Plane waves in a thermally conducting viscous liquid
Indian Academy of Sciences (India)
The aim of this paper is to investigate plane waves in a thermally conducting viscous liquid half-space with thermal relaxation times. There exist three basic waves, namely; thermal wave, longitudinal wave and transverse wave in a thermally conducting viscous liquid half-space. Reﬂection of plane waves from the free ...
Plane waves in a thermally conducting viscous liquid
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
not possible in a non-viscous liquid. References. Achenbach J D 1973 Wave propagation in elastic solids (Amsterdam: North-Holland, Elsevier). Bath M 1968 Mathematical aspects of seismology (Amsterdam: Elsevier). Bullen K E 1963 An introduction to the theory of seismology. (London: Cambridge University Press).
Solidity of viscous liquids. III
DEFF Research Database (Denmark)
Dyre, Jeppe
2005-01-01
is much larger than estimated from the alpha relaxation time. This is shown to follow from the solidity of viscous liquids in an argument which, utilizing the irrelevance of momentum conservation at high viscosity, predicts that at high viscosity the coherent diffusion constant is much larger than...
Ten themes of viscous liquid dynamics
DEFF Research Database (Denmark)
Dyre, J. C.
2007-01-01
simplifies the theory by allowing for an ultra-local Hamiltonian (free energy), but also explains the observed general independence of chemistry. Whereas there are no long-ranged static (i.e., equal-time) correlations in the model, there are important long-ranged dynamic correlations on the alpha timescale.......Ten ‘themes' of viscous liquid physics are discussed with a focus on how they point to a general description of equilibrium viscous liquid dynamics (i.e., fluctuations) at a given temperature. This description is based on standard time-dependent Ginzburg-Landau equations for the density fields...
Solidity of viscous liquids. IV. Density fluctuations
DEFF Research Database (Denmark)
Dyre, J. C.
2006-01-01
implies that the Hamiltonian (free energy) may be taken to be ultralocal. As an illustration of the theory the case with the simplest nontrivial Hamiltonian is solved to second order in the Gaussian approximation, where it predicts an asymmetric frequency dependence of the isothermal bulk modulus...... with Debye behavior at low frequencies and an omega^{−1/2} decay of the loss at high frequencies. Finally, a general formalism for the description of viscous liquid dynamics, which supplements the density dynamics by including stress fields, a potential energy field, and molecular orientational fields...
Lift Force Acting on Bodies in Viscous Liquid Under Vibration
Schipitsyn, Vitaliy; Ivanova, Alevtina; Vlasova, Olga; Kozlov, Victor
2014-11-01
The averaged lift force acting on a rigid body located near the wall of the cavity with a viscous liquid under high-frequency oscillations of various types is studied experimentally and theoretically. The experiments are conducted with cylindrical and rectangular solids. Amplitude and frequency of vibration, viscosity and density of fluid, specific solid size, its density and shape vary. Lift force was measured by the dynamic hanging of the body in the gravity when the body oscillates without touching the cavity walls. The vibrations generate a repulsive force, holding a heavy body above the bottom of the cavity, and the light one at some distance from the ceiling. Lift force changes qualitatively in case of combined translational and rotational oscillations of the cavity containing fluid and solid; it is much greater than at the translational vibrations and appears throughout the entire volume of the liquid. The work contains a theoretical description of the mechanism of lift force generation and the comparison of the experimental and theoretical results. The agreement of the results is found in the limit of high dimensionless frequencies. The considered effects could be interesting for vibrational control of solid inclusions in viscous liquids. Work was done in the framework of the Program of strategic development of PSHPU (project 030-F) and supported by Ministry of Education of Perm Region (project C26/625) and grant 4022.2014.1 (Leading Scientific School).
Violations of conservation laws in viscous liquid dynamics
DEFF Research Database (Denmark)
Dyre, Jeppe
2007-01-01
The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover,......, although particle number conservation applies strictly for any liquid, the solidity of viscous liquids implies that even this conservation law is apparently violated in coarse-grained descriptions of density fluctuations.......The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover...
Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces
Lhermerout, Romain; Perkin, Susan
2018-01-01
Recent reports of surface forces across nanoconfined ionic liquids have revealed the existence of an anomalously long-ranged interaction apparently of electrostatic origin. Ionic liquids are viscous, and therefore it is important to inspect rigorously whether the observed repulsive forces are indeed equilibrium forces or, rather, arise from the viscous force during drainage of the fluid between two confining surfaces. In this paper we present our direct measurements of surface forces between mica sheets approaching in the ionic liquid [C2C1Im ] [NTf2] , exploring three orders of magnitude in approach velocity. Trajectories are systematically fitted by solving the equation of motion, allowing us to disentangle the viscous and equilibrium contributions. First, we find that the drainage obeys classical hydrodynamics with a negative slip boundary condition in the range of the structural force, implying that a nanometer -thick portion of the liquid in the vicinity of the solid surface is composed of ordered molecules that do not contribute to the flow. Second, we show that a long-range static force must indeed be invoked, in addition to the viscous force, in order to describe the data quantitatively. This equilibrium interaction decays exponentially and with decay length in agreement with the screening length reported for the same system in previous studies. In those studies the decay was simply checked to be independent of velocity and measured at a low approach rate, rather than explicitly taking account of viscous effects: we explain why this gives indistinguishable outcomes for the screening length by noting that the viscous force is linear to very good approximation over a wide range of distances.
Scaling of viscous dynamics in simple liquids
DEFF Research Database (Denmark)
Bøhling, Lasse; Ingebrigtsen, Trond; Grzybowski, A.
2012-01-01
Supercooled liquids are characterized by relaxation times that increase dramatically by cooling or compression. From a single assumption follows a scaling law according to which the relaxation time is a function of h(ρ) over temperature, where ρ is the density and the function h(ρ) depends...... on the liquid in question. This scaling is demonstrated to work well for simulations of the Kob–Andersen binary Lennard-Jones mixture and two molecular models, as well as for the experimental results for two van der Waals liquids, dibutyl phthalate and decahydroisoquinoline. The often used power-law density...... scaling, h(ρ)∝ργ, is an approximation to the more general form of scaling discussed here. A thermodynamic derivation was previously given for an explicit expression for h(ρ) for liquids of particles interacting via the generalized Lennard-Jones potential. Here a statistical mechanics derivation is given...
Zero-field nuclear magnetic resonance spectroscopy of viscous liquids.
Shimizu, Y; Blanchard, J W; Pustelny, S; Saielli, G; Bagno, A; Ledbetter, M P; Budker, D; Pines, A
2015-01-01
We report zero-field NMR measurements of a viscous organic liquid, ethylene glycol. Zero-field spectra were taken showing resolved scalar spin-spin coupling (J-coupling) for ethylene glycol at different temperatures and water contents. Molecular dynamics strongly affects the resonance linewidth, which closely follows viscosity. Quantum chemical calculations have been used to obtain the relative stability and coupling constants of all ethylene glycol conformers. The results show the potential of zero-field NMR as a probe of molecular structure and dynamics in a wide range of environments, including viscous fluids. Copyright © 2014 Elsevier Inc. All rights reserved.
Viscous Dissipation in One-Dimensional Quantum Liquids
Matveev, K. A.; Pustilnik, M.
2017-07-01
We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zero-temperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. Our consideration is applicable to all single-component Galilean-invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.
Minimal model for beta relaxation in viscous liquids
DEFF Research Database (Denmark)
Dyre, Jeppe; Olsen, Niels Boye
2003-01-01
Contrasts between beta relaxation in equilibrium viscous liquids and glasses are rationalized in terms of a double-well potential model with structure-dependent asymmetry, assuming structure is described by a single order parameter. The model is tested for tripropylene glycol where it accounts...... for the hysteresis of the dielectric beta loss peak frequency and magnitude during cooling and reheating through the glass transition....
Liquid Crystals Viscous and Elastic Properties in Theory and Applications
Pasechnik, Sergey V; Shmeliova, Dina V
2009-01-01
Covering numerous practical applications as yet not covered in any single source of information, this monograph discusses the importance of viscous and elastic properties for applications in both display and non-display technologies. The very well-known authors are major players in this field of research and pay special attention here to the use of liquid crystals in fiber optic devices as applied in telecommunication circuits.
Dynamics of amorphous solids and viscous liquids
DEFF Research Database (Denmark)
Dyre, Jeppe
for a charge carrier "hopping" in an extremely disordered solid is calculated from the expression for the universal AC conductivity derived in P5. P7 published in 1996 proposes a new expression for the universal AC conductivity in hopping models, derived by assuming that electrical conduction in extremely...... to predict the nonlinear response in a static external field from a complete knowledge of the equilibrium fluctuations of the quantity of interest. P13 and P14 both deal with nonlinear viscoelasticity. P13 from 1990 suggests a simple formula, a so-called ``constitutive relation'', for calculating the stress......-square displacement as function of time as that of charge carriers in an extremely disordered solid. P14, though only dealing with nonlinear viscoelasticity, is closely related to P12, because P14 gives an alternative recipe for estimating the nonlinear response from knowledge of the equilibrium fluctuations. In P15...
Viscous Effect of Drop Impacting on Liquid Film
Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao
2017-11-01
Drop impacting a liquid film is commonly observed in many processes including inkjet printing and thermal sprays. The accumulation and growth of the film depend on the outcome of subsequent drop impact on the initially formed film. In our recent study (Tang, et al. Soft Matter 2016), we have proposed a regime diagram based on the Weber number We (ratio of impact inertia and surface tension) and the film thickness, characterizing non-monotonic transitions between the bouncing and merging outcomes and providing scaling analysis for the boundaries for a single liquid (n-tetradecane). Since liquid viscosity fundamentally affects the impact outcome, through its influence on the flow field and dissipation of the kinetic energy, here we extend the study for a number of alkanes and silicone oils, covering a wide range of viscosity, to evaluate its effect on the regime diagram. We will show that while the regime diagram maintains its general structure, the merging regime becomes smaller for more viscous liquids and eventually the non-monotonicity disappears. We will model the viscous effects and present a modified scaling. This new scaling attempts to unify all liquids and provides a useful tool to manipulate the outcome of drop impact on liquid film. The work at Princeton University is supported by the Army Research Office and the Xerox Corporation.
Transformation of a Taylor cone into a frustum upon discharge in viscous dielectric liquids
Orlov, A. M.; Yavtushenko, I. O.; Rynkova, O. G.
2017-07-01
The specifics of behavior of viscous electrolytes (exemplified by glycerol) subjected to spark discharges with direct connection of electrodes and in the induced charge mode have been studied. The transformation of a Taylor cone into a frustum, the stable existence of which depends on the polarization time, has been observed for the first time with cyclic discharges in the interelectrode space localized between an anodepolarizable viscous dielectric liquid (glycerol) and an overhanging cathode-polarizable metal electrode. The frustum development criteria (high dynamic viscosity and electric strength of the solution and low conductivity) have been determined.
Self-focused acoustic ejectors for viscous liquids.
Hon, S F; Kwok, K W; Li, H L; Ng, H Y
2010-06-01
Self-focused acoustic ejectors using the Fresnel zone plate (FZP) have been developed for ejecting viscous liquids, without nozzle, in the drop-on-demand mode. The FZP is composed of a lead zirconate titanate piezoelectric plate patterned with a series of annular electrodes, with the unelectroded region of the plate removed. Our results show that the acoustic waves are effectively self-focused by constructive interference in glycerin (with a viscosity of 1400 mPa s), giving small focal points with a high pressure. Due to the high attenuation, the wave pressure decreases significantly with the distance from the FZP. Nevertheless, the pressure at the focal points 2.5 and 6.5 mm from the FZP is high enough to eject glycerin droplets in the drop-on-demand mode. Driven by a simple wave train comprising a series of sinusoidal voltages with an amplitude of 35 V, a frequency of 4.28 MHz, and a duration of 2 ms, the ejector can eject fine glycerin droplets with a diameter of 0.4 mm at a repetition frequency of 120 Hz in a downward direction. Droplets of other viscous liquids, such as the prepolymer of an epoxy with a viscosity of 2000 mPa s, can also be ejected in the drop-on-demand mode under similar conditions.
Atomic force microscopy spring constant determination in viscous liquids.
Pirzer, Tobias; Hugel, Thorsten
2009-03-01
The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this "thermal noise method" is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.
Shear Viscous Response of Molecularly Thin Liquid Films
Tschirhart, Charles; Troian, Sandra
2014-11-01
Fluids that exhibit Newtonian response at the macroscale can display interesting deviations at the nanoscale caused by internal fluid microstructure or conformational entropy reduction near an adjacent solid boundary. Such deviations signal the breakdown of the continuum and isotropic fluid approximations at molecular length scales. These effects are particularly pronounced near the interface separating a liquid film from a supporting solid substrate where molecular layering in the fluid can result in inhomogeneity in the shear viscosity. Here we describe ellipsometric measurements of the surface deformation of non-volatile liquid nanofilms subject to a constant interfacial shear stress. For simple Newtonian response, the slope of the deformation can be used to extract the value of the shear viscosity in ultrathin films, which in our experiments range from 2 - 200 nm in thickness. For complex films, we observe deviations from linear deformation which require augmentation of the analytic model normally used to describe the viscous response. These findings may be helpful for improved parametrization of the shear response of supported free surface films as well as course grained models for nanofluidic applications. Support from the Fred and Jean Felberg and Winifred and Robert Gardner Summer Undergraduate Research Fellowships is gratefully acknowledged.
Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets
Das, Siddhartha
2013-01-01
It has been recently reported that in presence of low Reynolds number (Re<<1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this letter, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such "viscous liquid" state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand an external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions.
The constancy of the contact angle in viscous liquid motions with ...
Indian Academy of Sciences (India)
Abstract. Consider motion initiated in a viscous liquid in a smooth walled container. The liquid is initially at rest under uniform pressure from an inert gas of negligible inertia. We show that if the contact line is pinned and the interface is single valued, the contact angle has to remain constant throughout the motion. This is true ...
The constancy of the contact angle in viscous liquid motions with ...
Indian Academy of Sciences (India)
Consider motion initiated in a viscous liquid in a smooth walled container. The liquid is initially at rest under uniform pressure from an inert gas of negligible inertia. We show that if the contact line is pinned and the interface is single valued, the contact angle has to remain constant throughout the motion. This is true even for ...
Low-energy excitations in a low-viscous glass-forming liquid
Indian Academy of Sciences (India)
... contribution to the overall low frequency Raman pattern is present even in this low-viscous liquid. The degree of disorder in this liquid is not so high and certain micro-ordering effects may take place due to hydrogen bonding. The results are discussed in the framework of the current phenomenological status of the field.
One-Dimensional Problem of a Conducting Viscous Fluid with One Relaxation Time
Directory of Open Access Journals (Sweden)
Angail A. Samaan
2011-01-01
Full Text Available We introduce a magnetohydrodynamic model of boundary-layer equations for conducting viscous fluids. This model is applied to study the effects of free convection currents with thermal relaxation time on the flow of a viscous conducting fluid. The method of the matrix exponential formulation for these equations is introduced. The resulting formulation together with the Laplace transform technique is applied to a variety problems. The effects of a plane distribution of heat sources on the whole and semispace are studied. Numerical results are given and illustrated graphically for the problem.
Nakajima, Takehiro; Ando, Keita
2015-11-01
An experimental technique is developed to observe free oscillations of a spherical gas bubble in highly viscous liquids. It is demonstrated that focusing a nanosecond laser pulse of wavelength 532 nm and energy up to 1.5 mJ leads to the formation of a spherical gaseous bubble, not a vaporous bubble (quickly condensed back to the liquid), whose equilibrium radius is up to 200 microns in glycerin saturated with gases at room temperature. The subsequent free oscillations of the spherical gas bubble is visualized using a high-speed camera. Since the oscillation periods are short enough to ignore bubble translation under gravity and mass transfer out of the bubble, the observed bubble dynamics can be compared to nonlinear and linearized Reyleigh-Plesset-type calculations that account for heat conduction and acoustic radiation as well as the liquid viscosity. In this presentation, we report on the measurements with varying the viscosity and comparisons to the theory to quantify damping mechanisms in the bubble dynamics.
An embedded boundary method for viscous, conducting compressibleflow
Energy Technology Data Exchange (ETDEWEB)
Dragojlovic, Zoran; Najmabadi, Farrokh; Day, Marcus
2004-10-20
The evolution of an Inertial Fusion Energy (IFE) chamberinvolves a repetition of short, intense depositions of energy (fromtarget ignition) into a reaction chamber, followed by the turbulentrelaxation of that energy through shock waves and thermal conduction tothe vessel walls. We present an algorithm for 2D simulations of the fluidinside an IFE chamber between fueling repetitions. Our finite-volumediscretization for the Navier-Stokes equations incorporates a Cartesiangrid treatment for irregularly-shaped domain boundaries. The discreteconservative update is based on a time-explicit Godunov method foradvection, and a two-stage Runge-Kutta update for diffusion accommodatingstate-dependent transport properties. Conservation is enforced on cutcells along the embedded boundary interface using a local redistributionscheme so that the explicit time step for the combined approach isgoverned by the mesh spacing in the uniform grid. The test problemsdemonstrate second-order convergence of the algorithm on smooth solutionprofiles, and the robust treatment of discontinuous initial data in anIFE-relevant vessel geometry.
Low-energy excitations in a low-viscous glass-forming liquid
Indian Academy of Sciences (India)
Low-energy excitations in a low-viscous glass-forming liquid. ANGELOS G KALAMPOUNIAS. Department of Chemical Engineering, University of Patras, GR 26504, Patras, Greece and Foundation for Research and Technology Hellas – Institute of Chemical Engineering and High Temperature Chemical Processes, ...
Nanoscale Carbon Greatly Enhances Mobility of a Highly Viscous Ionic Liquid
DEFF Research Database (Denmark)
Chaban, V. V.; Prezhdo, O. V.
2014-01-01
liquids (ILs) and apolar carbon nanotubes (CNTs) are disparate objects; nevertheless, their interaction leads to spontaneous CNT filling with ILs. Moreover, ionic diffusion of highly viscous ILs can increase 5-fold inside CNTs, approaching that of molecular liquids, even though the confined IL phase still...... phenomena. Governed by internal energy and entropy rather than external work, the kinetics of CNT filling is characterized in detail The significant growth of the IL mobility induced by nanoscale carbon promises important advances in electricity storage devices....
Electric field stabilization of viscous liquid layers coating the underside of a surface
Anderson, Thomas G.; Cimpeanu, Radu; Papageorgiou, Demetrios T.; Petropoulos, Peter G.
2017-05-01
We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a horizontal surface in the presence of an electric field applied parallel to the surface. The model includes the effect of bounding solid dielectric regions above and below the liquid-air system that are typically found in experiments. The competition between gravitational forces, surface tension, and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semispectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations using the volume-of-fluid methodology and assess the accuracy of the obtained solutions in the long-wave (thin-film) regime when varying the electric field strength from zero up to the point when complete stabilization occurs. We employ DNS to examine the limitations of the asymptotically derived behavior as the liquid layer thickness increases and find excellent agreement even beyond the regime of strict applicability of the asymptotic solution. Finally, the asymptotic and computational approaches are utilized to identify robust and efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.
Pragmatical access to the viscous flow of undercooled liquids
Buchenau, U.
2017-06-01
The paper derives a relation for the viscosity of undercooled liquids on the basis of the pragmatical model concept of Eshelby relaxations with a finite lifetime. From accurate shear relaxation data in the literature, one finds that slightly less than half of the internal stresses relax directly via single Eshelby relaxations; the larger part dissolves at the terminal lifetime, which is a combined effect of many Eshelby relaxations.
A model for the generic alpha relaxation in viscous liquids
DEFF Research Database (Denmark)
Dyre, Jeppe
2005-01-01
Dielectric measurements on molecular liquids just above the glass transition indicate that alpha relaxation is characterized by a generic high-frequency loss varying as one over square root of frequency, whereas deviations from this come from one or more low-lying beta processes [Olsen et al., Phys....... Rev. Lett., 86 (2001) 1271]. Assuming that long-wavelength fluctuations dominate the dynamics, a model for the dielectric alpha relaxation based on the simplest coupling between the density and dipole density fields is proposed here. The model, which is solved in second-order perturbation theory...
Motion of a solid body with cavity filled with viscous liquid
Rachinskaya, A. L.
2015-11-01
Rotational motion around the center of mass of a dynamically asymmetric satellite with spherical cavity filled with viscous liquid is studied for low Reynolds numbers. The numeric analysis of the vector change of kinetic momentum of a solid body was performed, the hodograph of the vector was plotted, and numerical study of the stability of the extreme position of the Eigen rotation axis of a solid body was carried out. A solid body with mass geometry of Earth was studied.
An exact solution to the draining reservoir problem of the incompressible and non-viscous liquid
Energy Technology Data Exchange (ETDEWEB)
Hong, Seok-In [Department of Science Education, Gyeongin National University of Education, Anyang 430-739 (Korea, Republic of)], E-mail: sihongtao@hanmail.net
2009-03-15
The exact expressions for the drain time and the height, velocity and acceleration of the free surface are found for the draining reservoir problem of the incompressible and non-viscous liquid. Contrary to the conventional approximate results, they correctly describe the initial time dependence of the liquid velocity and acceleration. Torricelli's law does not hold in the initial transient region, which imposes restrictions on the validity of the analogy between the drain system and the electric circuit (Ohm's law)
Directory of Open Access Journals (Sweden)
Zakurdaeva Alia
2016-01-01
Full Text Available The results of mathematical modelling of the dynamics of a mixture of the viscous incompressible liquid and gas, which fills a spherical layer with free boundaries and contains a gas bubble within itself, are presented in this paper. Spherical symmetry is assumed, and it is considered that the dynamics of the layer is determined by thermal, diffusive and inertial factors. On the basis of constructed numerical algorithm the studies of the formation of the liquid glass layers, which contain the carbon dioxide gas within themselves, have been conducted. The impact of the external thermal regime, external pressure and the density of gas in the bubble at the initial time on the dynamics of the layer, diffusion and heat-and-mass processes inside it is investigated. The results of numerical investigation of the full and simplified thermal problem statement, without consideration of gas diffusion, are compared.
Flow of an elastico-viscous liquid in a curved pipe of slowly varying curvature.
Sarin, V B
1993-03-01
Curvature forms an important feature of thoracic aorta and this paper deals with the flow of an idealized elastico-viscous liquid in a curved pipe of circular cross-section and slowly varying curvature, under a pressure gradient. The flow is assumed to be steady and at low Reynolds numbers. By using the series expansion method of Dean (Phil Mag 4 (1927) 208-223; Phil Mag 5 (1928) 673-693) in powers of a parameter L, which can be considered as the square of ratio of the centrifugal force induced by the circular motion of the fluid to the viscous force, it is shown that in a tube of increasing curvature, there will be delay in setting up of the secondary motion. The wall shear stress, an important parameter in physiological flows, is calculated. The flow of Newtonian fluid in a tube of circular cross section is discussed, as a particular case.
Viscous dispersion effects on bound-state formation in falling liquid films
Pradas, Marc; Tseluiko, Dmitri; Kalliadasis, Serafim
2010-11-01
We examine the influence of viscous dispersion on the interaction of two-dimensional solitary pulses in falling liquid films at moderate Reynolds number. We make use of an averaged model that includes second-order viscous effects in the long-wave expansion. These effects play a dispersive role affecting primarily the shape of the capillary ripples in front of the solitary pulses. We show that different physical parameters, such as surface tension and viscosity, play a crucial role in the interaction between pulses giving rise eventually to the formation of bound states consisting of two or more pulses separated by well-defined distances and travelling at the same velocity. By developing a coherent-structures theory that assumes weak interaction between the pulses, we are able to theoretically predict the pulse-separation distances for which bound states are formed. It is shown that viscous dispersion significantly affects the distances at which bound states are observed. In all cases, there is very good agreement between the theory and computations of the fully nonlinear system.
Directory of Open Access Journals (Sweden)
Rezanova Ekaterina
2017-01-01
Full Text Available The dynamics of a viscous incompressible liquid layer and the temperature distribution in it are investigated numerically in three-dimensional case. The planar layer with free boundaries under condition of zero gravity is studied on the basis of the special class of exact solutions of the Navier-Stokes equations. The thermocapillary forces and additional tangential stresses on the boundaries caused by the environment are taken into account. The influence of additional tangential stresses on the layer dynamics and heat distribution is studied.
NUCLEAR-MAGNETIC MINI-RELAXOMETER FOR LIQUID AND VISCOUS MEDIA CONTROL
Directory of Open Access Journals (Sweden)
V. V. Davydov
2015-01-01
Full Text Available The paper deals with a new method for registration of nuclear magnetic resonance signal of small volume liquid and viscous media being studied (0.5 ml in a weak magnetic field (0.06 –0.08 T, and measuring of longitudinal T1 and transverse T2 relaxation constants. A new construction of NMR mini-relaxometer magnetic system is developed for registration of NMR signal. The nonuniformity of a magnetic field in a pole where registration coil is located is 0,410–3 sm–1 (the induction is В0 = 0.079 T. An electrical circuit of autodyne receiver (weak fluctuations generator has been developed with usage of low noise differential amplifier and NMR signal operating and control scheme (based on microcontroller STM32 for measuring of relaxation constants of liquid and viscous media in automatic operating mode. New technical decisions made it possible to improve relaxometer response time and dynamic range of measurements for relaxation constants T1 and T2 in comparison with small sized nuclear-magnetic spectrometer developed by the authors earlier (with accuracy characteristics conservation. The developed schemes for self-tuning of registration frequency, generating amplitude of magnetic field H1 in registration coil, and amplitude and frequency of modulating field provide measuring of T1 and T2 with error less than 0.5 % and signal to noise ratio about 1.2 in temperature range from 3 to 400 C. A new construction of mini-relaxometer reduced the weight of the device to 4 kg (with independent supply unit and increased transportability and operating convenience.
Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi
2011-11-01
The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that, when the burning rate is realistically allowed to depend on temperature as well as pressure, sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes like pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wave numbers are sufficiently small. This analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wave number perturbations, the intrinsic pulsating instability for small wave numbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
Viscous and Thermal Effects on Hydrodynamic Instability in Liquid-Propellant Combustion
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during the deflagration of liquid propellants in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
Directory of Open Access Journals (Sweden)
I. J. Uwanta
2014-01-01
Full Text Available This study investigates the unsteady natural convection and mass transfer flow of viscous reactive, heat generating/absorbing fluid in a vertical channel formed by two infinite parallel porous plates having temperature dependent thermal conductivity. The motion of the fluid is induced due to natural convection caused by the reactive property as well as the heat generating/absorbing nature of the fluid. The solutions for unsteady state temperature, concentration, and velocity fields are obtained using semi-implicit finite difference schemes. Perturbation techniques are used to get steady state expressions of velocity, concentration, temperature, skin friction, Nusselt number, and Sherwood number. The effects of various flow parameters such as suction/injection (γ, heat source/sinks (S, Soret number (Sr, variable thermal conductivity δ, Frank-Kamenetskii parameter λ, Prandtl number (Pr, and nondimensional time t on the dynamics are analyzed. The skin friction, heat transfer coefficients, and Sherwood number are graphically presented for a range of values of the said parameters.
On the Impact of Spheres onto Liquid Pools and Ultra-viscous Films
Mansoor, Mohammad Mujtaba
2016-06-01
The free-surface impact of spheres is important to several applications in the military, industry and sports such as the water-entry of torpedoes, dip-coating procedures and slamming of boats. This two-part thesis attempts to explore this field by investigating cavity formation during the impact of spheres with deep liquid pools and cavitation in thin ultra-viscous films. Part I reports results from an experimental study on the formation of stable- streamlined and helical cavity wakes following the free-surface impact of heated Leidenfrost spheres. The Leidenfrost effect encapsulates the sphere by a vapor layer to prevent any physical contact with the surrounding liquid. This phenomenon is essential for the pacification of acoustic rippling along the cavity interface to result in a stable-streamlined cavity wake. Such a streamlined configuration experiences drag coefficients an order of magnitude lower than those acting on room temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers 0 ≳ 1.4 × 105 and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. This helical configuration has 40-55% smaller overall force coefficients than those obtained in the formation of stable cavity wakes. Part II of this thesis investigates the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having kinematic viscosities of up to 0 = 20,000,000 cSt. The existence of shear-stress- induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films is shown using a synchronized dual-view high-speed imaging system. In addition, cavitation by depressurization is noted for a new class of non-contact cases whereby the sphere rebounds without any prior contact with the solid wall. Horizontal
Duda, D.; Švančara, P.; La Mantia, M.; Rotter, M.; Skrbek, L.
2015-08-01
The motions of micrometer-sized solid deuterium particles in liquid 4He, at temperatures between approximately 1.2 and 3 K, are visualized in the proximity of an oscillating cylinder of rectangular cross section (3 mm high and 10 mm wide). The cylinder is oscillating vertically, perpendicularly to its cross-section width, at frequencies between 0.05 and 1.25 Hz, and amplitudes of 5 and 10 mm, resulting in Reynolds numbers R e up to 105. The aim of the reported experiments is to investigate systematically the macroscopic vortical structures shed at the cylinder sharp edges, by tracking the deuterium particles. We find that large-scale, millimeter-sized vortices are generated in the surrounding fluid by the oscillating cylinder, both in viscous He I and superfluid He II. An estimate of the strength of the shed vortical structures reveals that, for R e >104 , the corresponding magnitudes are approximately equal in He I and He II if, in He II, the kinematic viscosity is suitably defined. For R e <104 , the strength of the large-scale vortices is smaller in He II than in He I. Although the outcome is partly affected by the larger scatter of the He I data and possibly also by the much larger heat conductivity of superfluid 4He, we argue that the fundamental physical reason for observing this difference is that, at these Reynolds numbers, the experimentally probed length scales in He II are smaller than the average distance between quantized vortices—the quantum length scale of the flow. The result strongly suggests that, similarly to thermal counterflow, both viscous and quantum features can be observed in mechanically driven flows of He II, depending on the length scales at which the quantum flow is probed.
Inertial Motions of a Rigid Body with a Cavity Filled with a Viscous Liquid
Disser, Karoline; Galdi, Giovanni P.; Mazzone, Giusy; Zunino, Paolo
2016-07-01
We study inertial motions of the coupled system, {S}, constituted by a rigid body containing a cavity entirely filled with a viscous liquid. We show that for arbitrary initial data having only finite kinetic energy, every corresponding weak solution (à la Leray-Hopf) converges, as time goes to infinity, to a uniform rotation, unless two central moments of inertia of {S} coincide and are strictly greater than the third one. This corroborates a famous "conjecture" of N.Ye. Zhukovskii in several physically relevant cases. Moreover, we show that, in a known range of initial data, this rotation may only occur along the central axis of inertia of {S} with the larger moment of inertia. We also provide necessary and sufficient conditions for the rigorous nonlinear stability of permanent rotations, which improve and/or generalize results previously given by other authors under different types of approximation. Finally, we present results obtained by a targeted numerical simulation that, on the one hand, complement the analytical findings, whereas, on the other hand, point out new features that the analysis is yet not able to catch, and, as such, lay the foundation for interesting and challenging future investigation.
Slemenik Perše, L; Colović, M; Hajzeri, M; Orel, B; Surca Vuk, A
2014-08-14
Ionic liquids can be successfully used as electrolytes in electrochemical devices when they are in their quasi-solid state. Among several methods of solidification, a sol-gel process was chosen and a set of alkoxysilyl-functionalized iodide imidazolium-based ionic liquids were synthesized. The electrolytes were prepared by mixing these ionic liquids with a non-polymerisable ionic liquid (1-methyl-3-propylimidazolium iodide (MPIm(+)I(-))). Iodine was dissolved in an electrolyte matrix in order to form an I3(-)/I(-) redox couple. The change of the structure from sol to gel was followed by rheological tests in order to show the effect of different rheological parameters on the gelation process. The solvolysis with glacial acetic acid and condensation were followed by rheological experiments on the samples taken from a batch, and in situ on the rheometer. The formed three-dimensional sol-gel networks of various alkoxysilyl-functionalized ionic liquids differed in their microstructures and viscoelastic properties that were correlated with conductivity. The results show that the conductivity of approximately 10(-3) S cm(-1) at room temperature was achieved for the gels with relatively high values of elastic modulus and noticeable viscous contribution. It is shown that not only the viscosity but also the viscoelastic behavior and especially the relationship between viscous and elastic moduli (phase shift) together with the time of gelation are essential for the high conductivity of electrolytes.
Hydromagnetic Stability of Two Rivlin-Ericksen Elastico-Viscous Superposed Conducting Fluids
Sharma, R. C.; Kumar, P.
1997-07-01
The stability of the plane interface separating two Rivlin-Ericksen elastico-viscous superposed fluids of uniform densities when the whole system is immersed in a uniform horizontal magnetic field has been studied. The stability analysis has been carried out, for mathematical simplicity, for two highly viscous fluids of equal kinematic viscosities and equal kinematic viscoelasticities. It is found that the stability criterion is independent of the effects of viscosity and viscoelasticity and is dependent on the orientation and magnitude of the magnetic field. The magnetic field is found to stabilize a certain wave-number range of the unstable configuration. The behaviour of growth rates with respect to kinematic viscosity and kinematic viscoelasticity parameters are examined numerically.
Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers.
Alford, Mark G; Bovard, Luke; Hanauske, Matthias; Rezzolla, Luciano; Schwenzer, Kai
2018-01-26
Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.
Henritzi, Patrick; Bormuth, André; Klameth, Felix; Vogel, Michael
2015-10-28
We perform molecular dynamics simulations for viscous liquids to study the relations between dynamical heterogeneity, structural (α) relaxation, and self-diffusion. For atomistic models of supercooled water, polymer melts, and an ionic liquid, we characterize the space-time characteristics of dynamical heterogeneity by the degree of deviations from Gaussian displacement statistics (α2), the size of clusters comprising highly mobile particles (S(w)), and the length of strings consisting of cooperatively moving particles (L(w)). Comparison of our findings with previous simulation results for a large variety of viscous liquids, ranging from monoatomic liquids to silica melt, reveals a nearly universal decoupling between the time scales of maximum non-Gaussian parameter (τ(α2)) and the time constant of the α relaxation (τ(α)) upon cooling, explicitly, τ(α2) ∝τ(α)(3/4). Such uniform relation was not observed between the peak times of S(w) or L(w) and τ(α). On the other hand, the temperature-dependent time scale of maximum string length (τ(L)) follows the inverse of the self-diffusion coefficient (D) for various systems at sufficiently low temperatures, i.e., τ(L) ∝ D(-1). These observations are discussed in view of a breakdown of the Stokes-Einstein relation for the studied systems. It is found that the degree of deviation from this relation is correlated with the stretching of the α relaxation.
Highly anisotropic conductivity in organosiloxane liquid crystals
Gardiner, D. J.; Coles, H. J.
2006-12-01
In this paper, we present the conductivity and dielectric characterization of three homologous series of smectic A siloxane containing liquid crystals. The materials studied include one monomesogenic series, which consists of a 4-(ω-alkyloxy)-4'-cyanobiphenyl unit terminated by pentamethyldisiloxane, and two bimesogenic series, which consist of twin 4-(ω-alkyloxy)-4'-cyanobiphenyls joined via tetramethyldisiloxane or decamethylpentasiloxane. All of the compounds exhibit wide temperature range enantiotropic smectic A phases; the effect of the siloxane moiety is to suppress nematic morphology even in the short chain homologs. We find that these compounds exhibit a highly anisotropic conductivity: the value perpendicular to the director is to up to 200 times that parallel to the director. For the nonsiloxane analog 4-(ω-octyl)-4'-cyanobiphenyl (8CB), this value is approximately 2. It is also found that the dielectric anisotropy is reduced significantly; a typical value is ˜1 compared to 8.4 for 8CB. We propose that the origin of these unusual properties is in the smectic structure; the microphase separation of the bulky, globular siloxane moieties into liquidlike regions severely inhibits the mobility parallel to the director and across the smectic layers. Further, the inclusion of this unit acts to increase the antiparallel correlations of molecular dipoles in the aromatic and alkyloxy sublayers, reducing the dielectric anisotropy significantly compared to nonsiloxane analogs. The highly anisotropic conductivity suggests that these materials are particularly suitable for application in electro-optic effects which exploit this property, e.g., the bistable electro-optic effect in smectic A liquid crystals.
Directory of Open Access Journals (Sweden)
Dr. G. Prabhakara Rao,
2015-04-01
Full Text Available We consider a two-dimensional MHD natural convection flow of an incompressible viscous and electrically conducting fluid through porous medium past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by the ordinary differential equations by introducing appropriate coordinate transformations. We solve that ordinary differential equations and find the velocity profiles, temperature profile, the skin friction and nusselt number. The effects of Grashof number (Gr, Hartmann number (M and Prandtl number (Pr, Darcy parameter (D-1 on velocity profiles and temperature profiles are shown graphically.
Heat transfer by laminar flow of an elastico-viscous liquid along a plane wall with periodic suction
Roy, J. S.; Chaudhury, N. K.
1980-11-01
The problem of heat transfer by the laminar flow of an elastico-viscous liquid along a plane wall with periodic suction has been considered. A perturbation technique has been used to obtain an approximate solution of the differential equations. The flow phenomenon has been characterized by the non-dimensional parameters like the elastic number ( S), the Reynolds number ( R), the Prandtl number ( P) and the Eckert number ( E). The effects of these parameters on the temperature distributions and the rate of heat transfer at the wall have been studied.
An experimental and numerical investigation of container filling with viscous liquids
Tomé, M. F.; McKee, S.; Barratt, L.; Jarvis, D. A.; Patrick, A. J.
1999-12-01
This work is concerned with a study of container filling, with particular reference to the food industry. A computer code was developed and an experimental rig was built, the main purpose being to validate the software. The computational fluid dynamic (CFD) code, called GENSMAC, was specifically designed for relatively slow viscous flow and was capable of capturing multiple free surfaces. This paper focuses on the design of the experimental rig and how it functions. The visual output of the code is then compared with high-speed photographic shots of glucose syrup being jetted into a tub for a selected number of flow regimes. Copyright
Eslami, Ghiyam; Esmaeilzadeh, Esmaeil; Pérez, Alberto T.
2016-10-01
Up and down motion of a spherical conductive particle in dielectric viscous fluid driven by a DC electric field between two parallel electrodes was investigated. A nonlinear differential equation, governing the particle dynamics, was derived, based on Newton's second law of mechanics, and solved numerically. All the pertaining dimensionless groups were extracted. In contrast to similar previous works, hydrodynamic interaction between the particle and the electrodes, as well as image electric forces, has been taken into account. Furthermore, the influence of the microdischarge produced between the electrodes and the approaching particle on the particle dynamics has been included in the model. The model results were compared with experimental data available in the literature, as well as with some additional experimental data obtained through the present study showing very good agreement. The results indicate that the wall hydrodynamic effect and the dielectric liquid ionic conductivity are very dominant factors determining the particle trajectory. A lower bound is derived for the charge transferred to the particle while rebounding from an electrode. It is found that the time and length scales of the post-microdischarge motion of the particle can be as small as microsecond and micrometer, respectively. The model is able to predict the so called settling/dwelling time phenomenon for the first time.
DEFF Research Database (Denmark)
Dyre, Jeppe; Olsen, Niels Boye; Christensen, Tage Emil
1996-01-01
A model for the viscosity of glass-forming molecular liquids is proposed in which a "flow event" requires a local volume increase. The activation energy for a flow event is identified with the work done in shoving aside the surrounding liquid; this work is proportional to the high-frequency shear...... modulus, which increases as the temperature decreases. The model is confirmed by experiments on a number of molecular liquids....
DEFF Research Database (Denmark)
Riisager, Anders; Fehrmann, Rasmus; Berg, Rolf W.
2005-01-01
Electrical conductivity, FT-Raman and NMR measurements are demonstrated as useful tools to probe and determine phase behavior of thermomorphic ionic liquid-organic liquid systems. To illustrate the methods, consecutive conductivity measurements of a thermomorphic methoxyethoxyethyl-imidazolium io...... of the components in the system, the liquid-liquid equilibrium phase diagram of the binary mixture, and signify the importance of hydrogen bonding between the ionic liquid and the hydroxyl group of the alcohol....
Albertson, Theodore; Troian, Sandra
2017-11-01
Previous studies by Zubarev (2001) and Suvorov and Zubarev (2004) have shown that above a critical field strength, an ideal (inviscid) conducting fluid film will deform into a singular profile characterized by a conic cusp. The governing equations for the electrohydrodynamic response beneath the cusp admit self-similar solutions leading to so-called blow-up behavior in the Maxwell pressure, capillary pressure and kinetic energy density. The runaway behavior in these variables reflects divergence in time characterized by an exponent of -2/3. Here we extend the physical system to include viscous effects and conduct a computational study of the cusp region as a function of increasing electrical Reynolds number ReE . We employ a finite element, moving mesh algorithm to examine the behavior of the film shape, Maxwell pressure and capillary pressure upon approach to the blow-up event. Our study indicates that self-similarity establishes at relatively low ReE despite the presence of vorticity, which is localized to the cusp surface region. With increasing ReE , the period of self-similiarity extends further in time as the exponent changes from about -4/5 to the ideal value of -2/3, with slightly different values distinguishing the Maxwell and capillary stresses. T. Albertson gratefully acknowledges support from a NASA Space Technology Research Fellowship.
The effect of viscosity on the kinetics of redox reactions in highly viscous silicate liquids.
Kido, Ladislav; Müller, Matthias; Rüssel, Christian
2012-06-14
The kinetics of the temperature dependent redox reaction between chromium and manganese (Cr(6+) + 3Mn(2+)⇌Cr(3+) + 3Mn(3+)) in highly viscous silicate melts were studied by UV-vis-NIR spectroscopy at temperatures in the range from 25 to 800 °C. At high temperatures, the reaction is in equilibrium. During cooling, it is continuously shifted to the right. During cooling from Tg+50 K to Tg (Tg = glass transition temperature), a further decrease in the Cr(6+) concentration was obtained which, however, was less pronounced if larger cooling rates were applied. In this temperature range, the kinetics plays an important part. Finally, at a certain temperatures below Tg, the equilibrium was frozen. The temperature, the equilibrium is frozen in decreases with decreasing cooling rate. It also decreases with the glass transition temperature of the respective composition. The activation energies increase with the activation energies of the viscosity of the respective melt. The redox reaction is controlled by the viscosity, i.e., the rearrangement of the glass network and not by diffusion. The reason is a drastic change in the coordination spheres during the reaction which leads to a high inner reorganization energy according to Marcus' Theory.
Model for Terrain-Induced Slug Flow for High Viscous Liquids
Directory of Open Access Journals (Sweden)
Andrea Shmueli
2014-12-01
Full Text Available This paper presents the development and results of a simplified multiphase model for terrain-induced slugging analysis considering the viscosity effect of the liquid phase in the conservation equations. The phenomenon has been successfully modelled with numerical models (Fabre et al. 1990, Sarica et al 1991 that neglect the liquid viscosity effect. The objective of the present study is to clarify its importance in the numerical prediction of the characteristics of severe slugging. The results of the model where compared with experimental data reported in the literature showing a maximum percentage difference of 6% which represents a 7% improvement with respect to the prediction of existing models. The liquid viscosity has an effect on the duration of the severe slugging cycle. The cycle will reduce while the viscosity increases. Additionally, the effect of the riser inclination angle is analyzed showing a mitigation of the severe slugging phenomenon while decreasing the angle
Feasibility of a single-parameter description of equilibrium viscous liquid dynamics
DEFF Research Database (Denmark)
Pedersen, Ulf Rørbæk; Christensen, Tage Emil; Schrøder, Thomas
2008-01-01
Molecular dynamics results for the dynamic Prigogine-Defay ratio are presented for two glass-forming liquids, thus evaluating the experimentally relevant quantity for testing whether metastable-equilibrium liquid dynamics is described by a single parameter to a good approximation. For the Kob......-Andersen binary Lennard-Jones mixture as well as for an asymmetric dumbbell model liquid, a single-parameter description works quite well. This is confirmed by time-domain results where it is found that energy and pressure fluctuations are strongly correlated on the alpha time scale in the constant......-volume, constant-temperature ensemble; similarly, energy and volume fluctuations correlate strongly in the constant-pressure, constant-temperature ensemble....
Lidocaine viscous, a local anesthetic, is used to treat the pain of a sore or irritated mouth ... associated with cancer chemotherapy and certain medical procedures. Lidocaine viscous is not normally used for sore throats ...
A method of measuring the thermal conductivity of liquids
Held, E.F.M. van der; Drunen, F.G. van
1949-01-01
We described the development of an apparatus for the determination of the thermal conductivity of liquids. The apparatus is suitable for all kinds of liquids, including the strongest acids. From a given time we pass an electric current through a thin straight wire, placed in a homogeneous material
Mirigian, Stephen; Schweizer, Kenneth S
2014-05-21
Building on the elastically collective nonlinear Langevin equation theory developed for hard spheres in Paper I, we propose and implement a quasi-universal theory for the alpha relaxation of thermal liquids based on mapping them to an effective hard sphere fluid via the dimensionless compressibility. The result is a zero adjustable parameter theory that can quantitatively address in a unified manner the alpha relaxation time over 14 or more decades. The theory has no singularities above zero Kelvin, and relaxation in the equilibrium low temperature limit is predicted to be of a roughly Arrhenius form. The two-barrier (local cage and long range collective elastic) description results in a rich dynamic behavior including apparent Arrhenius, narrow crossover, and deeply supercooled regimes, and multiple characteristic or crossover times and temperatures of clear physical meaning. Application of the theory to nonpolar molecules, alcohols, rare gases, and liquids metals is carried out. Overall, the agreement with experiment is quite good for the temperature dependence of the alpha time, plateau shear modulus, and Boson-like peak frequency for van der Waals liquids, though less so for hydrogen-bonding molecules. The theory predicts multiple growing length scales upon cooling, which reflect distinct aspects of the coupled local hopping and cooperative elastic physics. Calculations of the growth with cooling of an activation volume, which is strongly correlated with a measure of dynamic cooperativity, agree quantitatively with experiment. Comparisons with elastic, entropy crisis, dynamic facilitation, and other approaches are performed, and a fundamental basis for empirically extracted crossover temperatures is established. The present work sets the stage for addressing distinctive glassy phenomena in polymer melts, and diverse liquids under strong confinement.
Babasola, Iyabo Oladunni; Rooney, Meghan; Amsden, Brian G
2013-12-02
The potential of a viscous liquid injectable delivery system composed of poly(5-ethylene ketal ε-caprolactone-co-D,L-lactide) (PEKCDLLA) to release bioactive vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) using an osmotic pressure release mechanism for the purpose of treating critical limb ischemia was investigated. VEGF and HGF were lyophilized separately with trehalose and bovine serum albumin (BSA) and incorporated into the polymer by simple mixing. VEGF and HGF were released by convective flow through superhydrated regions formed within the polymer as a result of the osmotic activity generated upon dissolution of the particles, along with the contributions of polymer degradation at later time points. A sustained release of highly bioactive VEGF and HGF for over 40 days with minimal burst was achieved under conditions of multidirectional delivery. The solubility of the growth factors in the concentrated trehalose solution formed upon dissolution of the particle within the polymer was determined to be a key parameter governing the rate and extent of growth factor release. This formulation approach, of using a low viscosity polymer delivery vehicle, is potentially useful for localized delivery of acid and temperature sensitive proteins, such as VEGF and HGF. This system may also serve as a platform for controlled and predictable delivery patterns for other therapeutic proteins in other clinical settings.
Lyu, Z.; Tran, N.; Boeck, T.; Karcher, C.
2017-07-01
Lorentz force velocimetry (LFV) is a non-contact electromagnetic flow measurement technique for electrically conductive liquids. It is based on measuring the flow-induced force acting on an external permanent magnet. Motivated by extending LFV to liquid metal two-phase flow measurement, in a first test we consider the free rising of a non-conductive spherical particle in a thin tube of liquid metal (GaInSn) initially at rest. Here the measured force is due to the displacement flow induced by the rising particle. In this paper, numerical results are presented for three different analytical solutions of flows around a moving sphere under a localized magnetic field. This simplification is made since the hydrodynamic flow is difficult to measure or to compute. The Lorentz forces are compared to experiments. The aim of the present work is to check if our simple numerical model can provide Lorentz forces comparable to the experiments. The results show that the peak values of the Lorentz force from the analytical velocity fields provide us an upper limit to the measurement results. In the case of viscous flow around a moving sphere we recover the typical time-scale of Lorentz force signals.
Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity
Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.
2004-01-01
The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.
Non-isothermal flow of viscous liquids: engineering correlations for scale-up guidelines
Energy Technology Data Exchange (ETDEWEB)
Dey, A.K.
1988-10-01
Measurements of pressure distribution and temperature distribution along the length of model pipeline test rigs were made at varying operating variables for laminar flow of newtonion and power-law liquids. Flow data were also collected for different concentrations of Sobhason Field crude oil mixed with various mixtures of petroleum products. The pressure gradient was found to vary with the length of pipe. The departure of the results from a Poiseuille type equation were examined in the light of related information available in the literature. The selection of proper operating variables could reduce power consumption substantially. The relationships developed from experimental results for a varying range of non-isothermal parameters based on inlet condition and ambient temperature acclaimed importance to scale up in designing pipelines for a given flow rate or pressure drop under variable heat flux conditions. 11 figs., 10 refs., 3 tabs.
On the effect of boundary vibration on poiseuille flow of an elastico-viscous liquid
Siginer, A.
1992-11-01
The longitudinal and orthogonal superposition of boundary driven, small strain, oscillatory shear flow and steady Poiseuille flow is investigated. Boundary oscillations are of different frequencies and amplitudes and are represented by sinusoidal waveforms. A regular perturbation in terms of the amplitude of the oscillations is used. The flow field is determined up to and including third order for a simple fluid of multiple integral type with fading memory. Flow enhancement effects dependent on material parameters, mean pressure gradient, and amplitude and frequency of the boundary waves are predicted and closed form formulas derived for the mass transport rate. Enhancement is determined both by the elastic and shear thinning or thickening properties of the liquid. Resonance effects are shown to take place and, in particular, mean secondary and longitudinal flows, independent of the mean pressure gradient, are shown to exist for certain frequency relationships.
Fard, Mehrnoush M; Krieger, Ulrich K; Peter, Thomas
2017-12-07
Mixed organic/inorganic aerosols may undergo liquid-liquid phase separation (LLPS) when the relative humidity drops in the atmosphere. Phase-separated particles adopt different morphologies, which will have different consequences for atmospheric chemistry and climate. Recent laboratory studies on submicron particles led to speculation whether LLPS observed for larger drops might actually be suppressed in smaller droplets. Here, we report on micron-sized droplets of a ternary mixture of ammonium sulfate (AS), carminic acid, and water at different temperatures, which were exposed to typical atmospheric drying rates ranging from 0.34 to 5.0% RH min-1. Our results reveal that increasing the drying rate and lowering the temperature results in different morphologies after LLPS and may suppress the growth and coalescence of the inorganic-rich phase inclusions due to kinetic limitations in a viscous matrix. The coalescence time was used to estimate the viscosity of the organic-rich phase within a factor of 20, and based on the Stokes-Einstein relationship, we estimated AS diffusivity. Furthermore, we evaluated the initial growth of inclusions to quantitatively determine the AS diffusivity in the organic-rich phase, which is about 10-8 cm2 s-1 at room temperature. Extrapolation of diffusivity to lower temperatures using estimations for the diffusion activation energy leads us to conclude that the growth of the inorganic phase is not kinetically impeded for tropospheric submicron particles larger than 100 nm.
Electrospinning of a viscous-capillary jet within dielectric liquid bath
Riboux, Guillaume
2010-11-01
An experimentally characterization of the whipping motion of an electrified micro-jet of glycerine immersed within a liquid bath is carried out. In particular, the determination of the evolution of the frequency, the wavelength and the amplitude of the whipping oscillations as a function of the dimensionless parameters: the capillary number, the electrical Bond number and a residence to electrical relaxation time ratio. The presence of whipping requires threshold values of the three parameters to be reached. The electrified cone radius strongly depend on the capillary and electrical Bond numbers. The whipping behaviour, which depends on the capillary number but only weakly on the electrical Bond number, presents three different regimes: periodic, quasi-periodic or chaotic. Results showed that the wavelength and the frequency of the jet whipping depend strongly of the electrical Bond number. The phase velocity of the whipping jet is constant and proportional to the visco-capillary velocity. The detected whipping envelope showed self-similar behavior after appropriate normalization and evolved downstream as a 3/2 power law of the normalized distance.
Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids
Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro
2015-03-01
A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.
Thermal Conductivity Measurement of Liquids by Using a Suspended Microheater
Oh, Dong-Wook
2017-10-01
In this paper, the traditional 3ω method is modified in order to measure the thermal conductivity of a droplet of liquid. The 3ω sensor is microfabricated using bulk silicon etching on a silicon wafer to form a microheater on a suspended bridge structure. The Si substrate of over 400 μ m thickness beneath the microheater is etched away so that the sample liquid can fill the gap created between the heater and the bottom boundary of the sensor. The frequency of the sinusoidal heating pulses that are generated from the heater is controlled such that the thermal penetration depth is much smaller than the thickness of the liquid layer. The temperature oscillation of the sample fluid is measured at the thin-film heater to calculate the thermal conductivity of the surrounding fluid. The thermal conductivity and measured values of the de-ionized water and ethanol show a good agreement with the theoretical values at room temperature.
Lyell, Margaret J.
1992-01-01
The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.
Directory of Open Access Journals (Sweden)
Mlkvik Marek
2016-07-01
Full Text Available In this work we studied the influence of the fluid injection configuration (OIG: outside-in-gas, OIL: outside-in-liquid on the internal flows and external sprays parameters. We sprayed the viscous aqueous maltodextrin solutions (μ = 60 mPa·s at a constant inlet pressure of the gas and the gas to the liquid mass flow ratio (GLR within the range 2.5 to 20%. We found that the fluids injection has a crucial influence on the internal flows. The internal flows patterns for the OIG atomizer were the slug flows, the internal flow of the OIL device was annular which led to the significant improvement of the spray quality: Smaller droplets, faster atomization, fewer pulsations.
Energy Technology Data Exchange (ETDEWEB)
Health, W.A.; Jorris, M.H.
1969-06-04
This study was conducted to further investigate parameters affecting the dispersion of argon in polybutene. (Argon and polybutene were chosen as model fluids to simulate the dispersion of radioactive krypton and xenon in molten glass.) The experimental apparatus used was a cylindrical lucite chamber equipped with a variable speed impeller, gas and polybutene inlets, foam withdrawal ports, and pressure and temperature measurement capability. The effects of input power, impeller blade pitch and liquid flow rate on gas loading and viscosity were studied. It was found that at a constant input power to the impeller motor of 155 w, impeller blade pitch had no significant effect on gas loading. An increase in input power was found to increase gas loading, but indications were that maximum gas loading at zero liquid flow rate was independent of input power. The maximum gas loading obtained was 23 percent at 6900 rpm with a liquid flow rate of 165 ml/min and input power of approximately 190 w. A model based on bubble formation rate as a function of power input and gas loading was postulated to characterize the dispersion mechanism. The viscosity of the foam at various gas loadings was measured. It was found that up to 23 percent gas loading, the foam exhibits Newtonian characteristics and that the foam viscosity was greater than that of pure polybutene at the same temperature. No trend was observed between the foam viscosity and the percent gas loading. Fluid temperature had a large effect on viscosity, but the effect was not investigated fully. It is recommended that future work be done to substantiate and further develop the proposed model of the dispersion mechanism, and to determine the effect of viscosity on foam formation. Such studies would provide guidelines for extrapolating experimental results obtained with the polybutene model fluid to molten glasses with somewhat different fluid properties.
Ionic conductivity studies of gel polyelectrolyte based on ionic liquid
Energy Technology Data Exchange (ETDEWEB)
Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)
2008-04-01
Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2016-06-01
This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell-Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic-parabolic Navier-Stokes-Fourier theory is established for the first time via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER-WENO finite volume (FV) and ADER discontinuous Galerkin (DG) finite element schemes to the HPR model in the stiff
Directory of Open Access Journals (Sweden)
S. Saouli
2009-06-01
Full Text Available A second-law analysis of a gravity-driven film of non-Newtonian fluid along an inclined heated plate is investigated. The flow is assumed to be steady, laminar and fully-developed. The upper surface of the liquid film is considered to be free and adiabatic. The effect of heat generation by viscous dissipation is included. Velocity, temperature and entropy generation profiles are presented. The effects of the flow behaviour index, the Brinkman number and the group parameter on velocity, temperature and entropy generation number are discussed. The results show that velocity profile depends largely on the flow behaviour index. They are flat near the free surface for pseudoplastic fluids and linear for dilatant fluids. Temperature profiles are higher for higher flow behaviour index and Brinkman number. The entropy generation number increases with Brinkman number and the group parameter because of the heat generated by the viscous dissipation effect. For pseudoplastic fluids, the irreversibility is dominated by heat transfer, whereas, for dilatant fluids, irreversibility due to fluid friction is more dominant.
Pradas, Marc; Tseluiko, Dmitri; Kalliadasis, Serafim
2011-04-01
We examine the interaction of two-dimensional solitary pulses on falling liquid films. We make use of the second-order model derived by Ruyer-Quil and Manneville [Eur. Phys. J. B 6, 277 (1998); Eur. Phys. J. B 15, 357 (2000); Phys. Fluids 14, 170 (2002)] by combining the long-wave approximation with a weighted residual technique. The model includes (second-order) viscous dispersion effects which originate from the streamwise momentum equation and tangential stress balance. These effects play a dispersive role that primarily influences the shape of the capillary ripples in front of the solitary pulses. We show that different physical parameters, such as surface tension and viscosity, play a crucial role in the interaction between solitary pulses giving rise eventually to the formation of bound states consisting of two or more pulses separated by well-defined distances and traveling at the same velocity. By developing a rigorous coherent-structure theory, we are able to theoretically predict the pulse-separation distances for which bound states are formed. Viscous dispersion affects the distances at which bound states are observed. We show that the theory is in very good agreement with computations of the second-order model. We also demonstrate that the presence of bound states allows the film free surface to reach a self-organized state that can be statistically described in terms of a gas of solitary waves separated by a typical mean distance and characterized by a typical density.
Energy Technology Data Exchange (ETDEWEB)
Chavez, P.F.; Dawson, P.R.
1978-11-01
COUPLEFLO is a two-dimensional finite element code for plane strain or axisymmetric analyses of thermomechanically coupled systems. It is capable of analyzing the creeping flow of non-Newtonian fluids or the secondary creep of solids. COUPLEFLO solves equations for conductive-convective heat transfer to determine the thermal response of a system. Thermomechanical coupling between the flow field and temperature distribution can exist in terms of temperature dependent material properties, temperature dependent body forces, viscous dissipation, material convection, and changing system geometry. Either transient or steady-state problems can be analyzed in Eulerian or quasi-Lagrangian reference frames. Part I - Theoretical Background contains the governing equation, finite element formulation, and verification of the code capabilities. Part II - User's Manual contains instructions for code use. Currently, COUPLEFLO is available at Sandia Laboratories in Albuquerque on the 7600, 6600, and NOS systems.
Directory of Open Access Journals (Sweden)
Zhentao Wang
2014-07-01
Full Text Available A model based on the volume of fluid (VOF method and leaky dielectric theory is established to predict the deformation and internal flow of the droplet suspended in another vicious fluid under the influence of the electric field. Through coupling with hydrodynamics and electrostatics, the rate of deformation and internal flow of the single droplet are simulated and obtained under the different operating parameters. The calculated results show that the direction of deformation and internal flow depends on the physical properties of fluids. The numerical results are compared with Taylor's theory and experimental results by Torza et al. When the rate of deformation is small, the numerical results are consistent with theory and experimental results, and when the rate is large the numerical results are consistent with experimental results but are different from Taylor's theory. In addition, fluid viscosity hardly affects the deformation rate and mainly dominates the deformation velocity. For high viscosity droplet spends more time to attain the steady state. The conductivity ratio and permittivity ratio of two different liquids affect the direction of deformation. When fluid electric properties change, the charge distribution at the interface is various, which leads to the droplet different deformation shapes.
Energy Technology Data Exchange (ETDEWEB)
Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Peshkov, Ilya, E-mail: peshkov@math.nsc.ru [Open and Experimental Center for Heavy Oil, Université de Pau et des Pays de l' Adour, Avenue de l' Université, 64012 Pau (France); Romenski, Evgeniy, E-mail: evrom@math.nsc.ru [Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk (Russian Federation); Zanotti, Olindo, E-mail: olindo.zanotti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy)
2016-06-01
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier
Energy Technology Data Exchange (ETDEWEB)
Romero, V.J. [Sandia National Labs., Albuquerque, NM (United States); Ingber, M.S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mechanical Engineering
1995-07-01
A numerical model for simulating the transient nonlinear behavior of 2-D viscous sloshing flows in rectangular containers subjected to arbitrary horizontal accelerations is presented. The potential-flow formulation uses Rayleigh damping to approximate the effects of viscosity, and Lagrangian node movement is used to accommodate violent sloshing motions. A boundary element approach is used to efficiently handle the time-changing fluid geometry. Additionally, a corrected equation is presented for the constraint condition relating normal and tangential derivatives of the velocity potential where the fluid free surface meets the rigid container wall. The numerical model appears to be more accurate than previous sloshing models, as determined by comparison against exact analytic solutions and results of previously published models.
Directory of Open Access Journals (Sweden)
Tatiana Petrova
2016-08-01
Full Text Available An extremely interesting problem in aero-hydrodynamics is the sound radiation of a single vortical structure. Currently, this type of problem is mainly considered for an incompressible medium. In this paper a method was developed to take into account the viscosity and thermal conductivity of gas. The acoustic radiation frequency of a cylindrical vortex on a flat wall in viscous heat-conducting gas (air has been investigated. The problem is solved on the basis of the Navier–Stokes equations using the small initial vorticity approach. The power expansion of unknown functions in a series with a small parameter (vorticity is used. It is shown that there are high-frequency oscillations modulated by a low-frequency signal. The value of the high frequency remains constant for a long period of time. Thus the high frequency can be considered a natural frequency of the vortex radiation. The value of the natural frequency depends only on the initial radius of the cylindrical vortex, and does not depend on the intensity of the initial vorticity. As expected from physical considerations, the natural frequency decreases exponentially as the initial radius of the cylinder increases. Furthermore, the natural frequency differs from that of the oscillations inside the initial cylinder and in the outer domain. The results of the paper may be of interest for aeroacoustics and tornado modeling.
Liquid electrolytes based on new lithium conductive imidazole salts
Energy Technology Data Exchange (ETDEWEB)
Niedzicki, L.; Kasprzyk, M.; Kuziak, K.; Zukowska, G.Z.; Marcinek, M.; Wieczorek, W. [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Armand, M. [LRCS, University de Picardie Jules Verne, UMR 6007 CNRS, 33 rue de Saint-Leu, 80039 Amiens (France)
2011-02-01
In the present paper new generation of imidazole-derived lithium salts (LiTDI - lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide, LiPDI - lithium 4,5-dicyano-2-(pentafluoroethyl)imidazolide and LiHDI - lithium 4,5-dicyano-2-(n-heptafluoropropyl)imidazolide) applied in a model liquid electrolyte, with propylene carbonate used as a solvent, is described. Room temperature ionic conductivities measured by Impedance Spectroscopy are as high as 10{sup -2} to 10{sup -3} S cm{sup -1} for the 0.1-1 mol dm{sup -3} salt concentration range. Lithium cation transference numbers calculated using the Bruce-Vincent method exceed 0.4 at salt concentration equal to 1 mol dm{sup -3}. Interface resistance measurements showed good stability at high - 0.5 mol dm{sup -3} or low - 0.01 mol dm{sup -3} salt concentrations. Ionic associations were estimated using Fuoss-Kraus semiempirical method revealing relatively low association rates. The effect of anion structure on ionic interactions and electrochemical characteristics of the studied electrolytes is discussed. (author)
Yang, Jie; Wang, Huiyong; Wang, Jianji; Zhang, Yue; Guo, Zhongjia
2014-12-11
A new class of cinnamate-based light-responsive ionic liquids was synthesized and characterized, and these ionic liquids with longer alkyl chains showed a remarkable increase in ionic conductivity under UV light irradiation in aqueous solutions.
El-Aziz, Mohamed Abd; Afify, Ahmed A.
2016-10-01
In the present work, the hydromagnetic boundary layer flow and heat transfer of Casson fluid in a thin liquid film over an unsteady stretching sheet in the presence of variable thermal conductivity, thermal radiation, and viscous dissipation is investigated numerically. The Casson fluid model is applied to characterize the non-Newtonian fluid behavior. Similarity equations are derived and then solved numerically by using a shooting method with fourth order Runge-Kutta integration scheme. Comparisons with previous literature are accomplished and obtained an excellent agreement. The influences of parameters governing a thin liquid film of Casson fluid and heat transfer characteristics are presented graphically and analyzed. It is observed that the heat transfer rate diminishes with a rise in thermal conductivity parameter and Eckert number. Further, the opposite influence is found with an increase in radiation parameter.
Pradas, Marc; Kalliadasis, Serafim
2011-01-01
We examine the interaction of two-dimensional solitary pulses on falling liquid films. We make use of the second-order model derived by Ruyer-Quil and Manneville [Eur. Phys. J. B 6, 277 (1998); Eur. Phys. J. B 15, 357 (2000); Phys. Fluids 14, 170 (2002)] by combining the long-wave approximation with a weighted residuals technique. The model includes (second-order) viscous dispersion effects which originate from the streamwise momentum equation and tangential stress balance. These effects play a dispersive role that primarily influences the shape of the capillary ripples in front of the solitary pulses. We show that different physical parameters, such as surface tension and viscosity, play a crucial role in the interaction between solitary pulses giving rise eventually to the formation of bound states consisting of two or more pulses separated by well-defined distances and travelling at the same velocity. By developing a rigorous coherent-structure theory, we are able to theoretically predict the pulse-separat...
Javaid, Salman
2013-01-01
In this study, bulk conductivity of commercial base paper impregnated with different ionic liquids blends and additives, through bench coating was investigated. Bulk conductivity of base paper, ion conductive paper and surface sized ion conductive papers with and without the influence of calendering were evaluated at different concentrations of ionic liquids using at resistivity cell and four point probe technique. It was shown that bulk conductivity of base paper was increased by increasing ...
Exponential Decay of the Vorticity in the Steady-State Flow of a Viscous Liquid Past a Rotating Body
Deuring, Paul; Galdi, Giovanni P.
2016-07-01
Consider the flow of a Navier-Stokes liquid past a body rotating with a prescribed constant angular velocity, {ω}, and assume that the motion is steady with respect to a body-fixed frame. In this paper we show that the vorticity field associated to every "weak" solution corresponding to data of arbitrary "size" ( Leray Solution) must decay exponentially fast outside the wake region at sufficiently large distances from the body. Our result improves and generalizes in a non-trivial way famous results by Clark (Indiana Univ Math J 20:633-654, 1971) and Babenko and Vasil'ev (J Appl Math Mech 37:651-665, 1973) obtained in the case {ω=0}.
Energy Technology Data Exchange (ETDEWEB)
Maximuk, E.P. [Institute of Applied Pysics, Kishinev (Russian Federation); Vogelpohl, A. [Mass Transfer Lab., Clausthal Univ. of Technology, Clausthal-Zellerfeld (Germany)
2002-05-01
A physicomathematical model for electrohydrodynamic spraying (EHDS) of a conductive liquid and the mass transfer in a parallel plate electrode system of an EHDS distillation column is presented. The influence of the electric field on the formation and general characteristics of the finely dispersed aerosol flow of the conductive liquid in EHDS distillation columns has been determined from the model. (orig.)
Sadeghi, Rahmat; Mostafa, Bahar; Parsi, Elham; Shahebrahimi, Yasaman
2010-12-16
The action of particular electrolytes in altering the solution properties of ionic liquids is well documented, although the origin of this effect is not clearly defined. In order to clarify this point, the aim of this work is to obtain further evidence about the salting-out effect produced by the addition of different salts to aqueous solutions of water miscible ionic liquids by evaluating the effect of a large series of salts on the vapor-liquid equilibria, liquid-liquid phase diagram, volumetric, compressibility, and conductometric properties of ionic liquids 1-alkyl-3-methylimidazolium halide ([C(n)mim][X]). In the first part of this work, the experimental measurements of water activity at 298.15 and 308.15 K for aqueous binary and ternary solutions containing 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = butyl (C(4)), heptyl (C(7)), and octyl (C(8))), sodium dihydrogen citrate (NaH(2)Cit), disodium hydrogen citrate (Na(2)HCit), and trisodium citrate (Na(3)Cit) are taken using both vapor pressure osmometry (VPO) and improved isopiestic methods. The effect of temperature, charge on the anion of sodium citrate salts, and alkyl chain length of ionic liquids on the vapor-liquid equilibria properties of the investigated systems are studied. The constant water activity lines of all the ternary systems show large negative deviation from the linear isopiestic relation (Zdanovskii-Stokes-Robinson rule) derived using the semi-ideal hydration model, and the vapor pressure depression for a ternary solution is much larger than the sum of those for the corresponding binary solutions with the same molality of the ternary solution. The results have been interpreted in terms of the solute-water and solute-solute interactions. In the second part of this work, the effects of the addition of (NH(4))(3)Cit, K(3)Cit, Na(3)Cit, (NH(4))(2)HPO(4), and (NH(4))(3)PO(4) on the liquid-liquid phase diagram, apparent molar volume, isentropic compressibility, and conductivity of aqueous
Heat conduction problem of an evaporating liquid wedge
Directory of Open Access Journals (Sweden)
Tomas Barta
2015-02-01
Full Text Available We consider the stationary heat transfer near the contact line of an evaporating liquid wedge surrounded by the atmosphere of its pure vapor. In a simplified setting, the problem reduces to the Laplace equation in a half circle, subject to a non-homogeneous and singular boundary condition. By classical tools (conformal mapping, Green's function, we reformulate the problem as an integral equation for the unknown Neumann boundary condition in the setting of appropriate fractional Sobolev and weighted space. The unique solvability is then obtained by means of the Fredholm theorem.
High pressure electrical conductivity in naturally occurring silicate liquids
Tyburczy, James A.; Waff, Harve S.
Electrical conductivities of molten Hawaiian rhyodacite and Yellowstone rhyolite obsidian were measured between 1200° C and 1400° C and at pressures up to 25 kilobars. The two melts exhibit similar trends. Arrhenius behavior is observed at all pressures studied. Isobaric activation enthalpies increase from about 0.5 eV at atmospheric pressure to about 0.9 eV at 25 kbars, and the magnitude of the conductivity decreases by about a factor of 4 between 0 and 25 kbar. At pressures between about 10 and 15 kbar an abrupt decrease in the slopes of isothermal log a versus pressure plots is observed. In each pressure range an equation of the form σ = σ'0 exp [- (E'σ + PΔV'σ)/kT], where σ'0, E'σ, and ΔV'σ, are constants, describes the polybaric, polythermal data. Comparison of these data with high pressure electrical conductivities of molten basalt and andesite reveals that relatively silica-rich melts, from andesitic to rhyolitic in composition, display similar trends, while the basaltic melt has analogous, but quantitatively different trends. Comparison of zero-pressure electrical conductivity and sodium diffusivity by means of the Nernst-Einstein relation indicates that sodium ion transport is the dominant mechanism of charge transport in the obsidian melt at zero pressure. The tholeiitic melt, on the other hand, displays only order of magnitude agreement between the electrical conductivity and sodium diffusivity, indicating that either ions other than sodium play a significant role in electrical transport or that the motions of the sodium ions are strongly correlated, or both. Comparison of the isobaric and isochoric activation enthalpies indicates that electrical conduction is energy restrained, as opposed to volume restrained. Conductivities in the andesitic, rhyodacitic, and rhyolitic melts conform to a single compensation law line, with no indication of the change in activation volume. The tholeiitic melt has a slightly different compensation line. In light
Pump effect of a capillary discharge in electrically conductive liquids
Czech Academy of Sciences Publication Activity Database
De Baerdemaeker, F.; Šimek, Milan; Leys, C.; Verstraete, W.
2007-01-01
Roč. 27, č. 4 (2007), s. 473-485 ISSN 0272-4324 R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water * conductive * capillary * AC discharge * pump Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.747, year: 2007 http://www.springerlink.com/content/w802073563282272/fulltext.pdf
Lopes, J N Canongia; Gomes, Margarida F Costa; Husson, Pascale; Pádua, Agílio A H; Rebelo, Luis Paulo N; Sarraute, Sabine; Tariq, Mohammad
2011-05-19
In this study, we have focused on binary mixtures composed of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)-imide, [C(4)C(1)im][Ntf(2)], and a selection of six molecular components (acetonitrile, dichloromethane, methanol, 1-butanol, t-butanol, and water) varying in polarity, size, and isomerism. Two Kamlet-Taft parameters, the polarizability π* and the hydrogen bond acceptor β coefficient were determined by spectroscopic measurements. In most cases, the solvent power (dipolarity/polarizability) of the ionic liquid is only slightly modified by the presence of the molecular component unless large quantities of this component are present. The viscosity and electrical conductivity of these mixtures were measured as a function of composition and the relationship between these two properties were studied through Walden plot curves. The viscosity of the ionic liquid dramatically decreases with the addition of the molecular component. This decrease is not directly related to the volumetric properties of each mixture or its interactions. The conductivity presents a maximum as a function of the composition and, except for the case of water, the conductivity maxima decrease for more viscous systems. The Walden plots indicate enhanced ionic association as the ionic liquid gets more diluted, a situation that is the inverse of that usually found for conventional electrolyte solutions. © 2011 American Chemical Society
CTE-Matched, Liquid-Cooled, High Thermal Conductivity Heat Sink Project
National Aeronautics and Space Administration — We propose the development of a CTE-matched, liquid-cooled, high thermal conductivity heat sink for use in spacecraft thermal management applications. The material...
Thermal Conductivity of Liquid Water from Reverse Nonequilibrium Ab Initio Molecular Dynamics
Tsuchida, Eiji
2018-02-01
We report on a theoretical framework for calculating the thermal conductivity of liquid water from first principles with the aid of the linear scaling method. We also discuss the possibility of obtaining equilibrium properties from a nonequilibrium trajectory.
Physical processes in high field insulating liquid conduction
Mazarakis, Michael; Kiefer, Mark; Leckbee, Joshua; Anderson, Delmar; Wilkins, Frank; Obregon, Robert
2017-10-01
In the power grid transmission where a large amount of energy is transmitted to long distances, High Voltage DC (HVDC) transmission of up to 1MV becomes more attractive since is more efficient than the counterpart AC. However, two of the most difficult problems to solve are the cable connections to the high voltage power sources and their insulation from the ground. The insulating systems are usually composed of transformer oil and solid insulators. The oil behavior under HVDC is similar to that of a weak electrolyte. Its behavior under HVDC is dominated more by conductivity than dielectric constant. Space charge effects in the oil bulk near high voltage electrodes and impeded plastic insulators affect the voltage oil hold-off. We have constructed an experimental facility where we study the oil and plastic insulator behavior in an actual HVDC System. Experimental results will be presented and compared with the present understanding of the physics governing the oil behavior under very high electrical stresses. Sandia National Laboratories managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. D.O.E., NNSA under contract DE-NA-0003525.
Directory of Open Access Journals (Sweden)
Yongxin Yu
2017-06-01
Full Text Available In the paper, a new capacitive sensor with a dielectric film coating was designed to measure the thickness of the liquid film on a flat surface. The measured medium can be conductive or non-conductive fluid with high viscosity such as silicone oil, syrup, CMC solution and melt. With the dielectric film coating, the defects caused by the humidity in a capacitor can be avoided completely. With a excitation frequency 0-20kHz, the static permittivity of capacitive sensor is obtained and stable when small thicknesses are monitored within the frequency of 0-3kHz. Based on the measurement principle, an experimental system was designed and verified including calibration and actual measurement for different liquid film thickness. Experimental results showed that the sensitivity, the resolution, repeatability and linear range of the capacitive sensor are satisfied to the liquid film thickness measurement. Finally, the capacitive measuring system was successfully applied to the water, silicone oil and syrup film thickness measurement.
Investigations on an integrated conducting nanoparticle-liquid crystal elastomer layer
Energy Technology Data Exchange (ETDEWEB)
Chambers, Martin [J Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Zalar, Bostjan [J Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Remskar, Maja [J Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Kovac, Janez [J Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Finkelmann, Heino [Institute for Macromolecular Chemistry, University of Freiburg, Hermann-Staudinger-Haus, Stefan-Meier-Strasse 31, 79104, Freiburg (Germany); Zumer, Slobodan [J Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)
2007-10-17
A process is outlined in which an existing liquid crystal elastomer (LCE) can be reprocessed from an insulating network to create an effectively conducting network. This is performed through the LCE volume expansion in a suitable solution containing conducting nanoparticles. Subsequent volume compression results in the formation of a conducting layer at the LCE surfaces. The swelling behaviour of the LCE is illustrated. Elemental composition analysis and electron imagining techniques show that the conducting layer is composed of conducting nanoparticles and LCE material. It was found that the integrated layer thickness and resistivity can be controlled through the LCE surface expansion ratio and conducting nanoparticle concentration, respectively.
Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.
Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan
2017-10-19
In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al2O3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al2O3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li(+) ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li(+) ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.
Brear, D. J.
1998-01-01
When liquid fuel makes contact with steel structure the liquid can freeze as a crust and the structure can melt at the surface. The melting and freezing processes that occur can influence the mode of fuel freezing and hence fuel relocation. Furthermore the temperature gradients established in the fuel and steel phases determine the rate at which heat is transferred from fuel to steel. In this memo the 1-D transient heat conduction equations are applied to the case of initially liquid UO2 brou...
Babaeva, Natalia Yu; Naidis, George V.; Kushner, Mark J.
2018-01-01
The interaction of plasmas sustained in humid air with liquids produces reactive species in both the gas phase and liquid for applications ranging from medicine to agriculture. In several experiments, enhanced liquid reactivity has been produced when the liquid is a foam or a bubble coated liquid. To investigate the phenomena of streamers interacting with bubbles a two-dimensional computational investigation has been performed of streamer initiation and propagation on and inside hemispherical bubble-shells floating on a liquid surface. Following prior experiments, water and oil bubble-shells with an electrode located outside and inside the bubble were investigated. We found that positive air streamers interact differently with conductive water and dielectric oil bubbles. The streamer propagates along the external surface of a water bubble while not penetrating through the bubble due to screening of the electric field by the conducting shell. If the electrode is inserted inside the bubble, the path of the streamer depends on how deeply the electrode penetrates. For shallow penetration, the streamer propagates along the inner surface of the bubble. Due to the low conductivity of oil bubble-shells, the electric field from an external electrode penetrates into the interior of the bubble. The streamer can then be re-initiated inside the bubble.
Kaur, Dilraj Preet; Yamada, K; Park, Jin-Soo; Sekhon, S S
2009-04-23
Room temperature ionic liquid 2,3-dimethyl-1-hexylimidazolium bis(trifluoromethane sulfonyl)imide (DMHxImTFSI) has been synthesized and used in the preparation of polymer gel electrolytes containing polymethylmethacrylate and propylene carbonate (PC). The onset of ion diffusional motion has been studied by (1)H and (19)F NMR spectroscopy and the results obtained for ionic liquid, liquid electrolytes, and polymer gel electrolytes have been correlated with the ionic conductivity results for these electrolytes in the 100-400 K temperature range. The temperature at which (1)H and (19)F NMR lines show motional narrowing and hence ion diffusional motion starts has been found to be closely related to the temperature at which a large increase in ionic conductivity has been observed for these electrolytes. Polymer gel electrolytes have high ionic conductivity over a wide range of temperatures. Thermogravimetric analysis/differential scanning calorimetry studies show that the ionic liquid (DMHxImTFSI) used in the present study is thermally stable up to 400 degrees C, whereas the addition of PC lowers the thermal stability of polymer gel electrolytes containing the ionic liquid. Different electrolytes have been observed to show high ionic conductivity in different range of temperatures, which can be helpful in the design of polymer gel electrolytes for specific applications.
A computer-controlled transient needle-probe thermal conductivity instrument for liquids
Asher, G. B.; Sloan, E. D.; Graboski, M. S.
1986-03-01
A computerized system utilizing the transient needle-probe technique has been developed for thermal conductivity measurements on solids and liquids. Thermal conductivities are determined to an accuracy of better than 5%. The instrument is unique in that it uses “off the shelf” components such as a personal computer and analog-to-digital conversion devices, together with software developed in our laboratory. The initial expense and time required to begin measurements are less than 20% of those for normal transient hot-wire measurements. Typical results are presented for liquid tertiary butyl alcohol, 1-methylnaphthalene, and glycerin.
Guo, Huilong; Lu, Mangeng; Liang, Liyan; Wu, Kun; Ma, Dong; Xue, Wei
2017-02-01
In this work, liquid crystalline epoxies with lateral substituents were synthesized and cured with aromatic amines or anhydride. The liquid crystalline phase structure of liquid crystalline epoxies with lateral substituents was determined by polarized optical microscopy. The relationship between thermal conductivity and dielectric properties and liquid crystalline domain structure was discussed in the paper. The samples show high thermal conductivity up to 0.29 W/(m × K), due to the orientation of mesogenic units in epoxies. The sample's low dielectric constant of 2.29 is associated with the oriented mesogenic units and long nonpolar lateral substituents. This indicates a new way to obtain materials with high thermal conductivity and a low dielectric constant by introducing oriented mesogenic units into cross-linked epoxy systems. The water repellency is reflected in the contact angles of 92-98°, which are apparently higher than that of conventional epoxy systems. It was also found that the better toughness of liquid crystalline epoxies with lateral substituents was attributed to the existence of long flexible alkyl lateral substituents.
Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends
Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.
2009-01-01
Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587
Determination of proton conductivity of ionic liquids for fuel cell applications
Energy Technology Data Exchange (ETDEWEB)
Wallnofer, E.; Baumgartner, W.R.; Hacker, V. [Graz Univ. of Technology, Graz (Austria). Inst. for Chemistry and Technology of Inorganic Material
2006-07-01
Hydrogen fuel cells operating at temperatures of between 100 and 200 degrees C allow the catalyst to tolerate higher levels of carbon monoxide (CO) impurities. However, the number of possible materials for high temperature fuel cell electrolytes or membranes is limited. This study examined the relevant electrochemical properties of different ion liquids with specific reference to neutralized imidazole derivates with a dominant Grotthuss mechanism of proton conduction. The electrochemical stability of the ionic liquids was measured by cyclic voltammetry (CV) under nitrogen. Proton conductivity was measured under hydrogen by CV within the electrochemical limits. Hydrogen was dissolved at the anode, transported through the ionic liquid, and recombined at the cathode, so that the detected current could indicate the amount of transported hydrogen. Electrochemical impedance spectroscopy (EIS) was used to measure the frequency dependent behaviour of the ionic liquids. All measurements were conducted at 50, 100, and 150 degrees C. Results of the study showed that proton conductivity increased with higher temperatures. It was concluded that neutralized imidazole derivates with optimized side chains of the cation may prove to be a viable alternative to conventional fuel cell electrolytes. 4 refs., 2 figs.
Anisimov, M. V.; Rekunov, V. S.; Babuta, M. N.; Bach Lien, Nguyen Thi Hong
2016-02-01
We experimentally determined the coefficients of thermal conductivity of some ultra thin liquid composite heat insulating coatings, for sample #1 λ = 0.086 W/(m·°C), for sample #2 λ = 0.091 W/(m·°C). We performed the measurement error calculation. The actual thermal conduction coefficient of the studied samples was higher than the declared one. The manufactures of liquid coatings might have used some "ideal" conditions when defining heat conductivity in the laboratory or the coefficient was obtained by means of theoretical solution of heat conduction problem in liquid composite insulating media. However, liquid insulating coatings are of great interest to builders, because they allow to warm objects of complex geometric shapes (valve chambers, complex assemblies, etc.), which makes them virtually irreplaceable. The proper accounting of heating qualities of paints will allow to avoid heat loss increase above the specified limits in insulated pipes with heat transfer materials or building structures, as well as protect them from possible thawing in the period of subzero weather.
3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors.
Chizari, Kambiz; Daoud, Mohamed Amine; Ravindran, Anil Raj; Therriault, Daniel
2016-11-01
The utilization of 3D printing of highly conductive (σ ≈ 2350 S m-1 ) polymer composite structures for the functional optimization of scaffold-shaped liquid sensors is demonstrated. This study can open the pathway of the application of 3D printing of conductive composites for optimization of structures useful for various applications such as smart sensors in textile or in the field of electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical experiment of thermal conductivity in two-dimensional Yukawa liquids
Energy Technology Data Exchange (ETDEWEB)
Shahzad, Aamir, E-mail: aamirshahzad-8@hotmail.com [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education (MOE), Xi' an Jiaotong University, Xi' an 710049 (China); Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000 (Pakistan); He, Mao-Gang, E-mail: mghe@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education (MOE), Xi' an Jiaotong University, Xi' an 710049 (China)
2015-12-15
A newly improved homogenous nonequilibrium molecular dynamics simulation (HNEMDS) method, proposed by the Evans, has been used to compute the thermal conductivity of two-dimensional (2D) strongly coupled complex (dusty) plasma liquids (SCCDPLs), for the first time. The effects of equilibrium external field strength along with different system sizes and plasma states (Γ, κ) on the thermal conductivity of SCCDPLs have been calculated using an enhanced HNEMDS method. A simple analytical temperature representation of Yukawa 2D thermal conductivity with appropriate normalized frequencies (plasma and Einstein) has also been calculated. The new HNEMDS algorithm shows that the present method provides more accurate results with fast convergence and small size effects over a wide range of plasma states. The presented thermal conductivity obtained from HNEMDS method is found to be in very good agreement with that obtained through the previously known numerical simulations and experimental results for 2D Yukawa liquids (SCCDPLs) and with the three-dimensional nonequilibrium molecular dynamics simulation (MDS) and equilibrium MDS calculations. It is shown that the HNEMDS algorithm is a powerful tool, making the calculations very efficient and can be used to predict the thermal conductivity in 2D Yukawa liquid systems.
Park, Byoung Kyoo; Yi, Namwoo; Park, Jaesung; Kim, Dongsik
2012-10-01
This paper presents a thermal analysis device, which can measure thermal conductivity of picoliter scale liquid sample. We employ the three omega method with a microfabricated AC thermal sensor with nanometer width heater. The liquid sample is confined by a micro-well structure fabricated on the sensor surface. The performance of the instrument was verified by measuring the thermal conductivity of 27-picoliter samples of de-ionized (DI) water, ethanol, methanol, and DI water-ethanol mixtures with accuracies better than 3%. Furthermore, another analytical scheme allows real-time thermal conductivity measurement with 5% accuracy. To the best of our knowledge, this technique requires the smallest volume of sample to measure thermal property ever.
Development of a LSSVM-GC model for estimating the electrical conductivity of ionic liquids
DEFF Research Database (Denmark)
Gharagheizi, Farhad; Ilani-Kashkouli, Poorandokht; Sattari, Mehdi
2014-01-01
In this communication, an extensive set of 1077 experimental electrical conductivity data for 54 ionic liquids (ILs) was collected from 21 different literature sources. Using this dataset, a reliable least square support vector machine-group contribution (LSSVM-GC) model has been developed, which...... employs a total of 22 sub-structures in addition to the temperature to represent/predict the electrical conductivity of ILs. In order to distinguish the effects of the anion and cation on the electrical conductivity of ILs, 11 sub-structures related to the chemical structure of anions, and 11 sub...
An optical pump-probe technique for measuring the thermal conductivity of liquids.
Schmidt, Aaron; Chiesa, Matteo; Chen, Xiaoyuan; Chen, Gang
2008-06-01
We present a pump-probe optical technique for measuring the thermal conductivity of liquids. The technique uses a reflective geometry which does not depend on the optical properties of the liquid and requires as little as a single droplet to produce a result. An analytical solution is given for bidirectional heat flow in layered media, including the effects of radial heat flow from coaxial Gaussian laser spots, thermal interface resistances, and the accumulation of multiple laser pulses. In addition, several experimental improvements over previous pump-probe configurations are described, resulting in an improved signal to noise ratio and smaller errors at long stage delay times. The technique is applied to a range of liquids and solids. Results are in good agreement with literature values.
Directory of Open Access Journals (Sweden)
Barkat Ul-ain
2017-06-01
Full Text Available Conservation of energy is the biggest need of the hour for developing countries. Smart windows with electrochromic characteristics can be one of the solutions for power shortfall. In this study ionic liquid BMIMBr is successfully synthesized by the reflux method. Ionogels comprising of ionic liquid and polymers Polyaniline and Polypyrrol were electrochemically deposited by galvanostatic methods. These films are structurally characterized by XRD and SEM. Concentration of monomer and ionic liquid was changed in order to study the effect on electrochemical and electrochromic properties. The electrochromic character was analyzed by optical studies and colour change was evident at different potentials. To further investigate the electron transport properties electrical conductivity studies were carried out. In a nutshell different parameters are studied with respect to concentration and temperature so that best material could be obtained showing high optical contrast and stability. Taking these studies in account an effective electrochromic device can be fabricated.
Surfactant transport on viscous bilayers
Matar, Omar; Craster, Richard; Warner, Mark
2001-11-01
We model the external delivery of surfactant to pulmonary airways, an integral part of Surfactant Replacement Therapy (SRT), a method of treatment of Respiratory Distress Syndrome in neonates. We examine the spreading dynamics of insoluble surfactant by Marangoni stresses along the mucus-perciliary liquid bilayers that line the inside of airways. The bilayer is modelled as a thin highly viscous mucus surface film (mucus) overlying a much less viscous perciliary liquid layer (PCL); this is appropriate for small airways. By exploiting this large viscosity constrast, a variant of standard lubrication theory is adopted wherein terms, which would have otherwise been neglected in the lubrication approximation, are promoted in order to model correctly the presence of the mucus. Inclusion of van der Waals forces in the model permit the study of the effect of this mucus 'skin' on the possibility of bilayer rupture, a potential cause of failure of SRT. We find that increasing the viscosity contrast and initial mucus layer thickness delays the onset of rupture, while increasing the relative significance of Marangoni stresses leads to more marked thinning and rapid bilayer rupture [1]. [1] O. K. Matar, R. V. Craster and M. R. Warner, submitted to J. Fluid Mech. (2001).
Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures.
Zhang, Jinshui; Bai, Ying; Sun, Xiao-Guang; Li, Yunchao; Guo, Bingkun; Chen, Jihua; Veith, Gabriel M; Hensley, Dale K; Paranthaman, Mariappan Parans; Goodenough, John B; Dai, Sheng
2015-05-13
The growth and proliferation of lithium (Li) dendrites during cell recharge are currently unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (>1 mS cm(-1)) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space to afford high conductivities (2.5 mS cm(-1)). In a symmetric lithium/lithium cell, the solid-like electrolytes demonstrate a robust performance against the Li dendrite problem, preventing the cell from short circuiting at current densities ranging from 0.16 to 0.32 mA cm(-2) over an extended period of time. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na(+), Mg(2+), or Al(3+) as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries.
Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jinshui [ORNL; Bai, Ying [ORNL; Sun, Xiao-Guang [ORNL; Li, Yunchao [ORNL; Guo, Bingkun [ORNL; Chen, Jihua [ORNL; Veith, Gabriel M [ORNL; Hensley, Dale K [ORNL; Paranthaman, Mariappan Parans [ORNL; Goodenough, John B [University of Texas at Austin; Dai, Sheng [ORNL
2015-01-01
The growth and proliferation of lithium (Li) dendrites during cell recharge is unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (> 1 mS cm-1) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space to afford high conductivities. In a symmetric lithium/lithium cell, such kind of solid-like electrolytes demonstrates a robust performance against Li dendrite problems, well stabilizing the cell system from short circuiting in a long-time operation at current densities ranging from 0.16 to 0.32 mA cm-2. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na+, Mg2+ or Al3+ as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries.
Artificial Neural Network Modeling of Liquid Thermal Conductivity for alkanes, ketones and silanes
Latini, G.; Di Nicola, G.; Pierantozzi, M.; Coccia, G.; Tomassetti, S.
2017-11-01
The values of thermal conductivity λ at different temperatures for organic and inorganic compounds in the liquid phase is essential in the study of numerous processes, but experimental data are frequently not available with acceptable reliability or not available at all, since rigorous theoretical or semi-theoretical models of the liquid state are usually of poor practical use for engineering purposes. The Artificial Neural Network (ANN) approach is a very powerful tool and it can be a good indicator of the lowest limit achievable with a selected database and with a selected set of inputs. This study investigates the applicability of the ANN as an efficient tool for the prediction of pure organic compounds’ thermal conductivity of three important families such as alkanes, ketones and silanes, for a wide range of temperatures. The families of n-alkanes, ketones and silanes were chosen to verify the general reliability of the proposed method when used in large temperature ranges for very different organic families, above all the silanes (compounds containing silicon), whose liquid thermal conductivity is experimentally investigated in very few cases. This method appears to be successful: in all reduced temperature range, along or near the saturation line, the average absolute deviations between calculated and experimental thermal conductivity data are 0.19% and the maximum absolute ones 2.44%
Acharya, Sayantan; Nandi, Manoj K; Mandal, Arkajit; Sarkar, Sucharita; Bhattacharyya, Sarika Maitra
2015-08-27
We study the diffusion of small solute particles through solvent by keeping the solute-solvent interaction repulsive and varying the solvent properties. The study involves computer simulations, development of a new model to describe diffusion of small solutes in a solvent, and also mode coupling theory (MCT) calculations. In a viscous solvent, a small solute diffuses via coupling to the solvent hydrodynamic modes and also through the transient cages formed by the solvent. The model developed can estimate the independent contributions from these two different channels of diffusion. Although the solute diffusion in all the systems shows an amplification, the degree of it increases with solvent viscosity. The model correctly predicts that when the solvent viscosity is high, the solute primarily diffuses by exploiting the solvent cages. In such a scenario the MCT diffusion performed for a static solvent provides a correct estimation of the cage diffusion.
Energy Technology Data Exchange (ETDEWEB)
Al Rabadi, S.; Friedel, L. [Fluid Mechanics Institute, Technical University of Hamburg-Harburg (Germany); Al Salaymeh, A. [Mechanical Engineering Department, University of Jordan (Jordan)
2007-01-15
Measurements using two-dimensional Phase Doppler Anemometry as well as high speed cinematography in free jets at several nozzle exit pressures and mass flow rates, show that the Sauter mean droplet diameter decreases with increasing air and liquid-phase mass flow ratio due to the increase of the air stream impact on the liquid phase. This leads to substantial liquid fragmentation, respectively primary droplet breakup, and hence, satellite droplet formation with small sizes. This trend is also significant in the case of a liquid viscosity higher than that of water. The increased liquid viscosity stabilizes the droplet formation and breakup by reducing the rate of surface perturbations and consequently droplet distortions, ultimately also leading, in total, to the formation of smaller droplets. The droplet velocity decreases with the nozzle downstream distance, basically due to the continual air entrainment and due to the collisions between the droplets. The droplet collisions may induce further liquid fragmentation and, hence, formation of a number of relatively smaller droplets respectively secondary breakup, or may induce agglomeration to comparatively larger liquid fragments that may rain out of the free jet. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Conductivity and dissociation in liquid metallic hydrogen and implications for planetary interiors.
Zaghoo, Mohamed; Silvera, Isaac F
2017-11-07
Liquid metallic hydrogen (LMH) is the most abundant form of condensed matter in our solar planetary structure. The electronic and thermal transport properties of this metallic fluid are of fundamental interest to understanding hydrogen's mechanism of conduction, atomic or pairing structure, as well as the key input for the magnetic dynamo action and thermal models of gas giants. Here, we report spectrally resolved measurements of the optical reflectance of LMH in the pressure region of 1.4-1.7 Mbar. We analyze the data, as well as previously reported measurements, using the free-electron model. Fitting the energy dependence of the reflectance data yields a dissociation fraction of 65 ± 15%, supporting theoretical models that LMH is an atomic metallic liquid. We determine the optical conductivity of LMH and find metallic hydrogen's static electrical conductivity to be 11,000-15,000 S/cm, substantially higher than the only earlier reported experimental values. The higher electrical conductivity implies that the Jovian and Saturnian dynamo are likely to operate out to shallower depths than previously assumed, while the inferred thermal conductivity should provide a crucial experimental constraint to heat transport models. Published under the PNAS license.
Directory of Open Access Journals (Sweden)
Guo-Qun Zhang
2017-01-01
Full Text Available Transition metal phosphide alloys possess the metalloid characteristics and superior electrical conductivity and are a kind of high electrical conductive pseudocapacitive materials. Herein, high electrical conductive cobalt phosphide alloys are fabricated through a liquid phase process and a nanoparticles structure with high surface area is obtained. The highest specific capacitance of 286 F g−1 is reached at a current density of 0.5 A g−1. 63.4% of the specific capacitance is retained when the current density increased 16 times and 98.5% of the specific capacitance is maintained after 5000 cycles. The AC//CoP asymmetric supercapacitor also shows a high energy density (21.3 Wh kg−1 and excellent stability (97.8% of the specific capacitance is retained after 5000 cycles. The study provides a new strategy for the construction of high-performance energy storage materials by enhancing their intrinsic electrical conductivity.
Ralphs, Matthew I; Kemme, Nicholas; Vartak, Prathamesh B; Joseph, Emil; Tipnis, Sujal; Turnage, Scott; Solanki, Kiran N; Wang, Robert Y; Rykaczewski, Konrad
2018-01-17
Room-temperature liquid metals (LMs) are attractive candidates for thermal interface materials (TIMs) because of their moderately high thermal conductivity and liquid nature, which allow them to conform well to mating surfaces with little thermal resistance. However, gallium-based LMs may be of concern due to the gallium-driven degradation of many metal microelectronic components. We present a three-component composite with LM, copper (Cu) microparticles, and a polymer matrix, as a cheaper, noncorrosive solution. The solid copper particles alloy with the gallium in the LM, in situ and at room temperature, immobilizing the LM and eliminating any corrosion issues of nearby components. Investigation of the structure-property-process relationship of the three-component composites reveals that the method and degree of additive blending dramatically alter the resulting thermal transport properties. In particular, microdispersion of any combination of the LM and Cu additives results in a large number of interfaces and a thermal conductivity below 2 W m -1 K -1 . In contrast, a shorter blending procedure of premixed LM and Cu particle colloid into the polymer matrix yields a composite with polydispersed filler and effective intrinsic thermal conductivities of up to 17 W m -1 K -1 (effective thermal conductivity of up to 10 W m -1 K -1 ). The LM-Cu colloid alloying into CuGa 2 provides a limited, but practical, time frame to cast the uncured composite into the desired shape, space, or void before the composite stiffens and cures with permanent characteristics.
Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.
2017-10-01
Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.
Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits.
Energy Technology Data Exchange (ETDEWEB)
Lee, S.; Cummins, M. D.; Willing, G. A.; Firestone, M. A.; Materials Science Division; Univ. of Louisville
2009-01-01
The transport properties of self-supporting Au nanoparticle-ionic liquid-derived polymer composites were characterized. Topographic AFM images confirm the perforated lamellar composite architecture determined by small-angle X-ray scattering (SAXS) and further show that the in situ synthesized Au nanoparticles are localized within the hydrophilic (water) domains of the structure. At low Au nanoparticle content, the images reveal incomplete packing of spherical particles (i.e., voids) within these columns. The confinement and organization of the Au nanoparticles within the hydrophilic columns give rise to a large manifold of optical resonances in the near-IR region. The bulk composite conductivity, R{sub b}, was determined by ac electrochemical impedance spectroscopy (EIS) for samples prepared with increasing Au{sup 3+} content over a frequency range of 10 Hz to 1 MHz. A 100-fold increase was observed in the bulk conductivity at room temperature for composites prepared with the highest amount of Au{sup 3+} (1.58 {+-} 0.065 {micro}mol) versus the no Au composite, with the former reaching a value of 1.3 x 10{sup -4} S cm{sup -1} at 25 C. The temperature dependence of the conductivity recorded over this range was well-modeled by the Arrhenius equation. EIS studies on samples containing the highest Au nanoparticle content over a broader range of frequencies (2 x 10{sup -2} Hz to 5 x 10{sup 5} Hz) identified a low frequency component ascribed to electronic conduction. Electronic conduction due to aggregated Au nanoparticles was further confirmed by dc conductivity measurements. This work identifies a nanostructured composite that exhibits both ionic transport through the polymeric ionic liquid and electronic conduction from the organized encapsulated columns of Au nanoparticles.
Ehsani, A; Kowsari, E; Dashti Najafi, M; Safari, R; Mohammad Shiri, H
2017-08-15
This study demonstrates a method for improving supercapacitive performance of electrochemically synthesized conductive polymer. In this regards, 1-Butyl-3-methyl imidazolium hexafluorophosphate (BI) as a new high efficient ionic liquid was synthesized using chemical approach and then fabricated POAP/BI films by electro-polymerization of POAP in the presence of BI to serve as the active electrode for electrochemical supercapacitor. Theoretical study (AIM) and electrochemical analysis have been used for characterization of ionic liquid and POAP/BI composite film. Different electrochemical methods including galvanostatic charge-discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy are carried out in order to investigate the performance of the system. This work introduces new most efficient materials for electrochemical redox capacitors with advantages including ease synthesis, high active surface area and stability in an aqueous electrolyte. Copyright © 2017 Elsevier Inc. All rights reserved.
Viscous Design of TCA Configuration
Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.
1999-01-01
The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.
Wormholes in viscous cosmology
Wang, Deng
2016-01-01
We study the wormhole spacetime configurations in bulk viscosity cosmology. Considering three classes of viscous models, i.e., bulk viscosity as a function of Hubble parameter $H$, temperature $T$ and dark energy density $\\rho$, respectively, we obtain nine wormhole solutions. Through the analysis for the anisotropic solutions, we conclude that, to some extent, these three classes of viscous models have very high degeneracy with each other. Subsequently, without the loss of generality, to investigate the traversabilities, energy conditions and stability for the wormhole solution, we study the wormhole solution of the constant redshift function of the viscous $\\omega$CDM model with a constant bulk viscosity coefficient. We obtain the following conclusions: the value of traversal velocity decreases for decreasing bulk viscosity, and the traversal velocity for a traveler depends on not only the wormhole geometry but also the effects of cosmological background evolution; the null energy condition will be violated...
Koyama, Keitaro; Seki, Minoru
2004-01-01
A liquid-core alginate-membrane capsule was prepared by a novel method using polyethylene glycol as a thickener and the cells of Saccharomyces cerevisiae were encapsulated in its core and cultured. After 24 h of cultivation, the cell concentration in the capsule core-liquid reached 222 microg/mm3 on a dry weight basis, which was 1.4 times as large as that in the core of double-layered alginate beads, i.e., alginate-coated alginate-gel beads. The diameter increase of the capsule prepared by the proposed method using immobilized cell growth was suppressed compared to those using the double-layer method and simple alginate-gel bead entrapment, most likely because of the mobility of the entrapped cells in the capsule. We also confirmed that this encapsulation method is applicable for the cultivation of cultured cells of the plant Fragaria ananassa. Additionally, the time-course of the changes in thickener concentration in the liquid-core of the capsule was measured after encapsulation, and revealed the residual thickener, i.e., polyethylene glycol, was able to leak through the alginate shell membrane. This results in low-viscosity of the core liquid enabling good mass-transfer performance, whereas xanthan gum as a thickener could not leak through.
Alshomrani, Ali Saleh; Gul, Taza
2017-11-01
This study is related with the analysis of spray distribution considering a nanofluid thin layer over the slippery and stretching surface of a cylinder with thermal radiation. The distribution of the spray rate is designated as a function of the nanolayer thickness. The applied temperature used during spray phenomenon has been assumed as a reference temperature with the addition of the viscous dissipation term. The diverse behavior of the thermal radiation with magnetic and chemical reaction has been cautiously observed, which has consequences in causing variations in the spray distribution and heat transmission. Nanofluids have been used as water-based like Al2O3-H2O, Cu- H2O and have been examined under the consideration of momentum and thermal slip boundary conditions. The basic equations have been transformed into a set of nonlinear equations by using suitable variables for alteration. The approximate results of the problem have been achieved by using the optimal approach of the Homotopy Analysis Method (HAM). We demonstrate our results with the help of the numerical (ND-Solve) method. In addition, we found a close agreement of the two methods which is confirmed through graphs and tables. The rate of the spray pattern under the applied pressure term has also been obtained. The maximum cooling performance has been obtained by using the Cu water with the small values of the magnetic parameter and alumina for large values of the magnetic parameter. The outcomes of the Cu-water and Al2O3-H2O nanofluids have been linked to the published results in the literature. The impact of the physical parameters, like the skin friction coefficient, and the local Nusselt number have also been observed and compared with the published work. The momentum slip and thermal slip parameters, thermal radiation parameter, magnetic parameter and heat generation/absorption parameter effects on the spray rate have been calculated and discussed.
Hanibah, H.; Hashim, N. Z. Nor; Shamsudin, I. J.
2017-09-01
Molar Conductivity (Λ) behaviour of 1-butyl-3-methylimidazolium (Bmin) acetate and Bmin chloride (Bmin Cl) ionic liquids compared to lithium perchlorate (LiClO4) has been studied in aqueous and acetonitrile (ACN) solution at ambient temperature. The limiting molar conductivity (Λ0) was obtained using the Kohlrausch's and Ostwald's equation for the investigated systems. The results show that the Λ0 value for LiClO4 in both aqueous or acetonitrile (ACN) electrolyte system with a highest value as compare to ionic liquid electrolyte systems. This might as a result of ions association of LiClO4 in aqueous medium as the concentration of the solute increases in the solvent. In addition, the partial dissociation behaviour of LiClO4 in less polar solvent such as ACN also significantly affects the Λ0 value for this electrolyte system. However, for Bmin acetate and Bmin Cl in the aqueous or ACN medium show a much lower Λ0 value as compare to LiClO4 electrolyte system, 45.64, 74.63 and 107.32 S cm2 mol-1 respectively. This as a result of the nature behaviour of ionic liquid itself that present as free moving ions at room temperature before any dissolution into the solvent. In addition, a vice versa trend of Λ0 value is noted for Bmin acetate and Bmin Cl, 21.34 and 14.56 S cm2 mol-1 respectively in ACN electrolyte system. This indicated the solvent and the size of the anion play an important role in the estimation of limiting molar conductivity values which significantly affect the present of total free moving ions in an electrolyte system.
Viscous, Resistive Magnetorotational Modes
DEFF Research Database (Denmark)
Pessah, Martin Elias; Chan, Chi-kwan
2008-01-01
We carry out a comprehensive analysis of the behavior of the magnetorotational instability (MRI) in viscous, resistive plasmas. We find exact, non-linear solutions of the non-ideal magnetohydrodynamic (MHD) equations describing the local dynamics of an incompressible, differentially rotating back...
Effect of impurity pinning on conduction and specific heat in the Luttinger liquid
Energy Technology Data Exchange (ETDEWEB)
Artemenko, S.N. [V.A. Kotelnikov Institute for Radio-Engineering and Electronics of the RAS, Mokhovaya str. 11-7, Moscow 125009 (Russian Federation)], E-mail: sartemenko@googlemail.com; Remizov, S.V.; Shapiro, D.S.; Vakhitov, R.R. [V.A. Kotelnikov Institute for Radio-Engineering and Electronics of the RAS, Mokhovaya str. 11-7, Moscow 125009 (Russian Federation)
2009-03-01
We study theoretically two effects related to impurity depinning that are common for 1D Luttinger liquid (LL) and linear-chain charge-density wave (CDW) conductors. First, we consider the electron transport through a single impurity in a 1D conducting channel and study a new regime of conduction related to LL sliding at voltage above a threshold one. The DC current in this regime is accompanied by oscillations with frequency f=I/e. This resembles the CDW depinning in linear-chain conductors, the Josephson effect, and the Coulomb blockade. Second, we found that strong pinning of the LL by impurities leads to a magnetic field dependence of the low-temperature specific heat similar to that observed experimentally in CDW compounds. We interpret this in favor of possibility of formation of the LL in linear-chain compounds.
High thermal conductivity in soft elastomers with elongated liquid metal inclusions.
Kazem, Navid; Bartlett, Michael D.; Powell-Palm, Matthew J.; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A.; Majidi, Carmel
Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrains thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E) . This is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with a dielectric composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (E 600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a 25x increase in thermal conductivity (4.7 +/-0.2 W/mK) over the base polymer (0.20 +/-0.01 W/mK) under stress-free conditions and a 50x increase (9.8 +/-0.8 W/mK) when strained. This exceptional combination of thermal and mechanical properties is through the deformation of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer new possibilities for passive heat exchange in stretchable electronics and bio-inspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high power LED lamp and a swimming soft robot. AFOSR Young Investigator Program (Mechanics of Multifunctional Materials and Microsystems; Dr. Les Lee; FA9550-13-1-0123), NASA Early Career Faculty Award (NNX14AO49G), Army Research Office Grant W911NF-14-0350.
Frech, Roger; Petrowsky, Matt
2014-03-06
Decades of studying isothermal and temperature-dependent mass and charge transport in polar organic liquids and electrolytes have resulted in two mutually incompatible models and the failure to develop a general molecular level picture. The hydrodynamic model describes conductivity, diffusion, and dielectric relaxation in terms of viscosity, while the inadequacy of the thermal activation model leads to empirical descriptions and fitting procedures whose adjustable parameters have little or no physical significance. We recently demonstrated that transport data can be characterized with a high degree of accuracy and self-consistency using the compensated Arrhenius formalism (CAF), where the transport property of interest assumes an Arrhenius-like form that also includes a dielectric constant dependence in the exponential prefactor. Here, we provide the molecular-level basis for the CAF by first modifying transition state theory, emphasizing the coupling of the diffusing molecule's motion with the dynamical motion of the surrounding matrix. We then explicitly include the polarization energy contribution from the dipolar medium. The polarization energy is related to molecular and system properties through the dipole moment and dipole density, respectively. The energy barrier for transport is coupled to the polarization energy, and we show that accounting for the role of the polarization energy leads naturally to the dielectric constant dependence in the exponential prefactor.
Liquid crystal behavior induced assembling fabrication of conductive chiral MWCNTs@NCC nanopaper
Energy Technology Data Exchange (ETDEWEB)
Ren, Yumei; Wang, Tianjiao; Chen, Zhimin; Li, Jing; Tian, Qiuge; Yang, Hongxia; Xu, Qun, E-mail: qunxu@zzu.edu.cn
2016-11-01
Highlights: • In this study conductive chiral MWCNTs@NCC nanopapers were prepared. • The introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. • The multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. • The resulting nanopaper has an increased conductivity. - Abstract: The conductive chiral MWCNTs@NCC nanopapers obtained by the assembly of nanocrystalline cellulose liquid crystals (NCC LCs) host matrix along with one-dimensional (1-D) multi-walled carbon nanotubes (MWCNTs) have been studied in this work. Circular dichroism (CD) studies show strong signals stemming from the chiral nematic structure. Notably, the introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. Our experimental results indicate the multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. Moreover it also confirms the resulting nanopaper has an increased conductivity of 4.2 S/m at 1.96 wt% MWCNTs. So the co-assembly of the nanocomposite herein opens a gateway for preparing functional materials combining the photonic properties of the NCC LCs matrix with other building blocks that can supply other advantageous functions.
Directory of Open Access Journals (Sweden)
Bor-Kuan Chen
2015-06-01
Full Text Available A novel sulfonated diamine was synthesized from 1,4-bis(4-aminophenoxy benzene [pBAB]. Sulfonated polyimides (SPIs were synthesized from sulfonated pBAB, 1,4-bis(4-aminophenoxy-2-sulfonic acid benzenesulfonic acid [pBABTS], various diamines and aromatic dianhydrides. Composite proton exchange membranes (PEMs made of novel SPIs and a protic ionic liquid (PIL 1-vinyl-3-H-imidazolium trifluoromethanesulfonate [VIm][OTf] showed substantially increased conductivity. We prepared an SPI/PIL composite PEM using pBABTS, 4,4′-(9-fluorenylidene dianiline (9FDA as diamine, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA as dianhydride and 40 wt % [VIm][OTf] with a high conductivity of 16 mS/cm at 120 °C and anhydrous condition. pBABTS offered better conductivity, since the chemical structure had more sulfonated groups that provide increased conductivity. The new composite membrane could be a promising anhydrous or low-humidity PEM for intermediate or high-temperature fuel cells.
Automated optical inspection of liquid crystal display anisotropic conductive film bonding
Ni, Guangming; Du, Xiaohui; Liu, Lin; Zhang, Jing; Liu, Juanxiu; Liu, Yong
2016-10-01
Anisotropic conductive film (ACF) bonding is widely used in the liquid crystal display (LCD) industry. It implements circuit connection between screens and flexible printed circuits or integrated circuits. Conductive microspheres in ACF are key factors that influence LCD quality, because the conductive microspheres' quantity and shape deformation rate affect the interconnection resistance. Although this issue has been studied extensively by prior work, quick and accurate methods to inspect the quality of ACF bonding are still missing in the actual production process. We propose a method to inspect ACF bonding effectively by using automated optical inspection. The method has three steps. The first step is that it acquires images of the detection zones using a differential interference contrast (DIC) imaging system. The second step is that it identifies the conductive microspheres and their shape deformation rate using quantitative analysis of the characteristics of the DIC images. The final step is that it inspects ACF bonding using a back propagation trained neural network. The result shows that the miss rate is lower than 0.1%, and the false inspection rate is lower than 0.05%.
Eguizábal, A.; Lemus, J.; Urbiztondo, M.; Moschovi, A. M.; Ntais, S.; Soler, J.; Pina, M. P.
Ammonium based ionic liquids immobilized in Y (FAU framework code) and beta (BEA framework code) type zeolites by different solution methods have been comprehensively characterized for their potential applications as hydrophilic-conducting fillers for PEM. In particular (2-hydroxymethyl) trimethylammonium dimethyl phosphate (IL1) and N,N-dimethyl-N-(2-hydroxyethyl) ammonium bis(trifluoromethanesulfonyl) imide (IL2) encapsulated into commercial NaY (Si/Al = 1.5) and NH 4-BEA (Si/Al = 12.5) type zeolites have been investigated. X-ray diffraction, N 2 physisorption, TGA analysis, ATR-FTIR and Raman spectroscopy techniques have been used to assess about the goodness of the encapsulation procedures. Finally, A.C. impedance spectroscopy measurements of tablets prepared from PVDF/composite (1:9 wt. ratio) were performed in order to evaluate their conduction properties. The conduction properties of the composites as a function of temperature and water partial pressure have been finally chosen as analytical tool to define the best encapsulation procedure and IL/Z composite for PEMFCs applications. A possible conduction mechanism, where synergic-inhibition effects between ILs and H 2O molecules coupled to IL dragging by water desorption take place, is also presented.
Viscous fingering with partially miscible fluids
Fu, X.; Cueto-Felgueroso, L.; Juanes, R.
2015-12-01
When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Experimental and numerical studies of viscous fingering have focused on fluids that are either fully miscible (e.g. water and glycerol) or perfectly immiscible (e.g. water and oil). In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other (e.g. CO2 and water). Following our recent work for miscible systems (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a porous medium, when the two fluids have limited (but nonzero) solubility in one another. In our model, partial miscibility is characterized through the design of the thermodynamic free energy of the two-fluid system. We express the model in dimensionless form and elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution. Figure caption: final snapshots in simulations of viscous fingering with a two-fluid system mimicking that of CO2 and water. The colormap corresponds to the concentration of CO2. A band of less viscous gas phase rich in CO2 (red) displaces through the more viscous liquid phase that is undersaturated with CO2 (blue). At the fluid interface, an exchange of CO2 occurs as a result of local chemical potentials that drives the system towards thermodynamic equilibrium. This results in a shrinkage of gas phase as well as a local increase in
Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant
Directory of Open Access Journals (Sweden)
Jun Kobayashi
2016-06-01
Full Text Available A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo8 isomer, and possessed alternate stacking of Mo8 monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo8 isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo8 anion by N–H···O hydrogen bonds, which presumably induced the formation of the δ-Mo8 anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10−6 S·cm−1 at 443 K by alternating current (AC impedance spectroscopy.
Measurement of ammonia in human breath with a liquid-film conductivity sensor.
Toda, Kei; Li, Jianzhong; Dasgupta, Purnendu K
2006-10-15
Measurement of breath NH3 is of interest in clinical applications as it can be used as a measure of kidney/liver functions as well as halitosis. We have developed a liquid-film conductivity sensor to measure NH3 in human breath. A film of dilute H2SO4 is formed on the top of two metal capillary tubes placed in a concentric annular arrangement. The tube exterior has been specially treated to render it hydrophilic. As breath passes over the sensor tip, the film collects NH3 and the solution conductivity (measured by the concentric capillaries functioning as electrodes) decreases accordingly. This initial rate of conductivity decrease was determined to be the best metric (most rapid and least dependent on breath pCO2) for ammonia, relative to time to attain complete neutralization (conductivity minimum) or the final rate of conductivity increase as more ammonia dissolves after neutralization. The absorbing solution composition was optimized so that CO2 does not interfere. Both dynamic measurement using mask sampling and offline balloon sampling were performed. Ammonia readily absorbs on surfaces when significant concentrations of water vapor are present. As such, memory effects are common when analyzing human breath for ammonia. This problem was successfully eliminated. The results from this sensor agreed well with data obtained by a solution-phase fluorometric technique using a porous membrane diffusion scrubber and o-phthalaldehyde derivatization chemistry. For breath CO2 measurement, the applicability of a similar sensor that relies on a NaOH film was also demonstrated.
Green, T. E.; Bramley, A.; Lue, L.; Grassia, P.
2006-11-01
Microscale models of foam structure traditionally incorporate a balance between bubble pressures and surface tension forces associated with curvature of bubble films. In particular, models for flowing foam microrheology have assumed this balance is maintained under the action of some externally imposed motion. Recently, however, a dynamic model for foam structure has been proposed, the viscous froth model, which balances the net effect of bubble pressures and surface tension to viscous dissipation forces: this permits the description of fast-flowing foam. This contribution examines the behavior of the viscous froth model when applied to a paradigm problem with a particularly simple geometry: namely, a two-dimensional bubble “lens.” The lens consists of a channel partly filled by a bubble (known as the “lens bubble”) which contacts one channel wall. An additional film (known as the “spanning film”) connects to this bubble spanning the distance from the opposite channel wall. This simple structure can be set in motion and deformed out of equilibrium by applying a pressure across the spanning film: a rich dynamical behavior results. Solutions for the lens structure steadily propagating along the channel can be computed by the viscous froth model. Perturbation solutions are obtained in the limit of a lens structure with weak applied pressures, while numerical solutions are available for higher pressures. These steadily propagating solutions suggest that small lenses move faster than large ones, while both small and large lens bubbles are quite resistant to deformation, at least for weak applied back pressures. As the applied back pressure grows, the structure with the small lens bubble remains relatively stiff, while that with the large lens bubble becomes much more compliant. However, with even further increases in the applied back pressure, a critical pressure appears to exist for which the steady-state structure loses stability and unsteady
Energy Technology Data Exchange (ETDEWEB)
Yildiz, Alptekin [Istanbul Technical University, Department of Physics Engineering, 34469 Maslak, Istanbul (Turkey); Yildiz Technical University, Department of Physics, 34210 Esenler, Istanbul (Turkey); Canli, Nimet Yilmaz, E-mail: niyilmaz@yahoo.com [Yildiz Technical University, Department of Physics, 34210 Esenler, Istanbul (Turkey); Özdemir, Zeynep Güven [Yildiz Technical University, Department of Physics, 34210 Esenler, Istanbul (Turkey); Ocak, Hale; Eran, Belkız Bilgin [Yildiz Technical University, Department of Chemistry, 34210 Esenler, Istanbul (Turkey); Okutan, Mustafa [Yildiz Technical University, Department of Physics, 34210 Esenler, Istanbul (Turkey)
2016-03-15
In this study, dielectric properties and ac conductivity mechanism of the bent-core liquid crystal 3′-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4- [4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1yl)hex-1-yloxy]benzoyloxy] benzoyloxy}biphenyl (DBB) have been analyzed by impedance spectroscopy measurements at different temperatures. According to the polarizing microscopy results, DBB liquid crystal compound exhibits a dark conglomerate mesophase (DC{sup [*]} phase) which can be identified by the occurrence of a conglomerate of domains with opposite chirality. The chiral domains of this low-birefringent mesophase become more visible by rotating the polarizer. The variation of the real (ε′) and imaginary (ε″) parts of dielectric constant with angular frequency and Cole–Cole curves of DBB have been analyzed. The fitting results for dispersion curves at different temperatures revealed that DBB system exhibits nearly Debye-type relaxation except for 125 °C. Moreover, it has been determined that while the relaxation frequencies shift to higher frequencies as the temperature increases from 25 °C to 125 °C, the peak intensities remarkably decrease with increasing temperature. According to Cole–Cole plot and phase angle versus frequency curve, it has been determined that DBB LC may have a possibility of utilizing as a super-capacitor at room temperature. Furthermore, it has been found that the conductivity mechanism of the DBB alters from Correlated Barrier Hoping (CBH) model to Quantum Tunneling Model (QMT) with in increasing temperature at high frequency region. In terms of CBH model, optical band gaps at 25 °C and 75 °C temperatures have also been calculated. Finally, activation energies for some selected angular frequencies have also been calculated.
Highly conductive ionic liquids toward high-performance space-lubricating greases.
Fan, Xiaoqiang; Wang, Liping
2014-08-27
Although ionic liquids (ILs) as a class of promising materials have a wide range of applications due to the excellent properties, their potential as space lubricants has been not systematically explored. Here two kinds of conductive alkyl imidazolium ILs greases were prepared using 1-hexyl-3-methylimidazolium tetrafluoroborate (LB106) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide (L-F106) as base oil and the polytetrafluoroethylene (PTFE) as thickener, with multiple-alkylated cyclopentane grease (MACs) as a comparison. Their chemical composition and tribological properties were investigated in detail under simulated space environment which is composed of high vacuum, high temperature and irradiation. Results show that the high conductive ILs greases not only possess good adaptive abilities to space environment and thermal stability but also provide excellent friction reducing and antiwear behaviors as well as high load carrying capacities. The unique physicochemical properties are attributed to a combination of special anions and cations, the excellent tribological properties are strongly dependent on a boundary protective film on the rubbing surfaces.
A charge transfer complex nematic liquid crystalline gel with high electrical conductivity
Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.
2014-10-01
We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4-5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.
A charge transfer complex nematic liquid crystalline gel with high electrical conductivity
Energy Technology Data Exchange (ETDEWEB)
Bhargavi, R.; Nair, Geetha G., E-mail: geeraj88@gmail.com, E-mail: skpras@gmail.com; Krishna Prasad, S., E-mail: geeraj88@gmail.com, E-mail: skpras@gmail.com [Centre for Nano and Soft Matter Sciences, Jalahalli, Bangalore 560013 (India); Majumdar, R.; Bag, Braja G. [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore (W) 721 102 (India)
2014-10-21
We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.
Directory of Open Access Journals (Sweden)
Penwisa Pisitsak
2012-01-01
Full Text Available A thermotropic liquid crystalline polymer (LCP was blended with polycarbonate (PC and multiwalled carbon nanotube (CNT with the goal of improving electrical conductivity and mechanical properties over PC. The LCP was anticipated to produce fibrillar domains in PC and help improve the mechanical properties. The study was carried out using two grades of LCP—Vectra A950 (VA950 and Vectra V400P (V400P. The compounds contained 20 wt% LCP and 0.5 to 15 wt% CNT. The compounds were prepared by melt-blending in a twin-screw minicompounder and then injection molded using a mini-injection molder. The fibrillar domains of LCP were found only in the case of PC/VA950 blend. However, these fibrils turned into droplets in the presence of CNT. It was found that CNT preferentially remained inside the LCP domains as predicted from the value of spreading coefficient. The electrical conductivity showed the following order with the numbers in parenthesis representing the electrical percolation threshold of the compounds: PC/CNT (1% > PC/VA950P/CNT (1% > PC/V400P/CNT (3%. The storage modulus showed improvements with the addition of CNT and VA950.
Directory of Open Access Journals (Sweden)
Pankaj Attri
Full Text Available In this paper, we have examined the conductivity and interaction studies of ammonium and imidazolium based ionic liquids (ILs with the newly synthesised low bandgap polymer (Poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole (PHVTT. Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. The aim of present work is to illustrate the state of art progress of implementing the interaction of ILs (protic and aprotic ILs with newly synthesised low bandgap polymer. In addition to this, our UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate ([N1444][MeSO4] from ammonium family and 1-methylimidazolium chloride ([Mim]Cl, and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl from imidazolium family have potential to interact with polymer. Our semi empirical calculation with help of Hyperchem 7 shows that protic IL ([Mim]Cl interacts strongly with the low bandgap polymer through the H-bonding. Further, protic ILs shows enhanced conductivity than aprotic ILs in association with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities.
The viscosity and the thermal conductivity of normal liquid Helium 3 in the LOCV frame-work
Modarres, M.; Rahmat, M.
2017-01-01
The lowest order constrained variational (LOCV) method is used to evaluate the transport properties of normal liquid Helium-3 (3 He) within the Landau-Abrikosov-Khalatnikov (LAK) formalism. The LOCV effective two-body interaction of the liquid Helium 3 is used to calculate the differential cross-section and the scattering probability, which is needed to solve the LAK equations. It is shown that, the choice of effective mass has crucial role on the resulting viscosity and thermal conductivity of normal liquid 3 He. Our LOCV-LAK calculations are compared with the other theoretical and experimental results.
Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro
2011-07-21
In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.
The size and shape of gas-focused viscous micro-jets
Ferrera, C.; Ganan-Calvo, A. M.; Montanero, J. M.; Vega, E. J.; Herrada, M. A.
2011-11-01
The size and shape of gas-focused viscous micro-jets are analyzed theoretically and experimentally. These micro-jets are shaped by the action of a co-flowing gas stream due to both the pressure drop in the axial direction occurring in front of the discharge orifice, and the tangential viscous stress caused by the difference between the velocities of the gas and jet behind the orifice. The slender approximation is used to describing the shape of the tapering meniscus and the emitted liquid ligament. Assuming that the driving force takes a uniform value over the entire liquid domain, a universal (self-similar) solution of the momentum equation can be obtained. Experiments were conducted to assess the validity of that solution for a wide range of liquid viscosities. A remarkable collapse into a single curve is obtained for of all jet diameters measured beyond the orifice. This result shows that the driving force mentioned above attains a rather homogeneous value at the region where the micro-jet develops. The universal solution also provides satisfactory results in front of the orifice for sufficiently slender liquid meniscus, provided that the ratio capillary-to-orifice distance to orifice diameter takes sufficiently small values. The approach used in this work can also be applied to study other microjet generation means (co-flowing, electrospray, electrospinning...).
Contribution of inter- and intramolecular energy transfers to heat conduction in liquids
Torii, Daichi; Nakano, Takeo; Ohara, Taku
2008-01-01
The molecular dynamics expression of heat flux, originally derived by Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)] for pairwise potentials, is generalized in this paper for systems with many-body potentials. The original formula consists of a kinetic part and a potential part, and the latter term is found in the present study to be expressible as a summation of contributions from all the many-body potentials defined in the system. The energy transfer among a set of sites for which a many-body potential is defined is discussed and evaluated by the rate of increase in the kinetic energy of each site due to the potential, and its accumulation over all the potentials in the system is shown to make up the potential part of the generalized expression. A molecular dynamics simulation for liquid n-octane was performed to demonstrate the applicability of the new expression obtained in this study to measure the heat flux and to elucidate the contributions of inter- and intramolecular potentials to heat conduction.
Miscible viscous fingering involving production of gel by chemical reactions
Nagatsu, Yuichiro; Hoshino, Kenichi
2015-11-01
We have experimentally investigated miscible viscous fingering with chemical reactions producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and aluminum ion (Al3 +) solution were used as the more and less viscous liquids, respectively. In another system, SPA solution and ferric ion (Fe3 +) solution were used as the more and less viscous liquids, respectively. In the case of Al3 +, displacement efficiency was smaller than that in the non-reactive case, whereas in the case of Fe3 +, the displacement efficiency was larger. We consider that the difference in change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We discuss relationship between the VF patterns and the rheological measurement.
Devasurendra, Amila M; Zhang, Cheng; Young, Joshua A; Tillekeratne, L M Viranga; Anderson, Jared L; Kirchhoff, Jon R
2017-07-26
Pyrrole was covalently bonded to 1-methyl and 1-benzylimidazolium ionic liquids (ILs) via an N-substituted alkyl linkage to prepare electropolymerizable IL monomers with excellent thermal stability. The methylimidazolium IL, [pyrrole-C6MIm]+, was then electropolymerized on macro- and microelectrode materials to form conductive polymeric IL (CPIL)-modified surfaces. Electrochemical characterization of a 1.6 mm diameter Pt disk electrode modified with poly[pyrrole-C6MIm]+ demonstrated a selective uptake for an anionic redox probe while rejecting a cationic redox probe. Furthermore, electropolymerization of [pyrrole-C6MIm]+ doped with single-walled carbon nanotubes (SWNT) on 125 μm platinum wires produced 42 μm thick poly[pyrrole-C6MIm]+/SWNT films compared to 17 μm in the absence of SWNT and 5 μm for the previously reported poly[thiophene-C6MIm]+ coatings. The poly[pyrrole-C6MIm]+/SWNT films were prepared with reproducible thicknesses as well as thermal properties sufficient for high-temperature applications, such as solid-phase microextraction (SPME) with gas chromatographic analysis. The utilization of the CPIL sorbent materials in SPME experiments provided excellent extraction efficiencies and selectivity toward organic aromatic analytes. The CPIL sorbent coatings also yielded outstanding fiber-to-fiber reproducibility on the basis of extraction efficiencies and improved response for a range of analytes relative to commercial 100 μm poly(dimethylsiloxane) fibers when normalized for differences in film thickness. Poly[pyrrole-C6MIm]+ CPIL coatings doped with SWNT are therefore promising new sorbent materials for SPME analyses.
Langlois, William E
2014-01-01
Leonardo wrote, 'Mechanics is the paradise of the mathematical sciences, because by means of it one comes to the fruits of mathematics' ; replace 'Mechanics' by 'Fluid mechanics' and here we are." - from the Preface to the Second Edition Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the nearly half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity a...
Energy Technology Data Exchange (ETDEWEB)
Chambers, Martin; Zalar, Bostjan; Remskar, Maja; Zumer, Slobodan [J Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Finkelmann, Heino [Institute for Macromolecular Chemistry, University of Freiburg, D-79104 Freiburg (Germany)], E-mail: Martin.Chambers@ijs.si
2008-04-16
When a liquid crystal elastomer (LCE) is reprocessed with conducting nanosized particles a conducting layer can be formed at the LCE surfaces. Here, two different LCE materials and two different conducting carbon particles were used. These four reprocessed LCEs were investigated when subject to a thermal phase transition and mechanical extension. Here it is shown that the resistance change with strain ('piezoresistivity') for these reprocessed LCEs can be described through lattice percolation and geometrical changes in the LCE shape. The mechanisms and rate of degradation are also described for the conducting layer as a function of the number of electro-thermomechanical strain cycles performed.
Gold-ionic liquid nanofluids with preferably tribological properties and thermal conductivity
Directory of Open Access Journals (Sweden)
Wang Baogang
2011-01-01
Full Text Available Abstract Gold/1-butyl-3-methylimidazolium hexafluorophosphate (Au/[Bmim][PF6] nanofluids containing different stabilizing agents were fabricated by a facile one-step chemical reduction method, of which the nanofluids stabilized by cetyltrimethylammonium bromide (CTABr exhibited ultrahighly thermodynamic stability. The transmission electron microscopy, UV-visible absorption, Fourier transform infrared, and X-ray photoelectron characterizations were conducted to reveal the stable mechanism. Then, the tribological properties of these ionic liquid (IL-based gold nanofluids were first investigated in more detail. In comparison with pure [Bmim][PF6] and the nanofluids possessing poor stability, the nanofluids with high stability exhibited much better friction-reduction and anti-wear properties. For instance, the friction coefficient and wear volume lubricated by the nanofluid with rather low volumetric concentration (1.02 × 10-3% stabilized by CTABr under 800 N are 13.8 and 45.4% lower than that of pure [Bmim][PF6], confirming that soft Au nanoparticles (Au NPs also can be excellent additives for high performance lubricants especially under high loads. Moreover, the thermal conductivity (TC of the stable nanofluids with three volumetric fraction (2.55 × 10-4, 5.1 × 10-4, and 1.02 × 10-3% was also measured by a transient hot wire method as a function of temperature (33 to 81°C. The results indicate that the TC of the nanofluid (1.02 × 10-3% is 13.1% higher than that of [Bmim][PF6] at 81°C but no obvious variation at 33°C. The conspicuously temperature-dependent and greatly enhanced TC of Au/[Bmim][PF6] nanofluids stabilized by CTABr could be attributed to micro-convection caused by the Brownian motion of Au NPs. Our results should open new avenues to utilize Au NPs and ILs in tribology and the high-temperature heat transfer field.
DEFF Research Database (Denmark)
Gharagheizi, Farhad; Ilani‐Kashkouli, Poorandokht; Sattari, Mehdi
2013-01-01
In this communication, a general model for representation/presentation of the liquid thermal conductivity of chemical compounds (mostly organic) at 1 atm pressure for temperatures below normal boiling point and at saturation pressure for temperatures above the normal boiling point is developed us...
Energy Technology Data Exchange (ETDEWEB)
Baek, J.S. [Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul (Korea, Republic of); Fuel Cell Research Center, Korea Institute of Energy Research, Daejeon (Korea, Republic of); Park, J.S. [Department of Environmental Engineering, College of Engineering, Sangmyung University, Chungnam Province (Korea, Republic of); Sekhon, S.S. [Department of Applied Physics, Guru Nanak Dev University, Amritsar (India); Yang, T.H. [Fuel Cell Research Center, Korea Institute of Energy Research, Daejeon (Korea, Republic of); Shul, Y.G. [Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul (Korea, Republic of); Choi, J.H. [Department of Chemical Engineering, College of Engineering, Kongju National University, Chungnam Province (Korea, Republic of)
2010-10-15
In this study, we prepared ionic liquid based composite membranes applicable for anhydrous and high temperature polymer electrolyte membrane fuel cells (PEMFCs). It is intended to minimise an increase in ionic conductivity of composite membranes by reducing the content of ionic liquids up to 30 wt% along with the addition of acids having the same anions as the ionic liquids. For this purpose, we prepared the composite membrane by solution recasting with 5 wt% Nafion solution, ionic liquids such as 1-ethyl-3-methylimidazolium trifluoro-methanesulphonate (EMITf) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF{sub 4}), and acids such as trifluoromethanesulphonic acid (HTf) and tetra-fluoroboric acid (HBF{sub 4}). The composite membranes were characterised by using small-angle X-ray scattering (SAXS), thermogravimetric analyser (TGA) and impedance spectroscopy. It was observed that the addition of the acids results in an increase in the proton conductivity of the composite membranes by reducing the viscosity of ionic liquids inside the composite membranes and also by providing additional proton ions due to the dissociation of the acids. In addition, the composite membranes exhibited better thermal stability over 300 C. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Fluidic Channels Produced by Electro Hydrodynamic Viscous Fingering
Behler, Kristopher; Wetzel, Eric
2010-03-01
Viscous fingering is a term describing fingerlike extensions of liquid from a column of low viscosity liquid that has been injected into a more viscous liquid. The modification of viscous fingering, known as electro hydrodynamic viscous fingering (EHVF), utilizes large electrical potentials of 10-60 kV. The fingers see a reduction in size and increase in branching behavior due to the potential applied to the system. The resulting finely structured patterns are analogous to biological systems such as blood vessels and the lymphatic system. In this study silicone oils and water were studied in thin channel Hele-Shaw cells. The interfacial tension was optimized by altering the surfactant concentration in the silicone oils. EHVF of liquid filled packed beds consisting of beads and silicone oils showed retardation of the relaxation of the fingers after the voltage was turned off. Decreased relaxation provides a means to solidify patterns into a curable material, such as polydimethylsiloxane (PDMS). After the water is evacuated from the fingers, the cured materials then possess hollow channels that can be refilled and emptied, thus creating an artificial circulatory system.
Faghri, Amir; Chen, Ming-Ming
1989-01-01
The effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes are discussed. The accuracy of the partially parabolic versus the elliptic presentation of the governing equations is also examined. The results show that the axial wall conduction has a tendency to make the temperature distribution more uniform for heat pipes with large ratios of pipe wall to effective liquid-wick thermal conductivity. The compressible and incompressible models show very close agreement for the total pressure drop, while the local pressure variations along the heat pipe are quite different for these two models when the radial Reynolds number at the interface is high.
Directory of Open Access Journals (Sweden)
Jinglei Xiang
2010-01-01
Full Text Available A monolayer film composed of exfoliated graphite nanoplatelets (xGnPs was extracted from a chloroform-water interface and supported on a glass substrate. The nanoplatelets are interconnected at the edges without overlapping forming a very densely packed structure with uniform thickness. Micro-Raman spectroscopy with a 50 mW 532 nm laser generating heat at the center of a xGnP sample was used to probe the thermal conductivity of the xGnP monolayer at different power levels. The Raman G peak shift of graphite was used to record the local temperature rise in the monolayer. The cross-sectional area of heat conduction is determined by the thickness of individual nanoplatelets. A UV-Vis spectrometer was used to measure the absorption of light by the monolayer. Depending on the interface density, the thermal conductivities are around 380 W/m K and 290 W/m K for monolayers with average particle size of 10 μm and 5 μm, respectively.
Simone, Peter M; Lodge, Timothy P
2009-12-01
Concentrated solutions of poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymers were prepared using the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMI][TFSI] as the solvent. The self-assembled microstructures adopted by the copolymer solutions have been characterized using small-angle X-ray scattering. Lyotropic mesophase transitions were observed, with a progression from hexagonally packed cylinders of PEO, to lamellae, to hexagonally packed cylinders of PS upon increasing [EMI][TFSI] content. The change in lamellar domain spacing with ionic liquid concentration was found to be comparable to that reported for other block copolymers in strongly selective solvents. The ionic conductivity of the concentrated PS-PEO/[EMI][TFSI] solutions was measured via impedance spectroscopy, and ranged from 1 x 10(-7) to 1 x 10(-3) S/cm at temperatures from 25 - 100 degrees C. Additionally, the ionic conductivity of the solutions was found to increase with both ionic liquid concentration and molecular weight of the PEO blocks. The ionic conductivity of PEO homopolymer/[EMI][TFSI] solutions was also measured in order to compare the conductivity of the PS-PEO solutions to the expected limit for a lamellar sample with randomly oriented microstructure grains.
Ge, Si-Jia; Zhao, Ti-Peng; Wang, Meng; Deng, Lin-Lin; Lin, Bao-Ping; Zhang, Xue-Qin; Sun, Ying; Yang, Hong; Chen, Er-Qiang
2017-08-16
The development of pure polymeric films with anisotropic thermal conductivities for electronic device packaging applications has attracted intense scientific attention. In order to enhance the polymeric film's normal-direction thermal conductivity, homeotropic alignment of macromolecular chains is the primary concern. One of the promising preparation strategies is to perform in situ photopolymerization of homeotropic-oriented liquid crystal monomers. In this work, we design and synthesize a novel tolane-core thiol-ene-tailed liquid crystal monomer. Benefitting from the conjugated and extended tolane π-system of the mesogenic core and length extension of the terminal aliphatic tails, the normal-to-plane thermal conductivity value and the thermal conductivity anisotropy value of the corresponding cross-linked main-chain end-on liquid crystal polymer (xMELCP) film reach 3.56 W m-1 K-1 and 15.0, respectively. Compared with the data of a previously reported ester-type thiol-ene xMELCP film, the two primary values of this novel tolane-type thiol-ene xMELCP material are increased dramatically by 46% and 29%, respectively.
Sintering of polydisperse viscous droplets
Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Dingwell, Donald B.
2017-03-01
Sintering—or coalescence—of compacts of viscous droplets is driven by the interfacial tension between the droplets and the interstitial gas phase. The process, which occurs in a range of industrial and natural settings, such as the manufacture of ceramics and the welding of volcanic ash, causes the compact to densify, to become stronger, and to become less permeable. We investigate the role of droplet polydispersivity in sintering dynamics by conducting experiments in which populations of glass spheres with different size distributions are heated to temperatures above the glass transition interval. We quantify the progress of sintering by tracking changes in porosity with time. The sintering dynamics is modeled by treating the system as a random distribution of interstitial gas bubbles shrinking under the action of interfacial tension only. We identify the scaling between the polydispersivity of the initial droplets and the dynamics of bulk densification. The framework that we develop allows the sintering dynamics of arbitrary polydisperse populations of droplets to be predicted if the initial droplet (or particle) size distribution is known.
Energy Technology Data Exchange (ETDEWEB)
Lin Peiyin [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Soriano, Allan N. [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Manila 1002 (Philippines); Leron, Rhoda B. [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Li Menghui, E-mail: mhli@cycu.edu.t [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)
2010-08-15
As part of our systematic study on physicochemical characterization of ionic liquids, in this work, we report new measurements of electrolytic conductivity and molar heat capacity for aqueous solutions of two 1-ethyl-3-methylimidazolium-based ionic liquids, namely: 1-ethyl-3-methylimidazolium dicyanamide and 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate, at normal atmospheric condition and for temperatures up to 353.2 K. The electrolytic conductivity and molar heat capacity were measured by a commercial conductivity meter and a differential scanning calorimeter (DSC), respectively. The estimated experimental uncertainties for the electrolytic conductivity and molar heat capacity measurements were {+-}1% and {+-}2%, respectively. The property data are reported as functions of temperature and composition. A modified empirical equation from another researcher was used to correlate the temperature and composition dependence of the our electrolytic conductivity results. An excess molar heat capacity expression derived using a Redlich-Kister type equation was used to represent the temperature and composition dependence of the measured molar heat capacity and calculated excess molar heat capacity of the solvent systems considered. The correlations applied represent the our measurements satisfactorily as shown by an acceptable overall average deviation of 6.4% and 0.1%, respectively, for electrolytic conductivity and molar heat capacity.
Jeonghun Nam; Jae Young Kim; Chae Seung Lim
2017-01-01
We present continuous, sheathless microparticle patterning using conductive liquid (CL)-based standing surface acoustic waves (SSAWs). Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls...
Directory of Open Access Journals (Sweden)
Jeonghun Nam
2017-01-01
Full Text Available We present continuous, sheathless microparticle patterning using conductive liquid (CL-based standing surface acoustic waves (SSAWs. Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls of the fluidic channel.
Ehsani, A; Mohammad Shiri, H; Kowsari, E; Safari, R; Torabian, J; Hajghani, S
2017-03-15
In this paper firstly, 1-methyl-3-methylimidazolium bromide (MB) as a new high efficient ionic liquid was synthesized using chemical approach and then fabricated POAP/MB films by electro-polymerization of POAP in the presence of MB to serve as the active electrode for electrochemical supercapacitor. Theoretical study (AIM) and electrochemical analysis have been used for characterization of ionic liquid and POAP/MB composite film. Different electrochemical methods including galvanostatic charge-discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy are carried out in order to investigate the performance of the system. This work introduces new most efficient materials for electrochemical redox capacitors with advantages including ease synthesis, high active surface area and stability in an aqueous electrolyte. Copyright © 2016 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Sloan, E.D.; Graboski, M.S.
1980-01-01
An improved instrument for the measurement of the thermal conductivity of non-electrolyte liquids was designed and constructed. Eventually the apparatus will be tested and the thermal conductivity of two coal-derived synthetic oils will be measured. (FS)
Directory of Open Access Journals (Sweden)
Annachiara Berardinelli
2012-06-01
Full Text Available The total solids and fat contents of nine whole liquid egg products were assessed by means of electrical and thermal conductivity measurements. Linear correlations between conductivity values and total solids and fat contents were obtained with R2 values up to 0.995 and 0.990 and maximum errors of predic- 46 TABLE 6 - Linear regression models for the total solids (TS, % and fat (FC, % contents estimation from electrical (Ec, mS/cm and thermal (Tc, W/mK conductivity measurements. SE: Standard Error. Linear regression equation R2 p-level SE (% TS=-6.857*Ec+65.373 0.995 0.000 0.27 FC=-4.993*Ec+40.070 0.985 0.000 0.33 TS=-172.967*Tc+109.605 0.992 0.000 0.33 FC=-126.449*Tc+72.521 0.990 0.000 0.27 tion up to 0.41% and 0.42%, respectively. The electrical conductivity of the albumen, yolk and egg mixtures linearly increased with temperature; at 20°C, temperature coefficients of 2.1%/°C, 2.1%/°C and 1.9 %/°C were respectively calculated. On the contrary, the thermal conductivity of the analysed products did not appear to be substantially influenced by the temperature of the liquid.
Directory of Open Access Journals (Sweden)
Bor-Kuan Chen
2014-10-01
Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.
Study of high viscous multiphase phase flow in a horizontal pipe
Baba, Yahaya D.; Aliyu, Aliyu M.; Archibong, Archibong-Eso; Almabrok, Almabrok A.; Igbafe, A. I.
2017-09-01
Heavy oil accounts for a major portion of the world's total oil reserves. Its production and transportation through pipelines is beset with great challenges due to its highly viscous nature. This paper studies the effects of high viscosity on heavy oil two-phase flow characteristics such as pressure gradient, liquid holdup, slug liquid holdup, slug frequency and slug liquid holdup using an advanced instrumentation (i.e. Electrical Capacitance Tomography). Experiments were conducted in a horizontal flow loop with a pipe internal diameter (ID) of 0.0762 m; larger than most reported in the open literature for heavy oil flow. Mineral oil of 1.0-5.0 Pa.s viscosity range and compressed air were used as the liquid and gas phases respectively. Pressure gradient (measured by means differential pressure transducers) and mean liquid holdup was observed to increase as viscosity of oil is increased. Obtained results also revealed that increase in liquid viscosity has significant effects on flow pattern and slug flow features.
Johnson, Alexander; Brace, Christopher
2015-01-01
Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.
Energy Technology Data Exchange (ETDEWEB)
Hamilton, D.C.
1986-10-08
Measurements are reported for the electrical conductivity of liquid nitrogen (N/sub 2/), oxygen (O/sub 2/) and benzene (C/sub 6/H/sub 6/), and Hugoniot equation of state of liquid 1-butene (C/sub 4/H/sub 8/) under shock compressed conditions. The conductivity data span 7 x 10/sup -4/ to 7 x 10/sup 1/ ..cap omega../sup -1/cm/sup -1/ over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs.
Swiety-Pospiech, A.; Wojnarowska, Z.; Hensel-Bielowka, S.; Pionteck, J.; Paluch, M.
2013-05-01
Broadband dielectric spectroscopy and pressure-temperature-volume methods are employed to investigate the effect of hydrostatic pressure on the conductivity relaxation time (τσ), both in the supercooled and glassy states of protic ionic liquid lidocaine hydrochloride monohydrate. Due to the decoupling between the ion conductivity and structural dynamics, the characteristic change in behavior of τσ(T) dependence, i.e., from Vogel-Fulcher-Tammann-like to Arrhenius-like behavior, is observed. This crossover is a manifestation of the liquid-glass transition of lidocaine HCl. The similar pattern of behavior was also found for pressure dependent isothermal measurements. However, in this case the transition from one simple volume activated law to another was noticed. Additionally, by analyzing the changes of conductivity relaxation times during isothermal densification of the sample, it was found that compression enhances the decoupling of electrical conductivity from the structural relaxation. Herein, we propose a new parameter, dlogRτ/dP, to quantify the pressure sensitivity of the decoupling phenomenon. Finally, the temperature and volume dependence of τσ is discussed in terms of thermodynamic scaling concept.
Roussel, F; Chan-Yu-King, R; Buisine, J-M
2003-07-01
Intrinsically conducting polymer (ICP) thin films are used as driving electrodes for Polymer-Dispersed Liquid-Crystals (PDLC) display devices. In order to investigate the electro-optical efficiency of these organic electrodes, three different kinds of conducting polymers, i.e. polyaniline doped with 10-camphorsulfonic acid (PANI(HCSA)), polypyrrole doped with dodecylbenzenesulfonic acid (PPY(DBSA)), and polyethylenedioxythiophene doped with polystyrenesulfonate (PEDOT(PSS)), were prepared or purchased, and coated either on glass or plastic substrates. Optical absorption studies in the UV-Vis range of the conducting polymer-coated substrates were first performed showing the presence of conducting species for the three types of polymers. The electrical characteristics of the resulting films were measured with the four-probes technique. PANI(HCSA) exhibits a higher conductivity sigma approximately 122 S x cm(-1) (RS=1.2x10(3) Omega x (-1)) compared to PPY(DBSA) sigma approximately 2.6 S x cm(-1) (RS=150.7x10(3) Omega x (-1)), and PEDOT(PSS) sigma approximately 1.6 S x cm(-1) (RS=637.3x10(3) Omega x (-1)). It is also shown that for a given conducting polymer, its electrical conductivity decreases when a plastic substrate is used. These observations have been related to significant morphological changes observed by scanning electron microscopy (SEM). A mixture of Norland Optical Adhesive 65 and nematic liquid-crystal E7 in the weight ratio (35:65) was used as precursor of the PDLC material. Better electro-optical responses (transmission properties, drive voltages and switching times) of PDLC films were obtained for devices prepared with (PPY(DBSA))-based electrodes. The electro-optical performances of the PDLC display devices also depend on the nature of the ICP substrate used.
Shimozawa, Masaaki; Suzuki, Yoshitaka; Sugii, Kaori; Ueda, Akira; Yamada, Shogo; Imai, Yusuke; Torizuka, Kiyoshi; Uwatoko, Yoshiya; Mori, Hatsumi; Yamashita, Minoru
We report the thermal transport properties of a quantum spin liquid candidate κ-H3(Cat-EDT-TTF)2 (H-CAT) with a two-dimensional nearly isotropic triangular lattice. Above 1.0 K, thermal conductivity of H-CAT is substantially smaller than that of a deuterated non-magnetic sample (D-CAT) despite no spin thermal conductivity in D-CAT. In the zero-temperature limit, a finite T-linear term of the thermal conductivity of H-CAT is clearly observed when the heat current is parallel to c-axis, while it is almost zero when the heat current is parallel to b-axis. These features would be attributed to anisotropic proton fluctuations present in H-CAT.
Quasiadiabatic modes from viscous inhomogeneities
Giovannini, Massimo
2016-04-20
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...
Three dimensional simulations of viscous folding in diverging microchannels
Xu, Bingrui; Shin, Seungwon; Juric, Damir
2016-01-01
Three dimensional simulations on the viscous folding in diverging microchannels reported by Cubaud and Mason are performed using the parallel code BLUE for multi-phase flows. The more viscous liquid L_1 is injected into the channel from the center inlet, and the less viscous liquid L_2 from two side inlets. Liquid L_1 takes the form of a thin filament due to hydrodynamic focusing in the long channel that leads to the diverging region. The thread then becomes unstable to a folding instability, due to the longitudinal compressive stress applied to it by the diverging flow of liquid L_2. Given the long computation time, we were limited to a parameter study comprising five simulations in which the flow rate ratio, the viscosity ratio, the Reynolds number, and the shape of the channel were varied relative to a reference model. In our simulations, the cross section of the thread produced by focusing is elliptical rather than circular. The initial folding axis can be either parallel or perpendicular to the narrow di...
Choi, Bo-Ra; Park, Soo-Jin; Kim, Seok
2016-03-01
The ionic performances for the mixture of ethylene carbonate (EC) and dimethylcarbonate (DMC) were investigated for supercapacitor electrolyte. The usage of ethylene carbonate (EC) and dimethylcarbonate (DMC) as organic solvent could solve some problems of acetonitrile (AN). The general aim of present paper is compare to properties of electrochemical properties based on two mixed organic electrolytes. The ionic conductivity, viscosity, and electrochemical performances of EC/DMC+0.1 M TEABF4 mixtures were determined. The ionic conductivity of the electrolytes was measured by AC impedance, and the capacitative performances of the electrolytes were evaluated by using cyclic voltammetry.
Drop interactions on a viscous film
Costalonga, Maxime; Hack, Michiel; Snoeijer, Jacco
2017-11-01
Every morning at their breakfast, cereal eaters can see that floating objects on a liquid bath attracts to form clusters: this is the so-called Cheerios effect. It has been shown recently that droplets on elastic substrates also interact, either attracting or repelling each other depending on the local slope of the substrate where they lie. Here we present an experiment extending these results to the interaction of droplets deposited on a thin viscous film. By measuring independently the velocity of the droplets and the surface topography of the film, we identify non-monotonic interactions that are due to waves appearing on the film. The drag force exerted onto the droplets is also investigated. We show that the thickness of the film below the drop is intrinsically selected by the velocity of the drop, by a mechanism similar to Bretherton's bubble rising in a confining tube.
Finite Element Based Viscous Numerical Wave Flume
Directory of Open Access Journals (Sweden)
Jianmin Qin
2013-01-01
Full Text Available A two-dimensional numerical wave flume (NWF for viscous fluid flows with free surface is developed in this work. It is based on the upwind finite element solutions of Navier-Stokes equations, CLEAR-volume of fluid method for free surface capture, internal wave maker for wave generation, and sponge layer for wave absorbing. The wave generation and absorption by prescribing velocity boundary conditions along inlet and radiation boundary condition along outlet are also incorporated. The numerical model is validated against several benchmarks, including dam-breaking flow, liquid sloshing in baffled tank, linear water wave propagation and reflection from vertical wall, nonlinear solitary wave fission over sharp step, and wave-induced fluid resonance in narrow gap confined by floating structures. The comparisons with available experimental data, numerical results, and theoretical solutions confirm that the present numerical wave flume has good performance in dealing with complex interface flows and water wave interaction with structures.
Viscous drag reduction in boundary layers
Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)
1990-01-01
The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.
Morphology and Ionic Conductivity of Block Copolymer Electrolytes Containing Ionic Liquids
Park, Moon Jeong
2015-03-01
The global energy crisis and an increase in environmental pollution in the recent years have drawn the attention of the scientific community towards the development of efficient electrochemical devices. Polymers containing charged species have the potential to serve as electrolytes in next-generation devices and achieving high ion transport properties in these electrolytes is the key to improving their efficiency. Although the synthesis and characterization of a wide variety of ion-containing polymers have been extensively reported over the last decade, quantitative understanding of the factors governing the ion transport properties of these materials is in its infancy. In this talk, I will present the current understanding of the diverse factors affecting the thermodynamics, morphologies and ion transport of ion-containing polymers by focusing on the use of ionic liquids (ILs). Various strategies for accessing improved transport properties of IL-containing polymers are elucidated by focusing on the role of IL-polymer interactions. The major accomplishment of obtaining well-defined morphologies for these IL-containing polymers by the use of block copolymer is particularly emphasized as a novel means of controlling the transport properties. The application of IL-incorporated polymer electrolytes in high temperature fuel cells and electro-active actuators is also enclosed.
Energy Technology Data Exchange (ETDEWEB)
Brombosz, Scott M.; Lee, Sungwon; Firestone, Millicent A.
2014-12-01
Post-polymerization radical bromination of a nanostructured poly(ionic liquid) that selectively introduces a reactive bromo-group onto the polyalkylthiophene backbone is described. Raman and FTIR spectroscopy proves that the bromine is successfully introduced at the 3-methyl position of the thiophene and that the molecular structure of the polymer remains largely intact with only minimal chain scission detected. FT-IR and Vis-NIR spectroscopy indicates that incorporation of the bromine induces twisting (loss of co-planarity) of the polythiophene backbone. WAXS confirms retention of an ordered lamellar structure with minor lattice spacing contraction. Cyclic voltammetry confirms spectroscopic findings that the bromination reaction yields a stable p-doped polymer. The installed bromine is susceptible to nucleophilic displacement permitting the covalent attachment of other functional molecules, such as a dialkylphosphonate. Elemental analysis of such a transformation established that 100% functionalization can be achieved. These results collectively demonstrate that post-modification of a pconjugated polymer can be used to both tune electronic and photonic properties, as well as install a chemoselective attachment point for the covalent wiring of other molecules.
Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong
2016-08-19
In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Miroslav M Živković
2010-01-01
Full Text Available This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE analysis, starting from the differential equation of energy balance, taking into account the initial and boundary conditions of the problem. General 3D problem for heat conduction is considered, from which solutions for two- and one-dimensional heat conduction can be obtained, as special cases. Forming of the finite element matrices using Galerkin method is briefly described. The procedure for solving equations of energy balance is discussed, by methods of resolving iterative processes of nonlinear transient heat conduction. Solution of this problem illustrates possibilities of PAK-T software package, such as materials properties, given as tabular data, or analytical functions. Software also offers the possibility to solve nonlinear and transient problems with incremental methods. Obtained results for different thicknesses of the tank wall insulation materials enable its comparison in regards to given conditions
Directory of Open Access Journals (Sweden)
Wojciech Skierucha
2013-09-01
Full Text Available The paper presents a coaxial-like sensor operating in the 20 Hz–2 MHz frequency range used to determine the electrical properties of selected liquids of low electrical conductivity. Examined materials included low-concentrated aqueous solutions of potassium chloride, sodium chloride and trisodium citrate, which are common food additives. Impedance spectra of the measurement cell filled with particular liquids were obtained and analyzed using the electrical equivalent circuit approach. The values of physical quantities and parameters describing the equivalent circuit components, including a constant phase element, were calculated for each sample. The applied sensor was also calibrated for electrical conductivity measurements up to 8 mS/m. The constant phase element parameters differed among the studied solutions and concentrations. This may provide a basis for a detection method of small amounts of compounds, such as food additives in low-concentrated aqueous solutions. To demonstrate the potential of the presented method, samples of purchased mineral water and a flavored drink containing various additives were tested.
2013-01-01
may include thermal destruction by oxidation and pyrolysis near heating elements (for thermal conductive heating) at temperatures around 400ΕC...technology is used for enhanced oil recovery applications to depths >1,000 ft and for volumes exceeding 100,000 cubic yards (yd3). • Shorter...www.acq.osd.mil/dpap/Docs/pbsaguide010201. pdf . Heron, G., R.S. Baker, J.M. Bierschenk, and J.C. LaChance, 2006. Heat it All the Way - Mechanisms and
Effects of gel properties produced by chemical reactions on viscous fingering
Ujiie, Tomohiro; Nagatsu, Yuichiro; Ban, Mitsumasa; Iwata, Shuichi; Kato, Yoshihito; Tada, Yutaka
2011-11-01
We have experimentally investigated viscous fingering with chemical reaction producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. For high concentration of ferric ion, viscous fingering pattern was changed into spiral pattern in the former system, whereas into fracture pattern in the latter system. We consider that the difference in the change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We have found that the gel in the former case is more elastic. Furthermore, we have discussed the relationship between the measured rheological properties and the observed spiral or fracturing patterns.
Xiong, Jinhua; Jiang, Fengxing; Shi, Hui; Xu, Jingkun; Liu, Congcong; Zhou, Weiqiang; Jiang, Qinglin; Zhu, Zhengyou; Hu, Yongjing
2015-07-15
Here, we fabricated a highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) ( PSS) nanofilm via vacuum filtration with enhanced thermoelectric power factor by doping of liquid exfoliated graphene (GE) and hydrazine treatment. The effect of GE exfoliated in dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) on the electrical conductivity and thermopower of PSS was investigated. Although electrical conductivity decreased with increasing GE, thermoelectric power factors of PSS nanofilms were improved with 3 wt % GE in DMF (38.6 μW m(-1) K(-2)) and in NMP (28.0 μW m(-1) K(-2)) compared to pure PSS (11.5 μW m(-1) K(-2)). The mechanism of improvement was proposed to be the removal of PSS and the good interaction between PEDOT and GE. With hydrazine treatment, 3 wt % GE-doped PSS nanofilm (PG3) showed a further enhanced power factor of 53.3 μW m(-1) K(-2) (∼5 times higher than that of pristine PSS nanofilm). The effects of hydrazine containing concentration, treatment time, and temperature on the electrical conductivity and Seebeck coefficient of PG3 were investigated systematically. An estimated thermoelectric figure of merit (ZT) is 0.05 with the optimized power factor at room temperature.
Numerical solution of boundary layer MHD flow with viscous dissipation.
Mishra, S R; Jena, S
2014-01-01
The present paper deals with a steady two-dimensional laminar flow of a viscous incompressible electrically conducting fluid over a shrinking sheet in the presence of uniform transverse magnetic field with viscous dissipation. Using suitable similarity transformations the governing partial differential equations are transformed into ordinary differential equations and then solved numerically by fourth-order Runge-Kutta method with shooting technique. Results for velocity and temperature profiles for different values of the governing parameters have been discussed in detail with graphical representation. The numerical evaluation of skin friction and Nusselt number are also given in this paper.
Topological Fluid Dynamics For Free and Viscous Surfaces
DEFF Research Database (Denmark)
Balci, Adnan
In an incompressible fluid flow, streamline patterns and their bifurcations are investigated close to wall for two-dimensional system and close to free and viscous surfaces in three-dimensional system. Expanding the velocity field in a Taylor series, we conduct a local analysis at the given expan...
Computation of Viscous Incompressible Flows
Kwak, Dochan
2011-01-01
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engine...
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Hisaaki, E-mail: htanaka@nuap.nagoya-u.ac.jp; Nishio, Satoshi; Ito, Hiroshi; Kuroda, Shin-ichi [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan)
2015-12-14
Electronic state of charge carriers, in particular, in highly doped regions, in thin-film transistors of a semicrystalline conducting polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), has been studied by using field-induced electron spin resonance (ESR) spectroscopy. By adopting an ionic-liquid gate insulator, a gate-controlled reversible electrochemical hole-doping of the polymer backbone is achieved, as confirmed from the change of the optical absorption spectra. The edge-on molecular orientation in the pristine film is maintained even after the electrochemical doping, which is clarified from the angular dependence of the g value. As the doping level increases, spin 1/2 polarons transform into spinless bipolarons, which is demonstrated from the spin-charge relation showing a spin concentration peak around 1%, contrasting to the monotonic increase in the charge concentration. At high doping levels, a drastic change in the linewidth anisotropy due to the generation of conduction electrons is observed, indicating the onset of metallic state, which is also supported by the temperature dependence of the spin susceptibility and the ESR linewidth. Our results suggest that semicrystalline conducting polymers become metallic with retaining their molecular orientational order, when appropriate doping methods are chosen.
Directory of Open Access Journals (Sweden)
Sylvain Druart
2014-01-01
Full Text Available We present a methodology and a circuit to extract liquid resistance and capacitance simultaneously from the same output signal using interdigitated sensing electrodes. The principle consists in the generation of a current square wave and its application to the sensor to create a triangular output voltage which contains both the conductivity and permittivity parameters in a single periodic segment. This concept extends the Triangular Waveform Voltage (TWV signal generation technique and is implemented by a system which consists in a closed-loop current-controlled oscillator and only requires DC power to operate. The system interface is portable and only a small number of electrical components are used to generate the expected signal. Conductivities of saline NaCl and KCl solutions, being first calibrated by commercial equipment, are characterized by a system prototype. The results show excellent linearity and prove the repeatability of the measurements. Experiments on water-glycerol mixtures validate the proposed sensing approach to measure the permittivity and the conductivity simultaneously. We discussed and identified the sources of measurement errors as circuit parasitic capacitances, switching clock feedthrough, charge injection, bandwidth, and control-current quality.
Nakashima, Hiroshi; Higgins, Michael J; O'Connell, Cathal; Torimitsu, Keiichi; Wallace, Gordon G
2012-01-10
Ink formulations and protocols that enable the deposition and patterning of a conducting polymer (PEDOT:PSS) in the nanodomain have been developed. Significantly, we demonstrated the ability to pattern onto soft substrates such as silicone gum and polyethylene terephthalate (PET), which are materials of interest for low cost, flexible electronics. The deposition process and dimensions of the polymer patterns are found to be critically dependent on a number of parameters, including the pen design, ink properties, time after inking the pen, dwell time of the pen on the surface, and the nature of material substrate. By assessing these different parameters, an improved understanding of the ability to control the dimensions of individual PEDOT:PSS structures down to 600 nm in width and 10-80 nm in height within patterned arrays was obtained. This applicability of DPN for simple and nonreactive liquid deposition patterning of conducting polymers can lead to the fabrication of organic nanoelectronics or biosensors and complement the efforts of existing printing techniques such as inkjet and extrusion printing by scaling down conductive components to submicrometer and nanoscale dimensions.
Lee, Chuan-Pei
2009-08-01
Titanium carbide (TiC) is an extremely hard conducting ceramic material often used as a coating for titanium alloys as well as steel and aluminum components to improve their surface properties. In this study, conducting ceramic nanoparticles (CCNPs) have been used, for the first time, in dye-sensitized solar cells (DSSCs), and the incorporation of TiC nanoparticles in a binary ionic liquid electrolyte on the cell performance has been investigated. Cell conversion efficiency with 0.6 wt% TiC reached 1.68%, which was higher than that without adding TiC (1.18%); however, cell efficiency decreased when the TiC content reached 1.0 wt%. The electrochemical impedance spectroscopy (EIS) technique was employed to analyze the interfacial resistance in DSSCs, and it was found that the resistance of the charge-transfer process at the Pt counter electrode (Rct1) decreased when up to 1.0 wt% TiC was added. Presumably, this was due to the formation of the extended electron transfer surface (EETS) which facilitates electron transfer to the bulk electrolyte, resulting in a decrease of the dark current, whereby the open-circuit potential (VOC) could be improved. Furthermore, a significant increase in the fill factor (FF) for all TiC additions was related to the decrease in the series resistance (RS) of the DSSCs. However, at 1.0 wt% TiC, the largest charge-transfer resistance at the TiO2/dye/electrolyte interface was observed and resulted from the poor penetration of the electrolyte into the porous TiO2. The long-term stability of DSSCs with a binary ionic liquid electrolyte, which is superior to that of an organic solvent-based electrolyte, was also studied. © 2009 Elsevier B.V. All rights reserved.
Fingering dynamics on the adsorbed solute with influence of less viscous and strong sample solvent.
Rana, Chinar; Mishra, Manoranjan
2014-12-07
Viscous fingering is a hydrodynamic instability that sets in when a low viscous fluid displaces a high viscous fluid and creates complex patterns in porous media flows. Fundamental facets of the displacement process, such as the solute concentration distribution, spreading length, and the solute mixing, depend strongly on the type of pattern created by the unstable interface of the underlying fluids. In the present study, the frontal interface of the sample shows viscous fingering and the strong solvent causes the retention of the solute to depend on the solvent concentration. This work presents a computational investigation to explore the effect of the underlying physico-chemical phenomena, (i.e., the combined effects of solvent strength, retention, and viscous fingering) on the dynamics of the adsorbed solute. A linear adsorption isotherm has been assumed between the mobile and stationary phases of the solute. We carried out the numerical simulations by considering a rectangular Hele-Shaw cell as an analog to 2D-porous media containing a three component system (displacing fluid, sample solvent, solute) to map out the evolution of the solute concentration. We observed that viscous fingering at the frontal interface of the strong sample solvent intensifies the band broadening of the solute zone. Also notable increase in the spreading dynamics of the solute has been observed for less viscous and strong sample solvent as compared to the high viscous sample slices or in the pure dispersive case. On the contrary, the solute gets intensively mixed at early times for more viscous sample in comparison to less viscous one. The results of the simulations are in qualitative agreement with the behavior observed in the liquid chromatography column experiments.
Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum
Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc
2008-01-01
Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.
Tan, Bernice Mei Jin; Loh, Zhi Hui; Soh, Josephine Lay Peng; Liew, Celine Valeria; Heng, Paul Wan Sia
2014-01-02
Binder distribution in the powder mass during high shear granulation is especially critical with the use of viscous liquid binders and with short processing times. A viscous liquid binder was delivered into the powder mass at two flow rates using three methods: pouring, pumping and spraying from a pressure pot. Binder content analyses at the scale of individual granules were conducted to investigate the impact of different delivery conditions on the homogeneity of binder distribution. There was clear evidence of non-uniformity of binder content among individual granules across all delivery conditions, particularly for the fast rates of delivery. Poorer reproducibility values of tablet thickness and disintegration time were observed when binder was poured but this may be overcome by pumping or spraying from the pressure pot. Greater homogeneity of binder distribution occurred with the slow rates of delivery and led to the earlier onset of granule growth and a consequent increase in granule size. Larger granule size and lower proportion of fines were in turn associated with increased granule bulk density and improvement of granule flow. In conclusion, delivery of a viscous binder at a slow rate either by pumping or via a pressure pot was most desirable during granulation. Copyright © 2013 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Jerman, I.; Jovanovski, V.; Surca Vuk, A.; Hocevar, S.B.; Gaberscek, M. [National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Jesih, A. [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Orel, B. [National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia)], E-mail: boris.orel@ki.si
2008-01-01
Polyiodides (I{sub x}{sup -}, x = 3 and 5) and 2I{sup -}...I{sub 2} adducts were established from the Raman spectra study of 1-methyl-3-propylimidazolium iodide (MPIm{sup +}I{sub x}{sup -}; 1 {<=} x {<=} 5) ionic liquids containing various amounts of iodine (0 mol {<=} I{sub 2} {<=} 2 mol). The existence of I{sub 3}{sup -} and 2I{sup -}...I{sub 2} was established for 1 {<=} x {<=} 2.5, symmetric I{sub 3}{sup -} ions for x = 3, while linear and discrete I{sub 5}{sup -} was substantiated for 3 {<=} x {<=} 5. The presence of polyiodide species in MPIm{sup +}I{sub x}{sup -} (1 {<=} x {<=} 5) was correlated with an enhanced ionic conductivity, attributed to the established relay-type Grotthus mechanism. Two-step conductivity increase was also reflected in decrease of the hydrogen bond interactions between the C-H ring groups and polyiodides. While in the concentration range 1 {<=} x {<=} 3 (triiodides and tetraiodides) IR bands changed only slightly in intensity, in the concentration range x > 3 the C-H stretching bands (3040-3170 cm{sup -1}) split and the new band at 1585 cm{sup -1} appeared in the IR spectra beside the already existing Im{sup +} ring stretching mode at 1566 cm{sup -1}.
Directory of Open Access Journals (Sweden)
Nagamani GOSALA
2011-06-01
Full Text Available Thermal conductivity of polymers is an important property for both polymer applications and processing industry. The successful application of thermal insulating fluids in the last several years has demonstrated that such fluids can effectively control the heat loss. Understanding and controlling the thermal environment for oilfield operations has been a concern and research topic. As a consequence of this trend, there is huge demand for new methods of instrumentation to evaluate the performance of material properties and characterization. The main aim of the present study is the development of hardware and software for measuring the thermal conductivity of liquids using transient hot wire method. Because of the relatively short experimental times and large amounts of parametric data involved in the measurement process, embedded control of the measurement is essential. The experimental implementation requires a suitable temperature sensing, automatic control, data acquisition, and data analysis systems accomplished using an embedded system that has been built around the ARM LPC 2103 mixed signal controller.
Nonlinear behaviour of self-excited microcantilevers in viscous fluids
Mouro, J.; Tiribilli, B.; Paoletti, P.
2017-09-01
Microcantilevers are increasingly being used to create sensitive sensors for rheology and mass sensing at the micro- and nano-scale. When operating in viscous liquids, the low quality factor of such resonant structures, translating to poor signal-to-noise ratio, is often manipulated by exploiting feedback strategies. However, the presence of feedback introduces poorly-understood dynamical behaviours that may severely degrade the sensor performance and reliability. In this paper, the dynamical behaviour of self-excited microcantilevers vibrating in viscous fluids is characterized experimentally and two complementary modelling approaches are proposed to explain and predict the behaviour of the closed-loop system. In particular, the delay introduced in the feedback loop is shown to cause surprising non-linear phenomena consisting of shifts and sudden-jumps of the oscillation frequency. The proposed dynamical models also suggest strategies for controlling such undesired phenomena.
Directory of Open Access Journals (Sweden)
Erhan Aysan
2012-01-01
Full Text Available Background. Postoperative peritoneal adhesions (PPAs are an unsolved and serious problem in abdominal surgery. Method. Viscous liquids of soybean oil, octyl methoxycinnamate, flax oil, aloe vera gel, and glycerol were used in five experiments, using the same methodology for each. Liquids were applied in the peritoneal cavity before and after mechanical peritoneal trauma. Results were evaluated by multivariate analysis. Results. Compared with the control group, macroscopic and microscopic adhesion values before (P<.001 and after (P<.05 application of viscous liquids significantly reduced PPAs. Values were significantly lower when liquids were applied before rather than after peritoneal trauma (P<.0001. Discussion. Viscous liquids injected into the peritoneal cavity before or after mechanical peritoneal trauma decrease PPA. Injection before trauma was more effective than after trauma. In surgical practice, PPA formation may be prevented or decreased by covering the peritoneal cavity with an appropriate viscous liquid before abdominal surgery.
Chaudhuri, A.; Jacobs, G. B.; Don, W. S.; Abbassi, H.; Mashayek, F.
2017-03-01
A spatio-temporal adaptive artificial viscosity (AV) based shock-capturing scheme is proposed for the solution of both inviscid and viscous compressible flows using a high-order parallel Discontinuous Spectral Element Method (DSEM). The artificial viscosity and artificial thermal conduction coefficients are proportional to the viscous and thermal entropy generating terms, respectively, in the viscous entropy conservation law. The magnitude of AV is limited based on the explicit stable CFL criterion, so that the stable artificial viscous time step size is greater than the convective stable time step size. To further ensure the stability of this explicit approach, an adaptive variable order exponential filter is applied, if necessary, in elements where the AV has been limited. In viscous flow computations a modified Jameson's sensor (Ducros et al., 1999 [61]) limits the AV to small values in viscous shear regions, so as to maintain a high-order resolution in smooth regions and an essentially non-oscillatory behavior near sharp gradients/shocks regions. We have performed a systematic and extensive validation of the algorithm with one-dimensional problems (inviscid moving shock and viscous shock-structure interaction), two-dimensional problems (inviscid steady and unsteady shocked flows and viscous shock-boundary layer interaction), and a three-dimensional supersonic turbulent flow over a ramped cavity. These examples demonstrate that the explicit DSEM scheme with adaptive artificial viscosity terms is stable, accurate and efficient.
Mathematical models of viscous friction
Buttà, Paolo; Marchioro, Carlo
2015-01-01
In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...
Urbanek, Janus; Vöhringer, Peter
2013-07-25
We recently reported first femtosecond pump–probe experiments on the geminate recombination dynamics of solvated electrons in fluid ammonia (Urbanek et al., J. Phys. Chem. B 2012, 116, 2223–2233). The electrons were generated through a vertical two-photon ionization at a total energy of 9.3 eV. Here, we present a full Monte Carlo analysis of the time-resolved data to determine the solvated electron’s thermalization distance from the ionization hole, NH(3)(+). The simulations are compared with the experiment over wide thermodynamic conditions to obtain insight into the dependence of the vertical ionization mechanism on the electronic properties of the solvent network. The simulations reveal that the average thermalization distance, , decreases strongly with both increasing temperature, T, and decreasing density, ρ, from 3.2 nm in the cryogenic fluid down to roughly 0.5 nm in the dilute supercritical phase with almost gas-like densities. We combine our results with the current understanding of the T,ρ-dependence of the electronic structure of the liquid phase and discuss in detail the role of thermally induced energy level shifts for the valence-to-conduction band gap. The observed changes of the thermalization distance can be well attributed to a gradual decrease of the excess energy initially imparted on the ejected electron as gas-like conditions are progressively approached.
Varenik, Maxim; Nadiv, Roey; Levy, Idan; Vasilyev, Gleb; Regev, Oren
2017-03-01
Thermal conductivity (TC) enhancement of an insulating polymer matrix at low filler concentration is possible through the loading of a high aspect ratio, thermally conductive single filler. Unfortunately, the dispersion of high-aspect-ratio particles greatly influences the rheological behavior of the polymer host at relatively low volume fractions, which makes further polymer processing or mixing difficult. A possible remedy is using two (hybrid) fillers, differing in their aspect ratios: (1) a plate-like filler, which sharply increases both viscosity and TC, and (2) an isotropic filler, which gradually increases these properties. We examine this hypothesis in a thermosetting silicone rubber by loading it with different ratios, (1)/(2), of graphene nanoplatelets (GNPs) (1) and graphite powder (2). We constructed a "phase diagram" delineating two composite processability regions: solid-like (moldable) or fluid-like (pourable). This diagram may be employed to tailor the mixture's viscosity to a desired TC value by varying the fillers' volume fraction. The phase diagram highlights the low volume fraction value, above which the composite is solid-like (low processability) for a single high-aspect-ratio nanofiller. By using hybrid filling, one can overcome this limit and prepare a fluid-like composite at a desired TC, not accessible by the single nanofiller. Thus, it provides an indicative tool for polymer processing, especially in applications such as the encapsulation of electronic devices. This approach was demonstrated for a heat source (resistor) potted by silicon rubber graphene-graphite composites, for which a desired TC was obtained in both solid- and liquid-like regions.
Relativistic shocks and mach cones in viscous gluon matter
Energy Technology Data Exchange (ETDEWEB)
Bouras, Ioannis; Xu, Zhe; El, Andrej; Fochler, Oliver; Lauciello, Francesco; Greiner, Carsten [Institut fuer Theoretische Physik, Johann Wolfgang Goethe Universitaet, Frankfurt am Main (Germany); Molnar, Etele; Niemi, Harri [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Rischke, Dirk [Institut fuer Theoretische Physik, Johann Wolfgang Goethe Universitaet, Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany)
2010-07-01
We solve the relativistic Riemann problem in a viscous and heat conducting gluon matter employing a microscopic parton cascade and compare it to the relativistic causal dissipative fluid dynamical model of Israel and Stewart. We demonstrate the transition from ideal to viscous shocks by varying the shear viscosity to entropy density ratio {eta}/s from zero to infinity and compare different dissipative quantities. We show the behaviour and the break down of viscous hydrodynamics for an out of equilibrium state using the local Knudsen number. Employing the microscopic parton cascade we investigate the evolution of mach cones in a viscous gluonic matter. We see that for {eta}/s=1/4{pi} a collective behaviour of the medium is observed, resulting in cone structure and diffusion wake of the energy density profile. The mach cone vanish very fast when increasing the shear viscosity in the medium. As comparison to experiments two-particle correlations are shown. We have derived third-order corrections to the Israel-Stewart theory using the entropy principle. This new equation is solved for one-dimensional Bjorken boost-invariant expansion. The scaling solutions for various values of {eta}/s are shown to be in very good agreement with those obtained from kinetic transport calculations.
Shape and stability of a viscous thread
DEFF Research Database (Denmark)
Bohr, Tomas; Senchenko, Sergey
2005-01-01
When a viscous fluid, like oil or syrup, streams from a small orifice and falls freely under gravity, it forms a long slender thread, which can be maintained in a stable, stationary state with lengths up to several meters. We discuss the shape of such liquid threads and their surprising stability....... The stationary shapes are discussed within the long-wavelength approximation and compared to experiments. It turns out that the strong advection of the falling fluid can almost outrun the Rayleigh-Plateau instability. The asymptotic shape and stability are independent of viscosity and small perturbations grow...... with time as exp(Ct(1/4)), where the constant is independent of viscosity. The corresponding spatial growth has the form exp[(z/L)(1/8)], where z is the down stream distance and L similar to Q(2)sigma(-2)g and where sigma is the surface tension divided by density, g is the gravity, and Q is the flux. We...
Anouti, Mérièm; Jacquemin, Johan; Porion, Patrice
2012-04-12
We present a study on the transport properties through conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of two pure protic ionic liquids--pyrrolidinium hydrogen sulfate, [Pyrr][HSO(4)], and pyrrolidinium trifluoroacetate, [Pyrr][CF(3)COO]--and their mixtures with water over the whole composition range at 298.15 K and atmospheric pressure. Based on these experimental results, transport mobilities of ions have been then investigated in each case through the Stokes-Einstein equation. From this, the proton conduction in these PILs follows a combination of Grotthuss and vehicle-type mechanisms, which depends also on the water composition in solution. In each case, the displacement of the NMR peak attributed to the labile proton on the pyrrolidinium cation with the PILs concentration in aqueous solution indicates that this proton is located between the cation and the anion for a water weight fraction lower than 8%. In other words, for such compositions, it appears that this labile proton is not solvated by water molecules. However, for higher water content, the labile protons are in solution as H(3)O(+). This water weight fraction appears to be the solvation limit of the H(+) ions by water molecules in these two PILs solutions. However, [Pyrr][HSO(4)] and [Pyrr][CF(3)COO] PILs present opposed comportment in aqueous solution. In the case of [Pyrr][CF(3)COO], η, σ, D, and the attractive potential, E(pot), between ions indicate clearly that the diffusion of each ion is similar. In other words, these ions are tightly bound together as ion pairs, reflecting in fact the importance of the hydrophobicity of the trifluoroacetate anion, whereas, in the case of the [Pyrr][HSO(4)], the strong H-bond between the HSO(4)(-) anion and water promotes a drastic change in the viscosity of the aqueous solution, as well as on the conductivity which is up to 187 mS·cm(-1) for water weight fraction close to 60% at 298 K.
Sudden viscous dissipation of compressing turbulence
Davidovits, S.; Fisch, N. J.
2015-01-01
Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.
Sudden Viscous Dissipation of Compressing Turbulence.
Davidovits, Seth; Fisch, Nathaniel J
2016-03-11
Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.
Fingering induced by a solid sphere impact to viscous fluid
Directory of Open Access Journals (Sweden)
Katsuragi Hiroaki
2015-01-01
Full Text Available The number of splashed fingers generated by a solid projectile’s impact onto a viscous liquid layer is experimentally studied. A steel sphere is dropped onto a viscous liquid pool. Then, a fingering instability occurs around the crater’s rim, depending on the experimental conditions such as projectile’s inertia and the viscosity of the target liquid. When the impact inertia is not sufficient, any fingering structure cannot be observed. Contrastively, if the impact inertia is too much, the random splashing is induced and the counting of fingers becomes difficult. The clear fingering instability is observable in between these two regimes. The number of fingers N is counted by using high-speed video data. The scaling of N is discussed on the basis of dimensionless numbers. By assuming Rayleigh-Taylor instability, scaling laws for N can be derived using Reynolds number Re, Weber number We, and Froude number Fr. Particularly, the scaling N = (ρrFr1/4We1/2/33/4 is obtained for the gravity-dominant cratering regime, where ρr is the density ratio between a projectile and a target. Although the experimental data considerably scatters, the scaling law is consistent with the global trend of the data behavior. Using one of the scaling laws, planetary nano crater’s rim structure is also evaluated.
Elastocapillary levelling of thin viscous films on soft substrates
Rivetti, Marco; Bertin, Vincent; Salez, Thomas; Hui, Chung-Yuen; Linne, Christine; Arutkin, Maxence; Wu, Haibin; Raphaël, Elie; Bäumchen, Oliver
2017-09-01
A thin liquid film with nonzero curvature at its free surface spontaneously flows to reach a flat configuration, a process driven by Laplace pressure gradients and resisted by the liquid's viscosity. Inspired by recent progresses on the dynamics of liquid droplets on soft substrates, we here study the relaxation of a viscous film supported by an elastic foundation. Experiments involve thin polymer films on elastomeric substrates, where the dynamics of the liquid-air interface is monitored using atomic force microscopy. A theoretical model that describes the coupled evolution of the solid-liquid and the liquid-air interfaces is also provided. In this soft-levelling configuration, Laplace pressure gradients not only drive the flow, but they also induce elastic deformations on the substrate that affect the flow and the shape of the liquid-air interface itself. This process represents an original example of elastocapillarity that is not mediated by the presence of a contact line. We discuss the impact of the elastic contribution on the levelling dynamics and show the departure from the classical self-similarities and power laws observed for capillary levelling on rigid substrates.
The viscous to brittle transition in eruptions of clay suspensions
Schmid, Diana; Scheu, Bettina; Wadsworth, Fabian B.; Kennedy, Ben; Jolly, Art; Dingwell, Donald B.
2017-04-01
The research is motivated by the early 2013 activity of White Island, New Zealand, which was characterized by frequent small phreatic activity through a fine grained mud rich shallow crater lake. Field observations demonstrate that the small eruptions were driven by bubble-burst events. Additionally, during the ongoing eruption, water vigorously evaporated, causing a shift in rheology of the crater lake liquid-solid suspension. Yet, the effect of water content on the eruptive behaviour of clay-bearing liquid suspensions is poorly understood. Here we investigate the influence of the solid to water ratio of the clay material erupted on the eruption characteristics. Kaolin was used as an analogue for the clay and was mixed with water in different proportions. We conducted experiments with different kaolin/water mixtures held at 120°C, in which they were decompressed from 2-4 bars to ambient conditions in a few milliseconds. During an experimental eruption, the velocity of the ejected material decreased, resulting in shifts in behaviour. Based on our experimental observations we established five different regimes that depend on the particle velocity relative to the gas velocity, and on the kaolin to water ratio of the mixture. In all experiments and for all kaolin to water ratios, regime 1 is one in which particles are ejected rapidly in an expanding high velocity gas jet. In the liquid-dominated system (low kaolin to water ratios), the jet phase evolves to the ejection of elongate fluidal structures (regime 2) and then to discrete droplets (regime 3) as the ejection velocity wanes. Contrastingly, in the solid-dominated system, the jet phase (regime 1) transitions to a mixed solid-fluid structures (regime 4) and then to individual angular ejecta (regime 5). On the basis of high speed image analysis, we establish a phase diagram separating these regimes based on kaolin/water mixing rations and the ejecta velocities observed. The dominant transition between fluidal and
Electrokinetic Control of Viscous Fingering
Mirzadeh, Mohammad; Bazant, Martin Z.
2017-10-01
We present a theory of the interfacial stability of two immiscible electrolytes under the coupled action of pressure gradients and electric fields in a Hele-Shaw cell or porous medium. Mathematically, our theory describes a phenomenon of "vector Laplacian growth," in which the interface moves in response to the gradient of a vector-valued potential function through a generalized mobility tensor. Physically, we extend the classical Saffman-Taylor problem to electrolytes by incorporating electrokinetic (EK) phenomena. A surprising prediction is that viscous fingering can be controlled by varying the injection ratio of electric current to flow rate. Beyond a critical injection ratio, stability depends only upon the relative direction of flow and current, regardless of the viscosity ratio. Possible applications include porous materials processing, electrically enhanced oil recovery, and EK remediation of contaminated soils.
Viscous drops bounce faster: prompt tumbling-rebound from a sublimating slope
Antonini, Carlo; Jung, Stefan; Wetzel, Andreas; Heer, Emmanuel; Schoch, Philippe; Mazloomi, M. Ali; Chikatamarla, Shyam S.; Karlin, Ilya; Marengo, Marco; Poulikakos, Dimos
2015-11-01
We discovered a new drop rebound regime, characteristic of highly viscous liquids impacting onto tilted sublimating surfaces. By focusing on non-axisymmetric impact conditions at increasing viscosity, we demonstrate that low viscous drops show a ``slide, spread, recoil and rebound'' behavior, whereas viscous drops exhibit a ``prompt tumbling-rebound'' behavior. As such, viscous glycerol drops surprisingly rebound faster than three orders of magnitude less viscous water drops. This is made possible by a small conversion of translational to rotational kinetic energy, at non-axisymmetric impact conditions, as also confirmed by additional Lattice Boltzmann simulations: a rapid transition of the internal angular velocity prior to rebound to a constant value, as in a tumbling solid body, promotes a rapid rebound of more viscous drops, which are capable to rebound without recoiling. By studying drop impact dynamics, we explore the drop behavior in contactless and frictionless conditions, and identify the Ohnesorge number as the primary parameter to predict the transition between different impact regimes on tilted sublimating slopes, with tumbling observed for Ohnesorge numbers higher than unity.
On flow of an elastico-viscous fluid past an oscillating porous plate
Revankar, S. T.; Korwar, V. M.
1981-10-01
A solution for the flow problem of an elastico-viscous fluid (Walters liquid B') due to an oscillating infinite porous plate with constant suction has been obtained. It has been observed that the magnitude of velocity decreases with increase in suction velocity. The shearing stress increases with increase in suction.
Can confinement-induced variations in the viscous dissipation be measured?
de Beer, Sissi; den Otter, Wouter K.; van den Ende, Henricus T.M.; Briels, Willem J.; Mugele, Friedrich
2012-01-01
Liquids confined to molecular scales become anisotropic and often show pronounced self-organization such as layering. Although this effect is well accepted, it is still debated if confinement induces measurable changes of viscous friction. We use molecular dynamics to address this issue by
Energy Technology Data Exchange (ETDEWEB)
Yakuphanoglu, F. [Department of Physics, Firat University, 23169 Elazig (Turkey)]. E-mail: fyhan@hotmail.com; Bilgin-Eran, B. [Department of Chemistry, Yildiz Technical University, Davutpasa Yerlesim Birimi, TR-34210 Esenler, Istanbul (Turkey); Ocak, H. [Department of Chemistry, Yildiz Technical University, Davutpasa Yerlesim Birimi, TR-34210 Esenler, Istanbul (Turkey); Oweimreen, G.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)
2007-04-30
The electronic properties of 4-cyano-4'-hexylbiphenyl and salicylaldimine compound 1 liquid crystals have been investigated. The polarizing microscopy and differential scanning calorimetry results show that chiral salicylaldimine compound 1 exhibits enantiotropic smectic A* and SmC* mesophases. The novel 4-n-hexyl-4'-cyanobiphenyl/salicylaldimine compound 1 composite showed an extremely large positive dielectric anisotropy. The dielectric anisotropy of the LCs changes from positive type to negative type. The critical frequency f {sub c} values of dielectrical anisotropy for 4-n-hexyl-4'-cyanobiphenyl and salicylaldimine compound 1 LCs were found to be 630.50 and 813.01 kHz, respectively. The splay elastic constant K {sub 11} values of the liquid crystals were calculated and the doping of salicylaldimine compound 1 into 4-cyano-4'-hexylbiphenyl liquid crystal increases the splay elastic constant of 6CB. The parallel conductivity {sigma} {sub -}parallel values of the liquid crystals are higher than that of perpendicular conductivity {sigma} {sub -}perpendicular values and conductivity of the 4-cyano-4'-hexylbiphenyl decreases with doping of salicylaldimine compound 1.
Diffusion and viscous flow in bulk glass forming alloys
Energy Technology Data Exchange (ETDEWEB)
Bartsch, A.; Zoellmer, V.; Raetzke, K. [Institut fuer Materialwissenschaft - Materialverbunde, Technische Fakultaet, Christian-Albrechts Universitaet zu Kiel, Kaiserstr. 2, 24143 Kiel (Germany); Meyer, A. [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), 51170 Koeln (Germany); Faupel, F., E-mail: ff@tf.uni-kiel.de [Institut fuer Materialwissenschaft - Materialverbunde, Technische Fakultaet, Christian-Albrechts Universitaet zu Kiel, Kaiserstr. 2, 24143 Kiel (Germany)
2011-06-15
Research highlights: > We measured radiotracer diffusivities of all components in a Pd{sub 43}Cu{sub 27}Ni{sub 10}P{sub 20} melt. > We see a vast decoupling between the diffusivity of Pd and of the smaller components at T{sub g}. > We see no decoupling between Pd diffusion and viscous flow. > The Stokes-Einstein equations holds for Pd in the hole supercooled range. > Pd forms a slow subsystem. - Abstract: We review radiotracer diffusion and isotope measurements in bulk glass forming alloys from the glassy state to the equilibrium melt and compare diffusion and viscous flow. In the glassy as well as in the deeply supercooled state below the critical temperature T{sub c}, where the mode coupling theory predicts a freezing-in of liquid-like motion, very small isotope effects indicate a highly collective hopping mechanism. Not only in the glassy state but also in the supercooled state below T{sub c} the temperature dependence of diffusion is Arrhenius-like with an effective activation enthalpy. A clear decoupling takes place between the diffusivities of the individual components of the alloys and between time scales related to diffusive transport and viscous flow. While the component decoupling is small for the smaller components a vast decoupling of more than 4 orders of magnitude is observed in Pd-Cu-Ni-P alloys between the diffusivity of the large majority component Pd and of the smaller components at the glass transition temperature T{sub g}. The diffusivities of all components merge close to the critical temperature T{sub c} of mode coupling theory. Above T{sub c}, the onset of liquid-like motion is directly evidenced by a gradual drop of the effective activation energy. This strongly supports the mode coupling scenario. The isotope effect measurements show atomic transport up to the equilibrium melt to be far away from the regime of uncorrelated binary collisions. For Pd, in contrast to the behavior of single component molecular glass formers, the Stokes
Microfluidic System Simulation Including the Electro-Viscous Effect
Rojas, Eileen; Chen, C. P.; Majumdar, Alok
2007-01-01
This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.
Causal viscous cosmology without singularities
Laciana, Carlos E
2016-01-01
An isotropic and homogeneous cosmological model with a source of dark energy is studied. That source is simulated with a viscous relativistic fluid with minimal causal correction. In this model the restrictions on the parameters coming from the following conditions are analized: a) energy density without singularities along time, b) scale factor increasing with time, c) universe accelerated at present time, d) state equation for dark energy with "w" bounded and close to -1. It is found that those conditions are satified for the following two cases. i) When the transport coefficient ({\\tau}_{{\\Pi}}), associated to the causal correction, is negative, with the aditional restriction {\\zeta}|{\\tau}_{{\\Pi}}|>2/3, where {\\zeta} is the relativistic bulk viscosity coefficient. The state equation is in the "phantom" energy sector. ii) For {\\tau}_{{\\Pi}} positive, in the "k-essence" sector. It is performed an exact calculation for the case where the equation of state is constant, finding that option (ii) is favored in r...
Thermal stability for a reactive viscous flow in a slab
Okoya, S S
2002-01-01
The paper deals with the effect of dimensionless non - Newtonian coefficient on the thermal stability of a reactive viscous liquid in steady flow between parallel heated plates. It is assumed that the liquid is symmetrically heated and the flow fully developed. Approximate analytical solution is obtained for the velocity of the flow and the criterion for which this solution is valid is determined. After the velocity distribution is known, the temperature distribution may be calculated. Criticality and disappearance of criticality (transition values) are obtained in the following cases: (i) Bimolecular (ii) Arrhenius and (iii) Sensitized temperature dependence. We have observed that nonlinear effect from velocity and temperature fields introduced decaying for the transitional values of the dimensionless central temperature. Other effects of this nonlinearity are reported. We also give results for the plane - Couette flow problem. The results help to enhance understanding of the interplay between Newtonian and ...
Influence of viscous loads on motor planning.
Thoroughman, Kurt A; Wang, Wei; Tomov, Dimitre N
2007-08-01
Here we computationally investigate how encumbering the hand could alter predictions made by the minimum torque change (MTC) and minimum endpoint variance hypotheses (MEPV) of movement planning. After minutes of training, people have made arm trajectories in a robot-generated viscous force field that were similar to previous baseline trajectories without the force field. We simulate the human arm interacting with this viscous load. We found that the viscous forces clearly differentiated MTC and MEPV predictions from both minimum-jerk predictions and from human behavior. We conclude that learned behavior in the viscous environment could arise from minimizing kinematic costs but could not arise from a minimization of either torque change or endpoint variance.
Viscous thread behavior in branching microchannels
Cubaud, Thomas; Hu, Xiaoyi; Sauzade, Martin
2014-11-01
We experimentally study the properties of viscous core-annular flows using miscible fluids in bifurcating microchannels. A viscous filament is first generated using a square hydrodynamic focusing junction by injecting a thick fluid into the central channel and a thin fluid from the side-channels. This method allows us to produce miscible fluid threads of various sizes and lateral positions in the channel, and enables the systematic study of thread transport and stability from low to moderate Reynolds numbers in branching microfluidic networks. We examine, in particular, the role of viscous buckling instabilities on thread behavior and the formation of complex viscous mixtures and stratifications at the small-scale. This work is supported by NSF (CBET-1150389).
Low moduli elastomers with low viscous dissipation
DEFF Research Database (Denmark)
Bejenariu, Anca Gabriela; Yu, Liyun; Skov, Anne Ladegaard
2012-01-01
A controlled reaction schema for addition curing silicones leads to both significantly lower elastic modulus and lower viscous dissipation than for the chemically identical network prepared by the traditional reaction schema....
Chemical Methods for Ugnu Viscous Oils
Energy Technology Data Exchange (ETDEWEB)
Kishore Mohanty
2012-03-31
The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation
Singular limits in thermodynamics of viscous fluids
Feireisl, Eduard
2017-01-01
This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorný (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapt...
Impact of ultra-viscous drops: air-film gliding and extreme wetting
Langley, Kenneth
2017-01-23
A drop impacting on a solid surface must push away the intervening gas layer before making contact. This entails a large lubricating air pressure which can deform the bottom of the drop, thus entrapping a bubble under its centre. For a millimetric water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a central dimple, but its outer edge is surrounded by an extended thin air film, without contacting the solid. This is in sharp contrast with impacts of lower-viscosity drops where a kink in the drop surface forms at the edge of the central disc and makes a circular contact with the solid. Larger drop viscosities make the central air dimple thinner. The thin outer air film subsequently ruptures at numerous random locations around the periphery, when it reaches below 150 nm thickness. This thickness we measure using high-speed two-colour interferometry. The wetted circular contacts expand rapidly, at orders of magnitude larger velocities than would be predicted by a capillary-viscous balance. The spreading velocity of the wetting spots is independent of the liquid viscosity. This may suggest enhanced slip of the contact line, assisted by rarefied-gas effects, or van der Waals forces in what we call extreme wetting. Myriads of micro-bubbles are captured between the local wetting spots.
Effect of bubble's arrangement on the viscous torque in bubbly Taylor-Couette flow
Fokoua, G. Ndongo; Gabillet, C.; Aubert, A.; Colin, C.
2015-03-01
An experimental investigation of the interactions between bubbles, coherent motion, and viscous drag in a Taylor-Couette flow with the outer cylinder at rest is presented. The cylinder radii ratio η is 0.91. Bubbles are injected inside the gap through a needle at the bottom of the apparatus. Different bubbles sizes are investigated (ratio between the bubble diameter and the gap width ranges from 0.05 to 0.125) for very small void fraction (α ≤ 0.23%). Different flow regimes are studied corresponding to Reynolds number Re based on the gap width and velocity of the inner cylinder, ranging from 6 × 102 to 2 × 104. Regarding these Re values, Taylor vortices are persistent leading to an axial periodicity of the flow. A detailed characterization of the vortices is performed for the single-phase flow. The experiment also develops bubbles tracking in a meridian plane and viscous torque of the inner cylinder measurements. The findings of this study show evidence of the link between bubbles localisation, Taylor vortices, and viscous torque modifications. We also highlight two regimes of viscous torque modification and various types of bubbles arrangements, depending on their size and on the Reynolds number. Bubbles can have a sliding and wavering motion near the inner cylinder and be either captured by the Taylor vortices or by the outflow areas near the inner cylinder. For small buoyancy effect, bubbles are trapped, leading to an increase of the viscous torque. When buoyancy induced bubbles motion is increased by comparison to the coherent motion of the liquid, a decrease in the viscous torque is rather observed. The type of bubble arrangement is parameterized by the two dimensionless parameters C and H introduced by Climent et al. ["Preferential accumulation of bubbles in Couette-Taylor flow patterns," Phys. Fluids 19, 083301 (2007)]. Phase diagrams summarizing the various types of bubbles arrangements, viscous torque modifications, and axial wavelength evolution are
Bertasi, Federico; Giffin, Guinevere A; Vezzù, Keti; Pace, Giuseppe; Abu-Lebdeh, Yaser; Armand, Michel; Di Noto, Vito
2017-10-04
This work describes the preparation of the new lipophilic ionic liquid tetraoctyl-formamidinium bis(trifluoromethanesulfonyl) imide (TOFATFSI), which is miscible with lower alkanes. In particular, this work focuses on the electric behaviour of TOFATFSI in the particularly challenging highly apolar environment of supercritical CO2. The conductivity and relaxation phenomena are revealed through the analysis of the broadband electric spectra with a particular emphasis on the effect of temperature and CO2 uptake on the IL conductivity. It is found that temperature boosts the conductivity via an increase in the charge carrier mobility. Also, CO2 absorption affects both the conductivity and the permittivity of the material due to the presence of CO2-IL interactions that modulate the nanostructure and the size of the TOFATFSI aggregates, which increases both the mobility and the density of the charge carriers.
DYNAMICS OF THIN VISCOUS LAYERS
ROJAS, NICOLAS
2011-01-01
As Isaac Newton discovered in Mechanics, and published in his Principia Mathematica in 1687, inertial effects are essential to describe natural phenomena. In the case of Fluid Dynamics, inertia was included by Claude-Louis Navier and George Gabriel Stokes almost two centuries after in 1822 when calculating the mass and momentum conservation of au infinitesimal fluid elemeut. Although Navier-Stokes equations are very useful for describing any event of any liquid or gas and there...
Ribe, N.M.; Habibi, M.; Bonn, D.
2012-01-01
A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes
Liang, Ting; van Kuringen, Huub P C; Mulder, Dirk J; Tan, Shuai; Wu, Yong; Borneman, Zandrie; Nijmeijer, Kitty; Schenning, Albertus P H J
2017-10-11
In this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films. For the proton conduction, an optimum was found in the amount of cross-linker and the smectic organization results in the highest anhydrous proton conduction. The polymer films show anisotropic proton conductivity with a 54 times higher conductivity in the direction perpendicular to the molecular director. After a base treatment of the smectic liquid crystalline network, a nanoporous polymer film is obtained that also shows anisotropic adsorption of dye molecules and again straight smectic pores are favored over disordered pores in nematic and isotropic networks. The highly cross-linked films show size-selective adsorption of dyes. Low cross-linked materials do not show this difference due to swelling, which decreases the order and creates openings in the two-dimensional polymer layers. The latter is, however, beneficial for fast adsorption kinetics.
Superballistic flow of viscous electron fluid through graphene constrictions
Krishna Kumar, R.; Bandurin, D. A.; Pellegrino, F. M. D.; Cao, Y.; Principi, A.; Guo, H.; Auton, G. H.; Ben Shalom, M.; Ponomarenko, L. A.; Falkovich, G.; Watanabe, K.; Taniguchi, T.; Grigorieva, I. V.; Levitov, L. S.; Polini, M.; Geim, A. K.
2017-12-01
Electron-electron (e-e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e-e scattering. Only recently, sufficiently clean electron systems with transport dominated by e-e collisions have become available, showing behaviour characteristic of highly viscous fluids. Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene. Notably, the measured conductance exceeds the maximum conductance possible for free electrons. This anomalous behaviour is attributed to collective movement of interacting electrons, which `shields' individual carriers from momentum loss at sample boundaries. The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices.
Cunha, Rafael R; Chaves, Sandro C; Ribeiro, Michelle M A C; Torres, Lívia M F C; Muñoz, Rodrigo A A; Dos Santos, Wallans T P; Richter, Eduardo M
2015-05-01
Paracetamol, caffeine and ibuprofen are found in over-the-counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high-performance liquid chromatography with diode-array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high-performance liquid chromatography with diode-array detection was achieved on a C18 column (250×4.6 mm(2), 5 μm) with a gradient mobile phase comprising 20-100% acetonitrile in 40 mmol L(-1) phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused-silica capillary (40 cm length, 50 μm i.d.) using 10 mmol L(-1) 3,4-dimethoxycinnamate and 10 mmol L(-1) β-alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 μmol L(-1) by liquid chromatography and 39, 32, and 49 μmol L(-1) by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92-107% for both proposed methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The application of preconditioning in viscous flows
Energy Technology Data Exchange (ETDEWEB)
Choi, Y.H. (NASA Lewis Research Center, Cleveland, OH (United States)); Merkle, C.L. (The Pennsylvania State Univ., University Park (United States))
1993-04-01
A time-derivative preconditioning algorithm that is effective over a wide range of flow conditions from inviscid to very diffusive flows and from low speed to supersonic flows has been developed. The algorithm uses a preconditioning matrix that introduces well-conditioned eigen values while simultaneously avoiding nonphysical time reversals for viscous flows. The resulting algorithm also provides a mechanism for controlling the inviscid and viscous time step parameters at very diffusive flows, thereby ensuring rapid convergence for very viscous flows as well as for inviscid flows. Computational capabilities are demonstrated through computation of a wide variety of problems. Convergence rates are shown to be accelerated by as much as two orders of magnitudes, while providing solutions that are identical to those obtained without preconditioning method. 26 refs., 21 figs.
Yu, Lei; Pizio, Benjamin S; Vaden, Timothy D
2012-06-07
Protic ionic liquids (PILs) are promising alternatives to water for swelling Nafion as a fuel cell proton exchange membrane (PEM). PILs can significantly improve the high-temperature performance of a PEM. The proton dissociation and solvation mechanisms in a PIL, which are keys to understanding the proton transportation and conductivity, have not been fully explored. In this paper, we used FTIR, Raman, and electronic spectroscopy with computational simulation techniques to explore the spectroscopic properties of bis(trifluoromethanesulfonyl)imide (HTFSI) solutions in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) ionic liquid at concentrations from ∼0.1 to as high as ∼1.0 M. Solution conductivities were measured at room temperature and elevated temperatures up to ∼65 °C. The solution structure and properties depend on the concentration of HTFSI. At lower concentration, around 0.1 M, the HTFSI solution has higher conductivity than pure BMITFSI. However, the conductivity decreases when the concentration increases from 0.1 to 1.0 M. Temperature-dependent conductivities followed the Vogel-Fulcher-Tamman equation at all concentrations. Conductivity and spectroscopy results elucidate the complicated ionization and solvation mechanism of HTFSI in BMITFSI solutions. Raman spectroscopy and density functional theory (DFT) calculations are consistent with the complete ionization of HTFSI to generate solvated H(+) at low concentrations. FTIR, Raman, and electronic spectroscopic results as well as DFT computational simulation indicated that when the concentration is as high as 1.0 M, a significant amount of TFSI(-) is protonated, most likely at the imide nitrogen.
Viscous computations using a direct solver
Venkatakrishnan, V.
1990-01-01
Laminar viscous flows over airfoils are investigated analytically, applying the flux-difference splitting scheme of Roe (1986) to solve the thin-layer Navier-Stokes equations. Central-difference discretization is used for the viscous terms, and a fully implicit implementation is employed to minimize the Reynolds-number effect on convergence. Results for flows at freestream Mach number 0.5 and Reynolds number 5000 over NACA0012 airfoils at angles of attack 0 and 3 deg are presented graphically and discussed in detail. Good agreement with previous calculations is obtained, with accurate reproduction of essential features despite the use of coarser meshes.
Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo
2015-10-21
We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.
Fall and fragmentation of liquid metal in a viscous fluid
Wacheul, Jean-Baptiste; Le Bars, Michael
2017-09-01
This paper is associated with a video winner of a 2016 APS/DFD Gallery of Fluid Motion Award. The original video is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2016.GFM.V0038
A Highly Viscous Imidazolium Ionic Liquid inside Carbon Nanotubes
DEFF Research Database (Denmark)
Ohba, T.; Chaban, Vitaly V.
2014-01-01
We report a combined experimental (X-ray diffraction) and theoretical (molecular dynamics, hybrid density functional theory) study of 1-ethyl-3-methylimidazolium chloride, [C2C1MIM][Cl], inside carbon nanotubes (CNTs). We show that despite its huge viscosity [C2C1MIM][Cl] readily penetrates into 1...... adsorption of [C2C1MIM][Cl] on the inner sidewalls of 1-3 nm carbon nanotubes....
Catalytic polymer membranes for high temperature hydrogenation of viscous liquids
Energy Technology Data Exchange (ETDEWEB)
Fritsch, D.; Bengtson, G. [GKSS Research Centre Geesthacht GmbH, Institute of Polymer Research, Max-Planck-Str. 1, 21502 Geesthacht (Germany)
2006-05-15
Polymeric membranes with high oil fluxes were developed and catalytically activated by a new route of direct calcination of polymeric membranes charged by Pd or Pt catalyst precursors. High concentrations of citric acid mixed with the precursors afforded a decrease of the calcination temperature to 175 C. Membrane reactor tests in the flow through contactor mode displayed high reactivities for sunflower oil hydrogenation. Pt showed a similar activity to Pd catalysts as measured by iodine value and generated about 13% less trans-isomers but 5% more stearic acid at an iodine value of 90. By means of alumina supported catalysts tests of methyl oleate (cis-C18:1) and methyl elaidate (trans-C18:1) hydrogenation exhibited a different pathway of reaction by either isomerization followed by reduction (Pd) or primarily direct reduction to methyl stearate (Pt). (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Chen, Hui; Han, Shu-Yan; Liu, Rui-Heng; Chen, Teng-Fei; Bi, Kai-Lun; Liang, Jian-Bo; Deng, Yu-Heng; Wan, Chong-Qing
2018-02-01
Incorporating ionic liquids (abbreviated as ILs) into porous metal-organic framework (MOF) to obtain ILs@MOF nanocomposites is documented as a feasible method to achieve new type of anhydrous proton conductor with high performance. We newly synthesized a series of ILs with different acid counter anions (R-SO3-) and their ILs@MOF hybrid materials, i.e. SA-EIMS@MIL-101, MSA-EIMS@MIL-101 and PTSA-EIMS@MIL-101 (SA = sulfate acid, MSA = methanesulfonate acid, PTSA = p-toluenesulfonate acid, EIMS = 1-(1-ethyl-3-imidazolium)propane-3-sulfonate). Such hybrid materials displayed as anhydrous proton conduction with long-term durability even heated at 150 °C open to air. σ value of SA-EIMS@MIL-101 is up to 1.89 × 10-3 S cm-1, being in the range of the most conductive MOF-based materials. MOF support exhibited favorable proton transport and long-term retention for ILs. Anion volumes of R-SO3- displayed significant effects on the proton conductivity of such hybrid ILs@MOF materials. The smaller the van der Waals volume of R-SO3- is, the higher the conductivity of ILs@MOF is. This work suggests that the combination of a variety of the incorporated ILs and a MOF framework would afford high proton transport and gives an idea to explore the safe, anhydrous, solid-state electrolyte for high temperature proton exchange membrane fuel cell.
Mantravadi, Ramya; Chinnam, Parameswara Rao; Dikin, Dmitriy A; Wunder, Stephanie L
2016-06-01
Strong, solid polymer electrolyte ion gels, with moduli in the MPa range, a capacitance of 2 μF/cm(2), and high ambient ionic conductivities (>1 × 10(-3) S/cm), all at room temperature, have been prepared from butyl-N-methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide (PYR14TFSI) and methyl cellulose (MC). These properties are particularly attractive for supercapacitor applications. The ion gels are prepared by codissolution of PYR14TFSI and MC in N,N-dimethylformamide (DMF), which after heating and subsequent cooling form a gel. Evaporation of DMF leave thin, flexible, self-standing ion gels with up to 97 wt % PYR14TFSI, which have the highest combined moduli and ionic conductivity of ion gels to date, with an excellent electrochemical stability window (5.6 V). These favorable properties are attributed to the immiscibility of PYR14TFSI in MC, which permits the ionic conductivity to be independent of the MC at low MC content, and the in situ formation of a volume spanning network of semicrystalline MC nanofibers, which have a high glass transition temperature (Tg = 190 °C) and remain crystalline until they degrade at 300 °C.
Bulk viscous cosmology in early Universe
Indian Academy of Sciences (India)
the introduction of viscosity affects the appearance of singularity, is briefly discussed in particular solutions. The deceleration parameter has a freedom to vary with the scale factor of the model, which describes the accelerating expansion of the Universe. Keywords. Cosmology; viscous Universe; radiation phase; inflationary ...
Stokes’ and Lamb's viscous drag laws
Eames, I.; Klettner, C. A.
2017-03-01
Since Galileo used his pulse to measure the time period of a swinging chandelier in the 17th century, pendulums have fascinated scientists. It was not until Stokes' (1851 Camb. Phil. Soc. 9 8-106) (whose interest was spurred by the pendulur time pieces of the mid 19th century) treatise on viscous flow that a theoretical framework for the drag on a sphere at low Reynolds number was laid down. Stokes' famous drag law has been used to determine two fundamental physical constants—the charge on an electron and Avogadro's constant—and has been used in theories which have won three Nobel prizes. Considering its illustrious history it is then not surprising that the flow past a sphere and its two-dimensional analog, the flow past a cylinder, form the starting point of teaching flow past a rigid body in undergraduate level fluid mechanics courses. Usually starting with the two-dimensional potential flow past a cylinder, students progress to the three-dimensional potential flow past a sphere. However, when the viscous flow past rigid bodies is taught, the three-dimensional example of a sphere is first introduced, and followed by (but not often), the two-dimensional viscous flow past a cylinder. The reason why viscous flow past a cylinder is generally not taught is because it is usually explained from an asymptotic analysis perspective. In fact, this added mathematical complexity is why the drag on a cylinder was only solved in 1911, 60 years after the drag on a sphere. In this note, we show that the viscous flow past a cylinder can be explained without the need to introduce any asymptotic analysis while still capturing all the physical insight of this classic fluid mechanics problem.
Chen, Yi-Feng; Fang, Shu; Wu, Dong-Sheng; Hu, Ran
2017-09-01
Immiscible fluid-fluid displacement in permeable media is important in many subsurface processes, including enhanced oil recovery and geological CO2 sequestration. Controlled by capillary and viscous forces, displacement patterns of one fluid displacing another more viscous one exhibit capillary and viscous fingering, and crossover between the two. Although extensive studies investigated viscous and capillary fingering in porous media, a few studies focused on the crossover in rough fractures, and how viscous and capillary forces affect the crossover remains unclear. Using a transparent fracture-visualization system, we studied how the two forces impact the crossover in a horizontal rough fracture. Drainage experiments of water displacing oil were conducted at seven flow rates (capillary number log10Ca ranging from -7.07 to -3.07) and four viscosity ratios (M=1/1000,1/500,1/100 and 1/50). We consistently observed lower invading fluid saturations in the crossover zone. We also proposed a phase diagram for the displacement patterns in a rough fracture that is consistent with similar studies in porous media. Based on real-time imaging and statistical analysis of the invasion morphology, we showed that the competition between capillary and viscous forces is responsible for the saturation reduction in the crossover zone. In this zone, finger propagation toward the outlet (characteristic of viscous fingering) as well as void-filling in the transverse/backward directions (characteristic of capillary fingering), are both suppressed. Therefore, the invading fluid tends to occupy larger apertures with higher characteristic front velocity, promoting void-filling toward the outlet with thinner finger growth and resulting in a larger volume of defending fluid left behind.
Viscous free-surface flows on rotating elliptical cylinders
Li, Weihua; Carvalho, Marcio S.; Kumar, Satish
2017-09-01
The flow of liquid films on rotating discrete objects having complicated cross sections is encountered in coating processes for a broad variety of products. To advance fundamental understanding of this problem, we study viscous free-surface flows on rotating elliptical cylinders by solving the governing equations in a rotating reference frame using the Galerkin finite-element method. Results of our simulations agree well with Hunt's maximum-load condition [Hunt, Numer. Methods Partial Differ. Eqs. 24, 1094 (2008), 10.1002/num.20307], which was obtained in the absence of surface tension and inertia. The simulations are also used to track the transient behavior of the free surface. For O (1 ) cylinder aspect ratios, cylinder rotation results in a droplike liquid bulge hanging on the upward-moving side of the cylinder. This bulge shrinks in size due to surface tension provided that the liquid load is smaller than a critical value, leaving a relatively smooth coating on the cylinder. A decrease in cylinder aspect ratio leads to larger gradients in film thickness, but enhances the rate of bulge shrinkage and thus shortens the time required to obtain a smooth coating. Moreover, with a suitably chosen time-dependent rotation rate, more liquid can be supported by the cylinder relative to the constant-rotation-rate case. For cylinders with even smaller aspect ratios, film rupture and liquid shedding may occur over the cylinder tips, so simultaneous drying and rotation along with the introduction of Marangoni stresses will likely be especially important for obtaining a smooth coating.
Mechanics of liquids and gases
Loitsyanskii, L G; Jones, W P
1966-01-01
Mechanics of Liquids and Gases, Second Edition is a 10-chapter text that covers significant revisions concerning the dynamics of an ideal gas, a viscous liquid and a viscous gas.After an expanded introduction to the fundamental properties and methods of the mechanics of fluids, this edition goes on dealing with the kinetics and general questions of dynamics. The next chapters describe the one-dimensional pipe flow of a gas with friction, the elementary theory of the shock tube; Riemann's theory of the wave propagation of finite intensity, and the theory of plane subsonic and supersonic flows.
Yaghini, N; Nordstierna, L; Martinelli, A
2014-05-28
In this paper we report on the transport properties of protic and aprotic ionic liquids of the imidazolium cation (C2C1Im(+) or C2HIm(+)) and the TFSI(-) or TfO(-) anion as a function of added water. We observe that the self-diffusion coefficient of the ionic species increases upon addition of water, and that the cation diffuses faster than the anion in the entire water concentration range investigated. We also observe that the overall increase of anionic and cationic diffusion coefficients is significant for C2HImTfO while it is rather weak for C2C1ImTFSI, the former being more hydrophilic. Moreover, the difference between cationic and anionic self-diffusivity specifically depends on the structure of the ionic liquid's ions. The degree of ion-ion association has been investigated by comparing the molar conductivity obtained by impedance measurements with the molar conductivity calculated from NMR data using the Nernst-Einstein equation. Our data indicate that the ions are partly dissociated (Λimp/ΛNMR in the range 0.45-0.75) but also that the degree of association decreases in the order C2HImTfO > C2HImTFSI ≈ C2C1ImTfO > C2C1ImTFSI. From these results, it seems that water finds different sites of interaction in the protic and aprotic ionic liquids, with a strong preference for hydrogen bonding to the -NH group (when available) and a stronger affinity to the TfO anion as compared to the TFSI. For the protic ionic liquids, the analysis of (1)H NMR chemical shifts (upon addition of H2O and D2O, respectively) indicates a water-cation interaction of hydrogen bonding nature. In addition, we could probe proton exchange between the -NH group and deuterated water for the protic cation, which occurs at a significantly faster rate if associated with the TfO anion as compared to the TFSI.
Zakharov equations for viscous flow and their use in the blood clot formation
Zhou, Ai-Ping; Li, Xiao-Qing
2017-12-01
For theoretical study, blood can be regarded as a viscous electrically conducting fluid of negative ions and protons. Zakharov equations including viscosity are relevant for describing the behaviour of blood plasma. The dispersion formula is derived from the perturbation method and is solved numerically. It turns out that the imaginary part of one root of the perturbation frequency is greater than zero, and modulation instability occurs. This would lead to the formation of blood clot. The viscous force can suppress the occurrence of instability and prevent thrombosis. One can find that the chaotic state of blood signals human health.
Zakharov equations for viscous flow and their use in the blood clot ...
Indian Academy of Sciences (India)
Ai-Ping Zhou
2017-11-14
Nov 14, 2017 ... Abstract. For theoretical study, blood can be regarded as a viscous electrically conducting fluid of negative ions and protons. Zakharov equations including viscosity are relevant for describing the behaviour of blood plasma. The dispersion formula is derived from the perturbation method and is solved ...
Zakharov equations for viscous flow and their use in the blood clot ...
Indian Academy of Sciences (India)
For theoretical study, blood can be regarded as a viscous electrically conducting fluid of negative ions and protons. Zakharov equations including viscosity are relevant for describing the behaviour of blood plasma. The dispersion formula is derived from the perturbation method and is solved numerically. It turns out that the ...
MHD flow and heat transfer of a viscous reacting fluid over a ...
African Journals Online (AJOL)
This paper presents a boundary layer flow analysis for a viscous, incompressible, electrically conducting reacting fluid over a stretching sheet in the presence of a magnetic field. It is shown that the Hartmann, Prandtl and the Eckert numbers have effect on the velocity and temperature fields. Journal of the Nigerian ...
The effects of bulking, viscous and gel-forming dietary fibres on satiation
Wanders, A.J.; Jonathan, M.C.; Borne, van den J.J.G.C.; Mars, M.; Schols, H.A.; Feskens, E.J.M.; Graaf, de C.
2013-01-01
The objective was to determine the effects of dietary fibre with bulking, viscous and gel-forming properties on satiation, and to identify the underlying mechanisms. We conducted a randomised crossover study with 121 men and women. Subjects were healthy, non-restrained eaters, aged 18–50 years and
Ehsani, A; Kowsari, E; Boorboor Ajdari, F; Safari, R; Mohammad Shiri, H
2017-11-01
In present work, for improving the electrochemical performance of conductive polymer, POAP/3-methyl-1-[2-(2-{2-[2-[(3-methyl-1-H-imidazol-3-ium-1-yl)ethoxy]ethoxy}-ethoxy)ethyl]-1-H-imidazol-3-ium dichloride (MIEID) composite films have been fabricated by poly ortho aminophenol (POAP) electropolymerization in the presence of MIEID as active electrodes for electrochemical supercapacitors. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Analysis of density functional theory (DFT) results show that the atomic-scale electronic properties are generally depend on the bonding and electronic molecular structures (and thus their variation with the external bias in real nano-electrochemical circuits). Composite film kept more than 90% percent of its capacitance after 1000 charging-discharging cycles, while the coulombic efficiency (η) is as high as 95%. Results suggesting composite film can be used as supercapacitor electrode material with excellent specific capacitance (487Fg(-1)) which indicates this material is a promising electrode material used in high power applications. Copyright © 2017 Elsevier Inc. All rights reserved.
The effect of gap width on viscous stresses within the leakage across a bileaflet valve pivot
DEFF Research Database (Denmark)
Travis, Brandon R; Andersen, Morten E; Fründ, Ernst Torben
2008-01-01
BACKGROUND AND AIM OF THE STUDY: Stresses of leakage flow may contribute to the increased tendency for thromboembolic complications in patients with mechanical valves. In bileaflet valves, leakage occurs primarily in the pivots, and the width of the pivot gap influences viscous stress magnitudes....... The present study was conducted to investigate the effects of gap width on viscous stresses within the pivots of a bileaflet mitral valve during the leakage phase. METHODS: A computational model of a bileaflet valve was created and inserted between models of the left atrium and ventricle. Three simulations...... reported within the pivots in previous studies. Velocities measured experimentally were even larger than those estimated computationally. CONCLUSION: These experiments suggest that viscous stresses in leakage flow across a bileaflet mitral valve increase with gap width, and may contribute more to blood...
Directory of Open Access Journals (Sweden)
Mohammed M. Rahman
2015-06-01
Full Text Available The synthesis of room-temperature stable ionic liquids was obtained via metathesis reaction, which was accomplished by the reaction 1,10-Phenanthroline monohydrate hydrochloride with lithium-bis(trifluoromethanesulfonamide in water (shortly, 1,10-PhenanNTf2. The prepared 1,10-PhenanNTf2 was characterized in details with various conventional methods. Finally, it was mixed with conducting binders and deposited on flat-silver electrode (AgE to result in a sensor that has a fast response to bisphenol A (BPA in the phosphate buffer phase (PBP. Features include high sensitivity, low-sample volume, reliability, reproducibility, ease of integration, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r2 = 0.9789 over the 0.1 nM–0.1 mM BPA concentration range. The sensitivity is ∼1.485 μA μM cm−2, and the detection limit is 0.09 ± 0.01 nM (at a signal-to-noise-ratio, SNR of 3. We believe that the developed approach significantly opens up a simple, fast, highly sensitive, and environment-friendly path to fabricate ionic liquid based chemical sensors with broad application prospects.
Waves of pressure in viscous incompressible fluid
Prosviryakov, E. Yu.
2017-12-01
A three-dimensional non-stationary flow of a viscous incompressible fluid in the infinite space is examined. The description of possible shapes of pressure is based on the equation for the axial component of velocity, which is an exact consequence of the basic equations. New analytical exact solutions to the Navier-Stokes equations for periodic and localized traveling waves have been found.
Park, Keunhwan; Tixier, Aude; Christensen, Anneline; Arnbjerg-Nielsen, Sif; Zwieniecki, Maciej; Jensen, Kaare
2017-01-01
Fluid-structure interactions are ubiquitous in nature and technology. However, the systems are often so complex that numerical simulations or ad hoc assumptions must be used to gain insight into the details of the complex interactions between the fluid and solid mechanics. In this paper, we present experiments and theory on viscous flow in a simple bioinspired soft valve which illustrate essential features of interactions between hydrodynamic and elastic forces at low Reynolds numbers. The se...
Energy Technology Data Exchange (ETDEWEB)
Luo, Yang; Wen, Meimei [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Kim, Chang Nyung, E-mail: cnkim@khu.ac.kr [Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Yang, Shangjing [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of)
2017-04-15
In this study, the characteristics of liquid metal (LM) magnetohydrodynamic (MHD) flow and convective heat transfer in a manifold with three sub-channels having locally different electric conductivity are investigated with the use of commercial code CFX, allowing an imbalance in flow rate among the sub-channels, which can be used for intensive cooling of the region with higher heat load in the blanket. In a manifold with co-flow multiple sub-channels, the electrical current can cross the fluid regions and channel walls, thus influencing the flow distribution in each sub-channel. In the present study, cases with various arrangements of the electric conductivity in different parts of the channel walls are investigated, yielding different distributions of the current and fluid flow in different cases. Here, the mechanism governing the imbalance in mass flow rate among the sub-channels is discussed. The interdependency of the fluid velocity, current and electric potential of LM MHD flows in the three sub-channels are analyzed in detail. The results show that, in the sub-channel surrounded by the walls with lower electric conductivity, higher axial velocity and superior heat extraction can be obtained, with an effective cooling associated with higher velocity, where the higher velocity is closely related to the distribution of the electromotive component of the current in the flow field.
Dutta, Rituraj; Kumar, A.
2017-10-01
Dielectric relaxation dynamics and AC conductivity scaling of a metal-organic framework (MOF-5) based poly (vinylidene fluoride-co-hexafluoropropylene) (PVdf-HFP) incorporated with 1-Butyl-3-methylimidazolium hexafluorophosphate have been studied over a frequency range of 40 Hz-5 MHz and in the temperature range of 300 K-380 K. High values of dielectric permittivity (~{{\\varepsilon }\\prime} ) having strong dispersion are obtained at low frequency because of interfacial polarization. The real part of the dielectric modulus spectra (M‧) shows no prominent peak, whereas the imaginary part (M″) shows certain peaks, with a reduction in relaxation time (τ) that can be attributed to a non-Debye relaxation mechanism. The spectra also depict both concentration- and temperature-independent scaling behavior. The power law dependent variation of AC conductivity follows the jump relaxation model and reveals activated ion hopping over diffusion barriers. The value of the frequency exponent is observed to decrease with increasing concentration of ionic liquid, indicating the forward hopping of ions in the relaxation process. The AC conductivity scaling curves at different temperatures also depict the temperature-independent relaxation dynamics.
Directory of Open Access Journals (Sweden)
Mohammad Rezaul Karim
2011-01-01
Full Text Available Conducting polythiophene (PTh composites with the host filler multiwalled carbon nanotube (MWNT have been used, for the first time, in the dye-sensitized solar cells (DSCs. A quasi solid-state DSCs with the hybrid MWNT-PTh composites, an ionic liquid of 1-methyl-3-propyl imidazolium iodide (PMII, was placed between the dye-sensitized porous TiO2 and the Pt counter electrode without adding iodine and higher cell efficiency (4.76% was achieved, as compared to that containing bare PMII (0.29%. The MWNT-PTh nanoparticles are exploited as the extended electron transfer materials and serve simultaneously as catalyst for the electrochemical reduction of I−3.
Viscous Glass Sealants for SOFC Applications
Energy Technology Data Exchange (ETDEWEB)
Scott Misture
2012-09-30
Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850Â°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650Â°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.
Soundalgekar, V. M.; Uplekar, A. G.
1981-06-01
An analysis of heat transfer in a two dimensional flow of an elastico-viscous fluid (Walters liquid B) past an infinite porous plate has been carried out under the following conditions: (1) constant suction, (2) free stream oscillates in time about a constant mean, (3) the plate is thermally insulated. Approximate solutions to the temperature field have been derived on taking into consideration viscous dissipative terms. The mean wall temperature has been shown graphically and it is observed that it decreases with increasing frequency.
Electrically conducting polymers from phenylacetylene substituted Schiff`s base momomers
Energy Technology Data Exchange (ETDEWEB)
Kim, I. [Dept. of Chemical Engineering, Univ. of Ulsan (Korea, Republic of); Lee, D.J. [R and D Center, Kumho and Co., Kwangju (Korea, Republic of)
1995-03-01
Electrically conducting polymers have been synthesized from novel mono- or difunctional phenylacetylene-substituted Schiff`s base monomers. These monomers melt to a viscous liquid state, and on continued heating above about 300 C, thermally polymerize to form an electrically insulating thermoset polymers. On further postcure heat treatment, the polymers become electroconductive showing a bulk conductivity of approximately 10{sup -2}S/cm. Because the monomers remain in a liquid stage for 1-2h, depending on the cure conditions, moldings, castings, and pre-pregs can be fabricated using conventional processing techniques. In addition, since reactive dopants are not used, the resulting polymers and conductivity are stable in ambient as well as more aggressive environments, allowing them to function at 300 C and above. The monomers are well characterized, but the structure of the cured and postcured polymers are not yet well defined because of their high stability and intractability in the cured state. (orig.)
Diluent effects on the Debye-type dielectric relaxation in viscous monohydroxy alcohols.
Wang, Li-Min; Shahriari, Shervin; Richert, Ranko
2005-12-15
With the recognition that the Debye-type dielectric relaxation of liquid monohydroxy alcohols does not reflect the structural relaxation dynamics associated with the viscous flow and the glass transition, its behavior upon dilution is expected to differ from that of real alpha-processes. We have investigated the Debye-type dielectric relaxation of binary alcohol/alkane mixtures across the entire concentration range in the supercooled regimes. The focus is on 2-ethyl-1-hexanol in two nonpolar liquids, 3-methylpentane and squalane, which are more fluid and more viscous than the alcohol, respectively. The Debye relaxation is found to occur only for alcohol mole fractions x > 0.2 and is always accompanied by a non-Debye relaxation originating from the alcohol component. Prior to its complete disappearance, the Debye relaxation is subject to broadening. We observe that the Debye dynamics of 2-ethyl-1-hexanol is accelerated in the more fluid 3-methylpentane, while the more viscous squalane leads to longer Debye relaxation times. The present experiments also provide evidence that the breakdown of the Debye relaxation amplitude does not imply the absence of hydrogen-bonded structures.
Bešter-Rogač, Marija; Stoppa, Alexander; Hunger, Johannes; Hefter, Glenn; Buchner, Richard
2011-10-21
Ion association of the ionic liquid [bmim][Cl] in acetonitrile and in water was studied by dielectric spectroscopy for salt concentrations c ≤ 1.3 M at 298.15 K and by measurement of molar electrical conductivities, Λ, of dilute solutions (c ≤ 0.006 M) in the temperature range 273.15 ≲ T/K ≤ 313.15. Whilst acetonitrile solutions of [bmim][Cl] exhibit moderate ion pairing, with an association constant of K°(A) ≈ 60 M(-1) and increasing with temperature, [bmim][Cl] is only weakly associated in water (K°(A) ≈ 6 M(-1)) and ion pairing decreases with rising temperature. Only contact ion pairs were detected in both solvents. Standard-state enthalpy, entropy and heat capacity changes of ion association were derived, as well as the activation enthalpy of charge transport and the limiting conductivity of the cation, λ(∞) ([bmim](+)). These data, in conjunction with effective solvation numbers obtained from the dielectric spectra, suggest that the solvation of [bmim](+) is much weaker in water than in acetonitrile. This journal is © the Owner Societies 2011
Destabilization of highly viscous fluid threads in complex microgeometries
Cubaud, Thomas
2015-11-01
High-viscosity multiphase flows in microchannels encompass a broad range of fluid phenomena, including self-lubrication and viscous buckling instabilities. Here, a series of experiments is conducted to study the dynamic response of miscible fluid threads to a change in carrier flow velocity due to varying microgeometries. The structural stability of core-annular flows is systematically investigated in simple and complex microchannels, such as square, bifurcating, and corrugated channels, from low to high flow rates of injection and for a variety of fluid viscosities. Focus is on flow regimes of practical interest for the improvement of mixing and separation processes between fluids having large viscosity contrasts at the small scale. This work is supported by NSF (CBET-1150389).
Passive Control of Viscous Flow via Elastic Snap-Through
Gomez, Michael; Moulton, Derek E.; Vella, Dominic
2017-10-01
We demonstrate the passive control of viscous flow in a channel by using an elastic arch embedded in the flow. Depending on the fluid flux, the arch may "snap" between two states—constricting and unconstricting—that differ in hydraulic conductivity by up to an order of magnitude. We use a combination of experiments at a macroscopic scale and theory to study the constricting and unconstricting states, and determine the critical flux required to transition between them. We show that such a device may be precisely tuned for use in a range of applications, and, in particular, has potential as a passive microfluidic fuse to prevent excessive fluxes in rigid-walled channels.
Traffic collision during the breakup of an aqueous viscous compound jet
Doméjean, Hugo; Bibette, Jérôme; Bremond, Nicolas
2016-10-01
Liquid jets ultimately break up into droplets through an instability driven by surface tension. For highly viscous liquids, drops are connected by cylindrical liquid filaments whose radii linearly decrease with time, thus forming drops on a string structure. For a jet composed of two aqueous phases made in air by coaxial extrusion, we observe that, for moderate Weber and capillary numbers, drops slow down with different velocities, leading to drop coalescence. The origin of the traffic collision is linked to the spatial feature of the capillary instability where capillary and viscous forces acting on the drops evolve along the jet and ultimately amplify small velocity fluctuations. The emergence of such fluctuations is related to the unstable nature of the annular coflow of liquids having contrasting viscoelastic properties. From a practical point of view, flow and actuation conditions can be adjusted to inhibit drop collision and thus drop coalescence. These findings allow then the fabrication of monodisperse submillimeter core-shell objects based on the fragmentation of compound jets made of polymer solutions that find applications for three-dimensional cell culture.
Viscous hydrophilic injection matrices for serial crystallography.
Kovácsová, Gabriela; Grünbein, Marie Luise; Kloos, Marco; Barends, Thomas R M; Schlesinger, Ramona; Heberle, Joachim; Kabsch, Wolfgang; Shoeman, Robert L; Doak, R Bruce; Schlichting, Ilme
2017-07-01
Serial (femtosecond) crystallography at synchrotron and X-ray free-electron laser (XFEL) sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates - gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP) as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydro-gels as viscous injection matrices is described, namely sodium carb-oxy-methyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new matrices afford
Viscous hydrophilic injection matrices for serial crystallography
Directory of Open Access Journals (Sweden)
Gabriela Kovácsová
2017-07-01
Full Text Available Serial (femtosecond crystallography at synchrotron and X-ray free-electron laser (XFEL sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new
Viscous flows the practical use of theory
Brenner, Howard
1988-01-01
Representing a unique approach to the study of fluid flows, Viscous Flows demonstrates the utility of theoretical concepts and solutions for interpreting and predicting fluid flow in practical applications. By critically comparing all relevant classes of theoretical solutions with experimental data and/or general numerical solutions, it focuses on the range of validity of theoretical expressions rather than on their intrinsic character.This book features extensive use of dimensional analysis on both models and variables, and extensive development of theoretically based correlating equations.
Dragging cylinders in slow viscous flows
Luca, Elena; Crowdy, Darren
2015-11-01
The so-called ``dragging problem'' in slow viscous fluids is an important basic flow with many applications. In two dimensions, the Stokes paradox means there is no solution to the dragging problem for a cylinder in free space. The presence of walls changes this; the solutions exist, but are not easy to find without purely numerical methods. This talk describes new ``transform methods'' that produce convenient, semi-analytical solutions to dragging problems for cylinders in various geometries. We apply the techniques to low-Reynolds-number swimming where dragging problem solutions can be combined with the reciprocal theorem to compute swimmer dynamics in confined domains.
Stress relaxation in viscous soft spheres.
Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P
2017-10-04
We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.
Dense planetary rings and the viscous overstability
Latter, Henrik N.; Ogilvie, Gordon I.
2008-06-01
This paper examines the onset of the viscous overstability in dense particulate rings. First, we formulate a dense gas kinetic theory that is applicable to the saturnian system. Our model is essentially that of Araki and Tremaine [Araki, S., Tremaine, S., 1986. Icarus 65, 83-109], which we show can be both simplified and generalised. Second, we put this model to work computing the equilibrium properties of dense planetary rings, which we subsequently compare with the results of N-body simulations, namely those of Salo [Salo, H., 1991. Icarus 90, 254-270]. Finally, we present the linear stability analyses of these equilibrium states, and derive criteria for the onset of viscous overstability in the self-gravitating and non-self-gravitating cases. These are framed in terms of particle size, orbital frequency, optical depth, and the parameters of the collision law. Our results compare favourably with the simulations of Salo et al. [Salo, H., Schmidt, J., Spahn, F., 2001. Icarus 153, 295-315]. The accuracy and practicality of the continuum model we develop encourages its general use in future investigations of nonlinear phenomena.
Directory of Open Access Journals (Sweden)
Ho Ryul Ryu
2010-03-01
Full Text Available This work presents comparison of performance of ultraviolet (UV detector, conductivity detector (CD and evaporative light scattering detector (ELSD in terms of quantitative analysis of AOT (sodium bis(2-ethylhexylsulfosuccinate using liquid chromatography. The employed chromatographic condition, including an acetonitrile/water (45:55, v/v isocratic eluent system, is suitable for the three different detectors, and the figures of merits obtained by building up calibration plots are compared. The sensitivities of the detectors are in the order of ELSD ≈ CD >> UV detector. The linear range for quantification of AOT depends on the type of detector: the lower limits are in the order of UV detector (207 ㎍ mL-1 < CD (310 ㎍ mL-1 << ELSD (930 ㎍ mL-1, while the upper limits are 3720 ㎍ mL-1 for all the detectors (the maximum concentration of injected standard solution. The detection limits are 155 ㎍ mL-1 for ELSD, 78 ㎍ mL-1 for UV detector and 13 ㎍ mL-1 for CD, respectively. The figures of merit for each detector could be a guideline in choosing a detector in quantization of AOT. Furthermore, application of the chromatographic method to two commercial products is demonstrated.
Paoloni, S.; Mercuri, F.; Zammit, U.
2016-09-01
In this work we use a photopyroelectric calorimetric set up to analyze the transformations occurring in thin samples of liquid crystal-microemulsion system by combining the results of the simultaneously performed high temperature resolution polarization microscopy observations and the temperature dependence of the specific heat, and of the thermal conductivity. This enabled an accurate direct correlation of the observations concerning the different measured quantities for a most comprehensive interpretation of the obtained results. It is found that the I-N conversion progresses in the entire nematic range because of the micelles expelled from the nucleating nematic volumes remaining confined in the residual isotropic material. A hysteretic behavior is observed in the nematic range between cooling and heating run because of the different micelle content in the material during the cooling and heating runs. A moderate hysteresys also over the N-A transition indicated an additional material refinement from micelles during the transition. Finally in samples with different micelle concentration the same maximum micelle content is retained in the nematic and smectic phases.
Mahmoud, Mostafa A. A.; Megahed, Ahmed M.
2017-10-01
Theoretical and numerical outcomes of the non-Newtonian Casson liquid thin film fluid flow owing to an unsteady stretching sheet which exposed to a magnetic field, Ohmic heating and slip velocity phenomena is reported here. The non-Newtonian thermal conductivity is imposed and treated as it vary with temperature. The nonlinear partial differential equations governing the non-Newtonian Casson thin film fluid are simplified into a group of highly nonlinear ordinary differential equations by using an adequate dimensionless transformations. With this in mind, the numerical solutions for the ordinary conservation equations are found using an accurate shooting iteration technique together with the Runge-Kutta algorithm. The lineaments of the thin film flow and the heat transfer characteristics for the pertinent parameters are discussed through graphs. The results obtained here detect many concern for the local Nusselt number and the local skin-friction coefficient in which they may be beneficial for the material processing industries. Furthermore, in some special conditions, the present problem has an excellent agreement with previously published work.
Marston, Jeremy
2010-05-21
Experiments were performed to observe the motion of a solid sphere approaching a solid wall through a thin layer of a viscous liquid. We focus mainly on cases where the ratio of the film thickness, ℘, to the sphere diameter, D, is in the range 0.03 ℘viscous forces, is below a critical level Stc so that the spheres do not rebound and escape from the liquid layer. This provides us with the scope to verify the force acting on the sphere, derived from lubrication theory. Using high-speed video imaging we show, for the first time, that the equations of motion based on the lubrication approximation correctly describe the deceleration of the sphere when St < Stc. Furthermore, we show that the penetration depth at which the sphere motion is first arrested by the viscous force, which decreases with increasing Stokes number, matches well with theoretical predictions. An example for a shear-thinning liquid is also presented, showing that this simple set-up may be used to deduce the short-time dynamical behaviour of non-Newtonian liquids. © 2010 Cambridge University Press.
Time-dependent cavitation in a viscous fluid
Shneidman, Vitaly A.
2016-12-01
Kinetics of nucleation and growth of empty bubbles in a nonvolatile incompressible fluid under negative pressure is considered within the generalized Zeldovich framework. The transient matched asymptotic solution obtained earlier for predominantly viscous nucleation is used to evaluate the distribution of growing cavities over sizes. Inertial effects described by the Rayleigh-Plesset equation are further included. The distributions are used to estimate the volume occupied by cavities, which leads to increase of pressure and eventual self-quenching of nucleation. Numerical solutions are obtained and compared with analytics. Due to rapid expansion of cavities the conventional separation of the nucleation and the growth time scales can be less distinct, which increases the role of transient effects. In particular, in the case of dominant viscosity a typical power-law tail of the quasistationary distribution is replaced by a time-dependent exponential tail. For fluids of the glycerin type such distributions can extend into the micrometer region, while in low-viscosity liquids (water, mercury) exponential distributions are short lived and are restricted to nanometer scales due to inertial effects.
Motion of a hot particle in viscous fluids
Oppenheimer, Naomi; Navardi, Shahin; Stone, Howard A.
2016-05-01
We study the motion of a hot particle in a viscous liquid at low Reynolds numbers, which is inspired by recent experiments with Brownian particles heated by a laser. The difference in temperature between a particle and the ambient fluid causes a spatial variation of the viscosity in the vicinity of the solid body. We derive a general analytical expression determining the force and the torque on a particle for low Péclet numbers by exploiting the Lorentz reciprocal theorem. For small temperature and viscosity variations, a perturbation analysis is implemented to evaluate the leading-order correction to the hydrodynamic force and torque on the particle. The results are applied to describe dynamics of a uniformly hot spherical particle and to spherical particles with a nonuniform surface temperature described by dipole and quadrupole moments. Among other results, we find for dipolar thermal fields that there is coupling of the translational and rotational motions when there are local viscosity variations; such coupling is absent in an isothermal fluid.
Viscous Fingering in the Mantle Asthenosphere
Nissanka, U. S.; Weeraratne, D. S.; Parmentier, E. M.; Rincon, J. M.
2015-12-01
Regional seismic tomography studies in the Pacific ocean and continental western U.S show linear bands of low velocity anomalies that are aligned with absolute plate motion and coincident with volcanic lineaments located within the interior of plates far from plate boundaries. Small-scale convection provides one possible explanation for these lineations but does not predict age progressive seafloor volcanism that opposes plate motion. We propose a new hypothesis where viscous fingering instabilities form due to hot and wet mantle plumes which rise and discharge into the upper mantle asthenosphere and displace higher viscosity depleted mantle. We perform laboratory fluid experiments scaled to the Earth's mantle, with stationary and moving surface plates that use fluids with viscosities (μ) from 1 to 300 Pas and viscosity ratios (μ1/μ2) from 3 to 400. Viscous fingers are observed to form for all viscosity ratios we consider and after an initial growth period, exhibit a constant wavelength that depends on several parameters. Fingering wavelength is strongly dependent on plate spacing (and therefore asthenospheric layer thickness) but shows weak or no dependence on viscosity ratio and injection rate. The radius, Ro, at which fingers first form varies inversely with increasing viscosity ratio. This indicates that low viscosity mantle may flow long distances before fingers develop if viscosity ratios are small. For mobile plates, a ratio Γ of plume flux to plate velocity is defined where Γ is varied from 3.6x10-4 to 3.6x105 which considers the range expected in the Earth (6.3x10-3 to 1.5x10-2). Results indicate that fingers align with plate motion both upstream and downstream, with longer wavelengths in the downstream direction. Particle imaging successfully resolves particle motion vectors and also indicates the presence of a thin film layer above and below each finger. This new geodynamic model for viscous fingering in the asthenosphere links off-axis and rising
Attractor for a Viscous Coupled Camassa-Holm Equation
Directory of Open Access Journals (Sweden)
Tian Lixin
2010-01-01
Full Text Available The global existence of solution to a viscous coupled Camassa-Holm equation with the periodic boundary condition is investigated. We obtain the compact and bounded absorbing set and the existence of the global attractor for the viscous coupled Camassa-Holm equation in by uniform prior estimate.
Some exact solutions of magnetized viscous model in string ...
Indian Academy of Sciences (India)
The presence of bulk viscosity stops the Universe from becoming empty in its future evolution. It is observed that the Universe expands with decelerated rate in the presence of viscous fluid with magnetic field whereas, it expands with marginal inflation in the presence of viscous fluid without magnetic field. The other physical ...
Poloidal variation of viscous forces in the banana collisionality regime
Energy Technology Data Exchange (ETDEWEB)
Wang, J.P.; Callen, J.D.
1992-12-01
The poloidal variation of the parallel viscous and heat viscous forces are determined for the first time using a rigorous Chapman- Enskog-like approach that has been developed recently. It is shown that the poloidal variation is approximately proportional to the poloidal distribution of the trapped particles, which are concentrated on the outer edge (large major radius side) of the tokamak.
Diffusion on Viscous Fluids, Existence and Asymptotic Properties of Solutions,
1983-09-01
Matematica - Politecuico di Milano (1982). 11.* P. Secchi "On the Initial Value ProbleM for the Nquations of Notion of Viscous Incompressible Fluids In...of two viscous Incompressible Fluids’, preprint DepartLmento dl matematica - Politecuico di Milano (1982). -15- 11. P. Secchi 00n the XnitiaI Value
A Viscous-Inviscid Interaction Model for Rotor Aerodynamics
DEFF Research Database (Denmark)
Filippone, Antonino; Sørensen, Jens Nørkær
1994-01-01
A numerical model for the viscous-inviscid interactive computations ofrotor flows is presented. The basic methodology for deriving the outer inviscid solution is a fully three-dimensional boundary element method.The inner viscous domain, i.e. the boundary layer, is described by the two-dimensiona...
Visualization of Solution Gas Drive in Viscous Oil, SUPRI TR-126
Energy Technology Data Exchange (ETDEWEB)
George, D.S.; Kovscek, A.R.
2001-07-23
Several experimental studies of solution gas drive are available in this report. Almost all of the studies have used light oil. Solution gas drive behavior, especially in heavy oil reservoirs, is poorly understood. Experiments were performed in which pore-scale solution gas drive phenomena were viewed in water/carbon dioxide and viscous oil/carbon dioxide systems. A new pressure vessel was designed and constructed to house silicon-wafer micromodels that previously operated at low (<3 atm) pressure. The new apparatus is used for the visual studies. Several interesting phenomena were viewed. The repeated nucleation of gas bubbles was observed at a gas-wet site occupied by dirt. Interestingly, the dissolution of a gas bubble into the liquid phase was previously recorded at the same nucleation site. Gas bubbles in both systems grew to span one ore more pore bodies before mobilization. Liquid viscosity affected the ease with which gas bubbles coalesced. More viscous solutions result in slower rates of coalescence. The transport of solid particles on gas-liquid interfaces was also observed.
Energy Technology Data Exchange (ETDEWEB)
Tsunashima, Katsuhiko, E-mail: tsunashima@wakayama-nct.ac.j [Department of Materials Science, Wakayama National College of Technology, 77 Noshima, Nada-cho, Gobo, Wakayama 644-0023 (Japan); Ono, Yasushi [Center for Basic Research and Development in Natural Sciences, Instrumental Analysis Laboratory, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Sugiya, Masashi [Nippon Chemical Industrial Co., Ltd., 9-11-1 Kameido, Koto-ku, Tokyo 136-8515 (Japan)
2011-04-15
Research highlights: The unsaturated phosphonium ionic liquids showed lower melting point than those of the corresponding saturated phosphonium ionic liquids. The unsaturated phosphonium ionic liquids exhibited high thermal stability when compared to the corresponding saturated phosphonium ionic liquids. The unsaturated phosphonium ionic liquids were lower viscous and higher conductive than the corresponding saturated phosphonium ionic liquids. The unsaturated phosphonium ionic liquids exhibited high cathodic stability as much as the corresponding saturated phosphonium ionic liquids. Iithium redox reaction was observed in the unsaturated phosphonium ionic liquids, which means the possibility to use for lithium battery electrolytes. - Abstract: Physical and electrochemical characterizations of novel two ionic liquids based on quaternary phosphonium cations containing an unsaturated carbon-carbon bond (triethyl(4-pentenyl)phosphonium and allyltributylphosphonium cations) are presented in this report. It was found that both unsaturated phosphonium cations gave low-melting salts in combination with a bis(trifluoromethylsulfonyl)amide anion. The thermogravimetric analysis suggested that the unsaturated phosphonium ionic liquids showed higher thermal stability than those of the corresponding saturated phosphonium ILs. The unsaturated phosphonium ionic liquids also exhibited relatively low viscosity and high conductivities when compared to those of the corresponding saturated phosphonium ionic liquids. These results indicate an improving effect of introducing a carbon-carbon double bond into the phosphonium cations on both the thermal stability and the transport property. The voltammetric measurements suggested that the triethyl(4-pentenyl)phosphonium-based ionic liquid showed a high cathodic stability, enabling the deposition and dissolution of metallic lithium in the phosphonium ionic liquid system.
Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets
Directory of Open Access Journals (Sweden)
B. J. Murray
2008-09-01
Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous in atmospheric aerosol. It is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggests citric acid solution droplets become ultra-viscous and form glassy solids under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and nucleation is negligible in glassy droplets; this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous and glassy solution droplets for ice cloud formation and supersaturations in the TTL are discussed.
Guz, A. N.; Zhuk, A. P.; Bagno, A. M.
2016-09-01
The results of linearization of the basic equations describing a compressible viscous fluid in which low-amplitude oscillations occur or solids move or that interacts with elastic bodies in which small perturbations propagate are discussed. The general solutions of the linearized equations are presented. The results of studying wave processes in hydroelastic systems using the three-dimensional linearized theory of finite deformations and theory of compressible viscous fluid are discussed. The results of studying the propagation of acoustic waves of various types in waveguides with plane and circular cylindrical interfaces between elastic and liquid media and the influence of large (finite) initial deformations, viscosity and compressibility of the fluid on acoustic waves are presented. Studies of the motion of objects in compressible ideal and viscous fluids under the action of radiation forces due to the acoustic field are reviewed. The emphasis is placed on the studies that use a method involving the solution of hydrodynamic problems for a compressible fluid with solid particles and the evaluation of the forces acting on these particles. The radiation force is determined as the constant component of the hydrodynamic force. The numerical results are presented in the form of plots, which are then analyzed
Xu, Xiaoyang; Deng, Xiao-Long
2016-04-01
In this paper, an improved weakly compressible smoothed particle hydrodynamics (SPH) method is proposed to simulate transient free surface flows of viscous and viscoelastic fluids. The improved SPH algorithm includes the implementation of (i) the mixed symmetric correction of kernel gradient to improve the accuracy and stability of traditional SPH method and (ii) the Rusanov flux in the continuity equation for improving the computation of pressure distributions in the dynamics of liquids. To assess the effectiveness of the improved SPH algorithm, a number of numerical examples including the stretching of an initially circular water drop, dam breaking flow against a vertical wall, the impact of viscous and viscoelastic fluid drop with a rigid wall, and the extrudate swell of viscoelastic fluid have been presented and compared with available numerical and experimental data in literature. The convergent behavior of the improved SPH algorithm has also been studied by using different number of particles. All numerical results demonstrate that the improved SPH algorithm proposed here is capable of modeling free surface flows of viscous and viscoelastic fluids accurately and stably, and even more important, also computing an accurate and little oscillatory pressure field.
Measurement of viscous flow velocity and flow visualization using two magnetic resonance imagers
Boiko, A. V.; Akulov, A. E.; Chupakhin, A. P.; Cherevko, A. A.; Denisenko, N. S.; Savelov, A. A.; Stankevich, Yu. A.; Khe, A. K.; Yanchenko, A. A.; Tulupov, A. A.
2017-03-01
The accuracies of measuring the velocity field using clinical and research magnetic resonance imagers are compared. The flow velocity of a fluid simulating blood in a carotid artery model connected to a programmable pump was measured. Using phase-contrast magnetic resonance tomography, the velocity distributions in the carotid artery model were obtained and compared with the analytical solution for viscous liquid flow in a cylindrical tube (Poiseuille flow). It is found that the accuracy of the velocity measurement does not depend on the field induction and spatial resolution of the imagers.
Drift due to viscous vortex rings
Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc
2016-11-01
Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.
Experimental study of highly viscous impinging jets
Energy Technology Data Exchange (ETDEWEB)
Gomon, M. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering
1998-12-01
The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established.
Agglomeration multigrid for viscous turbulent flows
Mavriplis, D. J.; Venkatakrishnan, V.
1994-01-01
Agglomeration multigrid, which has been demonstrated as an efficient and automatic technique for the solution of the Euler equations on unstructured meshes, is extended to viscous turbulent flows. For diffusion terms, coarse grid discretizations are not possible, and more accurate grid transfer operators are required as well. A Galerkin coarse grid operator construction and an implicit prolongation operator are proposed. Their suitability is evaluated by examining their effect on the solution of Laplace's equation. The resulting strategy is employed to solve the Reynolds-averaged Navier-Stokes equations for aerodynamic flows. Convergence rates comparable to those obtained by a previously developed non-nested mesh multigrid approach are demonstrated, and suggestions for further improvements are given.
Nonlinear roll damping of a barge with and without liquid cargo in spherical tanks
Directory of Open Access Journals (Sweden)
Wenhua Zhao
2016-01-01
Full Text Available Damping plays a significant role on the maximum amplitude of a vessel's roll motion, in particular near the resonant frequency. It is a common practice to predict roll damping using a linear radiation–diffraction code and add that to a linearized viscous damping component, which can be obtained through empirical, semi-empirical equations or free decay tests in calm water. However, it is evident that the viscous roll damping is nonlinear with roll velocity and amplitude. Nonlinear liquid cargo motions inside cargo tanks also contribute to roll damping, which when ignored impedes the accurate prediction of maximum roll motions. In this study, a series of free decay model tests is conducted on a barge-like vessel with two spherical tanks, which allows a better understanding of the nonlinear roll damping components considering the effects of the liquid cargo motion. To examine the effects of the cargo motion on the damping levels, a nonlinear model is adopted to calculate the damping coefficients. The liquid cargo motion is observed to affect both the linear and the quadratic components of the roll damping. The flow memory effect on the roll damping is also studied. The nonlinear damping coefficients of the vessel with liquid cargo motions in spherical tanks are obtained, which are expected to contribute in configurations involving spherical tanks.
Viscous Flow over Nonlinearly Stretching Sheet with Effects of Viscous Dissipation
Directory of Open Access Journals (Sweden)
Javad Alinejad
2012-01-01
Full Text Available The flow and heat transfer characteristics of incompressible viscous flow over a nonlinearly stretching sheet with the presence of viscous dissipation is investigated numerically. The similarity transformation reduces the time-independent boundary layer equations for momentum and thermal energy into a set of coupled ordinary differential equations. The obtained equations, including nonlinear equation for the velocity field and differential equation by variable coefficient for the temperature field , are solved numerically by using the fourth order of Runge-Kutta integration scheme accompanied by shooting technique with Newton-Raphson iteration method. The effect of various values of Prandtl number, Eckert number and nonlinear stretching parameter are studied. The results presented graphically show some behaviors such as decrease in dimensionless temperature due to increase in Pr number, and curve relocations are observed when heat dissipation is considered.
Dey, Mohar; Bandyopadhyay, Dipankar; Sharma, Ashutosh; Qian, Shizhi; Joo, Sang Woo
2012-10-01
We explore the electric-field-induced interfacial instabilities of a trilayer composed of a thin elastic film confined between two viscous layers. A linear stability analysis (LSA) is performed to uncover the growth rate and length scale of the different unstable modes. Application of a normal external electric field on such a configuration can deform the two coupled elastic-viscous interfaces either by an in-phase bending or an antiphase squeezing mode. The bending mode has a long-wave nature, and is present even at a vanishingly small destabilizing field. In contrast, the squeezing mode has finite wave-number characteristics and originates only beyond a threshold strength of the electric field. This is in contrast to the instabilities of the viscous films with multiple interfaces where both modes are found to possess long-wave characteristics. The elastic film is unstable by bending mode when the stabilizing forces due to the in-plane curvature and the elastic stiffness are strong and the destabilizing electric field is relatively weak. In comparison, as the electric field increases, a subdominant squeezing mode can also appear beyond a threshold destabilizing field. A dominant squeezing mode is observed when the destabilizing field is significantly strong and the elastic films are relatively softer with lower elastic modulus. In the absence of liquid layers, a free elastic film is also found to be unstable by long-wave bending and finite wave-number squeezing modes. The LSA asymptotically recovers the results obtained by the previous formulations where the membrane bending elasticity is approximately incorporated as a correction term in the normal stress boundary condition. Interestingly, the presence of a very weak stabilizing influence due to a smaller interfacial tension at the elastic-viscous interfaces opens up the possibility of fabricating submicron patterns exploiting the instabilities of a trilayer.
Synergetic Fluid Mixing from Viscous Fingering and Alternating Injection
Jha, B.; Cueto-Felgueroso, L.; Juanes, R.
2013-12-01
We study mixing of two fluids of different viscosity in a microfluidic channel or porous medium. In recent work, we suggested that miscible viscous fingering--a hydrodynamic instability that takes place when a less viscous fluid displaces a more viscous fluid--can enhance mixing in Darcy flows, such as flows in Hele-Shaw cells or porous media [1]. Enhanced mixing due to viscous fingering emerges from the velocity disorder and the additional interfacial area created between the two fluids as a result of the hydrodynamic instability. Here, we show that the synergetic action of alternating injection and viscous fingering leads to a dramatic increase in mixing efficiency at high Péclet numbers. Based on observations from high-resolution simulations, we develop a theoretical model of mixing efficiency that combines a hyperbolic mixing model of the channelized region ahead, and a mixing-dissipation model of the pseudo-steady region behind. Our macroscopic model quantitatively reproduces the evolution of the average degree of mixing along the flow direction, and can be used as a design tool to optimize mixing from viscous fingering in a microfluidic channel. [1] B. Jha, L. Cueto-Felgueroso and R. Juanes, Fluid mixing from viscous fingering, Physical Review Letters, 106, 194502 (2011).
Elemental and cooperative diffusion in a liquid, supercooled liquid and glass resolved
Cassar, Daniel R.; Lancelotti, Ricardo F.; Nuernberg, Rafael; Nascimento, Marcio L. F.; Rodrigues, Alisson M.; Diz, Luiza T.; Zanotto, Edgar D.
2017-07-01
The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic processes are still unknown. The main objective of this work is to shed some light on this mystery, advancing the knowledge on this phenomenon. For that matter, we measured the crystal growth rates, the viscosity, and lead diffusivities in PbSiO3 liquid and glass in a wide temperature range. We compared our measured values with published data covering 16 orders of magnitude. We suggest that above a certain temperature range Td (1.2Tg-1.3Tg), crystal growth and viscous flow are controlled by the diffusion of silicon and lead. Below this temperature, crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. Therefore, Td marks the temperature where decoupling between the (measured) cationic diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates occurs. We reasonably propose that the nature or size of the diffusional entities controlling viscous flow and crystal growth below Td is quite different; the slowest is the one controlling viscous flow, but both processes require cooperative movements of some larger structural units rather than jumps of only one or a few isolated atoms.
Directory of Open Access Journals (Sweden)
Sushila
2013-09-01
Full Text Available In this paper, we present an efficient analytical approach based on new homotopy perturbation sumudu transform method (HPSTM to investigate the magnetohydrodynamics (MHD viscous flow due to a stretching sheet. The viscous fluid is electrically conducting in the presence of magnetic field and the induced magnetic field is neglected for small magnetic Reynolds number. Finally, some numerical comparisons among the new HPSTM, the homotopy perturbation method and the exact solution have been made. The numerical solutions obtained by the proposed method show that the approach is easy to implement and computationally very attractive.
Computational model for speed of efflux in liquids | Ikata | Journal of ...
African Journals Online (AJOL)
We have looked at the efflux of a viscous liquid from an orifice. Assuming the steady flow of a Newtonian fluid, a model for the energy loss due to viscous shearing stress is derived, and a first-order non-linear ordinary differential equation of second degree is obtained for the speed of efflux. Numerically, the equation is ...
Extracting highly-viscous oils and natural bitumens
Energy Technology Data Exchange (ETDEWEB)
Starshov, M.I.; Gazizullim, R.G.; Starshov, I.M.
1980-01-01
Data are given on extracting highly-viscous oils and natural bitumens in a screw extractor using organic solvents and various aqueous solutions. The aromatic and halogenic-hydrocarbon solutions are recovered up to 85% by weight, while the gasoline ''Galosha'' is recovered from highly-viscous oils and natural bitumens up to 78.5% by mass. By boiling various aqueous solutions, it is possible to recover 30-80% of the mass of highly-viscous oils and natural bitumens from the potential concentration in rock.
Rolling stones: The motion of a sphere down an inclined plane coated with a thin liquid film
Bico, J.; Ashmore-Chakrabarty, J.; McKinley, G. H.; Stone, H. A.
2009-08-01
A spherical bead deposited on a smooth tilted dry plane wall rolls down the slope under the uniform acceleration of gravity. We describe an analogous experiment conducted using a plane wall that is coated with a thin layer (of order 50-100 μm) of a viscous liquid. The steady motion of the sphere under gravity involves a combination of rotation and sliding. We examine the dependence of the experimentally observed steady translational and rotational speeds on the physical parameters in the system. In particular, the interplay between viscous forces and interfacial forces leads to nontrivial exponents for the scaling of the speeds with the characteristics of the sphere and the viscous liquid. The overhang situation, in which the sphere rolls down the underside of an inclined lubricated plane, is also examined. In this case, the steady motion is still observed for a certain range of angles and bead sizes; that is, the sphere does not always detach from the surface. The adhesive force arises dynamically from the motion of the sphere and can exceed classical quasistatic capillary forces. Such a force should also play a role in other problems of lubrication mechanics such as humid granular flows.
MHD Flow and Heat Transfer Analysis in the Wire Coating Process Using Elastic-Viscous
Directory of Open Access Journals (Sweden)
Zeeshan Khan
2017-01-01
Full Text Available The most important plastic resins used for wire coating are polyvinyl chloride (PVC, nylon, polysulfone, and low-/high-density polyethylene (LDPE/HDPE. In this article, the coating process is performed using elastic-viscous fluid as a coating material for wire coating in a pressure type coating die. The elastic-viscous fluid is electrically conducted in the presence of an applied magnetic field. The governing non-linear equations are modeled and then solved analytically by utilizing an Adomian decomposition method (ADM. The convergence of the series solution is established. The results are also verified by Optimal Homotopy Asymptotic Method (OHAM. The effect of different emerging parameters such as non-Newtonian parameters α and β, magnetic parameter Mand the Brinkman number Br on solutions (velocity and temperature profiles are discussed through several graphs. Additionally, the current results are compared with published work already available.
Influence of free surface, unsteadiness and viscous effects on oar blade hydrodynamic loads.
Leroyer, Alban; Barré, Sophie; Kobus, Jean-Michel; Visonneau, Michel
2010-10-01
Flow around a rowing blade is a very complex phenomenon, involving unsteady three-dimensional flow with violent motion of the free surface. However, in the literature, forces acting on blades are modelled using extreme and dubious simplifications. The aim of the present study was to evaluate the influence of free surface and unsteadiness (two physical characteristics that are commonly neglected when modelling loads on blades) as well as viscous effects. In fact, quasi-static approaches are often used, with no influence of the free surface effects. To conduct this study, computational fluid dynamics is used, supported by experimental results performed with a dedicated device reproducing a simplified rowing stroke in the towing tank. Comparisons show that both free surface flow and unsteadiness must be considered to capture the whole physics of the phenomenon accurately. In contrast, the viscous effects have a very limited influence.
Nonlinear waves in bipolar complex viscous astroclouds
Karmakar, P. K.; Haloi, A.
2017-05-01
A theoretical evolutionary model to analyze the dynamics of strongly nonlinear waves in inhomogeneous complex astrophysical viscous clouds on the gravito-electrostatic scales of space and time is procedurally set up. It compositionally consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neutral hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method reduces the inter-coupled structure equations into a pair of intermixed forced Korteweg-de Vries-Burgers (f-KdVB) equations. The force-terms are self-consistently sourced by inhomogeneous gravito-electrostatic interplay. A numerical illustrative shape-analysis based on judicious astronomical parametric platform shows the electrostatic waves evolving as compressive dispersive shock-like eigen-modes. A unique transition from quasi-monotonic to non-monotonic oscillatory compressive shock-like patterns is found to exist. In contrast, the self-gravitational and effective perturbations grow purely as non-monotonic compressive oscillatory shock-like structures with no such transitory features. It is seen that the referral frame velocity acts as amplitude-reducing agent (stabilizing source) for the electrostatic fluctuations solely. A comparison in the prognostic light of various earlier satellite-based observations and in-situ measurements is presented. The paper ends up with synoptic highlights on the main implications and non-trivial applications in the interstellar space and cosmic plasma environments leading to bounded structure formation.
Viscous fingering with partially miscible fluids
Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben
2017-10-01
Viscous fingering—the fluid-mechanical instability that takes place when a low-viscosity fluid displaces a high-viscosity fluid—has traditionally been studied under either fully miscible or fully immiscible fluid systems. Here we study the impact of partial miscibility (a common occurrence in practice) on the fingering dynamics. Through a careful design of the thermodynamic free energy of a binary mixture, we develop a phase-field model of fluid-fluid displacements in a Hele-Shaw cell for the general case in which the two fluids have limited (but nonzero) solubility into one another. We show, by means of high-resolution numerical simulations, that partial miscibility exerts a powerful control on the degree of fingering: fluid dissolution hinders fingering while fluid exsolution enhances fingering. We also show that, as a result of the interplay between compositional exchange and the hydrodynamic pattern-forming process, stronger fingering promotes the system to approach thermodynamic equilibrium more quickly.
Spring pendulum with dry and viscous damping
Butikov, Eugene I.
2015-01-01
Free and forced oscillations of a torsion spring pendulum damped by viscous and dry friction are investigated analytically and with the help of numerical simulations. A simplified mathematical model is assumed (Coulomb law) which nevertheless can explain many peculiarities in behavior of various oscillatory systems with dry friction. The amplitude of free oscillations diminishes under dry friction linearly, and the motion stops after a final number of cycles. The amplitude of sinusoidally driven pendulum with dry friction grows at resonance without limit if the threshold is exceeded. At strong enough non-resonant sinusoidal forcing dry friction causes transients that typically lead to definite limit cycles - periodic steady-state regimes of symmetric non-sticking forced oscillations which are independent of initial conditions. However, at the subharmonic sinusoidal forcing interesting peculiarities of the steady-state response are revealed such as multiple coexisting regimes of asymmetric oscillations that depend on initial conditions. Under certain conditions simple dry friction pendulum shows complicated stick-slip motions and chaos.
Large scale structure from viscous dark matter
Blas, Diego; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim
2015-01-01
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \\, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to varia...
Development of a Model Foamy Viscous Fluid
Directory of Open Access Journals (Sweden)
Vial C.
2013-08-01
Full Text Available The objective is to develop a model viscous foamy fluid, i.e. below the very wet limit, the rheological and stability properties of which can be tuned. First, the method used for the preparation of foamy fluids is detailed, including process and formulation. Then, experimental results highlight that stable foamy fluids with a monomodal bubble size distribution can be prepared with a void fraction between 25% and 50% (v/v. Their viscoelastic properties under flow and low-strain oscillatory conditions are shown to result from the interplay between the formulation of the continuous phase, void fraction and bubble size. Their apparent viscosity can be described using the Cross equation and zero-shear Newtonian viscosity may be predicted by a Mooney equation up to a void fraction about 40%. The Cox-Merz and the Laun’s rules apply when the capillary number Ca is lower than 0.1. The upper limit of the zero-shear plateau region decreases when void fraction increases or bubble size decreases. In the shear-thinning region, shear stress varies with Ca1/2, as in wet foams with immobile surfaces. Finally, foamy fluids can be sheared up to Ca about 0.1 without impairing their microstructure. Their stability at rest achieves several hours and increases with void fraction due to compact packing constraints. These constitute, therefore, versatile model fluids to investigate the behaviour of foamy fluids below the very wet limit in process conditions.
Viscous theory of surface noise interaction phenomena
Yates, J. E.
1980-01-01
A viscous linear surface noise interaction problem is formulated that includes noise production by an oscillating surface, turbulent or vortical interaction with a surface, and scattering of sound by a surface. The importance of viscosity in establishing uniqueness of solution and partitioning of energy into acoustic and vortical modes is discussed. The results of inviscid two dimensional airfoil theory are used to examine the interactive noise problem in the limit of high reduced frequency and small Helmholtz number. It is shown that in the case of vortex interaction with a surface, the noise produced with the full Kutta condition is 3 dB less than the no Kutta condition result. The results of a study of an airfoil oscillating in a medium at rest are discussed. It is concluded that viscosity can be a controlling factor in analyses and experiments of surface noise interaction phenomena and that the effect of edge bluntness as well as viscosity must be included in the problem formulation to correctly calculate the interactive noise.
Control of viscous fingering by nanoparticles
Sabet, Nasser; Hassanzadeh, Hassan; Abedi, Jalal
2017-12-01
A substantial viscosity increase by the addition of a low dose of nanoparticles to the base fluids can well influence the dynamics of viscous fingering. There is a lack of detailed theoretical studies that address the effect of the presence of nanoparticles on unstable miscible displacements. In this study, the impact of nonreactive nanoparticle presence on the stability and subsequent mixing of an originally unstable binary system is examined using linear stability analysis (LSA) and pseudospectral-based direct numerical simulations (DNS). We have parametrized the role of both nondepositing and depositing nanoparticles on the stability of miscible displacements using the developed static and dynamic parametric analyses. Our results show that nanoparticles have the potential to weaken the instabilities of an originally unstable system. Our LSA and DNS results also reveal that nondepositing nanoparticles can be used to fully stabilize an originally unstable front while depositing particles may act as temporary stabilizers whose influence diminishes in the course of time. In addition, we explain the existing inconsistencies concerning the effect of the nanoparticle diffusion coefficient on the dynamics of the system. This study provides a basis for further research on the application of nanoparticles for control of viscosity-driven instabilities.
Al-Yarubi, Qahtan; Lucas, Gary
2008-01-01
In certain older oil wells in the Middle East, the produced fluid is predominantly natural gas which flows at very high rates (e.g. 50,000). Smaller quantities of crude oil (e.g. 50) and water (950) are also produced. Given the relatively much higher flow rate of the gas the flow regime is annular with most of the liquid flowing in a thin film on the pipe wall. The annular flow regime makes measurement of the total liquid flow rate difficult. It is even more difficult to measure the individua...
A-Yarubi, Qahtan; Lucas, Gary
2009-01-01
In certain older oil wells in the Middle East, the produced fluid is predominantly natural gas which flows at very high rates (e.g.\\ud 50,000 m3 / day ). Smaller quantities of crude oil (e.g. 50m3 / day ) and water (950m3 / day ) are also produced. Given the relatively much higher flow rate of the gas the flow regime is annular with most of the liquid flowing in a thin film on the pipe wall. The annular flow regime makes measurement of the total liquid flow rate difficult. It is even more dif...
Forces exerted by a flowing foam : viscous, elastic and plastic behaviours
Graner, Francois
2005-11-01
We have built a 1 m long, 10 cm wide foam channel, in which we produce 2D foam flows in the range 0.05 - 50 mm/s. In the middle of the channel, we place an obstacle: circle, square, cogwheel, ellipse or airfoil. We perform measurements of the drag, lift and torque exerted by the flowing foam on the obstacle. We observe both a dissipative contribution characteristic of a liquid, and a yielding behaviour typical of a solid. We simultaneously image the foam. In each region of the flow, we measure locally the pressure field, as well as the velocity field, as for a liquid, but also elastic deformation and plastic rearrangements. We discuss how to link the local and global descriptions, and how beyond a few bubble diameters the foam behaves as a continuous material. However, its triple viscous, elastic, plastic behaviour is complex, and most features we observe are not yet explained by current models.
Analysis of hybrid viscous damper by real time hybrid simulations
DEFF Research Database (Denmark)
Brodersen, Mark Laier; Ou, Ge; Høgsberg, Jan Becker
2016-01-01
Results from real time hybrid simulations are compared to full numerical simulations for a hybrid viscous damper, composed of a viscous dashpot in series with an active actuator and a load cell. By controlling the actuator displacement via filtered integral force feedback the damping performance...... of the hybrid viscous damper is improved, while for pure integral force feedback the damper stroke is instead increased. In the real time hybrid simulations viscous damping is emulated by a bang-bang controlled Magneto-Rheological (MR) damper. The controller activates high-frequency modes and generates drift...... in the actuator displacement, and only a fraction of the measured damper force can therefore be used as input to the investigated integral force feedback in the real time hybrid simulations....
Vortex-induced buckling of a viscous drop impacting a pool
Li, Erqiang
2017-07-20
We study the intricate buckling patterns which can form when a viscous drop impacts a much lower viscosity miscible pool. The drop enters the pool by its impact inertia, flattens, and sinks by its own weight while stretching into a hemispheric bowl. Upward motion along the outer bottom surface of this bowl produces a vortical boundary layer which separates along its top and rolls up into a vortex ring. The vorticity is therefore produced in a fundamentally different way than for a drop impacting a pool of the same liquid. The vortex ring subsequently advects into the bowl, thereby stretching the drop liquid into ever thinner sheets, reaching the micron level. The rotating motion around the vortex pulls in folds to form multiple windings of double-walled toroidal viscous sheets. The axisymmetric velocity field thereby stretches the drop liquid into progressively finer sheets, which are susceptible to both axial and azimuthal compression-induced buckling. The azimuthal buckling of the sheets tends to occur on the inner side of the vortex ring, while their folds can be stretched and straightened on the outside edge. We characterize the total stretching from high-speed video imaging and use particle image velocimetry to track the formation and evolution of the vortex ring. The total interfacial area between the drop and the pool liquid can grow over 40-fold during the first 50 ms after impact. Increasing pool viscosity shows entrapment of a large bubble on top of the drop, while lowering the drop viscosity produces intricate buckled shapes, appearing at the earliest stage and being promoted by the crater motions. We also present an image collage of the most intriguing and convoluted structures observed. Finally, a simple point-vortex model reproduces some features from the experiments and shows variable stretching along the wrapping sheets.
Vortex-induced buckling of a viscous drop impacting a pool
Li, Er Qiang; Beilharz, Daniel; Thoroddsen, Sigurdur T.
2017-07-01
We study the intricate buckling patterns which can form when a viscous drop impacts a much lower viscosity miscible pool. The drop enters the pool by its impact inertia, flattens, and sinks by its own weight while stretching into a hemispheric bowl. Upward motion along the outer bottom surface of this bowl produces a vortical boundary layer which separates along its top and rolls up into a vortex ring. The vorticity is therefore produced in a fundamentally different way than for a drop impacting a pool of the same liquid. The vortex ring subsequently advects into the bowl, thereby stretching the drop liquid into ever thinner sheets, reaching the micron level. The rotating motion around the vortex pulls in folds to form multiple windings of double-walled toroidal viscous sheets. The axisymmetric velocity field thereby stretches the drop liquid into progressively finer sheets, which are susceptible to both axial and azimuthal compression-induced buckling. The azimuthal buckling of the sheets tends to occur on the inner side of the vortex ring, while their folds can be stretched and straightened on the outside edge. We characterize the total stretching from high-speed video imaging and use particle image velocimetry to track the formation and evolution of the vortex ring. The total interfacial area between the drop and the pool liquid can grow over 40-fold during the first 50 ms after impact. Increasing pool viscosity shows entrapment of a large bubble on top of the drop, while lowering the drop viscosity produces intricate buckled shapes, appearing at the earliest stage and being promoted by the crater motions. We also present an image collage of the most intriguing and convoluted structures observed. Finally, a simple point-vortex model reproduces some features from the experiments and shows variable stretching along the wrapping sheets.
Viscous damping of toroidal angular momentum in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Stacey, W. M. [Georgia Tech Fusion Research Center, Atlanta, Georgia 30332 (United States)
2014-09-15
The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.
Viscous-Inviscid Coupling Methods for Advanced Marine Propeller Applications
Greve, Martin; Wöckner-Kluwe, Katja; Abdel-Maksoud, Moustafa; Rung, Thomas
2012-01-01
The paper reports the development of coupling strategies between an inviscid direct panel method and a viscous RANS method and their application to complex propeller ows. The work is motivated by the prohibitive computational cost associated to unsteady viscous flow simulations using geometrically resolved propellers to analyse the dynamics of ships in seaways. The present effort aims to combine the advantages of the two baseline methods in order to reduce the numerical effort without comprom...
Some Inhomogeneous Magnetized Viscous Fluid Cosmological Models with Varying $\\Lambda$
Pradhan,Anirudh; Srivastav, Sudhir Kumar; Jotania, Kanti R.
2003-01-01
Some cylindrically symmetric inhomogeneous viscous fluid cosmological models with electro-magnetic field are obtained. To get a solution a supplementary condition between metric potentials is used. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of mass density. Without assumin g any {\\it ad hoc} law, we obtain a cosmological constant as a decreasing function of time. The behaviour of the electro-magnetic field tensor together with some p hysical aspects of t...
A truncation error injection approach to viscous-inviscid interaction
Goble, B. D.; Fung, K.-Y.
1987-01-01
An approach to viscous-inviscid interaction which is based on truncation error injection is presented in the context of solving flow over an airfoil. A two-dimensional interpolation scheme is used to restrict the fine grid solutions to the global coarse grid. Details on the current implementation of the approach are given, and the boundary conditions being used are discussed. Inviscid results from a NACA0012 airfoil test case and the viscous results are presented.
Viscous Dissipation and Criticality of Subducting Slabs
Riedel, Mike; Karato, Shun; Yuen, Dave
2016-04-01
Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota
The role of deformable structured surfaces on viscous forces during peeling
Dhong, Charles; Frechette, Joelle
It is known that tree frogs are able to adhere well in flooded environments, presumably due to their interconnected network of drainage channels formed by hexagonal epithelial cells in their toe pads. To investigate this effect, a patterned surface of hexagonally arranged cylindrical posts was brought close to a stationary substrate in a submerged, viscous fluid via a normal load, and then peeled off to measure a retraction force. Because these structured surfaces were made from PDMS, they are able to deform throughout the process. We find that these deformable surfaces further reduce the work required to peel apart the two surfaces, even when compared to previous studies in the same system with rigid structures, and we isolated these contributions independent of conservative forces. We then conducted experiments to compare the effect of deformation on the viscous forces and conservative forces. We find that there are several regimes where deformation either increases or decreases the retraction force since we have found that elasticity decreases retraction forces when considering viscous contributions but is also known to increase adhesion in the context of conservative forces. Office of Naval Research, National Science Foundation, Hopkins Extreme Materials Institute.
Huang, Henry C.
2009-12-01
After nearly a decade of application and investigation, a motion amplification device with viscous dampers for energy dissipation has been recognized as an effective solution to mitigate wind or seismic excitation, especially for stiff structural systems. As a result of compensation of amplified motion, it has been proved that the efficiency of viscous damper largely depends on the motion amplification device configuration, particularly for device stiffness. In this paper, a “scissor-jack” type of motion amplification device, called a “toggle brace damper” system, is studied. It is demonstrated that the efficiency of such a device reflected by its amplification factor is not merely a function of its geometric configuration, but is highly dependent on the support elements’ stiffness as well, similar to the mechanism of a leverage arm. Accordingly, a mathematical model in terms of complex modulus of the viscous damper with consideration of the support brace’s stiffness is established. The results indicate that the efficiency of the motion amplification device with viscous dampers significantly depends on the stiffness of the support elements. Other parameters, such as toggle brace configuration and damping values of the viscous damper, are studied and compared. As an application example, numerical analyses are conducted to study the dynamic performance of a 39-story office tower installed with toggle brace dampers constructed on soft soil in a reclaimed area, under a combined effect of the vortex shedding of an adjacent existing 52-story building and earthquakes. The results show that viscous dampers with a motion amplification system using a properly designed toggle brace device proved to be an effective solution to alleviate the external excitations.
Slip in viscous contact-line movement
van Lengerich, Henrik; Steen, Paul; Breuer, Kenneth
2011-11-01
The typical continuum fluid dynamics formulation cannot be used to model the spreading of a liquid on a solid because a stress singularity prevents contact-line motion. It is well known that this situation can be remedied by introducing a slip. We perform Stokes-flow simulations with slip and compare these with experiments. In the experiment, liquid (squalane) is forced through two parallel sapphire plates (roughness 0.6nm), and the meniscus shape and its speed are measured. The slip-length for this liquid/solid pair has been measured previously in an independent experiment absent of contact lines (T. Schmatko et. al. PRL 94, 244501). The same geometry is used in a boundary integral method simulation, accurate to within a few molecular diameters in the vicinity of the contact-line. The slip-length in the simulations can be varied such that the meniscus shape matches the experiment. Preliminary results suggest this slip-length is an order of magnitude lower than that reported by Schmatko. Now at the University of Minnesota TC
Cavitation structures formed during the collision of a sphere with an ultra-viscous wetted surface
Mansoor, Mohammad M.
2016-05-05
We investigate the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having a kinematic viscosity of up to (Formula presented.) cSt. We show the existence of shear-stress-induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films using a synchronized dual-view high-speed imaging system. For the experimental parameters employed, liquids having viscoelastic properties of (Formula presented.) are shown to enable sphere rebound without any prior contact with the solid wall. Cavitation by depressurization (i.e. during rebound) in such non-contact cases is observed to onset after a noticeable delay from when the minimum gap distance is reached. Also, the cavities created originate from remnant bubbles, being the remains of the primary bubble entrapment formed by the lubrication pressure of the air during film entry. Cases where physical contact occurs (contact cases) in 10 000 cSt (Formula presented.) cSt films produce cavities attached to the base wall, which extend into an hourglass shape. In contrast, strikingly different structures occur in the most viscous liquids due to the disproportionality in radial expansion and longitudinal extension along the cavity length. Horizontal shear rates calculated using particle image velocimetry (PIV) measurements show the apparent fluid viscosity to vary substantially as the sphere approaches and rebounds away from the base wall. A theoretical model based on the lubrication assumption is solved for the squeeze flow in the regime identified for shear-induced cavity events, to investigate the criterion for cavity inception in further detail. © 2016 Cambridge University Press
Ota, Narumi; Katsura, Masashi; Ando, Kennosuke; Takao, Tomoaki; Shintomi, Takakazu; Makida, Yasuhiro; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Tsujigami, Hiroshi; Fujikawa, Shizuichi; Semba, Toshiaki; Iwaki, Katsuya
To promote renewable energy sources, we proposed a new system called the Advanced Superconducting Power Conditioning System (ASPCS), which consists of Superconducting Magnetic Energy Storage-system (SMES), Electrolyzer, and Fuel Cell, and is also combined with a liquid hydrogen station for vehicles. The SMES plays a role to compensate the fast fluctuations generated by the renewable energies. In case of the ASPCS with a capacity of 5 MW, we designed the 50 MJ-class SMES composed of 4 solenoid coils. The winding of the solenoid coils is double pancake and a basic coil is 2 m in diameter and 0.5 m in height. Each SMES coil is wound with MgB2 conductor and indirectly cooled at 20 K by liquid hydrogen flowing through a thermo-siphon cooling system. Pure aluminum strips are inserted between the double-pancake coils and the pure aluminum plates gathering the strips lead to liquid hydrogen pipes. This scheme enables the strips and the plates to transfer the heat load in the coils to the cooling pipes and keep the coils at low temperature. On the other hand, we must consider that the strips generate eddy current loss which is strongly affected by a width of the strips. At the same time as the primary study of the SMES coils, we experimented on the thermo-siphon cooling system and investigated the relationship between the heat load and the heat extraction ability of the cooling system. The experiments showed that the cooling system could proficiently function. The estimation of eddy current loss from the particular cooling aluminum strips for the SMES in the ASPCS is reported with the results of the thermo-siphon driving experiment.
Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S
2013-01-01
Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami
Bouncing-to-Merging Transition in Drop Impact on Liquid Film: Role of Liquid Viscosity.
Tang, Xiaoyu; Saha, Abhishek; Law, Chung K; Sun, Chao
2018-02-27
When a drop impacts on a liquid surface, it can either bounce back or merge with the surface. The outcome affects many industrial processes, in which merging is preferred in spray coating to generate a uniform layer and bouncing is desired in internal combustion engines to prevent accumulation of the fuel drop on the wall. Thus, a good understanding of how to control the impact outcome is highly demanded to optimize the performance. For a given liquid, a regime diagram of bouncing and merging outcomes can be mapped in the space of Weber number (ratio of impact inertia and surface tension) versus film thickness. In addition, recognizing that the liquid viscosity is a fundamental fluid property that critically affects the impact outcome through viscous dissipation of the impact momentum, here we investigate liquids with a wide range of viscosity from 0.7 to 100 cSt, to assess its effect on the regime diagram. Results show that while the regime diagram maintains its general structure, the merging regime becomes smaller for more viscous liquids and the retraction merging regime disappears when the viscosity is very high. The viscous effects are modeled and subsequently the mathematical relations for the transition boundaries are proposed which agree well with the experiments. The new expressions account for all the liquid properties and impact conditions, thus providing a powerful tool to predict and manipulate the outcome when a drop impacts on a liquid film.
Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol
Energy Technology Data Exchange (ETDEWEB)
Zaveri, Rahul A. [Atmospheric; Shilling, John E. [Atmospheric; Zelenyuk, Alla [Physical; Liu, Jiumeng [Atmospheric; Bell, David M. [Physical; D’Ambro, Emma L. [Department; Department; Gaston, Cassandra J. [Department; Thornton, Joel A. [Department; Department; Laskin, Alexander [William; Lin, Peng [William; Wilson, Jacqueline [Physical; Easter, Richard C. [Atmospheric; Wang, Jian [Environmental; Bertram, Allan K. [Department; Martin, Scot T. [John; Department; Seinfeld, John H. [Division; Division; Worsnop, Douglas R. [Center
2018-01-09
Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration timescale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. Here we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or -pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles, but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles with shorter diffusion timescales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically-active sizes.
Pioche, Mathieu; Ciocirlan, Mihai; Lépilliez, Vincent; Salmon, Damien; Mais, Laetitia; Guillaud, Olivier; Hervieu, Valérie; Petronio, Marco; Lienhart, Isabelle; Adriano, Jean-Luc; Lafon, Cyril; Ponchon, Thierry
2014-05-01
Long-lasting lifting is a key factor during endoscopic submucosal dissection (ESD) and can be obtained by water-jet injection of saline solution or by injection of viscous macromolecular solutions. Combination of the jet injection and the macromolecular viscous solutions has never been used yet. We assessed the ability of a new water-jet system to inject viscous solutions in direct viewing and in retroflexion. We compared jet injection of saline solution and hyaluronate 0.5 % to perform ESD on ex vivo pig stomachs in order to evaluate the benefits of macromolecular solutions when injected by a jet-injector system. This is a prospective comparative study in pig stomachs. Using the jet injector, four viscous solutions were tested: hydroxyethyl starch, glycerol mix, hyaluronate sodic (0.5 %), and poloxamer mix. Ten ESDs larger than 25 mm (five in direct viewing and five in retroflexion) and one larger than 10 cm were performed with each solution. ESD with hyaluronate jet injection was then compared with ESD with saline jet injection by performing 50 ESDs in each group. A single, minimally-experienced operator conducted all the procedures. All 145 resections were complete, including all marking points with two perforations. Eleven jet ESDs per solution were conducted without any injection issue. In the second part of the study, when compared with saline, significant benefit of hyaluronate was observed on dissection speed (0.80 vs. 1.08 cm(2)/min, p < 0.001). This is the first report on a jet-injector system allowing injection of macromolecular viscous solutions even with retroflexed endoscope. Jet injection of macromolecular solutions can speed up dissection in comparison with saline, and should now be tested on humans.
Hybrid viscous damper with filtered integral force feedback control
DEFF Research Database (Denmark)
Høgsberg, Jan; Brodersen, Mark L.
2016-01-01
In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion is...... force leads velocity the control is stable and yields a significant improvement in damping performance compared to the pure viscous damper.......In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion...
Viscous dark matter growth in (neo-)Newtonian cosmology
Velten, H.; Schwarz, D. J.; Fabris, J. C.; Zimdahl, W.
2013-11-01
We assume cold dark matter to possess a small bulk-viscous pressure which typically attenuates the growth of inhomogeneities. Explicit calculations, based on Eckart’s theory of dissipative processes, reveal that for viscous cold dark matter the usual Newtonian approximation for perturbation scales smaller than the Hubble scale is no longer valid. We advocate the use of a neo-Newtonian approach which consistently incorporates pressure effects into the fluid dynamics and correctly reproduces the general relativistic dynamics. This result is of interest for numerical simulations of nonlinear structure formation involving nonstandard dark-matter fluids. We obtain upper limits on the magnitude of the viscous pressure by requiring that relevant perturbation amplitudes should grow sufficiently to enter the nonlinear stage.
Viscous relaxation of the Moho under large lunar basins
Brown, C. David; Grimm, Robert E.
1993-01-01
Viscously relaxed topography on the Moon is evidence of a period in lunar history of higher internal temperatures and greater surface activity. Previous work has demonstrated the viscous relaxation of the Tranquilitatis basin surface. Profiles of the lunar Moho under nine basins were constructed from an inversion of lunar gravity data. These profiles show a pattern of increasingly subdued relief with age, for which two explanations have been proposed. First, ancient basins may have initially had extreme Moho relief like that of younger basins like Orientale, but, due to higher internal temperatures in early lunar history, this relief viscously relaxed to that observed today. Second, ductile flow in the crust immediately after basin formation resulted in an initially shallow basin and subdued mantle uplift. The intent is to test the first hypothesis.
Viscous heating in E × B type devices
Mlodik, Mikhail; Kolmes, Elijah; Ochs, Ian; Fisch, Nathaniel
2017-10-01
In a variety of cylindrical plasma devices with axial magnetic fields, a radial electric field gives rise to plasma rotation. This E x B rotation also heats the plasma through viscous effects. In the recently proposed wave-driven rotating torus (WDRT), this viscous heating is thought to be manageable in creating, in principle, economical fusion power. Here, we explore viscous heating both in the WDRT and, more generally, in devices where the primary dynamics is governed by the E x B rotation of plasma. In particular, we explore which species are primarily heated, in both cylindrical and toroidal geometry. We discuss the dependence of the heating on a variety of parameters, such as collisionality, speed of rotation, temperature and ion mix. DOE Contract No. DE-AC02-09CH11466.
Numerical Research of the Viscous Effect of the Bilge Keel on the Damping Moment
Directory of Open Access Journals (Sweden)
Deng Rui
2015-09-01
Full Text Available Bilge keels are effective passive devices in mitigating the rolling motion, and the usage of them covers almost all the sea going vessels. This paper focuses on the viscous effect of the bilge keel, ignored the effect of the free surface and the effect of the ship hull, for the general viscous characteristic of the bilge keel. In order to investigate the viscous effect of the bilge keel on the total damping moment, a special 2 dimensional numerical model, which includes a submerged cylinder with and without bilge keels, is designed for the simulation of forced rolling. Three important factors such as bilge keels width, rolling periods, as well as maximal rolling angles are taken into account, and the viscous flow field around the cylinder is simulated by some codes based on the viscous method in different conditions, in which the three factors are coupled. Verification and validation based on the ITTC method are performed for the cylinder without bilge keels in the conditions of different rolling periods and maximal rolling angles. The primary calculation of damping moment induced by the cylinder with 0mm, 4mm, and 10mm width bilge keels shows some interesting results, and a systematic analysis is conducted. The analysis of the damping moment components suggests there is phase difference between the damping moment induced by the cylinder and the bilge keels, and when the bilge keels width reaches a special size, the total damping moment is mitigated. The calculation of the damping moments induced by the cylinder with some larger bilge keels are also performed, and the results suggest that, the damping moment induced by the bilge keels is increased rapidly and becomes the dominant part in the total damping moment while the width of the bilge keels are increased, but the damping moment induced by the cylinder is not changed significantly. Some illustration of the vortices formation and shedding is included, which is the mechanism of the damping
Energy Technology Data Exchange (ETDEWEB)
Ramirez, Rosa E.; Torres-Gonzalez, Luis; Sanchez, Eduardo M. [Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza NL (Mexico). Facultad de Ciencias Quimicas. Lab. de Investigacion del Vidrio], e-mail: info_labiv@yahoo.com
2006-07-01
Ionic liquids are molten salts formed by organic cations as imidazolium, ammonium, pyridinium, picolinium and phosphonium in combination with several inorganic and organic anions. A new systematic series of phosphonium iodides (PI's) with low melting points have been prepared and properly characterized. Ionic conductivity was determined by impedance spectroscopy on molten salts as well as electrolytic solutions prepared by a mixture of PI's with low vapor pressure solvents. The conductivity dependence vs solvent concentration was interpreted in terms of the Fuoss-Krauss ion association theory. The conductivity did increased dramatically when small quantities of iodine were added, this phenomenon is explained in terms of the Grotthus charge transfer mechanism. Finally, several nanocrystalline solar cells were assembled with electrolytic solutions performing an efficiency up to 5.9% under an illuminance of 27 000 lux. (author)
Dust-driven viscous ring-instability in protoplanetary disks
Dullemond, C. P.; Penzlin, A. B. T.
2018-01-01
Protoplanetary disks often appear as multiple concentric rings in dust continuum emission maps and scattered light images. These features are often associated with possible young planets in these disks. Many non-planetary explanations have also been suggested, including snow lines, dead zones and secular gravitational instabilities in the dust. In this paper we suggest another potential origin. The presence of copious amounts of dust tends to strongly reduce the conductivity of the gas, thereby inhibiting the magneto-rotational instability, and thus reducing the turbulence in the disk. From viscous disk theory it is known that a disk tends to increase its surface density in regions where the viscosity (i.e. turbulence) is low. Local maxima in the gas pressure tend to attract dust through radial drift, increasing the dust content even more. We have investigated mathematically if this could potentially lead to a feedback loop in which a perturbation in the dust surface density could perturb the gas surface density, leading to increased dust drift and thus amplification of the dust perturbation and, as a consequence, the gas perturbation. We find that this is indeed possible, even for moderately small dust grain sizes, which drift less efficiently, but which are more likely to affect the gas ionization degree. We speculate that this instability could be triggered by the small dust population initially, and when the local pressure maxima are strong enough, the larger dust grains get trapped and lead to the familiar ring-like shapes. We also discuss the many uncertainties and limitations of this model.
Shallow water equations: viscous solutions and inviscid limit
Chen, Gui-Qiang; Perepelitsa, Mikhail
2012-12-01
We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.
Maximum spreading of liquid drop on various substrates with different wettabilities
Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun
2017-09-01
This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.
Energy Technology Data Exchange (ETDEWEB)
Ding, Michael S.; Li, Qiuyan; Li, Xing; Xu, Wu; Xu, Kang
2017-05-10
Electrolytes of 1 M LiPF_{6} (lithium hexafluorophosphate) and 0.05 M CsPF_{6} (cesium hexafluorophosphate) in EC-PC-EMC (ethylene carbonate-propylene carbonate-ethyl methyl carbonate) solvents of varying solvent compositions were studied for the effects of solvent composition on the lower limit of liquid range, viscosity (as reflected by the glass transition temperature), and electrolytic conductivity. In addition, a ternary phase diagram of EC-PC-EMC was constructed and crystallization temperatures of EC and EMC were calculated to assist the interpretation and understanding of the change of liquid range with solvent composition. A function based on Vogel-Fulcher-Tammann equation was fitted to the conductivity data in their entirety and plotted as conductivity surfaces in solvent composition space for more direct and clear comparisons and discussions. Changes of viscosity and dielectric constant of the solvents with their composition, in relation to those of the solvent components, were found to be underlying many of the processes studied.
(The physics of pattern formation at liquid interfaces)
Energy Technology Data Exchange (ETDEWEB)
1990-01-01
This paper discusses pattern formation at liquid interfaces and interfaces within disordered materials. The particular topics discussed are: a racetrack for competing viscous fingers; an experimental realization of periodic boundary conditions; what sets the length scale for patterns between miscible liquids; the fractal dimension of radial Hele-Shaw patterns; detailed analyses of low-contrast Saffman-Taylor flows; and the wetting/absorption properties of polystyrene spheres in binary liquid mixtures. (LSP)
Hong, Wenjing; Valkenier, Hennie; Mészáros, Gábor; Manrique, David Zsolt; Mishchenko, Artem; Putz, Alexander; García, Pavel Moreno; Lambert, Colin J; Hummelen, Jan C; Wandlowski, Thomas
2011-01-01
π-Conjugation plays an important role in charge transport through single molecular junctions. We describe in this paper the construction of a mechanically controlled break-junction setup (MCBJ) equipped with a highly sensitive log I-V converter in order to measure ultralow conductances of molecular rods trapped between two gold leads. The current resolution of the setup reaches down to 10 fA. We report single-molecule conductance measurements of an anthracene-based linearly conjugated molecule (AC), of an anthraquinone-based cross-conjugated molecule (AQ), and of a dihydroanthracene-based molecule (AH) with a broken conjugation. The quantitative analysis of complementary current-distance and current-voltage measurements revealed details of the influence of π-conjugation on the single-molecule conductance.
Thermodynamic coarsening arrested by viscous fingering in partially miscible binary mixtures
Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben
2016-09-01
We study the evolution of binary mixtures far from equilibrium, and show that the interplay between phase separation and hydrodynamic instability can arrest the Ostwald ripening process characteristic of nonflowing mixtures. We describe a model binary system in a Hele-Shaw cell using a phase-field approach with explicit dependence of both phase fraction and mass concentration. When the viscosity contrast between phases is large (as is the case for gas and liquid phases), an imposed background flow leads to viscous fingering, phase branching, and pinch off. This dynamic flow disorder limits phase growth and arrests thermodynamic coarsening. As a result, the system reaches a regime of statistical steady state in which the binary mixture is permanently driven away from equilibrium.
Hong, Wenjing; Valkenier, Hennie; Meszaros, Gabor; Manrique, David Zsolt; Mishchenko, Artem; Putz, Alexander; Garcia, Pavel Moreno; Lambert, Colin J.; Hummelen, Jan C.; Wandlowski, Thomas
2011-01-01
π-Conjugation plays an important role in charge transport through single molecular junctions. We describe in this paper the construction of a mechanically controlled break-junction setup (MCBJ) equipped with a highly sensitive log I–V converter in order to measure ultralow conductances of molecular
Light Path Model of Fiber Optic Liquid Level Sensor Considering Residual Liquid Film on the Wall
Directory of Open Access Journals (Sweden)
Zhijun Zhang
2015-01-01
Full Text Available The working principle of the refractive-type fiber optic liquid level sensor is analyzed in detail based on the light refraction principle. The optic path models are developed in consideration of common simplification and the residual liquid film on the glass tube wall. The calculating formulae for the model are derived, constraint conditions are obtained, influencing factors are discussed, and the scopes and skills of application are analyzed through instance simulations. The research results are useful in directing the correct usage of the fiber optic liquid level sensor, especially in special cases, such as those involving viscous liquid in the glass tube monitoring.
Directory of Open Access Journals (Sweden)
Sharma Pushkar Raj
2009-01-01
Full Text Available Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.
Helal, M. M.; Abd-El-Malek, M. B.
2005-01-01
The group theoretic method is applied for solving problem of the flow of an elastico-viscous liquid past an infinite flat plate in the presence of a magnetic field normal to the plate. The application of one-parameter transformation group reduces the number of independent variables, by one, and consequently the system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate corresponding conditions. Numerical solution of the velocity field and heat transfer have been obtained. The effect of the magnetic parameter M on velocity field, shear stress, temperature fields and heat transfer has been discussed.
Ryu, Meguya; Takezoe, Hideo; Haba, Osamu; Yonetake, Koichiro; Morikawa, Junko
2015-11-01
We measured the temperature dependences of anisotropic thermal properties, i.e., thermal diffusivity, thermal effusivity, thermal conductivity, and heat capacity per unit volume, of a nematogen 4'-n-pentyloxybiphenyl-4-carbonitrile (5OCB) containing a small amount (0.02 wt. %) of dendritic azobenzene derivatives (azo-dendrimer), using a temperature wave method. The azo-dendrimers spontaneously adsorb on cell surfaces and act as a command surface, i.e., photo-induced planar/homeotropic alignment by ultraviolet/visible light illumination. By using this effect, we demonstrated thermal property changes except for the heat capacity by almost two times within a few tens of seconds. The phenomenon can be applied to a sheet with photo-controllable thermal diffusivity or thermal conductivity.
Terminal velocity formula for spheres in a viscous fluid
Slot, R.E.
1983-01-01
Various attempts have been made to develop a general expression for the terminal velocity of spheres in a viscous fluid (Stokes, Prandtl, Oseen, Rubey, etc.: see Bogardi, 1974 and Vanoni, 1975). All of these formulae show a lack of accuracy and/or are restrict ed to a relatively small range of
Creeping Viscous Flow around a Heat-Generating Solid Sphere
DEFF Research Database (Denmark)
Krenk, Steen
1981-01-01
The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in close...... form and an application to the storage of heat-generating nuclear waste is discussed....
Axially Symmetric Bianchi Type-I Bulk-Viscous Cosmological ...
Indian Academy of Sciences (India)
Abstract. The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable cosmological term in the presence of bulk viscous fluid. The Einstein's field equations are solved explicitly by time varying decel- eration parameter q. Consequences of the ...
Some exact solutions of magnetized viscous model in string ...
Indian Academy of Sciences (India)
fluid with magnetic field whereas, it expands with marginal inflation in the presence of viscous fluid without magnetic field. .... of the three directions x-, y- or z-axes. Let us choose the string direction along x-axis, .... Let us consider the various important physical quantities such as expansion scalar θ, anisotropy parameter and ...
Unsteady Viscous Flow Past an Impulsively Started Porous Vertical ...
African Journals Online (AJOL)
This paper presents a new numerical approach for solving unsteady two dimensional boundary layer flow past an infinite vertical porous surface with the flow generated by Newtonian heating and impulsive motion in the presence of viscous dissipation and temperature dependent viscosity. The viscosity of the fluid under ...
Physical hydrodynamic propulsion model study on creeping viscous ...
Indian Academy of Sciences (India)
Physical hydrodynamic propulsion model study on creeping viscous flow through a ciliated porous tube ... Dates. Manuscript received: 7 February 2016; Manuscript revised: 20 July 2016; Accepted: 5 October 2016; Early published: Unedited version published online: Final version published online: 16 February 2017 ...
Axially Symmetric Bianchi Type-I Bulk-Viscous Cosmological ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Astrophysics and Astronomy; Volume 34; Issue 3. Axially Symmetric Bianchi ... The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable cosmological term in the presence of bulk viscous fluid. The Einstein's field ...
A simple interaction law for viscous-inviscid interaction
Veldman, Arthur E. P.
2009-01-01
The viscous-inviscid interaction (VII) philosophy for modelling aerodynamic boundary layers is discussed. 'Traditionally' the shear-layer equations are solved with pressure prescribed by the inviscid flow, but then the solution breaks down in a singularity related to flow separation. In the
Efficiency and tuning of viscous dampers on discrete systems
DEFF Research Database (Denmark)
Main, Joseph A.; Krenk, Steen
2005-01-01
An approximate solution is developed to the complex eigenproblem associated with free vibrations of a discrete system with several viscous dampers, in order to facilitate optimal placement and sizing of added dampers in structures. The approximate solution is obtained as an interpolation between ...
Dynamics of viscous drops confined in a rough medium
Keiser, Ludovic; Gas, Armelle; Jaafar, Khalil; Bico, Jose; Reyssat, Etienne
2017-11-01
We focus on the dynamics of viscous and non-wetting ``pancake'' droplets of oil conned in a vertical Hele-Shaw cell filled with a less viscous surfactant solution. These dense drops settle at constant velocity driven by gravity. The surfactant solution completely wets the walls, and a thin lubrication film separates the drops from the walls. With smooth walls, two main dynamical regimes are characterized as the gap between the walls is varied. Viscous dissipation is found to dominate either in the droplet or in the lubrication film, depending on the ratio of viscosities and length scales. A sharp transition between both regimes is observed and successfully captured by asymptotic models. With rough walls, that transition is dramatically altered. Drops are generally much slower in a rough Hele-Shaw cell, in comparison with a similar smooth cell. Building up on the seminal works of Seiwert et al. (J.F.M. 2011) on film deposition by dip coating on a rough surface, we shed light on the non-trivial friction processes resulting from the interplay of viscous dissipation at the front of the drop, in the lubrication film and in the bulk of the drop. We acknowledge funding from Total S.A.
Theory of viscous flow in curved shallow channels
De Vriend, H.J.
1972-01-01
The axisymmetrical, viscous flow in curved channels is considered in the case where the hydraulic radius of the cross-section is small with respect to the average radius of curvature of the bend. First Ananyan's theory on this subject is reconsidered, using a regular perturbation method. The results
Existence of a secondary flow for a temperature dependent viscous ...
African Journals Online (AJOL)
We model a viscous fluid flowing between parallel plates. The viscosity depends on temperature. We investigate the properties of the velocity and we show that the temperature and velocity fields have two solutions. The existence of two velocity solutions is new. This means that there exist secondary flows. Journal of the ...
Second law analysis of a reacting temperature dependent viscous ...
African Journals Online (AJOL)
In this paper, entropy generation during the flow of a reacting viscous fluid through an inclined Channel with isothermal walls are investigated. The coupled energy and momentum equations were solved numerically. Previous results in literature (Adesanya et al 2006 [[17]) showed both velocity and temperature have two ...
Bianchi Type-I bulk viscous fluid string dust magnetized ...
Indian Academy of Sciences (India)
Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model is investigated. To get a determinate model, we have assumed the conditions and = constant where is the shear, the expansion in the model and the coefficient of bulk viscosity. The behaviour of the model in the presence and ...
Viscous effect at an orthotropic micropolar boundary surface
Indian Academy of Sciences (India)
Steady state responses at viscous ﬂuid/ orthotropic micropolar solid interfaces to moving point loads have been studied. An eigenvalue approach using the Fourier transform has been employed to solve the problem. The displacement, microrotation and stress components for the orthotropic micropolar solids so obtained in ...
A finite element analysis of the distribution velocity in viscous ...
African Journals Online (AJOL)
In this work we use the finite element method to analyze the distribution of velocity in a viscous incompressible fluid flow using Lagrange interpolation function. The results obtained are highly accurate and converge fast to the exact solution as the number of elements increase.
Accounting For Compressibility In Viscous Flow In Pipes
Steinle, Frank W.; Gee, Ken; Murthy, Sreedhara V.
1991-01-01
Method developed to account for effects of compressibility in viscous flows through long, circular pipes of uniform diameter. Based on approximation of variations in density and velocity across pipe cross section by profile equations developed for boundary-layer flow between flat plates.
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...
Viscous-Inviscid Interaction Method for Wing Calculations
Coenen, Edith G.M.; Veldman, Arthur E.P.; Patrianakos, George
2000-01-01
A quasi-simultaneous viscous-inviscid coupling method is developed for the calculation of three-dimensional steady incompressible flow over transport wing configurations. The external inviscid flow is computed with a constant-potential (Dirichlet) panel method, constructed from a constant source and
Modeling and Simulation of Viscous Electro-Active Polymers.
Vogel, Franziska; Göktepe, Serdar; Steinmann, Paul; Kuhl, Ellen
2014-11-01
Electro-active materials are capable of undergoing large deformation when stimulated by an electric field. They can be divided into electronic and ionic electro-active polymers (EAPs) depending on their actuation mechanism based on their composition. We consider electronic EAPs, for which attractive Coulomb forces or local re-orientation of polar groups cause a bulk deformation. Many of these materials exhibit pronounced visco-elastic behavior. Here we show the development and implementation of a constitutive model, which captures the influence of the electric field on the visco-elastic response within a geometrically non-linear finite element framework. The electric field affects not only the equilibrium part of the strain energy function, but also the viscous part. To adopt the familiar additive split of the strain from the small strain setting, we formulate the governing equations in the logarithmic strain space and additively decompose the logarithmic strain into elastic and viscous parts. We show that the incorporation of the electric field in the viscous response significantly alters the relaxation and hysteresis behavior of the model. Our parametric study demonstrates that the model is sensitive to the choice of the electro-viscous coupling parameters. We simulate several actuator structures to illustrate the performance of the method in typical relaxation and creep scenarios. Our model could serve as a design tool for micro-electro-mechanical systems, microfluidic devices, and stimuli-responsive gels such as artificial skin, tactile displays, or artificial muscle.
An update on projection methods for transient incompressible viscous flow
Energy Technology Data Exchange (ETDEWEB)
Gresho, P.M.; Chan, S.T.
1995-07-01
Introduced in 1990 was the biharmonic equation (for the pressure) and the concomitant biharmonic miracle when transient incompressible viscous flow is solved approximately by a projection method. Herein is introduced the biharmonic catastrophe that sometimes occurs with these same projection methods.
Null controllability of the viscous Camassa–Holm equation with ...
Indian Academy of Sciences (India)
In this paper, we study the null controllability of the viscous Camassa–Holm equation on the one-dimensional torus. By using a moving distributed control, we obtain that the system is null controllable for a given data with certain regularity. Author Affiliations. Peng Gao1. School of Mathematics and Statistics, and Center for ...
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic solutions for the steady velocity, temperature and concentration. The parameters ...
Null controllability of the viscous Camassa–Holm equation with ...
Indian Academy of Sciences (India)
Indian Acad. Sci. (Math. Sci.) Vol. 126, No. 1, February 2016, pp. 99–108. c Indian Academy of Sciences. Null controllability of the viscous Camassa–Holm equation with moving control. PENG GAO. School of Mathematics and Statistics, and Center for Mathematics and. Interdisciplinary Sciences, Northeast Normal University ...
Self-consistent viscous heating of rapidly compressed turbulence
Campos, Alejandro; Morgan, Brandon; Olson, Britton; Greenough, Jeffrey
2016-11-01
Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the flow evolution, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As described in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous energy transfer. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
B R Sharma*, Nabajyoti Dutta
2016-01-01
In the present study, the effects of chemical reaction and thermal radiation on unsteady MHD flow of a viscous, electrically conducting and incompressible fluid mixture past a moving vertical cylinder is studied. The fluid is a gray, absorbing-emitting but non scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing dimensionless coupled non-linear partial differential equations are solved numerically using finite di...
Directory of Open Access Journals (Sweden)
Barahoei M.
2016-01-01
Full Text Available Since the oil reservoirs are limited and energy demand is increasing, seeking for high efficient EOR processes or enhancing the efficiency of current proposed EOR methods for producing trapped oil from reservoirs are highly investigated. As a way out, it is possible to couple the EOR and nanotechnology to utilize the efficiency of both methods together. Regarding this possibility, in the current study, in the first stage of investigation stable and uniform water-based solution of nano size particles of copper oxide with different concentrations (0.01-0.05 M were prepared and then injected into the core samples. In the first stage, the effects of different surfactants respect to their concentrations was investigated. Then, different scenarios of using nano-fluid as a thermal conductivity modifier were examined. The obtained results clearly demonstrate that changing concentration of nano particles of copper oxide from 0.01 M to 0.05 M is able to enhance the thermal conductivity of rocks from 27 % to 48 % compared with the thermal conductivity of dry core.
Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media
Energy Technology Data Exchange (ETDEWEB)
Kim, Wan Tae; Lim, Dae Ho; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)
2014-08-15
Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02-0.1 m/s), liquid viscosity (0.1-3 Pa·s) and surface tension (66.1-72.9x10{sup -3} N/m) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; h=2502U{sub G}{sup 0.236}{sub L}{sup -0.250}{sub L}{sup -}0{sup .028} Nu=3.25Re{sup 0.180}Pr{sup -0.067}We{sup 0.028}.
Tablet disintegration and drug dissolution in viscous media: paracetamol IR tablets.
Parojcić, Jelena; Vasiljević, Dragana; Ibrić, Svetlana; Djurić, Zorica
2008-05-01
An investigation into the influence of viscous media on tablet disintegration and drug dissolution was performed with the aim to simulate the potential formulation-specific food effect for a selected highly soluble model drug. Literature data on the in vivo drug absorption in fasted and fed state have been evaluated for in vitro-in vivo correlation (IVIVC) purposes. In vitro studies were conducted in simple buffer media with or without addition of HPMC K4M as a viscosity enhancing agent. Good IVIVC correlation (r>0.95) was obtained for paracetamol dissolution in viscous media at 50rpm and fed state absorption profiles, while in vitro dissolution in simple media at lower stirring speed was predictable of drug products in vivo behaviour in the fasted state. The data obtained support the existing idea that relatively simple dissolution media and/or set of experimental conditions may be used to differentiate formulation-specific food-drug interactions. Such tests would be a useful tool in the development of formulations that would not be susceptible to the influence of co-administered meal and, furthermore, facilitate regulatory decision on the necessity to conduct food effect studies in vivo.
DEFF Research Database (Denmark)
Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke
2012-01-01
Phantoms mimicking electromagnetic properties of biological tissues are widely used in evaluation of electromagnetic field distribution in human body. In this paper, low-viscous, optically transparent liquids that mimic muscle tissue, are designed and characterized. Various mixing ratios of de...
Simulations of the Yawed MEXICO Rotor Using a Viscous-Inviscid Panel Method
DEFF Research Database (Denmark)
Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong
2014-01-01
In the present work the viscous-inviscid interactive model MIRAS is used to simulate flows past the MEXICO rotor in yawed conditions. The solver is based on an unsteady three-dimensional free wake panel method which uses a strong viscous-inviscid interaction technique to account for the viscous...
Formation and Maintenance of a Viscous Plug in a Strombolian Volcanic Conduit
Llewellin, E. W.; Jones, T. J.; Jenkins, A. P.
2015-12-01
Textural studies of pyroclasts have shown that both degassed, crystal-rich magma, and gas-rich, crystal-poor magma may be ejected by a single strombolian explosion. Furthermore, some pyroclasts contain both magma types, intermingled. These pyroclasts have been interpreted as evidence of the presence of a plug of degassed, crystal-rich - and therefore high-viscosity - magma at the top of the volcanic conduit, overlying gas-rich, crystal-poor, low-viscosity magma. Analogue experiments have indicated that the presence of a viscous plug increases the vigour of strombolian explosions by enhancing the build-up of overpressure in the gas slug that drives them. The purported plug material has a higher density, as well as a higher viscosity, than the magma that underlies it. Consequently, the configuration is expected to be unstable, and the plug and underlying magma should convectively overturn. Does this mean that a viscous plug is an ephemeral feature? Or can a plug persist for long periods as a dynamic feature, which is continually created at the same rate at which it is convectively consumed? We conduct laboratory analogue experiments to investigate the formation and maintenance of a viscous plug. We drive thermal convection of a range of Newtonian and non-Newtonian magma analogue fluids in a 20cm diameter vertical pipe by heating the bottom, and cooling the top. The fluids have strongly temperature dependent rheology; both rheology and driving buoyancy are scaled to the volcanic scenario. We present preliminary results which characterize the spatial distribution of viscosity, density and velocity. We find that the hotter, lower-viscosity fluid ascends the core of the pipe, whilst the cooler, higher-viscosity fluid descends in an outer annulus. The upper region, in which the flow reverses direction, constitutes a dynamic plug.
Modeling of brittle-viscous flow using discrete particles
Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.
2017-04-01
Many geological processes involve both viscous flow and brittle fractures, e.g. boudinage, folding and magmatic intrusions. Numerical modeling of such viscous-brittle materials poses challenges: one has to account for the discrete fracturing, the continuous viscous flow, the coupling between them, and potential pressure dependence of the flow. The Discrete Element Method (DEM) is a numerical technique, widely used for studying fracture of geomaterials. However, the implementation of viscous fluid flow in discrete element models is not trivial. In this study, we model quasi-viscous fluid flow behavior using Esys-Particle software (Abe et al., 2004). We build on the methodology of Abe and Urai (2012) where a combination of elastic repulsion and dashpot interactions between the discrete particles is implemented. Several benchmarks are presented to illustrate the material properties. Here, we present extensive, systematic material tests to characterize the rheology of quasi-viscous DEM particle packing. We present two tests: a simple shear test and a channel flow test, both in 2D and 3D. In the simple shear tests, simulations were performed in a box, where the upper wall is moved with a constant velocity in the x-direction, causing shear deformation of the particle assemblage. Here, the boundary conditions are periodic on the sides, with constant forces on the upper and lower walls. In the channel flow tests, a piston pushes a sample through a channel by Poisseuille flow. For both setups, we present the resulting stress-strain relationships over a range of material parameters, confining stress and strain rate. Results show power-law dependence between stress and strain rate, with a non-linear dependence on confining force. The material is strain softening under some conditions (which). Additionally, volumetric strain can be dilatant or compactant, depending on porosity, confining pressure and strain rate. Constitutive relations are implemented in a way that limits the
Viscous relaxation of Ganymede's impact craters: Constraints on heat flux
Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.
2017-11-01
Measurement of crater depths in Ganymede's dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite's history. For craters with diameter ≥ 10 km, heat fluxes of 40-50 mW m-2 can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived ;heat pulses; with magnitudes of ∼100 mW m-2 and timescales of 10-100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2 are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede's middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event caused both Ganymede's tectonic deformation and
Hydroelastic response and stability of a hydrofoil in viscous flow
Ducoin, Antoine; Young, Yin L.
2013-04-01
The objective of this research is to investigate the hydroelastic response and stability of a flexible hydrofoil in viscous flow. The focus is on viscous effects, such as laminar to turbulent transition and stall, on the fluid-structure interaction (FSI) response and hydroelastic stability of flexible hydrofoils. The numerical approach is based on the coupling between a commercial Computational Fluid Dynamics (CFD) solver, CFX, and a simple two-degrees-of-freedom (2-DOF) system that simulates the tip section bend and twist deformations of a cantelivered, rectangular hydrofoil. The hydrodynamic loading is assumed to be uniform in the spanwise direction, and the hydrofoil is assumed to undergo bend and twist deformation along the spanwise direction only. The CFD solver is first validated by comparing numerical predictions with experimental measurements of the lift, drag, and moment coefficients of a rigid NACA0012 hydrofoil over a wide range of Reynolds numbers and angles of attack. The coupled viscous FSI solver is then validated by comparing numerical predictions with experimental measurements of (i) the lift coefficient of a rigid (stainless steel) NACA66 hydrofoil and (ii) the tip section displacement of a flexible (POM Polyacetate) NACA66 hydrofoil with the same initial (un-deformed) geometry. The hydrodynamic responses of the rigid and flexible NACA66 hydrodfoils are compared to identify FSI effects in viscous flow, including transition, stall, and static divergence. The results show that the flexible hydrofoil undergoes a clockwise twist deformation because the center of pressure is to the left of the elastic axis (center of twist), which increases the effective angle of attack and moves the center of pressure toward the leading edge; the resultant increase in lift and moment will further increase the effective angle of attack until the twist capacity is exceeded, i.e. static divergence or material failure occurs. The results show that viscous effects tend to
Viscous relaxation of Ganymede's impact craters: Constraints on heat flux
Bland, Michael; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.
2017-01-01
Measurement of crater depths in Ganymede’s dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite’s history. For craters with diameter ≥ 10 km, heat fluxes of 40–50 mW m-2−2"> can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived “heat pulses” with magnitudes of ∼100 mW m-2−2"> and timescales of 10–100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2−2"> are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede’s middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event
Directory of Open Access Journals (Sweden)
Kishore P.M.
2013-01-01
Full Text Available A numerical study is presented on the effects of chemical reaction and magnetic field on the unsteady free convection flow, heat and mass transfer characteristics in a viscous, incompressible and electrically conducting fluid past an exponentially accelerated vertical plate by taking into account the heat due to viscous dissipation. The problem is governed by coupled non-linear partial differential equations. The dimensionless equations of the problem have been solved numerically by the implicit finite difference method of Crank - Nicolson’s type. The effects of governing parameters on the flow variables are discussed quantitatively with the aid of graphs for the flow field, temperature field, concentration field, skin-friction, Nusselt number and Sherwood number. It is found that under the influence of chemical reaction, the flow velocity as well as concentration distributions reduce, while the viscous dissipation parameter leads to increase the temperature.
Subramanian, N Harihara; Manigandan, P; Wille, Andrea; Radhakrishnan, Ganga
2011-09-01
This work describes a new method for the determination of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in water matrices by suppressed conductivity detection. Separation was achieved by isocratic elution on a reversed-phase column thermostated at 45°C using an aqueous mobile phase containing boric acid and acetonitrile. The PFOA and PFOS content in the water matrix were quantified by a pre-concentration technique. For the concentration range of 1 to 15 ng/mL and 2 to 30 ng/mL, the linear calibration curve for PFOA and PFOS yielded coefficients of determination (R(2)) of 0.9995 and 0.9985, respectively. The relative standard deviations were smaller than 1.5% for PFOA and PFOS. The retention-time precision of four consecutive 12 h injections was smaller than 0.641% and 0.818%, respectively. The presence of common divalent cations, such as calcium, magnesium, and iron in water matrices impairs PFOS recovery. This drawback was overcome by applying inline matrix elimination method. The optimized method was successfully applied for drinking water, ground water, and seawater samples.
Dynamics and Diffusion Mechanism of Low-Density Liquid Silicon.
Shen, B; Wang, Z Y; Dong, F; Guo, Y R; Zhang, R J; Zheng, Y X; Wang, S Y; Wang, C Z; Ho, K M; Chen, L Y
2015-11-25
A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquid-liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using the classical Stillinger-Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquid-liquid phase transition such as carbon and germanium.
Directory of Open Access Journals (Sweden)
Yahaya Shagaiya Daniel
2017-07-01
Full Text Available The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, viscous dissipation, and chemical reaction have been investigated. A similarity transformation is used to transform the constitutive equations into a system of nonlinear ordinary differential equations. The resultant system of equations is then solved numerically using implicit finite difference method. The velocity, temperature, concentration, entropy generation, and Bejan number are obtained with the dependence of different emerging parameters examined. It is noticed that the velocity is more sensible with high values of electric field and diminished with a magnetic field. The radiative heat transfer and viscous dissipation enhance the heat conduction in the system. Moreover, the impact of mixed convection parameter and Buoyancy ratio parameter on Bejan number profile has reverse effects. A chemical reaction reduced the nanoparticle concentration for higher values. Keywords: Entropy generation, MHD nanofluid, Thermal radiation, Bejan number, Chemical reaction, Viscous dissipation
Hybrid viscous damper with filtered integral force feedback control
DEFF Research Database (Denmark)
Høgsberg, Jan; Brodersen, Mark L.
2016-01-01
In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion...... is controlled by a filtered integral force feedback strategy, where the main feature is the filter, which is designed to render a damper force that in a phase-plane representation operates in front of the corresponding damper velocity. It is demonstrated that in the specific parameter regime where the damper...... force leads velocity the control is stable and yields a significant improvement in damping performance compared to the pure viscous damper....
Vibrations of a Shallow Cable with a Viscous Damper
DEFF Research Database (Denmark)
Krenk, Steen; Nielsen, Søren R. K.
2002-01-01
The optimal tuning and effect in terms of modal damping of a viscous damper mounted near the end of a shallow cable are investigated. The damping properties of free vibrations are extracted from the complex wavenumber. The full solution for the lower modes is evaluated numerically, and an explicit...... and rather accurate analytical approximation is obtained, generalizing recent results for a taut cable. It is found that the effect of the damper on the nearly antisymmetric modes is independent of the sag and the stiffness parameter. In contrast, the nearly symmetric modes develop regions of reduced motion...... near the ends, with increasing cable stiffness, and this reduces the effect of the viscous damper. Explicit results are obtained for the modal damping radio and for optimal tuning of the damper....
Thermal and viscous effects on sound waves: revised classical theory.
Davis, Anthony M J; Brenner, Howard
2012-11-01
In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.
IUTAM Symposium on Lubricated Transport of Viscous Materials
1998-01-01
The main objective of the First International Symposium on Lubricated Transport of Viscous Materials was to bring together scientists and engineers from academia and industryto discuss current research work and exchange ideas in this newly emerging field. It is an area offluid dynamics devoted to laying bare the principlesofthe lubricated transport of viscous materials such as crude oil, concentrated oil/water emulsion, slurries and capsules. It encompasses several types of problem. Studies of migration of particulates away from walls, Segre-Silverberg effects, lubrication versus lift and shear-induced migration belong to one category. Some of the technological problems are the fluid dynamics ofcore flows emphasizing studies ofstability, problems of start-up, lift-off and eccentric flow where gravity causes the core flow to stratify. Another category of problems deals with the fouling of pipe walls with oil, with undesirable increases in pressure gradients and even blocking. This study involves subjects like ...
USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS
Energy Technology Data Exchange (ETDEWEB)
Randall Seright
2011-09-30
This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be
Experimental identification of viscous damping in linear vibration
Srikantha Phani, A.; Woodhouse, J.
2009-01-01
This paper is concerned with the experimental evaluation of the performance of viscous damping identification methods in linear vibration theory. Both existing and some new methods proposed by the present authors [A.S. Phani, J. Woodhouse, Viscous damping identification in linear vibration, Journal of Sound and Vibration 303 (3-5) (2007) 475-500] are applied to experimental data measured on two test structures: a coupled three cantilever beam with moderate modal overlap and a free-free beam with low modal overlap. The performance of each method is quantified and compared based on three norms and the best methods are identified. The role of complex modes in damping identification from vibration measurements is critically assessed.
Compartmental analysis approach to fluorescence anisotropy: Perylene in viscous solvents
Piston, DW; Bilash, T; Gratton, E
1989-01-01
The fluorescence and polarization anisotropy decays of perylene in viscous solvents are investigated at several temperatures between -20 and 35 °C by using the technique of multifrequency phase and modulation fluorometry. The anisotropy decay data are globally analyzed over all temperatures studied and fit directly to physical quantities by using a compartmental model. We present a generalized compartmental model that can be used to calculate anisotropy decay arising from any type of intercon...
Equivalent Viscous Damping Models in Displacement Based Seismic Design
Directory of Open Access Journals (Sweden)
Raul Zaharia
2005-01-01
Full Text Available The paper reviews some equivalent viscous damping models used in the displacement based seismic design considering the equivalent linearization. The limits of application of the models are highlighted, based on comparison existing in the literature. The study is part of research developed by author, aimed to determine the equivalent linear parameters in order to predict the maximum displacement response for earthquakes compatible with given response spectra.
Viscous Flow with Large Fluid-Fluid Interface Displacement
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild
1998-01-01
The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....
Stability of axisymmetric swirl flows of viscous incompressible fluid
Aktershev, S. P.; Kuibin, P. A.
2013-09-01
A new method of solution to the problem of stability of the swirl flow of viscous incompressible fluid is developed. The method based on expansion of the required function into power series of radial coordinate allows an avoidance of difficulties related to numerical integration of the system of differential equations with a singular point. Stability of the Poiseuille flow in a rotating pipe is considered as an example.
Viscous damping of gravity waves over a permeable bed
Directory of Open Access Journals (Sweden)
K. K. Puri
1978-01-01
Full Text Available The damping of gravity waves over the surface of a layer of viscous fluid which overlies a porous bed saturated with the same fluid is studied. It is shown that viscosity may not be the dominant influence in the damping mechanism; the damping effects due to percolation in the fixed bed may be of the same or even higher order than those due to viscosity.
Effective description of dark matter as a viscous fluid
Directory of Open Access Journals (Sweden)
Floerchinger Stefan
2016-01-01
Full Text Available Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.
Viscous Regularization of the Euler Equations and Entropy Principles
Guermond, Jean-Luc
2014-03-11
This paper investigates a general class of viscous regularizations of the compressible Euler equations. A unique regularization is identified that is compatible with all the generalized entropies, à la [Harten et al., SIAM J. Numer. Anal., 35 (1998), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.
Effective description of dark matter as a viscous fluid
Floerchinger, S.; Tetradis, N.; Wiedemann, U.A.
2016-10-28
Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.
Diffusivity measurements of volatile organics in levitated viscous aerosol particles
Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas
2017-07-01
Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).
The viscous slip coefficient for a binary gas mixture
Energy Technology Data Exchange (ETDEWEB)
Knackfuss, Rosenei F. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas. Dept. de Matematica], e-mail: rfknackfuss@gmail.com
2009-07-01
For a moderately small rarefaction, the Navier-Stokes equations are associated with of the slip boundary condition, i e the velocity of the gas on the surface is different from zero at the surface, but its tangential component, depends on the profile distribution of velocity and temperature near the surface. The slip for the velocity profile near the surface is determined by the viscous slip coefficient. The viscous slip coefficient can be determined solving the equation of the Boltzmann or the kinetic equations which are simplified forms of Boltzmann equation with respect to the operator of collision. For this reason, in this work is presented the derivation of the solution of the viscous-slip problem for the mixtures of two noble gases, based on the McCormack model that is developed in terms of an analytical version of the discrete ordinates method has been applied with excellent results, to derive solutions to several problems in rarefied gas dynamics. To complete the problem, include the gas-surface interaction, based on the model of Cercignani-Lampis, which, unlike the model of Maxwell, has two accommodation coefficients: the coefficient of accommodation of tangential moment and the energy accommodation coefficient kinetics due to normal component of velocity. (author)
Long waves over a bi-viscous seabed: transverse patterns
Directory of Open Access Journals (Sweden)
J. M. Becker
2002-01-01
Full Text Available The coupled interaction of long standing hydrodynamic waves with a deformable non-Newtonian seabed is examined using a two-layer model for which the upper layer fluid is inviscid and the lower layer is bi-viscous. The two-dimensional response of the system to forcing by a predominantly longitudinal (cross-shore standing wave perturbed by a small transverse (along-shore component is determined. With a constant yield stress in the bi-viscous lower layer, there is little amplification of these transverse per-turbations and the model response typically remains quasi-one-dimensional. However, for a bi-viscous layer with a pressure-dependent yield stress (which represents the effect that the seabed deforms less readily under compression and hence renders the rheology history dependent, the initially small transverse motions are amplified in some parameter regimes and two-dimensional, permanent bedforms are formed in the lower layer. This simple dynamical model is, therefore, able to explain the formation of permanent bedforms with significant cross- and along-shore features by predominantly cross-shore standing wave forcing.
Laser-assisted inkjet printing of highly viscous fluids with sub-nozzle resolution
Delrot, Paul; Modestino, Miguel A.; Psaltis, Demetri; Moser, Christophe
2016-04-01
Drop-on-demand inkjet printing is mostly based on thermal and piezo-actuation, allowing for densely packed nozzles in inkjet printers. However, the droplet diameter is typically defined by the nozzle diameter, thus limiting the range of viscosity that can be jetted to 10-100 mPa.s to prevent nozzle clogging. Here, we present a laser-assisted system for the delivery of micro-droplets of highly viscous fluids with sub-nozzle resolution. Highly focused supersonic jets have recently been demonstrated by focusing a nanosecond pulse of light into a micro-capillary filled with dyed water, hence generating a cavitation bubble. The consequent pressure wave impact on the concave free surface of the liquid generated flow-focused micro-jets. We implemented this technique for the production of low velocity micro-droplets with photopolymer inks of increasing viscosity (0.6-148 mPa.s) into a 300 μm-wide glass capillary using low laser energies (3-70 μJ). Time-resolved imaging provided details on the droplet generation. Single micro-droplets of diameter 70-80 μm were produced on demand with inks of viscosity 0.6-9 mPa.s with good controllability and reproducibility, thus enabling to print two-dimensional patterns with a precision of 13 μm. Furthermore, the primary droplet produced with the most viscous fluid was about 66% of the capillary diameter. Preliminary results also showed that the process is linearly scalable to narrower capillaries (100-200 μm), thus paving the way for a compact laser-assisted inkjet printer. A possible application of the device would be additive manufacturing as the printed patterns could be consequently cured.
Khan, K; Jovanovski, E; Ho, H V T; Marques, A C R; Zurbau, A; Mejia, S B; Sievenpiper, J L; Vuksan, V
2018-01-01
Dietary fiber intake, especially viscous soluble fiber, has been established as a means to reduce cardiometabolic risk factors. Whether this is true for blood pressure remains controversial. A systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to investigate the effects of viscous soluble fiber supplementation on blood pressure and quantify the effect of individual fibers. MEDLINE, Embase, and Cochrane databases were searched. We included RCTs of ≥4-weeks in duration assessing viscous fiber supplementation from five types: β-glucan from oats and barley, guar gum, konjac, pectin and psyllium, on systolic blood pressure (SBP) and diastolic blood pressure (DBP). Study data were pooled using the generic inverse variance method with random effects models and expressed as mean differences (MD) with 95% confidence intervals (CIs). Twenty-two (N = 1430) and twenty-one RCTs (N = 1343) were included in the final analysis for SBP and DBP, respectively. Viscous fiber reduced SBP (MD = -1.59 mmHg [95% CI: -2.72,-0.46]) and DBP (MD = -0.39 mmHg [95% CI: -0.76,-0.01]) at a median dose of 8.7 g/day (1.45-30 g/day) over a median follow-up of 7-weeks. Substantial heterogeneity in SBP (I2 = 72%, P fiber types, SBP reductions were observed only for supplementation using psyllium fiber (MD = -2.39 mmHg [95% CI: -4.62,-0.17]). Viscous soluble fiber has an overall lowering effect on SBP and DBP. Inclusion of viscous fiber to habitual diets may have additional value in reducing CVD risk via improvement in blood pressure. ClinicalTrials.gov identifier-NCT02670967. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
Determining the Viscosity of Liquids Using an Extended Falling Ball Method
Houari, Ahmed
2011-01-01
In this article, I will extend the falling ball method to measure the viscosity of liquids regardless of the degree of their viscosity. For this, I will show that one can obtain a measurement of the terminal velocity of a falling spherical ball in a viscous liquid by solving numerically the equation of motion which describes the dynamics of the…
Ultrasonic Levitation for Liquid Droplet
Otsuka, Tetsuro; Nakane, Tomoo
2002-05-01
Ultrasonic levitation in a gravity field was tested using a viscous liquid at a frequency range from 20 kHz to 28 kHz. Red ink and glycerin droplets havingdiameters in the range of 3 mm to 5 mm were placed at a node of a standing wave. As a result, the droplets were not only flattened like a disk, but also found to contain fine air bubbles. Additionally, the droplets continuously changed their location moving from node to node while maintaining a constant volume.
Lithium ion conducting electrolytes
Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.
1999-01-01
The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.
Lithium ion conducting electrolytes
Energy Technology Data Exchange (ETDEWEB)
Angell, C.A.; Liu, C.; Xu, K.; Skotheim, T.A.
1999-10-05
The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Sameh E., E-mail: sameh_sci_math@yahoo.com [Department of Mathematics, Faculty of Sciences, South Valley University, Qena (Egypt); Hussein, Ahmed Kadhim, E-mail: ahmedkadhim7474@gmail.com [College of Engineering, Mechanical Engineering Department, Babylon University, Babylon City—Hilla (Iraq); Mohammed, H.A. [Department of Thermofluids, Faculty of Mechanical Engineering, University Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru (Malaysia); Adegun, I.K. [Department of Mechanical Engineering, University of Ilorin, Ilorin (Nigeria); Zhang, Xiaohui [School of Physics Science and Technology, School of Energy—Soochow University, Suzhou 215006, Jiangsu (China); Kolsi, Lioua [Unite de Metrologie en Mecanique des Fluides et Thermique, Ecole Nationale d’Ingenieurs, Monastir (Tunisia); Hasanpour, Arman [Department of Mechanical Engineering, Babol University of Technology, PO Box 484, Babol (Iran, Islamic Republic of); Sivasankaran, S. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur 50603 (Malaysia)
2014-01-15
Highlights: • Ha decelerates the flow field. • Ha enhances conduction. • Magnetic field orientation is important. • Radiation parameter important. • Nu decreases as Ha increases. -- Abstract: Numerical two-dimensional analysis using finite difference approach with “line method” is performed on the laminar magneto-hydrodynamic natural convection in a square enclosure filled with a porous medium to investigate the effects of viscous dissipation and radiation. The enclosure heated from left vertical sidewall and cooled from an opposing right vertical sidewall. The top and bottom walls of the enclosure are considered adiabatic. The flow in the square enclosure is subjected to a uniform magnetic field at various orientation angles (φ = 0°, 30°, 45°, 60° and 90°). Numerical computations occur at wide ranges of Rayleigh number, viscous dissipation parameter, magnetic field orientation angles, Hartmann number and radiation parameter. Numerical results are presented with the aid of tables and graphical illustrations. The results of the present work explain that the local and average Nusselt numbers at the hot and cold sidewalls increase with increasing the radiation parameter. From the other side, the role of viscous dissipation parameter is to reduce the local and average Nusselt numbers at the hot left wall, while it improves them at the cold right wall. The results are compared with another published results and it found to be in a good agreement.
Computationally Efficient Prediction of Ionic Liquid Properties
DEFF Research Database (Denmark)
Chaban, V. V.; Prezhdo, O. V.
2014-01-01
Due to fundamental differences, room-temperature ionic liquids (RTIL) are significantly more viscous than conventional molecular liquids and require long simulation times. At the same time, RTILs remain in the liquid state over a much broader temperature range than the ordinary liquids. We exploit...... the ability of RTILs to stay liquid at several hundred degrees Celsius and introduce a straightforward and computationally efficient method for predicting RTIL properties at ambient temperature. RTILs do not alter phase behavior at 600-800 K. Therefore, their properties can be smoothly extrapolated down...... to ambient temperatures. We numerically prove the validity of the proposed concept for density and ionic diffusion of four different RTILs. This simple method enhances the computational efficiency of the existing simulation approaches as applied to RTILs by more than an order of magnitude....
Ren, Xiaodong; Xu, Kun; Shyy, Wei; Gu, Chunwei
2015-07-01
This paper presents a high-order discontinuous Galerkin (DG) method based on a multi-dimensional gas kinetic evolution model for viscous flow computations. Generally, the DG methods for equations with higher order derivatives must transform the equations into a first order system in order to avoid the so-called "non-conforming problem". In the traditional DG framework, the inviscid and viscous fluxes are numerically treated differently. Differently from the traditional DG approaches, the current method adopts a kinetic evolution model for both inviscid and viscous flux evaluations uniformly. By using a multi-dimensional gas kinetic formulation, we can obtain a spatial and temporal dependent gas distribution function for the flux integration inside the cell and at the cell interface, which is distinguishable from the Gaussian Quadrature point flux evaluation in the traditional DG method. Besides the initial higher order non-equilibrium states inside each control volume, a Linear Least Square (LLS) method is used for the reconstruction of smooth distributions of macroscopic flow variables around each cell interface in order to construct the corresponding equilibrium state. Instead of separating the space and time integrations and using the multistage Runge-Kutta time stepping method for time accuracy, the current method integrates the flux function in space and time analytically, which subsequently saves the computational time. Many test cases in two and three dimensions, which include high Mach number compressible viscous and heat conducting flows and the low speed high Reynolds number laminar flows, are presented to demonstrate the performance of the current scheme.
Khalil, Kareem
2012-12-01
Granulation, the process of formation of granules from a combination of base powders and binder liquids, has been a subject of research for almost 50 years, studied extensively for its vast applications, primarily to the pharmaceutical industry sector. The principal aim of granulation is to form granules comprised of the active pharmaceutical ingredients (API’s), which have more desirable handling and flowability properties than raw powders. It is also essential to ensure an even distribution of active ingredients within a tablet with the goal of achieving time‐controlled release of drugs. Due to the product‐specific nature of the industry, however, data is largely empirical [1]. For example, the raw powders used can vary in size by two orders of magnitude with narrow or broad size distributions. The physical properties of the binder liquids can also vary significantly depending on the powder properties and required granule size. Some significant progress has been made to better our understanding of the overall granulation process [1] and it is widely accepted that the initial nucleation / wetting stage, when the binder liquid first wets the powders, is key to the whole process. As such, many experimental studies have been conducted in attempt to elucidate the physics of this first stage [1], with two main mechanisms being observed – classified by Ivenson [1] as the “Traditional description” and the “Modern Approach”. See Figure 1 for a graphical definition of these two mechanisms. Recent studies have focused on the latter approach [1] and a new, exciting development in this field is the Liquid Marble. This interesting formation occurs when a liquid droplet interacts with a hydrophobic (or superhydrophobic) powder. The droplet can become encased in the powder, which essentially provides a protective “shell” or “jacket” for the liquid inside [2]. The liquid inside is then isolated from contact with other solids or liquids and has some
Numerical analysis of the influence of liquid on propagation of a rolling contact fatigue crack
Directory of Open Access Journals (Sweden)
M. Olzak
2017-10-01
Full Text Available Numerical investigations of the propagation of rolling contact fatigue crack filled by the liquid have been conducted. Two models of fluid crack interaction have been considered. In the first model called 䖓hydrostatic� the assumption of incompressible, inviscid and weightless liquid was accepted. It was also assumed that due to the wheel load the trapped liquid could not get outside the crack and its volume remained constant until the rising pressure would open up the crack mouth again. On this assumption the analysis has a steady-state character. In the second model it has been assumed that the crack is filled by the viscous, incompressible fluid and the fluid motion as well as the resulting pressure distribution can be represented by one-dimensional form of the Reynolds equation. The method for solving the problem of the coupled motion of liquid and crack faces has been developed and series of calculation were made. The method has been employed for the predicting of crack deformation in the course of wheel rolling
DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE
Energy Technology Data Exchange (ETDEWEB)
Kishore K. Mohanty
2004-12-01
North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. Coreflood, quarter 5-spot study, compositional simulation, wettability, relative permeability study and streamline-based simulation were conducted in this project. 1D compositional simulation results agree reasonably well with those of the slim tube experiments. Injection of CO{sub 2}-NGL is preferable over that of PBG-NGL. MME is sensitive to pressure (in the range of 1300-1800 psi) for the injection of PBG-NGL, but not for CO{sub 2}-NGL. Three hydrocarbon phases form in this pressure range. As the mean thickness of the adsorbed organic layer on minerals increases, the oil-water contact angle increases. The adsorbed organic films left behind after extraction of oil by common aromatic solvents used in core studies, such as toluene and decalin, are thinner than those left behind by non-aromatic solvents, such as cyclohexane. The force of adhesion for minerals aged with just the asphaltene fraction is similar to that of the whole oil implying that asphaltenes are responsible for the mixed-wettability in this reservoir. A new relative permeability model for a four-phase, mixed-wet system has been proposed. A streamline module is developed which can be incorporated in an existing finite-difference based
Mabood, F.; Ibrahim, S. M.; Kumar, P. V.; Khan, W. A.
A mathematical model has been developed using Tiwari-Das model to study the MHD stagnation-point flow and heat transfer characteristics of an electrically conducting nanofluid over a vertical permeable shrinking/stretching sheet in the presence of viscous dissipation. Formulated partial differential equations are converted into a set of ordinary differential equations using suitable similarity transformation. Runge-Kutta-Fehlberg method with shooting technique is applied to solve the resulting coupled ordinary differential equations. The profiles for velocity, temperature, skin friction coefficient and local Nusselt number for various parameters are displayed through graphs and tabular forms. In this problem, we considered two types of nanoparticles, namely, copper (Cu) and Alumina (Al2O3) with water as base fluid.
Iqbal, Z.; Mehmood, Zaffar
2017-05-01
This communication is devoted to analyze elastic deformation on electrically conducted viscoelastic fluid in the presence of viscous dissipation effects. Non-linear analysis is computed through exact solutions for velocity, temperature and concentration profiles. Special emphasis is provided for elastic deformation in the presence of magnetohydrodynamics effects. Concentration profile is discussed significantly in the presence constructive and destructive chemical reaction. Results are displayed through graphs and discussed for physical parameters that are used in present analysis. Notable findings include that temperature and thermal boundary layer thickness is an increasing function of Prandtl number and a decreasing function of elastic deformation. In addition, heat transfer rate is enhanced by increasing the conjugate parameter (γ) which measures the strength of surface heating.
The Effects of Viscous Dissipation on Convection in a Porus Medium
Directory of Open Access Journals (Sweden)
T Raja Rani
2017-05-01
Full Text Available The aim of this paper is to study of the effects of variable physical properties and viscous dissipation on a free convective flow over a vertical plate with a variable temperature embedded in a porous medium. We study the effects of varying physical properties on heat transfer and on flow when the medium is filled with some commonly used experimental fluids, in particular, Glycerin, Water and Methyl chloride (a commonly refrigerant. A similarity transformation technique is used to reduce the partial differential equations governing the flow. The resulting system of non-linear coupled ordinary differential equations is solved numerically with appropriate boundary conditions using the Runge-Kutta-Gill method coupled with a shooting technique. Using this approach, a study is conducted on both hot and cold plates and results presented using a combination of graphical illustrations and tables of the effect of changing a variety of physical parameters, in particular, the temperature and viscosity of the fluid.
An analysis of the Rayleigh-Taylor instability of thin viscous layers
de La Calleja, E. M.; Zetina, S.; Zenit, R.
2013-11-01
Recently, Zetina and Zenit (2013) showed that certain textures in the early paintings of D.A. Siqueiros resulted from a hydrodynamic instability. Siqueiros invented the so-called ``accidental painting'' technique, which consisted in pouring layers of different color son top of each other. For the correct color combination, the dual layer became Rayleigh-Taylor unstable and mixed; the density of a paints depends on its color. In this investigation, we conducted experiments to fully understand the instability of thin viscous layers. We varied the densities, viscosities and thicknesses of the layers. We measured the size of the visible blobs and characterized their change in size with the parameters of the flow. We contrasted our observations with the predictions of a linear instability analysis of the flow. We discuss the implications of these results with modern painting techniques.
N-body Survey of Viscous Overstability in Saturn's Rings
Salo, Heikki J.; Schmidt, J.; Sremcevic, M.; Sremcevic, M.; Spahn, F.
2008-09-01
The viscous overstability of dense collisional rings offers a promising explanation for the small scale radial density variations in the B and the inner A ring of Saturn. Viscous overstability, in the form of spontaneous growth of axisymmetric oscillations, was first directly demonstrated in the selfgravitating N-body simulations (Salo etal. 2001). In contrast to previous isothermal hydrodynamical analysis (Schmit & Tscharnuter 1995), which suggested that practically any dense ring should be overstable, our N-body simulations indicated that a steep rise of viscosity with optical depth was required. In particular, a selfgravitating system of identical particles following the Bridges etal. (1984) elasticity formula was found to become overstable for optical depths τ > 1., forming oscillations in about 100 meter scale. In these simulations the axisymmetric oscillations were found to coexist with the inclined selfgravity wake structures. In addition, a basically similar overstability was seen in nongravitating simulations, but shifted to very high optical depths, or in simulations were just the vertical selfgravity was included, leading to an enhanced impact frequency and viscosity. Although an improved non-isothermal hydrodynamical analysis (Spahn et al. 2000, Schmidt et al. 2001) was able to describe quantitatively these non-selfgravitating cases, even in the weakly nonlinear regime (Schmidt & Salo, 2003), a reliable study of realistic selfgravitating rings must rely on numerical experiments. We report the results of a new N-body survey of viscous overstability. For example, we study the optical depth and gravity strength regimes which lead to the excitation of overstability, co-existence of overstabilities and gravity wakes, or to the suppression of overstability in the case of very strong wakes. Also the effects of various factors (particle elasticity, surface friction and adhesion, size distribution) on the threshold density required for the triggering of
Photometric modeling of viscous overstability in Saturn's rings
Salo, H.
2011-10-01
The viscous overstability of dense planetary rings offers a plausible mechanism for the generation of observed ˜ 150 m radial density variations in the B and the inner A ring of Saturn (Colwell et al. 2007, Thomson et al. 2007). Viscous overstability, in the form of spontaneous growth of axisymmetric oscillations, arises naturally in N-body simulations, in the limit of high impact frequency and moderately weak selfgravity (Salo et al. 2001, Schmidt et al. 2001; see also Schmidt et al. 2009). For example, a selfgravitating system of identical particles with internal density ˜ half of solid ice, and following the Bridges et al. (1984) elasticity formula, becomes overstable for optical depths ? > 1, forming oscillations in about 100 meter scale. Like self-gravity wakes, with their typical ˜ 20° trailing pitch angle, overstable oscillations lead to a longitude-dependent brightness of the rings. Due to their axisymmetric nature, the expected longitude of minimum brightness is shifted to ring ansae. However, according to simulations, the axisymmetric oscillations may coexist with the inclined selfgravity wake structures, which can lead to complicated photometric behavior, depending on properties of the simulated system. The overstable systems may also exhibit amplitude modulations (in km-scales), arising from the mutual beating patterns of the basics overstable oscillations. New results of photometric modeling of viscously overstable dynamical simulations systems are reported, related to the above mentioned topics. The Monte Carlo method of Salo and Karjalainen (2003) is used, previously applied to modeling of photometric signatures of selfgravity wakes (Salo et al. 2004, French et al. 2007), scattering properties of propeller stuctures (Sremcevic et al., 2007), and to the intepretation of elevation-angle dependent opposition effect seen in HST data (Salo and French 2010). For example, the possible observable signatures of amplitude modulations are explored.
Parallel discrete vortex methods for viscous flow simulation
Takeda, Kenji
In this thesis a parallel discrete vortex method is developed in order to investigate the long-time behaviour of bluff body wakes. The method is based on inviscid theory, and its extension to include viscous effects is a far from trivial problem. In this work four grid-free viscous models are directly compared to assess their accuracy and efficiency. The random walk, diffusion velocity, corrected core-spreading and vorticity redistribution methods are compared for simulating unbounded fluid flows, and for flows past an impulsively started cylinder at Reynolds numbers between 550 and 9500. The code uses a common core, so that the only free parameters are those directly related to the viscous models. The vorticity redistribution method encompasses all of the advantages of a purely Lagrangian method and incorporates a dynamic regridding scheme to maintain accurate discretisation of the vorticity field. This is used to simulate long-time flow past an impulsively started cylinder for Reynolds numbers 100, 150 and 1000. The code is fully parallel and achieves good speedup on both commodity and proprietary supercomputer systems. At Reynolds numbers below 150 the breakdown of the primary vortex street has been simulated. Results reveal a merging process, causing relaxation to a parallel shear flow. This itself sheds vortices, creating a secondary wake of increased wavelength. At Reynolds number 1000 the cylinder wake becomes chaotic, forming distinct vortex couples. These couples self-convect and can travel upstream. This has a destabilising effect on the vortex street, inducing merging, formation of tripolar and quadrupolar structures and, ultimately, spontaneous ejection of vortex couples upstream of the initial disturbance.
Angular dynamics of small crystals in viscous flow
Fries, J.; Einarsson, J.; Mehlig, B.
2017-01-01
The angular dynamics of a very small ellipsoidal particle in a viscous flow decouples from its translational dynamics and the particle angular velocity is given by Jeffery's theory. It is known that cuboid particles share these properties. In the literature a special case is most frequently discussed, namely that of axisymmetric particles with a continuous rotation symmetry. Here we compute the angular dynamics of crystals that possess a discrete rotation symmetry and certain mirror symmetries but do not have a continuous rotation symmetry. We give examples of such particles that nevertheless obey Jeffery's theory. However, there are other examples where the angular dynamics is determined by a more general equation of motion.
Fjords in viscous fingering: selection of width and opening scale
Energy Technology Data Exchange (ETDEWEB)
Mineev-weinstein, Mark [Los Alamos National Laboratory; Ristroph, Leif [UT-AUSTIN; Thrasher, Matthew [UT-AUSTIN; Swinney, Harry [UT-AUSTIN
2008-01-01
Our experiments on viscous fingering of air into oil contained between closely spaced plates reveal two selection rules for the fjords of oil that separate fingers of air. (Fjords are the building blocks of solutions of the zero-surface-tension Laplacian growth equation.) Experiments in rectangular and circular geometries yield fjords with base widths {lambda}{sub c}/2, where {lambda}{sub c} is the most unstable wavelength from a linear stability analysis. Further, fjords open at an angle of 8.0{sup o}{+-}1.0{sup o}. These selection rules hold for a wide range of pumping rates and fjord lengths, widths, and directions.
Viscous fingering and channeling in chemical enhanced oil recovery
Daripa, Prabir; Dutta, Sourav
2017-11-01
We have developed a hybrid numerical method based on discontinuous finite element method and modified method of characteristics to compute the multiphase multicomponent fluid flow in porous media in the context of chemical enhanced oil recovery. We use this method to study the effect of various chemical components on the viscous fingering and channeling in rectilinear and radial flow configurations. We will also discuss about the efficiency of various flooding schemes based on these understandings. Time permitting, we will discuss about the effect of variable injection rates in these practical setting. U.S. National Science Foundation Grant DMS-1522782.
Spatiotemporal resonances in mixing of open viscous fluids
DEFF Research Database (Denmark)
Okkels, Fridolin; Tabeling, Patrick
2004-01-01
In this Letter, we reveal a new dynamical phenomenon, called "spatiotemporal resonance," which is expected to take place in a broad range of viscous, periodically forced, open systems. The observation originates from a numerical and theoretical analysis of a micromixer, and is supported...... by preliminary experimental observations. The theoretical model nicely matches the numerical results, which again is supported by the experiment. Because of the general nature of the phenomenon, this phenomenon is not limited to microsystems. Because of the resonances, a slight tuning of the control parameters...
On the viscous Burgers equation in unbounded domain
Directory of Open Access Journals (Sweden)
J. Limaco
2010-04-01
Full Text Available In this paper we investigate the existence and uniqueness of global solutions, and a rate stability for the energy related with a Cauchy problem to the viscous Burgers equation in unbounded domain $\\mathbb{R}\\times(0,\\infty$. Some aspects associated with a Cauchy problem are presented in order to employ the approximations of Faedo-Galerkin in whole real line $\\mathbb{R}$. This becomes possible due to the introduction of weight Sobolev spaces which allow us to use arguments of compactness in the Sobolev spaces.
Viscous flow and heat transfer over an unsteady stretching surface
Directory of Open Access Journals (Sweden)
Ene Remus-Daniel
2016-01-01
Full Text Available In this paper we have studied the flow and heat transfer of a horizontal sheet in a viscous fluid. The stretching rate and temperature of the sheet vary with time. The governing equations for momentum and thermal energy are reduced to ordinary differential equations by means of similarity transformation. These equations are solved approximately by means of the Optimal Homotopy Asymptotic Method (OHAM which provides us with a convenient way to control the convergence of approximation solutions and adjust convergence rigorously when necessary. Some examples are given and the results obtained reveal that the proposed method is effective and easy to use.
Viscous hydrodynamics relaxation time from AdS/CFT correspondence
Heller, Michał P.; Janik, Romuald A.
2007-07-01
We consider an expanding boost-invariant plasma at strong coupling using the AdS/CFT correspondence for N=4 super Yang-Mills theory. We determine the relaxation time in second order viscous hydrodynamics and find that it is around 30 times shorter than weak coupling expectations. We find that the nonsingularity of the dual geometry in the string frame necessitates turning on the dilaton which leads to a nonvanishing expectation value for trF2 behaving like τ-10/3.
ΛCDM model with dissipative nonextensive viscous dark matter
Gimenes, H. S.; Viswanathan, G. M.; Silva, R.
2018-03-01
Many models in cosmology typically assume the standard bulk viscosity. We study an alternative interpretation for the origin of the bulk viscosity. Using nonadditive statistics proposed by Tsallis, we propose a bulk viscosity component that can only exist by a nonextensive effect through the nonextensive/dissipative correspondence (NexDC). In this paper, we consider a ΛCDM model for a flat universe with a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity, without any perturbative approach. In order to analyze cosmological constraints, we use one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations and cosmic microwave background data.
Lackowski, Marcin; Nowakowska, Helena
2018-02-01
An electric field can affect a dielectric fluid flow and this effect can be used especially in micro-devices. A differential second order equation for a temporal dependence of the liquid height-of-rise in a microchannel made of two parallel plates is modified to account for a liquid dielectrophoretic (LDEP) force, which is a result of an electric field occurring between the plates. This equation takes into account capillary, LDEP, inertial and gravitational forces for viscous, incompressible fluid. It is shown that the LDEP force between parallel electrodes does not depend on the meniscus shape. Time dependences of the height-of-rise, velocity of the liquid front and forces acting on the liquid are obtained for two cases of the initial liquid height and several voltage values applied to the plates, and presented in a dimensionless form. Numerical calculations and experimental verification are performed for isopropanol as a working liquid. We have found that for this liquid, adverse effects such as strong heating and boiling are small enough to observe the LDEP phenomenon between parallel electrodes. Results of the experiment conducted for a 5 mm long and 300 µm wide channel with walls made of copper in the time interval 0–10 s, which is sufficient to achieve a stationary state, are presented. They are consistent with the theory within the voltage range up to 330 V. The highest achieved LDEP height-of-rise was about 13 mm. For higher voltage, Joule heating prevents from reaching a stationary state.
Nickerson, Stella D; Nofen, Elizabeth M; Chen, Haobo; Ngan, Miranda; Shindel, Benjamin; Yu, Hongyu; Dai, Lenore L
2015-07-16
Iodide-based ionic liquids have been widely employed as iodide sources in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. This paper investigates, for the first time, mixtures of water and the ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]) through a combined experimental and molecular dynamics study. The density, melting point, viscosity, and conductivity of these mixtures were measured by experiment. The composition region below 50% water by mole was found to differ dramatically from the region above 50% water, with trends in density and melting point differing before and after that point. Water was found to have a profound effect on viscosity and conductivity of the IL, and the effect of hydrogen bonding was discussed. Molecular dynamics simulations representing the same mixture compositions were performed. Molecular ordering was observed, as were changes in this ordering corresponding to water content. Molecular ordering was related to the experimentally measured mixture properties, providing a possible explanation for the two distinct composition regions identified by experiment.
Stability analysis applied to the early stages of viscous drop breakup by a high-speed gas stream
Padrino, Juan C.; Longmire, Ellen K.
2013-11-01
The instability of a liquid drop suddenly exposed to a high-speed gas stream behind a shock wave is studied by considering the gas-liquid motion at the drop interface. The discontinuous velocity profile given by the uniform, parallel flow of an inviscid, compressible gas over a viscous liquid is considered, and drop acceleration is included. Our analysis considers compressibility effects not only in the base flow, but also in the equations of motion for the perturbations. Recently published high-resolution images of the process of drop breakup by a passing shock have provided experimental evidence supporting the idea that a critical gas dynamic pressure can be found above which drop piercing by the growth of acceleration-driven instabilities gives way to drop breakup by liquid entrainment resulting from the gas shearing action. For a set of experimental runs from the literature, results show that, for shock Mach numbers >= 2, a band of rapidly growing waves forms in the region well upstream of the drop's equator at the location where the base flow passes from subsonic to supersonic, in agreement with experimental images. Also, the maximum growth rate can be used to predict the transition of the breakup mode from Rayleigh-Taylor piercing to shear-induced entrainment. The authors acknowledge support of the NSF (DMS-0908561).
Impact of viscous fingering and permeability heterogeneity on fluid mixing in porous media
National Research Council Canada - National Science Library
Nicolaides, Christos; Jha, Birendra; Cueto‐Felgueroso, Luis; Juanes, Ruben
2015-01-01
.... Recent developments have explored the effect of viscosity contrast on mixing, suggesting that the unstable displacement of fluids with different viscosities, or viscous fingering, provides a powerful...
Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization Project
National Aeronautics and Space Administration — The innovations proposed are twofold: 1) a robust unstructured mesh movement method able to handle isotropic (Euler), anisotropic (viscous), mixed element (hybrid)...
Dynamical evolution of viscous disks around be stars. II. Polarimetry
Energy Technology Data Exchange (ETDEWEB)
Haubois, X. [LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen, F-92195 Meudon (France); Mota, B. C.; Carciofi, A. C.; Bednarski, D. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, São Paulo, SP 05508-090 (Brazil); Draper, Z. H. [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Wisniewski, J. P. [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks St Norman, OK 73019 (United States); Rivinius, Th., E-mail: xavier.haubois@obspm.fr [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile)
2014-04-10
Be stars exhibit variability for a great number of observables. Putting the pieces of the disk dynamics together is not an easy task and requires arduous modeling before achieving a good fit to the observational data. In order to guide the modeling process and make it more efficient, it is very instructive to investigate reference dynamical cases. This paper focuses on continuum polarimetric quantities and is the second of a series that aims to demonstrate the capacity of deriving the dynamical history and fundamental parameters of a classical Be star through follow-up of various observables. After a detailed study of the different opacities at play in the formation of polarized spectra, we investigate predictions of polarimetric observables in the continuum for different dynamical scenarios. Our models are based on a coupling of a hydrodynamic viscous decretion simulations in a disk and a three-dimensional non-LTE radiative transfer code. Through introduction of the polarization color diagram (PCD), we show that certain combinations of polarimetric observables exhibit features that are characteristic of a mass-loss history. This diagram also enables estimates of fundamental parameters such as the inclination angle, disk density scale, and the α viscous diffusion parameter. We present the PCD as a powerful diagnosis tool to track the dynamical phases of a Be star, such as disk build-up, dissipation, periodic, and episodic outbursts. Finally, we confront our models with observations of four Be stars that exhibited long-term polarimetric activity.
Effect of external viscous load on head movement
Nam, M.-H.; Lakshminarayanan, V.; Stark, L. W.
1984-01-01
Quantitative measurements of horizontal head rotation were obtained from normal human subjects intending to make 'time optimal' trajectories between targets. By mounting large, lightweight vanes on the head, viscous damping B, up to 15 times normal could be added to the usual mechanical load of the head. With the added viscosity, the head trajectory was slowed and of larger duration (as expected) since fixed and maximal (for that amplitude) muscle forces had to accelerate the added viscous load. This decreased acceleration and velocity and longer duration movement still ensued in spite of adaptive compensation; this provided evidence that quasi-'time optimal' movements do indeed employ maximal muscle forces. The adaptation to this added load was rapid. Then the 'adapted state' subjects produced changed trajectories. The adaptation depended in part on the differing detailed instructions given to the subjects. This differential adaptation provided evidence for the existence of preprogrammed controller signals, sensitive to intended criterion, and neurologically ballistic or open loop rather than modified by feedback from proprioceptors or vision.
Compressed gas domestic aerosol valve design using high viscous product
Directory of Open Access Journals (Sweden)
A Nourian
2016-10-01
Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.
Shear-Induced Membrane Fusion in Viscous Solutions
Kogan, Maxim
2014-05-06
Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3- phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s-1 provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force- induced stress. © 2014 American Chemical Society.
Divergence-Free SPH for Incompressible and Viscous Fluids.
Bender, Jan; Koschier, Dan
2017-03-01
In this paper we present a novel Smoothed Particle Hydrodynamics (SPH) method for the efficient and stable simulation of incompressible fluids. The most efficient SPH-based approaches enforce incompressibility either on position or velocity level. However, the continuity equation for incompressible flow demands to maintain a constant density and a divergence-free velocity field. We propose a combination of two novel implicit pressure solvers enforcing both a low volume compression as well as a divergence-free velocity field. While a compression-free fluid is essential for realistic physical behavior, a divergence-free velocity field drastically reduces the number of required solver iterations and increases the stability of the simulation significantly. Thanks to the improved stability, our method can handle larger time steps than previous approaches. This results in a substantial performance gain since the computationally expensive neighborhood search has to be performed less frequently. Moreover, we introduce a third optional implicit solver to simulate highly viscous fluids which seamlessly integrates into our solver framework. Our implicit viscosity solver produces realistic results while introducing almost no numerical damping. We demonstrate the efficiency, robustness and scalability of our method in a variety of complex simulations including scenarios with millions of turbulent particles or highly viscous materials.
Viscous oil dynamics evaluation for better fluid sampling
Energy Technology Data Exchange (ETDEWEB)
Canas, J.A.; Low, S.; Adur, N.; Teixeira, V. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Schlumberger, Sugar Land, TX (United States)
2005-11-01
The benefits that heavy oil producers can gain by sampling formation fluid early in the life of a well were discussed. Sampling provides the necessary information for reservoir completion planning and decision making, which is important in areas where flow assurance is a key concern. Most sampling problems are attributed to a sudden pressure change and the associated surge of fluids. The increased flow rate mobilizes sand grains and fines, which can plug flow lines, cause erosion of drilling parts and prevent proper operation of mechanical components in tools. In addition to the extremely low flow rates that are generally required for sampling highly viscous oils in unconsolidated sands, other factors should also be considered for optimum sampling, such as reservoir permeability, anisotropy, nearby upper and lower impermeable barriers, and location of the wireline formation tester (WFT) or modular formation tester (MDT) relative to the formation being samples. This paper presented the results of a study of near wellbore fluid flow during cleanup prior to sampling with a large diameter probe, a new extra large diameter probe, dual packer formation testers with customized gravel pack screens, an extra high-pressure displacement unit pump for low flow rates, advanced downhole flow analysis monitoring and special sampling methods. The intent of the study was to predict cleanup time with respect to viscous oils and the variables which make sampling feasible with respect to quality, operational time and reduction of associated risks. 11 refs., 32 figs.
Viscous self interacting dark matter and cosmic acceleration
Atreya, Abhishek; Bhatt, Jitesh R.; Mishra, Arvind
2018-02-01
Self interacting dark matter (SIDM) provides us with a consistent solution to certain astrophysical observations in conflict with collision-less cold DM paradigm. In this work we estimate the shear viscosity (η) and bulk viscosity (ζ) of SIDM, within kinetic theory formalism, for galactic and cluster size SIDM halos. To that extent we make use of the recent constraints on SIDM cross-section for the dwarf galaxies, LSB galaxies and clusters. We also estimate the change in solution of Einstein's equation due to these viscous effects and find that σ/m constraints on SIDM from astrophysical data provide us with sufficient viscosity to account for the observed cosmic acceleration at present epoch, without the need of any additional dark energy component. Using the estimates of dark matter density for galactic and cluster size halo we find that the mean free path of dark matter ~ few Mpc. Thus the smallest scale at which the viscous effect start playing the role is cluster scale. Astrophysical data for dwarf, LSB galaxies and clusters also seems to suggest the same. The entire analysis is independent of any specific particle physics motivated model for SIDM.
Energy Technology Data Exchange (ETDEWEB)
McHugh, P.R.; Ramshaw, J.D.
1991-11-01
MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.
MATHEMATICAL MODEL NON-ISOTHERMAL FLOW HIGHLY VISCOUS MEDIA CHANNELS MATRIX EXTRUDER
Directory of Open Access Journals (Sweden)
A. S. Sidorenko
2015-01-01
Full Text Available We consider a one-dimensional steady flow of highly viscous medium in a cylindrical channel with Dissipation and dependence of the viscosity on the temperature. It is assumed that a relatively small intervals of temperature variation of the dynamic viscosity with a sufficient degree of accuracy can be assumed to be linear. The model was based on the equations of hydrodynamics and the heat transfer fluid. In the task channel wall temperature is assumed constant. An approximate solution of the problem, according to which the distribution of velocity, pressure and temperature is sought in the form of an expansion in powers of the dimensionless transverse coordinates. A special case, when the ratio of the velocity distribution, pressure and temperature is allowed to restrict the number of terms in the expansion as follows: for speed - the first 3 to the pressure - the first two for the temperature - the first 5. The expressions to determine the temperature profile of the medium in the channel and characterization dissipative heating. To simulate the process of heat transfer highly viscous media developed a program for personal electronic computers. The calculation was performed using experimental research data melt flow grain mixture of buckwheat and soybeans for the load speed of 0.08 mm / s. The method of computer simulation carried out checks on the adequacy of the solutions to the real process of heat transfer. Analysis of the results indicates that for small values of the length of the channel influence dissipation function appears mainly at the wall. By increasing the reduced length of this phenomenon applies to all section of the channel. At high temperature profile along the channel length is determined entirely by dissipation. In the case of heat transfer due to frictional heat only, the form of curves of temperature distribution is a consequence of the interaction effects of heating due to viscous shear effects cooling by conduction. The
Pyschik, Marcelina; Klein-Hitpaß, Marcel; Girod, Sabrina; Winter, Martin; Nowak, Sascha
2017-02-01
In this study, an optimized method using capillary electrophoresis (CE) with a direct contactless conductivity detector (C(4) D) for a new application field is presented for the quantification of fluoride in common used lithium ion battery (LIB) electrolyte using LiPF6 in organic carbonate solvents and in ionic liquids (ILs) after contacted to Li metal. The method development for finding the right buffer and the suitable CE conditions for the quantification of fluoride was investigated. The results of the concentration of fluoride in different LIB electrolyte samples were compared to the results from the ion-selective electrode (ISE). The relative standard deviations (RSDs) and recovery rates for fluoride were obtained with a very high accuracy in both methods. The results of the fluoride concentration in the LIB electrolytes were in very good agreement for both methods. In addition, the limit of detection (LOD) and limit of quantification (LOQ) values were determined for the CE method. The CE method has been applied also for the quantification of fluoride in ILs. In the fresh IL sample, the concentration of fluoride was under the LOD. Another sample of the IL mixed with Li metal has been investigated as well. It was possible to quantify the fluoride concentration in this sample. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Drop impact on a liquid-liquid interface
Mohamed-Kassim, Zulfaa; Longmire, Ellen K.
2003-11-01
The effects of Reynolds number (Re) on the gravity-driven impact of a single drop onto a liquid-liquid interface were studied experimentally using the particle image velocimetry method. The liquid beneath the interface was identical to the drop liquid. Two liquids with different viscosities were used as the ambient above the interface resulting in viscosity ratios (drop to ambient) of 0.14 and 0.33. Index matching and a slight camera inclination were employed to eliminate optical distortion. Image planes were captured at a rate of 500 Hz, and velocity fields were determined from consecutive images. The flow Reynolds numbers based on drop impact velocity and ambient viscosity were 20 and 68 for the lower and higher viscosity ratios, respectively. During the approach toward the interface, the drop shape was more oblate for the higher Re case. At the same time, viscous stresses generated a vortex ring inside each drop and a wake behind it. Each wake contained a detached ring of similar sign to the ring inside the drop. The subsequent deformation of the drop and the interface due to impact was observed to be more radical in the higher Re case. The impingement and shearing of the trailing wake on the upper surface of each drop played a significant role in dissipating the vorticity inside both drops, and the vorticity dissipated faster for lower Re.
Directory of Open Access Journals (Sweden)
Çilingir Süngü İnci
2017-01-01
Full Text Available This study is to examine the steady two dimensional laminar flow of a viscous incompressible electrically conducting fluid over a continuous surface. In this study DTM-Padé method is used to solve which is a combination of differential transform method (DTM and Padé approximant. Comparisons between the solutions obtained by DTM and DTM-Padé and are shown that DTM-Padé is the completely powerful method then DTM for solving the problems in which boundary conditions at infinity. Also in this study the effect of Magnetic and Radiation parameters, Prandtl number and Eckert number for velocity and temperature distributions are investigated.
Viscoelasticity measurement of gel formed at the liquid-liquid reactive interfaces
Ujiie, Tomohiro
2012-11-01
We have experimentally studied a reacting liquid flow with gel formation by using viscous fingering (VF) as a flow field. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. We showed that influence of gel formation on VF were qualitatively different in these two systems. We consider that the difference in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. In the present study, viscoelasticity measurement was performed by two methods. One is the method which uses Double Wall Ring sensor (TA instrument) and another is the method using parallel plate. In both viscoelasticity measurements, the behavior of the formed gel was qualitatively consistent. We have found that the gel in the SPA system shows viscoelastic fluid like behavior. Moreover, we have found that the gel in the XG system shows solid like behavior.
Lithium ion conducting ionic electrolytes
Angell, C. Austen; Xu, Kang; Liu, Changle
1996-01-01
A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.
Lithium ion conducting ionic electrolytes
Angell, C.A.; Xu, K.; Liu, C.
1996-01-16
A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.
Drops and waves on a viscous film coating a vertical fiber
Duprat, Camille; Giorgiutti-Dauphine, Frederique
2009-11-01
We consider the nonlinear dynamics of a liquid viscous film flowing down a vertical fiber. The initially flat film spontaneously breaks up into a regular wavetrain due to the Rayleigh-Plateau instability. The characteristics of the fully developed structures then depend on the dominant mechanisms. When the advection of the waves by the flow dominates over the instability, we observe moderate amplitude waves that propagate without carrying mass. When surface tension is strong, the film breaks up into large amplitude drops exhibiting a recirculation region. The transition between drops and waves regimes and the corresponding structures have been characterized experimentally and numerically. When both surface tension and viscosity effects are strong, the system can be seen has a paradigm for active (unstable), dissipative and dispersive media. The particular shape of the resulting structures gives rise to complex interactions (attraction and repulsion) leading to the formation of bound states. The system then appears to select a finite number of preferred specific distances in agreement with a weak interaction theory developed by D. Tseluiko, S. Saprykin and S. Kalliadasis (Imperial College London).
Effect of insertion method on knoop hardness of high viscous glass ionomer cements.
Raggio, Daniela Prócida; Bonifácio, Clarissa Calil; Bönecker, Marcelo; Imparato, José Carlos P; Gee, Anton J de; Amerongen, Willem Evert van
2010-01-01
The aim of this study was to assess the Knoop hardness of three high viscous glass ionomer cements: G1 - Ketac Molar; G2 - Ketac Molar Easymix (3M ESPE) and G3 - Magic Glass ART (Vigodent). As a parallel goal, three different methods for insertion of Ketac Molar Easymix were tested: G4 - conventional spatula; G5 - commercial syringe (Centrix) and G6 - low-cost syringe. Ten specimens of each group were prepared and the Knoop hardness was determined 5 times on each specimen with a HM-124 hardness machine (25 g/30 s dwell time) after 24 h, 1 and 2 weeks. During the entire test period, the specimens were stored in liquid paraffin at 37ºC. Significant differences were found between G3 and G1/G2 (two-way ANOVA and Tukey's post hoc test; p<0.01). There was no significant difference in the results among the multiple ways of insertion. The glass ionomer cement Magic Glass ART showed the lowest hardness, while the insertion technique had no significant influence on hardness.
Chemically reactive flow of micropolar fluid accounting viscous dissipation and Joule heating
Khan, Muhammad Ijaz; Waqas, Muhammad; Hayat, Tasawar; Alsaedi, Ahmed
Inspired by the several applications of non-Newtonian materials, the current investigation manages a theoretical analysis of series solutions in MHD flow of micropolar material towards nonlinear stretchable surface. Mathematical modeling is developed through viscous dissipation, mixed convection, chemical reaction and Joule heating. The phenomenon of heat and mass transfer are investigated simultaneously. The technique of local similarity transformation is utilized in order to transform the governing expressions from PDEs into ODEs. The established non-linear expressions have been tackled analytically by means of homotopic concept. The interference influences and the flow aspects are presented in the form of liquid velocity, temperature and concentration fields. The results described here demonstrate that material parameter boosts the velocity and micro-rotation velocity. It is noticed that thermal and concentration fields are higher when Eckert number and destructive chemical reaction parameter are enhanced. Besides this for the verification of the present findings, the results of presented analysis have been compared with the available works in particular situations.
Instability evolution of the viscous elliptic liquid jet in the Rayleigh regime
Gu, Shibo; Wang, Lipo; Hung, David L. S.
2017-06-01
For jet flow emanating from noncircular orifices, an unbalanced surface tension force leads to capillary instability, which is independent of influence from the ambient air in the Rayleigh regime. In the present article, the dynamic behavior of incompressible elliptical jets in the Rayleigh regime is investigated. Theoretically, with the consideration of the fluid viscosity, the solution of the Cosserat equation consists of a particular solution and a complementary solution. For the complementary solution the wave number of disturbance modes has two complex conjugate roots, which are responsible for the jet breakup. To match the nonzero particular solution, a spatial wave needs to be introduced, which is independent of external perturbations. Physically, such a spatial wave is interpreted as the axis-switching phenomenon. The predicted features of the axis-switching wavelength and the damping effect from the fluid viscosity have been successfully verified by experimental results. Moreover, the dispersion relations from the present theory suggest that the growth rate of spatial instability is influenced by orifice eccentricity, the Weber number, and the Ohnesorge number.
Kinetics, Thermodynamics, and Structure of Bulk Metallic Glass Forming Liquids
Busch, Ralf; Gallino, Isabella
2017-11-01
Bulk metallic glass forming melts are viscous liquids compared with pure metals and conventional alloys. They show intermediate kinetic fragility and low thermodynamic driving force for crystallization, leading to sluggish crystallization kinetics, leaving time for good glass forming ability and bulk casting thickness. We relate the kinetics to the thermodynamics of the supercooled liquid using the Adam-Gibbs equation. The kinetic fragility is also connected to the structural changes in the liquid and can be quantitatively linked to the robustness of medium-range order in the supercooled liquid with increasing temperature. Liquid-liquid transitions from fragile behavior at high temperature to strong behavior at low temperature in the supercooled liquid and in the vicinity of the glass transition emerge as a common phenomenon.
Gañán-Calvo, A. M.; Pérez-Saborid, M.; López-Herrera, J. M.; Gordillo, J. M.
2004-05-01
Here we propose a new physical approach to the high-speed conformation of a Newtonian viscous liquid into a fiber (high speed fiber drawing), which suppresses all well-known axisymmetric and asymmetric instabilities during the fiber drawing. Our approach is based on the application of an appropriate gas pressure profile along the viscous jet or fiber axis, provided by a special subsonic micro-nozzle concentric with the fiber. The micro-nozzle design and optimization is mathematically provided.
From viscous to elastic sheets: Dynamics of smectic freely floating films
Stannarius, Ralf; Harth, Kirsten; May, Kathrin; Trittel, Torsten
The dynamics of droplets and bubbles, particularly on microscopic scales, are of considerable importance in biological, environmental, and technical contexts. Soap bubbles, vesicles and components of biological cells are well known examples where the dynamic behavior is significantly influenced by the properties of thin membranes enclosed by fluids. Two-dimensional membrane motions couple to 3D shape transformations. Smectic liquid crystal mesogens form phases with internal molecular layer order. Free-standing films are easily prepared from this class of materials. They represent simple model systems for membrane dynamics and pattern formation in a quasi two-dimensional fluid. These films are usually spanned over a frame, and they can be inflated to bubbles on a support. Recently, closed microscopic shells of liquid-crystalline materials suspended in an outer fluid without contact to a solid support have been introduced and studied. With a special technique, we prepare millimetre to centimetre sized smectic bubbles in air (similar to soap bubbles). Their distinct feature is the fact that any change of surface area is coupled to a restructuring of the layers in the membrane. High-speed cameras are used to observe the shape transformations of freely floating bubbles from a distorted initial shape to a sphere. Bursting dynamics are recorded and compared to models. Most strikingly, an unpreceded cross-over from inviscid to viscous and elastic behaviour with increasing thickness of the membrane is found: Whereas thin bubbles behave almost like inviscid fluids, the relaxation dynamics slows down considerably for larger film thicknesses. Surface wrinkling and formation of extrusions are observed. We will present a characterization and an expalantion for the above phenomena.
Spreading dynamic of viscous volcanic ash in stimulated jet engine conditions
song, wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado
2016-04-01
The ingestion of volcanic ash is widely recognised as a potentially fatal hazard for aircraft operation. The volcanic ash deposition process in a jet turbine is potentially complex. Volcanic ash in the air stream enters the inner liners of the combustors and partially or completely melts under the flames up to 2000 °C, at which point part of the ash deposits in the combustor fuel nozzle. Molten volcanic particles within high energy airflow escape the combustor to enter the turbine and impact the stationary (e.g., inlet nozzle guide vanes) and rotating airfoils (e.g., first stage high-pressure turbine blades) at high speed (up to Mach 1.25) in different directions, with the result that ash may stick, flow and remain liquid or solidify. Thus, the wetting behaviour of molten volcanic ash particle is fundamental to investigate impingement phenomena of ash droplet on the surface of real jet engine operation. The topic of wetting has received tremendous interest from both fundamental and applied points of view. However, due to the interdisciplinary gap between jet engine engineering and geology science, explicit investigation of wetting behaviour of volcanic ash at high temperature is in its infancy. We have taken a big step towards meeting this challenge. Here, we experimentally and theoretically investigate the wetting behaviour of viscous volcanic ash over a wide temperature range from 1100 to 1550 °C using an improved sessile-drop method. The results of our experiment demonstrate that temperature and viscosity play a critical role in determining the wetting possibility and governing the spreading kinetics of volcanic ash at high temperatures. Our systemic analysis of spreading of molten volcanic ash systems allows us to report on the fundamental differences between the mechanisms controlling spreading of organic liquids at room temperature and molten volcanic ash droplets.
Scheel, Janet D.; Schumacher, Jörg
2017-12-01
We discuss two aspects of turbulent Rayleigh-Bénard convection (RBC) on the basis of high-resolution direct numerical simulations in a unique setting: a closed cylindrical cell of aspect ratio of one. First, we present a comprehensive comparison of statistical quantities such as energy dissipation rates and boundary layer thickness scales. Data are used from three simulation run series at Prandtl numbers Pr that cover two orders of magnitude. In contrast to most previous studies in RBC the focus of the present work is on convective turbulence at very low Prandtl numbers including Pr=0.021 for liquid mercury or gallium and Pr=0.005 for liquid sodium. In this parameter range of RBC, inertial effects cause a dominating turbulent momentum transport that is in line with highly intermittent fluid turbulence both in the bulk and in the boundary layers and thus should be able to trigger a transition to the fully turbulent boundary layers of the ultimate regime of convection for higher Rayleigh number. Second, we predict the ranges of Rayleigh numbers for which the viscous boundary layer will transition to turbulence and the flow as a whole will cross over into the ultimate regime. These transition ranges are obtained by extrapolation from our simulation data. The extrapolation methods are based on the large-scale properties of the velocity profile. Two of the three methods predict similar ranges for the transition to ultimate convection when their uncertainties are taken into account. All three extrapolation methods indicate that the range of critical Rayleigh numbers Rac is shifted to smaller magnitudes as the Prandtl number becomes smaller.
DEFF Research Database (Denmark)
Winther-Jensen, Bjørn; Chen, Jun; West, Keld
2005-01-01
Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the pres......Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid....... In the present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped in the polymer films. (c) 2005 Elsevier Ltd. All rights reserved....
On the closure of circular holes in nonlinear viscous media.
Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel
2016-04-01
Many rocks exhibit viscous behaviors which have to be taken into account in applications ranging from wellbores creeping during drilling to salt caves or hard rock mine tunnels shrinking with time. We address all these different cases using a unified configuration. We consider a 2D plane strain problem where a circular hole, representing the wellbore, the cave or the mine tunnel depending on the application, is embedded in an infinite incompressible non-linear viscous material. The problem is purely mechanical. Not only the rheological model used here is well suited for real formations but it can also represent many different sorts of rocks like salts, shales, quartzite and even ice. The major difference between the applications concerns the relevant time scales and they must therefore be separated according to that. For short timescale applications like wellbore creep during drilling it is first necessary to determine whether an elastic component must or must not be taken into account. This analysis is carried out using a non-linear viscoelastic Maxwell model. If it is acknowledged that a purely viscous rheology is enough, as can be the case for salts, then we can proceed with our unified configuration. We start by considering the case where the medium is isotropic and where pressure boundary conditions are prescribed both at the hole rim and at infinity. This problem is 1D due to axial symmetry. Analytical solutions to very similar problems have already been provided and we compare the solution we have derived to the existing ones. We show that our solution is consistent and that we recover similar results to the ones derived for comparable rheologies. Using MILAMIN, a fast finite element code, we investigate further two cases which lead to angular dependency and stress concentrations around the hole. In the first case we add a deviatoric stress at infinity and we study the impact of this extra stress on the solution. It is important to understand this parameter
DEFF Research Database (Denmark)
Bylaite, Egle; Ilgunaite, Z.; Meyer, Anne Boye Strunge
2004-01-01
The effect of lambda-carrageenan addition level (0.1, 0.25, 0.4, and 0.5% w/w) and viscosity on the release of systematic series of aroma compounds (aldehydes, esters, ketones, and alcohols) was studied in thickened viscous solutions containing lambda-carrageenan and 10 wt % of sucrose. Air......-liquid partition coefficients K (37degreesC) of a total of 43 aroma compounds were determined in pure water and in the lambda-carrageenan solutions by static headspace gas chromatography. Mass transfer of the aroma compounds in water and in the thickened lambda-carrageenan solutions which had a wide viscosity...... range was assessed by dynamic headspace gas chromatography. K(37degreesC) increased as the carbon chain increased within each homologous series. Esters exhibited the highest volatility, followed by aldehydes, ketones, and alcohols. Under equilibrium, no overall effect of lambda-carrageenan was found...
Particles Dispersion on Fluid-Liquid Interfaces
Singh, Pushpendra; Gurupatham, Sathish; Dalal, Bhavin; Hossain, M.; Fischer, Ian; Joseph, D. D.
2010-11-01
In a previous study we have shown that when small particles, e.g., flour, pollen, etc., come in contact with an air-liquid interface, they disperse in a manner that appears explosive. This is due to the fact that the capillary force pulls particles into the interface causing them to accelerate to a relatively large velocity. The motion of particles in the direction normal to the interface is inertia dominated, and so they oscillate vertically about the equilibrium position before coming to a stop under viscous drag. This vertical motion of a particle causes a radially outward lateral (secondary) flow on the interface that causes nearby particles to move away. The dispersion on a liquid-liquid interface was relatively weaker than on an air-liquid interface, and occurred over a longer period of time. This was a consequence of the fact that particles became separated while sedimenting through the upper liquid and reached the interface over a time interval that lasted for several seconds. The rate of dispersion depended on the size of particles, the particle and liquids densities, the viscosities of the liquids involved, and the contact angle. The frequency of oscillation of particles about their floating equilibrium increased with decreasing particle size on both air-water and liquid-liquid interfaces, and the time taken to reach equilibrium decreased with decreasing particle size.
Global existence of solutions for a viscous Cahn–Hilliard equation ...
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 123; Issue 4. Global Existence of Solutions for a Viscous Cahn-Hilliard Equation with Gradient Dependent Potentials and Sources. Chengyuan Qu Yang Cao ... Keywords. Global solution; viscous Cahn–Hilliard equation; initial boundary value problem ...
Computer simulation of viscous fingering in a lifting Hele-Shaw cell ...
Indian Academy of Sciences (India)
We simulate viscous fingering generated by separating two plates with a constant force, in a lifting Hele-Shaw cell. Variation in the patterns for different fluid viscosity and lifting force is studied. Viscous fingering is strongly affected by anisotropy. We report a computer simulation study of fingering patterns, where circular or ...
Computer simulation of viscous fingering in a lifting Hele-Shaw cell ...
Indian Academy of Sciences (India)
We report a computer simulation study of fingering patterns, where circular or square grooves are etched on to the lower plate. Results are compared with experiments. Keywords. Viscous fingering; Hele-Shaw cell; simulation. PACS Nos 47.15.gp; 47.20.Gv; 07.05.Tp. 1. Introduction. Viscous fingering in the lifting Hele-Shaw ...
Bounds on the phase velocity in the linear instability of viscous ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
parallel shear flow problem are extended to the problem of viscous parallel, shear flow problem in the beta plane and a sufficient condition for stability has also been derived. Keywords. Viscous shear flows; linear stability. 1. Introduction. Parallel shear flows problem is a classical hydrodynamic instability problem and contin ...
Global existence of solutions for a viscous Cahn–Hilliard equation ...
Indian Academy of Sciences (India)
We consider a class of nonlinear viscous Cahn–Hilliard equations with gradient dependent potentials and sources. By a Galerkin approximation scheme combined with the potential well method, we prove the global existence of weak solutions. Keywords. Global solution; viscous Cahn–Hilliard equation; initial boundary ...
Viscous-inviscid interaction using the parabolized Navier-Stokes equations
DEFF Research Database (Denmark)
Filippone, Antonino; Sørensen, Jens Nørkær
1997-01-01
A numerical model for the calculation of incompressible viscous flows past airfoils andwings has been developed. The approach is based on a strong viscous-inviscid coupling of aboundary element method with the Navier-Stokesequations in vorticity-streamfunction formulation.A semi-adaptive or fully...
Quasi-Simultaneous Viscous-Inviscid Interaction for Transonic Airfoil Flow
Veldman, Arthur E.P.
2005-01-01
Following Prandtl, a viscous-inviscid interaction (VII) method is presented, where the flow field is divided into a viscous shear layer and an inviscid outer region. Their coupling is performed with the quasi-simultaneous approach, making use of an appropriately chosen interaction law. Firstly, an
Study of the Motion of a Vertically Falling Sphere in a Viscous Fluid
Soares, A. A.; Caramelo, L.; Andrade, M. A. P. M.
2012-01-01
This paper aims at contributing to a better understanding of the motion of spherical particles in viscous fluids. The classical problem of spheres falling through viscous fluids for small Reynolds numbers was solved taking into account the effects of added mass. The analytical solution for the motion of a falling sphere, from the beginning to the…
Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer
Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.
2016-02-01
Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in
Viscous propulsion in active transversely-isotropic media
Cupples, Gemma; Smith, David J
2016-01-01
Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus is formed of polymer molecules which create an oriented fibrous network. Moreover, suspensions of elongated motile cells produce a form of active oriented matter. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude zero-Reynolds-number propulsion of a 'swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid produces an enhanced mean rate of working, independent of the initial fibre orientation, with an approximately linear dependence of energetic cost on the extensional and shear enhan...
Stability analysis of bulk viscous anisotropic universe model
Sharif, M.; Mumtaz, Saadia
2017-11-01
This paper is devoted to study the phase space analysis of locally rotationally symmetric Bianchi type I universe model by taking three different cases for bulk viscosity coefficient. An autonomous system of equations is established by defining normalized dimensionless variables. In order to investigate stability of the system, we evaluate corresponding critical points for different values of the parameters. In the case of bulk viscous matter and radiation, the parameters η=η0 and m≥0.8 show realistic evolution of the universe (prior radiation dominated era, conventional decelerated matter dominated state and ultimately accelerated expansion). We conclude that stable solutions exist in the presence of bulk viscosity with different choices of parameter m.
Mathematical theory of compressible viscous fluids analysis and numerics
Feireisl, Eduard; Pokorný, Milan
2016-01-01
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...
Viscous Rayleigh-Taylor instability in spherical geometry
Mikaelian, Karnig O.
2016-02-01
We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].
Evolution of a universe filled with a causal viscous fluid
Chimento, Luis P
2012-01-01
The behaviour of solutions to the Einstein equations with a causal viscous fluid source is investigated. In this model we consider a spatially flat Robertson-Walker metric, the bulk viscosity coefficient is related to the energy density as $\\zeta = \\alpha \\rho^{m}$, and the relaxation time is given by $\\zeta/\\rho$. In the case $m = 1/2$ we find the exact solutions and we verify whether they satisfy the energy conditions. Besides, we study analytically the asymptotic stability of several families of solutions for arbitrary $m$. We find that the qualitative asymptotic behaviour in the far future is not altered by relaxation processes, but they change the behaviour in the past, introducing singular instead of deflationary evolutions or making the Universe bounce due to the violation of the energy conditions.
Slow viscous flow of two particles in a cylindrical tube
Yao, Xin; Wong, Teck Neng; Marcos, -
2015-11-01
The slow viscous flow around two particles in a cylindrical tube is obtained theoretically. We employ the Lamb's general solution based on spherical harmonics and cylindrical harmonics to solve the flow field around the particles and the flow within the tube, respectively. We compute the drag and torque coefficients of the particles which are dependent on the distance among the cylinder wall and the two particles. The hydrodynamic forces are also a function of particle velocities and background velocity. Our results are in agreement with the existing theory of a single particle traveling in the tube when the distance between the two particles increases. We found that particle-particle interactions can be neglected when the separation distance is three times larger than the sum of particles radii. Furthermore, such analysis can give us insights to understand the mechanisms of collision and aggregation of particles.
Viscous and Gravitational Fingering in Multiphase Compositional and Compressible Flow
Moortgat, Joachim
2016-01-01
Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for 1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and 2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, w...
Bulk Viscous Matter-dominated Universes: Asymptotic Properties
Avelino, Arturo; Gonzalez, Tame; Nucamendi, Ulises; Quiros, Israel
2013-01-01
By means of a combined study of the type Ia supernovae test,together with a study of the asymptotic properties in the equivalent phase space -- through the use of the dynamical systems tools -- we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of very particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed...
Constraining viscous dark energy models with the latest cosmological data
Energy Technology Data Exchange (ETDEWEB)
Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)
2017-10-15
Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H{sub 0} tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios. (orig.)
Lectures on Mathematical Foundation of Turbulent Viscous Flows
Miyakawa, Tetsuro
2006-01-01
Five leading specialists reflect on different and complementary approaches to fundamental questions in the study of the Fluid Mechanics and Gas Dynamics equations. Constantin presents the Euler equations of ideal incompressible fluids and discusses the blow-up problem for the Navier-Stokes equations of viscous fluids, describing some of the major mathematical questions of turbulence theory. These questions are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations that is explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on several nonlinear evolution equations - in particular Navier-Stokes - and some related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, whenever it is localized in space or in time variable. Ukai presents the asymptotic analysis th...
Swimming Speeds of Filaments in Viscous Fluids with Resistance
Ho, Nguyenho; Olson, Sarah
2015-11-01
Spermatozoa and bacteria can utilize lateral and spiral bending waves to propagate in a fluid. Often, they encounter different fluid environments filled with mucus, cells, hormones, and other large proteins. These extra materials act as friction, possibly preventing or enhancing forward progression of swimmers. To understand these effects, we employ Taylor's techniques to calculate the asymptotic swimming speeds of a cylinder of infinite extent in a viscous fluid with resistance known as a Brinkman fluid. We find that, up to the second order expansion, the swimming speeds are enhanced as resistance increases. The Stokes limit can also be also recovered from this result as resistance goes to zero. In addition, we show numerical results for a Lagrangian algorithm of a rod waving in a porous medium and compare numerical results to asymptotic swimming speeds.
Shapes of sedimenting soft elastic capsules in a viscous fluid.
Boltz, Horst-Holger; Kierfeld, Jan
2015-09-01
Soft elastic capsules which are driven through a viscous fluid undergo shape deformation coupled to their motion. We introduce an iterative solution scheme which couples hydrodynamic boundary integral methods and elastic shape equations to find the stationary axisymmetric shape and the velocity of an elastic capsule moving in a viscous fluid at low Reynolds numbers. We use this approach to systematically study dynamical shape transitions of capsules with Hookean stretching and bending energies and spherical rest shape sedimenting under the influence of gravity or centrifugal forces. We find three types of possible axisymmetric stationary shapes for sedimenting capsules with fixed volume: a pseudospherical state, a pear-shaped state, and buckled shapes. Capsule shapes are controlled by two dimensionless parameters, the Föppl-von-Kármán number characterizing the elastic properties and a Bond number characterizing the driving force. For increasing gravitational force the spherical shape transforms into a pear shape. For very large bending rigidity (very small Föppl-von-Kármán number) this transition is discontinuous with shape hysteresis. The corresponding transition line terminates, however, in a critical point, such that the discontinuous transition is not present at typical Föppl-von-Kármán numbers of synthetic capsules. In an additional bifurcation, buckled shapes occur upon increasing the gravitational force. This type of instability should be observable for generic synthetic capsules. All shape bifurcations can be resolved in the force-velocity relation of sedimenting capsules, where up to three capsule shapes with different velocities can occur for the same driving force. All three types of possible axisymmetric stationary shapes are stable with respect to rotation during sedimentation. Additionally, we study capsules pushed or pulled by a point force, where we always find capsule shapes to transform smoothly without bifurcations.