the two-dimensional flow on a square domain. The experiments concern the flow at the interface of a two-layer stratified fluid, evoked by either stirring the fluid with a rake, or by injecting additional fluid...... at the interface. Two numerical simulations were performed with initial conditions and boundary conditions that correspond approximately with those met in the experiments. The analytical results concern the calculation of the lowest modes of a decaying Stokes flow on a square domain. At late times...... relationship between vorticity and stream function in the experiments and the simulations. (C) 1998 American Institute of Physics....
Incompressible viscous flow computations for the pump components and the artificial heart
Kiris, Cetin
1992-01-01
A finite difference, three dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. Here, equations are solved in steadily rotating reference frames by using the steady state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two.
Sjogreen, Bjoern; Yee, H. C.
2007-01-01
Flows containing steady or nearly steady strong shocks in parts of the flow field, and unsteady turbulence with shocklets on other parts of the flow field are difficult to capture accurately and efficiently employing the same numerical scheme even under the multiblock grid or adaptive grid refinement framework. On one hand, sixth-order or higher shock-capturing methods are appropriate for unsteady turbulence with shocklets. On the other hand, lower order shock-capturing methods are more effective for strong steady shocks in terms of convergence. In order to minimize the shortcomings of low order and high order shock-capturing schemes for the subject flows,a multi- block overlapping grid with different orders of accuracy on different blocks is proposed. Test cases to illustrate the performance of the new solver are included.
Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions
Fang, Tiegang
2014-05-01
In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.
Numerical simulation of steady cavitating flow of viscous fluid in a Francis hydroturbine
Panov, L. V.; Chirkov, D. V.; Cherny, S. G.; Pylev, I. M.; Sotnikov, A. A.
2012-09-01
Numerical technique was developed for simulation of cavitating flows through the flow passage of a hydraulic turbine. The technique is based on solution of steady 3D Navier—Stokes equations with a liquid phase transfer equation. The approch for setting boundary conditions meeting the requirements of cavitation testing standard was suggested. Four different models of evaporation and condensation were compared. Numerical simulations for turbines of different specific speed were compared with experiment.
Tice, Ian
2018-04-01
This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in modeling the motion of such a fluid down an inclined plane, after a coordinate change. We consider the problem both with and without surface tension for horizontally periodic flows. This problem gives rise to shear-flow equilibrium solutions, and the main thrust of this paper is to study the asymptotic stability of the equilibria in certain parameter regimes. We prove that there exists a parameter regime in which sufficiently small perturbations of the equilibrium at time t=0 give rise to global-in-time solutions that return to equilibrium exponentially in the case with surface tension and almost exponentially in the case without surface tension. We also establish a vanishing surface tension limit, which connects the solutions with and without surface tension.
Homogeneous viscous flow behavior of a Cu–Zr based bulk metallic glass composites
International Nuclear Information System (INIS)
Zhang, X.Y.; Yuan, Z.Z.; Feng, X.L.; Cui, L.Z.; Li, D.X.
2015-01-01
In this paper, Cu 40 Zr 44 Ag 8 Al 8 bulk metallic glass composites (BMGCs) consisting of various volume fraction of nanocrystals embedded in the amorphous matrix was synthesized by controlled annealing treatment of an as-cast BMGCs. The high temperature compression behaviors of the BMGCs were characterized in the supercooled liquid region. Results show that the flow stresses keep increasing after an initial decrease with extension of the annealing time. With annealing the values of activation volume V act is determined to be increasing from 283.6216 Ǻ 3 to 305.553 Ǻ 3 , suggesting that the jump of atoms is a cooperative process during the high-temperature deformation. Flow behavior of the BMGCs annealed for less than 8 min transform from Newtonian to non-Newtonian dependant on the stain rate and can be successively fitted by the visco-plasticity model. Fitting results indicate that deformation behaviors of these samples are governed by homogeneous flow of the amorphous matrix and indeed determined by the viscosities in the Newtonian flow stage. However, the BMGCs annealed for 8 min exhibit a non-Newtonian flow over the entire compression process and fail to be fitted by the visco-plasticity model. Micrographs of the sample reflect an impinged structure, indicating that high temperature deformation behavior of the BMGCs with high volume fractions of particles is indeed controlled by that of a backbone of particles
Forming of film surface of very viscous liquid flowing with gas in pipes
Directory of Open Access Journals (Sweden)
Czernek Krystian
2017-01-01
Full Text Available The study presents the possible use of optoelectronic system for the measurement of the values, which are specific for hydrodynamics of two-phase gas liquid flow in vertical pipes, where a very-high-viscosity liquid forms a falling film in a pipe. The experimental method was provided, and the findings were presented and analysed for selected values, which characterize the two-phase flow. Attempt was also made to evaluate the effects of flow parameters and properties of the liquid on the gas-liquid interface value, which is decisive for the conditions of heat exchange and mass transfer in falling film equipment. The nature and form of created waves at various velocities were also described.
Numerical solution of viscous flow around an airfoil with a flap via the random vortex method
Energy Technology Data Exchange (ETDEWEB)
Ghadiri, B.; Nazari, D. [Tarbiat Modares Univ., Dept. of Mechancial Engineering, Tehran (Iran, Islamic Republic of)]. E-mail: Ghadirib@modares.ac.ir; Nazari_d@yahoo.com
2003-07-01
The unsteady and incompressible flow around an airfoil with a flap is analyzed via a random vortex method. The Navier-Stokes equations, in the form of vorticity, is split into diffusion and convection parts according to the fractional step method. A random Walk method is used to solve the diffusion equation and the Cloud-in-Cell (CIC) method to solve the Euler's equation. The sequence mapping transformations is used to map the uniform flow around an airfoil with a flap onto a circular cylinder with a uniform flow velocity. The pressure and force coefficients are computed for an airfoil with a flap attached for different angle of attack; agreement with experimental data is good. (author)
Numerical solution of viscous flow around an airfoil with a flap via the random vortex method
International Nuclear Information System (INIS)
Ghadiri, B.; Nazari, D.
2003-01-01
The unsteady and incompressible flow around an airfoil with a flap is analyzed via a random vortex method. The Navier-Stokes equations, in the form of vorticity, is split into diffusion and convection parts according to the fractional step method. A random Walk method is used to solve the diffusion equation and the Cloud-in-Cell (CIC) method to solve the Euler's equation. The sequence mapping transformations is used to map the uniform flow around an airfoil with a flap onto a circular cylinder with a uniform flow velocity. The pressure and force coefficients are computed for an airfoil with a flap attached for different angle of attack; agreement with experimental data is good. (author)
Thoughts on the chimera method of simulation of three-dimensional viscous flow
Steger, Joseph L.
1991-01-01
The chimera overset grid is reviewed and discussed relative to other procedures for simulating flow about complex configurations. It is argued that while more refinement of the technique is needed, current schemes are competitive to unstructured grid schemes and should ultimately prove more useful.
A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow
Toose, E.M.; Geurts, B.J.; Kuerten, J.G.M.
1995-01-01
A boundary integral method for the simulation of the time-dependent deformation of Newtonian or non-Newtonian drops suspended in a Newtonian fluid is developed. The boundary integral formulation for Stokes flow is used and the non-Newtonian stress is treated as a source term which yields an extra
Kinetic theory of nonlinear viscous flow in two and three dimensions
Ernst, M.H.; Cichocki, B.; Dorfman, J.R.; Sharma, J.; Beijeren, H. van
1978-01-01
On the basis of a nonlinear kinetic equation for a moderately dense system of hard spheres and disks it is shown that shear and normal stresses in a steady-state, uniform shear flow contain singular contributions of the form ¦X¦3/2 for hard spheres, or ¦X¦ log ¦X¦ for hard disks. HereX is
Simulation of free airfoil vibrations in incompressible viscous flow – comparison of FEM and FVM
Czech Academy of Sciences Publication Activity Database
Sváček, P.; Horáček, Jaromír; Honzátko, R.; Kozel, K.
2012-01-01
Roč. 52, č. 6 (2012), s. 104-114 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : laminar flow * finite volume method * finite element method * arbitrary Lagrangian -Eulerian method * nonlinear aeroelasticity Subject RIV: BI - Acoustics
Effect of viscous dissipation on mixed convection flow in a vertical ...
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology .... third kind for flow over a flat plate and in the thermal entrance region of a rectangular channel. ... on mixed convection in a vertical channel using Robin boundary conditions was ... Hajmohammadi and Nourazar (2014) studied the effect of a thin gas layer in ...
Directory of Open Access Journals (Sweden)
K.V.S. Raju
2014-06-01
Full Text Available This paper deals with a steady MHD forced convective flow of a viscous fluid of finite depth in a saturated porous medium over a fixed horizontal channel with thermally insulated and impermeable bottom wall in the presence of viscous dissipation and joule heating. The governing equations are solved in the closed form and the exact solutions are obtained for velocity and temperature distributions when the temperatures on the fixed bottom and on the free surface are prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean mixed temperature in the flow region and the Nusselt number on the free surface have been obtained. The cases of large and small values of porosity coefficients have been obtained as limiting cases. Further, the cases of small depth (shallow fluid and large depth (deep fluid are also discussed. The results are presented and discussed with the help of graphs.
National Research Council Canada - National Science Library
Zhou, Hong; Forest, M. G
2006-01-01
.... The morphology has various physical realizations, all coupled through the model equations: the orientational distribution of the ensemble of rods, anisotropic viscoelastic stresses, and flow feedback...
Elemental transport coefficients in viscous plasma flows near local thermodynamic equilibrium
International Nuclear Information System (INIS)
Orsini, Alessio; Kustova, Elena V.
2009-01-01
We propose a convenient formulation of elemental transport coefficients in chemically reacting and plasma flows locally approaching thermodynamic equilibrium. A set of transport coefficients for elemental diffusion velocities, heat flux, and electric current is introduced. These coefficients relate the transport fluxes with the electric field and with the spatial gradients of elemental fractions, pressure, and temperature. The proposed formalism based on chemical elements and fully symmetric with the classical transport theory based on chemical species, is particularly suitable to model mixing and demixing phenomena due to diffusion of chemical elements. The aim of this work is threefold: to define a simple and rigorous framework suitable for numerical implementation, to allow order of magnitude estimations and qualitative predictions of elemental transport phenomena, and to gain a deeper insight into the physics of chemically reacting flows near local equilibrium.
Finite element methods for viscous incompressible flows a guide to theory, practice, and algorithms
Gunzburger, Max D
2012-01-01
In this book, the author examines mathematical aspects of finite element methods for the approximate solution of incompressible flow problems. The principal goal is to present some of the important mathematical results that are relevant to practical computations. In so doing, useful algorithms are also discussed. Although rigorous results are stated, no detailed proofs are supplied; rather, the intention is to present these results so that they can serve as a guide for the selection and, in certain respects, the implementation of algorithms.
Numerical simulation of viscous flow and hydrodynamic noise in surface ship
Directory of Open Access Journals (Sweden)
YU Han
2017-12-01
Full Text Available [Objectives] The problem of noise caused by an unsteady flow field around a surface ship is a difficulty facing the stealth design of ship hulls, in which the existence of the free surface makes it different from submarine hydrodynamic noise calculation. To solve this problem,[Methods] the Volume of Fluid(VOF method and SST k-ω turbulence model are combined to simulate the unsteady flow field of the hull, and the free surface is given an air acoustic impedance to simulate the absorption boundary. The pulsating pressure of the hull surface is used as the source of the noise, and the underwater radiation noise of the surface ship is calculated with the acoustic finite element method.[Results] The results show high agreement with the experimental results and previous simulation results. The noise sources are mainly concentrated at the bow of the hull.[Conclusions] The results show that this calculation method can accurately simulate the flow field and sound field of a surface ship, and it can provides valuable reference for the acoustic stealth design of surface ships.
Abrahams, J R; Hiller, N
1965-01-01
Signal Flow Analysis provides information pertinent to the fundamental aspects of signal flow analysis. This book discusses the basic theory of signal flow graphs and shows their relation to the usual algebraic equations.Organized into seven chapters, this book begins with an overview of properties of a flow graph. This text then demonstrates how flow graphs can be applied to a wide range of electrical circuits that do not involve amplification. Other chapters deal with the parameters as well as circuit applications of transistors. This book discusses as well the variety of circuits using ther
Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek
2018-02-01
A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.
Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.
2018-02-01
It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.
Directory of Open Access Journals (Sweden)
V. R. Sanal Kumar
2018-02-01
Full Text Available A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.
Sithole, Hloniphile; Mondal, Hiranmoy; Sibanda, Precious
2018-06-01
This study addresses entropy generation in magnetohydrodynamic flow of a second grade nanofluid over a convectively heated stretching sheet with nonlinear thermal radiation and viscous dissipation. The second grade fluid is assumed to be electrically conducting and is permeated by an applied non-uniform magnetic field. We further consider the impact on the fluid properties and the Nusselt number of homogeneous-heterogeneous reactions and a convective boundary condition. The mathematical equations are solved using the spectral local linearization method. Computations for skin-friction coefficient and local Nusselt number are carried out and displayed in a table. It is observed that the effects of the thermophoresis parameter is to increase the temperature distributions throughout the boundary layer. The entropy generation is enhanced by larger magnetic parameters and increasing Reynolds number. The aim of this manuscript is to pay more attention of entropy generation analysis with heat and fluid flow on second grade nanofluids to improve the system performance. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of the second grade nanofluid parameter.
Sohn, J. L.; Heinrich, J. C.
1990-01-01
The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.
Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.
1988-01-01
A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.
Blockage effects on viscous fluid flow and heat transfer past a magnetic obstacle in a duct
International Nuclear Information System (INIS)
Zhang Xi-Dong; Huang Hu-Lin
2013-01-01
The effect of lateral walls on fluid flow and heat transfer is investigated when a fluid passes a magnetic obstacle. The blockage ratio β that represents the ratio between the width of external magnet M y and the spanwise width L y is employed to depict the effect. The finite volume method (FVM) based on the PISO algorithm is applied for the blockage ratios of 0.2, 0.3, and 0.4. The results show that the value of Strouhal number St increases as the blockage ratio β increases, and for small β, the variation of St is very small when the interaction parameter and Reynolds number are increasing. Moreover, the cross-stream mixing induced by the magnetic obstacle can enhance the wall-heat transfer and the maximum value of the overall heat transfer increment is about 50.5%
New approach to the exact solution of viscous flow due to stretching (shrinking and porous sheet
Directory of Open Access Journals (Sweden)
Azhar Ali
Full Text Available Exact analytical solutions for the generalized stretching (shrinking of a porous surface, for the variable suction (injection velocity, is presented in this paper. The solution is generalized in the sense that the existing solutions that correspond to various stretching velocities are recovered as a special case of this study. A suitable similarity transformation is introduced to find self-similar solution of the non-linear governing equations. The flow is characterized by a few non-dimensional parameters signifying the problem completely. These parameters are such that the whole range of stretching (shrinking problems discussed earlier can be recovered by assigning appropriate values to these parameters. A key point of the whole narrative is that a number of earlier works can be abridged into one generalized problem through the introduction of a new similarity transformation and finding its exact solution encompassing all the earlier solutions. Keywords: Exact solutions, New similarities, Permeable and moving sheet
Directory of Open Access Journals (Sweden)
R. C. Chaudhary
2004-11-01
Full Text Available We investigate the hydromagnetic effect on viscous incompressible flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the fluid at the stationary plate and its corresponding removal by periodic suction through the plate in uniform motion. The flow becomes three dimensional due to this injection/suction velocity. Approximate solutions are obtained for the flow field, the pressure, the skin-friction, the temperature field, and the rate of heat transfer. The dependence of solution on M (Hartmann number and ÃŽÂ» (injection/suction is investigated by the graphs and tables.
DEFF Research Database (Denmark)
Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri
Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variable...... of the flow. Contrary to fractional step methods, the streamfunction formulation eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds numbers. The interface is tracked...
DEFF Research Database (Denmark)
Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri
2014-01-01
Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variable...... of the flow. Contrary to fractional step methods, the streamfunction formulation eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds numbers. The interface is tracked...
Directory of Open Access Journals (Sweden)
Umar Khan
2015-03-01
Full Text Available Squeezing flow of nanofluids has been taken into account under the effects of viscous dissipation and velocity slip. Two types of base fluids are used to study the behavior of Copper nanoparticles between parallel plates. Nonlinear ordinary differential equations governing the flow are obtained by imposing similarity transformations on conservation laws. Resulting equations are solved by using an efficient analytical technique the variation of parameters method (VPM. Influences of nanoparticle concentration and different emerging parameters on flow profiles are presented graphically coupled with comprehensive discussions. A numerical solution is also sought for the sake of comparison. Effect of different parameters on skin friction coefficient and Nusselt number is also discussed.
Shams, Mosayeb; Raeini, Ali Q; Blunt, Martin J; Bijeljic, Branko
2018-07-15
This paper examines the role of momentum transfer across fluid-fluid interfaces in two-phase flow. A volume-of-fluid finite-volume numerical method is used to solve the Navier-Stokes equations for two-phase flow at the micro-scale. The model is applied to investigate viscous coupling effects as a function of the viscosity ratio, the wetting phase saturation and the wettability, for different fluid configurations in simple pore geometries. It is shown that viscous coupling effects can be significant for certain pore geometries such as oil layers sandwiched between water in the corner of mixed wettability capillaries. A simple parametric model is then presented to estimate general mobility terms as a function of geometric properties and viscosity ratio. Finally, the model is validated by comparison with the mobilities computed using direct numerical simulation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.
2017-09-01
Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.
International Nuclear Information System (INIS)
Tiwari, Vaishali; Pande, Rama
2006-01-01
Densities ρ and viscosities η of two hydroxamic acids, N-phenyl-2-chlorobenzo- and N-o-tolyl-4-chlorobenzo-, have been determined as a function of their concentration in aqueous acetone solution at temperatures 303.15 and 313.15 K. Apparent molar volumes, standard-state partial molar volumes and relative viscosities have been calculated. The viscosity data have been analyzed using Jones-Dole equation. The activation thermodynamic parameters of viscous flow have been evaluated using Feakins equation. These were obtained to throw light on the mechanism of viscous flow. Thermodynamic interactions in solutions have been studied in terms of a number of excess functions calculated from the experimental data. The effect of hydroxamic acid concentration and temperature on these parameters has been discussed. The results were interpreted in the light of solute-solvent interactions in aquo-organic media
Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings
Dhruv, Akash V.
Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed
Large-Scale Parallel Viscous Flow Computations using an Unstructured Multigrid Algorithm
Mavriplis, Dimitri J.
1999-01-01
The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI Origin 2000 and the Cray T3E. An argument is given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of its underlying single grid smoothing scheme. For medium size problems involving several million grid points, near perfect scalability is obtained for the single grid algorithm, while only a slight drop-off in parallel efficiency is observed for the multigrid V- and W-cycles, using up to 128 processors on the SGI Origin 2000, and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest grid level contains fewer points than the total number of processors.
Directory of Open Access Journals (Sweden)
Ahmed M. Elsayed
2013-01-01
Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.
Fundamental characteristics of heat conduction enhancement in oscillating viscous flow-dream pipe
International Nuclear Information System (INIS)
Katsuta, M.; Nagata, K.; Maruyama, Y.; Tsujimori, A.
1991-01-01
This paper reports that to confirm the heat conduction augmentation technique via sinusoidal oscillation experimentally and to establish a fundamental data base of this device, systematic measurements using almost identically scaled with Kurzweg's apparatus for demonstration were conducted. In this heat exchanger, the fluid occupied a capillary tube or its bundle that connected two reservoirs at different temperature; a special constructed oscillation driving unit generated a pulsed motion of working fluid. Operation took place at various tube diameters, oscillated frequency and stroke using pure water and ethanol as working liquid. As a result, a new factor so-called heat transport coefficient which indicates the heat transfer rate multiplying temperature gradient between hot and cold reservoir was introduced. This factor increased with increasing oscillated frequency and stroke, however, beyond a critical frequency, this trend disappeared. Using modified Reynolds number and stroke ratio, a new empirical formula which correlated the data regardless of the difference of working liquid was proposed. A discussion of tube bundle was also made using this correlation. Finally, an attempt was performed to correlate the data using effective thermal diffusivity predicted by simple lumped capacitance analysis and characteristic period
Pal, Sagnik; Saha, Sujoy Kumar
2015-08-01
The experimental friction factor and Nusselt number data for laminar flow of viscous oil through a circular duct having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth have been presented. Predictive friction factor and Nusselt number correlations have also been presented. The thermohydraulic performance has been evaluated. The major findings of this experimental investigation are that the twisted tapes with oblique teeth in combination with integral axial corrugation roughness perform significantly better than the individual enhancement technique acting alone for laminar flow through a circular duct up to a certain value of fin parameter.
Directory of Open Access Journals (Sweden)
Mohammad Yaghoub Abdollahzadeh Jamalabadi
2016-05-01
Full Text Available Numerical and analytical investigation of the effects of thermal radiation and viscous heating on a convective flow of a non-Newtonian, incompressible fluid in an axisymmetric stretching sheet with constant temperature wall is performed. The power law model of the blood is used for the non-Newtonian model of the fluid and the Rosseland model for the thermal radiative heat transfer in an absorbing medium and viscous heating are considered as the heat sources. The non-dimensional governing equations are transformed to similarity form and solved numerically. A parameter study on entropy generation in medium is presented based on the Second Law of Thermodynamics by considering various parameters such as the thermal radiation parameter, the Brinkman number, Prandtl number, Eckert number.
El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu; Reddy Gorla, Rama Subba
2012-01-01
In this paper, the effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluidsaturated porous medium are investigated. The Darcy-Brinkman model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy-Brinkman model of porous media. The simultaneous development of the momentum and thermal boundary layers is obtained by using a finite-difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as the local friction factor and local Nusselt number are displayed graphically. It is found that as time approaches infinity, the values of the friction factor and heat transfer coefficient approach steady state. © 2012 by Begell House, Inc.
Probabilistic analysis of wind-induced vibration mitigation of structures by fluid viscous dampers
Chen, Jianbing; Zeng, Xiaoshu; Peng, Yongbo
2017-11-01
The high-rise buildings usually suffer from excessively large wind-induced vibrations, and thus vibration control systems might be necessary. Fluid viscous dampers (FVDs) with nonlinear power law against velocity are widely employed. With the transition of design method from traditional frequency domain approaches to more refined direct time domain approaches, the difficulty of time integration of these systems occurs sometimes. In the present paper, firstly the underlying reason of the difficulty is revealed by identifying that the equations of motion of high-rise buildings installed with FVDs are sometimes stiff differential equations. Thus, an approach effective for stiff differential systems, i.e., the backward difference formula (BDF), is then introduced, and verified to be effective for the equation of motion of wind-induced vibration controlled systems. Comparative studies are performed among some methods, including the Newmark method, KR-alpha method, energy-based linearization method and the statistical linearization method. Based on the above results, a 20-story steel frame structure is taken as a practical example. Particularly, the randomness of structural parameters and of wind loading input is emphasized. The extreme values of the responses are examined, showing the effectiveness of the proposed approach, and also necessitating the refined probabilistic analysis in the design of wind-induced vibration mitigation systems.
International Nuclear Information System (INIS)
Khosravian, N; Rafii-Tabar, H
2008-01-01
In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities
Energy Technology Data Exchange (ETDEWEB)
Khosravian, N; Rafii-Tabar, H [Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: rafii-tabar@nano.ipm.ac.ir
2008-07-09
In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities.
Kruep, Stephanie Jean
2007-01-01
This thesis presents the details of a study regarding both the use of linear viscous fluid dampers in controlling the interstory drift in steel moment frames, and the use of incremental dynamic analysis as a method of visualizing the behavior of these moment frames when subjected to seismic load effects. Models of three story and nine story steel moment frames were designed to meet typical strength requirements for office buildings in Seattle, Washington. These models were intentionally des...
DEFF Research Database (Denmark)
Sheikholeslami, R; Ashorynejad, H.R; Barari, Amin
2013-01-01
the viscous dissipation is negligible. Originality/value – The equations of conservation of mass, momentum and energy are reduced to a non-linear ordinary differential equations system. Differential Transformation Method is utilized to approximate the solution for velocity and temperature profiles....
Bartholomay, Sirko; Ramos-García, Néstor; Mikkelsen, Robert Flemming; Technical University of Denmark (DTU)-WInd Energy Team
2014-11-01
The viscous-inviscid flow solver Q3UIC for 2D aerodynamics has recently been developed at the Technical University of Denmark. The Q3UIC solver takes viscous and unsteady effects into account by coupling an unsteady inviscid panel method with the integral boundary layer equations by means of a strong coupling between the viscous and inviscid parts, and in this respect differs from other classic panel codes e.g. Xfoil. In the current work a Runge-Kutta-Nyström scheme was employed to couple inertial, elastic and aerodynamical forces and moments calculated by Q3UIC for a two-dimensional blade section in the time-domain. Numerical simulations are validated by a three step experimental verification process carried out in the low-turbulence wind tunnel at DTU. First, a comparison against steady experiments for a NACA 64418 profile and a flexible trailing edge flap is presented for different fixed flap angles, and second, the measured aerodynamic characteristics considering prescribed motion of the airfoil with a moving flap are compared to the Q3UIC predictions. Finally, an aeroelastic experiment for one degree of freedom-airfoil pitching- is used to evaluate the accuracy of aeroelastic coupling.
Viscous, Resistive Magnetorotational Modes
DEFF Research Database (Denmark)
Pessah, Martin Elias; Chan, Chi-kwan
2008-01-01
We carry out a comprehensive analysis of the behavior of the magnetorotational instability (MRI) in viscous, resistive plasmas. We find exact, non-linear solutions of the non-ideal magnetohydrodynamic (MHD) equations describing the local dynamics of an incompressible, differentially rotating...
Czech Academy of Sciences Publication Activity Database
Deuring, P.; Kračmar, S.; Nečasová, Šárka
2011-01-01
Roč. 2011, - (2011), s. 351-361 ISSN 1078-0947. [8th AIMS International Conference. Dresden, 25.05.2010-28.05.2010] R&D Projects: GA AV ČR IAA100190804; GA ČR(CZ) GAP201/11/1304 Institutional research plan: CEZ:AV0Z10190503 Keywords : viscous incompressible flow * rotating body * fundamental solution Subject RIV: BA - General Mathematics Impact factor: 0.913, year: 2011 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=6978
Viscous Fingering in Deformable Systems
Guan, Jian Hui; MacMinn, Chris
2017-11-01
Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.
Kawai, T.
Among the topics discussed are the application of FEM to nonlinear free surface flow, Navier-Stokes shallow water wave equations, incompressible viscous flows and weather prediction, the mathematical analysis and characteristics of FEM, penalty function FEM, convective, viscous, and high Reynolds number FEM analyses, the solution of time-dependent, three-dimensional and incompressible Navier-Stokes equations, turbulent boundary layer flow, FEM modeling of environmental problems over complex terrain, and FEM's application to thermal convection problems and to the flow of polymeric materials in injection molding processes. Also covered are FEMs for compressible flows, including boundary layer flows and transonic flows, hybrid element approaches for wave hydrodynamic loadings, FEM acoustic field analyses, and FEM treatment of free surface flow, shallow water flow, seepage flow, and sediment transport. Boundary element methods and FEM computational technique topics are also discussed. For individual items see A84-25834 to A84-25896
Stokes’ and Lamb's viscous drag laws
International Nuclear Information System (INIS)
Eames, I; Klettner, C A
2017-01-01
Since Galileo used his pulse to measure the time period of a swinging chandelier in the 17th century, pendulums have fascinated scientists. It was not until Stokes' (1851 Camb. Phil. Soc. 9 8–106) (whose interest was spurred by the pendulur time pieces of the mid 19th century) treatise on viscous flow that a theoretical framework for the drag on a sphere at low Reynolds number was laid down. Stokes' famous drag law has been used to determine two fundamental physical constants—the charge on an electron and Avogadro's constant—and has been used in theories which have won three Nobel prizes. Considering its illustrious history it is then not surprising that the flow past a sphere and its two-dimensional analog, the flow past a cylinder, form the starting point of teaching flow past a rigid body in undergraduate level fluid mechanics courses. Usually starting with the two-dimensional potential flow past a cylinder, students progress to the three-dimensional potential flow past a sphere. However, when the viscous flow past rigid bodies is taught, the three-dimensional example of a sphere is first introduced, and followed by (but not often), the two-dimensional viscous flow past a cylinder. The reason why viscous flow past a cylinder is generally not taught is because it is usually explained from an asymptotic analysis perspective. In fact, this added mathematical complexity is why the drag on a cylinder was only solved in 1911, 60 years after the drag on a sphere. In this note, we show that the viscous flow past a cylinder can be explained without the need to introduce any asymptotic analysis while still capturing all the physical insight of this classic fluid mechanics problem. (paper)
International Nuclear Information System (INIS)
Romero Filho, C.A.
1988-01-01
Using dynamical system theory we investigate homogeneous and isotropic models in Brans-Dicke theory for perfect fluids with general equation of state and arbitrary ω. Phase diagrams are drawn on the Poincare sphere which permits a qualitative analysis of the models. Based on this analysis we construct a method for generating classes of solutions in Brans-Dicke theory. The same technique is used for studying models arising from non-minimal coupling of electromagnetism with gravity. In addition, viscous fluids are considered and non-singular solutions with bulk viscosity are found. (author)
Directory of Open Access Journals (Sweden)
A. V. Rusanov
2016-12-01
Full Text Available The results of numerical investigation of spatial flow of viscous incompressible fluid in flow part of Kaplan turbine PL20 Kremenchug HPP at optimum setting angle of runner blade φb = 15° and at maximum setting angle φb = 35° are shown. The flow simulation has been carried out on basis of numerical integration of the Reynolds equations with an additional term containing artificial compressibility. The differential two-parameter model of Menter (SST has been applied to take into account turbulent effects. Numerical integration of the equations is carried out using an implicit quasi-monotone Godunov type scheme of second - order accuracy in space and time. The calculations have been conducted with the help of the software system IPMFlow. The analysis of fluid flow in the flow part elements is shown and the values of hydraulic losses and local cavitation coefficient have been obtained. Comparison of calculated and experimental results has been carried out.
Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.
1991-01-01
A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.
Directory of Open Access Journals (Sweden)
Erhan Aysan
2012-01-01
Full Text Available Background. Postoperative peritoneal adhesions (PPAs are an unsolved and serious problem in abdominal surgery. Method. Viscous liquids of soybean oil, octyl methoxycinnamate, flax oil, aloe vera gel, and glycerol were used in five experiments, using the same methodology for each. Liquids were applied in the peritoneal cavity before and after mechanical peritoneal trauma. Results were evaluated by multivariate analysis. Results. Compared with the control group, macroscopic and microscopic adhesion values before (P<.001 and after (P<.05 application of viscous liquids significantly reduced PPAs. Values were significantly lower when liquids were applied before rather than after peritoneal trauma (P<.0001. Discussion. Viscous liquids injected into the peritoneal cavity before or after mechanical peritoneal trauma decrease PPA. Injection before trauma was more effective than after trauma. In surgical practice, PPA formation may be prevented or decreased by covering the peritoneal cavity with an appropriate viscous liquid before abdominal surgery.
Directory of Open Access Journals (Sweden)
Q Joyce Han
Full Text Available Right ventricular (RV function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH. The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI to derive RV kinetic energy (KE work density and energy loss in the pulmonary artery (PA to better characterize RV work in PAH patients.4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA.PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007 as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001 throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction.This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.
Han, Q Joyce; Witschey, Walter R T; Fang-Yen, Christopher M; Arkles, Jeffrey S; Barker, Alex J; Forfia, Paul R; Han, Yuchi
2015-01-01
Right ventricular (RV) function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH). The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI) to derive RV kinetic energy (KE) work density and energy loss in the pulmonary artery (PA) to better characterize RV work in PAH patients. 4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA. PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007) as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001) throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction. This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.
International Nuclear Information System (INIS)
Zhang, X.Y.; Yuan, Z.Z.; Li, D.X.
2014-01-01
Highlights: • Stress–strain behaviors of the BMGCs are strain rate and temperature dependent. • Micro-crystals are compressed to concave polygon in shape and align in line. • Nano-crystals nuclear and aggregate during high temperature deformation. • Deformation behavior is governed by homogeneous flow of the amorphous matrix. - Abstract: The high temperature compression behavior of Cu 40 Zr 44 Ag 8 Al 8 rods with 6 mm in diameter was investigated and compared with the literature data. Microstructure of the as-cast rods were characterized by X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscope in the composites state with microscale Al 3 Zr particles embedded in the amorphous matrix. Deformation results show that the stress–strain behaviors of the bulk metallic glass composites (BMGCs) are strain rate and temperature dependent. In addition, SEM observations reveal that the initially spherical and randomly distributed microscale particles in the amorphous matrix deform to concave polygon in shape and align perpendicular to the load direction during the compression. Meanwhile nano-crystals precipitate continuously from the matrix and aggregate during deformation. Rheological analysis show that the BMGCs exhibit a transition from Newtonian to non-Newtonian in flow behavior dependent on the stain rate. Particles in the amorphous matrix have reinforcement effect on the BMGCs, but the deformation behavior is still dominated by the homogeneous flow of the amorphous matrix phase
Mahanthesh, B.; Gireesha, B. J.
2018-03-01
The impact of Marangoni convection on dusty Casson fluid boundary layer flow with Joule heating and viscous dissipation aspects is addressed. The surface tension is assumed to vary linearly with temperature. Physical aspects of magnetohydrodynamics and thermal radiation are also accounted. The governing problem is modelled under boundary layer approximations for fluid phase and dust particle phase and then Runge-Kutta-Fehlberg method based numeric solutions are established. The momentum and heat transport mechanisms are focused on the result of distinct governing parameters. The Nusselt number is also calculated. It is established that the rate of heat transfer can be enhanced by suspending dust particles in the base fluid. The temperature field of fluid phase and temperature of dust phase are quite reverse for thermal dust parameter. The radiative heat, viscous dissipation and Joule heating aspects are constructive for thermal fields of fluid and dust phases. The velocity of dusty Casson fluid dominates the velocity of dusty fluid while this trend is opposite in the case of temperature. Moreover qualitative behaviour of fluid phase and dust phase temperature/velocity are similar.
Gnaneswara Reddy, Machireddy
2017-12-01
The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.
Directory of Open Access Journals (Sweden)
M.C. Raju
2015-03-01
Full Text Available A theoretical analysis is performed to study induced magnetic field effects on free convection flow past a vertical plate. The x¯-axis is taken vertically upwards along the plate, y¯-axis normal to the plate into the fluid region. It is assumed that the plate is electrically non-conducting and the applied magnetic field is of uniform strength (H0 and perpendicular to the plate. The magnetic Reynolds number of the flow is not taken to be small enough so that the induced magnetic field is taken into account. The coupled nonlinear partial differential equations are solved by Perturbation technique and the effects of various physical parameters on velocity, temperature, and induced magnetic fields are studied through graphs and tables. Variations in Skin friction and rate of heat transfer are also studied. It is observed that an increase in magnetic parameter decreases the velocity for both water and air. It is also seen that there is a fall in induced magnetic field as magnetic Prandtl number, and magnetic field parameter increase.
Sheng, Jian; Malkiel, Edwin; Katz, Joseph
2006-11-01
Digital Holographic Microscopy is implemented to perform 3D velocity measurement in the near-wall region of a turbulent boundary layer in a square channel over a smooth wall at Reτ=1,400. The measurements are performed at a resolution of ˜1μm over a sample volume of 1.5x2x1.5mm (x^+=50, y^+=60, z^+=50), sufficient for resolving buffer layer structures and for measuring the instantaneous wall shear stress distributions from velocity gradients in the sublayer. The data provides detailed statistics on the spatial distribution of both wall shear stress components along with the characteristic flow structures, including streamwise counter-rotating vortex pairs, multiple streamwise vortices, and rare hairpins. Conditional sampling identifies characteristic length scales of 70 wall units in spanwise and 10 wall units in wall-normal direction. In the region of high stress, the conditionally averaged flow consists of a stagnation-like sweeping motion induced by a counter rotating pair of streamwise vortices. Regions with low stress are associated with ejection motion, also generated by pairs of counter-rotating vortices. Statistics on the local strain and geometric alignment between strain and vorticity shows that the high shear generating vortices are inclined at 45 to streamwise direction, indicating that vortices are being stretched. Results of on-going analysis examines statistics of helicity, strain and impacts of near-wall structures.
Directory of Open Access Journals (Sweden)
Khilap Singh
2016-01-01
Full Text Available A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.
Directory of Open Access Journals (Sweden)
Prasad Ramachandra V.
2007-01-01
Full Text Available An unsteady, two-dimensional, hydromagnetic, laminar free convective boundary-layer flow of an incompressible, Newtonian, electrically-conducting and radiating fluid past an infinite heated vertical porous plate with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer and tabulated results for the skin-friction coefficient, Nusselt number and Sherwood number are presented and discussed. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer, whereas when thermal and solutal Grashof increases the velocity increases.
Directory of Open Access Journals (Sweden)
Aftab Ahmed
2018-01-01
Full Text Available The aim of the present study is to investigate the combined effects of the thermal radiation, viscous dissipation, suction/injection and internal heat generation/absorption on the boundary layer flow of a non-Newtonian power law fluid over a semi infinite permeable flat plate moving in parallel or reversely to a free stream. The resulting system of partial differential equations (PDEs is first transformed into a system of coupled nonlinear ordinary differential equations (ODEs which are then solved numerically by using the shooting technique. It is found that the dual solutions exist when the flat plate and the free stream move in the opposite directions. Dimensionless boundary layer velocity and temperature distributions are plotted and discussed for various values of the emerging physical parameters. Finally, the tables of the relevant boundary derivatives are presented for some values of the governing physical parameters.
Analysis of a system modelling the motion of a piston in a viscous gas
Maity, Debayan; Takahashi, Takéo; Tucsnak, Marius
2017-09-01
We study a free boundary problem modelling the motion of a piston in a viscous gas. The gas-piston system fills a cylinder with fixed extremities, which possibly allow gas from the exterior to penetrate inside the cylinder. The gas is modeled by the 1D compressible Navier-Stokes system and the piston motion is described by the second Newton's law. We prove the existence and uniqueness of global in time strong solutions. The main novelty brought in by our results is that they include the case of nonhomogeneous boundary conditions which, as far as we know, have not been studied in this context. Moreover, even for homogeneous boundary conditions, our results require less regularity of the initial data than those obtained in previous works.
A prediction of 3-D viscous flow and performance of the NASA Low-Speed Centrifugal Compressor
Moore, John; Moore, Joan G.
1990-01-01
A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modeling. Recommendations are made for future flow studies in the NASA impeller.
Manipulation of viscous fingering in a radially tapered cell geometry
Bongrand, Grégoire; Tsai, Peichun Amy
2018-06-01
When a more mobile fluid displaces another immiscible one in a porous medium, viscous fingering propagates with a partial sweep, which hinders oil recovery and soil remedy. We experimentally investigate the feasibility of tuning such fingering propagation in a nonuniform narrow passage with a radial injection, which is widely used in various applications. We show that a radially converging cell can suppress the common viscous fingering observed in a uniform passage, and a full sweep of the displaced fluid is then achieved. The injection flow rate Q can be further exploited to manipulate the viscous fingering instability. For a fixed gap gradient α , our experimental results show a full sweep at a small Q but partial displacement with fingering at a sufficient Q . Finally, by varying α , we identify and characterize the variation of the critical threshold between stable and unstable displacements. Our experimental results reveal good agreement with theoretical predictions by a linear stability analysis.
Long-wave analysis and control of the viscous Rayleigh-Taylor instability with electric fields
Cimpeanu, Radu; Anderson, Thomas; Petropoulos, Peter; Papageorgiou, Demetrios
2016-11-01
We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a solid surface in the presence of a horizontally acting electric field. The competition between gravity, surface tension and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semi-spectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations and assess the accuracy of the obtained solutions when varying the electric field strength from zero up to the point when complete stabilization at the target finite wavelengths occurs. We employ DNS to examine the limitations of the asymptotically derived behavior in the context of increasing liquid film heights, with agreement found to be excellent even beyond the target lengthscales. Regimes in which the thin film assumption is no longer valid and droplet pinch-off occurs are then analyzed. Finally, the asymptotic and computational approaches are used in conjunction to identify efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.
Energy Technology Data Exchange (ETDEWEB)
Kirtley, K.R.
1988-10-01
A new coupled parabolic-marching method was developed to solve the three-dimensional incompressible Navier-Stokes equation for turbulent turbomachinery flows. Earlier space-marching methods were analyzed to determine their global stability during multiple passes of the computational domain. The methods were found to be unconditionally unstable even when an extra equation for the pressure, namely the Poisson equation for the pressure, was used between passes of the domain. Relaxation of one constraint during the solution process was found to be necessary for the successful calculation of a complex flow.Thus, the method of pseudocompressibility was introduced into the partially parabolized Navier-Stokes equation to relax the mass flow constraint during a forward-marching integration as well as globally stable during successive passes of the domain. With consistent discretization, the new method was found to be convergent.
Low-Reynolds number flow of a viscous fluid in a channel partially filled with a porous medium
International Nuclear Information System (INIS)
Deng, C.; Martinez, D.M.
2003-01-01
Steady flow inside a rectangular channel with wall suction and partially filled with a porous material is examined. We solve the Navier-Stokes equations in the clear fluid region of the channel and the Brinkman extended Darcy's law in the porous material. The stress jump conditions outlined by Ochoa-Tapia and Whitaker are employed at the interface between these two regions. Ochoa-Tapia and Whitaker's conditions contain an empirical constant β which is unknown a priori. In this work we propose a method to estimate β. To do so, we solve for the flow field using two different approaches. In the first approach, the flow is assumed to be of similarity form and a new asymmetric solution is reported; β is retained in this formulation. In the second approach, we re-pose the equations of motion over the entire domain by considering the porous medium as a sink-term (which can be turned on and off); β is not required in this formulation. We estimate the value of β by comparing the resulting flow fields. (author)
Subcubic Control Flow Analysis Algorithms
DEFF Research Database (Denmark)
Midtgaard, Jan; Van Horn, David
We give the first direct subcubic algorithm for performing control flow analysis of higher-order functional programs. Despite the long held belief that inclusion-based flow analysis could not surpass the ``cubic bottleneck, '' we apply known set compression techniques to obtain an algorithm...... that runs in time O(n^3/log n) on a unit cost random-access memory model machine. Moreover, we refine the initial flow analysis into two more precise analyses incorporating notions of reachability. We give subcubic algorithms for these more precise analyses and relate them to an existing analysis from...
Microfluidic System Simulation Including the Electro-Viscous Effect
Rojas, Eileen; Chen, C. P.; Majumdar, Alok
2007-01-01
This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.
Directory of Open Access Journals (Sweden)
Zhentao Wang
2014-07-01
Full Text Available A model based on the volume of fluid (VOF method and leaky dielectric theory is established to predict the deformation and internal flow of the droplet suspended in another vicious fluid under the influence of the electric field. Through coupling with hydrodynamics and electrostatics, the rate of deformation and internal flow of the single droplet are simulated and obtained under the different operating parameters. The calculated results show that the direction of deformation and internal flow depends on the physical properties of fluids. The numerical results are compared with Taylor's theory and experimental results by Torza et al. When the rate of deformation is small, the numerical results are consistent with theory and experimental results, and when the rate is large the numerical results are consistent with experimental results but are different from Taylor's theory. In addition, fluid viscosity hardly affects the deformation rate and mainly dominates the deformation velocity. For high viscosity droplet spends more time to attain the steady state. The conductivity ratio and permittivity ratio of two different liquids affect the direction of deformation. When fluid electric properties change, the charge distribution at the interface is various, which leads to the droplet different deformation shapes.
Information Flow Analysis for VHDL
DEFF Research Database (Denmark)
Tolstrup, Terkel Kristian; Nielson, Flemming; Nielson, Hanne Riis
2005-01-01
We describe a fragment of the hardware description language VHDL that is suitable for implementing the Advanced Encryption Standard algorithm. We then define an Information Flow analysis as required by the international standard Common Criteria. The goal of the analysis is to identify the entire...... information flow through the VHDL program. The result of the analysis is presented as a non-transitive directed graph that connects those nodes (representing either variables or signals) where an information flow might occur. We compare our approach to that of Kemmerer and conclude that our approach yields...
Analysis on the Viscous Pumping in a Magnetic Fluid Seal Under a Rotating Load and the Seal Design
長屋, 幸助; 大沼, 浩身; 佐藤, 淳
1990-01-01
This paper discusses effects of viscous pumping in a magnetic fluid seal under a rotating load. The Reynolds equation was presented for the seal based on magnetic fluid mechanics, and the expressions for obtaining pressures in the seal, eccentricities of the rotating shaft due to the viscous pumping and seal pressures were given. Numerical Calculations were carried out for some sample problems, and the effect of magnetic flux densities on the pressure in the seal and the seal pressures were c...
Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed
2018-04-01
Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.
DEFF Research Database (Denmark)
Hansen, Elo Harald
1998-01-01
Learning objectives:* To provide an introduction to automated assays* To describe the basic principles of FIA * To demonstrate the capabilities of FIA in relation to batch assays and conventional continuous flow systems* To show that FIA allows one to augment existing analytical techniques* To sh...... how FIA offers novel analytical procedures which are not feasible by conventional means* To hightlight the potentials of FIA in selected practical assays...
Quasiadiabatic modes from viscous inhomogeneities
Giovannini, Massimo
2016-04-20
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...
Laminar flow and convective transport processes scaling principles and asymptotic analysis
Brenner, Howard
1992-01-01
Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat
International Nuclear Information System (INIS)
Curi, Marcos Filardy
2011-01-01
In view of the problem of global warming and the search for clean energy sources, a worldwide expansion on the use of nuclear energy is foreseen. Thus, the development of science and technology regarding nuclear power plants is essential, in particular in the field of reactor engineering. Fluid mechanics and heat transfer play an important role in the development of nuclear reactors. Computational Fluid Mechanics (CFD) is becoming ever more important in the optimization of cost and safety of the designs. This work presents a stabilized second-order time accurate finite element formulation for incompressible flows with heat transfer. A second order time discretization precedes a spatial discretization using finite elements. The terms that stabilize the finite element method arise naturally from the discretization process, rather than being introduced a priori in the variational formulation. The method was implemented in the program 'ns n ew s olvec2d av 2 M PI' written in FORTRAN90, developed in the Parallel Computing Laboratory at the Institute of Nuclear Engineering (LCP/IEN). Numerical solutions of some representative examples, including free, mixed and forced convection, demonstrate that the proposed stabilized formulation attains very good agreement with experimental and computational results available in the literature. (author)
Directory of Open Access Journals (Sweden)
A.A. Boroujerdi
2015-12-01
Full Text Available In this paper, new relations for calculating heat transfer and pressure drop characteristics of oscillatory flow through wire-mesh screen regenerator such as Darcy permeability, Forchheimer’s inertial coefficient, and heat transfer area per unit volume, as a function of the wire diameter are presented. According to the derived relations, thinner wires have higher pressure drop and higher heat transfer rate. The relations are applicable for all regenerative cryocoolers. Embedding the new relations into a numerical model, three Stirling-type orifice pulse tube cryocoolers with three regenerators different in length and diameter but same volume in a variety of wire diameters, have been modeled. The results achieved by the model reveal that the local heat transfer coefficient decreases with increase of the wire diameter and the length-to-diameter ratio. In addition, it was shown that the mean absolute gas–solid wire temperature difference is a linear function of wire diameter in the range investigated. The results show that for larger length-to-diameter ratios, Forchheimer’s effect will dominate frictional losses, and the variations of the frictional losses are proportional to the inverse of the wire diameter. Wire diameter has been optimized to maximize the coefficient of performance of the cryocooler. Shorter regenerators have thinner optimum wires.
Flows method in global analysis
International Nuclear Information System (INIS)
Duong Minh Duc.
1994-12-01
We study the gradient flows method for W r,p (M,N) where M and N are Riemannian manifold and r may be less than m/p. We localize some global analysis problem by constructing gradient flows which only change the value of any u in W r,p (M,N) in a local chart of M. (author). 24 refs
Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial slip at
Directory of Open Access Journals (Sweden)
Swati Mukhopadhyay
2013-12-01
Full Text Available The boundary layer flow of a viscous incompressible fluid toward a porous nonlinearly stretching sheet is considered in this analysis. Velocity slip is considered instead of no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equation corresponding to the momentum equation into nonlinear ordinary differential equation. Numerical solution of this equation is obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter.
Physical hydrodynamic propulsion model study on creeping viscous
Indian Academy of Sciences (India)
The present investigation focusses on a mathematical study of creeping viscous flow induced by metachronal wave propagation in a horizontal ciliated tube containing porous media. Creeping flow limitations are imposed, i.e. inertial forces are small compared to viscous forces and therefore a very low Reynolds number (Re ...
Viscous fingering with permeability heterogeneity
International Nuclear Information System (INIS)
Tan, C.; Homsy, G.M.
1992-01-01
Viscous fingering in miscible displacements in the presence of permeability heterogeneities is studied using two-dimensional simulations. The heterogeneities are modeled as stationary random functions of space with finite correlation scale. Both the variance and scale of the heterogeneities are varied over modest ranges. It is found that the fingered zone grows linearly in time in a fashion analogous to that found in homogeneous media by Tan and Homsy [Phys. Fluids 31, 1330 (1988)], indicating a close coupling between viscous fingering on the one hand and flow through preferentially more permeable paths on the other. The growth rate of the mixing zone increases monotonically with the variance of the heterogeneity, as expected, but shows a maximum as the correlation scale is varied. The latter is explained as a ''resonance'' between the natural scale of fingers in homogeneous media and the correlation scale
Viscous entrainment on hairy surfaces
Nasto, Alice; Brun, P.-T.; Hosoi, A. E.
2018-02-01
Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.
Numerical analysis of viscous effect on ship rolling motions based on CFD
Directory of Open Access Journals (Sweden)
LUO Tian
2017-03-01
Full Text Available During the ship design procedure, the analysis of ship rolling motions is of great significance because the rolling motions have extraordinary effects on the sea-keeping, maneuverability and stability of a ship. It is difficult to simulate rolling motions due to the effect of viscosity, which causes many nonlinear components in computation. As such, the potential theory used for other ship motions cannot be used for rolling motions. This paper simulates the rolling motions of the DTMB 5512 ship model and the ship transverse section of the S60 ship model with a naoe-FOAM-SJTU solver using the Reynolds Averaged Navier Stokes(RANSmethod based on the OpenFOAM. The results of rolling motions are compared with the experimental data, which confirms the reliability of the meshes and results. For the ship transverse section of the S60 ship model, the damping coefficient is divided into three parts with the Euler and RANS methods:friction, vorticity and wave parts. For the DTMB 5512 ship model, the damping coefficient is also respectively analyzed, including the friction, vorticity, wave and bilge keel parts. The results in this paper show that the vorticity part accounts for the greatest proportion, while the friction part accounts for the least, and the bilge keels reduces the damping moment to a certain extent which shows the effect of rolling parameters on rolling motions and moments.
International Nuclear Information System (INIS)
Moreno, A.
1977-01-01
A new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (author)
International Nuclear Information System (INIS)
Moreno, A.
1977-01-01
In this work a new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (Author) 91 refs
Buck Creek River Flow Analysis
Dhanapala, Yasas; George, Elizabeth; Ritter, John
2009-04-01
Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.
Kuiken, H.K.
1990-01-01
A boundary-element method is applied to solve the equations describing the deformation of a two-dimensional liquid region under the influence of gradients of the curvature of its outer boundary. This research is motivated by a desire to obtain a better understanding of viscous sintering processes in
Flow analysis of HANARO flow simulated test facility
International Nuclear Information System (INIS)
Park, Yong-Chul; Cho, Yeong-Garp; Wu, Jong-Sub; Jun, Byung-Jin
2002-01-01
The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial critical in February, 1995. Many experiments should be safely performed to activate the utilization of the NANARO. A flow simulated test facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate core channels. This test facility must simulate similar flow characteristics to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the test facility. The computational flow analysis has been performed for the verification of flow structure and similarity of this test facility assuming that flow rates and pressure differences of the core channel are constant. The shapes of flow orifices were determined by the trial and error method based on the design requirements of core channel. The computer analysis program with standard k - ε turbulence model was applied to three-dimensional analysis. The results of flow simulation showed a similar flow characteristic with that of the HANARO and satisfied the design requirements of this test facility. The shape of flow orifices used in this numerical simulation can be adapted for manufacturing requirements. The flow rate and the pressure difference through core channel proved by this simulation can be used as the design requirements of the flow system. The analysis results will be verified with the results of the flow test after construction of the flow system. (author)
International Nuclear Information System (INIS)
Muto, Takayuki; Inutsuka, Shu-ichiro
2009-01-01
We investigate the effects of viscosity on disk-planet interaction and discuss how type I migration of planets is modified. We have performed a linear calculation using shearing-sheet approximation and obtained the detailed, high-resolution density structure around the planet embedded in a viscous disk with a wide range of viscous coefficients. We use a time-dependent formalism that is useful in investigating the effects of various physical processes on disk-planet interaction. We find that the density structure in the vicinity of the planet is modified and the main contribution to the torque comes from this region, in contrast to the inviscid case. Although it is not possible to derive total torque acting on the planet within the shearing-sheet approximation, the one-sided torque can be very different from the inviscid case, depending on the Reynolds number. This effect has been neglected so far but our results indicate that the interaction between a viscous disk and a planet can be qualitatively different from an inviscid case and the details of the density structure in the vicinity of the planet are critically important.
Renormalization group approach to causal bulk viscous cosmological models
International Nuclear Information System (INIS)
Belinchon, J A; Harko, T; Mak, M K
2002-01-01
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor
Using Crossflow for Flow Measurements and Flow Analysis
Energy Technology Data Exchange (ETDEWEB)
Gurevich, A.; Chudnovsky, L.; Lopeza, A. [Advanced Measurement and Analysis Group Inc., Ontario (Canada); Park, M. H. [Sungjin Nuclear Engineering Co., Ltd., Gyeongju (Korea, Republic of)
2016-10-15
Ultrasonic Cross Correlation Flow Measurements are based on a flow measurement method that is based on measuring the transport time of turbulent structures. The cross correlation flow meter CROSSFLOW is designed and manufactured by Advanced Measurement and Analysis Group Inc. (AMAG), and is used around the world for various flow measurements. Particularly, CROSSFLOW has been used for boiler feedwater flow measurements, including Measurement Uncertainty Recovery (MUR) reactor power uprate in 14 nuclear reactors in the United States and in Europe. More than 100 CROSSFLOW transducers are currently installed in CANDU reactors around the world, including Wolsung NPP in Korea, for flow verification in ShutDown System (SDS) channels. Other CROSSFLOW applications include reactor coolant gross flow measurements, reactor channel flow measurements in all channels in CANDU reactors, boiler blowdown flow measurement, and service water flow measurement. Cross correlation flow measurement is a robust ultrasonic flow measurement tool used in nuclear power plants around the world for various applications. Mathematical modeling of the CROSSFLOW agrees well with laboratory test results and can be used as a tool in determining the effect of flow conditions on CROSSFLOW output and on designing and optimizing laboratory testing, in order to ensure traceability of field flow measurements to laboratory testing within desirable uncertainty.
Electrokinetic Control of Viscous Fingering
Mirzadeh, Mohammad; Bazant, Martin Z.
2017-10-01
We present a theory of the interfacial stability of two immiscible electrolytes under the coupled action of pressure gradients and electric fields in a Hele-Shaw cell or porous medium. Mathematically, our theory describes a phenomenon of "vector Laplacian growth," in which the interface moves in response to the gradient of a vector-valued potential function through a generalized mobility tensor. Physically, we extend the classical Saffman-Taylor problem to electrolytes by incorporating electrokinetic (EK) phenomena. A surprising prediction is that viscous fingering can be controlled by varying the injection ratio of electric current to flow rate. Beyond a critical injection ratio, stability depends only upon the relative direction of flow and current, regardless of the viscosity ratio. Possible applications include porous materials processing, electrically enhanced oil recovery, and EK remediation of contaminated soils.
Impact of ultra-viscous drops: air-film gliding and extreme wetting
Langley, Kenneth; Li, Erqiang; Thoroddsen, Sigurdur T
2017-01-01
water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a
Simulations of the Yawed MEXICO Rotor Using a Viscous-Inviscid Panel Method
DEFF Research Database (Denmark)
Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong
2014-01-01
In the present work the viscous-inviscid interactive model MIRAS is used to simulate flows past the MEXICO rotor in yawed conditions. The solver is based on an unsteady three-dimensional free wake panel method which uses a strong viscous-inviscid interaction technique to account for the viscous...
DEFF Research Database (Denmark)
Dyre, Jeppe
1999-01-01
Recent NMR experiments on supercooled toluene and glycerol by Hinze and Böhmer show that small rotation angles dominate with only a few large molecular rotations. These results are here interpreted by assuming that viscous liquids are solidlike on short length scales. A characteristic length...
Viscous Design of TCA Configuration
Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.
1999-01-01
The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.
PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment
Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.
1999-01-01
This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.
Equivalent viscous damping procedure for multi-material systems
International Nuclear Information System (INIS)
Ahmed, H.; Ma, D.
1979-01-01
The inclusion of accurate viscous damping effects in the seismic analysis of nuclear power plants is discussed. A procedure to evaluate and use equivalent viscous damping coefficients in conjunction with the substructure method of finite element analysis is outlined in detail
Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A
2018-03-01
Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.
Directory of Open Access Journals (Sweden)
T. M. Ajayi
2017-01-01
Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.
International Nuclear Information System (INIS)
Lu Li; Yang Yiren
2009-01-01
The responses and limit cycle flutter of a plate-type structure with cubic stiffness in viscous flow were studied. The continuous system was dispersed by utilizing Galerkin Method. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The coupled map of flutter amplitude-equivalent linear stiffness-critical velocity was used to analyze the stability of limit cycle flutter. The theoretical results agree well with the results of numerical integration, which indicates that the equivalent linearization concept is available to the analysis of limit cycle flutter of plate-type structure. (authors)
Multifractal Analysis for the Teichmueller Flow
Energy Technology Data Exchange (ETDEWEB)
Meson, Alejandro M., E-mail: meson@iflysib.unlp.edu.ar; Vericat, Fernando, E-mail: vericat@iflysib.unlp.edu.ar [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB) CCT-CONICET, La Plata-UNLP and Grupo de Aplicaciones Matematicas y Estadisticas de la Facultad de Ingenieria (GAMEFI) UNLP (Argentina)
2012-03-15
We present a multifractal description for Teichmueller flows. A key ingredient to do this is the Rauzy-Veech-Zorich reduction theory, which allows to treat the problem in the setting of suspension flows over subshifts. To perform the multifractal analysis we implement a thermodynamic formalism for suspension flows over countable alphabet subshifts a bit different from that developed by Barreira and Iommi.
Energy Technology Data Exchange (ETDEWEB)
Etienne, St.
1999-09-01
To compute the viscous flow around flexible circular cylinders arrays, a numerical model has been set up so solve the Reynolds averaged Navier-Stokes equations (RANSE). A domain decomposition method has been chosen to ensure the great flexibility of structures in the fluid domain. It consists in solving the RANS equations in a Eulerian way near the bodies and in a Lagrangian way in the wake(s). Then, we concentrate calculations in interest areas and we avoid mesh distortions. The resolution in the turbulent regime has been realized with k - {omega} and k - {epsilon} models. Compared with experiments, mix k - {omega} and k - {epsilon} models give the best results. Applications concern with the modeling of shielding and vortex-induced vibrations (VIV) phenomena in arrays of flexible cylinders. Results are validated by comparisons with experimental data. (authors)
Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator
Kyoungjin Kim
2011-01-01
Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while ...
Energy Technology Data Exchange (ETDEWEB)
Richard C. Martineau; Ray A. Berry
2003-04-01
A new semi-implicit pressure-based Computational Fluid Dynamics (CFD) scheme for simulating a wide range of transient and steady, inviscid and viscous compressible flow on unstructured finite elements is presented here. This new CFD scheme, termed the PCICEFEM (Pressure-Corrected ICE-Finite Element Method) scheme, is composed of three computational phases, an explicit predictor, an elliptic pressure Poisson solution, and a semiimplicit pressure-correction of the flow variables. The PCICE-FEM scheme is capable of second-order temporal accuracy by incorporating a combination of a time-weighted form of the two-step Taylor-Galerkin Finite Element Method scheme as an explicit predictor for the balance of momentum equations and the finite element form of a time-weighted trapezoid rule method for the semi-implicit form of the governing hydrodynamic equations. Second-order spatial accuracy is accomplished by linear unstructured finite element discretization. The PCICE-FEM scheme employs Flux-Corrected Transport as a high-resolution filter for shock capturing. The scheme is capable of simulating flows from the nearly incompressible to the high supersonic flow regimes. The PCICE-FEM scheme represents an advancement in mass-momentum coupled, pressurebased schemes. The governing hydrodynamic equations for this scheme are the conservative form of the balance of momentum equations (Navier-Stokes), mass conservation equation, and total energy equation. An operator splitting process is performed along explicit and implicit operators of the semi-implicit governing equations to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit predictor phase and a semi-implicit pressure-correction phase with the elliptic pressure Poisson solution coupling the predictor-corrector phases. The result of this predictor-corrector formulation is that the pressure Poisson
ANALYSIS AND ACCOUNTING OF TOTAL CASH FLOW
Directory of Open Access Journals (Sweden)
MELANIA ELENA MICULEAC
2012-01-01
Full Text Available In order to reach the objective of supplying some relevant information regarding the liquidity inflows and outflows during a financial exercise, the total cash flow analysis must include the analysis of result cashable from operation, of payments and receipts related to the investment and of financing decisions of the last exercise, as well as the analysis of treasury variation (of cash items. The management of total cash flows ensures the correlation of current liquidness flows as consequence of receipts with the payments ’flows, in order to provide payment continuity of mature obligations.
Buckling and stretching of thin viscous sheets
O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich
2016-11-01
Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.
Simultaneous viscous-inviscid coupling via transpiration
International Nuclear Information System (INIS)
Yiu, K.F.C.; Giles, M.B.
1995-01-01
In viscous-inviscid coupling analysis, the direct coupling technique and the inverse coupling technique are commonly adopted. However, stability and convergence of the algorithms derived are usually very unsatisfactory. Here, by using the transpiration technique to simulate the effect of the displacement thickness, a new simultaneous coupling method is derived. The integral boundary layer equations and the full potential equation are chosen to be the viscous-inviscid coupled system. After discretization, the Newton-Raphson technique is proposed to solve the coupled nonlinear system. Several numerical results are used to demonstrate the accuracy and efficiency of the proposed method. 15 refs., 23 figs
Basic Functional Analysis Puzzles of Spectral Flow
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....
Modular Control Flow Analysis for Libraries
DEFF Research Database (Denmark)
Probst, Christian W.
2002-01-01
One problem in analyzing object oriented languages is that the exact control flow graph is not known statically due to dynamic dispatching. However, this is needed in order to apply the large class of known interprocedural analysis. Control Flow Analysis in the object oriented setting aims...
Content analysis in information flows
Energy Technology Data Exchange (ETDEWEB)
Grusho, Alexander A. [Institute of Informatics Problems of Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Vavilova str., 44/2, Moscow (Russian Federation); Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Grusho, Nick A.; Timonina, Elena E. [Institute of Informatics Problems of Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Vavilova str., 44/2, Moscow (Russian Federation)
2016-06-08
The paper deals with architecture of content recognition system. To analyze the problem the stochastic model of content recognition in information flows was built. We proved that under certain conditions it is possible to solve correctly a part of the problem with probability 1, viewing a finite section of the information flow. That means that good architecture consists of two steps. The first step determines correctly certain subsets of contents, while the second step may demand much more time for true decision.
Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications
Jang, Jaesung; Wereley, Steven
2007-01-01
The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both wal...
Effect of viscous dissipation and radiation in an annular cone
International Nuclear Information System (INIS)
Ahmed, N. J. Salman; Kamangar, Sarfaraz; Khan, T. M. Yunus; Azeem
2016-01-01
The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r_i. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porous medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number
Effect of viscous dissipation and radiation in an annular cone
Energy Technology Data Exchange (ETDEWEB)
Ahmed, N. J. Salman; Kamangar, Sarfaraz [Centre for Energy Sciences, Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Khan, T. M. Yunus, E-mail: yunus.tatagar@gmail.com [Centre for Energy Sciences, Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Dept. of Mechanical Engineering, BVB College of Engineering & Technology, Hubli (India); Azeem [Dept. of Computer System & Technology, University of Malaya, Kuala Lumpur (Malaysia)
2016-06-21
The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r{sub i}. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porous medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number.
Blanck, Harvey F.
2012-01-01
Naturally occurring gravity currents include events such as air flowing through an open front door, a volcanic eruption's pyroclastic flow down a mountainside, and the spread of the Bhopal disaster's methyl isocyanate gas. Gravity currents typically have a small height-to-distance ratio. Plastic models were designed and constructed with a…
International Nuclear Information System (INIS)
Feng Chaojun; Li Xinzhou
2009-01-01
We investigate the viscous Ricci dark energy (RDE) model by assuming that there is bulk viscosity in the linear barotropic fluid and the RDE. In the RDE model without bulk viscosity, the universe is younger than some old objects at certain redshifts. Since the age of the universe should be longer than any objects living in the universe, the RDE model suffers the age problem, especially when we consider the object APM 08279+5255 at z=3.91 with age t=2.1 Gyr. In this Letter, we find that once the viscosity is taken into account, this age problem is alleviated.
Delayed Capillary Breakup of Falling Viscous Jets
Javadi, A.; Eggers, J.; Bonn, D.; Habibi, M.; Ribe, N.M.
2013-01-01
Thin jets of viscous fluid like honey falling from capillary nozzles can attain lengths exceeding 10 m before breaking up into droplets via the Rayleigh-Plateau (surface tension) instability. Using a combination of laboratory experiments and WKB analysis of the growth of shape perturbations on a jet
Robust-mode analysis of hydrodynamic flows
Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.
2017-04-01
The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.
Flow Analysis for the Falkner–Skan Wedge Flow
DEFF Research Database (Denmark)
Bararnia, H; Haghparast, N; Miansari, M
2012-01-01
In this article an analytical technique, namely the homotopy analysis method (HAM), is applied to solve the momentum and energy equations in the case of a two-dimensional incompressible flow passing over a wedge. The trail and error method and Padé approximation strategies have been used to obtai...
Channel flow analysis. [velocity distribution throughout blade flow field
Katsanis, T.
1973-01-01
The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.
Usefulness of DC power flow for active power flow analysis with flow controlling devices
Van Hertem, D.; Verboomen, J.; Purchala, K.; Belmans, R.; Kling, W.L.
2006-01-01
DC power flow is a commonly used tool for contingency analysis. Recently, due to its simplicity and robustness, it also becomes increasingly used for the real-time dispatch and techno-economic analysis of power systems. It is a simplification of a full power flow looking only at active power.
The analysis of exergy and cash flow
International Nuclear Information System (INIS)
Weimin, H.
1989-01-01
The paper presents the analysis of the economic content of exergy parameter and the thermodynamical analogy of the analysis of cash flow, and gives out the reasonable foundations of the analysis of heat economy. The thoughts of optimum design of the combination of heat economic analysis and investment policy are also put forward
Flow Injection Analysis in Industrial Biotechnology
DEFF Research Database (Denmark)
Hansen, Elo Harald; Miró, Manuel
2009-01-01
Flow injection analysis (FIA) is an analytical chemical continuous-flow (CF) method which in contrast to traditional CF-procedures does not rely on complete physical mixing (homogenisation) of the sample and the reagent(s) or on attaining chemical equilibria of the chemical reactions involved. Ex...
Directory of Open Access Journals (Sweden)
M. S. Najiha
2012-12-01
Full Text Available This paper presents a two-dimensional steady-state incompressible analysis for the minimum quantity of lubricant flow in milling operations using a computational fluid dynamics (CFD approach. The analysis of flow and heat transfer in a four-teeth milling cutter operation was undertaken. The domain of the rotating cutter along with the spray nozzle is defined. Operating cutting and boundary conditions are taken from the literature. A steady-state, pressure-based, planar analysis was performed with a viscous, realizable k-ε model. A mixture of oils and air were sprayed on the tool, which is considered to be rotating and is at a temperature near the melting temperature of the workpiece. Flow fields are obtained from the study. The vector plot of the flow field shows that the flow is not evenly distributed over the cutter surface, as well as the uneven distribution of the lubricant in the direction of the cutter rotation. It can be seen that the cutting fluid has not completely penetrated the tool edges. The turbulence created by the cutter rotation in the proximity of the tool throws oil drops out of the cutting zone. The nozzle position in relation to the feed direction is very important in order to obtain the optimum effect of the MQL flow.
Flow analysis techniques for phosphorus: an overview.
Estela, José Manuel; Cerdà, Víctor
2005-04-15
A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.
1978-01-01
The proposed magnetically anchored viscous fluid damper can maintain the Skylab in a gravity-gradient stabilized mode at the anticipated reboost altitudes. The parameters influencing damper performance (and thereby affecting the degree of risk) are: (1) amount of skylab pitch bias in the orbit plane which will result from aerodynamic trim conditions of the post-reboost configuration Skylab; (2) the lowest altitude to which the post-reboost Skylab will be allowed to decay prior to the next rendezvous; (3) maximum allowable weight and size of the proposed damper in order to match shuttle/TRS mission constraints; (4) the amount of magnetic materials expected to be in the vicinity of the damper.
Sudden viscous dissipation in compressing plasma turbulence
Davidovits, Seth; Fisch, Nathaniel
2015-11-01
Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.
Design method for fluid viscous dampers
Energy Technology Data Exchange (ETDEWEB)
Jia, Jiuhong; Hua, Hongxing [Shanghai Jiaotong University, State Key Laboratory of Mechanical System and Vibration, Shanghai (China); Du, Jianye; Wang, Yu [Naval Arming Academy, Institute of Naval Vessels, Beijing (China)
2008-09-15
A basic design method of doubly acting fluid viscous dampers with double guide bars is presented. The flow of the viscoelastic fluid between two parallel plates, one of which is started suddenly and the other of which is still, is analyzed. According to this solution, the velocity and the shear stress of the fluid at the fringe of the piston are solved approximately. A mathematical model of viscous dampers is derived, and the shock test is carried out. From experimental results, the parameters of the mathematical model are determined. Consequently, a semi-empirical design equation is obtained. Applying this equation to a certain practical damper, the damping material is chosen and the physical dimensions of the damper are determined. Shock tests using this damper are performed. Theoretical results are in good agreement with experimental results, which validates the reliability of the calculated physical dimensions of the specimen damper and the validity of the basic design equation. (orig.)
Solidity of viscous liquids. IV. Density fluctuations
DEFF Research Database (Denmark)
Dyre, J. C.
2006-01-01
This paper is the fourth in a series exploring the physical consequences of the solidity of highly viscous liquids. It is argued that the two basic characteristics of a flow event (a jump between two energy minima in configuration space) are the local density change and the sum of all particle...... displacements. Based on this it is proposed that density fluctuations are described by a time-dependent Ginzburg-Landau equation with rates in k space of the form C+Dk^2 with D>>C a^2 where a is the average intermolecular distance. The inequality expresses a long-wavelength dominance of the dynamics which...... with Debye behavior at low frequencies and an omega^{−1/2} decay of the loss at high frequencies. Finally, a general formalism for the description of viscous liquid dynamics, which supplements the density dynamics by including stress fields, a potential energy field, and molecular orientational fields...
Modified and reverse radiometric flow injection analysis
Energy Technology Data Exchange (ETDEWEB)
Myint, U; Ba, H; Khin, M M; Aung, K; Thida, [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science
1994-06-01
Determination of [sup 137]Cs and [sup 60]Co by using modified and reverse radiometric flow injection analysis is described. Two component RFIA was also realized using [sup 60]Co and [sup 137]Cs radionuclides. (author) 2 refs.; 5 figs.
Analysis of stratified flow mixing
International Nuclear Information System (INIS)
Soo, S.L.; Lyczkowski, R.W.
1985-01-01
The Creare 1/5-scale Phase II experiments which model fluid and thermal mixing of relatively cold high pressure injection (HPI) water into a cold leg of a full-scale pressurized water reactor (PWR) having loop flow are analyzed and found that they cannot achieve complete similarity with respect to characteristic Reynolds and Froude numbers and developing hydrodynamic entry length. Several analyses show that these experiments fall into two distinct regimes of mixing: momentum controlled and gravity controlled (stratification). 18 refs., 9 figs
Whole cell quenched flow analysis.
Chiang, Ya-Yu; Haeri, Sina; Gizewski, Carsten; Stewart, Joanna D; Ehrhard, Peter; Shrimpton, John; Janasek, Dirk; West, Jonathan
2013-12-03
This paper describes a microfluidic quenched flow platform for the investigation of ligand-mediated cell surface processes with unprecedented temporal resolution. A roll-slip behavior caused by cell-wall-fluid coupling was documented and acts to minimize the compression and shear stresses experienced by the cell. This feature enables high-velocity (100-400 mm/s) operation without impacting the integrity of the cell membrane. In addition, rotation generates localized convection paths. This cell-driven micromixing effect causes the cell to become rapidly enveloped with ligands to saturate the surface receptors. High-speed imaging of the transport of a Janus particle and fictitious domain numerical simulations were used to predict millisecond-scale biochemical switching times. Dispersion in the incubation channel was characterized by microparticle image velocimetry and minimized by using a horizontal Hele-Shaw velocity profile in combination with vertical hydrodynamic focusing to achieve highly reproducible incubation times (CV = 3.6%). Microfluidic quenched flow was used to investigate the pY1131 autophosphorylation transition in the type I insulin-like growth factor receptor (IGF-1R). This predimerized receptor undergoes autophosphorylation within 100 ms of stimulation. Beyond this demonstration, the extreme temporal resolution can be used to gain new insights into the mechanisms underpinning a tremendous variety of important cell surface events.
Energy Technology Data Exchange (ETDEWEB)
Stephen B. Margolis
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
Flow analysis for efficient design of wavy structured microchannel mixing devices
Kanchan, Mithun; Maniyeri, Ranjith
2018-04-01
Microfluidics is a rapidly growing field of applied research which is strongly driven by demands of bio-technology and medical innovation. Lab-on-chip (LOC) is one such application which deals with integrating bio-laboratory on micro-channel based single fluidic chip. Since fluid flow in such devices is restricted to laminar regime, designing an efficient passive modulator to induce chaotic mixing for such diffusion based flow is a major challenge. In the present work two-dimensional numerical simulation of viscous incompressible flow is carried out using immersed boundary method (IBM) to obtain an efficient design for wavy structured micro-channel mixing devices. The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. IBM uses Eulerian co-ordinates to describe fluid flow and Lagrangian co-ordinates to describe solid boundary. Dirac delta function is used to couple both these co-ordinate variables. A tether forcing term is used to impose the no-slip boundary condition on the wavy structure and fluid interface. Fluid flow analysis by varying Reynolds number is carried out for four wavy structure models and one straight line model. By analyzing fluid accumulation zones and flow velocities, it can be concluded that straight line structure performs better mixing for low Reynolds number and Model 2 for higher Reynolds number. Thus wavy structures can be incorporated in micro-channels to improve mixing efficiency.
Viscous hydrophilic injection matrices for serial crystallography
Directory of Open Access Journals (Sweden)
Gabriela Kovácsová
2017-07-01
Full Text Available Serial (femtosecond crystallography at synchrotron and X-ray free-electron laser (XFEL sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new
Directory of Open Access Journals (Sweden)
A. M. Salem
2013-01-01
Full Text Available A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of magnetohydrodynamic(MHD micropolar fluids with medium molecular weight along a permeable stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction. The governing boundary equations for momentum, angular momentum (microrotation, and energy and mass transfer are transformed to a set of nonlinear ordinary differential equations by using similarity solutions which are then solved numerically by shooting technique. A comparison between the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the problem on velocity, microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One important observation is that for some kinds of mixtures (e.g., H2, air with light and medium molecular weight, the magnetic field and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.
Reticulocyte analysis using flow cytometry.
Corberand, J X
1996-12-01
Automation of the reticulocyte count by means of flow cytometry has considerably improved the quality of this investigation. This article deals firstly with the reasons for the poor performance of the microscopic technique and with the physiological principles underlying identification and classification of reticulocytes using RNA labeling. It then outlines the automated methods currently on the market, which can be classified in three categories: a) "general-purpose" cytofluorometers, which in clinical laboratories usually deal with lymphocyte immunophenotyping; b) the only commercially available cytofluorometer dedicated to the reticulocyte count; this automat has the advantage of requiring no human intervention as it merely needs to be fed with samples; c) hematology analyzers with specific modules for automatic counting of reticulocytes previously incubated with a non-fluorescent dye. Of the various fluorescent markers available, thiazole orange, DEQTC iodide and auramine are most often used for this basic hematology test. The quality of the count, the availability of new reticulocyte indices (maturation index, percentage of young reticulocytes) and rapidity of the count give this test renewed value in the practical approach to the diagnosis of anemia, and also open new perspectives in the surveillance of aplastic anemia after chemotherapy or bone marrow grafting.
Control Flow Analysis for BioAmbients
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis; Priami, C.
2007-01-01
This paper presents a static analysis for investigating properties of biological systems specified in BioAmbients. We exploit the control flow analysis to decode the bindings of variables induced by communications and to build a relation of the ambients that can interact with each other. We...
Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid
Energy Technology Data Exchange (ETDEWEB)
Mohseni, Mehdi Moayed; Rashidi, Fariborz; Movagar, Mohammad Reza Khorsand [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-02-15
Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.
Generic Primary Mechanical Response of Viscous Liquids
Bierwirth, S. Peter; Böhmer, Roland; Gainaru, Catalin
2017-12-01
Four decades ago a seminal review by Jonscher [Nature (London) 267, 673 (1977), 10.1038/267673a0] revealed that the dielectric response of conducting materials is characterized by a "remarkable universality". Demonstrating that the same response pattern is exhibited also by shear rheological spectra of nonpolymeric viscous liquids, the present contribution connects two branches of condensed matter physics: Concepts developed for charge transport can be employed for the description of mass flow and vice versa. Based on the virtual equivalence of the two dynamics a connection is established between microscopic and macroscopic viscoelastic characteristics of liquids, resembling the Barton-Nakajima-Namikawa relation for conductivity.
Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn
2017-12-01
Rock deformation experiments are performed on fault gouge fabricated from 'Maryland Diabase' rock powder to investigate the transition from dominant brittle to dominant viscous behaviour. At the imposed strain rates of γ˙ = 3 ·10-5 - 3 ·10-6 s-1, the transition is observed in the temperature range of (600 °C < T < 800 °C) at confining pressures of (0.5 GPa ≤ Pc ≤ 1.5 GPa). The transition thereby takes place by a switch from brittle fracturing and cataclastic flow to viscous dissolution-precipitation creep and grain boundary sliding. Mineral reactions and resulting grain size refinement by nucleation are observed to be critical processes for the switch to viscous deformation, i.e., grain size sensitive creep. In the transitional regime, the mechanical response of the sample is a mixed-mode between brittle and viscous rheology and microstructures associated with both brittle and viscous deformation are observed. As grain size reduction by reaction and nucleation is a time dependent process, the brittle-viscous transition is not only a function of T but to a large extent also of microstructural evolution.
Optoelectronic iron detectors for pharmaceutical flow analysis.
Rybkowska, Natalia; Koncki, Robert; Strzelak, Kamil
2017-10-25
Compact flow-through optoelectronic detectors fabricated by pairing of light emitting diodes have been applied for development of economic flow analysis systems dedicated for iron ions determination. Three analytical methods with different chromogens selectively recognizing iron ions have been compared. Ferrozine and ferene S based methods offer higher sensitivity and slightly lower detection limits than method with 1,10-phenantroline, but narrower ranges of linear response. Each system allows detection of iron in micromolar range of concentration with comparable sample throughput (20 injections per hour). The developed flow analysis systems have been successfully applied for determination of iron in diet supplements. The utility of developed analytical systems for iron release studies from drug formulations has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Retro-review of flow injection analysis
DEFF Research Database (Denmark)
Ruzicka, Jaromir; Hansen, Elo Harald
2008-01-01
It is indeed unusual for authors to review their own monograph – J. Ruzicka, E.H. Hansen, Flow Injection Analysis, 2nd Edition, Wiley, Chichester, West Sussex, UK, 1988. – and even more so if the book was published 20 years ago. Yet such an exercise might yield a perspective on the progress of an...
Microjet Generator for Highly Viscous Fluids
Onuki, Hajime; Oi, Yuto; Tagawa, Yoshiyuki
2018-01-01
This paper describes a simple system for generating a highly viscous microjet. The jet is produced inside a wettable thin tube partially submerged in a liquid. The gas-liquid interface inside the tube, which is initially concave, is kept much deeper than that outside the tube. An impulsive force applied at the bottom of a liquid container leads to significant acceleration of the liquid inside the tube followed by flow focusing due to the concave interface. The jet generation process can be divided into two parts that occur in different time scales, i.e., the impact interval [impact duration ≤O (10-4) s ] and the focusing interval [focusing duration ≫O (10-4) s ]. During the impact interval, the liquid accelerates suddenly due to the impact. During the focusing interval, the microjet emerges due to flow focusing. In order to explain the sudden acceleration inside the tube during the impact interval, we develop a physical model based on a pressure impulse approach. Numerical simulations confirm the proposed model, indicating that the basic mechanism of the acceleration of the liquid due to the impulsive force is elucidated. Remarkably, the viscous effect is negligible during the impact interval. In contrast, during the focusing interval, the viscosity plays an important role in the microjet generation. We experimentally and numerically investigate the velocity of microjets with various viscosities. We find that higher viscosities lead to reduction of the jet velocity, which can be described by using the Reynolds number (the ratio between the inertia force and the viscous force). This device may be a starting point for next-generation technologies, such as high-viscosity inkjet printers including bioprinters and needle-free injection devices for minimally invasive medical treatments.
Information flow analysis of interactome networks.
Directory of Open Access Journals (Sweden)
Patrycja Vasilyev Missiuro
2009-04-01
Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we
Relic gravitons and viscous cosmologies
International Nuclear Information System (INIS)
Cataldo, Mauricio; Mella, Patricio
2006-01-01
Previously it was shown that there exists a class of viscous cosmological models which violate the dominant energy condition for a limited amount of time after which they are smoothly connected to the ordinary radiation era (which preserves the dominant energy conditions). This violation of the dominant energy condition at an early cosmological epoch may influence the slopes of energy spectra of relic gravitons that might be of experimental relevance. However, the bulk viscosity coefficient of these cosmologies became negative during the ordinary radiation era, and then the entropy of the sources driving the geometry decreases with time. We show that in the presence of viscous sources with a linear barotropic equation of state p=γρ we get viscous cosmological models with positive bulk viscous stress during all their evolution, and hence the matter entropy increases with the expansion time. In other words, in the framework of viscous cosmologies, there exist isotropic models compatible with the standard second law of thermodynamics which also may influence the slopes of energy spectra of relic gravitons
Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications
Jang, Jaesung; Wereley, Steven T.
2007-02-01
The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.
OpenFlow Deployment and Concept Analysis
Directory of Open Access Journals (Sweden)
Tomas Hegr
2013-01-01
Full Text Available Terms such as SDN and OpenFlow (OF are often used in the research and development of data networks. This paper deals with the analysis of the current state of OpenFlow protocol deployment options as it is the only real representative protocol that enables the implementation of Software Defined Networking outside an academic world. There is introduced an insight into the current state of the OpenFlow specification development at various levels is introduced. The possible limitations associated with this concept in conjunction with the latest version (1.3 of the specification published by ONF are also presented. In the conclusion there presented a demonstrative security application addressing the lack of IPv6 support in real network devices since most of today's switches and controllers support only OF v1.0.
Analysis of groundwater flow beneath ice sheets
Energy Technology Data Exchange (ETDEWEB)
Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics
2001-03-01
The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.
Analysis of groundwater flow beneath ice sheets
International Nuclear Information System (INIS)
Boulton, G. S.; Zatsepin, S.; Maillot, B.
2001-03-01
The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix
Computational Analysis of Human Blood Flow
Panta, Yogendra; Marie, Hazel; Harvey, Mark
2009-11-01
Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.
Radiation and viscous dissipation effect on square porous annulus
Energy Technology Data Exchange (ETDEWEB)
Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)
2016-06-08
The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T{sub h} and inside cold T{sub c} temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.
Radiation and viscous dissipation effect on square porous annulus
International Nuclear Information System (INIS)
Badruddin, Irfan Anjum; Quadir, G. A.
2016-01-01
The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T h and inside cold T c temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.
Experimental study of highly viscous impinging jets
Energy Technology Data Exchange (ETDEWEB)
Gomon, M. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering
1998-12-01
The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established.
Experimental study of highly viscous impinging jets
International Nuclear Information System (INIS)
Gomon, M.
1998-12-01
The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established
Numerical flow analysis of axial flow compressor for steady and unsteady flow cases
Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.
2017-07-01
Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.
Deep Packet/Flow Analysis using GPUs
Energy Technology Data Exchange (ETDEWEB)
Gong, Qian [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wu, Wenji [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); DeMar, Phil [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2017-11-12
Deep packet inspection (DPI) faces severe performance challenges in high-speed networks (40/100 GE) as it requires a large amount of raw computing power and high I/O throughputs. Recently, researchers have tentatively used GPUs to address the above issues and boost the performance of DPI. Typically, DPI applications involve highly complex operations in both per-packet and per-flow data level, often in real-time. The parallel architecture of GPUs fits exceptionally well for per-packet network traffic processing. However, for stateful network protocols such as TCP, their data stream need to be reconstructed in a per-flow level to deliver a consistent content analysis. Since the flow-centric operations are naturally antiparallel and often require large memory space for buffering out-of-sequence packets, they can be problematic for GPUs, whose memory is normally limited to several gigabytes. In this work, we present a highly efficient GPU-based deep packet/flow analysis framework. The proposed design includes a purely GPU-implemented flow tracking and TCP stream reassembly. Instead of buffering and waiting for TCP packets to become in sequence, our framework process the packets in batch and uses a deterministic finite automaton (DFA) with prefix-/suffix- tree method to detect patterns across out-of-sequence packets that happen to be located in different batches. In conclusion, evaluation shows that our code can reassemble and forward tens of millions of packets per second and conduct a stateful signature-based deep packet inspection at 55 Gbit/s using an NVIDIA K40 GPU.
Self-consistent viscous heating of rapidly compressed turbulence
Campos, Alejandro; Morgan, Brandon
2017-11-01
Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Dynamics of two coaxial cylindrical shells containing viscous fluid
International Nuclear Information System (INIS)
Yeh, T.T.; Chen, S.S.
1976-09-01
This study was motivated by the need to design the thermal shield in reactor internals and other system components to avoid detrimental flow-induced vibrations. The system component is modeled as two coaxial shells separated by a viscous fluid. In the analysis, Flugge's shell equations of motion and linearized Navier-Stokes equation for viscous fluid are employed. First, a traveling-wave type solution is taken for shells and fluid. Then, from the interface conditions between the shells and fluid, the solution for the fluid medium is expressed in terms of shell displacements. Finally, using the shell equations of motion gives the frequency equation, from which the natural frequency, mode shape, and modal damping ratio of coupled modes can be calculated. The analytical results show a fairly good qualitative agreement with the published experimental data. Some important conclusions are as follows: (1) In computing the natural frequencies and mode shapes of uncoupled modes and coupled modes, the fluid may be considered inviscid and incompressible. (2) There exists out-of-phase and in-phase modes. The lowest natural frequency is always associated with the out-of-phase mode. (3) The lowest natural frequency of coupled modes is lower than the uncoupled modes. (4) The fluid viscosity contributes significantly to damping, in particular, the modal damping of the out-of-phase modes isrelatively large for small gaps. (5) If the fluid gap is small, or the fluid viscosity is relatively high, the simulation of the vibration Reynolds number should be included to ensure that modal damping of the model is properly accounted for. With the presented analysis and results, the frequency and damping characteristics can be analyzed and design parameters can be related to frequency and damping
International Nuclear Information System (INIS)
McCarthy, K.A.; Abdou, M.A.
1991-01-01
A computationally fast and efficient method for analyzing MHD flow at high Hartmann number and interaction parameter is presented and used to analyze a multiple duct geometry. This type of geometry is of practical interest in fusion applications. Because the Hartmann number and interaction parameter are generally large in fusion applications, the inertial and viscous terms in the Navier-Stokes equation can often be neglected in the core flow region, making this equation linear. In addition, because the magnetic fields in a fusion reactor vary slowly and the magnetic Reynolds number is small, the induced magnetic field can be neglected. The resulting equations representing core flow have certain characteristics which make it possible to reduce them to two dimensional without losing the three dimensional characteristics. The method which has been developed is an 'iterative' method. A velocity profile is assumed, then Ohm's law and the current conservation equation are combined and used to solve for the potential distribution in a plane in the fluid, and in a surface in the duct wall. The potential variation along magnetic field lines is checked, and if necessary, the velocities are adjusted. This procedure is repeated until the potentials along field lines vary to within a specified error. The analysis of the multiple duct geometry shows the importance of global effects. The results of two basic cases are presented. In the first, the average velocity in each duct is the same, but the wall conductance ratios of the walls perpendicular to the magnetic field vary from duct to duct. The total pressure drop in the electrically connected ducts was greater than or equal to the total pressure drop in the same ducts electrically isolated. In addition, the velocity profile in the ducts can be significantly affected by the presence of neighboring ducts. (orig./AH)
Temporal instability of viscous liquid microjets with spatially varying surface tension
Energy Technology Data Exchange (ETDEWEB)
Furlani, E P [Integrated Materials and Microstructures Laboratory, Electronic Imaging Products, Eastman Kodak Company, Rochester, NY 14650-2121 (United States)
2005-01-07
A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties.
Temporal instability of viscous liquid microjets with spatially varying surface tension
International Nuclear Information System (INIS)
Furlani, E P
2005-01-01
A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties
Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.
Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P
2015-08-01
Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.
Eldredge, Jeff
2005-11-01
Many biological mechanisms of locomotion involve the interaction of a fluid with a deformable surface undergoing large unsteady motion. Analysis of such problems poses a significant challenge to conventional grid-based computational approaches. Particularly in the moderate Reynolds number regime where many insects and fish function, viscous and inertial processes are both important, and vorticity serves a crucial role. In this work, the viscous vortex particle method is shown to provide an efficient, intuitive simulation approach for investigation of these biological systems. In contrast with a grid-based approach, the method solves the Navier--Stokes equations by tracking computational particles that carry smooth blobs of vorticity and exchange strength with one another to account for viscous diffusion. Thus, computational resources are focused on the physically relevant features of the flow, and there is no need for artificial boundary conditions. Building from previously-developed techniques for the creation of vorticity to enforce no-throughflow and no-slip conditions, the present method is extended to problems of coupled fluid--body dynamics by enforcement of global conservation of momenta. The application to several two-dimensional model problems is demonstrated, including single and multiple flapping wings and free swimming of a three-linkage fish.
Second law analysis of slip velocity on oscillatory MHD flow of ...
African Journals Online (AJOL)
This paper reports the analytical calculation of entropy generation due to unsteady heat and mass transfer flow of an incompressible, electrically conducting, and viscous fluid past an infinite vertical porous plate along with porous medium of time dependent permeability with radiative heat transfer and variable suction.
Daripa, Prabir
2011-11-01
We numerically investigate the optimal viscous profile in constant time injection policy of enhanced oil recovery. In particular, we investigate the effect of a combination of interfacial and layer instabilities in three-layer porous media flow on the overall growth of instabilities and thereby characterize the optimal viscous profile. Results based on monotonic and non-monotonic viscous profiles will be presented. Time permitting. we will also present results on multi-layer porous media flows for Newtonian and non-Newtonian fluids and compare the results. The support of Qatar National Fund under a QNRF Grant is acknowledged.
Secondary flows and particle centrifugation in slightly tilted rotating pipes
Brouwers, J.J.H.
1995-01-01
A theoretical analysis is presented of viscous incompressible laminar flow in a pipe which rotates around an axis held at small angle with respect to its symmetry-axis. Analogous to the results of Barua and Benton [1, 2], solutions in closed-form are given for circulatory flows in the
IUTAM Symposium on Lubricated Transport of Viscous Materials
1998-01-01
The main objective of the First International Symposium on Lubricated Transport of Viscous Materials was to bring together scientists and engineers from academia and industryto discuss current research work and exchange ideas in this newly emerging field. It is an area offluid dynamics devoted to laying bare the principlesofthe lubricated transport of viscous materials such as crude oil, concentrated oil/water emulsion, slurries and capsules. It encompasses several types of problem. Studies of migration of particulates away from walls, Segre-Silverberg effects, lubrication versus lift and shear-induced migration belong to one category. Some of the technological problems are the fluid dynamics ofcore flows emphasizing studies ofstability, problems of start-up, lift-off and eccentric flow where gravity causes the core flow to stratify. Another category of problems deals with the fouling of pipe walls with oil, with undesirable increases in pressure gradients and even blocking. This study involves subjects like ...
Analysis of magnetohydrodynamic flow in annular duct
International Nuclear Information System (INIS)
Yoo, G.J.; Choi, H.K.; Eun, J.J.
2004-01-01
In various types of reactors, fluid is required to be circulated inside the vessel to be an efficient coolant. For flowing metal coolant the electromagnetic pump can be an efficient device for providing the driving force. Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in an electromagnetic pump. A finite volume method is applied to solve governing equations of magnetic field and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be affected by the phase of applied electric current and the magnitude of the Reynolds number. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The axial velocity distributions are represented with S-type profiles for the case of the r-direction of Lorentz force dominated flows. (authors)
Analysis of anisotropic shells containing flowing fluid
International Nuclear Information System (INIS)
Lakis, A.A.
1983-01-01
A general theory for the dynamic analysis of anisotropic thin cylindrical shells containing flowing fluid is presented. The shell may be uniform or non-uniform, provided it is geometrically axially symmetric. This is a finite- element theory, using cylindrical finite elements, but the displacement functions are determined by using classical shell theory. A new solution of the wave equation of the liquid finite element leads to an expression of the fluid pressure, p, as a function of the nodal displacements of the element and three operative forces (inertia, centrifugal and Coriolis) of the moving fluid. (Author) [pt
Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface
International Nuclear Information System (INIS)
Mukhopadhyay, Swati
2011-01-01
Highlights: ► Unsteady boundary layer flow and heat transfer over a non-isothermal stretching sheet in a magnetic field are studied. ► Fluid velocity and temperature decrease for increasing unsteadiness parameter. ► Fluid velocity decreases but temperature increases with the increasing values of the Hartman number. ► The sheet temperature in respect of distance and time has analogous effects on the heat transfer. - Abstract: An analysis is made for the unsteady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching surface having a variable and general form of surface temperature which removes the restrictions of the particular forms of prescribed surface temperature. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the unsteadiness parameter, magnetic parameter, the temperature exponent parameters. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. It is found that the fluid velocity and temperature decrease for increasing unsteadiness parameter. Fluid velocity decreases with the increasing values of the Hartman number resulting an increase in the temperature field in steady as well in unsteady case. It is observed that the variation of the sheet temperature in respect of distance and time has analogous effects both on the free surface temperature and on the heat transfer rate (Nusselt number) at the sheet.
A study of grout flow pattern analysis
International Nuclear Information System (INIS)
Lee, S. Y.; Hyun, S.
2013-01-01
A new disposal unit, designated as Salt Disposal Unit no. 6 (SDU6), is being designed for support of site accelerated closure goals and salt nuclear waste projections identified in the new Liquid Waste System plan. The unit is cylindrical disposal vault of 380 ft diameter and 43 ft in height, and it has about 30 million gallons of capacity. Primary objective was to develop the computational model and to perform the evaluations for the flow patterns of grout material in SDU6 as function of elevation of grout discharge port, and slurry rheology. A Bingham plastic model was basically used to represent the grout flow behavior. A two-phase modeling approach was taken to achieve the objective. This approach assumes that the air-grout interface determines the shape of the accumulation mound. The results of this study were used to develop the design guidelines for the discharge ports of the Saltstone feed materials in the SDU6 facility. The focusing areas of the modeling study are to estimate the domain size of the grout materials radially spread on the facility floor under the baseline modeling conditions, to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation of discharge port, discharge pipe diameter, and grout properties, and to determine the changes in grout density as it is related to grout drop height. An axi-symmetric two-phase modeling method was used for computational efficiency. Based on the nominal design and operating conditions, a transient computational approach was taken to compute flow fields mainly driven by pumping inertia and natural gravity. Detailed solution methodology and analysis results are discussed here
Periodic folding of viscous sheets
Ribe, Neil M.
2003-09-01
The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.
Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces
Lhermerout, Romain; Perkin, Susan
2018-01-01
Recent reports of surface forces across nanoconfined ionic liquids have revealed the existence of an anomalously long-ranged interaction apparently of electrostatic origin. Ionic liquids are viscous, and therefore it is important to inspect rigorously whether the observed repulsive forces are indeed equilibrium forces or, rather, arise from the viscous force during drainage of the fluid between two confining surfaces. In this paper we present our direct measurements of surface forces between mica sheets approaching in the ionic liquid [C2C1Im ] [NTf2] , exploring three orders of magnitude in approach velocity. Trajectories are systematically fitted by solving the equation of motion, allowing us to disentangle the viscous and equilibrium contributions. First, we find that the drainage obeys classical hydrodynamics with a negative slip boundary condition in the range of the structural force, implying that a nanometer -thick portion of the liquid in the vicinity of the solid surface is composed of ordered molecules that do not contribute to the flow. Second, we show that a long-range static force must indeed be invoked, in addition to the viscous force, in order to describe the data quantitatively. This equilibrium interaction decays exponentially and with decay length in agreement with the screening length reported for the same system in previous studies. In those studies the decay was simply checked to be independent of velocity and measured at a low approach rate, rather than explicitly taking account of viscous effects: we explain why this gives indistinguishable outcomes for the screening length by noting that the viscous force is linear to very good approximation over a wide range of distances.
Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.
Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan
2015-08-27
The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.
Unsaturated Zone Flow Patterns and Analysis
Energy Technology Data Exchange (ETDEWEB)
C. Ahlers
2001-10-17
This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M&O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses
Unsaturated Zone Flow Patterns and Analysis
International Nuclear Information System (INIS)
Ahlers, C.
2001-01-01
This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M and O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M and O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses where conservatism may be
Electrohydrodynamics of a viscous drop with inertia.
Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F
2016-05-01
Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.
Load flow analysis using decoupled fuzzy load flow under critical ...
African Journals Online (AJOL)
user
3.1 Maximum range selection of input and output variables: ..... Wong K. P., Li A., and Law M.Y., “ Advanced Constrained Genetic Algorithm Load Flow Method”, IEE Proc. ... Dr. Parimal Acharjee passed B.E.E. from North Bengal University ...
Computer program for compressible flow network analysis
Wilton, M. E.; Murtaugh, J. P.
1973-01-01
Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.
Computational analysis of the flow field downstream of flow conditioners
Energy Technology Data Exchange (ETDEWEB)
Erdal, Asbjoern
1997-12-31
Technological innovations are essential for maintaining the competitiveness for the gas companies and here metering technology is one important area. This thesis shows that computational fluid dynamic techniques can be a valuable tool for examination of several parameters that may affect the performance of a flow conditioner (FC). Previous design methods, such as screen theory, could not provide fundamental understanding of how a FC works. The thesis shows, among other things, that the flow pattern through a complex geometry, like a 19-hole plate FC, can be simulated with good accuracy by a k-{epsilon} turbulence model. The calculations illuminate how variations in pressure drop, overall porosity, grading of porosity across the cross-section and the number of holes affects the performance of FCs. These questions have been studied experimentally by researchers for a long time. Now an understanding of the important mechanisms behind efficient FCs emerges from the predictions. 179 ref., 110 figs., 8 tabs.
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Sameh E., E-mail: sameh_sci_math@yahoo.com [Department of Mathematics, Faculty of Sciences, South Valley University, Qena (Egypt); Hussein, Ahmed Kadhim, E-mail: ahmedkadhim7474@gmail.com [College of Engineering, Mechanical Engineering Department, Babylon University, Babylon City—Hilla (Iraq); Mohammed, H.A. [Department of Thermofluids, Faculty of Mechanical Engineering, University Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru (Malaysia); Adegun, I.K. [Department of Mechanical Engineering, University of Ilorin, Ilorin (Nigeria); Zhang, Xiaohui [School of Physics Science and Technology, School of Energy—Soochow University, Suzhou 215006, Jiangsu (China); Kolsi, Lioua [Unite de Metrologie en Mecanique des Fluides et Thermique, Ecole Nationale d’Ingenieurs, Monastir (Tunisia); Hasanpour, Arman [Department of Mechanical Engineering, Babol University of Technology, PO Box 484, Babol (Iran, Islamic Republic of); Sivasankaran, S. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur 50603 (Malaysia)
2014-01-15
Highlights: • Ha decelerates the flow field. • Ha enhances conduction. • Magnetic field orientation is important. • Radiation parameter important. • Nu decreases as Ha increases. -- Abstract: Numerical two-dimensional analysis using finite difference approach with “line method” is performed on the laminar magneto-hydrodynamic natural convection in a square enclosure filled with a porous medium to investigate the effects of viscous dissipation and radiation. The enclosure heated from left vertical sidewall and cooled from an opposing right vertical sidewall. The top and bottom walls of the enclosure are considered adiabatic. The flow in the square enclosure is subjected to a uniform magnetic field at various orientation angles (φ = 0°, 30°, 45°, 60° and 90°). Numerical computations occur at wide ranges of Rayleigh number, viscous dissipation parameter, magnetic field orientation angles, Hartmann number and radiation parameter. Numerical results are presented with the aid of tables and graphical illustrations. The results of the present work explain that the local and average Nusselt numbers at the hot and cold sidewalls increase with increasing the radiation parameter. From the other side, the role of viscous dissipation parameter is to reduce the local and average Nusselt numbers at the hot left wall, while it improves them at the cold right wall. The results are compared with another published results and it found to be in a good agreement.
Nonlinear analysis of river flow time sequences
Porporato, Amilcare; Ridolfi, Luca
1997-06-01
Within the field of chaos theory several methods for the analysis of complex dynamical systems have recently been proposed. In light of these ideas we study the dynamics which control the behavior over time of river flow, investigating the existence of a low-dimension deterministic component. The present article follows the research undertaken in the work of Porporato and Ridolfi [1996a] in which some clues as to the existence of chaos were collected. Particular emphasis is given here to the problem of noise and to nonlinear prediction. With regard to the latter, the benefits obtainable by means of the interpolation of the available time series are reported and the remarkable predictive results attained with this nonlinear method are shown.
Flow boiling in microgap channels experiment, visualization and analysis
Alam, Tamanna; Jin, Li-Wen
2013-01-01
Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c
Steady hydromagnetic Couette flow in a rotating system with ...
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology ... Couette flow of class-II of a viscous incompressible electrically conducting fluid in a rotating system ... Heat transfer characteristics of the flow are considered taking viscous and ...
Improving Software Systems By Flow Control Analysis
Directory of Open Access Journals (Sweden)
Piotr Poznanski
2012-01-01
Full Text Available Using agile methods during the implementation of the system that meets mission critical requirements can be a real challenge. The change in the system built of dozens or even hundreds of specialized devices with embedded software requires the cooperation of a large group of engineers. This article presents a solution that supports parallel work of groups of system analysts and software developers. Deployment of formal rules to the requirements written in natural language enables using formal analysis of artifacts being a bridge between software and system requirements. Formalism and textual form of requirements allowed the automatic generation of message ﬂow graph for the (sub system, called the “big-picture-model”. Flow diagram analysis helped to avoid a large number of defects whose repair cost in extreme cases could undermine the legitimacy of agile methods in projects of this scale. Retrospectively, a reduction of technical debt was observed. Continuous analysis of the “big picture model” improves the control of the quality parameters of the software architecture. The article also tries to explain why the commercial platform based on UML modeling language may not be suﬃcient in projects of this complexity.
Hou, T. H.
1985-01-01
High quality long fiber reinforced composites, such as those used in aerospace and industrial applications, are commonly processed in autoclaves. An adequate resin flow model for the entire system (laminate/bleeder/breather), which provides a description of the time-dependent laminate consolidation process, is useful in predicting the loss of resin, heat transfer characteristics, fiber volume fraction and part dimension, etc., under a specified set of processing conditions. This could be accomplished by properly analyzing the flow patterns and pressure profiles inside the laminate during processing. A newly formulated resin flow model for composite prepreg lamination process is reported. This model considers viscous resin flows in both directions perpendicular and parallel to the composite plane. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction, a poiseuille type pressure flow through porous media is assumed. Proper force and mass balances have been made and solved for the whole system. The effects of fiber-fiber interactions during lamination are included as well. The unique features of this analysis are: (1) the pressure gradient inside the laminate is assumed to be generated from squeezing action between two adjacent approaching fiber layers, and (2) the behavior of fiber bundles is simulated by a Finitely Extendable Nonlinear Elastic (FENE) spring.
Linear study of Kelvin-Helmholtz instability for a viscous compressible fluid
International Nuclear Information System (INIS)
Hallo, L.; Gauthier, S.
1992-01-01
The linear phase of the process leading to a developed turbulence is particularly important for the study of flow stability. A Galerkin spectral method adapted to the study of the mixture layer of one fluid is proposed from a sheared initial velocity profile. An algebraic mapping is developed to improve accuracy near high gradient zone. Validation is obtained by analytic methods for non-viscous flow and multi-domain spectral methods for viscous and compressible flow. Rates of growth are presented for subsonic and slightly supersonic flow. An extension of the method is presented for the study of the linear stability of a mixture with variable concentration and transport properties
Shallow water equations: viscous solutions and inviscid limit
Chen, Gui-Qiang; Perepelitsa, Mikhail
2012-12-01
We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.
A Thermodynamically Consistent Approach to Phase-Separating Viscous Fluids
Anders, Denis; Weinberg, Kerstin
2018-04-01
The de-mixing properties of heterogeneous viscous fluids are determined by an interplay of diffusion, surface tension and a superposed velocity field. In this contribution a variational model of the decomposition, based on the Navier-Stokes equations for incompressible laminar flow and the extended Korteweg-Cahn-Hilliard equations, is formulated. An exemplary numerical simulation using C1-continuous finite elements demonstrates the capability of this model to compute phase decomposition and coarsening of the moving fluid.
Technical discussions II - Flow cytometric analysis
Cunningham, A; Cid, A; Buma, AGJ
In this paper the potencial of flow cytometry as applied to the aquatic life sciences is discussed. The use of flow cytometry for studying the ecotoxicology of phytoplankton was introduced. On the other hand, the new flow cytometer EUROPA was presented. This is a multilaser machine which has been
Quantitative blood flow analysis with digital techniques
International Nuclear Information System (INIS)
Forbes, G.
1984-01-01
The general principles of digital techniques in quantitating absolute blood flow during arteriography are described. Results are presented for a phantom constructed to correlate digitally calculated absolute flow with direct flow measurements. The clinical use of digital techniques in cerebrovascular angiography is briefly described. (U.K.)
Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.
2018-02-01
Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.
Spatiotemporal resonances in mixing of open viscous fluids
DEFF Research Database (Denmark)
Okkels, Fridolin; Tabeling, Patrick
2004-01-01
In this Letter, we reveal a new dynamical phenomenon, called "spatiotemporal resonance," which is expected to take place in a broad range of viscous, periodically forced, open systems. The observation originates from a numerical and theoretical analysis of a micromixer, and is supported...
Numerical analysis of hypersonic turbulent film cooling flows
Chen, Y. S.; Chen, C. P.; Wei, H.
1992-01-01
As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.
OPR1000 RCP Flow Coastdown Analysis using SPACE Code
Energy Technology Data Exchange (ETDEWEB)
Lee, Dong-Hyuk; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)
2016-10-15
The Korean nuclear industry developed a thermal-hydraulic analysis code for the safety analysis of PWRs, named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). Current loss of flow transient analysis of OPR1000 uses COAST code to calculate transient RCS(Reactor Coolant System) flow. The COAST code calculates RCS loop flow using pump performance curves and RCP(Reactor Coolant Pump) inertia. In this paper, SPACE code is used to reproduce RCS flowrates calculated by COAST code. The loss of flow transient is transient initiated by reduction of forced reactor coolant circulation. Typical loss of flow transients are complete loss of flow(CLOF) and locked rotor(LR). OPR1000 RCP flow coastdown analysis was performed using SPACE using simplified nodalization. Complete loss of flow(4 RCP trip) was analyzed. The results show good agreement with those from COAST code, which is CE code for calculating RCS flow during loss of flow transients. Through this study, we confirmed that SPACE code can be used instead of COAST code for RCP flow coastdown analysis.
Power flow analysis for DC voltage droop controlled DC microgrids
DEFF Research Database (Denmark)
Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav
2014-01-01
This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification is ca...
Mathematical models of viscous friction
Buttà, Paolo; Marchioro, Carlo
2015-01-01
In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...
Abnormal traffic flow data detection based on wavelet analysis
Directory of Open Access Journals (Sweden)
Xiao Qian
2016-01-01
Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.
Chaviaropoulos, P. K.; Soerensen, N. N.; Hansen, M. O. L.; Nikolaou, I. G.; Aggelis, K. A.; Johansen, J.; Gaunaa, Mac; Hambraus, T.; Frhr. von Geyr, Heiko; Hirsch, Ch.; Shun, Kang; Voutsinas, S. G.; Tzabiras, G.; Perivolaris, Y.; Dyrmose, S. Z.
2003-10-01
The recent introduction of ever larger wind turbines poses new challenges with regard to understanding the mechanisms of unsteady flow-structure interaction. An important aspect of the problem is the aeroelastic stability of the wind turbine blades, especially in the case of combined flap/lead-lag vibrations in the stall regime. Given the limited experimental information available in this field, the use of CFD techniques and state-of-the-art viscous flow solvers provides an invaluable alternative towards the identification of the underlying physics and the development and validation of sound engineering-type aeroelastic models. Navier-Stokes-based aeroelastic stability analysis of individual blade sections subjected to combined pitch/flap or flap/lead-lag motion has been attempted by the present consortium in the framework of the concluded VISCEL JOR3-CT98-0208 Joule III project.
Viscous-shock-layer solutions with coupled radiation and ablation injection for earth entry
Gupta, Roop N.; Lee, Kam-Pui; Moos, James N.; Sutton, Kenneth
1990-01-01
Results are obtained for the forebody of a planetary exploration vehicle entering the earth's atmosphere. A viscous-shock-layer analysis is used assuming the flow to be laminar and in chemical equilibrium. Presented results include coupled radiation and ablation injection. This study further includes the effect of different transport and thermodynamic properties and radiation models. A Lewis number of 1.4 appears adequate for the radiation-dominated flows. Five velocities corresponding to different possible trajectory points at an altitude of 70 km have been further analyzed in detail. Sublimation and radiative equilibrium wall temperatures are employed for cases with and without coupled injection, respectively. For the cases analyzed here, the mass injection rates are small. However, the rates could become large if a lower altitude is used for aerobraking and/or the body size is increased. A comparison of the equilibrium results with finite-rate chemistry calculation shows the flowfield to be in chemical equilibrium.
Boolean logic analysis for flow regime recognition of gas–liquid horizontal flow
International Nuclear Information System (INIS)
Ramskill, Nicholas P; Wang, Mi
2011-01-01
In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air–water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime
Analysis of the three dimensional flow in a turbine scroll
Hamed, A.; Baskharone, E.
1979-01-01
The present analysis describes the three-dimensional compressible inviscid flow in the scroll and the vaneless nozzle of a radial inflow turbine. The solution to this flow field, which is further complicated by the geometrical shape of the boundaries, is obtained using the finite element method. Symmetric and nonsymmetric scroll cross sectional geometries are investigated to determine their effect on the general flow field and on the exit flow conditions.
ANALYSIS OF TRANSONIC FLOW PAST CUSPED AIRFOILS
Directory of Open Access Journals (Sweden)
Jiří Stodůlka
2015-06-01
Full Text Available Transonic flow past two cusped airfoils is numerically solved and achieved results are analyzed by means of flow behavior and oblique shocks formation.Regions around sharp trailing edges are studied in detail and parameters of shock waves are solved and compared using classical shock polar approach and verified by reduction parameters for symmetric configurations.
Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations
Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.
2016-04-01
The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.
Analysis of seawater flow through optical fiber
Fernández López, Sheila; Carrera Ramírez, Jesús; Rodriguez Sinobar, Leonor; Benitez, Javier; Rossi, Riccardo; Laresse de Tetto, Antonia
2015-04-01
The relation between sea and coastal aquifer is very important to the human populations living in coastal areas. The interrelation involves the submarine ground water discharge of relatively fresh water to the sea and the intrusion of sea water into the aquifer, which impairs the quality of ground water. The main process in seawater intrusion is managed by fluid-density effects which control the displacement of saline water. The underlain salinity acts as the restoring force, while hydrodynamic dispersion and convection lead to a mixing and vertical displacement of the brine. Because of this, a good definition of this saltwater-freshwater interface is needed what is intimately joined to the study of the movements (velocity fields) of fresh and salt water. As it is well known, the flow of salt water studied in seawater intrusion in stationary state, is nearly null or very low. However, in the rest of cases, this flux can be very important, so it is necessary its study to a better comprehension of this process. One possible manner of carry out this analysis is through the data from optical fiber. So, to research the distribution and velocity of the fresh and saltwater in the aquifer, a fiber optic system (OF) has been installed in Argentona (Baix Maresme, Catalonia). The main objective is to obtain the distributed temperature measurements (OF-DTS) and made progress in the interpretation of the dynamic processes of water. For some applications, the optical fiber acts as a passive temperature sensor but in our case, the technique Heated Active Fiber Optic will be used. This is based on the thermal response of the ground as a heat emission source is introduced. The thermal properties of the soil, dependent variables of soil water content, will make a specific temperature distribution around the cable. From the analyzed data we will deduce the velocity field, the real objective of our problem. To simulate this phenomenon and the coupled transport and flow problem
Cryogenic recovery analysis of forced flow supercritical helium cooled superconductors
International Nuclear Information System (INIS)
Lee, A.Y.
1977-08-01
A coupled heat conduction and fluid flow method of solution was presented for cryogenic stability analysis of cabled composite superconductors of large scale magnetic coils. The coils are cooled by forced flow supercritical helium in parallel flow channels. The coolant flow reduction in one of the channels during the spontaneous recovery transient, after the conductor undergoes a transition from superconducting to resistive, necessitates a parallel channel analysis. A way to simulate the parallel channel analysis is described to calculate the initial channel inlet flow rate required for recovery after a given amount of heat is deposited. The recovery capability of a NbTi plus copper composite superconductor design is analyzed and the results presented. If the hydraulics of the coolant flow is neglected in the recovery analysis, the recovery capability of the superconductor will be over-predicted
Viscous fingering and channeling in chemical enhanced oil recovery
Daripa, Prabir; Dutta, Sourav
2017-11-01
We have developed a hybrid numerical method based on discontinuous finite element method and modified method of characteristics to compute the multiphase multicomponent fluid flow in porous media in the context of chemical enhanced oil recovery. We use this method to study the effect of various chemical components on the viscous fingering and channeling in rectilinear and radial flow configurations. We will also discuss about the efficiency of various flooding schemes based on these understandings. Time permitting, we will discuss about the effect of variable injection rates in these practical setting. U.S. National Science Foundation Grant DMS-1522782.
Viscous forces and bulk viscoelasticity near jamming
Baumgarten, K.; Tighe, B.P.
2017-01-01
When weakly jammed packings of soft, viscous, non-Brownian spheres are probed mechanically, they respond with a complex admixture of elastic and viscous effects. While many of these effects are understood for specific, approximate models of the particles' interactions, there are a number of proposed
Ten themes of viscous liquid dynamics
DEFF Research Database (Denmark)
Dyre, J. C.
2007-01-01
Ten ‘themes' of viscous liquid physics are discussed with a focus on how they point to a general description of equilibrium viscous liquid dynamics (i.e., fluctuations) at a given temperature. This description is based on standard time-dependent Ginzburg-Landau equations for the density fields...
Low flow and drought spatial analysis
International Nuclear Information System (INIS)
Dakova, Snejana
2004-01-01
The hydrological characteristics of Bulgarian rivers reflect to the climate variability. Nearly all precipitation is received during the spring and/or winter months, with negligible precipitations in summer. Thus, peak flows occur in spring and/or winter, and during the summer, the flow is significant lower with many rivers being ephemeral. Therefore, 2210 reservoirs for satisfaction the water needs have been constructed during the last sixty years. In spit of that, Bulgaria is facing to a new insufficiency of water. The recent climate change investigations and climate scenarios determine the area of Balkan Peninsula as territories with decreasing of rainfalls and increasing of air temperature. In view of that, research the low flow in the light of climate changing together with the water management is required. In this study the definitions of low flow and drought are developed using available data obtained in Bulgarian area, which has semiarid zone conditions. The difference between the terms of drought and low flow is describing and clarified also. The low flow and drought variables are investigated on two levels: first on long-year's variability using annual data and than monthly and seasonal data series-for enabling the within-year effects to be determined. The relationship between the probability of river's dry up and mean annual and seasonal rainfalls is quantified using multiple regressions applied to logarithmic- transformed data. This paper presets also analyses of minimum flow series with zero values. The exceed probability above which stream flow is zero and conditional probability of non-zero flow (non-zero-duration curve) is obtained by the principals of total probability. A different kind of adjusting duration curves are proposed depending of the number of zero values in the series.(Author)
Funamoto, Kenichi; Hayase, Toshiyuki; Shirai, Atsushi
Simplified two-dimensional flow analysis is performed in order to simulate frictional characteristics measurement of red blood cells moving on a glass plate in a medium with an inclined centrifuge microscope. Computation under various conditions reveals the influences of parameters on lift, drag, and moment acting on a red blood cell. Among these forces, lift appears only when the cell is longitudinally asymmetric. By considering the balance of forces, the frictional characteristics of the red blood cell are modeled as the sum of Coulomb friction and viscous drag. The model describes the possibility that the red blood cell deforms to expand in the front side in response to the inclined centrifugal force. When velocity exceeds some critical value, the lift overcomes the normal centrifugal force component, and the thickness of the plasma layer between the cell and the glass plate increases from the initial value of the plasma protein thickness.
Viscous bursting of suspended films
Debrégeas, G.; Martin, P.; Brochard-Wyart, F.
1995-11-01
Soap films break up by an inertial process. We present here the first observations on freely suspended films of long-chain polymers, where viscous effects are dominant and no surfactant is present. A hole is nucleated at time 0 and grows up to a radius R(t) at time t. A surprising feature is that the liquid from the hole is not collected into a rim (as it is in soap films): The liquid spreads out without any significant change of the film thickness. The radius R(t) grows exponentially with time, R~exp(t/τ) [while in soap films R(t) is linear]. The rise time τ~ηe/2γ where η is viscosity, e is thickness (in the micron range), and γ is surface tension. A simple model is developed to explain this growth law.
Radiometric flow injection analysis with an ASIA (Ismatec) analyzer
Energy Technology Data Exchange (ETDEWEB)
Myint, U; Win, N; San, K; Han, B; Myoe, K M [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science
1994-07-01
Radiometric Flow Injection Analysis of a radioactive ([sup 131]I) sample is described. For analysis an ASIA (Ismatec) analyzer with a NaI(Tl) scintillation detector was used. (author) 5 refs.; 3 figs.
Analysis of flow coefficient in chair manufacture
Ivković Dragoljub; Živković Slaven
2005-01-01
The delivery on time is not possible without the good-quality planning of deadlines, i.e. planning of the manufacturing process duration. The study of flow coefficient enables the realistic forecasting of the manufacturing process duration. This paper points to the significance of the study of flow coefficient on scientific basis so as to determine the terms of the end of the manufacture of chairs made of sawn timber. Chairs are the products of complex construction, often almost completely ma...
International Nuclear Information System (INIS)
Brandão, P V; Alves, L S de B; Barletta, A
2014-01-01
The present paper investigates the transition from convective to absolute instability induced by viscous dissipation. As far as the authors are aware, this is the first time such a study is reported in the literature. Its framework is provided by the Poiseuille-Darcy-Benard convection of a Newtonian fluid. We found the same behaviour observed in the absence of viscous dissipation whenever the Gebhart number is smaller than Ge < 0.95, which is the stabilising effect of the cross flow. When 0.95 < Ge < 4.31, weak cross flows still stabilise the onset of absolute instability but stronger cross flows destabilise it. For a stronger viscous dissipation, i.e. Ge > 4.31, the cross flow always destabilises this onset. The latter two conditions create a scenario where viscous dissipation is capable of inducing a transition to absolute instability in the absence of wall heating, i.e. with a zero Rayleigh number
Stress Analysis of Fuel Rod under Axial Coolant Flow
Energy Technology Data Exchange (ETDEWEB)
Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)
2010-05-15
A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions
Stress Analysis of Fuel Rod under Axial Coolant Flow
International Nuclear Information System (INIS)
Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok
2010-01-01
A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions
Analysis and design of flow limiter used in steam generator
International Nuclear Information System (INIS)
Liu Shixun; Gao Yongjun
1995-10-01
Flow limiter is an important safety component of PWR steam generator. It can limit the blowdown rate of steam generator inventory in case of the main steam pipeline breaks, so that the rate of the primary coolant temperature reduction can be slowed down in order to prevent fuel element from burn-out. The venturi type flow limiter is analysed, its flow characteristics are delineated, physical and mathematical models defined; the detail mathematical derivation provided. The research lays down a theoretic basis for flow limiter design. The governing equations and formulas given can be directly applied to computer analysis of the flow limiter. (3 refs., 3 figs.)
Mechanistic multidimensional analysis of horizontal two-phase flows
International Nuclear Information System (INIS)
Tselishcheva, Elena A.; Antal, Steven P.; Podowski, Michael Z.
2010-01-01
The purpose of this paper is to discuss the results of analysis of two-phase flow in horizontal tubes. Two flow situations have been considered: gas/liquid flow in a long straight pipe, and similar flow conditions in a pipe with 90 deg. elbow. The theoretical approach utilizes a multifield modeling concept. A complete three-dimensional two-phase flow model has been implemented in a state-of-the-art computational multiphase fluid dynamics (CMFD) computer code, NPHASE. The overall model has been tested parametrically. Also, the results of NPHASE simulations have been compared against experimental data for a pipe with 90 deg. elbow.
Stereo Scene Flow for 3D Motion Analysis
Wedel, Andreas
2011-01-01
This book presents methods for estimating optical flow and scene flow motion with high accuracy, focusing on the practical application of these methods in camera-based driver assistance systems. Clearly and logically structured, the book builds from basic themes to more advanced concepts, culminating in the development of a novel, accurate and robust optic flow method. Features: reviews the major advances in motion estimation and motion analysis, and the latest progress of dense optical flow algorithms; investigates the use of residual images for optical flow; examines methods for deriving mot
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-01
We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.
Solomon, S. C.; Comer, R. P.; Head, J. W.
1982-01-01
A topographic profile of the young large lunar basin, Orientale, is presented in order to examine the effects of viscous relaxation on basin topography. Analytical models for viscous flow are considered, showing a wavelength-dependence of time constants for viscous decay on the decrease in viscosity with depth and on the extent of the isostatic compensation of the initial topography. Lunar rheological models which are developed include a half-space model for uniform Newtonian viscosity, density, and gravitational acceleration, a layer over inviscid half space model with material inviscid over geological time scales, and a layer with isostatic compensation where a uniformly viscous layer overlies an inviscid half space of higher density. Greater roughness is concluded, and has been observed, on the moon's dark side due to continued lower temperatures since the time of heavy bombardment.
Group Analysis of Free Convection Flow of a Magnetic Nanofluid with Chemical Reaction
Directory of Open Access Journals (Sweden)
Md. Jashim Uddin
2015-01-01
Full Text Available A theoretical study of two-dimensional magnetohydrodynamics viscous incompressible free convective boundary layer flow of an electrically conducting, chemically reacting nanofluid from a convectively heated permeable vertical surface is presented. Scaling group of transformations is used in the governing equations and the boundary conditions to determine absolute invariants. A third-order ordinary differential equation which corresponds to momentum conservation and two second-order ordinary differential equations which correspond to energy and nanoparticle volume fraction (species conservation are derived. Our (group analysis indicates that, for the similarity solution, the convective heat transfer coefficient and mass transfer velocity are proportional to x-1/4 whilst the reaction rate is proportional to x-1/2, where x is the axial distance from the leading edge of the plate. The effects of the relevant controlling parameters on the dimensionless velocity, temperature, and nanoparticle volume fraction are examined. The accuracy of the technique we have used was tested by performing comparisons with the results of published work and the results were found to be in good agreement. The present computations indicate that the flow is accelerated and temperature enhanced whereas nanoparticle volume fractions are decreased with increasing order of chemical reaction. Furthermore the flow is strongly decelerated, whereas the nanoparticle volume fraction and temperature are enhanced with increasing magnetic field parameter. Increasing convection-conduction parameter increases velocity and temperatures but has a weak influence on nanoparticle volume fraction distribution. The present study demonstrates the thermal enhancement achieved with nanofluids and also magnetic fields and is of relevance to nanomaterials processing.
Development of a Model Foamy Viscous Fluid
Directory of Open Access Journals (Sweden)
Vial C.
2013-08-01
Full Text Available The objective is to develop a model viscous foamy fluid, i.e. below the very wet limit, the rheological and stability properties of which can be tuned. First, the method used for the preparation of foamy fluids is detailed, including process and formulation. Then, experimental results highlight that stable foamy fluids with a monomodal bubble size distribution can be prepared with a void fraction between 25% and 50% (v/v. Their viscoelastic properties under flow and low-strain oscillatory conditions are shown to result from the interplay between the formulation of the continuous phase, void fraction and bubble size. Their apparent viscosity can be described using the Cross equation and zero-shear Newtonian viscosity may be predicted by a Mooney equation up to a void fraction about 40%. The Cox-Merz and the Laun’s rules apply when the capillary number Ca is lower than 0.1. The upper limit of the zero-shear plateau region decreases when void fraction increases or bubble size decreases. In the shear-thinning region, shear stress varies with Ca1/2, as in wet foams with immobile surfaces. Finally, foamy fluids can be sheared up to Ca about 0.1 without impairing their microstructure. Their stability at rest achieves several hours and increases with void fraction due to compact packing constraints. These constitute, therefore, versatile model fluids to investigate the behaviour of foamy fluids below the very wet limit in process conditions.
Viscous fingering of HCI through gastric mucin
Bhaskar, K. Ramakrishnan; Garik, Peter; Turner, Bradley S.; Bradley, James Douglas; Bansil, Rama; Stanley, H. Eugene; Lamont, J. Thomas
1992-12-01
THE HCI in the mammalian stomach is concentrated enough to digest the stomach itself, yet the gastric epithelium remains undamaged. One protective factor is gastric mucus, which forms a protective layer over the surface epithelium1-4 and acts as a diffusion barrier5,6 Bicarbonate ions secreted by the gastric epithelium7 are trapped in the mucus gel, establishing a gradient from pH 1-2 at the lumen to pH 6-7 at the cell surface8-10. How does HCI, secreted at the base of gastric glands by parietal cells, traverse the mucus layer without acidifying it? Here we demonstrate that injection of HCI through solutions of pig gastric mucin produces viscous fingering patterns11-18 dependent on pH, mucin concentration and acid flow rate. Above pH 4, discrete fingers are observed, whereas below pH 4, HCI neither penetrates the mucin solution nor forms fingers. Our in vitro results suggest that HCI secreted by the gastric gland can penetrate the mucus gel layer (pH 5-7) through narrow fingers, whereas HC1 in the lumen (pH 2) is prevented from diffusing back to the epithelium by the high viscosity of gastric mucus gel on the luminal side.
Scaling the viscous circular hydraulic jump
Argentina, Mederic; Cerda, Enrique; Duchesne, Alexis; Limat, Laurent
2017-11-01
The formation mechanism of hydraulic jumps has been proposed by Belanger in 1828 and rationalised by Lord Rayleigh in 1914. As the Froude number becomes higher than one, the flow super criticality induces an instability which yields the emergence of a steep structure at the fluid surface. Strongly deformed liquid-air interface can be observed as a jet of viscous fluid impinges a flat boundary at high enough velocity. In this experimental setup, the location of the jump depends on the viscosity of the liquid, as shown by T. Bohr et al. in 1997. In 2014, A. Duchesne et al. have established the constancy of the Froude number at jump. Hence, it remains a contradiction, in which the radial hydraulic jump location might be explained through inviscid theory, but is also viscosity dependent. We present a model based on the 2011 Rojas et al. PRL, which solves this paradox. The agreement with experimental measurements is excellent not only for the prediction of the position of the hydraulic jump, but also for the determination of the fluid thickness profile. We predict theoretically the critical value of the Froude number, which matches perfectly to that measured by Duchesne et al. We acknowledge the support of the CNRS and the Universit Cte d'Azur, through the IDEX funding.
ON THE ANALYSIS OF IMPEDANCE-DRIVEN REVERSE FLOW DYNAMICS
Directory of Open Access Journals (Sweden)
LEE V. C.-C.
2017-02-01
Full Text Available Impedance pump is a simple valve-less pumping mechanism, where an elastic tube is joined to a more rigid tube, at both ends. By inducing a periodic asymmetrical compression on the elastic tube will produce a unidirectional flow within the system. This pumping concept offers a low energy, low noise alternative, which makes it an effective driving mechanism, especially for micro-fluidic systems. In addition, the wave-based mechanism through which pumping occurs infers many benefits in terms of simplicity of design and manufacturing. Adjustment of simple parameters such as the excitation frequencies or compression locations will reverse the direction of flow, providing a very versatile range of flow outputs. This paper describes the experimental analysis of such impedance-driven flow with emphasis on the dynamical study of the reverse flow in open-loop environment. In this study, tapered section with converging steps is introduced at both ends of the elastic tube to amplify the magnitude of reverse flow. Study conducted shows that the reverse peak flow is rather significant with estimate of 23% lower than the forward peak flow. The flow dynamics on the other hand has shown to exhibit different characteristics as per the forward peak flow. The flow characteristics is then studied and showed that the tapered sections altered the impedance within the system and hence induce a higher flow in the reverse direction.
RotCFD: A Viscous Design Tool for Advanced Configurations, Phase I
National Aeronautics and Space Administration — The incorporation of viscous analysis in design is vital for a complete understanding of aerodynamic problems. This proposal offers to develop and integrate with...
International Nuclear Information System (INIS)
Hussain, M.; Khan, J.A.
2004-01-01
A numerical study of flow in distributor of Francis Turbine is carried out by using two different techniques of flow zone generation. Distributor of GAMM Francis Turbine is used for present calculation. In present work, flow is assumed to be periodic around the distributor in steady state conditions, therefore computational domain consists of only one blade channel (one stay vane and one guide vane). The distributor computational domain is bounded up stream by cylindrical and downstream by conical patches. The first one corresponds to the spiral casing outflow section, while the second one is considered to be the distributor outlet or runner inlet. Upper and lower surfaces are generated by the revolution of hub and shroud edges. Single connected and multiple connected techniques are considered to generate distributor flow zone for numerical flow analysis of GAMM Francis turbine. The tetrahedral meshes are generated in both the flow zones. Same boundary conditions are applied for both the equivalent flow zones. The three dimensional, laminar flow analysis for both the distributor flow zones of the GAMM Francis turbine operating at the best efficiency point is performed. Gambit and G- Turbo are used as a preprocessor while calculations are done by using Fluent. Finally, numerical results obtained on the distributor outlet are compared with the available experimental data to validate the two different methodologies and examine their accuracy. (author)
LAMINAR STABILITY ANALYSIS IN BOUNDARY LAYER FLOW
Directory of Open Access Journals (Sweden)
Mihaela CALUDESCU
2009-09-01
Full Text Available This study presents a numerical study concerning the flow control by suction and injection. The case study is over a symmetrical airfoil with suction and injection slots. The angle of attack is 3 degree with the Mach number 0.12.
LTE uplink scheduling - flow level analysis
Dimitrova, D.C.; van den Berg, J.L.; Heijenk, G.; Litjens, R.; Sacchi, Claudio; Bellalta, Boris; Vinel, Alexey; Schlegel, Christian; Granelli, Fabrizio; Zhang, Yan
Long Term Evolution (LTE) is a cellular technology foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and
LTE uplink scheduling - Flow level analysis
Dimitrova, D.C.; Berg, J.L. van den; Heijenk, G.; Litjens, R.
2011-01-01
Long Term Evolution (LTE) is a cellular technology foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and
Migration Flows: Measurement, Analysis and Modeling
Willekens, F.J.; White, Michael J.
2016-01-01
This chapter is an introduction to the study of migration flows. It starts with a review of major definition and measurement issues. Comparative studies of migration are particularly difficult because different countries define migration differently and measurement methods are not harmonized.
Random signal tomographical analysis of two-phase flow
International Nuclear Information System (INIS)
Han, P.; Wesser, U.
1990-01-01
This paper reports on radiation tomography which is a useful tool for studying the internal structures of two-phase flow. However, general tomography analysis gives only time-averaged results, hence much information is lost. As a result, it is sometimes difficult to identify the flow regime; for example, the time-averaged picture does not significantly change as an annual flow develops from a slug flow. A two-phase flow diagnostic technique based on random signal tomographical analysis is developed. It extracts more information by studying the statistical variation of the measured signal with time. Local statistical parameters, including mean value, variance, skewness and flatness etc., are reconstructed from the information obtained by a general tomography technique. More important information are provided by the results. Not only the void fraction can be easily calculated, but also the flow pattern can be identified more objectively and more accurately. The experimental setup is introduced. It consisted of a two-phase flow loop, an X-ray system, a fan-like five-beam detector system and a signal acquisition and processing system. In the experiment, for both horizontal and vertical test sections (aluminum and steel tube with Di/Do = 40/45 mm), different flow situations are realized by independently adjusting air and water mass flow. Through a glass tube connected with the test section, some typical flow patterns are visualized and used for comparing with the reconstruction results
TRIO a general computer code for reactor 3-D flows analysis. Application to a LMFBR hot plenum
International Nuclear Information System (INIS)
Magnaud, J.P.; Rouzaud, P.
1985-09-01
TRIO is a code developed at CEA to investigate general incompressible 2D and 3D viscous flows. Two calculations are presented: the lid driven cubic cavity at Re=400; steady state (velocity and temperature field) of a LMFBR hot plenum, carried out in order to prepare the calculation of a cold shock consecutive to a reactor scram. 8 refs., 26 figs.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings
Andres, Luis San
1993-01-01
A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.
CFD Analysis for Predicting Flow Resistance of the Cross Flow Gap in Prismatic VHTR Core
International Nuclear Information System (INIS)
Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl; Park, Jong Woon
2011-01-01
The core of Very High Temperature Reactor (VHTR) consists of assemblies of hexagonal graphite blocks and its height and across-flats width are 800 mm and 360 mm respectively. They are equipped with 108 coolant holes 16 mm in diameter. Up to ten fuel blocks arranged in vertical order form a fuel element column and the neutron flux varies over the cross section of the core. It makes different axial shrinkage of fuel element and this leads to make wedge-shaped gaps between the base and top surfaces of stacked blocks. The cross flow is defined as the core flow that passes through this cross gaps. The cross flow complicates the flow distribution of reactor core. Moreover, the cross flow could lead to uneven coolant distribution and consequently to superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. In particular, to predict amount of flow at the cross flow gap obtaining accurate flow loss coefficient is important. Nevertheless, there has not been much effort in domestic. The experiment of cross flow was carried out by H. G. Groehn in 1981 Germany. For the study of cross flow the applicability of CFD code should be validated. In this paper a commercial CFD code CFX-12 validation will be carried out with this cross flow experiment. Validated data can be used for validation of other thermal-hydraulic analysis codes
Substance Flow Analysis of Mercury in China
Hui, L. M.; Wang, S.; Zhang, L.; Wang, F. Y.; Wu, Q. R.
2015-12-01
In previous studies, the emission of anthropogenic atmospheric Hg in China as well as single sector have been examined a lot. However, there might have been more Hg released as solid wastes rather than air. Hg stored in solid wastes may be released to air again when the solid wastes experience high temperature process or cause local pollution if the solid wastes are stacked casually for a long time. To trace the fate of Hg in China, this study developed the substance flow of Hg in 2010 covering all the sectors summarized in table 1. Below showed in Figure 1, the total Hg input is 2825t. The unintentional input of Hg, mined Hg, and recycled Hg account for 57%, 32% and 11% respectively. Figure 2 provides the detail information of substance flow of Hg. Byproducts from one sector may be used as raw materials of another, causing cross Hg flow between sectors. The Hg input of cement production is 303 t, of which 34% comes from coal and limestone, 33% comes from non-ferrous smelting, 23% comes from coal combustion, 7% comes from iron and steel production and 3% comes from mercury mining. Hg flowing to recycledHg production is 639 t, mainly from Hg contained in waste active carbon and mercuric chloride catalyst from VCM production and acid sludge from non-ferrous smelting. There are 20 t mercury flowing from spent mercury adding products to incineration. Figure1 and Figure 2 also show that 46% of the output Hg belongs to "Lagged release", which means this part of mercury might be released later. The "Lagged release" Hg includes 809 t Hg contained in stacked byproducts form coal combustion, non-ferrous smelting, iron and steel production, Al production, cement production and mercury mining, 161t Hg stored in the pipeline of VCM producing, 10 t Hg in fluorescent lamps that are in use and 314 t mercury stored in materials waiting to be handled with in recycled mercury plants. There is 112 t Hg stored in landfill and 129 t Hg exported abroad with the export of mercury adding
Computational Analysis of Multi-Rotor Flows
Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.
2016-01-01
Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.
A spatial analysis of China's coal flow
International Nuclear Information System (INIS)
Mou Dunguo; Li Zhi
2012-01-01
The characteristics of China's energy structure and the distribution of its coal resources make coal transportation a very important component of the energy system; moreover, coal transportation acts as a bottleneck for the Chinese economy. To insure the security of the coal supply, China has begun to build regional strategic coal reserves at some locations, but transportation is still the fundamental way to guaranty supply security. Here, we study China's coal transportation quantitatively with a linear programming method that analyses the direction and volume of China's coal flows with the prerequisite that each province's supply and demand balance is guaranteed. First, we analyse the optimal coal transportation for the status quo coal supply and demand given the bottleneck effects that the Daqin Railway has on China's coal flow; second, we analyse the influence of future shifts in the coal supply zone in the future, finding that China's coal flows will also change, which will pressure China to construct railways and ports; and finally, we analyse the possibility of exploiting Yangtze River capacity for coal transportation. We conclude the paper with suggestions for enhancing China's coal transportation security. - Highlights: ► We use linear programming to study China's coal transportation. ► First, analyse the optimal coal flow under the status quo condition. ► Second, analyse influences of coal supply zone shifts to Neimeng and Xinjiang. ► Third, analyse the influence of using Yangtze River for coal transportation. ► At last, we give suggestions about infrastructure construction to guaranty China's long-run coal supply security.
State space analysis of minimal channel flow
Energy Technology Data Exchange (ETDEWEB)
Neelavara, Shreyas Acharya; Duguet, Yohann; Lusseyran, François, E-mail: acharya@limsi.fr [LIMSI-CNRS, Campus Universitaire d’Orsay, Université Paris-Saclay, F-91405 Orsay (France)
2017-06-15
Turbulence and edge states are investigated numerically in a plane Poiseuille flow driven by a fixed pressure gradient. Simulations are carried out within the minimal flow unit, a concept introduced by Jiménez and Moin (1991 J . Fluid Mech. 225 213–40) to unravel the dynamics of near-wall structures in the absence of outer large-scale motions. For both turbulent and edge regimes the activity appears to be localised near only one wall at a time, and the long term dynamics features abrupt reversals. The dynamics along one reversal is structured around the transient visit to a subspace of symmetric flow fields. An exact travelling wave solution is found to exist very close to this subspace. Additionally the self-similarity of the asymmetric states is addressed. Contrary to most studies focusing on symmetric solutions, the present study suggests that edge states, when localised near one wall, do not scale in outer units. The current study suggests a composite scaling. (paper)
Analysis of flow coefficient in chair manufacture
Directory of Open Access Journals (Sweden)
Ivković Dragoljub
2005-01-01
Full Text Available The delivery on time is not possible without the good-quality planning of deadlines, i.e. planning of the manufacturing process duration. The study of flow coefficient enables the realistic forecasting of the manufacturing process duration. This paper points to the significance of the study of flow coefficient on scientific basis so as to determine the terms of the end of the manufacture of chairs made of sawn timber. Chairs are the products of complex construction, often almost completely made of sawn timber as the basic material. They belong to the group of export products, so it is especially significant to analyze the duration of the production cycle, and the type and the degree of stoppages in this type of production. Parallel method of production is applied in chair manufacture. The study shows that the value of flow coefficient is close to one or higher, in most cases. The results indicate that the percentage of interoperational stoppage is unjustifiably high, so it is proposed how to decrease the percentage of stoppages in the manufacturing process.
Flow injection analysis in inductively coupled plasma spectrometry
International Nuclear Information System (INIS)
Rosias, Maria F.G.G.
1995-10-01
The main features of flow injection analysis (FIA) as contribution to the inductively coupled plasma (Icp) spectrometry are described. A systematic review of researches using the combined FIA-Icp and the benefits of this association are presented. Flow systems were proposed to perform on-line Icp solution management for multielemental determination by atomic emission spectrometry (Icp-AES) or mass spectrometry. The inclusion of on-line ion exchangers in flow systems for matrix separation and/or analyte preconcentration are presented. Together with those applications the new advent of instruments with facilities for multielement detection on flow injection signals are described. (author). 75 refs., 19 figs
Low moduli elastomers with low viscous dissipation
DEFF Research Database (Denmark)
Bejenariu, Anca Gabriela; Yu, Liyun; Skov, Anne Ladegaard
2012-01-01
A controlled reaction schema for addition curing silicones leads to both significantly lower elastic modulus and lower viscous dissipation than for the chemically identical network prepared by the traditional reaction schema....
Local study of helical magnetorotational instability in viscous Keplerian disks
MahdaviGharavi, M.; Hajisharifi, K.; Mehidan, H.
2018-03-01
In this paper, regarding the recent detection of significant azimuthal magnetic field in some accretion disks such as protostellar (Donati et al. in Nature 438:466, 2005), the multi-fluid model has been employed to analysis the stability of Keplerian rotational viscous dusty plasma system in a current-free helical magnetic field structure. Using the fluid-Maxwell equations, the general dispersion relation of the excited modes in the system has been obtained by applying the local approximation method in the linear perturbation theory. The typical numerical analysis of the obtained dispersion relation in the high-frequency regime shows that the presence of azimuthal magnetic field component in Keplerian flow has a considerable role in the stability conditions of the system. It also shows that the magnetic field helicity has a stabilization role against the magnetorotational instability (MRI) in the system due to contraction of the unstable wavelength region and decreasing the maximum growth rate of the instability. In this sense, the stabilization role of the viscosity term is more considerable for HMRI (instability in the presence of azimuthal magnetic field component) than the corresponding MRI (instability in the absence of azimuthal magnetic field component). Moreover, considering the discovered azimuthal magnetic field in these systems, the MRI can be arisen in the over-all range of dust grains construction values in contract with traditional MRI. This investigation can greatly contribute to better understanding the physics of some astrophysical phenomena, such as the main source of turbulence and angular momentum transport in protostellar and the other sufficiently ionized astrophysical disks, where the azimuthal magnetic field component in these systems can play a significant role.
User-friendly Tool for Power Flow Analysis and Distributed ...
African Journals Online (AJOL)
Akorede
AKOREDE et al: TOOL FOR POWER FLOW ANALYSIS AND DISTRIBUTED GENERATION OPTIMISATION. 23 ... greenhouse gas emissions and the current deregulation of electric energy ..... Visual composition and temporal behaviour of GUI.
Visual Analysis of Inclusion Dynamics in Two-Phase Flow.
Karch, Grzegorz Karol; Beck, Fabian; Ertl, Moritz; Meister, Christian; Schulte, Kathrin; Weigand, Bernhard; Ertl, Thomas; Sadlo, Filip
2018-05-01
In single-phase flow visualization, research focuses on the analysis of vector field properties. In two-phase flow, in contrast, analysis of the phase components is typically of major interest. So far, visualization research of two-phase flow concentrated on proper interface reconstruction and the analysis thereof. In this paper, we present a novel visualization technique that enables the investigation of complex two-phase flow phenomena with respect to the physics of breakup and coalescence of inclusions. On the one hand, we adapt dimensionless quantities for a localized analysis of phase instability and breakup, and provide detailed inspection of breakup dynamics with emphasis on oscillation and its interplay with rotational motion. On the other hand, we present a parametric tightly linked space-time visualization approach for an effective interactive representation of the overall dynamics. We demonstrate the utility of our approach using several two-phase CFD datasets.
Computational fluid dynamics analysis of a mixed flow pump impeller
African Journals Online (AJOL)
ATHARVA
International Journal of Engineering, Science and Technology ... From the CFD analysis software and advanced post processing tools the complex flow inside the ... The numerical simulation can provide quite accurate information on the fluid ...
The cash-flow analysis of the firm
Mariana Man
2001-01-01
The analysis of economic and financial indicators of the firm regards the profit and loss account analysis and the balance sheet analysis. The cash-flow from operating activities represents the amount of cash obtained by a firm from selling goods and services after deducting the costs involved by raw materials, materials and processenig operations
Numerical Analysis of Dusty-Gas Flows
Saito, T.
2002-02-01
This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.
Compressed gas domestic aerosol valve design using high viscous product
Directory of Open Access Journals (Sweden)
A Nourian
2016-10-01
Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.
Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling
Liu, D.; Guo, S.; Lian, Y.
2014-12-01
Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.
USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS
Energy Technology Data Exchange (ETDEWEB)
Randall Seright
2011-09-30
This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be
Linear stability analysis of laminar flow near a stagnation point in the slip flow regime
Essaghir, E.; Oubarra, A.; Lahjomri, J.
2017-12-01
The aim of the present contribution is to analyze the effect of slip parameter on the stability of a laminar incompressible flow near a stagnation point in the slip flow regime. The analysis is based on the traditional normal mode approach and assumes parallel flow approximation. The Orr-Sommerfeld equation that governs the infinitesimal disturbance of stream function imposed to the steady main flow, which is an exact solution of the Navier-Stokes equation satisfying slip boundary conditions, is obtained by using the powerful spectral Chebyshev collocation method. The results of the effect of slip parameter K on the hydrodynamic characteristics of the base flow, namely the velocity profile, the shear stress profile, the boundary layer, displacement and momentum thicknesses are illustrated and discussed. The numerical data for these characteristics, as well as those of the eigenvalues and the corresponding wave numbers recover the results of the special case of no-slip boundary conditions. They are found to be in good agreement with previous numerical calculations. The effects of slip parameter on the neutral curves of stability, for two-dimensional disturbances in the Reynolds-wave number plane, are then obtained for the first time in the slip flow regime for stagnation point flow. Furthermore, the evolution of the critical Reynolds number against the slip parameter is established. The results show that the critical Reynolds number for instability is significantly increased with the slip parameter and the flow turn out to be more stable when the effect of rarefaction becomes important.
Three-dimensional viscous-inviscid coupling method for wind turbine computations
DEFF Research Database (Denmark)
Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong
2016-01-01
In this paper, a computational model for predicting the aerodynamic behavior of wind turbine wakes and blades subjected to unsteady motions and viscous effects is presented. The model is based on a three-dimensional panel method using a surface distribution of quadrilateral sources and doublets......, which is coupled to a viscous boundary layer solver. Unlike Navier-Stokes codes that need to solve the entire flow domain, the panel method solves the flow around a complex geometry by distributing singularity elements on the body surface, obtaining a faster solution and making this type of codes...... suitable for the design of wind turbines. A free-wake model has been employed to simulate the wake behind a wind turbine by using vortex filaments that carry the vorticity shed by the trailing edge of the blades. Viscous and rotational effects inside the boundary layer are taken into account via...
LFSTAT - An R-Package for Low-Flow Analysis
Koffler, D.; Laaha, G.
2012-04-01
When analysing daily streamflow data focusing on low flow and drought, the state of the art is well documented in the Manual on Low-Flow Estimation and Prediction [1] published by the WMO. While it is clear what has to be done, it is not so clear how to preform the analysis and make the calculation as reproducible as possible. Our software solution expands the high preforming statistical open source software package R to analyse daily stream flow data focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) to analyse data in R. Functionality includes estimation of the most important low-flow indices. Beside standardly used flow indices also BFI and Recession constants can be computed. The main applications of L-moment based Extreme value analysis and regional frequency analysis (RFA) are available. Calculation of streamflow deficits is another important feature. The most common graphics are prepared and can easily be modified according to the users preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, flow duration curves as well as double mass curves just to name a few. The package uses a S3-class called lfobj (low-flow objects). Once this objects are created, analysis can be preformed by mouse-click, and a script can be saved to make the analysis easy reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions. Future plans include e.g. report export in odt-file using odf-weave. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package is designed for hydrological research and water management practice, but can also be used in teaching students the first steps in low-flow hydrology.
Flow analysis of the ophthalmic artery
Energy Technology Data Exchange (ETDEWEB)
Harada, Kuniaki; Hashimoto, Masato; Bandoh, Michio; Odawara, Yoshihiro; Kamagata, Masaki; Shirase, Ryuji [Sapporo Medical Univ. (Japan). Hospital
2003-02-01
The purpose of this study was to analyze the hemodynamics of ophthalmic artery flow using phase contrast MR angiography (PC-MRA). A total of 14 eyes from 10 normal volunteers and a patient with normal tension glaucoma (NTG) were analyzed. The optimal conditions were time repetition (TR)/echo time (TE)/flip angle (FA)/nex=40 ms/minimum/90 deg/2, field of view (FOV)=6 cm, matrix size=256 x 256. The resistive index (RI) and pulsatillity index (PI) values were significantly raised in the patient with NTG when compared to the control group. We therefore believe that PC-MRA may be a useful clinical tool for the assessment of the mechanism of NTG. (author)
Dynamic MLD analysis with flow graphs
International Nuclear Information System (INIS)
Jenab, K.; Sarfaraz, A.; Dhillon, B.S.; Seyed Hosseini, S.M.
2012-01-01
Master Logic Diagram (MLD) depicts the interrelationships among the independent functions and dependent support functions. Using MLD, the manner in which all functions, sub-functions interact to achieve the overall system objective can be investigated. This paper reports a probabilistic model to analyze an MLD by translating the interrelationships to a graph model. The proposed model uses the flow-graph concept and Moment Generating Function (MGF) to analyze the dependency matrix representing the MLD with embedded self-healing function/sub-functions. The functions/sub-functions are featured by failure detection and recovery mechanisms. The newly developed model provides the probability of the system failure, and system mean and standard deviation time to failure in the MLD. An illustrative example is demonstrated to present the application of the model.
Hybrid Information Flow Analysis for Programs with Arrays
Directory of Open Access Journals (Sweden)
Gergö Barany
2016-07-01
Full Text Available Information flow analysis checks whether certain pieces of (confidential data may affect the results of computations in unwanted ways and thus leak information. Dynamic information flow analysis adds instrumentation code to the target software to track flows at run time and raise alarms if a flow policy is violated; hybrid analyses combine this with preliminary static analysis. Using a subset of C as the target language, we extend previous work on hybrid information flow analysis that handled pointers to scalars. Our extended formulation handles arrays, pointers to array elements, and pointer arithmetic. Information flow through arrays of pointers is tracked precisely while arrays of non-pointer types are summarized efficiently. A prototype of our approach is implemented using the Frama-C program analysis and transformation framework. Work on a full machine-checked proof of the correctness of our approach using Isabelle/HOL is well underway; we present the existing parts and sketch the rest of the correctness argument.
Combined Effect of Pressure and Temperature on the Viscous Behaviour of All-Oil Drilling Fluids
Directory of Open Access Journals (Sweden)
Hermoso J.
2014-12-01
Full Text Available The overall objective of this research was to study the combined influence of pressure and temperature on the complex viscous behaviour of two oil-based drilling fluids. The oil-based fluids were formulated by dispersing selected organobentonites in mineral oil, using a high-shear mixer, at room temperature. Drilling fluid viscous flow characterization was performed with a controlled-stress rheometer, using both conventional coaxial cylinder and non-conventional geometries for High Pressure/High Temperature (HPHT measurements. The rheological data obtained confirm that a helical ribbon geometry is a very useful tool to characterise the complex viscous flow behaviour of these fluids under extreme conditions. The different viscous flow behaviours encountered for both all-oil drilling fluids, as a function of temperature, are related to changes in polymer-oil pair solvency and oil viscosity. Hence, the resulting structures have been principally attributed to changes in the effective volume fraction of disperse phase due to thermally induced processes. Bingham’s and Herschel-Bulkley’s models describe the rheological properties of these drilling fluids, at different pressures and temperatures, fairly well. It was found that Herschel-Bulkley’s model fits much better B34-based oil drilling fluid viscous flow behaviour under HPHT conditions. Yield stress values increase linearly with pressure in the range of temperature studied. The pressure influence on yielding behaviour has been associated with the compression effect of different resulting organoclay microstructures. A factorial WLF-Barus model fitted the combined effect of temperature and pressure on the plastic viscosity of both drilling fluids fairly well, being this effect mainly influenced by the piezo-viscous properties of the continuous phase.
Nonlinear waves in bipolar complex viscous astroclouds
Karmakar, P. K.; Haloi, A.
2017-05-01
A theoretical evolutionary model to analyze the dynamics of strongly nonlinear waves in inhomogeneous complex astrophysical viscous clouds on the gravito-electrostatic scales of space and time is procedurally set up. It compositionally consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neutral hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method reduces the inter-coupled structure equations into a pair of intermixed forced Korteweg-de Vries-Burgers (f-KdVB) equations. The force-terms are self-consistently sourced by inhomogeneous gravito-electrostatic interplay. A numerical illustrative shape-analysis based on judicious astronomical parametric platform shows the electrostatic waves evolving as compressive dispersive shock-like eigen-modes. A unique transition from quasi-monotonic to non-monotonic oscillatory compressive shock-like patterns is found to exist. In contrast, the self-gravitational and effective perturbations grow purely as non-monotonic compressive oscillatory shock-like structures with no such transitory features. It is seen that the referral frame velocity acts as amplitude-reducing agent (stabilizing source) for the electrostatic fluctuations solely. A comparison in the prognostic light of various earlier satellite-based observations and in-situ measurements is presented. The paper ends up with synoptic highlights on the main implications and non-trivial applications in the interstellar space and cosmic plasma environments leading to bounded structure formation.
Sensitivity analysis of time-dependent laminar flows
International Nuclear Information System (INIS)
Hristova, H.; Etienne, S.; Pelletier, D.; Borggaard, J.
2004-01-01
This paper presents a general sensitivity equation method (SEM) for time dependent incompressible laminar flows. The SEM accounts for complex parameter dependence and is suitable for a wide range of problems. The formulation is verified on a problem with a closed form solution obtained by the method of manufactured solution. Systematic grid convergence studies confirm the theoretical rates of convergence in both space and time. The methodology is then applied to pulsatile flow around a square cylinder. Computations show that the flow starts with symmetrical vortex shedding followed by a transition to the traditional Von Karman street (alternate vortex shedding). Simulations show that the transition phase manifests itself earlier in the sensitivity fields than in the flow field itself. Sensitivities are then demonstrated for fast evaluation of nearby flows and uncertainty analysis. (author)
Two-phase flow characteristics analysis code: MINCS
International Nuclear Information System (INIS)
Watanabe, Tadashi; Hirano, Masashi; Akimoto, Masayuki; Tanabe, Fumiya; Kohsaka, Atsuo.
1992-03-01
Two-phase flow characteristics analysis code: MINCS (Modularized and INtegrated Code System) has been developed to provide a computational tool for analyzing two-phase flow phenomena in one-dimensional ducts. In MINCS, nine types of two-phase flow models-from a basic two-fluid nonequilibrium (2V2T) model to a simple homogeneous equilibrium (1V1T) model-can be used under the same numerical solution method. The numerical technique is based on the implicit finite difference method to enhance the numerical stability. The code structure is highly modularized, so that new constitutive relations and correlations can be easily implemented into the code and hence evaluated. A flow pattern can be fixed regardless of flow conditions, and state equations or steam tables can be selected. It is, therefore, easy to calculate physical or numerical benchmark problems. (author)
Uncertainty analysis of power monitoring transit time ultrasonic flow meters
International Nuclear Information System (INIS)
Orosz, A.; Miller, D. W.; Christensen, R. N.; Arndt, S.
2006-01-01
A general uncertainty analysis is applied to chordal, transit time ultrasonic flow meters that are used in nuclear power plant feedwater loops. This investigation focuses on relationships between the major parameters of the flow measurement. For this study, mass flow rate is divided into three components, profile factor, density, and a form of volumetric flow rate. All system parameters are used to calculate values for these three components. Uncertainty is analyzed using a perturbation method. Sensitivity coefficients for major system parameters are shown, and these coefficients are applicable to a range of ultrasonic flow meters used in similar applications. Also shown is the uncertainty to be expected for density along with its relationship to other system uncertainties. One other conclusion is that pipe diameter sensitivity coefficients may be a function of the calibration technique used. (authors)
The Montaguto earth flow: nine years of observation and analysis
Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.
2016-01-01
This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.
Space shuttle booster multi-engine base flow analysis
Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.
1972-01-01
A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.
Cash-Flow Analysis Base of the Company's Performance Evaluation
Radu Riana Iren; Mihalcea Lucean; Negoescu Gheorghe
2013-01-01
Analyses based on the study of financial flows allow coherent merge to study the financial equilibrium of the firm's performance. If static analysis to assess the financial imbalance at some point, but does not explain its evolution, in contrast, dynamic analysis highlights the evolution of financial imbalance, but does not indicate the extent of it. It follows that the two kinds of analysis are complementary and should be pursued simultaneously. Dynamic analysis is based on the concept of st...
ASSESSMENT OF PLASTIC FLOWS AND STOCKS IN SERBIA USING MATERIAL FLOW ANALYSIS
Directory of Open Access Journals (Sweden)
Goran Vujić
2010-01-01
Full Text Available Material flow analysis (MFA was used to assess the amounts of plastic materials flows and stocks that are annually produced, consumed, imported, exported, collected, recycled, and disposed in the landfills in Serbia. The analysis revealed that approximatelly 269,000 tons of plastic materials are directly disposed in uncontrolled landfills in Serbia without any preatretment, and that siginificant amounts of these materials have already accumulated in the landfills. The substantial amounts of landfilled plastics represent not only a loss of valuable recourses, but also pose a seriuos treath to the environment and human health, and if the trend of direct plastic landfilling is continued, Serbia will face with grave consecequnces.
A Calculus for Control Flow Analysis of Security Protocols
DEFF Research Database (Denmark)
Buchholtz, Mikael; Nielson, Hanne Riis; Nielson, Flemming
2004-01-01
The design of a process calculus for anaysing security protocols is governed by three factors: how to express the security protocol in a precise and faithful manner, how to accommodate the variety of attack scenarios, and how to utilise the strengths (and limit the weaknesses) of the underlying...... analysis methodology. We pursue an analysis methodology based on control flow analysis in flow logic style and we have previously shown its ability to analyse a variety of security protocols. This paper develops a calculus, LysaNS that allows for much greater control and clarity in the description...
Substance Flow Analysis of Wastes Containing Polybrominated Diphenyl Ethers
DEFF Research Database (Denmark)
Vyzinkarova, Dana; Brunner, Paul H.
2013-01-01
materials. Therefore, end-of-life (EOL) plastic materials used for construction must be separated and properly treated, for example, in a state-of-the-art municipal solid waste (MSW) incinerator. In the case of cOctaBDE, the main flows are waste electrical and electronic equipment (WEEE) and, possibly......The present article examines flows and stocks of Stockholm Convention regulated pollutants, commercial penta- and octabrominated diphenyl ether (cPentaBDE, cOctaBDE), on a city level. The goals are to (1) identify sources, pathways, and sinks of these compounds in the city of Vienna, (2) determine...... the fractions that reach final sinks, and (3) develop recommendations for waste management to ensure their minimum recycling and maximum transfer to appropriate final sinks. By means of substance flow analysis (SFA) and scenario analysis, it was found that the key flows of cPentaBDE stem from construction...
Application of the load flow and random flow models for the analysis of power transmission networks
International Nuclear Information System (INIS)
Zio, Enrico; Piccinelli, Roberta; Delfanti, Maurizio; Olivieri, Valeria; Pozzi, Mauro
2012-01-01
In this paper, the classical load flow model and the random flow model are considered for analyzing the performance of power transmission networks. The analysis concerns both the system performance and the importance of the different system elements; this latter is computed by power flow and random walk betweenness centrality measures. A network system from the literature is analyzed, representing a simple electrical power transmission network. The results obtained highlight the differences between the LF “global approach” to flow dispatch and the RF local approach of randomized node-to-node load transfer. Furthermore, computationally the LF model is less consuming than the RF model but problems of convergence may arise in the LF calculation.
FLOW TESTING AND ANALYSIS OF THE FSP-1 EXPERIMENT
Energy Technology Data Exchange (ETDEWEB)
Hawkes, Grant L.; Jones, Warren F.; Marcum, Wade; Weiss, Aaron; Howard, Trevor
2017-06-01
The U.S. High Performance Research Reactor Conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel. The Full Scale Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated in the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results. A water velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A flow versus delta P curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported herein. Fuel plate deformation tests were also performed and reported.
Voltage stability analysis using a modified continuation load flow ...
African Journals Online (AJOL)
This paper addresses the rising problem of identifying the voltage stability limits of load buses in a power system and how to optimally place capacitor banks for voltage stability improvement. This paper uses the concept of the continuation power flow analysis used in voltage stability analysis. It uses the modified ...
A Flow-Sensitive Analysis of Privacy Properties
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming
2007-01-01
that information I send to some service never is leaked to another service? - unless I give my permission? We shall develop a static program analysis for the pi- calculus and show how it can be used to give privacy guarantees like the ones requested above. The analysis records the explicit information flow...
Geometrical analysis of suspension flows near jamming
Wyart, Matthieu
2012-02-01
The viscosity of suspensions was computed early on by Einstein and Batchelor in the dilute regime. At high density however, their rheology remains mystifying. As the packing fraction increases, steric hindrance becomes dominant and particles move under stress in a more and more coordinated way. Eventually, the viscosity diverges as the suspension jams into an amorphous solid. Such a jamming transition is reminiscent of critical points: the rheology displays scaling and a diverging length scale. Jamming bear similarities with the glass transition where steric hindrance is enhanced under cooling, and where the dynamics is also observed to become more and more collective as it slows down. In all these examples, understanding the nature of the collective dynamics and the associated rheology remains a challenge. Recent progress has been made however on a related problem, the unjamming transition where a solid made of repulsive soft particles is isotropically decompressed toward vanishing pressure. In this situation various properties of the amorphous solid, such as elasticity, transport or force propagation, display scaling with the distance to threshold. Theoretically these observations can be shown to stem from the presence of soft modes in the vibrational spectrum, a result that can be extended to thermal colloidal glasses as well. Here we focus on particles driven by shear at zero temperature. We show that if hydrodynamical interactions are neglected an analogy can be made between the rheology of such a suspension and the elasticity of simple networks, building a link between the jamming and the unjamming transition. This analogy enables us to unify in a common framework key aspects of the elasticity of amorphous solids with the rheology of dense suspensions, and to relate features of the latter to the geometry of configurations visited under flow.
Directory of Open Access Journals (Sweden)
Alexander V. Perig
2017-11-01
Full Text Available Minimization of the dead zone (DZA in the process of material forming is a materials science problem. Geometric and kinematic approaches to the minimization of the DZA during Equal Channel Angular Extrusion (ECAE have been proposed, developed, analyzed, and documented. The present article is focused on a 2D Computational Fluid Dynamics (CFD description of the kinematic effects of punch shape geometry and inlet (IDW and outlet (ODW die wall motion on the DZA during ECAE of Viscous Incompressible Continuum (VIC through a Segal 2θ-die for a range of channel angles 60° ≤ 2θ ≤ 135°. Due attention has been given to the independent alternating transport motions of the IDW and ODW. Punch shape geometry and the kinematic modes of IDW and ODW motions for DZA minimization have been determined with a numerical solution of the boundary value problem for the Navier-Stokes equations in curl transfer form for VIC. Experimental verification was accomplished with an introduction of initial circular gridlines-based physical simulation techniques. For the first time, experimental verification of CFD-derived results was made through an additional superposition of empirically-derived digital photos with deformed elliptical gridlines in the channel intersection deformation zones and correspondent 2D numerical plots with CFD-derived flow lines and full flow velocities. An empirical DZA localization was experimentally determined as the location of minimally-deformed near circular markers. The computational DZA localization was numerically determined as a flow-lines-free zone (the first hypothesis or as a zone with near-zero values of full flow velocities (the second hypothesis. The relative DZA was estimated as a ratio of the measured DZA with respect to the area of the deformation zone in the channel intersection region. A good agreement was obtained between DZA values obtained with the first hypothesis and experimental results.
Precessing rotating flows with additional shear: stability analysis.
Salhi, A; Cambon, C
2009-03-01
We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally
Blood flow analysis with considering nanofluid effects in vertical channel
Noreen, S.; Rashidi, M. M.; Qasim, M.
2017-06-01
Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.
Load Flow Analysis of a 15Mva Injection Substation | Oshevire ...
African Journals Online (AJOL)
This load flow helps to determine the state of the power system for a given load and generation distribution. This paper presents the computer aided power flow analysis of the existing Otovwodo33/11kV distribution network using the ETAP 7.0 software. The result showed that out of 91load feeders of which 6 is out of service, ...
Finite element analysis of nonlinear creeping flows
International Nuclear Information System (INIS)
Loula, A.F.D.; Guerreiro, J.N.C.
1988-12-01
Steady-state creep problems with monotone constitutive laws are studied. Finite element approximations are constructed based on mixed Petrov-Galerkin formulations for constrained problems. Stability, convergence and a priori error estimates are proved for equal-order discontinuous stress and continuous velocity interpolations. Numerical results are presented confirming the rates of convergence predicted in the analysis and the good performance of this formulation. (author) [pt
Low flow analysis of the lower Drava River
International Nuclear Information System (INIS)
Mijuskovic-Svetinovic, T; Maricic, S
2008-01-01
Understanding the regime and the characteristics of low streamflows is of vital importance in several aspects. It is essential for the effective planning, designing, constructing, maintaining, using and managing different water management systems and structures. In addition, frequent running and assessing of estimates of low stream-flow statistics are especially important when different aspects of water quality are considered. This paper attempts to present the results of a stochastic analysis of the River Drava low flow from the gauging station, Donji Miholjac [located at rkm 77+700]. Currently, almost all specialists apply the truncation method in low-flows analysis. Taking this into consideration, it is possible to accept the definition of a low streamflow, as a period when the analysed characteristics are either, equal to or lower than the truncation level of drought. The same method has been applied in this analysis. The calculating method applied takes into account all the essential components of the afore-mentioned process. This includes a number of elements, such as the deficit, duration or the time of the occurrence of low flows, the number of times, the maximum deficit and the maximum duration of the low flows in the analysed time period. Moreover, this paper determines computational values for deficits and for the duration of low flow in different return periods.
Viscous wing theory development. Volume 2: GRUMWING computer program user's manual
Chow, R. R.; Ogilvie, P. L.
1986-01-01
This report is a user's manual which describes the operation of the computer program, GRUMWING. The program computes the viscous transonic flow over three-dimensional wings using a boundary layer type viscid-inviscid interaction approach. The inviscid solution is obtained by an approximate factorization (AFZ)method for the full potential equation. The boundary layer solution is based on integral entrainment methods.
The effect of gap width on viscous stresses within the leakage across a bileaflet valve pivot
DEFF Research Database (Denmark)
Travis, Brandon R; Andersen, Morten E; Fründ, Ernst Torben
2008-01-01
reported within the pivots in previous studies. Velocities measured experimentally were even larger than those estimated computationally. CONCLUSION: These experiments suggest that viscous stresses in leakage flow across a bileaflet mitral valve increase with gap width, and may contribute more to blood...
Effects of mantle rheologies on viscous heating induced by glacial isostatic adjustment
Huang, Ping Ping; Wu, Patrick; van der Wal, W.
2018-01-01
It has been argued that viscous dissipation from mantle flow in response to surface loading during glacial cycles can result in short-term heating and thus trigger transient volcanism or changes in mantle properties, which may in turn affect mantle dynamics. Furthermore, heating near the Earth's
Effect of constant heat flux at outer cylinder on stability of viscous ...
African Journals Online (AJOL)
In this paper, the stability of the Couette flow of a viscous incompressible fluid between two concentric rotating cylinders is studied in the presence of a radial temperature gradient, when the outer cylinder is maintained at a constant heat flux. The analytical solution of the eigen-value problem is obtained by using the ...