Nonisothermal flow of a non-Newtonian fluid with viscous heating between two parallel plates
International Nuclear Information System (INIS)
Imal, M.; Pinarbasi, A.
2004-01-01
In this study the pressure gradient-flow rate relationship for steady-state nonisothermal pressure-driven flow of a non-Newtonian fluid in a channel is investigated including the effect of viscous heating is taken into account. The viscosity of the fluid depends on both temperature and shear-rate. Exponential dependence of viscosity on temperature is modelled through Arrhenius law. Non-Newtonian behaviour of the fluid is modelled according to the Carreau rheological equation, which reflects the characteristics of most polymers adequately with an exponential temperature dependence of viscosity. Flow governing motion and energy balance equations are coupled and solution of this non-linear boundary value problem is found iteratively using a pseudo spectral method based on Chebyshev polynomials. The effect of activation energy parameter and Brinkman number, as well as the power-law index and material time constant on the flow is studied. It is found that while the pressure gradient-flow rate graph is monotonic for certain ranges of flow controlling parameters, there is a large jump in the graph under certain values of these parameters.(1 table and 5 figures are included.)
A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow
Toose, E.M.; Geurts, B.J.; Kuerten, J.G.M.
1995-01-01
A boundary integral method for the simulation of the time-dependent deformation of Newtonian or non-Newtonian drops suspended in a Newtonian fluid is developed. The boundary integral formulation for Stokes flow is used and the non-Newtonian stress is treated as a source term which yields an extra
Negative wake behind bubbles in non-newtonian liquids
DEFF Research Database (Denmark)
Hassager, Ole
1979-01-01
Gas bubbles rising by gravity in non-Newtonian elastic liquids are different to gas bubbles in viscous Newtonian fluids in at least two ways. First, the bubbles in the non-Newtonian liquids often have a peculiar tip at the rear pole, and second, the terminal rise velocity versus volume curve ofte...
Dynamic characteristics of Non Newtonian fluid Squeeze film damper
Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.
2016-09-01
The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.
A Lagrangian PFEM approach for non-Newtonian viscoplastic materials
Larese, A.
2017-01-01
This paper presents the application of a stabilized mixed Particle Finite Element Method (PFEM) to the solution of viscoplastic non-Newtonian flows. The application of the proposed model to the deformation of granular non-cohesive material is analysed. A variable yield threshold modified Bingham model is presented, using a Mohr Coulomb resistance criterion. Since the granular material is expected to undergo severe deformation, a Lagrangian approach is preferred to a fixed mesh one. PFEM i...
Flocking particles in a non-Newtonian shear thickening fluid
Mucha, Piotr B.; Peszek, Jan; Pokorný, Milan
2018-06-01
We prove the existence of strong solutions to the Cucker–Smale flocking model coupled with an incompressible viscous non-Newtonian fluid with the stress tensor of a power–law structure for . The fluid part of the system admits strong solutions while the solutions to the CS part are weak. The coupling is performed through a drag force on a periodic spatial domain . Additionally, we construct a Lyapunov functional determining the large time behavior of solutions to the system.
Non Newtonian gravity creeping flow
International Nuclear Information System (INIS)
Gratton, J.; Mahajan, S.M.; Minotti, F.
1988-11-01
We derive the governing equations for creeping gravity currents of non Newtonian liquids having a power law rheology, using a lubrication approximation. We consider unidirectional and axisymmetric currents. The equations differ from those for Newtonian liquids, being nonlinear in the spatial derivative of the thickness of the current. However, many solutions are closely analogous to those for Newtonian rheology; in particular the spreading relations can also be expressed as power laws of time, with exponents that depend on the rheological index. Similarity solutions for currents whose volume varies as a power of time are obtained. For the spread of a constant volume of liquid, analytic solutions are found. We also derive solutions of the waiting-time type, as well as the ones describing steady flows from a constant source to a sink. General travelling wave solutions are given, and analytic formulae for a simple case are derived. A phase plane formalism, that allows the systematic derivation of self similar solutions, is introduced. The application of the Boltzmann transform is briefly discussed. Present results are closely analogous to those for Newtonian liquids; all the solutions obtained here have their counterparts in Newtonian flows. This happens because the power law rheology, like the Newtonian constitutive relation, involves a single dimensional parameter. Thus one finds similarity solutions whenever the analogous Newtonian problem is self similar. Although the spreading relations are rheology-dependent, in most cases the dependence is rather weak. The present results may be of interest for geophysics since the lithosphere deforms according to an average power law rheology. (author). 17 refs
Structural Optimization of Non-Newtonian Rectifiers
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg; Okkels, Fridolin
When the size of fluidic devices is scaled down, inertial effects start to vanish such that the governing equation becomes linear. Some microfluidic devices rely on the non-linear term related to the inertia of the fluid, and one example is fluid rectifiers (diodes) e.g. related to some micropumps....... These rectifiers rely on the device geometry for their working mechanism, but on further downscaling the inertial effect vanishes and the governing equation starts to show symmetry properties. These symmetry properties reduce the geometry influence to the point where fluid rectifiers cease to function....... In this context it is natural to look for other sources of non-linearity and one possibility is to introduce a non-Newtonian working fluid. Non-Newtonian properties are due to stretching of large particles/molecules in the fluid and this is commonly seen for biological samples in “lab-on-a-chip” systems...
Structural Optimization of non-Newtonian Microfluidics
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg; Okkels, Fridolin
2011-01-01
We present results for topology optimization of a non-Newtonian rectifier described with a differential constitutive model. The results are novel in the sense that a differential constitutive model has not been combined with topology optimization previously. We find that it is necessary to apply...... optimization of fluids. We test the method on a microfluidic rectifier and find solutions topologically different from experimentally realized designs....
Structural Optimization of non-Newtonian Microfluidics
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg
2013-01-01
Many of the biological fluids analyzed in Lab-on-a-Chip systems contain elastic components, which gives the fluids elastic character. Such fluids are said to be non-Newtonian or, more precisely, viscoelastic. They can give rise to exotic effects on the macroscale, which are never seen for fluids...... with components relying on viscoelastic effects, but the non-intuitive nature of these fluids complicates the design process. This thesis combines the method of topology optimization with differential constitutive equations, which govern the flow of viscoelastic fluids. The optimization method iteratively...... finite element package. The code is capable of calculating the viscoelastic flow in a benchmark geometry, and we hope that it will help newcomers as well as experienced researchers in the field of differential constitutive equations. v...
Non-Newtonian Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues
Ahmed, Aftab; Siddique, Javed
2017-11-01
We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. The absorption in the biological tissue increases as a consequence of flow induced deformation for power law fluids. In most cases non-Newtonian results are compared with viscous fluid case to magnify the differences.
Non-Newtonian Aspects of Artificial Intelligence
Zak, Michail
2016-05-01
The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.
Comparative PIV and LDA studies of Newtonian and non-Newtonian flows in an agitated tank.
Story, Anna; Jaworski, Zdzisław; Simmons, Mark J; Nowak, Emilia
2018-01-01
The paper presents results of an experimental study of the fluid velocity field in a stirred tank equipped with a Prochem Maxflo T (PMT) type impeller which was rotating at a constant frequency of N = 4.1 or 8.2 s -1 inducing transitional ( Re = 499 or 1307) or turbulent ( Re = 2.43 × 10 4 ) flow of the fluid. The experiments were performed for a Newtonian fluid (water) and a non-Newtonian fluid (0.2 wt% aqueous solution of carboxymethyl cellulose, CMC) exhibiting mild viscoelastic properties. Measurements were carried out using laser light scattering on tracer particles which follow the flow (2-D PIV). For both the water and the CMC solution one primary and two secondary circulation loops were observed within the fluid volume; however, the secondary loops were characterized by much lower intensity. The applied PMT-type impeller produced in the Newtonian fluid an axial primary flow, whilst in the non-Newtonian fluid the flow was more radial. The results obtained in the form of the local mean velocity components were in satisfactory agreement with the literature data from LDA. Distribution of the shear rate in the studied system was also analyzed. For the non-Newtonian fluid an area was computed where the elastic force dominates over the viscous one. The area was nearly matching the region occupied by the primary circulation loop.
Non-Newtonian fluid flow in 2D fracture networks
Zou, L.; Håkansson, U.; Cvetkovic, V.
2017-12-01
Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.
On Numerical Methods in Non-Newtonian Flows
International Nuclear Information System (INIS)
Fileas, G.
1982-12-01
The constitutive equations for non-Newtonian flows are presented and the various flow models derived from continuum mechanics and molecular theories are considered and evaluated. Detailed account is given of numerical simulation employing differential and integral models of different kinds of non-Newtonian flows using finite-difference and finite-element techniques. Appreciating the fact that no book or concentrated material on Numerical Non-Newtonian Fluid Flow exists at the present, procedures for computer set-ups are described and references are given for finite-difference, finite-element and molecular-theory based programmes for several kinds of flow. Achievements and unreached goals in the field of numerical simulation of non-Newtonian flows are discussed and the lack of numerical work in the fields of suspension flows and heat transfer is pointed out. Finally, FFOCUS is presented as a newly built computer program which can simulate freezing flows on Newtonian fluids through various geometries and is aimed to be further developed to handle non-Newtonian freezing flows and certain types of suspension phenomena involved in corium flow after a hypothetical core melt-down accident in a PWR. (author)
Boundary layer for non-newtonian fluids on curved surfaces
International Nuclear Information System (INIS)
Stenger, N.
1981-04-01
By using the basic equation of fluid motion (conservation of mass and momentum) the boundary layer parameters for a Non-Newtonian, incompressible and laminar fluid flow, has been evaluated. As a test, the flat plate boundary layer is first analized and afterwards, a case with pressure gradient, allowing separation, is studied. In the case of curved surfaces, the problem is first developed in general and afterwards particularized to a circular cylinder. Finally suction and slip in the flow interface are examined. The power law model is used to represent the stress strain relationship in Non-Newtonian flow. By varying the fluid exponent one can then, have an idea of how the Non-Newtonian behavior of the flow influences the parameters of the boundary layer. Two equations, in an appropriate coordinate system have been obtained after an order of magnitude analysis of the terms in the equations of motion is performed. (Author) [pt
Directory of Open Access Journals (Sweden)
Hoffmann Klaus
2009-08-01
Full Text Available Abstract Background Facial volume loss contributes significantly to facial aging. The 20-mg/mL hyaluronic acid (HA formulation used in this study is a smooth, highly cohesive, viscous, fully reversible, volumizing filler indicated to restore facial volume. This first prospective study evaluated use in current aesthetic clinical practice. Methods A pan-European evaluation conducted under guidelines of the World Association of Opinion and Marketing Research, the trial comprised a baseline visit (visit 1 and a follow-up (visit 2 at 14 ± 7 days posttreatment. Physicians photographed patients at each visit. Each patient was treated with the 20-mg/mL HA volumizing filler as supplied in standard packaging. Procedural details, aesthetic outcomes, safety, and physician and patient ratings of their experience were recorded. Results Fifteen physicians and 70 patients (91% female; mean age: 50 years participated. Mean volume loss at baseline was 3.7 (moderate on the Facial Volume Loss Scale. Local anesthesia was used in 64.3% of cases. Most injections (85% were administered with needles rather than cannulas. Of the 208 injections, 59% were in the malar region, primarily above the periosteum. Subcutaneous injections were most common for other sites. The mean total injection volume per patient was 4.6 mL. The mean volume loss score declined significantly (P Conclusion The 20-mg/mL smooth, highly cohesive, viscous, volumizing HA filler was effective, well tolerated, and easy to use in current clinical practice. Participants were very likely to recommend this product to colleagues and friends, and patients would be very or quite likely to request this product for future treatments.
On preconditioning incompressible non-Newtonian flow problems
He, X.; Neytcheva, M.; Vuik, C.
2013-01-01
This paper deals with fast and reliable numerical solution methods for the incompressible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial differential equations. For space
Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells
Directory of Open Access Journals (Sweden)
Dan Sui
2018-04-01
Full Text Available Having precise information of fluids' temperatures is a critical process during planning of drilling operations, especially for extended reach drilling (ERD. The objective of this paper is to develop an accurate temperature model that can precisely calculate wellbore temperature distributions. An established semi-transient temperature model for vertical wellbores is extended and improved to include deviated wellbores and more realistic scenarios using non-Newtonian fluids. The temperature model is derived based on an energy balance between the formation and the wellbore. Heat transfer is considered steady-state in the wellbore and transient in the formation through the utilization of a formation cooling effect. In this paper, the energy balance is enhanced by implementing heat generation from the drill bit friction and contact friction force caused by drillpipe rotation. A non-linear geothermal gradient as a function of wellbore inclination, is also introduced to extend the model to deviated wellbores. Additionally, the model is improved by considering temperature dependent drilling fluid transport and thermal properties. Transport properties such as viscosity and density are obtained by lab measurements, which allows for investigation of the effect of non-Newtonian fluid behavior on the heat transfer. Furthermore, applying a non-Newtonian pressure loss model enables an opportunity to evaluate the impact of viscous forces on fluid properties and thus the overall heat transfer. Results from sensitivity analysis of both drilling fluid properties and other relevant parameters will be presented. The main application area of this model is related to optimization of drilling fluid, hydraulics, and wellbore design parameters, ultimately leading to safe and cost efficient operations.
Non-Newtonian fluid structure interaction in flexible biomimetic microchannels
Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman
2017-11-01
To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.
Verification of vertically rotating flume using non-newtonian fluids
Huizinga, R.J.
1996-01-01
Three tests on non-Newtonian fluids were used to verify the use of a vertically rotating flume (VRF) for the study of the rheological properties of debris flow. The VRF is described and a procedure for the analysis of results of tests made with the VRF is presented. The major advantages of the VRF are a flow field consistent with that found in nature, a large particle-diameter threshold, inexpensive operation, and verification using several different materials; the major limitations are a lack of temperature control and a certain error incurred from the use of the Bingham plastic model to describe a more complex phenomenon. Because the VRF has been verified with non-Newtonian fluids as well as Newtonian fluids, it can be used to measure the rheological properties of coarse-grained debris-flow materials.
Development of a new continuous process for mixing of complex non-Newtonian fluids
Migliozzi, Simona; Mazzei, Luca; Sochon, Bob; Angeli, Panagiota; Thames Multiphase Team; Coral Project Collaboration
2017-11-01
Design of new continuous mixing operations poses many challenges, especially when dealing with highly viscous non-Newtonian fluids. Knowledge of complex rheological behaviour of the working mixture is crucial for development of an efficient process. In this work, we investigate the mixing performance of two different static mixers and the effects of the mixture rheology on the manufacturing of novel non-aqueous-based oral care products using experimental and computational fluid dynamic methods. The two liquid phases employed, i.e. a carbomer suspension in polyethylene glycol and glycerol, start to form a gel when they mix. We studied the structure evolution of the liquid mixture using time-resolved rheometry and we obtained viscosity rheograms at different phase ratios from pressure drop measurements in a customized mini-channel. The numerical results and rheological model were validated with experimental measurements carried out in a specifically designed setup. EPSRS-CORAL.
Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid
Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová
2017-09-01
This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.
Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.
Etemad, S Gh; Thibault, J; Hashemabadi, S H
2003-10-01
This paper presents the numerical investigation performed to calculate the correction factor for Pitot tubes. The purely viscous non-Newtonian fluids with the power-law model constitutive equation were considered. It was shown that the power-law index, the Reynolds number, and the distance between the impact and static tubes have a major influence on the Pitot tube correction factor. The problem was solved for a wide range of these parameters. It was shown that employing Bernoulli's equation could lead to large errors, which depend on the magnitude of the kinetic energy and energy friction loss terms. A neural network model was used to correlate the correction factor of a Pitot tube as a function of these three parameters. This correlation is valid for most Newtonian, pseudoplastic, and dilatant fluids at low Reynolds number.
Non-Newtonian ink transfer in gravure-offset printing
International Nuclear Information System (INIS)
Ghadiri, Fatemeh; Ahmed, Dewan Hasan; Sung, Hyung Jin; Shirani, Ebrahim
2011-01-01
The inks used in gravure-offset printing are non-Newtonian fluids with higher viscosities and lower surface tensions than Newtonian fluids. This paper examines the transfer of a non-Newtonian ink between a flat plate and a groove when the plate is moved upward with a constant velocity while the groove is held fixed. Numerical simulations were carried out with the Carreau model to explore the behavior of this non-Newtonian ink in gravure-offset printing. The volume of fluid (VOF) method was implemented to capture the interface during the ink transfer process. The effects of varying the contact angle of the ink on the flat plate and groove walls and geometrical parameters such as the groove angle and the groove depth on the breakup time of the liquid filament that forms between the plate and the groove and the ink transfer ratio were determined. Our results indicate that increasing the groove contact angle and decreasing the flat plate contact angle enhance the ink transfer ratio and the breakup time. However, increasing the groove depth and the groove angle decreases the transfer ratio and the breakup time. By optimizing these parameters, it is possible to achieve an ink transfer from the groove to the flat plate of approximately 92%. Moreover, the initial width and the vertical velocity of the neck of the ink filament have significant influences on the ink transfer ratio and the breakup time.
Vasanth, K. R.; Hanumagowda, B. N.; Santhosh Kumar, J.
2018-04-01
Squeeze film investigations focus upon film pressure, load bearing quantity and the minimum thickness of film. The combined effect of pressure viscous dependent and non- Newtonian couple stress in porous annular plate is studied. The modified equations of one dimensional pressure, load bearing quantity, non dimensional squeeze time are obtained. The conclusions obtained in the study are found to be in very good agreement compared to the previous results which are published. The load carrying capacity is increased due to the variation in the pressure dependent viscosity and also due to the couple stress effect. Finally this results in change in the squeeze film timings.
Attractors of equations of non-Newtonian fluid dynamics
International Nuclear Information System (INIS)
Zvyagin, V G; Kondrat'ev, S K
2014-01-01
This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles
Open mathematical problems regarding non-Newtonian fluids
International Nuclear Information System (INIS)
Wilson, Helen J
2012-01-01
We present three open problems in the mathematical modelling of the flow of non-Newtonian fluids. The first problem is rather long standing: a discontinuity in the dependence of the rise velocity of a gas bubble on its volume. This is very well characterized experimentally but not, so far, fully reproduced either numerically or analytically. The other two are both instabilities. The first is observed experimentally but never predicted analytically or numerically. In the second instability, numerical studies reproduce the experimental observations but there is as yet no analytical or semi-analytical prediction of the linear instability which must be present. (invited article)
Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model
Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing
2017-12-01
The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.
Impinging jet spray formation using non-Newtonian liquids
Rodrigues, Neil S.
Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance. A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension). Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks. This experimental work seeks to help resolve the scarcity in existing literature by providing drop size
Unsteady non-Newtonian hydrodynamics in granular gases.
Astillero, Antonio; Santos, Andrés
2012-02-01
The temporal evolution of a dilute granular gas, both in a compressible flow (uniform longitudinal flow) and in an incompressible flow (uniform shear flow), is investigated by means of the direct simulation Monte Carlo method to solve the Boltzmann equation. Emphasis is laid on the identification of a first "kinetic" stage (where the physical properties are strongly dependent on the initial state) subsequently followed by an unsteady "hydrodynamic" stage (where the momentum fluxes are well-defined non-Newtonian functions of the rate of strain). The simulation data are seen to support this two-stage scenario. Furthermore, the rheological functions obtained from simulation are well described by an approximate analytical solution of a model kinetic equation. © 2012 American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)
2013-08-19
The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.
Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field
Directory of Open Access Journals (Sweden)
Lin Yang
2015-03-01
Full Text Available In view of the limitations of the existing Newton fluid effects on the vortex flow mechanism study, numerical analysis of non Newton fluid effects was presented. Using Reynolds stress turbulence model (RSM and mixed multiphase flow model (Mixture of FLUENT (fluid calculation software and combined with the constitutive equation of apparent viscosity of non-Newtonian fluid, the typical non-Newtonian fluid (drilling fluid, polymer flooding sewage and crude oil as medium and Newton flow field (water as medium were compared by quantitative analysis. Based on the research results of water, the effects of non-Newtonian rheology on the key parameters including the combined vortex motion index n and tangential velocity were analyzed. The study shows that: non-Newtonian rheology has a great effect on tangential velocity and n value, and tangential velocity decreases with non-Newtonian increasing. The three kinds of n values (constant segment are: 0.564(water, 0.769(polymer flooding sewage, 0.708(drilling fluid and their variation amplitudes are larger than Newtonian fluid. The same time, non-Newtonian rheology will lead to the phenomenon of turbulent drag reduction in the vortex flow field. Compared with the existing formula calculation results shown, the calculation result of non-Newtonian rheology is most consistent with the simulation result, and the original theory has large deviations. The study provides reference for theory research of non-Newtonian cyclone separation flow field.
Experimental investigation of non-Newtonian droplet collisions : the role of extensional viscosity
Finotello, Giulia; De, Shauvik; Vrouwenvelder, Jeroen C.R.; Padding, J.T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J.
2018-01-01
We investigate the collision behaviour of a shear thinning non-Newtonian fluid xanthan, by binary droplet collision experiments. Droplet collisions of non-Newtonian fluids are more complex than their Newtonian counterpart as the viscosity no longer remains constant during the collision process.
Iwamatsu, Masao
2017-07-01
The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ∼t^{-α} with the spreading exponent α, which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.
Aerosol entrainment from a sparged non-Newtonian slurry.
Fritz, Brad G
2006-08-01
Previous bench-scale experiments have provided data necessary for the development of empirical models that describe aerosol entrainment from bubble bursting. However, previous work has not been extended to non-Newtonian liquid slurries. Design of a waste treatment plant on the Hanford Site in Washington required an evaluation of the applicability of these models outside of their intended range. For this evaluation, aerosol measurements were conducted above an air-sparged mixing tank filled with simulated waste slurry possessing Bingham plastic rheological properties. Three aerosol-size fractions were measured at three sampling heights and for three different sparging rates. The measured entrainment was compared with entrainment models. One model developed based on bench-scale air-water experiments agreed well with measured entrainment. Another model did not agree well with the measured entrainment. It appeared that the source of discrepancy between measured and modeled entrainment stemmed from application beyond the range of data used to develop the model. A possible separation in entrainment coefficients between air-water and steam-water systems was identified. A third entrainment model was adapted to match experimental conditions and fit a posteri to the experimental data, resulting in a modified version that resulted in estimated entrainment rates similar to the first model.
A two-phase theory for non-Newtonian suspensions
Varsakelis, Christos
In this talk, a continuum and thermodynamically consistent theory for macroscopic particles immersed in a non-Newtonian fluid is presented. According to the employed methodology, each phase of the mixture is treated as a thermodynamic system, endowed with its own set of thermodynamic and kinetic variables, and is required to separately satisfy the equations for the balance of mass, momentum and energy. As both constituents of the mixture are not simple fluids, additional degrees of freedom are introduced for the proper description of their thermodynamic state. A subsequent exploitation of the entropy inequality asserts that the accommodation of the complicated rheological characteristics of both phases requires a departure from a linear current-force relationship. For this reason, a subtle nonlinear representation of the stress tensors is employed. Importantly, the inclusion of additional degrees of freedom allows us to obtain a rate equation for the evolution of the volume fraction of the particulate phase. Following a delineation of the fundamentals of the proposed theory, the talk concludes with the presentation of some limiting cases that also serve as preliminary, sanity tests.
Lie group analysis of flow and heat transfer of non-Newtonian
Indian Academy of Sciences (India)
law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the ...
Conceptual Models of the Climate 2003 Program of Study: Non-Newtonian Geophysical Fluid Dynamics
National Research Council Canada - National Science Library
Balmforth, NeiI
2004-01-01
Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties...
Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels
Huh, Hyung Kyu; Ha, Hojin; Lee, Sang Joon
2015-08-01
Although blood is known to have shear-thinning and viscoelastic properties, the effects of such properties on the hemodynamic characteristics in various vascular environments are not fully understood yet. For a quantitative hemodynamic analysis, the refractive index of a transparent blood analogue needs to be matched with that of the flowing conduit in order to minimize the errors according to the distortion of the light. In this study, three refractive index-matched blood analogue fluids with different viscosities are prepared—one Newtonian and two non-Newtonian analogues—which correspond to healthy blood with 45 % hematocrit (i.e., normal non-Newtonian) and obese blood with higher viscosity (i.e., abnormal non-Newtonian). The effects of the non-Newtonian rheological properties of the blood analogues on the hemodynamic characteristics in the post-stenosis region of an axisymmetric stenosis model are experimentally investigated using particle image velocimetry velocity field measurement technique and pathline flow visualization. As a result, the centerline jet flow from the stenosis apex is suppressed by the shear-thinning feature of the blood analogues when the Reynolds number is smaller than 500. The lengths of the recirculation zone for abnormal and normal non-Newtonian blood analogues are 3.67 and 1.72 times shorter than that for the Newtonian analogue at Reynolds numbers smaller than 200. The Reynolds number of the transition from laminar to turbulent flow for all blood analogues increases as the shear-thinning feature increases, and the maximum wall shear stresses in non-Newtonian fluids are five times greater than those in Newtonian fluids. However, the shear-thinning effect on the hemodynamic characteristics is not significant at Reynolds numbers higher than 1000. The findings of this study on refractive index-matched non-Newtonian blood analogues can be utilized in other in vitro experiments, where non-Newtonian features dominantly affect the flow
Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.
2016-04-01
In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.
Applying Tiab’s direct synthesis technique to dilatant non-Newtonian/Newtonian fluids
Directory of Open Access Journals (Sweden)
Javier Andrés Martínez
2011-09-01
Full Text Available Non-Newtonian fluids, such as polymer solutions, have been used by the oil industry for many years as fracturing agents and drilling mud. These solutions, which normally include thickened water and jelled fluids, are injected into the formation to enhanced oil recovery by improving sweep efficiency. It is worth noting that some heavy oils behave non-Newtonianly. Non-Newtonian fluids do not have direct proportionality between applied shear stress and shear rate and viscosity varies with shear rate depending on whether the fluid is either pseudoplastic or dilatant. Viscosity decreases as shear rate increases for the former whilst the reverse takes place for dilatants. Mathematical models of conventional fluids thus fail when applied to non-Newtonian fluids. The pressure derivative curve is introduced in this descriptive work for a dilatant fluid and its pattern was observed. Tiab’s direct synthesis (TDS methodology was used as a tool for interpreting pressure transient data to estimate effective permeability, skin factors and non-Newtonian bank radius. The methodology was successfully verified by its application to synthetic examples. Also, comparing it to pseudoplastic behavior, it was found that the radial flow regime in the Newtonian zone of dilatant fluids took longer to form regarding both the flow behavior index and consistency factor.
On approximation of non-Newtonian fluid flow by the finite element method
Svácek, Petr
2008-08-01
In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered. Namely, the flow of fresh concrete is addressed. Industrial mixtures often behaves like non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1987; R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, London, 1999]. The main interest is paid to the mathematical formulation of the problem and to discretization with the aid of finite element method. The described numerical procedure is applied onto the solution of several problems.
Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium
International Nuclear Information System (INIS)
Zhi-Wen, Cui; Jin-Xia, Liu; Ke-Xie, Wang; Gui-Jin, Yao
2010-01-01
The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves, pseudo-Rayleigh waves, flexural waves, and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot–Tsiklauri model by calculating their velocity dispersion and attenuation coefficients. The corresponding acoustic waveforms illustrate their properties in time domain. The results are also compared with those based on generalized Biot's theory. The results show that the influence of non-Newtonian effect on acoustic guided wave, especially on the attenuation coefficient of guided wave propagation in borehole is noticeable. (classical areas of phenomenology)
Determination of the Köthe-Toeplitz Duals over the Non-Newtonian Complex Field
Directory of Open Access Journals (Sweden)
Uğur Kadak
2014-01-01
Full Text Available The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Therefore the reader may be surprised to learn that there is a uniform relationship between the corresponding operators of this calculus and the classical calculus. Several basic concepts based on non-Newtonian calculus are presented by Grossman (1983, Grossman and Katz (1978, and Grossman (1979. Following Grossman and Katz, in the present paper, we introduce the sets of bounded, convergent, null series and p-bounded variation of sequences over the complex field C* and prove that these are complete. We propose a quite concrete approach based on the notion of Köthe-Toeplitz duals with respect to the non-Newtonian calculus. Finally, we derive some inclusion relationships between Köthe space and solidness.
Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines
Energy Technology Data Exchange (ETDEWEB)
Poloski, Adam P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrefah, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hohimer, Ryan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nigl, Franz [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toth, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yokuda, Satoru T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2009-03-01
correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.
Non-newtonian deformation of co-based metallic glass at low stresses
Fursova, YV; Khonik, VA; Csach, K; Ocelik, Vaclav
2000-01-01
The results of precision measurements of creep in Co-based metallic glass are presented. It is shown that, in spite of generally accepted concepts, plastic flow at low stresses under intense structural relaxation conditions is of a non-Newtonian type. Consequences of this fact are considered. (C)
MHD free convection flow of a non-Newtonian power-law fluid over ...
African Journals Online (AJOL)
... flow have been presented for various parameters such as Prandtl number, flow behavior index (n), porous plate parameter and magnetic parameter. The local Nusselt number and skin friction coefficient is also presented graphically. Keywords: Magnetohydrodynamic flow; free convection flow; Non-Newtonian power-law
A Lagrangian finite element method for the simulation of flow of non-newtonian liquids
DEFF Research Database (Denmark)
Hassager, Ole; Bisgaard, C
1983-01-01
A Lagrangian method for the simulation of flow of non-Newtonian liquids is implemented. The fluid mechanical equations are formulated in the form of a variational principle, and a discretization is performed by finite elements. The method is applied to the slow of a contravariant convected Maxwell...
Modeling of flow of particles in a non-Newtonian fluid using lattice Boltzmann method
DEFF Research Database (Denmark)
Skocek, Jan; Svec, Oldrich; Spangenberg, Jon
2011-01-01
is necessary. In this contribution, the model at the scale of aggregates is introduced. The conventional lattice Boltzmann method for fluid flow is enriched with the immersed boundary method with direct forcing to simulate the flow of rigid particles in a non- Newtonian liquid. Basic ingredients of the model...
Free surface flow of a suspension of rigid particles in a non-Newtonian fluid
DEFF Research Database (Denmark)
Svec, Oldrich; Skocek, Jan; Stang, Henrik
2012-01-01
A numerical framework capable of predicting the free surface flow of a suspension of rigid particles in a non-Newtonian fluid is described. The framework is a combination of the lattice Boltzmann method for fluid flow, the mass tracking algorithm for free surface representation, the immersed...
Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs
Shamsi, Mohammad Reza; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Mashayekhi, Ramin
2017-09-01
In this study, computational fluid dynamics and the laminar flow of the non-Newtonian fluid have been numerically studied. The cooling fluid includes water and 0.5 wt% Carboxy methyl cellulose (CMC) making the non-Newtonian fluid. In order to make the best of non-Newtonian nanofluid in this simulation, solid nanoparticles of Aluminum Oxide have been added to the non-Newtonian fluid in volume fractions of 0-2% with diameters of 25, 45 and 100 nm. The supposed microchannel is rectangular and two-dimensional in Cartesian coordination. The power law has been used to speculate the dynamic viscosity of the cooling nanofluid. The field of numerical solution is simulated in the Reynolds number range of 5 nanoparticles as well as the use for nanoparticles with smaller diameters lead to greater heat transfer. Among all the studied forms, the triangular rib from with an angle of attack 30° has the biggest Nusselt number and the smallest pressure drop along the microchannel. Also, an increase in the angle of attack and as a result of a sudden contact between the fluid and the ribs and also a reduction in the coflowing length (length of the rib) cause a cut in heat transfer by the fluid in farther parts from the solid wall (tip of the rib).
Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra
Knight, D. G.
2006-01-01
This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…
Binous, Housam
2007-01-01
We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…
Break-up of a non-Newtonian jet injected downwards in a ...
Indian Academy of Sciences (India)
atomization and spray coating, crop spraying, ink jet printing, printing of polymer transis- tors, and ... particular ones used in printing and coating, the liquids encountered are non-Newtonian. For breakup of ...... In-Press. Sussman M and Pukett E G 2000 A coupled level set and volume-of-fluid method for computing 3D and.
Similarity solution of axisymmetric non-Newtonian wall jets with swirl
Czech Academy of Sciences Publication Activity Database
Kolář, Václav
2011-01-01
Roč. 12, č. 6 (2011), s. 3413-3420 ISSN 1468-1218 R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : similarity solution * wall jets * non-Newtonian fluids * power-law fluids * swirl Subject RIV: BK - Fluid Dynamics Impact factor: 2.043, year: 2011
Non-Newtonian fluid flow in annular pipes and entropy generation ...
Indian Academy of Sciences (India)
analytical solution for the flow of third-grade non-Newtonian fluid in a pipe .... where c1,c2,d1,d2,t0,1,2...7,h1,h2,k1,2... ,12,m1 and m2 are defined as ..... Yurusoy M 2004 Flow of a third grade fluid between concentric circular cylinders. Math.
Characterization of the transition of regimes in a non-newtonian fluids in ducts
International Nuclear Information System (INIS)
Santana, C.C.; Ataide, C.H.; Massarani, G.
1983-01-01
By using own experimental data and also those obtained from the literature, the velocities at which transition from laminar to turbulent flows occurs are analysed in time-independent non-newtonian fluids, through the relationship between generalized Reynolds numbers and the rheological fluid parameters. (Author) [pt
Hydrodynamically Coupled Brownian Dynamics simulations for flow on non-Newtonian fluids
Ahuja, Vishal Raju
2018-01-01
This thesis deals with model development for particle-based flow simulations of non-Newtonian fluids such as polymer solutions. A novel computational technique called Hydrodynamically Coupled Brownian Dynamics (HCBD) is presented in this thesis. This technique essentially couples the Brownian motion
Studying mixing in Non-Newtonian blue maize flour suspensions using color analysis.
Directory of Open Access Journals (Sweden)
Grissel Trujillo-de Santiago
Full Text Available BACKGROUND: Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. METHODOLOGY AND FINDINGS: We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. CONCLUSION AND RELEVANCE: Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions.
The LS-STAG immersed boundary/cut-cell method for non-Newtonian flows in 3D extruded geometries
Nikfarjam, F.; Cheny, Y.; Botella, O.
2018-05-01
The LS-STAG method is an immersed boundary/cut-cell method for viscous incompressible flows based on the staggered MAC arrangement for Cartesian grids, where the irregular boundary is sharply represented by its level-set function, results in a significant gain in computer resources (wall time, memory usage) compared to commercial body-fitted CFD codes. The 2D version of LS-STAG method is now well-established (Cheny and Botella, 2010), and this paper presents its extension to 3D geometries with translational symmetry in the z direction (hereinafter called 3D extruded configurations). This intermediate step towards the fully 3D implementation can be applied to a wide variety of canonical flows and will be regarded as the keystone for the full 3D solver, since both discretization and implementation issues on distributed memory machines are tackled at this stage of development. The LS-STAG method is then applied to various Newtonian and non-Newtonian flows in 3D extruded geometries (axisymmetric pipe, circular cylinder, duct with an abrupt expansion) for which benchmark results and experimental data are available. The purpose of these investigations are (a) to investigate the formal order of accuracy of the LS-STAG method, (b) to assess the versatility of method for flow applications at various regimes (Newtonian and shear-thinning fluids, steady and unsteady laminar to turbulent flows) (c) to compare its performance with well-established numerical methods (body-fitted and immersed boundary methods).
The effect of the expansion ratio on a turbulent non-Newtonian recirculating flow
Energy Technology Data Exchange (ETDEWEB)
Pereira, A.S. [Departamento de Engenharia Quimica Instituto Superior de Engenharia do Porto (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto (Portugal)
2002-04-01
Measurements of the mean and turbulent flow characteristics of shear-thinning moderately elastic 0.1% and 0.2% xanthan gum aqueous solutions were carried out in a sudden expansion having a diameter ratio of 2. The inlet flow was turbulent and fully developed, and the results were compared with data for water in the same geometry and with previous published Newtonian and non-Newtonian data in a smaller expansion of diameter ratio equal to 1.538. An increase in expansion ratio led to an increase in the recirculation length and in the axial normal Reynolds stress at identical normalised locations, but the difference between Newtonian and non-Newtonian characteristics was less intense than in the smaller expansion. An extensive comparison of mean and turbulent flow characteristics was carried out in order to understand the variation of flow features. (orig.)
Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval
International Nuclear Information System (INIS)
Yuen, David A.; Onishi, Yasuo; Rustad, James R.; Michener, Thomas E.; Felmy, Andrew R.; Ten, Arkady A.; Hier, Catherine A.
2000-01-01
Many highly radioactive wastes will be retrieved by installing mixer pumps that inject high-speed jets to stir up the sludge, saltcake, and supernatant liquid in the tank, blending them into a slurry. This slurry will then be pumped out of the tank into a waste treatment facility. Our objectives are to investigate interactions-chemical reactions, waste rheology, and slurry mixing-occurring during the retrieval operation and to provide a scientific basis for the waste retrieval decision-making process. Specific objectives are to: (1) Evaluate numerical modeling of chemically active, non-Newtonian tank waste mixing, coupled with chemical reactions and realistic rheology; (2) Conduct numerical modeling analysis of local and global mixing of non-Newtonian and Newtonian slurries; and (3) Provide the bases to develop a scientifically justifiable, decision-making support tool for the tank waste retrieval operation
Spreading of Non-Newtonian and Newtonian Fluids on a Solid Substrate under Pressure
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Moutushi Dutta; Chandra, Subrata; Nag, Soma; Tarafdar, Sujata [Condensed Matter Physics Research Centre, Physics Department, Jadavpur University, Kolkata 700032 (India); Das, Shantanu, E-mail: mou15july@gmail.com [Reactor Control Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)
2011-09-15
Strongly non-Newtonian fluids namely, aqueous gels of starch, are shown to exhibit visco-elastic behavior, when subjected to a load. We study arrowroot and potato starch gels. When a droplet of the fluid is sandwiched between two glass plates and compressed, the area of contact between the fluid and plates increases in an oscillatory manner. This is unlike Newtonian fluids, where the area increases monotonically in a similar situation. The periphery moreover, develops an instability, which looks similar to Saffman Taylor fingers. This is not normally seen under compression. The loading history is also found to affect the manner of spreading. We attempt to describe the non-Newtonian nature of the fluid through a visco-elastic model incorporating generalized calculus. This is shown to reproduce qualitatively the oscillatory variation in the surface strain.
Non-newtonian heat transfer on a plate heat exchanger with generalized configurations
Energy Technology Data Exchange (ETDEWEB)
Carezzato, A.; Tadini, C.C.; Gut, J.A.W. [Department of Chemical Engineering, Escola Politecnica, University of Sao Paulo, Sao Paulo (Brazil); Alcantara, M.R. [Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo (Brazil); Telis-Romero, J. [Department of Food Engineering and Technology, Universidade Estadual Paulista, Sao Jose do Rio Preto (Brazil)
2007-01-15
For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Instrumentation to Monitor Transient Periodic Developing Flow in Non-Newtonian Slurries
Energy Technology Data Exchange (ETDEWEB)
Bamberger, Judith A.; Enderlin, Carl W.
2013-11-15
Staff at Pacific Northwest National Laboratory have conducted mixing and mobilization experiments with non-Newtonian slurries that exhibit Bingham plastic and shear thinning behavior and shear strength. This paper describes measurement techniques applied to identify the interface between flowing and stationary regions of non-Newtonian slurries that are subjected to transient, periodic, developing flows. Techniques were developed to identify the boundary between the flowing and stationary regions, time to mix, characteristic velocities of the flow field produced by the symmetrically spaced nozzles, and the velocity of the upwell formed in the center of the tank by the intersection of flow from four symmetrically spaced nozzles that impinge upon the tank floor. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents and to determine mixing times for process evaluation.
Entropy generation in non-Newtonian fluid flow in a slider bearing
Indian Academy of Sciences (India)
In the present study, entropy production in ﬂow ﬁelds due to slider bearings is formulated. The rate of entropy generation is computed for different ﬂuid properties and geometric conﬁgurations of the slider bearing. In order to account for the non-Newtonian effect, a special type of third-grade ﬂuid is considered. It is found that ...
Supersoft Symmetry Energy Encountering Non-Newtonian Gravity in Neutron Stars
International Nuclear Information System (INIS)
Wen Dehua; Li Baoan; Chen Liewen
2009-01-01
Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.
International Nuclear Information System (INIS)
Makinde, O.D.
2005-10-01
In this paper, the first and second law of thermodynamics are employed in order to study the inherent irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid film along an inclined isothermal plate. Based on some simplified assumptions, the governing equations are obtained and solved analytically. Expressions for fluid velocity, temperature, volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number are also determined. (author)
Change in the flow curves of non-Newtonian oils due to a magnetic field
International Nuclear Information System (INIS)
Veliev, F.G.
1979-01-01
The effect of a variable magnetic field on the rheological properties of non-Newtonian fluids is evaluated. Bituminous pitch oils were analyzed by recording the flow curves Q.Q(Δp) - the dependence of the volumetric flow rate on the pressure gradient - with and without a field. The results obtained indicate that variable magnetic fields can produce obvious changes in the rheological properties of bituminous pitch oils, although they are nonmagnetoactive and practically electrically nonconducting
Steady flow of non-Newtonian fluids - monotonicity methods in generalized orlicz spaces
Czech Academy of Sciences Publication Activity Database
Wróblewska, Aneta
2010-01-01
Roč. 72, č. 11 (2010), s. 4136-4147 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * Orlicz spaces * modular convergence of symmetric gradients * general ized Minty method * smart fluids Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X10000568
Steady flow of non-Newtonian fluids - monotonicity methods in generalized orlicz spaces
Czech Academy of Sciences Publication Activity Database
Wróblewska, Aneta
2010-01-01
Roč. 72, č. 11 (2010), s. 4136-4147 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * Orlicz spaces * modular convergence of symmetric gradients * generalized Minty method * smart fluids Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X10000568
Directory of Open Access Journals (Sweden)
Yan Zhang
2011-01-01
Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.
Conceptual coherence of non-Newtonian worldviews in Force Concept Inventory data
Directory of Open Access Journals (Sweden)
Terry F. Scott
2017-05-01
Full Text Available The Force Concept Inventory is one of the most popular and most analyzed multiple-choice concept tests used to investigate students’ understanding of Newtonian mechanics. The correct answers poll a set of underlying Newtonian concepts and the coherence of these underlying concepts has been found in the data. However, this inventory was constructed after several years of research into the common preconceptions held by students and using these preconceptions as distractors in the questions. Their sole purpose is to deflect non-Newtonian candidates away from the correct answer. Alternatively, one can argue that the responses could also be treated as polling these preconceptions. In this paper we shift the emphasis of the analysis away from the correlation structure of the correct answers and look at the latent traits underlying the incorrect responses. Our analysis models the data employing exploratory factor analysis, which uses regularities in the data to suggest the existence of underlying structures in the cognitive processing of the students. This analysis allows us to determine whether the data support the claim that there are alternate non-Newtonian worldviews on which students’ incorrect responses are based. The existence of such worldviews, and their coherence, could explain the resilience of non-Newtonian preconceptions and would have significant implications to the design of instruction methods. We find that there are indeed coherent alternate conceptions of the world which can be categorized using the results of the research that led to the construction of the Force Concept Inventory.
Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?
Javid Mahmoudzadeh Akherat, S M; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary
2017-04-01
Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain.
External gear pumps operating with non-Newtonian fluids: Modelling and experimental validation
Rituraj, Fnu; Vacca, Andrea
2018-06-01
External Gear Pumps are used in various industries to pump non-Newtonian viscoelastic fluids like plastics, paints, inks, etc. For both design and analysis purposes, it is often a matter of interest to understand the features of the displacing action realized by meshing of the gears and the description of the behavior of the leakages for this kind of pumps. However, very limited work can be found in literature about methodologies suitable to model such phenomena. This article describes the technique of modelling external gear pumps that operate with non-Newtonian fluids. In particular, it explains how the displacing action of the unit can be modelled using a lumped parameter approach which involves dividing fluid domain into several control volumes and internal flow connections. This work is built upon the HYGESim simulation tool, conceived by the authors' research team in the last decade, which is for the first time extended for the simulation of non-Newtonian fluids. The article also describes several comparisons between simulation results and experimental data obtained from numerous experiments performed for validation of the presented methodology. Finally, operation of external gear pump with fluids having different viscosity characteristics is discussed.
Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?
Javid Mahmoudzadeh Akherat, S. M.; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary
2017-01-01
Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain. PMID:28249082
Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube.
Niu, Jun; Fu, Ceji; Tan, Wenchang
2012-01-01
The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared.
A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow
Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati
2010-06-01
The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.
Directory of Open Access Journals (Sweden)
J.I. Orisaleye
2018-04-01
Full Text Available Extruders have found application in the food, polymer and pharmaceutical industries. Rheological characteristics of materials are important in the specification of design parameters of screw extruders. Biopolymers, which consist of proteins, nucleic acids and polysaccharides, are shear-thinning (pseudoplastic within normal operating ranges. However, analytical models to predict and design screw extruders for non-Newtonian pseudoplastic materials are rare. In this study, an analytical model suitable to design a screw extruder for slightly non-Newtonian materials was developed. The model was used to predict the performance of the screw extruder while processing materials with power law indices slightly deviating from unity (the Newtonian case. Using non-dimensional analysis, the effects of design and operational parameters were investigated. Expressions to determine the optimum channel depth and helix angle were also derived. The model is capable of predicting the performance of the screw extruder within the range of power law indices considered (1/2⩽n⩽1. The power law index influences the choice of optimum channel depth and helix angle of the screw extruder. Keywords: Screw extruder, Slightly non-Newtonian, Shear-thinning, Pseudoplastic, Biopolymer, Power law
Directory of Open Access Journals (Sweden)
J. Javorova
2016-06-01
Full Text Available The purpose of this paper is to study the performance of a finite length journal bearing, taking into account effects of non-Newtonian Rabinowitsch flow rheology and elastic deformations of the bearing liner. According to the Rabinowitsch fluid model, the cubic-stress constitutive equation is used to account for the non-Newtonian effects of pseudoplastic and dilatant lubricants. Integrating the continuity equation across the film, the nonlinear non-Newtonian Reynolds-type equation is derived. The elasticity part of the problem is solved on the base of Vlassov model of an elastic foundation. The numerical solution of the modified Reynolds equation is carried out by using FDM with over-relaxation technique. The results for steady state bearing performance characteristics have been calculated for various values of nonlinear factor and elasticity parameters. It was concluded that in comparison with the Newtonian lubricants, higher values of film pressure and load carrying capacity have been obtained for dilatant lubricants, while the case was reversed for pseudoplastic lubricants.
Nesvizhevsky, V V; Protasov, K V
2005-01-01
An upper limit to non-Newtonian attractive forces is obtained from the measurement of quantum states of neutrons in the Earth's gravitational field. This limit improves the existing constraints in the nanometer range.
Characteristics of gas-liquid dynamics in operation of oil fields producing non-Newtonian crude oils
Energy Technology Data Exchange (ETDEWEB)
Mirzadzhanzade, A Kh; Khasaev, A M; Gurbanov, R S; Akhmedov, Z M
1968-08-01
Experimental studies have shown that crude oils from Azerbaidzhan, Uzbekistan, Tataria, Kazakhstan and other areas have anomalous properties under reservoir conditions. Such crude oils are non-Newtonian and (1) obey Darcys Law at low velocities; (2) obey an exponential law at higher velocities; and (3) obey a modified Darcys Law at most velocities. A discussion is given of (1) flow of non-Newtonian crude oils together with gas or water; (2) flow of non-Newtonian crude oils in well tubing; (3) behavior of wells producing non-Newtonian crude oils; and (4) pumping of non-Newtonian oils in wells. Experiments have shown that a visco-plastic liquid does not fill pump inlets completely; as the diameter of the pump inlet decreases so also does the degree of liquid filling. A statistical analysis of production data from 160 fields with Newtonian oil and 129 fields with non- Newtonian oil has shown that much higher production is obtained from fields with Newtonian crude oils.
Soulis, Johannes V; Fytanidis, Dimitrios K; Lampri, Olga P; Giannoglou, George D
2016-04-01
The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta.
Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability
International Nuclear Information System (INIS)
Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.
1998-01-01
We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy close-quote s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. copyright 1998 The American Physical Society
Nonlinear shear wave in a non Newtonian visco-elastic medium
Energy Technology Data Exchange (ETDEWEB)
Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)
2012-06-15
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.
Numerical investigation of non-Newtonian nanofluid flow in a converging microchannel
Energy Technology Data Exchange (ETDEWEB)
Mohsenian, S.; Ramiar, A.; Ranjbar, A. A. [Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of)
2017-01-15
In the present study the flow of non-Newtonian nanofluid through a converging microchannel is investigated numerically. TiO{sub 2} nanoparticles with 10 nm diameter are dispersed in an aqueous solution of 0.5 %.wt Carboxymethyl cellulose (CMC) to produce the nanofluid. Both nanofluid and the base fluid show pseudoplastic behavior. The equations have been solved with finite volume approach using collocated grid. It has been found that by increasing the volume fraction and Reynolds number and the convergence angle, the Nusselt number increases. Also, it has been observed that by increasing convergence angle and decreasing aspect ratio of the channel, the velocity of the channel increases.
Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow
DEFF Research Database (Denmark)
Lemarchand, Claire; Bailey, Nicholas; Daivis, Peter
2015-01-01
The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear...... rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures. In addition, the Cooee model is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules in bitumen. These nanoaggregates...
Non-Newtonian fluid flow in an axisymmetric channel with porous wall
Directory of Open Access Journals (Sweden)
M. Hosseini
2013-12-01
Full Text Available In the present article Optimal Homotopy Asymptotic Method (OHAM is used to obtain the solutions of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall for turbine cooling applications. Numerical method is used for validity of this analytical method and excellent agreement is observed between the solutions obtained from OHAM and numerical results. Trusting to this validity, effects of some other parameters are discussed. The results show that Nusselt number increases with increase of Reynolds number, Prandtl number and power law index.
Walker, Andrew M; Johnston, Clifton R; Rival, David E
2012-11-01
stent wire promoted the development of flow patterns that are susceptible to intimal hyperplasia using both Newtonian and non-Newtonian analogs, although the magnitude of sites affected downstream was appreciably related to the rheological behavior of the analog. While the assumption of linear viscous behavior is often appropriate in quantifying flow in the largest arteries of the vasculature, the results presented here suggest this assumption overestimates sites susceptible to hyperplasia and restenosis in flow characterized by low and oscillatory shear.
Directory of Open Access Journals (Sweden)
Zeeshan Khan
2018-06-01
Full Text Available In this work, we discuss the unsteady flow of non-Newtonian fluid with the properties of heat source/sink in the presence of thermal radiation moving through a binary mixture embedded in a porous medium. The basic equations of motion including continuity, momentum, energy and concentration are simplified and solved analytically by using Homotopy Analysis Method (HAM. The energy and concentration fields are coupled with Dankohler and Schmidt numbers. By applying suitable transformation, the coupled nonlinear partial differential equations are converted to couple ordinary differential equations. The effect of physical parameters involved in the solutions of velocity, temperature and concentration profiles are discussed by assign numerical values and results obtained shows that the velocity, temperature and concentration profiles are influenced appreciably by the radiation parameter, Prandtl number, suction/injection parameter, reaction order index, solutal Grashof number and the thermal Grashof. It is observed that the non-Newtonian parameter H leads to an increase in the boundary layer thickness. It was established that the Prandtl number decreases thee thermal boundary layer thickness which helps in maintaining system temperature of the fluid flow. It is observed that the temperature profiles higher for heat source parameter and lower for heat sink parameter throughout the boundary layer. Fromm this simulation it is analyzed that an increase in the Schmidt number decreases the concentration boundary layer thickness. Additionally, for the sake of comparison numerical method (ND-Solve and Adomian Decomposition Method are also applied and good agreement is found. Keywords: Unsteady flow, Viscous fluid, Thermal radiation, Porous plate, Arrhenius kinetics, HAM and numerical method
Gas holdup in a reciprocating plate bioreactor: Non-Newtonian - liquid phase
Directory of Open Access Journals (Sweden)
Naseva Olivera S.
2002-01-01
Full Text Available The gas holdup was studied in non-newtonian liquids in a gas-liquid and gas-liquid-solid reciprocating plate bioreactor. Aqueous solutions of carboxy methyl cellulose (CMC; Lucel, Lučane, Yugoslavia of different degrees of polymerization (PP 200 and PP 1000 and concentration (0,5 and 1%, polypropylene spheres (diameter 8.3 mm; fraction of spheres: 3.8 and 6.6% by volume and air were used as the liquid, solid and gas phase. The gas holdup was found to be dependent on the vibration rate, the superficial gas velocity, volume fraction of solid particles and Theological properties of the liquid ohase. Both in the gas-liquid and gas-liquid-solid systems studied, the gas holdup increased with increasing vibration rate and gas flow rate. The gas holdup was higher in three-phase systems than in two-phase ones under otter operating conditions being the same. Generally the gas holdup increased with increasing the volume fraction of solid particles, due to the dispersion action of the solid particles, and decreased with increasing non-Newtonian behaviour (decreasing flow index i.e. with increasing degree of polymerization and solution concentration of CMC applied, as a result of gas bubble coalescence.
CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.
Wu, Binxin
2010-07-01
This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.
Physically based model for extracting dual permeability parameters using non-Newtonian fluids
Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.
2017-12-01
Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.
Generation of Oil Droplets in a Non-Newtonian Liquid Using a Microfluidic T-Junction
Directory of Open Access Journals (Sweden)
Enrico Chiarello
2015-11-01
Full Text Available We have compared the formation of oil drops in Newtonian and non-Newtonian fluids in a T-junction microfluidic device. As Newtonian fluids, we used aqueous solutions of glycerol, while as non-Newtonian fluids we prepared aqueous solutions of xanthan, a stiff rod-like polysaccharide, which exhibit strong shear-thinning effects. In the squeezing regime, the formation of oil droplets in glycerol solutions is found to scale with the ratio of the dispersed flow rate to the continuous one and with the capillary number associated to the continuous phase. Switching to xanthan solutions does not seem to significantly alter the droplet formation process. Any quantitative difference with respect to the Newtonian liquid can be accounted for by a suitable choice of the capillary number, corresponding to an effective xanthan viscosity that depends on the flow rates. We have deduced ample variations in the viscosity, on the order of 10 and more, during normal operation conditions of the T-junction. This allowed estimating the actual shear rates experienced by the xanthan solutions, which go from tens to hundreds of s−1.
CFD-PBM Coupled Simulation of an Airlift Reactor with Non-Newtonian Fluid
Directory of Open Access Journals (Sweden)
Han Mei
2017-09-01
Full Text Available Hydrodynamics of an AirLift Reactor (ALR with tap water and non-Newtonian fluid was studied experimentally and by numerical simulations. The Population Balance Model (PBM with multiple breakup and coalescence mechanisms was used to describe bubble size characteristics in the ALR. The interphase forces for closing the two-fluid model were formulated by considering the effect of Bubble Size Distribution (BSD. The BSD in the ALR obtained from the coupled Computational Fluid Dynamics (CFD-PBM model was validated against results from digital imaging measurements. The simulated velocity fields of both the gas and liquid phases were compared to measured fields obtained with Particle Image Velocimetry (PIV. The simulated results show different velocity field profile features at the top of the ALR between tap water and non-Newtonian fluid, which are in agreement with experiments. In addition, good agreement between simulations and experiments was obtained in terms of overall gas holdup and bubble Sauter mean diameter.
Tazraei, Pedram; Riasi, Alireza; Takabi, Behrouz
2015-06-01
This work investigates a two dimensional numerical analysis of blood hammer through the posterior cerebral artery. The non-Newtonian and usual Newtonian blood models are compared in the case of blood hammer through the posterior cerebral artery to quantify the differences between the models. In this way, a validated CFD simulation is used to study non-Newtonian shear-thinning effects of blood. The governing equations for the modeling of two-dimensional transient flow are solved using a combination of characteristics and central finite difference methods, respectively for the hyperbolic and parabolic parts. Herein, the non-Newtonian viscosity characteristic of blood is incorporated by using the Carreau model. To convert the nonlinear terms available in the characteristics equation into the linear ones, the Newton-Kantorovich method is implemented. The verification and validation of the numerical results are carried out in detail. Hemodynamic characteristics of blood hammer through the posterior cerebral artery are derived with both the Newtonian and non-Newtonian models, and the results are meticulously compared and discussed. The results show that when blood hammer occurs, the non-Newtonian properties greatly influence the velocity and shear stress profiles. At the early stages of blood hammer, there is a 64% difference between magnitudes of wall shear stress in these two models, and the magnitude of the wall shear stress for the shear-thinning blood flow is lower than the Newtonian one. Copyright © 2015 Elsevier Inc. All rights reserved.
A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application
Zhu, Luoding
2017-11-01
Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.
Possible evidence for non-Newtonian gravity in the Greenland ice gap
International Nuclear Information System (INIS)
Ander, M.E.
1988-01-01
An Airy-type geophysical experiment was conducted down a 2 km deep hole in the Greenland ice cap in order to test for possible violations of Newton's inverse square law by making gravity measurements over a range of 213 m to 1460 m. A significant departure from Newtonian gravity was observed. This result can be explained by the existence of an attractive non-Newtonian component of gravity with a strength of about 3.4% that of Newtonian gravity at a scale of 1460 m. Unfortunately, we cannot completely, unambiguously attribute it to a breakdown of Newtonian gravity because we have shown that lateral density variations in the bedrock beneath the ice can cause such apparent departures. If such variations existed, they would have to be rather unusual but certainly no impossible. 8 refs
Simulation of forced convection in non-Newtonian fluid through sandstones
Gokhale, M. Y.; Fernandes, Ignatius
2017-11-01
Numerical simulation is carried out to study forced convection in non-Newtonian fluids flowing through sandstones. Simulation is carried out using lattice Boltzmann method (LBM) for both shear-thinning and shear-thickening, by varying the power law index from 0.5 to 1.5 in Carreau-Yasuda model. Parameters involved in LBM and Carreau model are identified to achieve numerical convergence. Permeability and porosity are varied in the range of 10-10-10-6 and 0.1-0.7, respectively, to match actual geometrical properties of sandstone. Numerical technology is validated by establishing Darcy's law by plotting the graph between velocity and pressure gradient. Consequently, investigation is carried out to study the influence of material properties of porous media on flow properties such as velocity profiles, temperature profiles, and Nusselt number.
Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow
Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.
2000-09-01
We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.
Motion of Charged Suspended Particle in a Non-Newtonian Fluid between Two Long Parallel Plated
International Nuclear Information System (INIS)
Abd-El Khalek, M.M.
1998-01-01
The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effects of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically
Microrheological observations of the onset of non-Newtonian behavior in suspensions
Energy Technology Data Exchange (ETDEWEB)
Mondy, L A; Graham, A L; Gottlieb, M
1988-01-01
As the column fraction of solids increases above about 0.30, suspensions of non-Brownian, uniform spheres in Newtonian liquids begin to exhibit shear-thinning, normal stresses, and other non- Newtonian behavior. Here, we report on observations obtained from falling-ball and capillary rheometry at these high volume fractions. Specifically, we find that measured viscosity values are dependent on the size-scale of the viscometer (cylinder diameter, D, and falling- ball diameter, d) relative to the diameter of the suspended spheres d/sub s/. We report the dependence of the measured viscosity on the ratios d/d/sub s/, D/d, and D/d/sub s/, as well as critical values of these ratios above which the apparent viscosity is constant. 5 refs., 3 figs., 1 tab.
Motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates
Energy Technology Data Exchange (ETDEWEB)
Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)
1997-12-31
The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformation and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effect of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.
Acoustic waveform of continuous bubbling in a non-Newtonian fluid.
Vidal, Valérie; Ichihara, Mie; Ripepe, Maurizio; Kurita, Kei
2009-12-01
We study experimentally the acoustic signal associated with a continuous bubble bursting at the free surface of a non-Newtonian fluid. Due to the fluid rheological properties, the bubble shape is elongated, and, when bursting at the free surface, acts as a resonator. For a given fluid concentration, at constant flow rate, repetitive bubble bursting occurs at the surface. We report a modulation pattern of the acoustic waveform through time. Moreover, we point out the existence of a precursor acoustic signal, recorded on the microphone array, previous to each bursting. The time delay between this precursor and the bursting signal is well correlated with the bursting signal frequency content. Their joint modulation through time is driven by the fluid rheology, which strongly depends on the presence of small satellite bubbles trapped in the fluid due to the yield stress.
Interplay between inertial and non-Newtonian effects on the flow in weakly modulated channel
International Nuclear Information System (INIS)
Abu-Ramadan, E.; Khayat, R.E.
2002-01-01
The flow inside a spatially modulated channel is examined for shear-thinning and shear-thickening fluids. The modulation amplitude is assumed to be small. A regular perturbation expansion of the flow field is used, coupled to a variable-step finite-difference scheme, to solve the problem. Since this method is intended to provide a fast and accurate alternative to conventional methods in the limit of small modulation amplitude, establishing the accuracy of the solution is critical. Numerical accuracy and convergence will be assessed, therefore. The influence of the wall geometry, inertia and non-Newtonian effects are investigated systematically. In particular, the influence of the flow and fluid parameters is examined on the conditions for the onset of separation. (author)
Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em
2018-06-01
We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.
Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture
Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.
2017-12-01
Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.
Sharifi, Alireza; Niazmand, Hamid
2015-10-01
Carotid siphon is known as one of the risky sites among the human intracranial arteries, which is prone to formation of atherosclerotic lesions. Indeed, scientists believe that accumulation of low density lipoprotein (LDL) inside the lumen is the major cause of atherosclerosis. To this aim, three types of internal carotid artery (ICA) siphon have been constructed to examine variations of hemodynamic parameters in different regions of the arteries. Providing real physiological conditions, blood considered as non-Newtonian fluid and real velocity and pressure waveforms have been employed as flow boundary conditions. Moreover, to have a better estimation of risky sites, the accumulation of LDL particles has been considered, which has been usually ignored in previous relevant studies. Governing equations have been discretized and solved via open source OpenFOAM software. A new solver has been built to meet essential parameters related to the flow and mass transfer phenomena. In contrast to the common belief regarding negligible effect of blood non-Newtonian behavior inside large arteries, current study suggests that the non-Newtonian blood behavior is notable, especially on the velocity field of the U-type model. In addition, it is concluded that neglecting non-Newtonian effects underestimates the LDL accumulation up to 3% in the U-type model at the inner side of both its bends. However, in the V and C type models, non-Newtonian effects become relatively small. Results also emphasize that the outer part of the second bend at the downstream is also at risk similar to the inner part of the carotid bends. Furthermore, from findings it can be implied that the risky sites strongly depend on the ICA shape since the extension of the risky sites are relatively larger for the V-type model, while the LDL concentrations are higher for the C-type model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow
Cagney, Neil; Balabani, Stavroula
2017-11-01
Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.
Computational simulation of a non-newtonian model of the blood separation process.
De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos
2005-12-01
The aim of this work is to construct a computational fluid dynamics model capable of simulating the transient non-Newtonian process of apheresis. A Lagrangian-Eulerian model has been developed which tracks the blood particles within a two-dimensional flow configuration. Within the Eulerian method, the fluid mass and momentum conservation equations within the separator are solved using the density and the viscosity is calculated from the blood particle concentrations. Subsequently, the displacement of the blood particles is calculated with a Lagrangian method. Hawksley's model for the density of supensions is used in the variable density calculation. The viscosity is calculated with two models based on Vand's rigid particle suspension viscosity concepts, followed by the flow field calculation in the separator. Simulations were performed for various inlet hematocrit values and separator lengths. The simulations are in satisfactory agreement with experimental results reported in literature, indicating a complete separation of plasma and red blood cells (RBCs), as well as nearly complete separation of red blood cells and platelets. No hemolysis was observed in the simulations because the shear rate remained under the critical value of 150 N/m2.
Physics of non-Newtonian fluids and interdisciplinary relations (biology and criminology)
Holubova, R.
2018-03-01
The aim of the paper is the presentation of an interdisciplinary topic that allows applying content knowledge in physics, mathematics and biology in real life environment. Students use to play games and view crime scenes but in common they have little knowledge about the science used during crime scene investigation. In this paper the science background of blood spatter analysis is presented—the physics of non-Newtonian fluids, the biology of blood and mathematics—the measurement and calculation of the angle of inpact, the relationship between height and spatter diameter. This topic was choosen according to the analysis of interviews with secondary and high school learners realized at four schools in Moravia, Czech Republic. The topic can be taught at secondary schools so as at a higher level at high schools. Hands-on activities are included. The teaching strategy supports group work. The appropriateness and reasonableness of the topic was checked in the real teaching process and the activities have had a positive feedback.
A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids
Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar
2014-11-01
We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.
Study of microvascular non-Newtonian blood flow modulated by electroosmosis.
Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh
2018-05-01
An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.
On a numerical strategy to compute gravity currents of non-Newtonian fluids
International Nuclear Information System (INIS)
Vola, D.; Babik, F.; Latche, J.-C.
2004-01-01
This paper is devoted to the presentation of a numerical scheme for the simulation of gravity currents of non-Newtonian fluids. The two dimensional computational grid is fixed and the free-surface is described as a polygonal interface independent from the grid and advanced in time by a Lagrangian technique. Navier-Stokes equations are semi-discretized in time by the Characteristic-Galerkin method, which finally leads to solve a generalized Stokes problem posed on a physical domain limited by the free surface to only a part of the computational grid. To this purpose, we implement a Galerkin technique with a particular approximation space, defined as the restriction to the fluid domain of functions of a finite element space. The decomposition-coordination method allows to deal without any regularization with a variety of non-linear and possibly non-differentiable constitutive laws. Beside more analytical tests, we revisit with this numerical method some simulations of gravity currents of the literature, up to now investigated within the simplified thin-flow approximation framework
Experimental investigation of non-Newtonian/Newtonian liquid-liquid flow in microchannel
Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Lyes Kahouadji Collaboration; Omar. K. Matar Collaboration
2015-11-01
Plug flow of an organic phase and an aqueous non-Newtonian solution was investigated experimentally in a quartz microchannel with I.D. 200 μm. The aqueous phase was a glycerol solution where 1000 and 2000 ppm of xanthan gum was added while the organic phase was silicon oil with 155 and 5 cSt viscosity. The two phases were brought together in a T-junction and their flowrates varied from 0.3 to 6 ml/hr. High speed imaging was used to study the characteristics of the plugs and the effect of the liquid properties on the flow patterns while a two-colour micro-PIV technique was used to investigate velocity profiles and circulation patterns within the plugs. The experimental results revealed that plug length was affected by both flowrate and viscosity. In all cases investigated, a film of the continuous phase always surrounded the plugs and its thickness was compared with existing literature models. Circulation patterns inside plugs were obtained by subtracting the plug velocity and found to be depended on the plug length and the amount of xanthan gum in the aqueous phase. Finally, the dimensionless circulation time was calculated and plotted as a function of the plug length. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.
Directory of Open Access Journals (Sweden)
Luís Felipe Gomes Marinho
Full Text Available Abstract The economics of a mining operation is directly influenced by blasting outcomes, where blasting aims to comminute the rock mass in order to attain smaller grain sizes to be loaded and hauled at a minimum cost for its first processing stage. In order to promote adequate rock breakage, the stemming structure needs to provide proper confinement for the borehole charged with explosives, reflecting the energy released during the detonation in form of shock waves and gases to act throughout the in situ rock mass, enlarging its failures and fractures, and also creating new ones. To build up a stemming column, literature recommends the usage of dry granular materials instead of elements with plastic behavior. However, a study was performed using Gypsum plaster as stemming; a kind of material that exhibits solid-like behavior when it is dry. Following this theory, this test verified improvements regarding confinement effectiveness and energy propagation throughout the rock mass when a non-Newtonian mixture (NNM was applied as stemming; a material that shows a solid-like behavior when is under shear stress. When the stemming arrangement was composed of NNM, it was able to reduce energy and gas losses to the atmosphere, because of the liquid's property of filling voids into the borehole. The NNM yielded high results due to its better confinement effectiveness, a reduction of air overpressure, and an increase of the strain propagation and ground vibration throughout the rock.
Kuchumov, Alex G.; Gilev, Valeriy; Popov, Vitaliy; Samartsev, Vladimir; Gavrilov, Vasiliy
2014-02-01
The paper presents an experimental study of pathological human bile taken from the gallbladder and bile ducts. The flow dependences were obtained for different types of bile from patients with the same pathology, but of different age and sex. The parameters of the Casson's and Carreau's equations were found for bile samples. Results on the hysteretic bile behavior at loading-unloading tests are also presented, which proved that the pathologic bile is a non-Newtonian thixotropic liquid. The viscosity of the gallbladder bile was shown to be higher compared to the duct bile. It was found that at higher shear stress the pathological bile behaves like Newtonian fluid, which is explained by reorientation of structural components. Moreover, some pathological bile flow in the biliary system CFD simulations were performed. The velocity and pressure distributions as well as flow rates in the biliary segments during the gallbladder refilling and emptying phases are obtained. The results of CFD simulations can be used for surgeons to assess the patient's condition and choose an adequate treatment.
Non-Newtonian stress tensor and thermal conductivity tensor in granular plane shear flow
Alam, Meheboob; Saha, Saikat
2014-11-01
The non-Newtonian stress tensor and the heat flux in the plane shear flow of smooth inelastic disks are analysed from the Grad-level moment equations using the anisotropic Gaussian as a reference. Closed-form expressions for shear viscosity, pressure, first normal stress difference (N1) and the dissipation rate are given as functions of (i) the density or the area fraction (ν), (ii) the restitution coefficient (e), (iii) the dimensionless shear rate (R), (iv) the temperature anisotropy [ η, the difference between the principal eigenvalues of the second moment tensor] and (v) the angle (ϕ) between the principal directions of the shear tensor and the second moment tensor. Particle simulation data for a sheared hard-disk system is compared with theoretical results, with good agreement for p, μ and N1 over a large range of density. In contrast, the predictions from a Navier-Stokes order constitutive model are found to deviate significantly from both the simulation and the moment theory even at moderate values of e. We show that the gradient of the deviatoric part of the kinetic stress drives a heat current and the thermal conductivity is characterized by an anisotropic 2nd rank tensor for which explicit expressions are derived.
Non-Newtonian plastic flow of a Ni-Si-B metallic glass at low stresses
International Nuclear Information System (INIS)
Csach, K.; Fursova, Y.V.; Khonik, V.A.; Ocelik, V.
1998-01-01
The problem of the rheological behavior of metallic glasses (MGs) is quite important both from theoretical and practical viewpoints. Early experiments carried out on MGs at temperatures T > 300 K using low shear stress levels revealed plastic flow to be Newtonian while measurements at relative high shear stresses (more than 200 to 400 MPa, depending on temperature, thermal prehistory of samples and chemical composition) indicated a non-linear behavior with 1 < m < 12. Numerous investigations performed later both on as-cast and relaxed MGs of various chemical compositions using a number of testing methods (tensile creep, tensile and bend stress relaxation) showed that a transition from Newtonian behavior at low stresses to a non-linear flow at high stresses was observed. At present, such a situation is considered to be generally accepted. The authors performed precise creep measurements of a Ni-Si-B metallic glass. The results obtained indicate that plastic flow in this case at low tensile stress (12 le σ le 307 MPa) is clearly non-Newtonian and, consequently, the viscosity is stress dependent
On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet
Khan, Masood; Sardar, Humara; Gulzar, M. Mudassar; Alshomrani, Ali Saleh
2018-03-01
This paper presents the multiple solutions of a non-Newtonian Carreau fluid flow over a nonlinear inclined shrinking surface in presence of infinite shear rate viscosity. The governing boundary layer equations are derived for the Carreau fluid with infinite shear rate viscosity. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The consequential non-linear ODEs are solved numerically by an active numerical approach namely Runge-Kutta Fehlberg fourth-fifth order method accompanied by shooting technique. Multiple solutions are presented graphically and results are shown for various physical parameters. It is important to state that the velocity and momentum boundary layer thickness reduce with increasing viscosity ratio parameter in shear thickening fluid while opposite trend is observed for shear thinning fluid. Another important observation is that the wall shear stress is significantly decreased by the viscosity ratio parameter β∗ for the first solution and opposite trend is observed for the second solution.
Bose, Sayan; Banerjee, Moloy
2015-01-01
Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Magnetic carrier particles with surface-bound drug molecules are injected into the vascular system upstream from the desired target site, and are captured at the target site via a local applied magnetic field. Herein, a numerical investigation of steady magnetic drug targeting (MDT) using functionalized magnetic micro-spheres in partly occluded blood vessel having a 90° bent is presented considering the effects of non-Newtonian characteristics of blood. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted and the influence of the insert configuration and its position from the central plane of the artery (zoffset), particle size (dp) and its magnetic property (χ) and the magnitude of current (I) on the "capture efficiency" (CE) is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.
Non-Newtonian fluids: Frictional pressure loss prediction for fully-developed flow in straight pipes
1991-10-01
ESDU 91025 discusses models used to describe the rheology of time independent pseudohomogeneous non-Newtonian fluids (power-law, Bingham, Herschel-Bulkley and a generalized model due to Metzner and Reed); they are used to calculate the laminar flow pressure drop (which is independent of pipe roughness in this regime). Values of a generalized Reynolds number are suggested to define transitional and turbulent flow. For turbulent flow in smooth pipes, pressure loss is estimated on the basis of an experimentally determined rheogram using either the Dodge-Metzner or Bowen approach depending on the available measurements. Bowen requires results for at least two pipe diameters. The choice of Dodge-Metzner when data are limited is discussed; seven possible methods are assessed against five sets of experimental results drawn from the literature. No method is given for transitional flow, which it is suggested should be avoided, but the turbulent correlation is recommended because it will yield an overestimate. Suggestions are made for the treatment of roughness effects. Several worked examples illustrate the use of the methods and a flowchart guides the user through the process from experimentally characterizing the behavior of the fluid to determining the pressure drop. A computer program, ESDUpac A9125, is also provided.
Humphrey, Shannon; Carruthers, Jean; Carruthers, Alastair
2015-09-01
A 3-dimensional approach to facial rejuvenation restores volume lost over time. Hyaluronic acid (HA) filling agents provide long-lasting correction with minimal side effects and a high level of patient satisfaction. The newest HA formulation is a 20-mg/mL smooth cohesive filler (Juvéderm Voluma [HA-V]) that combines both low- and high-molecular-weight HA for more efficient cross-linking and greater lift capabilities. To document the clinical experience with HA-V over the course of 68 months. The authors conducted a retrospective chart review of patients who received HA-V for facial augmentation between February 1, 2009, and October 1, 2014. Clinical results were assessed 2 weeks after initial treatment, with touch-ups performed as necessary. Color photographs were taken before and after treatment, and adverse events were documented. Over 68 months, the authors treated 2,342 patients with 11,460 mL of HA-V. Aesthetic results lasted upwards of 12 months, and most side effects were transient and mild. Three patients developed signs of vascular compromise that was promptly treated and resolved within 2 months. Twenty-one patients (<0.5%) experienced late-onset, temporary, nontender nodules that were successfully managed with conservative measures. Easy to use and well tolerated, HA-V is ideally formulated for soft-tissue augmentation in the face, with clinical effects lasting 12 months or longer.
Cavalcanti, Tiago Vanderlei; Giannitsarou, Chrysi; Johnson, CR
2017-01-01
We define a measure of network cohesion and show how it arises naturally in a broad class of dynamic models of endogenous perpetual growth with network externalities. Via a standard growth model, we show why network cohesion is crucial for conditional convergence and explain that as cohesion increases, convergence is faster. We prove properties of network cohesion and define a network aggregator that preserves network cohesion.
Directory of Open Access Journals (Sweden)
Roberto Mei
2018-01-01
Full Text Available The application of a multivariable predictive controller to the mixing process for the production of a non-Newtonian fluid is discussed in this work. A data-driven model has been developed to describe the dynamic behaviour of the rheological properties of the fluid as a function of the operating conditions using experimental data collected in a pilot plant. The developed model provides a realistic process representation and it is used to test and verify the multivariable controller, which has been designed to maintain viscosity curves of the non-Newtonian fluid within a given region of the viscosity-vs-shear rate plane in presence of process disturbances occurring in the mixing process.
International Nuclear Information System (INIS)
Li, Si-Ning; Zhang, Hong-Na; Li, Xiao-Bin; Li, Qian; Li, Feng-Chen; Qian, Shizhi; Joo, Sang Woo
2017-01-01
Highlights: • Heat transfer performance of non-Newtonian fluid flow in a MHS is studied. • Pseudo-plastic fluid flow can clearly promote the heat transfer efficiency in MMC. • Heat transfer enhancement is attributed to the emergence of secondary flow. • The heat transfer uniformity can also be improved by pseudo-plastic fluid flow. - Abstract: As the miniaturization and integration become the leading trend of the micro-electro-mechanical systems, it is of great significance to improve the microscaled heat transfer performance. This paper presents a three-dimensional (3D) numerical simulation on the flow characteristics and heat transfer performance of non-Newtonian fluid flow in a manifold microchannel (MMC) heat sink and traditional microchannel (TMC) heat sink. The non-Newtonian fluid was described by the power-law model. The analyses concentrated on the non-Newtonian fluid effect on the heat transfer performance, including the heat transfer efficiency and uniformity of temperature distribution, as well as the influence of inlet/outlet configurations on fluid flow and heat transfer. Comparing with Newtonian fluid flow, pseudo-plastic fluid could reduce the drag resistance in both MMC and TMC, while the dilatant fluid brought in quite larger drag resistance. For the heat transfer performance, the introduction of pseudo-plastic fluid flow greatly improved the heat transfer efficiency owing to the generation of secondary flow due to the shear-thinning property. Besides, the temperature distribution in MMC was more uniform by using pseudo-plastic fluid. Moreover, the inlet/outlet configuration was also important for the design and arrangement of microchannel heat sinks, since the present work showed that the maximum temperature was prone to locating in the corners near the inlet and outlet. This work provides guidance for optimal design of small-scale heat transfer devices in many cooling applications, such as biomedical chips, electronic systems, and
Physics of Life: A Model for Non-Newtonian Properties of Living Systems
Zak, Michail
2010-01-01
This innovation proposes the reconciliation of the evolution of life with the second law of thermodynamics via the introduction of the First Principle for modeling behavior of living systems. The structure of the model is quantum-inspired: it acquires the topology of the Madelung equation in which the quantum potential is replaced with the information potential. As a result, the model captures the most fundamental property of life: the progressive evolution; i.e. the ability to evolve from disorder to order without any external interference. The mathematical structure of the model can be obtained from the Newtonian equations of motion (representing the motor dynamics) coupled with the corresponding Liouville equation (representing the mental dynamics) via information forces. All these specific non-Newtonian properties equip the model with the levels of complexity that matches the complexity of life, and that makes the model applicable for description of behaviors of ecological, social, and economical systems. Rather than addressing the six aspects of life (organization, metabolism, growth, adaptation, response to stimuli, and reproduction), this work focuses only on biosignature ; i.e. the mechanical invariants of life, and in particular, the geometry and kinematics of behavior of living things. Living things obey the First Principles of Newtonian mechanics. One main objective of this model is to extend the First Principles of classical physics to include phenomenological behavior on living systems; to develop a new mathematical formalism within the framework of classical dynamics that would allow one to capture the specific properties of natural or artificial living systems such as formation of the collective mind based upon abstract images of the selves and non-selves; exploitation of this collective mind for communications and predictions of future expected characteristics of evolution; and for making decisions and implementing the corresponding corrections if
Numerical methods for multi-scale modeling of non-Newtonian flows
Symeonidis, Vasileios
This work presents numerical methods for the simulation of Non-Newtonian fluids in the continuum as well as the mesoscopic level. The former is achieved with Direct Numerical Simulation (DNS) spectral h/p methods, while the latter employs the Dissipative Particle Dynamics (DPD) technique. Physical results are also presented as a motivation for a clear understanding of the underlying numerical approaches. The macroscopic simulations employ two non-Newtonian models, namely the Reiner-Ravlin (RR) and the viscoelastic FENE-P model. (1) A spectral viscosity method defined by two parameters ε, M is used to stabilize the FENE-P conformation tensor c. Convergence studies are presented for different combinations of these parameters. Two boundary conditions for the tensor c are also investigated. (2) Agreement is achieved with other works for Stokes flow of a two-dimensional cylinder in a channel. Comparison of the axial normal stress and drag coefficient on the cylinder is presented. Further, similar results from unsteady two- and three-dimensional turbulent flows past a flat plate in a channel are shown. (3) The RR problem is formulated for nearly incompressible flows, with the introduction of a mathematically equivalent tensor formulation. A spectral viscosity method and polynomial over-integration are studied. Convergence studies, including a three-dimensional channel flow with a parallel slot, investigate numerical problems arising from elemental boundaries and sharp corners. (4) The round hole pressure problem is presented for Newtonian and RR fluids in geometries with different hole sizes. Comparison with experimental data is made for the Newtonian case. The flaw in the experimental assumptions of undisturbed pressure opposite the hole is revealed, while good agreement with the data is shown. The Higashitani-Pritchard kinematical theory for RR, fluids is recovered for round holes and an approximate formula for the RR Stokes hole pressure is presented. The mesoscopic
Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI)
Hidema, R.; Yamada, N.; Furukawa, H.
2012-04-01
In the human body, full of biological non-Newtonian fluids exist. For example, synovial fluids exist in our joints, which contain full of biopolymers, such as hyaluronan and mucin. It is thought that these polymers play critical roles on the smooth motion of the joint. Indeed, luck of biopolymers in synovial fluid cause joint pain. Here we study the effects of polymer in thin liquid layer by using an original experimental method called Film Interference Flow Imaging (FIFI). A vertically flowing soap film containing polymers is made as two-dimensional flow to observe turbulence. The thickness of water layer is about 4 μm sandwiched between surfactant mono-layers. The interference pattern of the soap film is linearly related to the flow velocity in the water layer through the change in the thickness of the film. Thus the flow velocity is possibly analyzed by the single image analysis of the interference pattern, that is, FIFI. The grid turbulence was made in the flowing soap films containing the long flexible polymer polyethyleneoxide (PEO, Mw=3.5x106), and rigid polymer hydroxypropyl cellulose (HPC, Mw > 1.0 x106). The decaying process of the turbulence is affected by PEO and HPC at several concentrations. The effects of PEO are sharply seen even at low concentrations, while the effects of HPC are gradually occurred at much higher concentration compared to the PEO. It is assumed that such a difference between PEO and HPC is due to the polymer stretching or polymer orientation under turbulence, which is observed and analyzed by FIFI. We believe the FIFI will be applied in the future to examine biological fluids such as synovial fluids quickly and quantitatively.
On Laminar Flow of Non-Newtonian Fluids in Porous Media
Fayed, Hassan E.
2015-10-20
Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.
Experimental model for non-Newtonian fluid viscosity estimation: Fit to mathematical expressions
Directory of Open Access Journals (Sweden)
Guillem Masoliver i Marcos
2017-01-01
Full Text Available The construction process of a viscometer, developed in collaboration with a final project student, is here presented. It is intended to be used by first year's students to know the viscosity as a fluid property, for both Newtonian and non-Newtonian flows. Viscosity determination is crucial for the fluids behaviour knowledge related to their reologic and physical properties. These have great implications in engineering aspects such as friction or lubrication. With the present experimental model device three different fluids are analyzed (water, kétchup and a mixture with cornstarch and water. Tangential stress is measured versus velocity in order to characterize all the fluids in different thermal conditions. A mathematical fit process is proposed to be done in order to adjust the results to expected analytical expressions, obtaining good results for these fittings, with R2 greater than 0.88 in any case.
On Laminar Flow of Non-Newtonian Fluids in Porous Media
Fayed, Hassan E.; Sheikh, Nadeem A.; Iliev, Oleg
2015-01-01
Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.
Energy Technology Data Exchange (ETDEWEB)
Yokuda, Satoru T.; Poloski, Adam P.; Adkins, Harold E.; Casella, Andrew M.; Hohimer, Ryan E.; Karri, Naveen K.; Luna, Maria; Minette, Michael J.; Tingey, Joel M.
2009-05-11
The External Flowsheet Review Team (EFRT) has identified the issues relating to the Waste Treatment and Immobilization Plant (WTP) pipe plugging. Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, testing was performed to determine critical velocities for the complex WTP piping layout. Critical velocity is defined as the point at which a moving bed of particles begins to form on the pipe bottom during slurry-transport operations. Pressure drops across the fittings of the test pipeline were measured with differential pressure transducers, from which the critical velocities were determined. A WTP prototype flush system was installed and tested upon the completion of the pressure-drop measurements. We also provide the data for the overflow relief system represented by a WTP complex piping geometry with a non-Newtonian slurry. A waste simulant composed of alumina (nominally 50 μm in diameter) suspended in a kaolin clay slurry was used for this testing. The target composition of the simulant was 10 vol% alumina in a suspending medium with a yield stress of 3 Pa. No publications or reports are available to confirm the critical velocities for the complex geometry evaluated in this testing; therefore, for this assessment, the results were compared to those reported by Poloski et al. (2008) for which testing was performed for a straight horizontal pipe. The results of the flush test are compared to the WTP design guide 24590-WTP-GPG-M-0058, Rev. 0 (Hall 2006) in an effort to confirm flushing-velocity requirements.
International Nuclear Information System (INIS)
Yokuda, Satoru T.; Poloski, Adam P.; Adkins, Harold E.; Casella, Andrew M.; Hohimer, Ryan E.; Karri, Naveen K.; Luna, Maria; Minette, Michael J.; Tingey, Joel M.
2009-01-01
The External Flowsheet Review Team (EFRT) has identified the issues relating to the Waste Treatment and Immobilization Plant (WTP) pipe plugging. Per the review's executive summary, ''Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.'' To evaluate the potential for plugging, testing was performed to determine critical velocities for the complex WTP piping layout. Critical velocity is defined as the point at which a moving bed of particles begins to form on the pipe bottom during slurry-transport operations. Pressure drops across the fittings of the test pipeline were measured with differential pressure transducers, from which the critical velocities were determined. A WTP prototype flush system was installed and tested upon the completion of the pressure-drop measurements. We also provide the data for the overflow relief system represented by a WTP complex piping geometry with a non-Newtonian slurry. A waste simulant composed of alumina (nominally 50 (micro)m in diameter) suspended in a kaolin clay slurry was used for this testing. The target composition of the simulant was 10 vol% alumina in a suspending medium with a yield stress of 3 Pa. No publications or reports are available to confirm the critical velocities for the complex geometry evaluated in this testing; therefore, for this assessment, the results were compared to those reported by Poloski et al. (2008) for which testing was performed for a straight horizontal pipe. The results of the flush test are compared to the WTP design guide 24590-WTP-GPG-M-0058, Rev. 0 (Hall 2006) in an effort to confirm flushing-velocity requirements.
Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel
International Nuclear Information System (INIS)
Xiang, Hao; Chen, Bin
2015-01-01
The moving particle semi-implicit (MPS) method and smoothed particle hydrodynamics (SPH) are commonly used mesh-free particle methods for free surface flows. The MPS method has superiority in incompressible flow simulation and simple programing. However, the crude kernel function is not accurate enough for the discretization of the divergence of the shear stress tensor by the particle inconsistency when the MPS method is extended to non-Newtonian flows. This paper presents an improved MPS method with an SPH kernel to simulate non-Newtonian flows. To improve the consistency of the partial derivative, the SPH cubic spline kernel and the Taylor series expansion are combined with the MPS method. This approach is suitable for all non-Newtonian fluids that can be described with τ = μ(|γ|) Δ (where τ is the shear stress tensor, μ is the viscosity, |γ| is the shear rate, and Δ is the strain tensor), e.g., the Casson and Cross fluids. Two examples are simulated including the Newtonian Poiseuille flow and container filling process of the Cross fluid. The results of Poiseuille flow are more accurate than the traditional MPS method, and different filling processes are obtained with good agreement with previous results, which verified the validation of the new algorithm. For the Cross fluid, the jet fracture length can be correlated with We 0.28 Fr 0.78 (We is the Weber number, Fr is the Froude number). (paper)
A Wall Boundary Condition for the Simulation of a Turbulent Non-Newtonian Domestic Slurry in Pipes
Directory of Open Access Journals (Sweden)
Dhruv Mehta
2018-01-01
Full Text Available The concentration (using a lesser amount of water of domestic slurry promotes resource recovery (nutrients and biomass while saving water. This article is aimed at developing numerical methods to support engineering processes such as the design and implementation of sewerage for concentrated domestic slurry. The current industrial standard for computational fluid dynamics-based analyses of turbulent flows is Reynolds-averaged Navier–Stokes (RANS modelling. This is assisted by the wall function approach proposed by Launder and Spalding, which permits the use of under-refined grids near wall boundaries while simulating a wall-bounded flow. Most RANS models combined with wall functions have been successfully validated for turbulent flows of Newtonian fluids. However, our experiments suggest that concentrated domestic slurry shows a Herschel–Bulkley-type non-Newtonian behaviour. Attempts have been made to derive wall functions and turbulence closures for non-Newtonian fluids; however, the resulting laws or equations are either inconsistent across experiments or lack relevant experimental support. Pertinent to this study, laws or equations reported in literature are restricted to a class of non-Newtonian fluids called power law fluids, which, as compared to Herschel–Bulkley fluids, yield at any amount of applied stress. An equivalent law for Herschel–Bulkley fluids that require a minimum-yield stress to flow is yet to be reported in literature. This article presents a theoretically derived (with necessary approximations law of the wall for Herschel–Bulkley fluids and implements it in a RANS solver using a specified shear approach. This results in a more accurate prediction of the wall shear stress experienced by a circular pipe with a turbulent Herschel–Bulkley fluid flowing through it. The numerical results are compared against data from our experiments and those reported in literature for a range of Reynolds numbers and rheological
Shape optimization for non-Newtonian fluids in time-dependent domains
Czech Academy of Sciences Publication Activity Database
Sokolowski, J.; Stebel, Jan
2014-01-01
Roč. 3, č. 2 (2014), s. 331-348 ISSN 2163-2480 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : shape optimization * time - dependent domain * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://www.aimsciences.org/journals/home.jsp?journalID=25
Shape sensitivity analysis of time-dependent flows of incompressible non-Newtonian fluids
Czech Academy of Sciences Publication Activity Database
Sokolowski, J.; Stebel, Jan
2011-01-01
Roč. 40, č. 4 (2011), s. 1077-1097 ISSN 0324-8569 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : shape optimization * shape gradient * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.300, year: 2010
DEFF Research Database (Denmark)
Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hattel, Jesper Henri
2016-01-01
In this paper, the migration of secondary particles in a non-Newtonian ceramic slurry inthe tape casting process is investigated with the purpose of understanding the particle distribution patterns along the casting direction. The Ostwald-de Waele power law model for the non-Newtonian flow...... the substratevelocity (casting speed) leads to a more uniform distribution of the particles inside the ceramic slurry, in which case the shear induced particle migration is dominating over the gravity induced one....
Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval
International Nuclear Information System (INIS)
Yuen, D.A.; Onishi, Y.
2001-01-01
In the U.S. Department of Energy (DOE) complex, 100 million gallons of radioactive and chemical wastes from plutonium production are stored in 281 underground storage tanks. Retrieval of the wastes from the tanks is the first step in its ultimate treatment and disposal. Because billions of dollars are being spent on this effort, waste retrieval demands a strong scientific basis for its successful completion. As will be discussed in Section 4.2, complex interactions among waste chemical reactions, rheology, and mixing of solid and liquid tank waste (and possibly with a solvent) will occur in DSTs during the waste retrieval (mixer pump) operations. The ultimate goal of this study was to develop the ability to simulate the complex chemical and rheological changes that occur in the waste during processing for retrieval. This capability would serve as a scientific assessment tool allowing a priori evaluation of the consequences of proposed waste retrieval operations. Hanford tan k waste is a multiphase, multicomponent, high-ionic strength, and highly basic mixture of liquids and solids. Wastes stored in the 4,000-m3 DSTs will be mixed by 300-hp mixer pumps that inject high-speed (18.3 m/s) jets to stir up the sludge and supernatant liquid for retrieval. During waste retrieval operations, complex interactions occur among waste mixing, chemical reactions, and associated rheology. Thus, to determine safe and cost-effective operational parameters for waste retrieval, decisions must rely on new scientific knowledge to account for physical mixing of multiphase flows, chemical reactions, and waste rheology. To satisfy this need, we integrated a computational fluid dynamics code with state-of-the-art equilibrium and kinetic chemical models and non-Newtonian rheology (Onishi (and others) 1999). This development is unique and holds great promise for addressing the complex phenomena of tank waste retrieval. The current model is, however, applicable only to idealized tank waste
Shape optimization for non-Newtonian fluids in time-dependent domains
Czech Academy of Sciences Publication Activity Database
Sokolowski, J.; Stebel, Jan
2014-01-01
Roč. 3, č. 2 (2014), s. 331-348 ISSN 2163-2480 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : shape optimization * time-dependent domain * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://www.aimsciences.org/journals/home.jsp?journalID=25
Frolov, S V; Sindeev, S V; Liepsch, D; Balasso, A
2016-05-18
According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the
Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran
2014-12-15
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Xiankang Xin
2017-10-01
Full Text Available In this paper, physical experiments and numerical simulations were applied to systematically investigate the non-Newtonian flow characteristics of heavy oil in porous media. Rheological experiments were carried out to determine the rheology of heavy oil. Threshold pressure gradient (TPG measurement experiments performed by a new micro-flow method and flow experiments were conducted to study the effect of viscosity, permeability and mobility on the flow characteristics of heavy oil. An in-house developed novel simulator considering the non-Newtonian flow was designed based on the experimental investigations. The results from the physical experiments indicated that heavy oil was a Bingham fluid with non-Newtonian flow characteristics, and its viscosity-temperature relationship conformed to the Arrhenius equation. Its viscosity decreased with an increase in temperature and a decrease in asphaltene content. The TPG measurement experiments was impacted by the flow rate, and its critical flow rate was 0.003 mL/min. The TPG decreased as the viscosity decreased or the permeability increased and had a power-law relationship with mobility. In addition, the critical viscosity had a range of 42–54 mPa∙s, above which the TPG existed for a given permeability. The validation of the designed simulator was positive and acceptable when compared to the simulation results run in ECLIPSE V2013.1 and Computer Modelling Group (CMG V2012 software as well as when compared to the results obtained during physical experiments. The difference between 0.0005 and 0.0750 MPa/m in the TPG showed a decrease of 11.55% in the oil recovery based on the simulation results, which demonstrated the largely adverse impact the TPG had on heavy oil production.
The influence of pH on gas-liquid mass transfer in non-Newtonian fluids
Li Shaobai; Fan Jungeng; Xu Shuang; Li Rundong; Luan Jingde
2017-01-01
In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa), liquid side mass transfer coefficient (kL), and specific interfacial area (a) were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH). It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liqui...
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
Pandey, Vikash; Holm, Sverre
2016-01-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional deriva...
Daripa, Prabir
2011-11-01
We numerically investigate the optimal viscous profile in constant time injection policy of enhanced oil recovery. In particular, we investigate the effect of a combination of interfacial and layer instabilities in three-layer porous media flow on the overall growth of instabilities and thereby characterize the optimal viscous profile. Results based on monotonic and non-monotonic viscous profiles will be presented. Time permitting. we will also present results on multi-layer porous media flows for Newtonian and non-Newtonian fluids and compare the results. The support of Qatar National Fund under a QNRF Grant is acknowledged.
Cavalcanti, Tiago V. V.; Giannitsarou, Chryssi; Johnson, Charles R.
2016-01-01
This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00199-016-0992-1 We define a measure of network cohesion and show how it arises naturally in a broad class of dynamic models of endogenous perpetual growth with network externalities. Via a standard growth model, we show why network cohesion is crucial for conditional convergence and explain that as cohesion increases, convergence is faster. We prove properties of network cohesion and d...
Point-of-care Devices: Non-Newtonian Whole Blood Behavior and Capillary Flow on Reagent-coated Walls
Directory of Open Access Journals (Sweden)
Jean BERTHIER
2016-08-01
Full Text Available Most point-of-care (POC and patient self-testing (PST devices are based on the analysis of whole blood taken from a finger prick. Whole blood contains a bountiful of information about the donor’s health. We analyze here two particularities of microsystems for blood analysis: the blood non-Newtonian behavior, and the capillary flow in reagent-coated channels. Capillarity is the most commonly used method to move fluids in portable systems. It is shown first that the capillary flow of blood does not follow the Lucas-Washburn-Rideal law when the capillary flow velocity is small, due to its non-Newtonian rheology and to the formation of rouleaux of RBCs. In a second step, the capillary flow of blood on reagent-coated surfaces is investigated; first experimentally by observing the spreading of a droplet of blood on different reagent-coated substrates; second theoretically and numerically using the general law for spontaneous capillary flows and the Evolver numerical program.
Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids
Najjari, Mohammad Reza; Plesniak, Michael W.
2016-11-01
Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.
Motion of a suspended charged particle in a NON-Newtonian fluid. Vol. 2
Energy Technology Data Exchange (ETDEWEB)
Abdel-Khalek, M M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)
1996-03-01
The path lines of a solid spherical charged particle suspended in a non-newton electrical conducting viscous fluid through two infinite parallel plates in the presence of a constant magnetic field normal to the plane of particle motion were determined. The effect of some parameters such as particle volume, fluid density, fluid viscosity, and the use magnetic field strength on these path lines were determined. The present solution requires some empirical parameters concerning the collision of the particles with the wall. The differential equations of motion were numerically solved by Runge-Kutta method. Some conclusions about width, maximum height and number of collisions with upper and lower plates were deduced. 4 figs.
Study of blades inclination influence of gate impeller with a non-Newtonian fluid of Bingham
Directory of Open Access Journals (Sweden)
Rahmani Lakhdar
2016-01-01
Full Text Available A large number of chemical operations, biochemical or petrochemical industry is very depending on the rheological fluids nature. In this work, we study the case of highly viscous of viscoplastic fluids in a classical system of agitation: a cylindrical tank with plate bottom without obstacles agitated by gate impeller agitator. We are interested to the laminar, incompressible and isothermal flows. We devote to a numerical approach carried out using an industrial code CFD Fluent 6.3.26 based on the method of finites volumes discretization of Navier - Stokes equations formulated in variables (U.V.P. The threshold of flow related to the viscoplastic behavior is modeled by a theoretical law of Bingham. The results obtained are used to compare between the five configurations suggested of power consumption. We study the influence of inertia by the variation of Reynolds number.
International Nuclear Information System (INIS)
Lamsaadi, M.; Naimi, M.; Hasnaoui, M.
2006-01-01
A combined analytical and numerical study is conducted for two dimensional, steady state, buoyancy driven flows of non-Newtonian power law fluids confined in a shallow rectangular cavity submitted to uniform fluxes of heat along both its short vertical sides, while its long horizontal walls are considered adiabatic. The effect of the non-Newtonian behavior on the fluid flow and heat transfer characteristics is examined. An approximate theoretical solution is developed on the basis of the parallel flow assumption and validated numerically by solving the full governing equations
El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu
2012-01-01
The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.
El-Amin, Mohamed
2012-06-02
The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.
The influence of pH on gas-liquid mass transfer in non-Newtonian fluids
Directory of Open Access Journals (Sweden)
Li Shaobai
2017-01-01
Full Text Available In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa, liquid side mass transfer coefficient (kL, and specific interfacial area (a were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH. It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liquid increasing. In the case of pH 7 was attributed to the decomposition of the Xanthan molecular structure by the hydroxyl of NaOH.
Directory of Open Access Journals (Sweden)
Omotayo Omosebi
2015-12-01
This article presents an analytic technique for interpreting pressure falloff tests of non-Newtonian Power-law fluids in wells that are located near boundaries in dual-porosity reservoirs. First, dimensionless pressure solutions are obtained and Stehfest inversion algorithm is used to develop new type curves. Subsequently, long-time analytic solutions are presented and interpretation procedure is proposed using direct synthesis. Two examples, including real field data from a heavy oil reservoir in Colombian eastern plains basin, are used to validate and demonstrate application of this technique. Results agree with conventional type-curve matching procedure. The approach proposed in this study avoids the use of type curves, which is prone to human errors. It provides a better alternative for direct estimation of formation and flow properties from falloff data.
International Nuclear Information System (INIS)
Memon, R.A.; Solangi, M.A.
2013-01-01
The impacts of rotational velocity and inertia on velocity gradients and stresses are addressed under present study. The non-Newtonian behaviour of inelastic rotating flows is predicted by employing Power law model. A numerical model has been developed for mixing flow within a cylindrical vessel along a couple of stirrers. A time marching FEM (Finite Element Method) is employed to predict the required solution. Predicted solutions are presented for minimum to maximum values in terms of contour plots of velocity gradients and shear stresses, over the range. The long term application of this research will be used to improve the design of mixers and processing products. The predicted results are used to generate the capability and are in good agreement with numerical results to the mixer design that will ultimately effect the processing of dough products. (author)
Energy Technology Data Exchange (ETDEWEB)
Mey, Paula; Varges, Priscilla R.; Mendes, Paulo R. de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do RJ (PUC-Rio), RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br
2010-07-01
This research looked for a method to determine the binary diffusion coefficient D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water.D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water. (author)
Directory of Open Access Journals (Sweden)
K. Mehala
2016-12-01
Full Text Available The hydrodynamic bearings are stressed by severe workings conditions, such as speed, load, and the oil will be increasingly solicit by pressure and shear. The Newtonian behavior is far from being awarded in this case, the most loaded bearings operating at very high speeds; the shear rate of the oil is of higher order. A numerical analysis of the behavior of non-Newtonian fluid for plain cylindrical journal bearing finite dimension coated with antifriction material with a high tin content, for to facilitate the accommodation of the surfaces and save the silk of the shaft in the case of a contact. this analyses is implemented using the code-ANSYS CFX, by solving the energy equation with the finite difference method, considering that laminar regime and the fluid is non Newtonian by using the power law Ostwald model, the coefficient n is equal to 1.25 and for different model such as Bingham, cross and Hereshek-Bulkley model. This study aims to better predict the non-Newtonian behavior of the oil film in bearings operating under more severe conditions. The purpose conducted during this study is to predict the effect of non-Newtonian behavior of the film; the journal bearing operating under severe conditions, the speed of rotation varies from 1000 to 9000 rpm and the bearing working under radial load 2 to 10 kN. Temperature and the pressure within the fluid film assumed non-Newtonian are high, with a coefficient n greater than 1 that is to say for viscoelastic fluids.
Low-cost viscometer based on energy dissipation in viscous liquids
Hashimoto, C.; Cristobal, G.; Nicolas, A.; Panizza, P.; Rouch, J.; Ushiki, H.
2001-04-01
We describe a new type of low-cost easy-to-use viscometer based on the temperature elevation in a liquid under shear flow. After calibration, this instrument can be used to measure the apparent steady state viscosity for both Newtonian and non-Newtonian liquids with no yield stress. We compute the rise in temperature due to viscous dissipation in a Couette cell and compare it to experimental results for different fluids. We show that the variation of the temperature with shear rate can be used to characterize the rheological behaviour of viscous fluids and to evaluate their viscosity in a large domain, from typically a few cP up to more than 10 P, with an accuracy of about ±5%. In contrast to simple viscometers, non-Newtonian fluids can be studied with this apparatus. We give experimental results for Newtonian and non-Newtonian liquids and show that they are very similar to those given in the literature by using much more sophisticated instruments.
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
Energy Technology Data Exchange (ETDEWEB)
Leishear, R.
2009-09-09
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
International Nuclear Information System (INIS)
Leishear, R.
2009-01-01
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels
Directory of Open Access Journals (Sweden)
M.J. Uddin
2016-09-01
Full Text Available The two-dimensional unsteady laminar free convective heat and mass transfer fluid flow of a non-Newtonian fluid adjacent to a vertical plate has been analyzed numerically. The two parameters Lie group transformation method that transforms the three independent variables into a single variable is used to transform the continuity, the momentum, the energy and the concentration equations into a set of coupled similarity equations. The transformed equations have been solved by the Runge–Kutta–Fehlberg fourth-fifth order numerical method with shooting technique. Numerical calculations were carried out for the various parameters entering into the problem. The dimensionless velocity, temperature and concentration profiles were shown graphically and the skin friction, heat and mass transfer rates were given in tables. It is found that friction factor and heat transfer (mass transfer rate for methanol are higher (lower than those of hydrogen and water vapor. Friction factor decreases while heat and mass transfer rate increase as the Prandtl number increases. Friction (heat and mass transfer rate factor of Newtonian fluid is higher (lower than the dilatant fluid.
Directory of Open Access Journals (Sweden)
M. Rahimi-Gorji
2015-06-01
Full Text Available An analytical investigation is applied for unsteady motion of a rigid spherical particle in a quiescent shear-thinning power-law fluid. The results were compared with those obtained from Collocation Method (CM and the established Numerical Method (Fourth order Runge–Kutta scheme. It was shown that CM gave accurate results. Collocation Method (CM and Numerical Method are used to solve the present problem. We obtained that the CM which was used to solve such nonlinear differential equation with fractional power is simpler and more accurate than series method such as HPM which was used in some previous works by others but the new method named Akbari-Ganji’s Method (AGM is an accurate and simple method which is slower than CM for solving such problems. The terminal settling velocity—that is the velocity at which the net forces on a falling particle eliminate—for three different spherical particles (made of plastic, glass and steel and three flow behavior index n, in three sets of power-law non-Newtonian fluids was investigated, based on polynomial solution (CM. Analytical results obtained indicated that the time of reaching the terminal velocity in a falling procedure is significantly increased with growing of the particle size that validated with Numerical Method. Further, with approaching flow behavior to Newtonian behavior from shear-thinning properties of flow (n → 1, the transient time to achieving the terminal settling velocity is decreased.
Directory of Open Access Journals (Sweden)
Jamshid M. Nouri
2008-03-01
Full Text Available Mean and rms velocity characteristics of two Newtonian flows at Reynolds numbers of 12,800 (glycerin solution and 48,000 (water and of a non-Newtonian flow (0.2% CMC solution, at a power number similar to the Newtonian glycerin flow in a mixing vessel stirred by a 60° pitched blade impeller have been measured by laser Doppler velocimetry (LDV. The velocity measurements, resolved over 360° and 1.08° of impeller rotation, showed that the mean flow of the two power number matched glycerin and CMC flows were similar to within 3% of the impeller tip velocity and the turbulence intensities generally lower in the CMC flow by up to 5% of the tip velocity. The calculated mean flow quantities showed similar discharge coefficient and pumping efficiency in all three flows and similar strain rate between the two power number matched glycerin and CMC flows; the strain rate of the higher Reynolds number Newtonian flow was found to be slightly higher. The energy balance around the impeller indicated that the CMC flow dissipated up to 9% more of the total input power and converted 7% less into the turbulence compared to the glycerin flow with the same power input which could lead to less effective mixing processes where the micro-mixing is important.
Directory of Open Access Journals (Sweden)
M. H. Yazdi
2014-01-01
Full Text Available In the present study, the first and second law analyses of power-law non-Newtonian flow over embedded open parallel microchannels within micropatterned permeable continuous moving surface are examined at prescribed surface temperature. A similarity transformation is used to reduce the governing equations to a set of nonlinear ordinary differential equations. The dimensionless entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient, and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by Dormand-Prince pair and shooting method. Finally, the entropy generation numbers, as well as the Bejan number, are evaluated. It is noted that the presence of the shear thinning (pseudoplastic fluids creates entropy along the surface, with an opposite effect resulting from shear thickening (dilatant fluids.
Eglit, M. E.; Yakubenko, A. E.; Yakubenko, T. A.
2017-10-01
This paper deals with the mathematical and numerical modeling of the propagation stage of geophysical gravity-driven flows, such as snow avalanches, mudflows, and rapid landslides. New mathematical models are presented which are based on full, not-depth-averaged equations of mechanics of continuous media. The models account for three important issues: non-Newtonian rheology of the moving material, entrainment of the bed material by the flow, and turbulence. The main objective is to investigate the effect of these three factors on the flow dynamics and on the value of the entrainment rate. To exclude the influence of many other factors, e.g., the complicated slope topography, only the motion down a long uniform slope with a constant inclination angle is studied numerically. Moreover, the entire flow from the front to the rear area was not modeled, but only its middle part where the flow is approximately uniform in length. One of the qualitative results is that in motion along homogeneous slope the mass entrainment increases the flow velocity and depth while the entrainment rate at large time tends to become constant which depends on the physical properties of the flow and the underlying material but not on the current values of the flow velocity and depth.
Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet
Directory of Open Access Journals (Sweden)
M.M. Rashidi
2017-03-01
Full Text Available The purpose of this article is to study and analyze the convective flow of a third grade non-Newtonian fluid due to a linearly stretching sheet subject to a magnetic field. The dimensionless entropy generation equation is obtained by solving the reduced momentum and energy equations. The momentum and energy equations are reduced to a system of ordinary differential equations by a similarity method. The optimal homotopy analysis method (OHAM is used to solve the resulting system of ordinary differential equations. The effects of the magnetic field, Biot number and Prandtl number on the velocity component and temperature are studied. The results show that the thermal boundary-layer thickness gets decreased with increasing the Prandtl number. In addition, Brownian motion plays an important role to improve thermal conductivity of the fluid. The main purpose of the paper is to study the effects of Reynolds number, dimensionless temperature difference, Brinkman number, Hartmann number and other physical parameters on the entropy generation. These results are analyzed and discussed.
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
Pandey, Vikash; Holm, Sverre
2016-09-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Majumder, S.K.; Bentzen, Thomas Ruby
2013-01-01
Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (e.g. oil-gas industry). In spite of the common occurrence of these TPFs, the understanding of them is limited compared to single-phase flows. Various studies on TPF focus on developing empirical correlations...... based on large sets of experimental data for void fraction, which have proven accurate for specific conditions for which they were developed limiting their applicability. On the other hand, few studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical processes. The main reason...... is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours of the system. The focus of this study is the analysis of the TPF (slug flow) for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction using computational fluid dynamics...
El-Amin, Mohamed
2011-05-14
In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.
Energy Technology Data Exchange (ETDEWEB)
Adamson, Duane J. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States); Gauglitz, Phillip A. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)
2012-07-01
In support of Hanford's feed delivery of high level waste (HLW) to the Waste Treatment and Immobilization Plant (WTP), pilot-scale testing and demonstrations with simulants containing cohesive particles were performed as a joint collaboration between Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) staff. The objective of the demonstrations was to determine the impact that cohesive particle interactions in the simulants, and the resulting non- Newtonian rheology, have on tank mixing and batch transfer of large and dense seed particles. The work addressed the impacts cohesive simulants have on mixing and batch transfer performance in a pilot-scale system. Kaolin slurries with a range of wt% concentrations to vary the Bingham yield stress were used in all the non-Newtonian simulants. To study the effects of just increasing the liquid viscosity (no yield stress) on mixing and batch transfers, a glycerol/water mixture was used. Stainless steel 100 micron particles were used as seed particles due to their density and their contrasting color to the kaolin and glycerol. Testing results show that water always transfers less seed particles, and is conservative when compared to fluids with a higher yield stress and/or higher viscosity at the same mixing/transfer parameters. The impact of non-Newtonian fluid properties depends on the magnitude of the yield stress. A higher yield stress in the carrier fluid resulted in more seed particles being transferred to the RTs. A dimensional analysis highlighting the role of a yield stress (due to cohesive particle interactions) defined four regions of behavior and indicates how the results obtained in this study can be applied to the full-scale mixing behavior of a high level waste tank. The analysis indicates that the regions of behavior for full-scale mixing have been adequately represented by the current small-scale tests. (authors)
Czech Academy of Sciences Publication Activity Database
Hundertmark-Zaušková, A.; Lukáčová-Medviďová, M.; Nečasová, Šárka
2016-01-01
Roč. 68, č. 1 (2016), s. 193-243 ISSN 0025-5645 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : non-Newtonian fluids * fluid-structure interaction * shear-thinning fluids Subject RIV: BA - General Mathematics Impact factor: 0.592, year: 2016 http://projecteuclid.org/euclid.jmsj/1453731541
Sojka, Paul E.; Rodrigues, Neil S.
2015-11-01
The current study investigates the drop characteristics of three Carboxymethylcellulose (CMC) sprays produced by the impingement of two liquid jets. The three water-based solutions used in this work (0.5 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, and 1.4 wt.-% CMC-7MF) exhibited strong shear-thinning, non-Newtonian behavior - characterized by the Bird-Carreau rheological model. A generalized Bird-Carreau jet Reynolds number was used as the primary parameter to characterize the drop size and the drop velocity, which were measured using Phase Doppler Anemometry (PDA). PDA optical configuration enabled a drop size measurement range of approximately 2.3 to 116.2 μm. 50,000 drops were measured at each test condition to ensure statistical significance. The arithmetic mean diameter (D10) , Sauter mean diameter (D32) , and mass median diameter (MMD) were used as representative diameters to characterize drop size. The mean axial drop velocity Uz -mean along with its root-mean square Uz -rms were used to characterize drop velocity. Incredibly, measurements for all three CMC liquids and reference DI water sprays seemed to follow a single curve for D32 and MMD drop diameters in the high generalized Bird-Carreau jet Reynolds number range considered in this work (9.21E +03
Directory of Open Access Journals (Sweden)
Sivakumar Venkatachalam
2011-09-01
Full Text Available Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80% were used as Newtonian liquids, and different concentrations of carboxy methyl cellulose aqueous solutions (0.25, 0.6 and 1.0% were used as non-Newtonian liquids. Different sizes of spheres, Bearl saddles and Raschig rings were used as solid phases. From the experimental results, it was found that the increase in superficial gas velocity increases the gas holdup, but it decreases with increase in superficial liquid velocity and viscosity of liquids. Based on the experimental results a correlation was developed to predict the gas hold-up for Newtonian and non-Newtonian liquids for a wide range of operating conditions at a homogeneous flow regime where the superficial gas velocity is approximately less than 5 cm/s
Naseer, F.
2017-12-01
Contamination of soil and groundwater by adsorbent (persistent) contaminants have been a major concern. Mine tailings, Acid mine drainage, waste disposal areas, active or abandoned surface and underground mines are some major causes of soil and water contamination. It is need of the hour to develop cost effective and efficient remediation techniques for clean-up of soil and aquifers. The objective of this research is to study a methodology of using non-Newtonian fluids for effective remediation of adsorbent contaminants in porous media under non-isothermal flow regimes. The research comprises of three components. Since, non-Newtonian fluid rheology has not been well studied in cold temperatures, the first component of the objective is to expose a non-Newtonian fluid (Guar gum solution) to different temperatures ranging from 30 °C through -5 °C to understand the change in viscosity, shear strength and contact angle of the fluid. Study of the flow characteristic of non-Newtonian fluids in complex porous media has been limited. Hence, the second component of this study will focus on a comparison of flow characteristics of a Newtonian fluid, non-Newtonian fluid and a combination of both fluids in a glass-tube-bundle setup that will act as a synthetic porous media. The study of flow characteristics will also be done for different thermal regimes ranging from -5 °C to 30 °C. The third component of the research will be to compare the effectiveness Guar gum to remediate a surrogate adsorbed contaminant at a certain temperature from the synthetic porous media. Guar gum is biodegradable and hence it is benign to the environment. Through these experiments, the mobility and behavior of Guar gum under varying temperature ranges will be characterized and its effectiveness in removing contaminants from soils will be understood. The impact of temperature change on the fluid and flow stability in the porous medium will be examined in this research. Guar gum is good suspension
Towards a Cohesive Theory of Cohesion
Directory of Open Access Journals (Sweden)
Janet McLeod
2013-12-01
Full Text Available Conventional wisdom suggests that group cohesion is strongly related to performance. This may be based on the notion that better cohesion leads to the sharing of group goals. However, empirical and meta-analytic studies have been unable to consistently demonstrate a relationship between cohesion and performance. Partially, this problem could be attributed to the disagreement on the precise definition of cohesion and its components. Further, when the cohesion construct is evaluated under Cohen’s Cumulative Research Program (CRP, it is surprisingly found to belong to the category of early-to-intermediate stage of theory development. Therefore, a thorough re-examination of the cohesion construct is essential to advance our understanding of the cohesion-productivity relationship. We propose a qualitative approach because it will help establish the definitions, enable us to better test our theories about cohesion and its moderators, and provide insights into how best to enlist cohesion to improve team performance.
Directory of Open Access Journals (Sweden)
Mohammad Yaghoub Abdollahzadeh Jamalabadi
2016-05-01
Full Text Available Numerical and analytical investigation of the effects of thermal radiation and viscous heating on a convective flow of a non-Newtonian, incompressible fluid in an axisymmetric stretching sheet with constant temperature wall is performed. The power law model of the blood is used for the non-Newtonian model of the fluid and the Rosseland model for the thermal radiative heat transfer in an absorbing medium and viscous heating are considered as the heat sources. The non-dimensional governing equations are transformed to similarity form and solved numerically. A parameter study on entropy generation in medium is presented based on the Second Law of Thermodynamics by considering various parameters such as the thermal radiation parameter, the Brinkman number, Prandtl number, Eckert number.
International Nuclear Information System (INIS)
Moh, Jeong Hah; Cho, Y. I.
2014-01-01
This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady
Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar
2017-04-01
Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube ( d t ), diameter of the coil ( D c ), diameter of the particle ( d p ), pitch difference ( p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.
Khan, Zeeshan; Khan, Ilyas; Ullah, Murad; Tlili, I.
2018-06-01
In this work, we discuss the unsteady flow of non-Newtonian fluid with the properties of heat source/sink in the presence of thermal radiation moving through a binary mixture embedded in a porous medium. The basic equations of motion including continuity, momentum, energy and concentration are simplified and solved analytically by using Homotopy Analysis Method (HAM). The energy and concentration fields are coupled with Dankohler and Schmidt numbers. By applying suitable transformation, the coupled nonlinear partial differential equations are converted to couple ordinary differential equations. The effect of physical parameters involved in the solutions of velocity, temperature and concentration profiles are discussed by assign numerical values and results obtained shows that the velocity, temperature and concentration profiles are influenced appreciably by the radiation parameter, Prandtl number, suction/injection parameter, reaction order index, solutal Grashof number and the thermal Grashof. It is observed that the non-Newtonian parameter H leads to an increase in the boundary layer thickness. It was established that the Prandtl number decreases thee thermal boundary layer thickness which helps in maintaining system temperature of the fluid flow. It is observed that the temperature profiles higher for heat source parameter and lower for heat sink parameter throughout the boundary layer. Fromm this simulation it is analyzed that an increase in the Schmidt number decreases the concentration boundary layer thickness. Additionally, for the sake of comparison numerical method (ND-Solve) and Adomian Decomposition Method are also applied and good agreement is found.
Directory of Open Access Journals (Sweden)
M.A. Bosse
2001-03-01
Full Text Available The problem of the effect of Joule heating generation on the hydrodynamic profile and the solute transport found in electrophoretic devices is addressed in this article. The research is focused on the following two problems: The first one is centered around the effect of Joule heating on the hydrodynamic velocity profile and it is referred to as "the carrier fluid problem." The other one is related to the effect of Joule heating on the solute transport inside electrophoretic cells and it is referred to as "the solute problem". The hydrodynamic aspects were studied first to yield the velocity profiles required for analysis of the solute transport problem. The velocity profile obtained in this study is analytical and the results are valid for non-Newtonian fluids carriers. To this end, the power-law model was used to study the effect of the rheology of the material in conjunction with the effect of Joule heating generation inside batch electrophoretic devices. This aspect of the research was then effectively used to study the effect of Joule heating generation on the motion of solutes (such as macromolecules under the influence of non-Newtonian carriers. This aspect of the study was performed using an area-averaging approach that yielded analytical results for the effective diffusivity of the device.
International Nuclear Information System (INIS)
Hady, F. M.; Ibrahim, F. S.; Abdel-Gaied, S. M.; Eid, M. R.
2011-01-01
The effect of yield stress on the free convective heat transfer of dilute liquid suspensions of nanofluids flowing on a vertical plate saturated in porous medium under laminar conditions is investigated considering the nanofluid obeys the mathematical model of power-law. The model used for non-Newtonian nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing boundary- layer equations are cast into dimensionless system which is solved numerically using a deferred correction technique and Newton iteration. This solution depends on yield stress parameter Ω, a power-law index n, Lewis number Le, a buoyancy-ratio number Nr, a Brownian motion number Nb, and a thermophoresis number Nt. Analyses of the results found that the reduced Nusselt and Sherwood numbers are decreasing functions of the higher yield stress parameter for each dimensionless numbers, n and Le, except the reduced Sherwood number is an increasing function of higher Nb for different values of yield stress parameter
Iqbal, Z.; Mehmood, Zaffar; Ahmad, Bilal
2018-05-01
This paper concerns an application to optimal energy by incorporating thermal equilibrium on MHD-generalised non-Newtonian fluid model with melting heat effect. Highly nonlinear system of partial differential equations is simplified to a nonlinear system using boundary layer approach and similarity transformations. Numerical solutions of velocity and temperature profile are obtained by using shooting method. The contribution of entropy generation is appraised on thermal and fluid velocities. Physical features of relevant parameters have been discussed by plotting graphs and tables. Some noteworthy findings are: Prandtl number, power law index and Weissenberg number contribute in lowering mass boundary layer thickness and entropy effect and enlarging thermal boundary layer thickness. However, an increasing mass boundary layer effect is only due to melting heat parameter. Moreover, thermal boundary layers have same trend for all parameters, i.e., temperature enhances with increase in values of significant parameters. Similarly, Hartman and Weissenberg numbers enhance Bejan number.
Rahmani, L.; Seghier, O.; Benmoussa, A.; Draoui, B.
2018-06-01
The most of operations of chemical, biochemical or petrochemical industries are carried out in tanks or in reactors which are mechanically-controlled. The optimum mode of operation of these devices requires a finalized knowledge of the thermo-hydrodynamic behavior induced by the agitator. In the present work, the characterization of the incompressible hydrodynamic and thermal fields of a non-Newtonian fluid (Bingham) in a flat, non-baffled cylindrical vessel fitted with anchor agitator was undertaken by numerical simulation, using the CFD code Fluent (6.3.26) based on the finite volume discretization method of the energy equation and the Navier-Stokes equations which are formulated in (U.V.P) variables. We have summarized this simulated system by comparing of the consumed power and the Nusselt number for this type of mobile (Anchor agitator).
Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland
2017-10-01
Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.
Directory of Open Access Journals (Sweden)
Hemeidia A. M.
2006-11-01
Full Text Available Rheological properties of Saudi Arab-Light, Arab-Berri and Arab-Heavy crude oils were measured with Brookfield Viscometer (LVT Model at temperatures 10, 15, 20, 25, 38, 55 and 70°C. Saudi Arab-Light and Arab-Heavy exhibit non-Newtonian behavior at temperature less than or equal to 20°C, while Saudi Arab-Berri behaves as a non-Newtonian fluid at all temperatures. The main reason for this rheological behavior can be attributed to the thermal and shear histories; the relative amounts of wax and asphaltene content in Saudi crude oils as well. Therefore, Statistical Analysis (t-test was used to check the variability of the change in rheological behavior of Saudi non-Newtonian crude oils at a confidence level of 95%. The evaluation ensured that, all non-Newtonian data were statistically not different and were correlated with power-law model. Under turbulent flow conditions the pipeline design calculations were carried out through a computer program. Les propriétés rhéologiques des bruts séoudiens Arab-Light, Arab-Berri et Arab-Heavy ont été mesurées à l'aide d'un viscomètre Brookfield (modèle LVT à des températures de 10, 15, 20, 25, 38, 55 et 70°C. Les Saudi Arab-Light et Arab-Heavy présentent un comportement non newtonien à des températures égales ou inférieures à 20°C, tandis que le Saudi Arab-Berri se comporte comme un fluide non newtonien à toutes les températures. Ce comportement rhéologique est principalement dû aux historiques thermiques et de cisaillement, de même qu'aux quantités relatives de paraffine et à la teneur en asphaltène des bruts séoudiens. Une analyse statistique (essai t a donc été menée pour vérifier la variabilité des changements de comportement rhéologique des bruts séoudiens non newtoniens à un degré de fiabilité de 95%. Il en est ressorti que toutes les données non newtoniennes étaient statistiquement non différentes et étaient en corrélation avec le modèle de la loi des
Directory of Open Access Journals (Sweden)
Moussa Tembely
2017-10-01
Full Text Available Most of the pore-scale imaging and simulations of non-Newtonian fluid are based on the simplifying geometry of network modeling and overlook the fluid rheology and heat transfer. In the present paper, we developed a non-isothermal and non-Newtonian numerical model of the flow properties at pore-scale by simulation of the 3D micro-CT images using a Finite Volume Method (FVM. The numerical model is based on the resolution of the momentum and energy conservation equations. Owing to an adaptive mesh generation technique and appropriate boundary conditions, rock permeability and mobility are accurately computed. A temperature and concentration-dependent power-law viscosity model in line with the experimental measurement of the fluid rheology is adopted. The model is first applied at isothermal condition to 2 benchmark samples, namely Fontainebleau sandstone and Grosmont carbonate, and is found to be in good agreement with the Lattice Boltzmann method (LBM. Finally, at non-isothermal conditions, an effective mobility is introduced that enables to perform a numerical sensitivity study to fluid rheology, heat transfer, and operating conditions. While the mobility seems to evolve linearly with polymer concentration in agreement with a derived theoretical model, the effect of the temperature seems negligible by comparison. However, a sharp contrast is found between carbonate and sandstone under the effect of a constant temperature gradient. Besides concerning the flow index and consistency factor, a master curve is derived when normalizing the mobility for both the carbonate and the sandstone.
Viscous-elastic dynamics of power-law fluids within an elastic cylinder
Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.
2017-07-01
In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.
Almazmumy, Mariam; Ebaid, Abdelhalim
2017-08-01
In this article, the flow and heat transfer of a non-Newtonian nanofluid between two coaxial cylinders through a porous medium has been investigated. The velocity, temperature, and nanoparticles concentration of the present mathematical model are governed by a system of nonlinear ordinary differential equations. The objective of this article is to obtain new exact solutions for the temperature and the nanoparticles concentration and, therefore, compare them with the previous approximate results in the literature. Moreover, the velocity equation has been numerically solved. The effects of the pressure gradient, thermophoresis, third-grade, Brownian motion, and porosity parameters on the included phenomena have been discussed through several tables and plots. It is found that the velocity profile is increased by increasing the pressure gradient parameter, thermophoresis parameter (slightly), third-grade parameter, and Brownian motion parameter (slightly); however, it decreases with an increase in the porosity parameter and viscosity power index. In addition, the temperature and the nanoparticles concentration reduce with the strengthen of the Brownian motion parameter, while they increase by increasing the thermophoresis parameter. Furthermore, the numerical solution and the physical interpretation in the literature for the same problem have been validated with the current exact analysis, where many remarkable differences and errors have been concluded. Therefore, the suggested analysis may be recommended with high trust for similar problems.
Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali
2017-11-01
Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.
2015-05-01
This study of scour in cohesive soils had two objectives. The first was to introduce and demonstrate a new ex situ erosion testing device (ESTD) that can mimic the near-bed flow of open channels to erode cohesive soils within a specified range of she...
Dynamics of Cohesive Sediments
DEFF Research Database (Denmark)
Johansen, Claus
The present thesis considers the transport processes of cohesive sediments. The cohesive sediment used in the laboratory experiments was kaolinite, a clay mineral, in order to be able to reproduce the individual experiments. In the first part of the thesis, the theoretical considerations regarding...
Directory of Open Access Journals (Sweden)
T. M. Ajayi
2017-01-01
Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Majumder, S.K.
2012-01-01
Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (i.e. oil-gas industry). In spite of the common occurrence of these TPFs, their understanding is limited compared to single-phase flows. Different studies on TPF have focus on developing empirical correlations...... based in large sets of experiment data for void fraction and pressure drop which have proven to be accurate for specific condition that their where developed for, which limit their applicability. On the other hand, scarce studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical...... processes. The main reason for it is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours on the system. The focus of this study is the analysis of the TPF for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction and total...
Energy Technology Data Exchange (ETDEWEB)
Friedel, T. [Schlumberger Data and Consulting Services, Sugar Land, TX (United States)
2006-07-01
There are many damage mechanisms associated with hydraulically fractured gas wells. These include hydraulic damage caused by invading fluids during the treatment and damage due to the stresses exerted on the fracture face. Damage to the proppant pack can also reduce conductivity and non-Darcy flow. However, these are not the only impacts of impaired productivity in tight-gas reservoirs, which do not respond to hydraulic fracturing as expected. Some sustain a flat production profile or show only a slow increase in production rate for several weeks or months. This is due to poor rock quality, strong stress dependency in permeability, hydraulic and mechanical damage. Another reason for the poor performance is related to the cleanup of the cross-linked fracturing fluid with its non-Newtonian characteristics. This paper presented an improved 3-phase cleanup model for the investigation of polymer gel cleanup. Yield stress was considered according to the Herschel-Bulkley rheology model. The viscosity model is based on the exact analytical solution, including the plug flow zone. According to data in the published literature, half of the gel phase can be recovered. The gel saturation gradually increases towards the fracture tips, thereby lowering the fracture conductivities. The residing gel damages the permeability and porosity of the proppant pack or causes damage to the fracture face, thereby reducing production potential. These results are in agreement with field observations where fracture half-lengths, conductivities and productivity are also lower than expected. Preliminary results suggest that capillary forces and load-water recovery have little influence on gel cleanup. 16 refs., 2 tabs., 17 figs.
The Structure of Group Cohesion.
Cota, Albert A.; And Others
1995-01-01
Reviews the literature on unidimensional and multidimensional models of cohesion and describes cohesion as a multidimensional construct with primary and secondary dimensions. Found that primary dimensions described the cohesiveness of all or most types of groups, whereas secondary dimensions only described the cohesiveness of specific types of…
Energy Technology Data Exchange (ETDEWEB)
Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.; Meyer, Perry A.
2009-05-22
The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonian slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.
Energy and Transmissibility in Nonlinear Viscous Base Isolators
Markou, Athanasios A.; Manolis, George D.
2016-09-01
High damping rubber bearings (HDRB) are the most commonly used base isolators in buildings and are often combined with other systems, such as sliding bearings. Their mechanical behaviour is highly nonlinear and dependent on a number of factors. At first, a physical process is suggested here to explain the empirical formula introduced by J.M. Kelly in 1991, where the dissipated energy of a HDRB under cyclic testing, at constant frequency, is proportional to the amplitude of the shear strain, raised to a power of approximately 1.50. This physical process is best described by non-Newtonian fluid behaviour, originally developed by F.H. Norton in 1929 to describe creep in steel at high-temperatures. The constitutive model used includes a viscous term, that depends on the absolute value of the velocity, raised to a non-integer power. The identification of a three parameter Kelvin model, the simplest possible system with nonlinear viscosity, is also suggested here. Furthermore, a more advanced model with variable damping coefficient is implemented to better model in this complex mechanical process. Next, the assumption of strain-rate dependence in their rubber layers under cyclic loading is examined in order to best interpret experimental results on the transmission of motion between the upper and lower surfaces of HDRB. More specifically, the stress-relaxation phenomenon observed with time in HRDB can be reproduced numerically, only if the constitutive model includes a viscous term, that depends on the absolute value of the velocity raised to a non-integer power, i. e., the Norton fluid previously mentioned. Thus, it becomes possible to compute the displacement transmissibility function between the top and bottom surfaces of HDRB base isolator systems and to draw engineering-type conclusions, relevant to their design under time-harmonic loads.
Tanaka, H.; Shiomi, Y.; Ma, K.-F.
2017-11-01
To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.
Viscous, Resistive Magnetorotational Modes
DEFF Research Database (Denmark)
Pessah, Martin Elias; Chan, Chi-kwan
2008-01-01
We carry out a comprehensive analysis of the behavior of the magnetorotational instability (MRI) in viscous, resistive plasmas. We find exact, non-linear solutions of the non-ideal magnetohydrodynamic (MHD) equations describing the local dynamics of an incompressible, differentially rotating...
DEFF Research Database (Denmark)
Dyre, Jeppe
1999-01-01
Recent NMR experiments on supercooled toluene and glycerol by Hinze and Böhmer show that small rotation angles dominate with only a few large molecular rotations. These results are here interpreted by assuming that viscous liquids are solidlike on short length scales. A characteristic length...
Abou-zeid, Mohamed Y.; Mohamed, Mona A. A.
2017-09-01
This article is an analytic discussion for the motion of power-law nanofluid with heat transfer under the effect of viscous dissipation, radiation, and internal heat generation. The governing equations are discussed under the assumptions of long wavelength and low Reynolds number. The solutions for temperature and nanoparticle profiles are obtained by using homotopy perturbation method. Results for the behaviours of the axial velocity, temperature, and nanoparticles as well as the skin friction coefficient, reduced Nusselt number, and Sherwood number with other physical parameters are obtained graphically and analytically. It is found that as the power-law exponent increases, both the axial velocity and temperature increase, whereas nanoparticles decreases. These results may have applicable importance in the research discussions of nanofluid flow in channels with small diameters under the effect of different temperature distributions.
Cohesive zone modeling of intergranular cracking in polycrystalline aggregates
International Nuclear Information System (INIS)
Simonovski, Igor; Cizelj, Leon
2015-01-01
Highlights: • Alternative approach to cohesive elements is proposed: cohesive-zone contact. • Applicability to measured and simulated grain structures is demonstrated. • Normal and normal/shear separation as a damage initialization is explored. • Normal/shear damage initialization significantly reduces ductility. • Little difference in Voronoi aggregate size on macroscopic response. - Abstract: Understanding and controlling early damage initiation and evolution are amongst the most important challenges in nuclear power plants, occurring in ferritic, austenitic steels and nickel based alloys. In this work a meso-scale approach to modeling initiation and evolution of early intergranular cracking is presented. This damage mechanism is present in a number of nuclear power plant components and depends on the material (e.g. composition, heat treatment, microstructure), environment and load. Finite element modeling is used to explicitly model the microstructure – both the grains and the grain boundaries. Spatial Voronoi tessellation is used to obtain the grain topology. In addition, measured topology of a 0.4 mm stainless steel wire is used. Anisotropic elasticity and crystal plasticity are used as constitutive laws for the grains. Grain boundaries are modeled using the cohesive zone approach. Different modeling assumptions/parameters are evaluated against the numerical stability criteria. The biggest positive contribution to numerical stability is the use of cohesive-type contact instead of cohesive elements. A small amount of viscous regularization should be also used along with the addition of a small amount of viscous forces to the global equilibrium equations. Two cases of grain boundary damage initiation are explored: (1) initiation due to normal separation and (2) initiation due to a combination of normal and shear separation. The second criterion significantly decreases the ductility of an aggregate and slightly improves the numerical stability
Competition and social cohesion
Directory of Open Access Journals (Sweden)
Mario Libertini
2014-03-01
Full Text Available "Competition" and "social cohesion" are both protected by E.U. and Italian laws. The author moves from the analysis of the meaning of these two concepts, in order to reflect on their compatibility and the way to conciliate them. The central problem - in the opinion of the Author - is to abandon the myth of spontaneous markets' order and to rebuild a political order able to maintain and support, as far as possible, the competitive market economy, but also to govern economic processes in critical moments and situations.
Leadership, cohesion and groupthink
Directory of Open Access Journals (Sweden)
Iurchevici Iulia
2016-09-01
Full Text Available The Groupthink Phenomenon refers to the tendency of the members of a group to reach solidarity and cohesion, the trend that makes to bypass any questions which would lead to disputes. In such cases, if the members expect counter-arguments regarding a certain issue, they avoid to raise the matter. If it is believed that a question cannot be answered – it isn’t asked. Originally, Janis the author of the term, explains this process through the environment that has been established within groups that are in the leading position, but later, puts a strong emphasis towards the tendency to maintain the unanimity of the decision of the group. As preceding conditions of this decision-making process are listed the following: the high cohesion of the group, its isolation from other external sources of information, the lack of an impartial leadership, lack of appropriate legal framework and procedures in the decision - making process, and also “homogeneity of members, background and their ideology”. The Groupthink is manifested by: Illusion of Invulnerability, Collective Rationalization, Illusion of morality, Out – Group Stereotypes, Strong pressures towards conformism, Self – Censorship, Illusions of unanimity, and the presence of “Mind Guards”. In order to understand the decisions of a group, it is important that some analysis of Groupthink to be done, because in this way, can be controlled or eliminated the communicational distortion that occurs at a time among members forming these groups.
On the thermal stability for a model reactive flow with viscous dissipation
International Nuclear Information System (INIS)
Okoya, S.S.
2006-12-01
We study the thermal stability of a reactive flow of a third-grade fluid with viscous heating and chemical reaction between two horizontal flat plates, where the top is moving with a uniform speed and the bottom plate is fixed in the presence of an imposed pressure gradient. This study is a natural continuation of earlier work on rectilinear shear flows. The governing equations are non-dimensionalized and the resulting system of equations are not coupled. An approximate explicit solution is found for the flow velocity using homotopy - perturbation technique and the range of validity is determined. After the velocity is known, the heat transport may be analyzed. It is found that the temperature solution depends on the non-Newtonian material parameter of the fluid, Λ, viscous heating parameter, Γ, and an exponent, m. Attention is focused upon the disappearance of criticality of the solution set {β, δ, θ max } for various values of Λ, Γ and m, and the numerical computations are presented graphically to show salient features of the solution set. (author)
Marston, Jeremy
2010-05-21
Experiments were performed to observe the motion of a solid sphere approaching a solid wall through a thin layer of a viscous liquid. We focus mainly on cases where the ratio of the film thickness, ℘, to the sphere diameter, D, is in the range 0.03 ℘viscous forces, is below a critical level Stc so that the spheres do not rebound and escape from the liquid layer. This provides us with the scope to verify the force acting on the sphere, derived from lubrication theory. Using high-speed video imaging we show, for the first time, that the equations of motion based on the lubrication approximation correctly describe the deceleration of the sphere when St < Stc. Furthermore, we show that the penetration depth at which the sphere motion is first arrested by the viscous force, which decreases with increasing Stokes number, matches well with theoretical predictions. An example for a shear-thinning liquid is also presented, showing that this simple set-up may be used to deduce the short-time dynamical behaviour of non-Newtonian liquids. © 2010 Cambridge University Press.
International Nuclear Information System (INIS)
Feng Chaojun; Li Xinzhou
2009-01-01
We investigate the viscous Ricci dark energy (RDE) model by assuming that there is bulk viscosity in the linear barotropic fluid and the RDE. In the RDE model without bulk viscosity, the universe is younger than some old objects at certain redshifts. Since the age of the universe should be longer than any objects living in the universe, the RDE model suffers the age problem, especially when we consider the object APM 08279+5255 at z=3.91 with age t=2.1 Gyr. In this Letter, we find that once the viscosity is taken into account, this age problem is alleviated.
1978-01-01
The proposed magnetically anchored viscous fluid damper can maintain the Skylab in a gravity-gradient stabilized mode at the anticipated reboost altitudes. The parameters influencing damper performance (and thereby affecting the degree of risk) are: (1) amount of skylab pitch bias in the orbit plane which will result from aerodynamic trim conditions of the post-reboost configuration Skylab; (2) the lowest altitude to which the post-reboost Skylab will be allowed to decay prior to the next rendezvous; (3) maximum allowable weight and size of the proposed damper in order to match shuttle/TRS mission constraints; (4) the amount of magnetic materials expected to be in the vicinity of the damper.
Langlois, William E
2014-01-01
Leonardo wrote, 'Mechanics is the paradise of the mathematical sciences, because by means of it one comes to the fruits of mathematics' ; replace 'Mechanics' by 'Fluid mechanics' and here we are." - from the Preface to the Second Edition Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the nearly half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity a...
Immigration, social cohesion, and naturalization
DEFF Research Database (Denmark)
Lægaard, Sune
2010-01-01
social trust do not connect with issues of naturalization at all. Other conceptions of social cohesion are either politically controversial, problematic as part of the justification of stricter naturalization requirements, or in fact justify less demanding naturalization requirements....
Developing Indicators of Territorial Cohesion
DEFF Research Database (Denmark)
Gallina, Andrea; Farrugia, Nadia
setting. The concept of territorial cohesion attaches importance to the diversity of the European territory which is seen as a key competitive advantage, the preservation of the European social model, and the ability of the citizens of Europe's nations and regions to be able to continue to live within...... (EU). The objective of territorial cohesion, which builds on the European Spatial Development Perspective (ESDP), is to help achieve a more balanced development by reducing existing disparities, avoiding territorial imbalances and by making sectoral policies, which have a spatial impact and regional...... policy more coherent. It also aims to improve territorial integration and encourage cooperation between regions. Territorial cohesion complements the notions of economic and social cohesion by translating the fundamental EU goal of a balanced competitiveness and sustainable development into a territorial...
Directory of Open Access Journals (Sweden)
Aftab Ahmed
2018-01-01
Full Text Available The aim of the present study is to investigate the combined effects of the thermal radiation, viscous dissipation, suction/injection and internal heat generation/absorption on the boundary layer flow of a non-Newtonian power law fluid over a semi infinite permeable flat plate moving in parallel or reversely to a free stream. The resulting system of partial differential equations (PDEs is first transformed into a system of coupled nonlinear ordinary differential equations (ODEs which are then solved numerically by using the shooting technique. It is found that the dual solutions exist when the flat plate and the free stream move in the opposite directions. Dimensionless boundary layer velocity and temperature distributions are plotted and discussed for various values of the emerging physical parameters. Finally, the tables of the relevant boundary derivatives are presented for some values of the governing physical parameters.
Forms of cohesion in confinement institutions
Directory of Open Access Journals (Sweden)
Ekaterina D. Slobodenyuk
2015-12-01
Full Text Available Objective to identify the diversity of cohesion forms in confinement institutions. Methods qualitative analyses based on indepth semistructured interviews. Results the study included adaptation of Western methodologies of the cohesion phenomenon analysis to the Russian reality and operationalization of the moral bases of group cohesion. This served as the bases for designing a guide for indepth semistructured interviews 10 interviews were conducted with people recently released from general and strict regime colonies. Content analysis of the interviews revealed a number of structural sections that demonstrate the diversity of cohesion forms alongside with one that is most meaningful to the prisoners and therefore the most well perceived and articulated by respondents. Analysis of the latter allowed to identify a set of groups showing different degree and nature of cohesion. By the degree of cohesion one can identify the poorly cohesive groups quotloutsquot moderately cohesive quotredsquot quotthievesquot and highly cohesive quotfightersquot. By the nature of cohesion in the prisonersrsquo community there are both groups united on the basis of social morality quotredsquot quotthievesquot and groups demonstrating a high degree of cohesion based on the social justice morality quotfightersquot. A detailed analysis of the latter group also showed that the cohesion can have both traits of morality social justice and features of social order moral. Scientific novelty using the sociopsychological theory of the moral motives in determining the bases of cohesion. Practical significance the research results can be applied for the development of sociopsychological techniques for the penal system reform.
Electro-spray of high viscous liquids for producing mono-sized spherical alginate beads
Institute of Scientific and Technical Information of China (English)
Hamid Moghadam; Mohsen Samimi; Abdolreza Samimi; Mohamad Khorram
2008-01-01
Alginate beads, often used for controlled release of enzymes and drugs, are usually produced by spraying sodium alginate liquid into a gelling agent using mechanical vibration nozzle or air jet. In this work an alternative method of electro-spray was employed to form droplets with desired size from a highly viscous sodium alginate solution using constant DC voltage. The droplets were then cured in a calcium chloride solution. The main objective was to produce mono-sized beads from such a highly viscous and non-Newtonian liquid (1000-5000 mPa s). The effects of nozzle diameter, flow rate and concentration of liquid on the size of the beads were investigated. Among the parameters studied, voltage had a pronounced effect on the size of beads as compared to flow rate zzle diameter and concentration of alginate liquid. The size of beads was reduced to a minimum value with increasing the voltage in the range of 0-10 kV. At the early stages of voltage increase (I.e. Up to about 4 kV), the rate of size reduction was relatively low, while the dripping mode dominated. However, in the middle part of the range of applied voltage, where the rate of size reduction was high (I.e. About 4-7 kV), an unstable transition occurred between dripping and jetting. At the end part of the range (I.e. 7-10 kV) jet mode of spray was observed. Increasing the height of fall of the droplets was found to improve the sphericity of the beads, because of the increased time of flight for the droplets. This was especially identifiable at higher concentrations of the alginate liquid (I.e. 3 w/v%)
Cavitation structures formed during the collision of a sphere with an ultra-viscous wetted surface
Mansoor, Mohammad M.
2016-05-05
We investigate the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having a kinematic viscosity of up to (Formula presented.) cSt. We show the existence of shear-stress-induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films using a synchronized dual-view high-speed imaging system. For the experimental parameters employed, liquids having viscoelastic properties of (Formula presented.) are shown to enable sphere rebound without any prior contact with the solid wall. Cavitation by depressurization (i.e. during rebound) in such non-contact cases is observed to onset after a noticeable delay from when the minimum gap distance is reached. Also, the cavities created originate from remnant bubbles, being the remains of the primary bubble entrapment formed by the lubrication pressure of the air during film entry. Cases where physical contact occurs (contact cases) in 10 000 cSt (Formula presented.) cSt films produce cavities attached to the base wall, which extend into an hourglass shape. In contrast, strikingly different structures occur in the most viscous liquids due to the disproportionality in radial expansion and longitudinal extension along the cavity length. Horizontal shear rates calculated using particle image velocimetry (PIV) measurements show the apparent fluid viscosity to vary substantially as the sphere approaches and rebounds away from the base wall. A theoretical model based on the lubrication assumption is solved for the squeeze flow in the regime identified for shear-induced cavity events, to investigate the criterion for cavity inception in further detail. © 2016 Cambridge University Press
Cavitation structures formed during the collision of a sphere with an ultra-viscous wetted surface
Mansoor, Mohammad M.; Marston, J. O.; Uddin, J.; Christopher, G.; Zhang, Z.; Thoroddsen, Sigurdur T
2016-01-01
We investigate the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having a kinematic viscosity of up to (Formula presented.) cSt. We show the existence of shear-stress-induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films using a synchronized dual-view high-speed imaging system. For the experimental parameters employed, liquids having viscoelastic properties of (Formula presented.) are shown to enable sphere rebound without any prior contact with the solid wall. Cavitation by depressurization (i.e. during rebound) in such non-contact cases is observed to onset after a noticeable delay from when the minimum gap distance is reached. Also, the cavities created originate from remnant bubbles, being the remains of the primary bubble entrapment formed by the lubrication pressure of the air during film entry. Cases where physical contact occurs (contact cases) in 10 000 cSt (Formula presented.) cSt films produce cavities attached to the base wall, which extend into an hourglass shape. In contrast, strikingly different structures occur in the most viscous liquids due to the disproportionality in radial expansion and longitudinal extension along the cavity length. Horizontal shear rates calculated using particle image velocimetry (PIV) measurements show the apparent fluid viscosity to vary substantially as the sphere approaches and rebounds away from the base wall. A theoretical model based on the lubrication assumption is solved for the squeeze flow in the regime identified for shear-induced cavity events, to investigate the criterion for cavity inception in further detail. © 2016 Cambridge University Press
Auto consolidated cohesive sediments erosion
International Nuclear Information System (INIS)
Ternat, F.
2007-02-01
Pollutants and suspended matters of a river can accumulate into the sedimentary column. Once deposited, they are submitted to self-weight consolidation processes, ageing and burying, leading to an increase of their erosion resistance. Pollutant fluxes can be related to sedimentary fluxes, determined by threshold laws. In this work, an erosion threshold model is suggested by introducing a cohesion force into the usual force balance. A model of cohesion is developed on the basis of interactions between argillaceous cohesive particles (clays), particularly the Van der Waals force, whose parameterization is ensured by means of granulometry and porosity. Artificial erosion experiments were performed in a recirculating erosion flume with natural cored sediments where critical shear stress measurements were performed. Other analyses provided granulometry and porosity. The results obtained constitute a good database for the literature. The model is then applied to the experimental conditions and gives good agreement with measurements. An example of the accounting for self-weight consolidation processes is finally suggested, before finishing on a Mohr like diagram dedicated to soft cohesive sediment erosion. (author)
Flocculation Dynamics of cohesive sediment
Maggi, F.
2005-01-01
Cohesive sediment suspended in natural waters is subject not only to transport and deposition processes but also to reactions of flocculation, \\textit{i.e.} aggregation of fine particles, and breakup of aggregates. Although aggregation and breakup occur at small and very small length scales compared
Vacuum polarization and non-Newtonian gravitation
International Nuclear Information System (INIS)
Long, D.R.
1980-01-01
Gell-Mann and Low have emphasized that, as first pointed out by Uehling and Serber, vacuum polarization effects produce a logarithmic modification to the Coulomb potential at small distances. Here, it is pointed out that, if these same considerations are applied to gravitation, the logarithmic term will have a sign opposite to that in the Coulomb case and in agreement with recent laboratory results on the gravitational ''constant''. Of considerable importance is the fact that such vacuum polarization effects cannot be observed in null experiments to test the gravitational inverse square law because the polarizing field is absent. It is a striking circumstance that the coefficient of the logarithm in QED is nearly the same as that found in gravitational experiments. (author)
Viscous Fingering in Deformable Systems
Guan, Jian Hui; MacMinn, Chris
2017-11-01
Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.
Relic gravitons and viscous cosmologies
International Nuclear Information System (INIS)
Cataldo, Mauricio; Mella, Patricio
2006-01-01
Previously it was shown that there exists a class of viscous cosmological models which violate the dominant energy condition for a limited amount of time after which they are smoothly connected to the ordinary radiation era (which preserves the dominant energy conditions). This violation of the dominant energy condition at an early cosmological epoch may influence the slopes of energy spectra of relic gravitons that might be of experimental relevance. However, the bulk viscosity coefficient of these cosmologies became negative during the ordinary radiation era, and then the entropy of the sources driving the geometry decreases with time. We show that in the presence of viscous sources with a linear barotropic equation of state p=γρ we get viscous cosmological models with positive bulk viscous stress during all their evolution, and hence the matter entropy increases with the expansion time. In other words, in the framework of viscous cosmologies, there exist isotropic models compatible with the standard second law of thermodynamics which also may influence the slopes of energy spectra of relic gravitons
Psychological characteristics of group cohesion athletes.
Sheriff Sarhan
2011-01-01
The basic components of group cohesion in sport teams. An analysis of publications on cohesion within the groups where an interconnection of individual goals of each participant group with common goals and the end result of teamwork. The concept of harmony in the team sports, where the rate of group cohesion is dependent on such integrative index as psychological climate. It is established that a number of athletes to achieve high results require high cohesion, unity, value-normative orientat...
Quasiadiabatic modes from viscous inhomogeneities
Giovannini, Massimo
2016-04-20
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...
Demonstration Of Mixing And Transferring Settling Cohesive Slurry Simulants In The AY-102 Tank
International Nuclear Information System (INIS)
Adamson, D.
2011-01-01
In support of Hanford's waste certification and delivery of tank waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring tank waste in a Double Shell Tank (DST) to the WTP Receipt Tank. The work discussed in this report (Phase III) address the impacts cohesive simulants have on mixing and batch transfer performance. The objective of the demonstrations performed in Phase III was to determine the impact that cohesive particle interactions in the simulants have on tank mixing using 1/22 nd scale mixing system and batch transfer of seed particles. This testing is intended to provide supporting evidence to the assumption that Hanford Small Scale Mixing Demonstration (SSMD) testing in water is conservative. The batch transfers were made by pumping the simulants from the Mixing Demonstration Tank (MDT) to six Receipt Tanks (RTs), and the consistency in the amount of seed particles in each batch was compared. Tests were conducted with non-Newtonian cohesive simulants with Bingham yield stress ranging from 0.3 Pa to 7 Pa. Kaolin clay and 100 μm stainless steel seed particles were used for all the non-Newtonian simulants. To specifically determine the role of the yield stress on mixing and batch transfer, tests were conducted with a Newtonian mixture of glycerol and water with at viscosity of 6.2 cP that was selected to match the Bingham consistency (high shear rate viscosity) of the higher yield stress kaolin slurries. The water/glycerol mixtures used the same 100 μm stainless steel seed particles. For the transfer demonstrations in Phase III, the mixer jet pumps were operated either at 10.0 gpm (28 ft/s nozzle velocity, U o D=0.63 ft 2 /s) or 8.0 gpm (22.4 ft/s nozzle velocity, U o D=0.504 ft 2 /s). All batch transfers from the MDT to the RTs were made at 0.58 gpm (MDT suction velocity 3.95 ft/s). The
Energy Technology Data Exchange (ETDEWEB)
Kauder, K.; Deipenwisch, R. [Dortmund Univ. (Germany). FG Fluidenergiemaschinen
1998-12-31
The model of the calculation of the friction losses caused by oil described in this report delivers a starting point for the integration of the design parameter `oil` for oil injected screw-type engines. The use of non newtonian oils with a shear thinning behaviour lead to a decrease of energy consumption over a broad speed range of screw-type compressors. The decrease is mainly caused by the shear indicated lower viscosity in the clearances of the compressor. A difficulty through the use of this oils is the estimation of the conditions in the clearances. The rate of shear in the single clearance is influenced by the relative speed of the boundaries and by the height of the clearance during operation. Up to now only cold heights were used in the model. To improve the quality of the model the clearances of a running screw compressor were measured. The losses which were determined at the screw compressor test plant are the summation of all losses including the losses caused by the power transmission and in the bearings. Experiments at a model rotor test stand make the determination of the friction losses and the losses by the acceleration of the oil in the clearances possible. A better calculation model shall deliver the conditions to describe the influence of the oil on the energy efficiency and to define the optimal oil for every screw compressor. (orig.) [Deutsch] Das beschriebene Modell zur Berechnung der hydraulischen Verluste in der nasslaufenden Schraubenmaschine liefert Ansaetze, um das Oel schon bei der Auslegung der Schraubenkompressoren als Konstruktionselement mit einzubeziehen. Sinnvoll ist die Nutzung eines nicht-newtonschen Oeles immer dann, wenn eine deutliche scherindizierte Viskositaetserniedrigung in dem Schergeschwindigkeitsbereich, der in den Spalten des Schraubenkompressors vorliegt, erreicht werden kann. Beim Einsatz dieser Oele besteht die Schwierigkeit darin, den Schergeschwindigkeitsbereich vorherzubestimmen, der waehrend des Betriebs in dem
Cohesion Policy Contributing to Territorial Cohesion – Future Scenarios
Directory of Open Access Journals (Sweden)
Andreas Faludi
2011-09-01
Full Text Available The Barca Report advocates for developmental policies to be ‘place-based’: integrated as far as they affect ‘places’. The debate on territorial cohesion is equally concerned with integrating relevant policies and actions. This requires well-established democratic institutions and adequate responses to the demands of technical systems and of markets. Following Lisbeth Hooghe and Gary Marks, the respective arrangements are described as Governance Type I and Type II. All levels of government, including that of the EU, partake in both types, but relations between them are problematic, particularly in the context of Europe 2020: Will this EU strategy be mainly a matter for Directorate-Generals and their various clients pursuing their policies (Governance Type II, or will Cohesion policy, with its more integrated and decentralised approach, involving many levels of government and stakeholders (Governance Type I form platforms for integrating them? This paper presents four scenarios; each based on a combination of strong/weak Governance Type I and Type II, which are labelled as the ‘Anglo-Saxon’, ‘Saint-Simonian’, ‘Rhineland’ and the ‘European’ Scenarios. The authors prefer the latter, but the best one can hope for in the short term is for this option not to fall by the wayside.
Viscous fingering with permeability heterogeneity
International Nuclear Information System (INIS)
Tan, C.; Homsy, G.M.
1992-01-01
Viscous fingering in miscible displacements in the presence of permeability heterogeneities is studied using two-dimensional simulations. The heterogeneities are modeled as stationary random functions of space with finite correlation scale. Both the variance and scale of the heterogeneities are varied over modest ranges. It is found that the fingered zone grows linearly in time in a fashion analogous to that found in homogeneous media by Tan and Homsy [Phys. Fluids 31, 1330 (1988)], indicating a close coupling between viscous fingering on the one hand and flow through preferentially more permeable paths on the other. The growth rate of the mixing zone increases monotonically with the variance of the heterogeneity, as expected, but shows a maximum as the correlation scale is varied. The latter is explained as a ''resonance'' between the natural scale of fingers in homogeneous media and the correlation scale
Periodic folding of viscous sheets
Ribe, Neil M.
2003-09-01
The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.
Viscous entrainment on hairy surfaces
Nasto, Alice; Brun, P.-T.; Hosoi, A. E.
2018-02-01
Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.
Computation of Viscous Incompressible Flows
Kwak, Dochan
2011-01-01
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engine...
Team cohesion and team success in sport.
Carron, Albert V; Bray, Steven R; Eys, Mark A
2002-02-01
The main aim of this study was to examine the relationship between task cohesiveness and team success in elite teams using composite team estimates of cohesion. A secondary aim was to determine statistically the consistency (i.e. 'groupness') present in team members' perceptions of cohesion. Elite university basketball teams (n = 18) and club soccer teams (n = 9) were assessed for cohesiveness and winning percentages. Measures were recorded towards the end of each team's competitive season. Our results indicate that cohesiveness is a shared perception, thereby providing statistical support for the use of composite team scores. Further analyses indicated a strong relationship between cohesion and success (r = 0.55-0.67). Further research using multi-level statistical techniques is recommended.
Sustaining exercise participation through group cohesion.
Estabrooks, P A
2000-04-01
The general hypothesis to be examined by this article is that increased group cohesion leads to an increase in adherence to an exercise program over time. Although preliminary research is promising, there is a need for further research aimed at examining the model of group development in exercise classes, the impact of group cohesion on both group and individual exercise behavior, and the measurement of group cohesion.
Directory of Open Access Journals (Sweden)
Mohammad M. Rahman
2016-11-01
Full Text Available The aim of the present study is to analyze numerically the steady boundary layer flow and heat transfer characteristics of Casson fluid with variable temperature and viscous dissipation past a permeable shrinking sheet with second order slip velocity. Using appropriate similarity transformations, the basic nonlinear partial differential equations have been transformed into ordinary differential equations. These equations have been solved numerically for different values of the governing parameters namely: shrinking parametersuction parameterCasson parameterfirst order slip parametersecond order slip parameter Prandtl number and the Eckert number using the bvp4c function from MATLAB. A stability analysis has also been performed. Numerical results have been obtained for the reduced skin-friction, heat transfer and the velocity and temperature profiles. The results indicate that dual solutions exist for the shrinking surface for certain values of the parameter space. The stability analysis indicates that the lower solution branch is unstable, while the upper solution branch is stable and physically realizable. In addition, it is shown that for a viscous fluida very good agreement exists between the present numerical results and those reported in the open literature. The present results are original and new for the boundary-layer flow and heat transfer past a shrinking sheet in a Casson fluid. Therefore, this study has importance for researchers working in the area of non-Newtonian fluids, in order for them to become familiar with the flow behavior and properties of such fluids.
Assessing Software Quality Through Visualised Cohesion Metrics
Directory of Open Access Journals (Sweden)
Timothy Shih
2001-05-01
Full Text Available Cohesion is one of the most important factors for software quality as well as maintainability, reliability and reusability. Module cohesion is defined as a quality attribute that seeks for measuring the singleness of the purpose of a module. The module of poor quality can be a serious obstacle to the system quality. In order to design a good software quality, software managers and engineers need to introduce cohesion metrics to measure and produce desirable software. A highly cohesion software is thought to be a desirable constructing. In this paper, we propose a function-oriented cohesion metrics based on the analysis of live variables, live span and the visualization of processing element dependency graph. We give six typical cohesion examples to be measured as our experiments and justification. Therefore, a well-defined, well-normalized, well-visualized and well-experimented cohesion metrics is proposed to indicate and thus enhance software cohesion strength. Furthermore, this cohesion metrics can be easily incorporated with software CASE tool to help software engineers to improve software quality.
Psychological characteristics of group cohesion athletes.
Directory of Open Access Journals (Sweden)
Sheriff Sarhan
2011-07-01
Full Text Available The basic components of group cohesion in sport teams. An analysis of publications on cohesion within the groups where an interconnection of individual goals of each participant group with common goals and the end result of teamwork. The concept of harmony in the team sports, where the rate of group cohesion is dependent on such integrative index as psychological climate. It is established that a number of athletes to achieve high results require high cohesion, unity, value-normative orientation, deep identification and responsibility for the results of the joint group activities.
Regions and the Territorial Cohesion
Directory of Open Access Journals (Sweden)
Ioan Ianos
2013-08-01
Full Text Available Territorial cohesion is an important target of European Union, constantly promoted by its institutions and their representatives. In the context of the Europe 2020 strategy, one of the most important support documents, the region represents a very important issue, being considered to be the key to its successfulness. The region is seen as a support for the smart growth and all the operational policy concepts try to make use of the spatial potential, by taking better account of the territorial specificities. Two main questions play attention: the need to transform the present-day developmental regions into administrative ones is a priority? What kind of regionalization it must to be promoted? Correlating these issues with already defined territorial cohesion, the administrative region is a real tool for the future territorial development. The experience of the last 14 years asks urgently the building of a new territorial administrative reform, giving competences to regions. For instant, each development region is a construction resulted from a free association of the counties. Their role in the regional development is much reduced one, because their regional councils are not elected; decisions taken at this level are consultative for the social, economical, cultural or political actors.
Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint
Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob
2018-02-01
Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and
Cohesion-Induced Stabilization in Stick-Slip Dynamics of Weakly Wet, Sheared Granular Fault Gouge
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan
2018-03-01
We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8,000 spherical particles with a polydisperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces between wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with 2 orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior; we show, however, that at low confining stresses, the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.
Why are Rich Countries more Politically Cohesive?
DEFF Research Database (Denmark)
Dalgaard, Carl-Johan Lars; Olsson, Ola
of other groups in society. If the gains from specialization become sufficiently large, however, a market economy will emerge. From being essentially non-cohesive under self-sufficiency, the political decision making process becomes cohesive in the market economy, as the welfare of individuals...
Education and Social Cohesion: Higher Education
Moiseyenko, Olena
2005-01-01
Social cohesion is understood as the social networks and the norms of reciprocity and trustworthiness that arise from connections among individuals. When students attend higher education institutions, they go through a process of socialization, and it is vital to ensure that they acquire the core values that underpin the social cohesion. This…
2017-09-01
majority of contaminated sediments are a mixture of sand, silt, and clay . These sediments are often referred to as cohesive because, unlike pure sand...number: 2 18 p p c ρ d Sk f μ (2) where ρp is the particle density, dp is the particle diameter, µ is the dynamic viscosity , and fc is a...using the viscous timescale, 2τν ut =+ , where uτ is the friction velocity, and ν the kinematic viscosity , as t+ provides an estimate of the strain
Transfer and Cohesion in Interdisciplinary Education
Directory of Open Access Journals (Sweden)
Søren Harnow Klausen
2014-06-01
Full Text Available One of the great challenges of interdisciplinary education is to create sufficient cohesion between disciplines. It is suggested that cohesion depends on the transfer of knowledge (in a broad sense, which includes skill and competences among the disciplines involved. Some of the most characteristic types of such transfer are identified and analyzed: Transfer of factual knowledge, theories, methods, models, skills, modes of collaboration and organization, meta-competences, disciplinary self-consciousness, problem selection, framework construction and motivation. Though some of these types of transfer may have a greater or smaller potential for creating cohesion, different kinds of cohesion may serve different interests, and there is no reason to assume that e.g. joint problem solving or theoretical integration should be more conducive to cohesion than e.g. contributions to motivation or disciplinary self-consciousness.
Mathematical models of viscous friction
Buttà, Paolo; Marchioro, Carlo
2015-01-01
In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...
Viscous Design of TCA Configuration
Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.
1999-01-01
The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.
Pulsatile flow of viscous and viscoelastic fluids in constricted tubes
Energy Technology Data Exchange (ETDEWEB)
Javadzadegan, A.; Esmaeili, M.; Majidi, S. [University of Tehran, Tehran (Iran, Islamic Republic of); Fakhimghanbarzadeh, B. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2009-09-15
The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration
Pulsatile flow of viscous and viscoelastic fluids in constricted tubes
International Nuclear Information System (INIS)
Javadzadegan, A.; Esmaeili, M.; Majidi, S.; Fakhimghanbarzadeh, B.
2009-01-01
The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration
Viscous forces and bulk viscoelasticity near jamming
Baumgarten, K.; Tighe, B.P.
2017-01-01
When weakly jammed packings of soft, viscous, non-Brownian spheres are probed mechanically, they respond with a complex admixture of elastic and viscous effects. While many of these effects are understood for specific, approximate models of the particles' interactions, there are a number of proposed
Ten themes of viscous liquid dynamics
DEFF Research Database (Denmark)
Dyre, J. C.
2007-01-01
Ten ‘themes' of viscous liquid physics are discussed with a focus on how they point to a general description of equilibrium viscous liquid dynamics (i.e., fluctuations) at a given temperature. This description is based on standard time-dependent Ginzburg-Landau equations for the density fields...
On the Impact of Spheres onto Liquid Pools and Ultra-viscous Films
Mansoor, Mohammad Mujtaba
2016-06-01
The free-surface impact of spheres is important to several applications in the military, industry and sports such as the water-entry of torpedoes, dip-coating procedures and slamming of boats. This two-part thesis attempts to explore this field by investigating cavity formation during the impact of spheres with deep liquid pools and cavitation in thin ultra-viscous films. Part I reports results from an experimental study on the formation of stable- streamlined and helical cavity wakes following the free-surface impact of heated Leidenfrost spheres. The Leidenfrost effect encapsulates the sphere by a vapor layer to prevent any physical contact with the surrounding liquid. This phenomenon is essential for the pacification of acoustic rippling along the cavity interface to result in a stable-streamlined cavity wake. Such a streamlined configuration experiences drag coefficients an order of magnitude lower than those acting on room temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers 0 ≳ 1.4 × 105 and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. This helical configuration has 40-55% smaller overall force coefficients than those obtained in the formation of stable cavity wakes. Part II of this thesis investigates the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having kinematic viscosities of up to 0 = 20,000,000 cSt. The existence of shear-stress- induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films is shown using a synchronized dual-view high-speed imaging system. In addition, cavitation by depressurization is noted for a new class of non-contact cases whereby the sphere rebounds without any prior contact with the solid wall. Horizontal
Neighborhood cohesion, neighborhood disorder, and cardiometabolic risk.
Robinette, Jennifer W; Charles, Susan T; Gruenewald, Tara L
2018-02-01
Perceptions of neighborhood disorder (trash, vandalism) and cohesion (neighbors trust one another) are related to residents' health. Affective and behavioral factors have been identified, but often in studies using geographically select samples. We use a nationally representative sample (n = 9032) of United States older adults from the Health and Retirement Study to examine cardiometabolic risk in relation to perceptions of neighborhood cohesion and disorder. Lower cohesion is significantly related to greater cardiometabolic risk in 2006/2008 and predicts greater risk four years later (2010/2012). The longitudinal relation is partially accounted for by anxiety and physical activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Natural disasters and indicators of social cohesion.
Calo-Blanco, Aitor; Kovářík, Jaromír; Mengel, Friederike; Romero, José Gabriel
2017-01-01
Do adversarial environmental conditions create social cohesion? We provide new answers to this question by exploiting spatial and temporal variation in exposure to earthquakes across Chile. Using a variety of methods and controlling for a number of socio-economic variables, we find that exposure to earthquakes has a positive effect on several indicators of social cohesion. Social cohesion increases after a big earthquake and slowly erodes in periods where environmental conditions are less adverse. Our results contribute to the current debate on whether and how environmental conditions shape formal and informal institutions.
Viscous bursting of suspended films
Debrégeas, G.; Martin, P.; Brochard-Wyart, F.
1995-11-01
Soap films break up by an inertial process. We present here the first observations on freely suspended films of long-chain polymers, where viscous effects are dominant and no surfactant is present. A hole is nucleated at time 0 and grows up to a radius R(t) at time t. A surprising feature is that the liquid from the hole is not collected into a rim (as it is in soap films): The liquid spreads out without any significant change of the film thickness. The radius R(t) grows exponentially with time, R~exp(t/τ) [while in soap films R(t) is linear]. The rise time τ~ηe/2γ where η is viscosity, e is thickness (in the micron range), and γ is surface tension. A simple model is developed to explain this growth law.
Electrokinetic Control of Viscous Fingering
Mirzadeh, Mohammad; Bazant, Martin Z.
2017-10-01
We present a theory of the interfacial stability of two immiscible electrolytes under the coupled action of pressure gradients and electric fields in a Hele-Shaw cell or porous medium. Mathematically, our theory describes a phenomenon of "vector Laplacian growth," in which the interface moves in response to the gradient of a vector-valued potential function through a generalized mobility tensor. Physically, we extend the classical Saffman-Taylor problem to electrolytes by incorporating electrokinetic (EK) phenomena. A surprising prediction is that viscous fingering can be controlled by varying the injection ratio of electric current to flow rate. Beyond a critical injection ratio, stability depends only upon the relative direction of flow and current, regardless of the viscosity ratio. Possible applications include porous materials processing, electrically enhanced oil recovery, and EK remediation of contaminated soils.
Justice and Social Cohesion: Some conservative perspectives
DEFF Research Database (Denmark)
Pedersen, Søren Hviid
2011-01-01
In the wake of recent debates on multiculturalism and value-pluralism, the pressing questions now focuses on whether social cohesion and the notion of justice are sustainable and can be upheld, at least from a European perspective. There are many theoretical and academic responses, mainly from...... liberals, on how to accommodate the different demands of various ethnic and religious groups and at the same time sustain a minimum of social cohesion and justice. One voice is missing and that is a conservative perspective. The purpose of this paper is to formulate a modern conservative analysis...... of this problem. The argument presented in this paper will, first, take its point of departure from David Hume’s notion of sympathy and how this makes social cohesion possible. Second, it will be argued that social cohesion is a prerequisite for the existence of justice, and therefore justice is a derivative...
Cohesion in a Multinational Coalition Center
National Research Council Canada - National Science Library
Schaab, Brooke
2007-01-01
.... All of the remaining nine items fell within the agree-to-strongly agree area. On interpersonal cohesion, highest agreement was found on items addressing the importance of liking and socializing with team members...
Social cohesion and integration: Learning active citizenship
Jansen, T.J.M.; Chioncel, N.E.; Dekkers, H.P.J.M.
2006-01-01
This article starts from a conceptual clarification of the notions social integration and social cohesion as a prerequisite for the reorientation of citizenship education. Turning away from uncritically reproduced assumptions represented in mainstream `deficiency discourse', the article first
Dissipation of Wave Energy by Cohesive Sediments
National Research Council Canada - National Science Library
Kaihatu, James M; Sheremet, Alexandru
2004-01-01
Wave energy dissipation by bottom muds is studied. A dissipation mechanism which contains explicit expressions of wavenumber modification due to a viscous bottom fluid is incorporated into a nonlinear wave shoaling model...
Emerging technologies, innovative teachers and moral cohesion
CSIR Research Space (South Africa)
Batchelor, J
2012-05-01
Full Text Available efficacy when they engage with emerging technologies. The concept of moral cohesion is further expanded and forms the main focus of this article. Keywords: emerging technologies, innovative teachers, moral cohesion, pedagogies, ethics, teacher.... African Renaissance and teacher disposition is identified as the strongest drivers. Teacher training forms the link between the strong drivers and the outcomes manifest as Stewardship and ethical considerations. 3.2 Professional Burden The theme...
Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture
Wang, John T.
2011-01-01
This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.
Group cohesion, task performance, and the experimenter expectancy effect.
Hoogstraten, J.; Vorst, H.C.M.
1978-01-01
Studied the effects of cohesion on task fulfillment and explored the influence of task fulfillment on the initial level of cohesion. Within 4-person groups of undergraduates, cohesion was manipulated successfully by a triple procedure. The level of cohesion was ascertained directly after the
Viscous shear in the Kerr metric
International Nuclear Information System (INIS)
Anderson, M.R.; Lemos, J.P.S.
1988-01-01
Models of viscous flows on to black holes commonly assume a zero-torque boundary condition at the radius of the last stable Keplerian orbit. It is here shown that this condition is wrong. The viscous torque is generally non-zero at both the last stable orbit and the horizon itself. The existence of a non-zero viscous torque at the horizon does not require the transfer of energy or angular momentum across any spacelike distance, and so does not violate causality. Further, in comparison with the viscous torque in the distant, Newtonian regime, the viscous torque on the horizon is often reversed, so that angular momentum is viscously advected inwards rather than outwards. This phenomenon is first suggested by an analysis of the quasi-stationary case, and then demonstrated explicitly for a series of cold, dynamical flows which fall freely from the last stable orbit in the Schwarzschild and Kerr metrics. In the steady flows constructed here, the net torque on the hole is always directed in the usual sense; any reversal in the viscous torque is offset by an increase in the convected flux of angular momentum. (author)
Energy Technology Data Exchange (ETDEWEB)
Seo, Hyeongseok; Baek, Hyungchan; Kim, Hyungyu [Seoul Nat' l Univ. of Sci. and Tech., Seoul (Korea, Republic of)
2014-04-15
In this paper, the effect of cohesive laws on the finite element analysis of crack propagation using cohesive elements is investigated through three-point bending and double cantilever beam problems. The cohesive elements are implemented into ABAQUS/Standard user subroutines(UEL), and the shape of cohesive law is varied by changing parameters in polynomial functions of cohesive traction-separation relations. In particular, crack propagation behaviors are studied by comparing load-displacement curves of the analysis models which have different shapes of cohesive laws with the same values of fracture energy and cohesive strength. Furthermore, the influence of the element size on crack propagation is discussed in this study.
Low moduli elastomers with low viscous dissipation
DEFF Research Database (Denmark)
Bejenariu, Anca Gabriela; Yu, Liyun; Skov, Anne Ladegaard
2012-01-01
A controlled reaction schema for addition curing silicones leads to both significantly lower elastic modulus and lower viscous dissipation than for the chemically identical network prepared by the traditional reaction schema....
INTANGIBLE ASSETS THROUGH THE COHESION POLICY
Directory of Open Access Journals (Sweden)
Popescu (Stingaciu Ana-Maria
2012-07-01
Full Text Available INTANGIBLE ASSETS THROUGH THE COHESION POLICY Roth Anne-Marie-Monika West University of Timisoara Faculty of Economics and Business Administration Popescu (Stingaciu Ana-Maria West University of Timisoara Faculty of Economics and Business Administration Intangible assets in general and intellectual capital in particular are important to both society and organizations. It can be a source of competitive advantage for business and stimulate innovation that leads to wealth generation. Technological revolutions, the rise of the knowledge-based economy and the networked society have all led to the same conclusion that intangibles and how they contribute to value creation have to be appreciated so that the appropriate decisions can be made to protect and enhance them. The Cohesion Policy represents the main EU measure to ensure a balanced and sustainable growth in Europe by promoting harmonious development and reducing the regional disparities. The general objective of the paper is to highlight the important role of the Cohesion Policy in the development of intangible assets. The objectives and the instruments of the Cohesion Policy are designed to support programs on regional development, economic change, enhanced competitiveness and territorial cooperation through the European Union, to develop human resources and employability. Keywords: intangible assets, intellectual capital, Cohesion policy, development; JEL Classification: O43, G32, D24, O34
Cohesion and Hierarchy in Physically Abusive Families
Directory of Open Access Journals (Sweden)
Clarissa De Antoni
2009-06-01
Full Text Available This paper investigates cohesion (emotional bonding and hierarchy (powerstructure in families with abuse against their children. Twenty low-incomefamilies participated. Father, mother and child’s perspective of family relations(cohesion and hierarchy were evaluated by the Family System Test(FAST. The relationship between father-child, mother-child, couple, andamong siblings were evaluated at typical and conflictive situations. Resultsshow a significance regarding to cohesion in typical and conflictive situationfor father-child and mother-child dyads in all perspectives (by father, mother,and child. There is no significant differences regarding to hierarchy. Theseresults suggest that the families see the intrafamilial violence as a constant,since they cannot differentiate between both situations.
Anisotropy in cohesive, frictional granular media
International Nuclear Information System (INIS)
Luding, Stefan
2005-01-01
The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum
Mixed Mode cohesive law with interface dilatation
DEFF Research Database (Denmark)
Sørensen, Bent F.; Goutianos, Stergios
2014-01-01
displacements. As the crack faces displace relatively to each other, the roughness asperities ride on top of each other and result in an opening (dilatation) in the normal direction. Furthermore, the interaction of the crack surfaces in the contact zone gives rise to compressive normal stresses and frictional...... shear stresses opposing the crack face displacements. A phenomenological Mixed Mode cohesive zone law, derived from a potential function, is developed to describe the above mentioned fracture behaviour under monotonic opening. The interface dilatation introduces two new lengths. The cohesive law...
Adsorption induced losses in interfacial cohesion
International Nuclear Information System (INIS)
Asaro, R.J.
1977-07-01
A model for interfacial cohesion is developed which describes the loss in the strength of an interface due to the segregation and adsorption of impurities on it. Distinctions are made between interface separations that occur too rapidly for any significant redistribution of adsorbing matter to take place and separations that are slow enough to allow full adsorption equilibrium. Expressions for the total work of complete decohesion are presented for both cases. The results are applied to well-known model adsorption isotherms and some experimental data for grain boundary adsorption of phosphorus in iron is analyzed with respect to the losses in intergranular cohesion
2017-09-01
majority of contaminated sediments are a mixture of sand, silt, and clay . These sediments are often referred to as cohesive because, unlike pure sand...number: 2 18 p p c ρ d Sk f μ (2) where ρp is the particle density, dp is the particle diameter, µ is the dynamic viscosity , and fc is a...using the viscous timescale, 2τν ut =+ , where uτ is the friction velocity, and ν the kinematic viscosity , as t+ provides an estimate of the strain
Solidarity and Social Cohesion in Late Modernity
DEFF Research Database (Denmark)
Juul, Søren
2010-01-01
social cohesion. The central theme is that contemporary solidarity is about recognition and a fair distribution of chances for recognition. This ideal may function as a normative standard for critical research and as a guideline for people in their moral struggles. What ultimately needs to be done...
The Corporate Stake in Social Cohesion
Oketch, Moses O.
2005-01-01
Corporate Social Responsibility (CSR) is a function that transcends, but includes, making profits, creating jobs, and producing goods and services. The effectiveness with which corporations perform this function determines their contribution (or lack of contribution) to social cohesion. This article therefore presents a discussion of some of the…
Cohesion as interaction in ELF spoken discourse
Directory of Open Access Journals (Sweden)
T. Christiansen
2013-10-01
Full Text Available Hitherto, most research into cohesion has concentrated on texts (usually written only in standard Native Speaker English – e.g. Halliday and Hasan (1976. By contrast, following on the work in anaphora of such scholars as Reinhart (1983 and Cornish (1999, Christiansen (2011 describes cohesion as an interactive process focusing on the link between text cohesion and discourse coherence. Such a consideration of cohesion from the perspective of discourse (i.e. the process of which text is the product -- Widdowson 1984, p. 100 is especially relevant within a lingua franca context as the issue of different variations of ELF and inter-cultural concerns (Guido 2008 add extra dimensions to the complex multi-code interaction. In this case study, six extracts of transcripts (approximately 1000 words each, taken from the VOICE corpus (2011 of conference question and answer sessions (spoken interaction set in multicultural university contexts are analysed in depth by means of a qualitative method.
Group Cohesion in Experiential Growth Groups
Steen, Sam; Vasserman-Stokes, Elaina; Vannatta, Rachel
2014-01-01
This article explores the effect of web-based journaling on changes in group cohesion within experiential growth groups. Master's students were divided into 2 groups. Both used a web-based platform to journal after each session; however, only 1 of the groups was able to read each other's journals. Quantitative data collected before and…
Group Cohesiveness in the Black Panther Party
Calloway, Carolyn R.
1977-01-01
This study selects for study the following propositions: 1) similarity among members increased the degree of cohesiveness within the party, 2) group devotion heightened interest in accomplishing group goals and 3) the threat of an external enemy led to interdependence among members and affected both activities and leadership styles. (Author/AM)
Microzonation Analysis of Cohesionless and Cohesive Soil
Directory of Open Access Journals (Sweden)
Tan Choy Soon
2017-01-01
Full Text Available Urban seismic risk is a continuous worldwide issue, numerous researchers are putting great effort in dealing with how to minimise the level of the threat. The only way to minimise the social and economic consequences caused but the seismic risk is through comprehensive earthquake scenario analysis such as ground response analysis. This paper intends to examine the characteristic of shear wave velocity and peak ground acceleration on cohesionless and cohesiveness soil. In order to examine the characteristic of shear wave velocity and peak ground acceleration on cohesionless and cohesiveness soil, ground response analysis was performed using Nonlinear Earthquake Site Response Analysis (NERA and Equivalent-linear Earthquake Site Response Analysis (EERA. The value of ground acceleration was initially high at bedrock and vanishes during the propagation process. It is thus, the measured acceleration at surface is therefore much lower as compare to at bedrock. Result shows that seismic waves can travel faster in harder soil as compared to softer soil. Cohesive soil contributes more to the shaking amplification than cohesionless soil such as sand and harder soil. This is known as local site effect. The typical example is the Mexico Earthquake that happened in 1985. As conclusion, peak ground acceleration for cohesive soil is higher than in cohesionless soil.
Validation of the Child Sport Cohesion Questionnaire
Martin, Luc J.; Carron, Albert V.; Eys, Mark A.; Loughead, Todd
2013-01-01
The purpose of the present study was to test the validity evidence of the Child Sport Cohesion Questionnaire (CSCQ). To accomplish this task, convergent, discriminant, and known-group difference validity were examined, along with factorial validity via confirmatory factor analysis (CFA). Child athletes (N = 290, M[subscript age] = 10.73 plus or…
Toward a Cohesive Theory of Visual Literacy
Avgerinou, Maria D.; Pettersson, Rune
2011-01-01
Despite the fact that to date Visual Literacy (VL) scholars have not arrived at a general consensus for a theoretical organization of the VL field, important conceptual investigations have emerged over the past four decades. In this paper we discuss and synthesize those studies. We then present a first attempt toward a cohesive theory of VL. The…
Slow stress relaxation behavior of cohesive powders
Imole, Olukayode Isaiah; Paulick, Maria; Magnanimo, Vanessa; Morgenmeyer, Martin; Ramaioli, Marco; Chavez Montes, Bruno E.; Kwade, Arno; Luding, Stefan
2016-01-01
We present uniaxial (oedometric) compression tests on two cohesive industrially relevant granular materials (cocoa and limestone powder). A comprehensive set of experiments is performed using two devices – the FT4 Powder Rheometer and the custom made lambdameter – in order to investigate the
The thinning of viscous liquid threads.
Castrejon-Pita, J. Rafael; Castrejon-Pita, Alfonso A.; Hutchings, Ian M.
2012-11-01
The thinning neck of dripping droplets is studied experimentally for viscous Newtonian fluids. High speed imaging is used to measure the minimum neck diameter in terms of the time τ to breakup. Mixtures of water and glycerol with viscosities ranging from 20 to 363 mPa s are used to model the Newtonian behavior. The results show the transition from potential to inertial-viscous regimes occurs at the predicted values of ~Oh2. Before this transition the neck contraction rate follows the inviscid scaling law ~τ 2 / 3 . After the transition, the neck thinning tends towards the linear viscous scaling law ~ τ . Project supported by the EPSRC-UK (EP/G029458/1) and Cambridge-KACST.
Buckling and stretching of thin viscous sheets
O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich
2016-11-01
Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.
A Blast Wave Model With Viscous Corrections
Yang, Z.; Fries, R. J.
2017-04-01
Hadronic observables in the final stage of heavy ion collision can be described well by fluid dynamics or blast wave parameterizations. We improve existing blast wave models by adding shear viscous corrections to the particle distributions in the Navier-Stokes approximation. The specific shear viscosity η/s of a hadron gas at the freeze-out temperature is a new parameter in this model. We extract the blast wave parameters with viscous corrections from experimental data which leads to constraints on the specific shear viscosity at kinetic freeze-out. Preliminary results show η/s is rather small.
A Blast Wave Model With Viscous Corrections
International Nuclear Information System (INIS)
Yang, Z; Fries, R J
2017-01-01
Hadronic observables in the final stage of heavy ion collision can be described well by fluid dynamics or blast wave parameterizations. We improve existing blast wave models by adding shear viscous corrections to the particle distributions in the Navier-Stokes approximation. The specific shear viscosity η/s of a hadron gas at the freeze-out temperature is a new parameter in this model. We extract the blast wave parameters with viscous corrections from experimental data which leads to constraints on the specific shear viscosity at kinetic freeze-out. Preliminary results show η/s is rather small. (paper)
Simultaneous viscous-inviscid coupling via transpiration
International Nuclear Information System (INIS)
Yiu, K.F.C.; Giles, M.B.
1995-01-01
In viscous-inviscid coupling analysis, the direct coupling technique and the inverse coupling technique are commonly adopted. However, stability and convergence of the algorithms derived are usually very unsatisfactory. Here, by using the transpiration technique to simulate the effect of the displacement thickness, a new simultaneous coupling method is derived. The integral boundary layer equations and the full potential equation are chosen to be the viscous-inviscid coupled system. After discretization, the Newton-Raphson technique is proposed to solve the coupled nonlinear system. Several numerical results are used to demonstrate the accuracy and efficiency of the proposed method. 15 refs., 23 figs
Territorial cohesion post - 2013 : To whomsoever it may concern
Faludi, A.K.F.
2010-01-01
Conceived as a motion for resolution, the paper considers territorial cohesion now being on the statute book, the Green Paper on Territorial Cohesion, Barca making the case for integrated, place-based strategies, the EU Strategy for the Baltic Sea Region and the future of Cohesion policy. The
Magnetic Viscous Drag for Friction Labs
Gaffney, Chris; Catching, Adam
2016-01-01
The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…
Delayed Capillary Breakup of Falling Viscous Jets
Javadi, A.; Eggers, J.; Bonn, D.; Habibi, M.; Ribe, N.M.
2013-01-01
Thin jets of viscous fluid like honey falling from capillary nozzles can attain lengths exceeding 10 m before breaking up into droplets via the Rayleigh-Plateau (surface tension) instability. Using a combination of laboratory experiments and WKB analysis of the growth of shape perturbations on a jet
Dilepton production in schematic causal viscous hydrodynamics
International Nuclear Information System (INIS)
Song, Taesoo; Han, Kyong Chol; Ko, Che Ming
2011-01-01
Assuming that in the hot dense matter produced in relativistic heavy-ion collisions, the energy density, entropy density, and pressure as well as the azimuthal and space-time rapidity components of the shear tensor are uniform in the direction transversal to the reaction plane, we derive a set of schematic equations from the Isreal-Stewart causal viscous hydrodynamics. These equations are then used to describe the evolution dynamics of relativistic heavy-ion collisions by taking the shear viscosity to entropy density ratio of 1/4π for the initial quark-gluon plasma (QGP) phase and of 10 times this value for the later hadron-gas (HG) phase. Using the production rate evaluated with particle distributions that take into account the viscous effect, we study dilepton production in central heavy-ion collisions. Compared with results from the ideal hydrodynamics, we find that although the dilepton invariant mass spectra from the two approaches are similar, the transverse momentum spectra are significantly enhanced at high transverse momenta by the viscous effect. We also study the transverse momentum dependence of dileptons produced from QGP for a fixed transverse mass, which is essentially absent in the ideal hydrodynamics, and find that this so-called transverse mass scaling is violated in the viscous hydrodynamics, particularly at high transverse momenta.
Natural disasters and indicators of social cohesion
Czech Academy of Sciences Publication Activity Database
Calo-Blanco, A.; Kovářík, Jaromír; Mengel, F.; Romero, J. G.
2017-01-01
Roč. 12, č. 6 (2017), s. 1-13, č. článku e0176885. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA14-22044S Institutional support: RVO:67985998 Keywords : social cohesion * trust * climate Subject RIV: AH - Economic s OBOR OECD: Applied Economic s, Econometrics Impact factor: 2.806, year: 2016
Whither Elite Cohesion in Mexico: A Comment
1988-11-01
the problem of elite cohesion, including the mechanisms-- especially the camarilla system--whereby balance and equilibrium, control and cooptation...Generacicnes: Los Protagonistas de Ia Reforma y la Revoluci(n Mexicana, Secretaria de Educacion Pblica, Consejo Nacional de Fomento Educat ivo, Mexico City...loyalty and discipline toward the system as a whole, and especially its apex, the president, and its key institution, the PRI. All this looks different
Brownfield regeneration: Towards strengthening social cohesion?
Directory of Open Access Journals (Sweden)
Minić Marta
2016-01-01
Full Text Available In broader terms, the paper refers to the topic of brownfield regeneration, as one of the most complex mechanisms for sustainable spatial development. In addition to the fact that brownfield regeneration demands a variety of instruments, such as: tax subsidies, the change of land use ownership, soil remediation, planning regulative amendments, etc., the complexity of brownfield regeneration is primarily seen in a number of stakeholders participating in such a process. Thus, the paper focuses on the social aspect of brownfield regeneration - precisely, on researching the community role and reviewing the possibilities for achieving the 'local' interests in complex developmental processes. The main research hypothesis is that brownfield regeneration positively affects the creation of and strengthening the social cohesion in the areas close to the brownfield site. More precisley, the paper presents the ways towards strenghtening social cohesion in the initial phase of the brownfield regeneration process, as well as the effects of such a process in its operationalisation phase on social cohesion. The thesis is examined by two main parameters: 1 participation of local community, and 2 social costs and benefits of brownfield regeneration versus greenfield investment. The research results are presented in the form of argumentative essay. In fact, the critical overview of arguments for and against the main research hypothesis is provided based on the review of interdisciplinary literature in the domain of brownfield regeneration. Such research organisation ensures the identification and description of the measures needed for strengthening social cohesion, as an utmost goal of this research. The final research contribution is about offering the guidelines for similar methodological approach in urban research.
Social cohesion and interpersonal conflicts in projects
Ojiako, Udechukwu; Manville, Graham; Zouk, Nadine; Chipulu, Maxwell
2016-01-01
One particular area of project management literature that has continued to gain momentum in literature is its social dimension; with a number of scholars emphasising the fact that there is a considerable social dimension to every project activity. Within this context, the authors examine parameters that drive social facets of projects with a particular focus on social cohesion, interpersonal conflicts and national culture. Data from 167 project managers working in Kuwait were collected utilis...
Micromechanical modeling and inverse identification of damage using cohesive approaches
International Nuclear Information System (INIS)
Blal, Nawfal
2013-01-01
In this study a micromechanical model is proposed for a collection of cohesive zone models embedded between two each elements of a standard cohesive-volumetric finite element method. An equivalent 'matrix-inclusions' composite is proposed as a representation of the cohesive-volumetric discretization. The overall behaviour is obtained using homogenization approaches (Hashin Shtrikman scheme and the P. Ponte Castaneda approach). The derived model deals with elastic, brittle and ductile materials. It is available whatever the triaxiality loading rate and the shape of the cohesive law, and leads to direct relationships between the overall material properties and the local cohesive parameters and the mesh density. First, rigorous bounds on the normal and tangential cohesive stiffnesses are obtained leading to a suitable control of the inherent artificial elastic loss induced by intrinsic cohesive models. Second, theoretical criteria on damageable and ductile cohesive parameters are established (cohesive peak stress, critical separation, cohesive failure energy,... ). These criteria allow a practical calibration of the cohesive zone parameters as function of the overall material properties and the mesh length. The main interest of such calibration is its promising capacity to lead to a mesh-insensitive overall response in surface damage. (author) [fr
Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics
Wang, John T.
2010-01-01
The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.
Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.
Wang, Ji-Peng
2017-08-31
This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples.
Written cohesion in children with and without language learning disabilities.
Koutsoftas, Anthony D; Petersen, Victoria
2017-09-01
Cohesion refers to the linguistic elements of discourse that contribute to its continuity and is an important element to consider as part of written language intervention, especially in children with language learning disabilities (LLD). There is substantial evidence that children with LLD perform more poorly than typically developing (TD) peers on measures of cohesion in spoken language and on written transcription measures; however, there is far less research comparing groups on cohesion as a measure of written language across genres. The current study addresses this gap through the following two aims. First, to describe and compare cohesion in narrative and expository writing samples of children with and without language learning disabilities. Second, to relate measures of cohesion to written transcription and translation measures, oral language, and writing quality. Fifty intermediate-grade children produced one narrative and one expository writing sample from which measures of written cohesion were obtained. These included the frequency, adequacy and complexity of referential and conjunctive ties. Expository samples resulted in more complex cohesive ties and children with TD used more complex ties than peers with LLD. Different relationships among cohesion measures and writing were observed for narrative verse expository samples. Findings from this study demonstrate cohesion as a discourse-level measure of written transcription and how the use of cohesion can vary by genre and group (LLD, TD). Clinical implications for assessment, intervention, and future research are provided. © 2016 Royal College of Speech and Language Therapists.
Viscous warm inflation: Hamilton-Jacobi formalism
Akhtari, L.; Mohammadi, A.; Sayar, K.; Saaidi, Kh.
2017-04-01
Using Hamilton-Jacobi formalism, the scenario of warm inflation with viscous pressure is considered. The formalism gives a way of computing the slow-rolling parameter without extra approximation, and it is well-known as a powerful method in cold inflation. The model is studied in detail for three different cases of the dissipation and bulk viscous pressure coefficients. In the first case where both coefficients are taken as constant, it is shown that the case could not portray warm inflationary scenario compatible with observational data even it is possible to restrict the model parameters. For other cases, the results shows that the model could properly predicts the perturbation parameters in which they stay in perfect agreement with Planck data. As a further argument, r -ns and αs -ns are drown that show the acquired result could stand in acceptable area expressing a compatibility with observational data.
Sudden viscous dissipation in compressing plasma turbulence
Davidovits, Seth; Fisch, Nathaniel
2015-11-01
Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.
Design method for fluid viscous dampers
Energy Technology Data Exchange (ETDEWEB)
Jia, Jiuhong; Hua, Hongxing [Shanghai Jiaotong University, State Key Laboratory of Mechanical System and Vibration, Shanghai (China); Du, Jianye; Wang, Yu [Naval Arming Academy, Institute of Naval Vessels, Beijing (China)
2008-09-15
A basic design method of doubly acting fluid viscous dampers with double guide bars is presented. The flow of the viscoelastic fluid between two parallel plates, one of which is started suddenly and the other of which is still, is analyzed. According to this solution, the velocity and the shear stress of the fluid at the fringe of the piston are solved approximately. A mathematical model of viscous dampers is derived, and the shock test is carried out. From experimental results, the parameters of the mathematical model are determined. Consequently, a semi-empirical design equation is obtained. Applying this equation to a certain practical damper, the damping material is chosen and the physical dimensions of the damper are determined. Shock tests using this damper are performed. Theoretical results are in good agreement with experimental results, which validates the reliability of the calculated physical dimensions of the specimen damper and the validity of the basic design equation. (orig.)
Solidity of viscous liquids. IV. Density fluctuations
DEFF Research Database (Denmark)
Dyre, J. C.
2006-01-01
This paper is the fourth in a series exploring the physical consequences of the solidity of highly viscous liquids. It is argued that the two basic characteristics of a flow event (a jump between two energy minima in configuration space) are the local density change and the sum of all particle...... displacements. Based on this it is proposed that density fluctuations are described by a time-dependent Ginzburg-Landau equation with rates in k space of the form C+Dk^2 with D>>C a^2 where a is the average intermolecular distance. The inequality expresses a long-wavelength dominance of the dynamics which...... with Debye behavior at low frequencies and an omega^{−1/2} decay of the loss at high frequencies. Finally, a general formalism for the description of viscous liquid dynamics, which supplements the density dynamics by including stress fields, a potential energy field, and molecular orientational fields...
Bulk viscous cosmology with causal transport theory
International Nuclear Information System (INIS)
Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried
2011-01-01
We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8
Newton solution of inviscid and viscous problems
International Nuclear Information System (INIS)
Venkatakrishnan, V.
1988-01-01
The application of Newton iteration to inviscid and viscous airfoil calculations is examined. Spatial discretization is performed using upwind differences with split fluxes. The system of linear equations which arises as a result of linearization in time is solved directly using either a banded matrix solver or a sparse matrix solver. In the latter case, the solver is used in conjunction with the nested dissection strategy, whose implementation for airfoil calculations is discussed. The boundary conditions are also implemented in a fully implicit manner, thus yielding quadratic convergence. Complexities such as the ordering of cell nodes and the use of a far field vortex to correct freestream for a lifting airfoil are addressed. Various methods to accelerate convergence and improve computational efficiency while using Newton iteration are discussed. Results are presented for inviscid, transonic nonlifting and lifting airfoils and also for laminar viscous cases. 17 references
The partially filled viscous ring damper.
Alfriend, K. T.
1973-01-01
The problem of a spinning satellite with a partially filled viscous ring damper is investigated. It is shown that there are two distinct modes of motion, the nutation-synchronous mode and spin-synchronous mode. From an approximate solution of the equations of motion a time constant is obtained for each mode. From a consideration of the fluid dynamics several methods are developed for determining the damping constant.
Generation of highly-viscous microjets
Tagawa, Yoshiyuki; Onuki, Hajime; Oi, Yuto
2015-11-01
An ink-jet printing system (or a liquid-dispensing device) has ecological and cost advantages compared to other printing systems such as offset printing and gravure printing since it requires a small amount of liquids. However, most ink-jet printers are not able to eject high-viscous liquids more than 10 cSt. This limitation severely restricts applications of the ink-jet system. Here we present a novel jet-generation system, discharging jets of high-viscous liquids up to 1,000 cSt. The system employs an impulsive force and converges the force efficiently in order to accelerate the liquid-air interface strongly for generating viscous jets: It consists of a liquid container and a thin tube partially inserted in the liquid. The liquid-air interface inside the thin tube is set deeper than that outside of the tube. We then add an impulsive force on the bottom of the container, leading to the microjet generation inside the thin tube. The pressure field under the impulsive force is estimated using pressure-impulse approach, deriving the jet velocity. The jet velocity is experimentally measured with varying the impulsive force and liquid levels in the tube and the container. It is found that the measured velocities agree with the estimation. Owing to the simple structure of the generation system and an ability for ejecting viscous liquids, it could extend the limits of existing ink-jet printers and may be applicable for next-generation technologies such as 3D printing systems and needle-free injection devices. JSPS KAKENHI Grant Number 26709007.
The viscous dynamics of a rotating plasma
International Nuclear Information System (INIS)
James, B.W.; Simpson, S.W.
1978-01-01
The rotational velocity of a high-density, partially-ionized neon plasma has been calculated as a function of time using a dynamical model in which J x B and viscous forces act on the plasma. The calculation of appropriate transport coefficients is discussed in detail. The model is used to predict measured voltages in a plasma centrifuge experiment. Observations of neon isotope separation in this experiment have been reported in a previous paper (James and Simpson 1976). (author)
On modeling the large strain fracture behaviour of soft viscous foods
Skamniotis, C. G.; Elliott, M.; Charalambides, M. N.
2017-12-01
Mastication is responsible for food breakdown with the aid of saliva in order to form a cohesive viscous mass, known as the bolus. This influences the rate at which the ingested food nutrients are later absorbed into the body, which needs to be controlled to aid in epidemic health problems such as obesity, diabetes, and dyspepsia. The aim of our work is to understand and improve food oral breakdown efficiency in both human and pet foods through developing multi-scale models of oral and gastric processing. The latter has been a challenging task and the available technology may be still immature, as foods usually exhibit a complex viscous, compliant, and tough mechanical behaviour. These are all addressed here through establishing a novel material model calibrated through experiments on starch-based food. It includes a new criterion for the onset of material stiffness degradation, a law for the evolution of degradation governed by the true material's fracture toughness, and a constitutive stress-strain response, all three being a function of the stress state, i.e., compression, shear, and tension. The material model is used in a finite element analysis which reproduces accurately the food separation patterns under a large strain indentation test, which resembles the boundary conditions applied in chewing. The results lend weight to the new methodology as a powerful tool in understanding how different food structures breakdown and in optimising these structures via parametric analyses to satisfy specific chewing and digestion attributes.
Leapfrogging of multiple coaxial viscous vortex rings
International Nuclear Information System (INIS)
Cheng, M.; Lou, J.; Lim, T. T.
2015-01-01
A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior
Groupthink: one peril of group cohesiveness.
Rosenblum, E H
1982-04-01
A group's aim is to make well-conceived, well-understood, well-accepted and realistic decisions to reach their agreed-upon goals. This aim applies equally to their own goals and those occasionally imposed by outsiders such as hospital administration, accreditation committees and the federal government. Effective groupwork requires group cohesion with its components of trust, risk taking, mutual support, and group esteem. With constant vigilance the group can maintain its positive dynamics, so that the unhealthy state of groupthink does not undermine its existence.
Coaches' Perceptions of Team Cohesion in Paralympic Sports.
Falcão, William R; Bloom, Gordon A; Loughead, Todd M
2015-07-01
The purpose of this study was to investigate Paralympic coaches' perceptions of team cohesion. Seven head coaches of summer and winter Canadian Paralympic sport teams participated in the study. Four participants coached individual sports and 3 coached team sports. Data were collected using semistructured interviews and analyzed using thematic analysis. The results addressed the coaches' perceptions of cohesion in the Paralympic sport setting and strategies used to foster cohesion with their teams. Participants described using techniques and strategies for enhancing cohesion that were similar to those in nondisability sport, such as task-related activities, goal setting, and regularly communicating with their athletes. They also listed how cohesion was distinct to the Paralympic setting, such as the importance of interpersonal activities to build social cohesion. The implications of these results for coaching athletes with a disability are also presented.
The association between status and cohesion in sport teams.
Jacob, C S; Carron, A V
1998-02-01
The main objective of this study was to establish the relationship between perceptions of status attributes and cohesion and status ranking and cohesion. A secondary aim was to determine whether age (operationalized by scholastic levels) or culture serves as a moderator in the relationship between either status attributes or status ranking and cohesion. Another secondary aim was to determine if differences are present in the importance attached by athletes to status attributes. Canadian and Indian athletes were tested. Although perceptions of the importance of status attributes and cohesiveness were related, the effect size was small (Green, 1991); perceptions of status ranking and cohesiveness were not related. Neither scholastic level nor culture served as a moderator in the association between either status attributes or status rank and cohesion. The importance that athletes attach to status attributes is similar between scholastic levels and across cultures. The results are discussed in terms of the role of status in sport teams.
Cohesion, Cracking, Dilation, and Flow -- Rheological Behavior of Cohesive Pharmaceutical Powders
Muzzio, Fernando
2007-03-01
Cohesive powders can be loosely defined as systems where the attractive forced between particles exceed the average particle weight. Cohesive powder flow is interesting from a wide range of reasons. Their main characteristic, intermittence, is evidenced both in the interruption of flow out of hoppers (a mundane issue causing great annoyance to industrial practitioners) and in the sudden avalanching of snow and dirt that has terrified and terrified mankind since the dawn of time. At the present time, our ability to predict either of these phenomena (and many more involving cohesive powders) is very limited, primarily due to an incomplete understanding of their constitutive behavior. To wit, consider just a simple fact: a flowing powder never has constant density. Equations describing the relationship between velocity, shear, stress, and density are rudimentary at best. Computational and experimental approaches for characterizing flow behavior are in their infancy. In this talk, I will describe some recent progress achieved at Rutgers by our group. New instruments have been developed to determine simultaneously powder density and cohesive flow effects. Extensive measurements have been carried out focusing on pharmaceutical blends. These results have been used to fine-tune computational models that accurately predict dilation, flow in drums, and flow in hoppers. Impact of these observations for pharmaceutical manufacturing applications will be discussed in some detail.
Personality in teams: its relationship to social cohesion, task cohesion, and team performance
van Vianen, A.E.M.; de Dreu, C.K.W.
2001-01-01
This study continued past research on the relationship between personality composition in teams and social cohesion and team performance (Barrick, Stewart, Neubert, & Mount, 1998). Results from the Barrick et al. sample (N = 50) were compared with data from two new samples, one comprising drilling
Environmental cohesion across the Hungarian-Croatian border
Varjú Viktor
2016-01-01
Environmental cohesion (as a new EU paradigm for a place-based interpretation of environmental justice) has a clear connection to territorial cohesion. Based on this idea, advantages for people can include an equitable distribution of environmental protection and access to environmental services. In non-EU countries regional environmental cohesion is used as an instrument to accelerate accession to the EU and it may be manifested as a declaration of environ...
Automated Behavior and Cohesion Assessment Tools, Phase II
National Aeronautics and Space Administration — An important consideration of long duration space flight operations is interpersonal dynamics that effect crew cohesion and performance. Flight surgeons have stated...
EXAMINATION OF HANDBALL PLAYERS’ TEAM COHESION
Directory of Open Access Journals (Sweden)
İlyas Görgüt
2017-04-01
Full Text Available The aim of this study was to determine team cohesion of handballplayers who were actively engaged in sport in various categories. The study group consisted of a total of 607 handball players, 317 female and 290 male, selected by random method and from 11 provinces of Turkey according to the some factors. When we examine the age distributions of the participants, 121 athletes appear to be 13 years and under, 309 athletes 14-18 years, 94 athletes 19-23 years, 54 athletes 24-28 years and 29 athletes 29 years and over. In addition, 186 of them expressed their education situation as middle school, 253 of them expressed their education situation as high school and 168 of them expressed their education situation as university. Personal information form and team cohesion scale, developed by Widmeyer et al. (1985 and adapted to Turkish by Moralı (1994, were used as a data collecting tools. The Kolmogorov Smirnov test was used to measure whether the obtained data showed normal distribution or not and nonparametric tests were used to determine the subscale scores because they didn’t show normal disturbance. For binary comparisons Mann Whitney U test, for multiple comparisons Kruskal Wallis variance and for the difference between significant groups Bonferroni Mann Whitney U test were used. As a result of the research, there were significant differences in scale subscale scores in terms of gender, age, educational status, sports experience, income and province variables of handball players.
Drop Impact of Viscous Suspensions on Solid Surfaces
Bolleddula, Daniel; Aliseda, Alberto
2009-11-01
Droplet impact is a well studied subject with over a century of progress. Most studies are motivated by applications such as inkjet printing, agriculture spraying, or printed circuit boards. Pharmaceutically relevant fluids provide an experimental set that has received little attention. Medicinal tablets are coated by the impaction of micron sized droplets of aqueous suspensions and subsequently dried for various purposes such as brand recognition, mask unpleasant taste, or functionality. We will present a systematic study of micron sized drop impact of Newtonian and Non-Newtonian fluids used in pharmaceutical coating processes. In our experiments we extend the range of Ohnesorge numbers, O(1), of previous studies on surfaces of varying wettability and roughness.
Gass-Assisted Displacement of Non-Newtonian Fluids
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Eriksson, Torbjörn Gerhard
2003-01-01
in a circular cylinder. This is a simple model system used to investigate the gas-fluid displacement, as the problem is reduced to an axis-symmetric flow problem. The understanding of this process is relevant for the geometrically much more complex polymer processing operation Gas-assisted injection moulding...... (GAIM). This is a process, where a mould is filled partly with a polymer melt followed by the injection of inert gas into the core of the polymer melt. The numerical analysis of the fluid flow concerning the experimental observations data in these publications is all based on Newtonian or general...... equation of Boger fluids is the Oldroyd-B model. This model has, with success, been able to describe the complex flow behaviours of Boger fluid. Though, refinements in the flow analysis can be obtained using more complex constitutive models. To keep the flow analysis as simple as possible the Oldroyd...
Saffman-Taylor Instability for a non-Newtonian fluid
Daripa, Prabir
2013-11-01
Motivated by applications, we study classical Saffman-Taylor instability involving displacement of an Oldroyd-B fluid displaced by air in a Hele-Shaw cell. The lubrication approximation is used by neglecting the vertical component of the velocity. We obtain an explicit expression of one of the components of the extra-stress perturbations tensor in terms of the horizontal velocity perturbations. The main result is an explicit formula for the growth constant (in time) of perturbations, given by a ratio in which a term depending on the relaxation and retardation (time) constants appears in the denominator of the ratio. This exact result compares extremely well with known numerical results. It is found that flow is more unstable than the corresponding Newtonian case. This is a joint work with Gelu Pasa. The research has been made possible by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation).
Newtonian and non-newtonian limits of gravitational fields
International Nuclear Information System (INIS)
Koppel', A.A.
1975-01-01
The nonrelativistic limit of the exact stationary axially-symmetric vacuum solution to Einstein equations, which is called the unified (generalized) Kerr-NUT solution, is investigated. Potentials for nonrelativistic gravitational fields, corresponding to this solution, have been calculated. The character of the c→infinity limit (c is the velocity of light) has been shown to depend on the structure of parameters of the Kerr-NUT solution. An example is given that shows the possibility of the existence of a nonrelativistic limit having an absolutely new, non-Newton (vortex) character. From the mathematically proved possibility of the existence of nonrelativistic vortex fields there follow also some implications of a more fundamental character. The Newton limit is commonly supposed to be the only nonrelativistic limit in the Einstein theory. Now there arises a dilemma: either gravitational fields having a non-Newton limit exist in nature and thus the Newton theory does not embrace all gravitational phenomena of nonrelativistic character or in the Newton solutions to the nonrelativistic gravitational equations a certain element of the Einstein theory is revealed that is alien to the true nonrelativistic theory of gravitation. In the former case, one cannot exclude the possibility that owing to a comprehensive analysis of properties, possible sources, etc. the vortex soltions to Einstein equations may prove important in cosmological and astrophysical applications of the general relativity theory. In the latter case, a detailed analysis of the non-Newton-limit solutions will at least enable one to gain a deeper insight into the structure of Einstein equations and their solutions
Controllability of Non-Newtonian Fluids Under Homogeneous Flows
National Research Council Canada - National Science Library
Wilson, Lynda M
2007-01-01
.... The constitutive models are as follows: the Phan-Thien-Tanner model; the Johnson-Segalman model; and the Doi model. The effect of extensional flow on these models and the effect of shear flow on the Doi model have not been explored previous to this work...
Newtonian and non-newtonian limits of gravitational fields
Energy Technology Data Exchange (ETDEWEB)
Koppel, A A [Tartuskij Gosudarstvennyj Univ., (USSR)
1975-09-01
The nonrelativistic limit of the exact stationary axially-symmetric vacuum solution to Einstein equations, which is called the unified (generalized) Kerr-NUT solution, is investigated. Potentials for nonrelativistic gravitational fields, corresponding to this solution, have been calculated. The character of the c..-->..infinity limit (c is the velocity of light) has been shown to depend on the structure of parameters of the Kerr-NUT solution. An example is given that shows the possibility of the existence of a nonrelativistic limit having an absolutely new, non-Newton (vortex) character. From the mathematically proved possibility of the existence of nonrelativistic vortex fields there follow also some implications of a more fundamental character. The Newton limit is commonly supposed to be the only nonrelativistic limit in the Einstein theory. Now there arises a dilemma: either gravitational fields having a non-Newton limit exist in nature and thus the Newton theory does not embrace all gravitational phenomena of nonrelativistic character or in the Newton solutions to the nonrelativistic gravitational equations a certain element of the Einstein theory is revealed that is alien to the true nonrelativistic theory of gravitation. In the former case, one cannot exclude the possibility that owing to a comprehensive analysis of properties, possible sources, etc. the vortex soltions to Einstein equations may prove important in cosmological and astrophysical applications of the general relativity theory. In the latter case, a detailed analysis of the non-Newton-limit solutions will at least enable one to gain a deeper insight into the structure of Einstein equations and their solutions.
Fundamentals of convection in non-Newtonian fluids
International Nuclear Information System (INIS)
Chen, J.L.S.; Ekmann, J.M.; Peterson, G.P.
1987-01-01
There are five papers in this book. They are: Pressure Drop and Heat Transfer in Viscoelastic Duct Flow - A New Look, A Heat Transfer Correlation for Viscoelastic Pipe Flows under Constant Wall Heat Flux, Three-Dimensional Solidification and Flow of Polymers in Curved Square Ducts, Natural Convecon Heat Transfer Between a Power-Law Fluid and a Permeable Isothermal Vertical Wall, and On Nonisothermal Flows of Bingham Plastics
The turbulent mixing of non-Newtonian fluids
Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.
2013-07-01
The turbulence caused by the Rayleigh-Taylor instability represents a complicated phenomenon. It is usually related to the major hydrodynamic activities, the tangling of the media contact boundary, merging, separation and intermixing of originally smoothed initial structures. An important role in the theory of the Rayleigh-Taylor instability is played by the discontinuity of density on a contact interface between two homogeneous (in terms of density) fluids. A numerical modeling of the intermixing of two fluids with different rheology whose densities differ twice as a result of the Rayleigh-Taylor instability has been carried out. The coefficients of turbulent intermixing in a multimode statement of the problem for the Bingham, dilatant and pseudo-plastic fluids have been obtained.
Aerosol entrainment from a sparged non-Newtonian slurry
International Nuclear Information System (INIS)
Fritz, Brad G.
2006-01-01
Aerosol measurements were conducted above a half-scale air sparged mixing tank filled with simulated waste slurry. Three aerosol size fractions were measured at three sampling heights at three different sparging rates using a filter based ambient air sampling technique. Aerosol concentrations in the head space above the closed tank demonstrated a wide range, varying between 97 ?g m-3 for PM2.5 and 5650 ?g m-3 for TSP. The variation in concentrations was a function of sampling heights, size fraction and sparging rate. Measured aerosol entrainment coefficients showed good agreement with existing entrainment models. The models evaluated generally over predicted the entrainment, but were within a factor of two of the measured entrainment. This indicates that the range of applicability of the models may be extendable to include sparged slurries with Bingham plastic rheological properties
Non Newtonian Behavior of Blood in Presence of Arterial Occlusion
Dr.Arun Kumar Maiti
2016-01-01
The objective of the present numerical model is to investigate the effect of shape of stenosis on blood flow through an artery using Bingham plastic fluid model. Blood is modeled as Bingham plastic fluid in a uniform circular tube with an axially symmetric but radially non symmetric stenosis. The expressions for flux, dimensionless resistance to flow with stenosis shape parameter, stenosis length and stenosis size have been shown graphically
Turbulent structures of non-Newtonian solutions containing rigid polymers
Mohammadtabar, M.; Sanders, R. S.; Ghaemi, S.
2017-10-01
The turbulent structure of a channel flow of Xanthan Gum (XG) polymer solution is experimentally investigated and compared with water flow at a Reynolds number of Re = 7200 (based on channel height and properties of water) and Reτ = 220 (based on channel height and friction velocity, uτ0). The polymer concentration is varied from 75, 100, and 125 ppm to reach the point of maximum drag reduction (MDR). Measurements are carried out using high-resolution, two-component Particle Image Velocimetry (PIV) to capture the inner and outer layer turbulence. The measurements showed that the logarithmic layer shifts away from the wall with increasing polymer concentration. The slopes of the mean velocity profile for flows containing 100 and 125 ppm XG are greater than that measured for XG at 75 ppm, which is parallel with the slope obtained for deionized water. The increase in slope results in thickening buffer layer. At MDR, the streamwise Reynolds stresses are as large as those of the Newtonian flow while the wall-normal Reynolds stresses and Reynolds shear stresses are significantly attenuated. The sweep-dominated region in the immediate vicinity of the wall extends further from the wall with increasing polymer concentration. The near-wall skewness intensifies towards positive streamwise fluctuations and covers a larger wall-normal length at larger drag reduction values. The quadrant analysis at y + 0 = 25 shows that the addition of polymers inclines the principal axis of v versus u plot to almost zero (horizontal) as the joint probability density function of fluctuations becomes symmetric with respect to the u axis at MDR. The reduction of turbulence production is mainly associated with the attenuation of the ejection motions. The spatial-correlation of the fluctuating velocity field shows that increasing the polymer concentration increases the spatial coherence of u fluctuations in the streamwise direction while they appear to have the opposite effect in the wall-normal direction. The proper orthogonal decomposition of velocity fluctuations shows that the inclined shear layer structure of Newtonian wall flows becomes horizontal at the MDR and does not contribute to turbulence production.
Microjet Generator for Highly Viscous Fluids
Onuki, Hajime; Oi, Yuto; Tagawa, Yoshiyuki
2018-01-01
This paper describes a simple system for generating a highly viscous microjet. The jet is produced inside a wettable thin tube partially submerged in a liquid. The gas-liquid interface inside the tube, which is initially concave, is kept much deeper than that outside the tube. An impulsive force applied at the bottom of a liquid container leads to significant acceleration of the liquid inside the tube followed by flow focusing due to the concave interface. The jet generation process can be divided into two parts that occur in different time scales, i.e., the impact interval [impact duration ≤O (10-4) s ] and the focusing interval [focusing duration ≫O (10-4) s ]. During the impact interval, the liquid accelerates suddenly due to the impact. During the focusing interval, the microjet emerges due to flow focusing. In order to explain the sudden acceleration inside the tube during the impact interval, we develop a physical model based on a pressure impulse approach. Numerical simulations confirm the proposed model, indicating that the basic mechanism of the acceleration of the liquid due to the impulsive force is elucidated. Remarkably, the viscous effect is negligible during the impact interval. In contrast, during the focusing interval, the viscosity plays an important role in the microjet generation. We experimentally and numerically investigate the velocity of microjets with various viscosities. We find that higher viscosities lead to reduction of the jet velocity, which can be described by using the Reynolds number (the ratio between the inertia force and the viscous force). This device may be a starting point for next-generation technologies, such as high-viscosity inkjet printers including bioprinters and needle-free injection devices for minimally invasive medical treatments.
Viscous hydrophilic injection matrices for serial crystallography
Directory of Open Access Journals (Sweden)
Gabriela Kovácsová
2017-07-01
Full Text Available Serial (femtosecond crystallography at synchrotron and X-ray free-electron laser (XFEL sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new
One-dimensional reduction of viscous jets. II. Applications
Pitrou, Cyril
2018-04-01
In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.
Viscous flows the practical use of theory
Brenner, Howard
1988-01-01
Representing a unique approach to the study of fluid flows, Viscous Flows demonstrates the utility of theoretical concepts and solutions for interpreting and predicting fluid flow in practical applications. By critically comparing all relevant classes of theoretical solutions with experimental data and/or general numerical solutions, it focuses on the range of validity of theoretical expressions rather than on their intrinsic character.This book features extensive use of dimensional analysis on both models and variables, and extensive development of theoretically based correlating equations.
Generic Primary Mechanical Response of Viscous Liquids
Bierwirth, S. Peter; Böhmer, Roland; Gainaru, Catalin
2017-12-01
Four decades ago a seminal review by Jonscher [Nature (London) 267, 673 (1977), 10.1038/267673a0] revealed that the dielectric response of conducting materials is characterized by a "remarkable universality". Demonstrating that the same response pattern is exhibited also by shear rheological spectra of nonpolymeric viscous liquids, the present contribution connects two branches of condensed matter physics: Concepts developed for charge transport can be employed for the description of mass flow and vice versa. Based on the virtual equivalence of the two dynamics a connection is established between microscopic and macroscopic viscoelastic characteristics of liquids, resembling the Barton-Nakajima-Namikawa relation for conductivity.
Variational form for a viscous plasma
International Nuclear Information System (INIS)
Ishida, A.; Steinhauer, L.C.; Berk, H.L.
1991-01-01
The variational formulation for a fluid plasma including the parallel and gyroviscosities is developed using the basic approach of Berk et al. [Phys. Fluids 24, 2245 (1981)]. The equivalence of the variational problem to the original viscous fluid equations of motion is shown. The theory is developed for an axisymmetric plasma with no magnetic field in the azimuthal direction and therefore applies to field-reversed configurations and axisymmetric mirrors. This theory offers the advantage of describing both parallel and transverse ion kinetic effects within the simplicity afforded by a variational fluid model
Cohesion and device reliability in organic bulk heterojunction photovoltaic cells
Brand, Vitali; Bruner, Christopher; Dauskardt, Reinhold H.
2012-01-01
that the phase separated bulk heterojunction layer is the weakest layer and report quantitative cohesion values which ranged from ∼1 to 20 J m -2. The effects of layer thickness, composition, and annealing treatments on layer cohesion are investigated. Using
Packing and Cohesive Properties of Some Locally Extracted Starches
African Journals Online (AJOL)
... properties of the particles affect the packing and cohesive properties of the starches, and are important in predicting the behaviour of the starches during handling and use in pharmaceutical preparations. These properties need to be closely controlled in pre-formulation studies. Keywords: Packing and cohesive properties, ...
A Reappraisal of Lexical Cohesion in Conversational Discourse
Gomez Gonzalez, Maria De Los Angeles
2013-01-01
Cohesion, or the connectedness of discourse, has been recognized as playing a crucial role in both language production and comprehension processes. Researchers have debated about the "right" number and classification of cohesive devices, as well as about their interaction with coherence and/or genre. The present study proposes an integrative model…
Cohesion in Online Student Teams versus Traditional Teams
Hansen, David E.
2016-01-01
Researchers have found that the electronic methods in use for online team communication today increase communication quality in project-based work situations. Because communication quality is known to influence group cohesion, the present research examined whether online student project teams are more cohesive than traditional teams. We tested…
Understanding Social Cohesion Differences in Common Interest Housing Developments
Dam, van R.I.; Eshuis, J.; Twist, van M.J.W.; Anquetil, V.
2014-01-01
The worldwide upsurge of common interest housing developments (CIDs) has stirred up debates regarding community development and social cohesion. Critics have argued that CIDs lack social cohesion because people regulate the community via rules and contracts rather than through social relationships
Anaphoric Referencing: A Cohesive Device in Written and Spoken ...
African Journals Online (AJOL)
unique firstlady
cohesive function "if and when they can be interpreted through their relation to some other (explicit) encoding device in the same passage". ... is Anaphoric but when the implicit term precedes its linguistic referent, the cohesive tie is known as ...
Cohesion: An Overview for the Teacher of Reading. Revised.
Chapman, L. John
Pronouns, substitutes, elipses, conjunctions, synonyms, antonyms, superordinates and subordinates, and part-whole relations all provide cohesive ties that help a reader understand text. A study at Britain's Open University (England) has revealed the way in which the perception of cohesive ties is achieved as children's reading ability grows.…
Characterizing delamination of fibre composites by mixed mode cohesive laws
DEFF Research Database (Denmark)
Sørensen, Bent F.; Jacobsen, Torben K.
2009-01-01
A novel method is used for the determination of mixed mode cohesive laws and bridging laws for the characterisation of crack bridging in composites. The approach is based on an application of the J integral. The obtained cohesive laws were found to possess high peak stress values. Mixed mode...
Food education: health and social cohesion
Directory of Open Access Journals (Sweden)
Eva Zafra Aparici
2017-07-01
Full Text Available Using a theoretical-reflexive approach, this article connects the results of various qualitative studies in social conflict and medical anthropology, in order to investigate how food can be a tool for social transformation in terms of health but also in terms of the dialogue, respect and coexistence among people, groups and communities. In this sense the article presents a first approximation to a new theoretical and methodological approach to food education. In this approach, food adopts a political, sociocultural and participatory perspective that brings us closer to an innovative understanding of the phenomenon of food: not only as an analytic and diagnostic tool, but also as an instrument for health education interventions toward conflict resolution and the promotion of healthier societies overall – nutritionally, but also in terms of equality and social cohesion.
Time dependent fracture and cohesive zones
Knauss, W. G.
1993-01-01
This presentation is concerned with the fracture response of materials which develop cohesive or bridging zones at crack tips. Of special interest are concerns regarding crack stability as a function of the law which governs the interrelation between the displacement(s) or strain across these zones and the corresponding holding tractions. It is found that for some materials unstable crack growth can occur, even before the crack tip has experienced a critical COD or strain across the crack, while for others a critical COD will guarantee the onset of fracture. Also shown are results for a rate dependent nonlinear material model for the region inside of a craze for exploring time dependent crack propagation of rate sensitive materials.
Cohesive motion in one-dimensional flocking
International Nuclear Information System (INIS)
Dossetti, V
2012-01-01
A one-dimensional rule-based model for flocking, which combines velocity alignment and long-range centering interactions, is presented and studied. The induced cohesion in the collective motion of the self-propelled agents leads to unique group behavior that contrasts with previous studies. Our results show that the largest cluster of particles, in the condensed states, develops a mean velocity slower than the preferred one in the absence of noise. For strong noise, the system also develops a non-vanishing mean velocity, alternating its direction of motion stochastically. This allows us to address the directional switching phenomenon. The effects of different sources of stochasticity on the system are also discussed. (paper)
In situ erosion of cohesive sediment
International Nuclear Information System (INIS)
Williamson, H.J.; Ockenden, M.C.
1993-01-01
There has been increasing interest in tidal power schemes and the effect of a tidal energy barrage on the environment. A large man-made environmental change, such as a barrage, would be expected to have significant effects on the sediment distribution and stability of an estuary and these effects need to be assessed when considering a tidal barrage project. This report describes the development of apparatus for in-situ measurements of cohesive sediment erosion on inter-tidal mudflats. Development of the prototype field erosion bell and field testing was commissioned on behalf of the Department of Trade and Industry by the Energy Technology Support Unit (ETSU). This later work commenced in August 1991 and was completed in September 1992. (Author)
Cohesive zone model for direct silicon wafer bonding
Kubair, D. V.; Spearing, S. M.
2007-05-01
Direct silicon wafer bonding and decohesion are simulated using a spectral scheme in conjunction with a rate-dependent cohesive model. The cohesive model is derived assuming the presence of a thin continuum liquid layer at the interface. Cohesive tractions due to the presence of a liquid meniscus always tend to reduce the separation distance between the wafers, thereby opposing debonding, while assisting the bonding process. In the absence of the rate-dependence effects the energy needed to bond a pair of wafers is equal to that needed to separate them. When rate-dependence is considered in the cohesive law, the experimentally observed asymmetry in the energetics can be explained. The derived cohesive model has the potential to form a bridge between experiments and a multiscale-modelling approach to understand the mechanics of wafer bonding.
Stress relaxation in viscous soft spheres.
Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P
2017-10-04
We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.
Dynamics of amorphous solids and viscous liquids
DEFF Research Database (Denmark)
Dyre, Jeppe
-square displacement as function of time. The 15 publications are related to each other in the following way. P1-P7 is a continuously progressing attempt to explain the AC properties of extremely disordered solids (with P2 as a digression). P8 discusses a simple model for viscous liquids and the glass transition. In P...... with the title "Viscous Liquids and the Glass Transition" reviews and comments P8-P10. In P8 from 1987 a simple model for the glass transition is proposed in which there is only one relevant degree of freedom, the potential energy of a region in the liquid. The model was originally constructed to explain the non......This thesis consists of fifteen publications (P1-P15) published between 1987 and 1996 and a summary. In this abstract an overview of the main results is given by following the summary's three Chapters. The first Chapter with the title "AC Conduction in Disordered Solids" reviews and comments P1-P7...
Direct laser printing using viscous printer's ink
International Nuclear Information System (INIS)
Nasibov, A S; Bagramov, V G; Berezhnoi, K V
2006-01-01
The results of experiments on direct laser printing using viscous printer's ink with the help of a copper vapour laser (CVL)-based device are presented. The highly reflecting CVL cavity mirror was replaced by a spatial mirror modulator (SMM). Viscous printer's ink was used for printing. A pressure pulse produced at the boundary (on which an intensified and diminished image of the SMM was projected) between the ink and a transparency was used for transferring the ink to the plastic card. It was shown that the use of a CVL allowed a maximum printing speed of ∼80 cm 2 s -1 , a resolution of 625 dpi and up to 15 gradations. The dependence of the emission intensity of the element being projected (pixel) on its diameter is studied. It is shown that an increase in the brightness of this element with decreasing its size is caused by the summation of the laser and amplified radiation. (laser applications and other topics in quantum electronics)
Cohesion energetics of carbon allotropes: Quantum Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Shin, Hyeondeok; Kang, Sinabro; Koo, Jahyun; Lee, Hoonkyung; Kwon, Yongkyung, E-mail: ykwon@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Kim, Jeongnim, E-mail: jnkim@ornl.gov [Materials Science and Technology Division and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
2014-03-21
We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp{sup 3}-bonded diamond, sp{sup 2}-bonded graphene, sp–sp{sup 2} hybridized graphynes, and sp-bonded carbyne. The computed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values determined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases systematically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of γ-graphyne, the most energetically stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experimental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally, we conclude that the cohesive energy of a newly proposed graphyne can be accurately estimated with the carbon–carbon bond energies determined from the cohesive energies of graphene and three different graphynes considered here.
Cohesion Energetics of Carbon Allotropes: Quantum Monte Carlo Study
Energy Technology Data Exchange (ETDEWEB)
Shin, Hyeondeok [Konkuk University, South Korea; Kang, Sinabro [Konkuk University, South Korea; Koo, Jahyun [Konkuk University, South Korea; Lee, Hoonkyung [Konkuk University, South Korea; Kim, Jeongnim [ORNL; Kwon, Yongkyung [Konkuk University, South Korea
2014-01-01
We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp3-bonded diamond, sp2-bonded graphene, sp-sp2 hybridized graphynes, and sp-bonded carbyne. The comput- ed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values de- termined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases system- atically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of -graphyne, the most energetically- stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experi- mental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally we conclude that the cohesive energy of a newly-proposed two-dimensional carbon network can be accurately estimated with the carbon-carbon bond energies determined from the cohesive energies of graphene and three different graphynes.
Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices
Bruner, Christopher; Miller, Nichole C.; McGehee, Michael D.; Dauskardt, Reinhold H.
2013-01-01
The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices
Bruner, Christopher
2013-01-17
The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Relationship between group cohesion and anxiety in soccer.
Borrego, Carla Chicau; Cid, Luis; Silva, Carlos
2012-10-01
Group cohesion in sport is a widely spread theme today. Research has found cohesion to be influenced by several individual and group components. Among the cognitive variables that relate to cohesion we found competitive anxiety. The purpose of this study was to examine the relation between task cohesion (ATG-T, and GI-T) and competitive state anxiety (A-state), and also if there would be a relation between cohesion and self-confidence. Participants were 366 football players of both genders male and female, aged between 15 to 23 years old, from Portugal's championships. Cohesion was measured using the Portuguese version of the Group Environment Questionnaire, and to assess competitive anxiety, we used the Portuguese version of the Competition State Anxiety Inventory 2. Our results show that female athletes report experiencing more cognitive anxiety and less self-confidence than male athletes. Only cognitive anxiety relates in a significantly negative way with the perception of cohesion (GI-T e ATG-T) in the total number of participants and in male athletes. Relatively to the somatic anxiety, it only relates negatively with the perception of the integration of the group in the total number of participants and in the male gender.
Horizontally viscous effects in a tidal basin: extending Taylor's problem
Roos, Pieter C.; Schuttelaars, H.M.
2009-01-01
The classical problem of Taylor (Proc. Lond. Math. Soc., vol. 20, 1921, pp. 148–181) of Kelvin wave reflection in a semi-enclosed rectangular basin of uniform depth is extended to account for horizontally viscous effects. To this end, we add horizontally viscous terms to the hydrodynamic model
Diffusion on Viscous Fluids, Existence and Asymptotic Properties of Solutions,
1983-09-01
Matematica - Politecuico di Milano (1982). 11.* P. Secchi "On the Initial Value ProbleM for the Nquations of Notion of Viscous Incompressible Fluids In...of two viscous Incompressible Fluids’, preprint DepartLmento dl matematica - Politecuico di Milano (1982). -15- 11. P. Secchi 00n the XnitiaI Value
Poloidal variation of viscous forces in the banana collisionality regime
International Nuclear Information System (INIS)
Wang, J.P.; Callen, J.D.
1992-12-01
The poloidal variation of the parallel viscous and heat viscous forces are determined for the first time using a rigorous Chapman- Enskog-like approach that has been developed recently. It is shown that the poloidal variation is approximately proportional to the poloidal distribution of the trapped particles, which are concentrated on the outer edge (large major radius side) of the tokamak
Equivalent viscous damping procedure for multi-material systems
International Nuclear Information System (INIS)
Ahmed, H.; Ma, D.
1979-01-01
The inclusion of accurate viscous damping effects in the seismic analysis of nuclear power plants is discussed. A procedure to evaluate and use equivalent viscous damping coefficients in conjunction with the substructure method of finite element analysis is outlined in detail
Null controllability of the viscous Camassa–Holm equation with ...
Indian Academy of Sciences (India)
In this paper, we study the null controllability of the viscous Camassa–. Holm equation on the one-dimensional torus. By using a moving distributed control, we obtain that the system is null controllable for a given data with certain regularity. Keywords. Viscous Camassa–Holm equation; null controllability; moving control;.
Physical hydrodynamic propulsion model study on creeping viscous
Indian Academy of Sciences (India)
The present investigation focusses on a mathematical study of creeping viscous flow induced by metachronal wave propagation in a horizontal ciliated tube containing porous media. Creeping flow limitations are imposed, i.e. inertial forces are small compared to viscous forces and therefore a very low Reynolds number (Re ...
Influence of viscous dissipation and radiation on MHD Couette flow ...
African Journals Online (AJOL)
The overall analysis of the study of these parameters in various degrees show an increase in the velocity profile of the fluid, while radiation parameter decreases the temperature profile; viscous dissipation and Reynolds number increase the temperature profile of the fluid. Key word: Couette flow, viscous dissipation, ...
Experimental study of highly viscous impinging jets
Energy Technology Data Exchange (ETDEWEB)
Gomon, M. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering
1998-12-01
The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established.
Sloshing analysis of viscous liquid storage tanks
International Nuclear Information System (INIS)
Uras, R.Z.
1995-01-01
The effect of viscosity on the sloshing response of tanks containing viscous liquids is studied using the in-house finite element computer code, FLUSTR-ANL. Two different tank sizes each filled at two levels, are modeled, and their dynamic responses under harmonic and seismic ground motions are simulated. The results are presented in terms of the wave height, and pressures at selected nodes and elements in the finite element mesh. The viscosity manifests itself as a damping effect, reducing the amplitudes. Under harmonic excitation, the dynamic response reaches the steady-state faster as the viscosity value becomes larger. The fundamental sloshing frequency for each study case stays virtually unaffected by an increase in viscosity. For the small tank case, a 5% difference is observed in the fundamental frequency of the smallest (1 cP) and the highest (1000 cP) viscosity cases considered in this study. The fundamental frequencies of the large tank are even less sensitive
Multidomain spectral solution of compressible viscous flows
International Nuclear Information System (INIS)
Kopriva, D.A.
1994-01-01
We develop a nonoverlapping mutidomain spectral collocation method to solve compressible viscous flows. At the interfaces, the advection terms are treated with a characteristic correction method. The diffusion terms are treated with a penalty method. Spectral accuracy is demonstrated on linear model problems in one and two space dimensions. The method is applied to a subsonic and supersonic flow over a flat plate. The results are compared to solutions of the boundary-layer equations which show that two digit accuracy in the adiabatic plate temperature is obtained with 16 points in the boundary layer for a freestream Mach number of two. A second application is to a transonic flow in a two-dimensional converging-diverging nozzle, where the computed results are compared to experimental data
Experimental study of highly viscous impinging jets
International Nuclear Information System (INIS)
Gomon, M.
1998-12-01
The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established
Viscous photons in relativistic heavy ion collisions
International Nuclear Information System (INIS)
Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern
2011-01-01
Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.
Formulating viscous hydrodynamics for large velocity gradients
International Nuclear Information System (INIS)
Pratt, Scott
2008-01-01
Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor τ ij as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements τ ij . By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of τ ij . Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves. Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time
Determination of mode-I cohesive strength for interfaces
DEFF Research Database (Denmark)
Jørgensen, J. B.; Thouless, M. D.; Sørensen, Bent F.
2016-01-01
The cohesive strength is one of the governing parameters controlling crack deflection at interfaces, but measuring its magnitude is challenging. In this paper, we demonstrate a novel approach to determine the mode-I cohesive strength of an interface by using a 4-point single-edge-notch beam...... in response to this stress, before the main crack starts to grow. Observations using 2D digital-image correlation showed that an ''apparent" strain across the interface initially increases linearly with the applied load, but becomes nonlinear upon the initiation of the interface crack. The cohesive strength...
Electrohydrodynamics of a viscous drop with inertia.
Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F
2016-05-01
Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.
Viscous Flow over Nonlinearly Stretching Sheet with Effects of Viscous Dissipation
Directory of Open Access Journals (Sweden)
Javad Alinejad
2012-01-01
Full Text Available The flow and heat transfer characteristics of incompressible viscous flow over a nonlinearly stretching sheet with the presence of viscous dissipation is investigated numerically. The similarity transformation reduces the time-independent boundary layer equations for momentum and thermal energy into a set of coupled ordinary differential equations. The obtained equations, including nonlinear equation for the velocity field and differential equation by variable coefficient for the temperature field , are solved numerically by using the fourth order of Runge-Kutta integration scheme accompanied by shooting technique with Newton-Raphson iteration method. The effect of various values of Prandtl number, Eckert number and nonlinear stretching parameter are studied. The results presented graphically show some behaviors such as decrease in dimensionless temperature due to increase in Pr number, and curve relocations are observed when heat dissipation is considered.
Characteristics of Non-Cohesive Embankment Failure
Yusof, Z. M.; Wahab, A. K. A.; Ismail, Z.; Amerudin, S.
2018-04-01
Embankments are important infrastructure built to provide flood control. They also present risks to property and life due to their potential to fail and cause catastrophic flooding. To mitigate these risks, authorities and regulators need to carefully analyse and inspect dams to identify potential failure modes and protect against them. This paper presents morphology of an embankment study and its sediment behaviour of different grain sizes after the embankment fails. A few experiments were carried out for the embankment size of 1V:3H with different sediment grain sizes; medium and coarser sand. The embankment material used is non-cohesive soil with the embankment height of 0.1 m. The embankment is tested with inflows rate of Q = 0.8 L/s. Experimental results showed the peak discharge for the same inflow rate is affected by the shape of embankment breached. The peak discharge of medium grain size of the embankment is highest, which gave 3.63 L/s in comparison with a coarser embankment. This concludes that the embankment morphology patterns are dissimilar to each other. The flow and dimension of embankment are shown to influence the characteristics of embankment failure.
Bulk viscous matter and recent acceleration of the universe based on causal viscous theory
Energy Technology Data Exchange (ETDEWEB)
Mohan, N.D.J.; Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)
2017-12-15
The evolution of the bulk viscous matter dominated universe has been analysed using the full causal theory for the evolution of the viscous pressure in the context of the recent acceleration of the universe. The form of the viscosity is taken as ξ = αρ{sup 1/2}. We obtained analytical solutions for the Hubble parameter and scale factor of the universe. The model parameters have been computed using the observational data. The evolution of the prominent cosmological parameters was obtained. The age of the universe for the best estimated model parameters is found to be less than observational value. The viscous matter behaves like a stiff fluid in the early phase and evolves to a negative pressure fluid in the later phase. The equation of state is found to be stabilised with value ω > -1. The local as well as generalised second law of thermodynamics is satisfied. The statefinder diagnostic shows that this model is distinct from the standard ΛCDM. One of the marked deviations seen in this model to be compared with the corresponding model using the Eckart approach is that in this model the bulk viscosity decreases with the expansion of the universe, while in the Eckart formalism it increases from negative values in the early universe towards positive values. (orig.)
Bulk viscous matter and recent acceleration of the universe based on causal viscous theory
International Nuclear Information System (INIS)
Mohan, N.D.J.; Sasidharan, Athira; Mathew, Titus K.
2017-01-01
The evolution of the bulk viscous matter dominated universe has been analysed using the full causal theory for the evolution of the viscous pressure in the context of the recent acceleration of the universe. The form of the viscosity is taken as ξ = αρ 1/2 . We obtained analytical solutions for the Hubble parameter and scale factor of the universe. The model parameters have been computed using the observational data. The evolution of the prominent cosmological parameters was obtained. The age of the universe for the best estimated model parameters is found to be less than observational value. The viscous matter behaves like a stiff fluid in the early phase and evolves to a negative pressure fluid in the later phase. The equation of state is found to be stabilised with value ω > -1. The local as well as generalised second law of thermodynamics is satisfied. The statefinder diagnostic shows that this model is distinct from the standard ΛCDM. One of the marked deviations seen in this model to be compared with the corresponding model using the Eckart approach is that in this model the bulk viscosity decreases with the expansion of the universe, while in the Eckart formalism it increases from negative values in the early universe towards positive values. (orig.)
Bridge pier scour in cohesive soil: a review
Indian Academy of Sciences (India)
Y Sonia Devi
process and mechanism at bridge pier in cohesive and noncohesive soil are presented. The effects ... examples: one under laboratory condition and another under field condition. ..... not take part in scouring as these sediments are swept over.
Social cohesion: solution or driver of urban violence? | IDRC ...
International Development Research Centre (IDRC) Digital Library (Canada)
2016-09-28
Sep 28, 2016 ... Social cohesion can play an important role in building and maintaining ... Analysis of Violence demonstrates how social bonds and stark inequalities can also play ... Conflict and development in the hill settlements of Guwahati.
Social cohesion: solution or driver of urban violence?
International Development Research Centre (IDRC) Digital Library (Canada)
to the state intervention, eroding existing civil society organization. The presence of the police ... creating its own parallel structures to existing representative bodies, ... When designing interventions take into account that social cohesion may ...
Utilization of Large Cohesive Interface Elements for Delamination Simulation
DEFF Research Database (Denmark)
Bak, Brian Lau Verndal; Lund, Erik
2012-01-01
This paper describes the difficulties of utilizing large interface elements in delamination simulation. Solutions to increase the size of applicable interface elements are described and cover numerical integration of the element and modifications of the cohesive law....
Social cohesion: The missing link in overcoming violence and ...
International Development Research Centre (IDRC) Digital Library (Canada)
Researchers will test the hypothesis that social cohesion is a critical factor in ... to community members, and ethnographic social network analysis, to help map ... to identify the most effective strategies for addressing these challenges in Latin ...
Student leadership and advocacy for social cohesion: A South ...
African Journals Online (AJOL)
at how social cohesion could benefit economic development, hoped thereby ... institutions pledged to reverse 'outsourcing' to 'insourcing' of cleaning services, there is .... It is not so much the scale of these ills as it is the perceived failure of the.
Effect of softening function on the cohesive crack fracture ...
Indian Academy of Sciences (India)
The cohesive crack model with linear softening yields the fracture process zones lower by ..... ignored during numerical simulation. In the crack band ..... performed with developed computer program using MATLAB for the following numerical.
Barossa Night: cohesion in the British Army officer corps.
Bury, Patrick
2017-06-01
Contrasting the classical explanation of military group cohesion as sustained by interpersonal bonds, recent scholars have highlighted the importance of ritualized communication, training and drills in explaining effective military performance in professional armies. While this has offered a welcome addition to the cohesion literature and a novel micro-sociological method of examining cohesion, its primary evidential base has been combat groups. Indeed, despite their prominent role in directing operations over the past decade, the British Army's officer corps has received relatively little attention from sociologists during this period. No attempt has been made to explain cohesion in the officer corps. Using a similar method to recent cohesion scholars, this paper seeks to address this imbalance by undertaking a micro-sociology of one ritual in particular: 'Barossa Night' in the Royal Irish Regiment. Firstly, it draws on the work of Durkheim to examine how cohesion amongst the officer corps is created and sustained through a dense array of practises during formal social rituals. It provides evidence that the use of rituals highlights that social solidarity is central to understanding officer cohesion. Secondly, following Hockey's work on how private soldiers negotiate order, the paper shows how this solidarity in the officer corps is based on a degree of negotiated order and the need to release organizational tensions inherent in a strictly hierarchical rank structure. It highlights how the awarding of gallantry medals can threaten this negotiated order and fuel deviancy. In examining this behaviour, the paper shows that even amongst an officer class traditionally viewed as the elite upholders of organizational discipline, the negotiation of rank and hierarchy can be fluid. How deviant behaviour is later accepted and normalized by senior officers indicates that negotiated order is as important to understanding cohesion in the British Army's officer corps as it is
Simulating Dynamic Fracture in Oxide Fuel Pellets Using Cohesive Zone Models
Energy Technology Data Exchange (ETDEWEB)
R. L. Williamson
2009-08-01
cracking) assumptions. A 3D model is then developed, permitting simultaneous radial and axial fractures. Although fuel cracking is clearly three-dimensional, 2D models are of interest since they are simpler to implement, are much less computationally intensive, and have potential application to existing 2D fuel performance codes. Numerical issues related to cohesive zone models, such as mesh dependency and viscous stabilization, are addressed. Model results indicate that for typical oxide fuel properties, both axial and radial cracking occurs during initial heat-up, well before steady-state thermal gradients are established in the pellet. Cracking results in local stress relief and a shift in peak stress locations, leading to the initiation of new cracks. Continued growth of existing cracks, plus the initiation and growth of additional fractures, is observed during steady operation and power ramping. 3D models provide considerable insight into the progressive interactions between radial and axial cracking. Parametric studies demonstrate the effects of temperature dependent material properties on crack initiation and progression. Increasing fracture strength and toughness with temperature, leads to crack arrest in high temperature regions near the pellet’s symmetry axis.
Numerical optimization of conical flow waveriders including detailed viscous effects
Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego
1987-01-01
A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.
Substitution as a Device of Grammatical Cohesion in English Contexts
Directory of Open Access Journals (Sweden)
Mohammad Reza Hasannejad
2012-05-01
Full Text Available The present study set out to investigate the effect of teaching substitution as a kind of grammatical cohesion on the true identification of confusing substitution elements with cohesive or non-cohesive roles in different contexts and also the production of modal, reporting and conditional contexts through clausal substitution acquaintance. To this end, the following procedures were taken. First 120 male and female EFL students were selected from Iranshahr Azad University. Having administered the language proficiency test, researchers selected 80 students as intermediate subjects according to their TOEFL band scores. First, pretests of cohesion identification (substitution and production of modal, reporting and conditional environments were administered to both control and experimental groups. Then, the experimental group was exposed to the teaching of the above-said above-mentioned cohesive device. Finally, post-tests of substitution elements’ identification and modal, reporting and conditional contexts’ production through clausal substitution familiarity were administered. The results showed that cohesive device treatment helped students on the true identification of substitution elements. Another finding proved that EFL students might have no difficulty in learning certain rules or classification of rules and application of their clausal substitution knowledge in creating modal, reporting and conditional contexts. Our findings can have implications for the field of language learning and teaching.
International Nuclear Information System (INIS)
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2016-01-01
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier
Energy Technology Data Exchange (ETDEWEB)
Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Peshkov, Ilya, E-mail: peshkov@math.nsc.ru [Open and Experimental Center for Heavy Oil, Université de Pau et des Pays de l' Adour, Avenue de l' Université, 64012 Pau (France); Romenski, Evgeniy, E-mail: evrom@math.nsc.ru [Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk (Russian Federation); Zanotti, Olindo, E-mail: olindo.zanotti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy)
2016-06-01
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier
Development of a Model Foamy Viscous Fluid
Directory of Open Access Journals (Sweden)
Vial C.
2013-08-01
Full Text Available The objective is to develop a model viscous foamy fluid, i.e. below the very wet limit, the rheological and stability properties of which can be tuned. First, the method used for the preparation of foamy fluids is detailed, including process and formulation. Then, experimental results highlight that stable foamy fluids with a monomodal bubble size distribution can be prepared with a void fraction between 25% and 50% (v/v. Their viscoelastic properties under flow and low-strain oscillatory conditions are shown to result from the interplay between the formulation of the continuous phase, void fraction and bubble size. Their apparent viscosity can be described using the Cross equation and zero-shear Newtonian viscosity may be predicted by a Mooney equation up to a void fraction about 40%. The Cox-Merz and the Laun’s rules apply when the capillary number Ca is lower than 0.1. The upper limit of the zero-shear plateau region decreases when void fraction increases or bubble size decreases. In the shear-thinning region, shear stress varies with Ca1/2, as in wet foams with immobile surfaces. Finally, foamy fluids can be sheared up to Ca about 0.1 without impairing their microstructure. Their stability at rest achieves several hours and increases with void fraction due to compact packing constraints. These constitute, therefore, versatile model fluids to investigate the behaviour of foamy fluids below the very wet limit in process conditions.
Viscous fingering of HCI through gastric mucin
Bhaskar, K. Ramakrishnan; Garik, Peter; Turner, Bradley S.; Bradley, James Douglas; Bansil, Rama; Stanley, H. Eugene; Lamont, J. Thomas
1992-12-01
THE HCI in the mammalian stomach is concentrated enough to digest the stomach itself, yet the gastric epithelium remains undamaged. One protective factor is gastric mucus, which forms a protective layer over the surface epithelium1-4 and acts as a diffusion barrier5,6 Bicarbonate ions secreted by the gastric epithelium7 are trapped in the mucus gel, establishing a gradient from pH 1-2 at the lumen to pH 6-7 at the cell surface8-10. How does HCI, secreted at the base of gastric glands by parietal cells, traverse the mucus layer without acidifying it? Here we demonstrate that injection of HCI through solutions of pig gastric mucin produces viscous fingering patterns11-18 dependent on pH, mucin concentration and acid flow rate. Above pH 4, discrete fingers are observed, whereas below pH 4, HCI neither penetrates the mucin solution nor forms fingers. Our in vitro results suggest that HCI secreted by the gastric gland can penetrate the mucus gel layer (pH 5-7) through narrow fingers, whereas HC1 in the lumen (pH 2) is prevented from diffusing back to the epithelium by the high viscosity of gastric mucus gel on the luminal side.
Scaling the viscous circular hydraulic jump
Argentina, Mederic; Cerda, Enrique; Duchesne, Alexis; Limat, Laurent
2017-11-01
The formation mechanism of hydraulic jumps has been proposed by Belanger in 1828 and rationalised by Lord Rayleigh in 1914. As the Froude number becomes higher than one, the flow super criticality induces an instability which yields the emergence of a steep structure at the fluid surface. Strongly deformed liquid-air interface can be observed as a jet of viscous fluid impinges a flat boundary at high enough velocity. In this experimental setup, the location of the jump depends on the viscosity of the liquid, as shown by T. Bohr et al. in 1997. In 2014, A. Duchesne et al. have established the constancy of the Froude number at jump. Hence, it remains a contradiction, in which the radial hydraulic jump location might be explained through inviscid theory, but is also viscosity dependent. We present a model based on the 2011 Rojas et al. PRL, which solves this paradox. The agreement with experimental measurements is excellent not only for the prediction of the position of the hydraulic jump, but also for the determination of the fluid thickness profile. We predict theoretically the critical value of the Froude number, which matches perfectly to that measured by Duchesne et al. We acknowledge the support of the CNRS and the Universit Cte d'Azur, through the IDEX funding.
Large scale structure from viscous dark matter
Blas, Diego; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim
2015-01-01
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \\, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to varia...
Singular limits in thermodynamics of viscous fluids
Feireisl, Eduard
2017-01-01
This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorný (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapt...
Nonlinear waves in bipolar complex viscous astroclouds
Karmakar, P. K.; Haloi, A.
2017-05-01
A theoretical evolutionary model to analyze the dynamics of strongly nonlinear waves in inhomogeneous complex astrophysical viscous clouds on the gravito-electrostatic scales of space and time is procedurally set up. It compositionally consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neutral hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method reduces the inter-coupled structure equations into a pair of intermixed forced Korteweg-de Vries-Burgers (f-KdVB) equations. The force-terms are self-consistently sourced by inhomogeneous gravito-electrostatic interplay. A numerical illustrative shape-analysis based on judicious astronomical parametric platform shows the electrostatic waves evolving as compressive dispersive shock-like eigen-modes. A unique transition from quasi-monotonic to non-monotonic oscillatory compressive shock-like patterns is found to exist. In contrast, the self-gravitational and effective perturbations grow purely as non-monotonic compressive oscillatory shock-like structures with no such transitory features. It is seen that the referral frame velocity acts as amplitude-reducing agent (stabilizing source) for the electrostatic fluctuations solely. A comparison in the prognostic light of various earlier satellite-based observations and in-situ measurements is presented. The paper ends up with synoptic highlights on the main implications and non-trivial applications in the interstellar space and cosmic plasma environments leading to bounded structure formation.
The effect of inertia, viscous damping, temperature and normal ...
Indian Academy of Sciences (India)
Nitish Sinha
2018-04-16
Apr 16, 2018 ... physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic ... However, the present study has shown the appearance of chaos for the specific .... Although chaos is a general man-.
Mechanical lifter for recovering highly viscous oil and bitumens
Energy Technology Data Exchange (ETDEWEB)
Rakhmanov, R N; Akhunov, A M; Asfandiyarov, Kh A; Maksutov, R A
1982-01-01
A mechanical lifter is described for recovering highly viscous oil and bitumens. The lifter differs from the known and has significant advantages over them. The lifter was made and tested on a stand well.
Highly-viscous microjet induced by an impact
Onuki, Hajime; Tagawa, Yoshiyuki
2017-11-01
Ejection of a liquid microjet with high viscosity is essential for various novel technologies such as 3D printers, printed electronics and bio printers. To generate such a microjet, we focus on utilizing an impulsive force. Thanks to a short-time impact, the viscous dissipation in the liquid can be suppressed, resulting in the ejection of viscous microjets. In this study, we investigate ejection mechanism of the viscous jet experimentally and numerically. The jet velocity decreases with increasing the viscosity of a liquid. Remarkably it is found that all the data of jet velocities normalized by initial velocities of the liquid as a function of Reynolds number, the balance between the inertia force and the viscous force, collapse onto a single master curve.
Effect of viscous dissipation and radiation in an annular cone
International Nuclear Information System (INIS)
Ahmed, N. J. Salman; Kamangar, Sarfaraz; Khan, T. M. Yunus; Azeem
2016-01-01
The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r_i. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porous medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number
Effect of viscous dissipation and radiation in an annular cone
Energy Technology Data Exchange (ETDEWEB)
Ahmed, N. J. Salman; Kamangar, Sarfaraz [Centre for Energy Sciences, Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Khan, T. M. Yunus, E-mail: yunus.tatagar@gmail.com [Centre for Energy Sciences, Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Dept. of Mechanical Engineering, BVB College of Engineering & Technology, Hubli (India); Azeem [Dept. of Computer System & Technology, University of Malaya, Kuala Lumpur (Malaysia)
2016-06-21
The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r{sub i}. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porous medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number.
Viscous damping of toroidal angular momentum in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Stacey, W. M. [Georgia Tech Fusion Research Center, Atlanta, Georgia 30332 (United States)
2014-09-15
The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.
Britishness and Community Cohesion in Muslim News Online
Directory of Open Access Journals (Sweden)
Hassen ZRIBA
2013-12-01
Full Text Available The issues of British national identity and social cohesion have become pressing concerns within the multicultural fabric of contemporary British society. The increasing number of immigrants and their offspring, along with the maintenance of their cultural roots, seem to represent a serious defiance to social cohesion and the alleged “purity” of Britishness. A number of race related reports were produced by the official authorities to churn out the necessary steps to be followed by the British (immigrants and host community in order to keep social stability and community cohesion. Thus, the politics of community cohesion came to the fore as the neologism of contemporary British political discourse. Such new discourse of governance has been digested and processed differently by different mass media. It has been decoded, for instance, preferably by mainstream news agencies like BBC News Online. However, arguably, it is read appositionally or at best negotiatedly by ethnicity-related news agencies such as Muslim News Online. In this article, attempt has been made to adopt media discourse analysis tools to decipher the ways Muslim News Online decoded and then encoded the hegemonic official discourses of Britishness and community cohesion. A critical and interpretative approach is used to accomplish such study. The corpus of this study is primarily extracted from the website of the Muslim News Online.
Transport and deposition of cohesive pharmaceutical powders in human airway
Directory of Open Access Journals (Sweden)
Wang Yuan
2017-01-01
Full Text Available Pharmaceutical powders used in inhalation therapy are in the size range of 1-5 microns and are usually cohesive. Understanding the cohesive behaviour of pharmaceutical powders during their transportation in human airway is significant in optimising aerosol drug delivery and targeting. In this study, the transport and deposition of cohesive pharmaceutical powders in a human airway model is simulated by a well-established numerical model which combines computational fluid dynamics (CFD and discrete element method (DEM. The van der Waals force, as the dominant cohesive force, is simulated and its influence on particle transport and deposition behaviour is discussed. It is observed that even for dilute particle flow, the local particle concentration in the oral to trachea region can be high and particle aggregation happens due to the van der Waals force of attraction. It is concluded that the deposition mechanism for cohesive pharmaceutical powders, on one hand, is dominated by particle inertial impaction, as proven by previous studies; on the other hand, is significantly affected by particle aggregation induced by van der Waals force. To maximum respiratory drug delivery efficiency, efforts should be made to avoid pharmaceutical powder aggregation in human oral-to-trachea airway.
Transport and deposition of cohesive pharmaceutical powders in human airway
Wang, Yuan; Chu, Kaiwei; Yu, Aibing
2017-06-01
Pharmaceutical powders used in inhalation therapy are in the size range of 1-5 microns and are usually cohesive. Understanding the cohesive behaviour of pharmaceutical powders during their transportation in human airway is significant in optimising aerosol drug delivery and targeting. In this study, the transport and deposition of cohesive pharmaceutical powders in a human airway model is simulated by a well-established numerical model which combines computational fluid dynamics (CFD) and discrete element method (DEM). The van der Waals force, as the dominant cohesive force, is simulated and its influence on particle transport and deposition behaviour is discussed. It is observed that even for dilute particle flow, the local particle concentration in the oral to trachea region can be high and particle aggregation happens due to the van der Waals force of attraction. It is concluded that the deposition mechanism for cohesive pharmaceutical powders, on one hand, is dominated by particle inertial impaction, as proven by previous studies; on the other hand, is significantly affected by particle aggregation induced by van der Waals force. To maximum respiratory drug delivery efficiency, efforts should be made to avoid pharmaceutical powder aggregation in human oral-to-trachea airway.
Zhang, Jingtao; Liu, Weizhen; Gauthier, Olivier; Sourice, Sophie; Pilet, Paul; Rethore, Gildas; Khairoun, Khalid; Bouler, Jean-Michel; Tancret, Franck; Weiss, Pierre
2016-02-01
In this study, we propose a simple and effective strategy to prepare injectable macroporous calcium phosphate cements (CPCs) by syringe-foaming via hydrophilic viscous polymeric solution, such as using silanized-hydroxypropyl methylcellulose (Si-HPMC) as a foaming agent. The Si-HPMC foamed CPCs demonstrate excellent handling properties such as injectability and cohesion. After hardening the foamed CPCs possess hierarchical macropores and their mechanical properties (Young's modulus and compressive strength) are comparable to those of cancellous bone. Moreover, a preliminary in vivo study in the distal femoral sites of rabbits was conducted to evaluate the biofunctionality of this injectable macroporous CPC. The evidence of newly formed bone in the central zone of implantation site indicates the feasibility and effectiveness of this foaming strategy that will have to be optimized by further extensive animal experiments. A major challenge in the design of biomaterial-based injectable bone substitutes is the development of cohesive, macroporous and self-setting calcium phosphate cement (CPC) that enables rapid cell invasion with adequate initial mechanical properties without the use of complex processing and additives. Thus, we propose a simple and effective strategy to prepare injectable macroporous CPCs through syringe-foaming using a hydrophilic viscous polymeric solution (silanized-hydroxypropyl methylcellulose, Si-HPMC) as a foaming agent, that simultaneously meets all the aforementioned aims. Evidence from our in vivo studies shows the existence of newly formed bone within the implantation site, indicating the feasibility and effectiveness of this foaming strategy, which could be used in various CPC systems using other hydrophilic viscous polymeric solutions. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn
2017-12-01
Rock deformation experiments are performed on fault gouge fabricated from 'Maryland Diabase' rock powder to investigate the transition from dominant brittle to dominant viscous behaviour. At the imposed strain rates of γ˙ = 3 ·10-5 - 3 ·10-6 s-1, the transition is observed in the temperature range of (600 °C < T < 800 °C) at confining pressures of (0.5 GPa ≤ Pc ≤ 1.5 GPa). The transition thereby takes place by a switch from brittle fracturing and cataclastic flow to viscous dissolution-precipitation creep and grain boundary sliding. Mineral reactions and resulting grain size refinement by nucleation are observed to be critical processes for the switch to viscous deformation, i.e., grain size sensitive creep. In the transitional regime, the mechanical response of the sample is a mixed-mode between brittle and viscous rheology and microstructures associated with both brittle and viscous deformation are observed. As grain size reduction by reaction and nucleation is a time dependent process, the brittle-viscous transition is not only a function of T but to a large extent also of microstructural evolution.
Cohesiveness in financial news and its relation to market volatility.
Piškorec, Matija; Antulov-Fantulin, Nino; Novak, Petra Kralj; Mozetič, Igor; Grčar, Miha; Vodenska, Irena; Smuc, Tomislav
2014-05-22
Motivated by recent financial crises, significant research efforts have been put into studying contagion effects and herding behaviour in financial markets. Much less has been said regarding the influence of financial news on financial markets. We propose a novel measure of collective behaviour based on financial news on the Web, the News Cohesiveness Index (NCI), and we demonstrate that the index can be used as a financial market volatility indicator. We evaluate the NCI using financial documents from large Web news sources on a daily basis from October 2011 to July 2013 and analyse the interplay between financial markets and finance-related news. We hypothesise that strong cohesion in financial news reflects movements in the financial markets. Our results indicate that cohesiveness in financial news is highly correlated with and driven by volatility in financial markets.
Cohesiveness in Financial News and its Relation to Market Volatility
Piškorec, Matija; Antulov-Fantulin, Nino; Novak, Petra Kralj; Mozetič, Igor; Grčar, Miha; Vodenska, Irena; Šmuc, Tomislav
2014-01-01
Motivated by recent financial crises, significant research efforts have been put into studying contagion effects and herding behaviour in financial markets. Much less has been said regarding the influence of financial news on financial markets. We propose a novel measure of collective behaviour based on financial news on the Web, the News Cohesiveness Index (NCI), and we demonstrate that the index can be used as a financial market volatility indicator. We evaluate the NCI using financial documents from large Web news sources on a daily basis from October 2011 to July 2013 and analyse the interplay between financial markets and finance-related news. We hypothesise that strong cohesion in financial news reflects movements in the financial markets. Our results indicate that cohesiveness in financial news is highly correlated with and driven by volatility in financial markets. PMID:24849598
The effect of biological cohesion on current ripple development
Malarkey, Jonathan; Baas, Jaco H.; Hope, Julie
2014-05-01
Results are presented from laboratory experiments examining the role of biological cohesion, associated with Extra Polymeric Substances, on the development of current ripples. The results demonstrate the importance of biological cohesion compared to the effect of physical cohesion associated with clays in an otherwise sandy bed. FURTHER INFORMATION In fluvial and marine environments sediment transport is mainly dependent on the nature of the bed surface (rippled or flat) and the nature of cohesion in the bed. Cohesion can be either physical, as a result of the presence of clays, or biological as a result of the presence of organisms. In the case of the latter, biological cohesion occurs as a result of the presence of Extra Polymeric Substances (EPS) secreted by microorganisms. While it is known that EPS can dramatically increase the threshold of motion (Grant and Gust, 1987), comparatively little is known about the effect of EPS on ripple formation and development. The experiments described here seek to fill this gap. They also allow the effect of biological cohesion to be compared with that of physical cohesion from previous experiments (Baas et al., 2013). The experiments, which were conducted in a 10m flume at Bangor University, involved a current over a bed made of fine sand, with a median diameter of 0.148mm, and various amounts of xanthan gum, a proxy for naturally occurring EPS (Vardy et al., 2007). The hydrodynamic experimental conditions were matched very closely to those of Baas et al. (2013). The ripple dimensions were recorded through the glass side wall of the tank using time lapse photography. In the physical cohesion experiments of Baas et al. (2013) for clay contents up to 12%, the clay was very quickly winnowed out of the bed, leaving essentially clay-free ripples that developed at more or less the same rate as clean sand ripples. The resulting equilibrium ripples were essentially the same length as the clean sand ripples but reduced in height. By
Elongational rheology and cohesive fracture of photo-oxidated LDPE
Energy Technology Data Exchange (ETDEWEB)
Rolón-Garrido, Víctor H., E-mail: victor.h.rolongarrido@tu-berlin.de; Wagner, Manfred H. [Chair of Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Fasanenstrasse 90, D-10623 Berlin (Germany)
2014-01-15
It was found recently that low-density polyethylene (LDPE) samples with different degrees of photo-oxidation represent an interesting system to study the transition from ductile to cohesive fracture and the aspects of the cohesive rupture in elongational flow. Sheets of LDPE were subjected to photo-oxidation in the presence of air using a xenon lamp to irradiate the samples for times between 1 day and 6 weeks. Characterisation methods included Fourier transform infrared spectroscopy, solvent extraction method, and rheology in shear and uniaxial extensional flows. Linear viscoelasticity was increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by the carbonyl index, acid and aldehydes groups, and gel fraction. The molecular stress function model was used to quantify the experimental data, and the nonlinear model parameter β was found to be correlated with the gel content. The uniaxial data showed that the transition from ductile to cohesive fracture was shifted to lower elongational rates, the higher the gel content was. From 2 weeks photo-oxidation onwards, cohesive rupture occurred at every strain rate investigated. The true strain and true stress at cohesive fracture as well as the energy density applied to the sample up to fracture were analyzed. At low gel content, rupture was mainly determined by the melt fraction while at high gel content, rupture occurred predominantly in the gel structure. The strain at break was found to be independent of strain rate, contrary to the stress at break and the energy density. Thus, the true strain and not the stress at break or the energy density was found to be the relevant physical quantity to describe cohesive fracture behavior of photo-oxidated LDPE. The equilibrium modulus of the gel structures was correlated with the true strain at rupture. The stiffer the gel structure, the lower was the deformation tolerated before the sample breaks.
Group cohesion in sports teams of different professional level
Directory of Open Access Journals (Sweden)
Vazha M. Devishvili
2017-12-01
Full Text Available Background. Team sports are not only the most exciting sporting events. but also complex activities that make serious demands on players. The effectiveness of the team depends not only on the high level of gaming interaction. but also on the relationship between the players. The work is based on the material of sports teams and is devoted to the study of the phenomenon of group cohesion. As a basic model. the authors choose a 4-factor model that describes cohesion in sports teams. The paper also considered the phenomenon of the emergence of the aggregate subject in the process of joint activity. when the participants feel themselves as a whole and experience feelings of satisfaction and a surge of energy. Objective. The main objective of the work is to investigate the relationship between the level of team cohesion and subjective feelings of unity of its players. As additional variables in the study there is a sport (football and volleyball and team level (amateur and professional. To test the assumptions. two methods were used (the Sport Team Cohesion Questionnaire and the Subject Unity Index. which allow not only to determine the overall level of cohesion and unity. but also to reveal the structure of both phenomena. The study involved two men’s volleyball and two men’s football teams of different ages: 8-9 years (39 athletes; 12-14 years (24 athletes and 18-25 years (41 athletes. Design. For amateur groups represented by children’s and teenage sports teams. significant correlations between unity and unity were obtained (r = 0.618. p <0.01; r = 0.477. p <0.05. For professional teams. no significant correlations were found. Influence of the sport on cohesion is also different for amateur and professional teams. In the first case. the cohesion is higher for football players (U = 118. p <0.05. and in the second case for volleyball players (U = 124. p <0.05. Results. The findings indicate that the professional level of players affects group
Group cohesion in sports teams of different professional level
Vazha M. Devishvili; Marina O. Mdivani; Daria S. Elgina
2017-01-01
Background. Team sports are not only the most exciting sporting events. but also complex activities that make serious demands on players. The effectiveness of the team depends not only on the high level of gaming interaction. but also on the relationship between the players. The work is based on the material of sports teams and is devoted to the study of the phenomenon of group cohesion. As a basic model. the authors choose a 4-factor model that describes cohesion in sports teams. The pape...
On the application of cohesive crack modeling in cementitious materials
DEFF Research Database (Denmark)
Stang, Henrik; Olesen, John Forbes; Poulsen, Peter Noe
2007-01-01
typically for multi scale problems such as crack propagation in fiber reinforced composites. Mortar and concrete, however, are multi-scale materials and the question naturally arises, if bridged crack models in fact are more suitable for concrete and mortar as well? In trying to answer this question a model......Cohesive crack models-in particular the Fictitious Crack Model - are applied routinely in the analysis of crack propagation in concrete and mortar. Bridged crack models-where cohesive stresses are assumed to exist together with a stress singularity at the crack tip-on the other hand, are used...
INTERACTIVE EFFECTS OF TEAM COHESION ON PERCEIVED EFFICACY IN SEMI-PROFESSIONAL SPORT
Directory of Open Access Journals (Sweden)
Francisco Miguel Leo Marcos
2010-06-01
Full Text Available The present study examined the relationships among cohesion, self-efficacy, coaches' perceptions of their players' efficacy at the individual level and athletes' perceptions of their teammates' efficacy. Participants (n = 76 recruited from four semi- professional soccer and basketball teams completed cohesiveness and efficacy questionnaires who. Data were analyzed through a correlational methodology. Results indicated significant correlations between self-efficacy and task cohesion and social cohesion. Regression analysis results suggest task cohesion positively related to coaches and teammate´s perception of efficacy. These results have implications for practitioners in terms of the importance of team building to enhance team cohesion and feelings of efficacy
Long Fibre Composite Modelling Using Cohesive User's Element
International Nuclear Information System (INIS)
Kozak, Vladislav; Chlup, Zdenek
2010-01-01
The development glass matrix composites reinforced by unidirectional long ceramic fibre has resulted in a family of very perspective structural materials. The only disadvantage of such materials is relatively high brittleness at room temperature. The main micromechanisms acting as toughening mechanism are the pull out, crack bridging, matrix cracking. There are other mechanisms as crack deflection etc. but the primer mechanism is mentioned pull out which is governed by interface between fibre and matrix. The contribution shows a way how to predict and/or optimise mechanical behaviour of composite by application of cohesive zone method and write user's cohesive element into the FEM numerical package Abaqus. The presented results from numerical calculations are compared with experimental data. Crack extension is simulated by means of element extinction algorithms. The principal effort is concentrated on the application of the cohesive zone model with the special traction separation (bridging) law and on the cohesive zone modelling. Determination of micro-mechanical parameters is based on the combination of static tests, microscopic observations and numerical calibration procedures.
Coach-Initiated Motivational Climate and Cohesion in Youth Sport
Eys, Mark A.; Jewitt, Eryn; Evans, M. Blair; Wolf, Svenja; Bruner, Mark W.; Loughead, Todd M.
2013-01-01
Purpose: The general purpose of the present study was to examine the link between cohesion and motivational climate in youth sport. The first specific objective was to determine if relationships demonstrated in previous research with adult basketball and handball participants would be replicated in a younger sample and with a more heterogeneous…
Examining the Relationship between Emotional Intelligence and Group Cohesion
Moore, Amanda; Mamiseishvili, Ketevan
2012-01-01
Collaborative learning experiences increase student learning, but what happens when students fail to collaborate? The authors investigated the relationship between emotional intelligence and group cohesion by studying 44 undergraduate teams who were completing semester-long projects in their business classes at a small private university in the…
Fear, crime, and social cohesion in urban South Africa | IDRC ...
International Development Research Centre (IDRC) Digital Library (Canada)
2016-12-13
Dec 13, 2016 ... Social cohesion” broadly refers to the factors that hold a society ... published in March 2016, explores the role of social cohesion and ... Learn more about IDRC's research support to make cities safer through the Safe and Inclusive Cities partnership with the UK's Department for International Development.
Isotropic compression of cohesive-frictional particles with rolling resistance
Luding, Stefan; Benz, Thomas; Nordal, Steinar
2010-01-01
Cohesive-frictional and rough powders are the subject of this study. The behavior under isotropic compression is examined for different material properties involving Coulomb friction, rolling-resistance and contact-adhesion. Under isotropic compression, the density continuously increases according
ReaderBench: An Integrated Cohesion-Centered Framework
Dascalu, Mihai; Stavarache, Lucia Larise; Dessus, Philippe; Trausan-Matu, Stefan; McNamara, Danielle S.; Bianco, Maryse
2015-01-01
Dascalu, M., Stavarache, L.L., Dessus, P., Trausan-Matu, S., McNamara, D.S., & Bianco, M. (2015). ReaderBench: An Integrated Cohesion-Centered Framework. In G. Conole, T. Klobucar, C. Rensing, J. Konert & É. Lavoué (Eds.), 10th European Conf. on Technology Enhanced Learning (pp. 505–508). Toledo,
Teacher Governance Factors and Social Cohesion: Insights from Pakistan
Halai, Anjum; Durrani, Naureen
2016-01-01
This paper explores teacher governance factors, particularly recruitment and deployment of teachers, in relation to inequalities and social cohesion. Pakistan introduced major reforms in education in the post 9/11 context of escalating conflict. These include a merit and needs-based policy on teacher recruitment to eliminate corruption in…
Cohesion and coordination effects on transition metal surface energies
Ruvireta, Judit; Vega, Lorena; Viñes, Francesc
2017-10-01
Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.
An enriched cohesive zone model for delamination in brittle interfaces
Samimi, M.; Dommelen, van J.A.W.; Geers, M.G.D.
2009-01-01
Application of standard cohesive zone models in a finite element framework to simulate delamination in brittle interfaces may trigger non-smooth load-displacement responses that lead to the failure of iterative solution procedures. This non-smoothness is an artifact of the discretization; and hence
Interfacial stresses in strengthened beam with shear cohesive zone ...
Indian Academy of Sciences (India)
The results of parametric study are compared with those of Smith and Teng. They confirm the accuracy of the proposed approach in predicting both interfacial shear and normal stresses. Keywords. Strengthened beam; interfacial stresses; cohesive zone; shear deformation. 1. Introduction. The FRP plates can be either ...
The Impact of Cooperative Video Games on Team Cohesion
Anderson, Greg
2010-01-01
In today's economy, productivity and efficiency require collaboration between employees. In order to improve collaboration the factors affecting teamwork must be examined to identify where changes can be made in order to increase performance. One factor contributing to teamwork is team cohesion and represents a process whereby members are joined…
Cohesive zone modelling and the fracture process of structural tape
DEFF Research Database (Denmark)
Stigh, Ulf; Biel, Anders; Svensson, Daniel
2016-01-01
and the separation is measured experimentally using methods based on the path independence of the J-integral. Repeated experiments are performed at quasi-static loading. A mixed mode cohesive law is adapted to the experimental data. The law is implemented as a UMAT in Abaqus. Simulations show minor thermal...
Explaining Couple Cohesion in Different Types of Gay Families
van Eeden-Moorefield, Brad; Pasley, Kay; Crosbie-Burnett, Margaret; King, Erin
2012-01-01
This Internet-based study used data from a convenience sample of 176 gay men in current partnerships to examine differences in outness, cohesion, and relationship quality between three types of gay male couples: first cohabiting partnerships, repartnerships, and gay stepfamilies. Also, we tested whether relationship quality mediated the link…
Meiotic sister chromatid cohesion and recombination in two filamentous fungi
Heemst, van D.
2000-01-01
Homologous recombination and sister chromatid cohesion play important roles in the maintenance of genome integrity and the fidelity of chromosome segregation in mitosis and meiosis. Within the living cell, the integrity of the DNA is threatened by various factors that cause DNA-lesions, of
Towards an integrated approach to cohesion and coherence in ...
African Journals Online (AJOL)
The notions of cohesion and coherence have a long tradition in the linguistic literature. They date back to ancient .... syntax, and operates in short-term or working memory. Coherence is related to the ..... account of all the elements that occur in the film, namely, words, gestures, images, music and sound effects. In other ...
Visibility and anonymity effects on attraction and group cohesiveness
Lea, Martin; Spears, Russell; Watt, Susan E.
2007-01-01
This study investigated attraction and group cohesiveness under different visibility and anonymity conditions for social categories that differed in their capacity to be visually cued. Using computer-mediated communication in 36 mixed gender (visually cued category) and nationality (non-visually
Facilitating or hindering social cohesion? The impact of the ...
African Journals Online (AJOL)
However, we show in this article that that the impact of the CWP is not always positive and that the CWP may in some cases result in tensions and contradictions that hinder social cohesion and even cause violence. If not implemented in a consultative participatory manner, the CWP may be a source of conflict rather than of ...
Grain-resolving simulations of settling cohesive sediment
Vowinckel, Bernhard; Whithers, Jade; Meiburg, Eckart; Luzzatto-Fegiz, Paolo
2017-11-01
Cohesive sediment is ubiquitous in natural environments such as rivers, lakes and coastal ecosystems. For this type of sediment, we can no longer ignore the short-range attractive forces that result in flocculation of aggregates much larger than the individual grain size. Hence, understanding the complex dynamics of the interplay between flocculated sediment and the ambient fluid is of prime interest for managing aquatic environments, although a comprehensive understanding of these phenomena is still lacking. In the present study, we address this issue by carrying out grain-resolved simulations of cohesive particles settling under gravity using the Immersed Boundary Method. We present a computational model formulation to accurately resolve the process of flocculation. The cohesive model is then applied to a complex test case. A randomly distributed ensemble of 1261 polydisperse particles is released in a tank of quiescent fluid. Subsequently, particles start to settle, thereby replacing fluid at the bottom of the tank, which induces a counter flow opposing the settling direction. This mechanism will be compared to experimental studies from the literature, as well as to the non-cohesive counterpart to assessthe impact of flocculation on sedimentation.
Working with Group-Tasks and Group Cohesiveness
Anwar, Khoirul
2016-01-01
This study aimed at exploring the connection between the use of group task and group cohesiveness. This study is very important because the nature of the learner's success is largely determined by the values of cooperation, interaction, and understanding of the learning objectives together. Subjects of this study are 28 students on the course…
Cohesive Errors in Writing among ESL Pre-Service Teachers
Kwan, Lisa S. L.; Yunus, Melor Md
2014-01-01
Writing is a complex skill and one of the most difficult to master. A teacher's weak writing skills may negatively influence their students. Therefore, reinforcing teacher education by first determining pre-service teachers' writing weaknesses is imperative. This mixed-methods error analysis study aims to examine the cohesive errors in the writing…
Family Cohesion, Adaptability and Composition in Adolescents from Callao, Peru
Villarreal-Zegarra, David; Paz-Jesús, Angel
2017-01-01
The objective of the study was to analyze if there are significant differences between family cohesion and adaptability according to the type of family composition (nuclear, extended, single parent and non-nuclear). This is a non-experimental and empirical research, in which a non-probabilistic, cross-sectional, selective and associative strategy…
Writing Cohesion Using Content Lexical Ties in ESOL.
Liu, Dilin
2000-01-01
Describes a series of exercises that have proved useful in helping students learning English to enhance their writing skills, particularly cohesion in their writing. Exercises enabled students to learn words in context or in relation to one another as synonyms, antonyms, superordinates, or hyponyms, and a better understanding of these words…
Social cohesion, sexuality, homophobia and women's sport in South ...
African Journals Online (AJOL)
... secondly, that the success of national teams and athletes promotes national pride and unity. ... We explore these issues by drawing on media reports of cases in which ... To realise the potential of sport as a tool for building social cohesion, ...
Cohesion and device reliability in organic bulk heterojunction photovoltaic cells
Brand, Vitali
2012-04-01
The fracture resistance of P3HT:PC 60BM-based photovoltaic devices are characterized using quantitative adhesion and cohesion metrologies that allow identification of the weakest layer or interface in the device structure. We demonstrate that the phase separated bulk heterojunction layer is the weakest layer and report quantitative cohesion values which ranged from ∼1 to 20 J m -2. The effects of layer thickness, composition, and annealing treatments on layer cohesion are investigated. Using depth profiling and X-ray photoelectron spectroscopy on the resulting fracture surfaces, we examine the gradient of molecular components through the thickness of the bulk heterojunction layer. Finally, using atomic force microscopy we show how the topography of the failure path is related to buckling of the metal electrode and how it develops with annealing. The research provides new insights on how the molecular design, structure and composition affect the cohesive properties of organic photovoltaics. © 2011 Elsevier B.V. All rights reserved.
Botswana team sport players' perception of cohesion and imagery ...
African Journals Online (AJOL)
Perception of cohesion and imagery use among 45 elite team sport players in Botswana were assessed with the Group Environment Questionnaire (Carron et al., 1985) and the Sport Imagery Questionnaire (Hall et al., 1998) to determine whether a relationship exists between the variables, and whether imagery use will ...
Leadership, Cohesion, and Team Norms Regarding Cheating and Aggression.
Shields, David Lyle Light; And Others
1995-01-01
Study explored leadership, cohesion, and demographic variables in relation to team norms about cheating and aggression. Surveys of high school and college ball players indicated that older age, higher year in school, and more years playing ball correlated positively with expectations of peer cheating and aggression. (SM)
The Relationship between Task Cohesion and Competitive State Anxiety.
Eys, Mark A.; Hardy, James; Carron, Albert V.; Beauchamp, Mark R.
2003-01-01
Examined the association between athlete perceptions of task cohesiveness (Individual Attractions to the Group-Task and Group Integration-Task) and the degree to which they viewed their perceptions of the presence of pre-competition anxiety symptoms as facilitative or debilitative. Survey data indicated that the more positive their perceptions of…
A cohesive finite element formulation for modelling fracture and ...
Indian Academy of Sciences (India)
cohesive elements experience material softening and lose their stress carrying capacity. A few simple ..... In the present work, a Lagrangian finite element procedure is employed. In this formu clation ...... o, is related to 'c o by,. 't o='c o ¼ 1 ہ. 1.
Sense of Cohesion among Community Activists Engaging in Volunteer Activity
Levy, Drorit; Itzhaky, Haya; Zanbar, Lea; Schwartz, Chaya
2012-01-01
The present article attempts to shed light on the direct and indirect contribution of personal resources and community indices to Sense of Cohesion among activists engaging in community volunteer work. The sample comprised 481 activists. Based on social systems theory, three levels of variables were examined: (1) inputs, which included personal…
Family Cohesion and Level of Communication Between Parents and ...
African Journals Online (AJOL)
This study investigated the level of communication between parents and their adolescent children and how such communication affects family cohesion. A sample of 200 subjects made up of adolescents and parents were selected through cluster, stratified and random sampling techniques from ten Local Government Areas ...
Violations of conservation laws in viscous liquid dynamics
DEFF Research Database (Denmark)
Dyre, Jeppe
2007-01-01
The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover,......, although particle number conservation applies strictly for any liquid, the solidity of viscous liquids implies that even this conservation law is apparently violated in coarse-grained descriptions of density fluctuations.......The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover...
Thermal radiation from an evolving viscous quark gluon plasma
International Nuclear Information System (INIS)
Mitra, Sukanya; Mohanty, Payal; Sarkar, Sourav; Alam, Jan-E
2013-01-01
The effects of viscosity on the space-time evolution of quark gluon plasma produced in nuclear collisions at relativistic heavy ion collider energies have been studied. The entropy generated due to the viscous motion of the fluid has been taken into account in constraining the initial temperature by the final multiplicity (measured at the freeze-out point). The viscous effects on the photon spectra has been introduced consistently through the evolution dynamics and phase space factors of all the participating partons/hadrons in the production process. In contrast to some of the recent calculations the present work includes the contribution from the hadronic phase. A small change in the transverse momentum (p T ) distribution of photons is observed due to viscous effects. (author)
Manipulation of viscous fingering in a radially tapered cell geometry
Bongrand, Grégoire; Tsai, Peichun Amy
2018-06-01
When a more mobile fluid displaces another immiscible one in a porous medium, viscous fingering propagates with a partial sweep, which hinders oil recovery and soil remedy. We experimentally investigate the feasibility of tuning such fingering propagation in a nonuniform narrow passage with a radial injection, which is widely used in various applications. We show that a radially converging cell can suppress the common viscous fingering observed in a uniform passage, and a full sweep of the displaced fluid is then achieved. The injection flow rate Q can be further exploited to manipulate the viscous fingering instability. For a fixed gap gradient α , our experimental results show a full sweep at a small Q but partial displacement with fingering at a sufficient Q . Finally, by varying α , we identify and characterize the variation of the critical threshold between stable and unstable displacements. Our experimental results reveal good agreement with theoretical predictions by a linear stability analysis.
2015-04-01
issues such as social desirability, negative affect, and acquiescence (Spector, 2006) in the analysis of final model. To test for multicollinearity ...emotional cohesion, cognitive cohesion, and flexibility) are independent with no multicollinearity issues. Development and test of structural
Loughead, Todd M; Fransen, Katrien; Van Puyenbroeck, Stef; Hoffmann, Matt D; De Cuyper, Bert; Vanbeselaere, Norbert; Boen, Filip
2016-11-01
Two studies investigated the structure of different athlete leadership networks and its relationship to cohesion using social network analysis. In Study 1, we examined the relationship between a general leadership quality network and task and social cohesion as measured by the Group Environment Questionnaire (GEQ). In Study 2, we investigated the leadership networks for four different athlete leadership roles (task, motivational, social and external) and their association with task and social cohesion networks. In Study 1, the results demonstrated that the general leadership quality network was positively related to task and social cohesion. The results from Study 2 indicated positive correlations between the four leadership networks and task and social cohesion networks. Further, the motivational leadership network emerged as the strongest predictor of the task cohesion network, while the social leadership network was the strongest predictor of the social cohesion network. The results complement a growing body of research indicating that athlete leadership has a positive association with cohesion.
The Effects Of Physical And Biological Cohesion On Bedforms
Parsons, D. R.; Schindler, R.; Baas, J.; Hope, J. A.; Malarkey, J.; Paterson, D. M.; Peakall, J.; Manning, A. J.; Ye, L.; Aspden, R.; Alan, D.; Bass, S. J.
2014-12-01
Most coastal sediments consist of complex mixtures of cohesionless sands, physically-cohesive clays and extra cellular polymeric substances (EPS) that impart biological cohesion. Yet, our ability to predict bedform dimensions in these substrates is reliant on predictions based exclusively on cohesionless sand. We present findings from the COHBED project - which explicitly examines how bedform dynamics are modified by natural cohesion. Our experimental results show that for ripples, height and length are inversely proportional to initial clay content and bedforms take longer to appear, with no ripples when clay content exceeds 18%. When clay is replaced by EPS the development time and time of first appearance of ripples both increase by two orders of magnitude, with no bedforms above 0.125% EPS. For dunes, height and length are also inversely proportional to initial substrate clay content, resulting in a transition from dunes to ripples normally associated with velocity decreases. Addition of low EPS concentrations into the substrate results in yet smaller bedforms at the same clay contents and at high EPS concentrations, biological cohesion supersedes all electrostatic bonding, and bedform size is no longer related to mud content. The contrast in physical and biological cohesion effects on bedform development result from the disparity between inter-particle electrostatic bonding of clay particles and EPS grain coating and strands that physically link sediments together, which effects winnowing rates as bedforms evolve. These findings have wide ranging implications for bedform predictions in both modern and ancient environments. Coupling of biological and morphological processes not only requires an understanding of how bedform dimensions influence biota and habitat, but also how benthic species can modify bedform dimensions. Consideration of both aspects provides a means in which fluid dynamics, sediment transport and ecosystem energetics can be linked to yield
Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces
Lhermerout, Romain; Perkin, Susan
2018-01-01
Recent reports of surface forces across nanoconfined ionic liquids have revealed the existence of an anomalously long-ranged interaction apparently of electrostatic origin. Ionic liquids are viscous, and therefore it is important to inspect rigorously whether the observed repulsive forces are indeed equilibrium forces or, rather, arise from the viscous force during drainage of the fluid between two confining surfaces. In this paper we present our direct measurements of surface forces between mica sheets approaching in the ionic liquid [C2C1Im ] [NTf2] , exploring three orders of magnitude in approach velocity. Trajectories are systematically fitted by solving the equation of motion, allowing us to disentangle the viscous and equilibrium contributions. First, we find that the drainage obeys classical hydrodynamics with a negative slip boundary condition in the range of the structural force, implying that a nanometer -thick portion of the liquid in the vicinity of the solid surface is composed of ordered molecules that do not contribute to the flow. Second, we show that a long-range static force must indeed be invoked, in addition to the viscous force, in order to describe the data quantitatively. This equilibrium interaction decays exponentially and with decay length in agreement with the screening length reported for the same system in previous studies. In those studies the decay was simply checked to be independent of velocity and measured at a low approach rate, rather than explicitly taking account of viscous effects: we explain why this gives indistinguishable outcomes for the screening length by noting that the viscous force is linear to very good approximation over a wide range of distances.
One-dimensional reduction of viscous jets. I. Theory
Pitrou, Cyril
2018-04-01
We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections, we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model since it amounts to selectively discard some corrections. However, in a fast rotating frame, we find that the dominant effects induced by inertial and Coriolis forces should be correctly described by rod models. For completeness, we also recover the constitutive relations for forces and torques in rod models and exhibit a missing term in the lowest order expression of viscous torque. Given that our method is based on tensors, the complexity of all computations has been beaten down by using an appropriate tensor algebra package such as xAct, allowing us to obtain a one-dimensional description of curved viscous jets with all the first order corrections consistently included. Finally, we find a description for straight fibers with elliptic sections as a special case of these results, and recover that ellipticity is dynamically damped by surface tension. An application to toroidal viscous fibers is presented in the companion paper [Pitrou, Phys. Rev. E 97, 043116 (2018), 10.1103/PhysRevE.97.043116].
Shallow water equations: viscous solutions and inviscid limit
Chen, Gui-Qiang; Perepelitsa, Mikhail
2012-12-01
We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.
Radiation and viscous dissipation effect on square porous annulus
Energy Technology Data Exchange (ETDEWEB)
Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)
2016-06-08
The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T{sub h} and inside cold T{sub c} temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.
Experimental demonstration of the Rayleigh acoustic viscous boundary layer theory.
Castrejón-Pita, J R; Castrejón-Pita, A A; Huelsz, G; Tovar, R
2006-03-01
Amplitude and phase velocity measurements on the laminar oscillatory viscous boundary layer produced by acoustic waves are presented. The measurements were carried out in acoustic standing waves in air with frequencies of 68.5 and 114.5 Hz using laser Doppler anemometry and particle image velocimetry. The results obtained by these two techniques are in good agreement with the predictions made by the Rayleigh viscous boundary layer theory and confirm the existence of a local maximum of the velocity amplitude and its expected location.
Viscous optical clearing agent for in vivo optical imaging
Deng, Zijian; Jing, Lijia; Wu, Ning; lv, Pengyu; Jiang, Xiaoyun; Ren, Qiushi; Li, Changhui
2014-07-01
By allowing more photons to reach deeper tissue, the optical clearing agent (OCA) has gained increasing attention in various optical imaging modalities. However, commonly used OCAs have high fluidity, limiting their applications in in vivo studies with oblique, uneven, or moving surfaces. In this work, we reported an OCA with high viscosity. We measured the properties of this viscous OCA, and tested its successful performances in the imaging of a living animal's skin with two optical imaging modalities: photoacoustic microscopy and optical coherence tomography. Our results demonstrated that the viscous OCA has a great potential in the study of different turbid tissues using various optical imaging modalities.
Radiation and viscous dissipation effect on square porous annulus
International Nuclear Information System (INIS)
Badruddin, Irfan Anjum; Quadir, G. A.
2016-01-01
The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T h and inside cold T c temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.
Estimating cohesion in small groups using audio-visual nonverbal behavior
Hung, H.; Gatica-Perez, D.
2010-01-01
Cohesiveness in teams is an essential part of ensuring the smooth running of task-oriented groups. Research in social psychology and management has shown that good cohesion in groups can be correlated with team effectiveness or productivity, so automatically estimating group cohesion for team
Homogeneous viscous flow behavior of a Cu–Zr based bulk metallic glass composites
International Nuclear Information System (INIS)
Zhang, X.Y.; Yuan, Z.Z.; Feng, X.L.; Cui, L.Z.; Li, D.X.
2015-01-01
In this paper, Cu 40 Zr 44 Ag 8 Al 8 bulk metallic glass composites (BMGCs) consisting of various volume fraction of nanocrystals embedded in the amorphous matrix was synthesized by controlled annealing treatment of an as-cast BMGCs. The high temperature compression behaviors of the BMGCs were characterized in the supercooled liquid region. Results show that the flow stresses keep increasing after an initial decrease with extension of the annealing time. With annealing the values of activation volume V act is determined to be increasing from 283.6216 Ǻ 3 to 305.553 Ǻ 3 , suggesting that the jump of atoms is a cooperative process during the high-temperature deformation. Flow behavior of the BMGCs annealed for less than 8 min transform from Newtonian to non-Newtonian dependant on the stain rate and can be successively fitted by the visco-plasticity model. Fitting results indicate that deformation behaviors of these samples are governed by homogeneous flow of the amorphous matrix and indeed determined by the viscosities in the Newtonian flow stage. However, the BMGCs annealed for 8 min exhibit a non-Newtonian flow over the entire compression process and fail to be fitted by the visco-plasticity model. Micrographs of the sample reflect an impinged structure, indicating that high temperature deformation behavior of the BMGCs with high volume fractions of particles is indeed controlled by that of a backbone of particles
2016-06-01
Using a Virtual - Reality Team Cohesion Test PRINCIPAL INVESTIGATOR: Josh Woolley MD/PhD CONTRACTING ORGANIZATION: NORTHERN CALIFORNIA INSTITUTE SAN...Team Cohesion and Psychological Resilience in ROTC Cadets Using a Virtual - Reality Team Cohesion Test 5b. GRANT NUMBER W81XWH-15-1-0042 5c. PROGRAM...targets while flying a virtual air vehicle. No individual has access to all the necessary information or controls, so operating as a team is crucial
Second law analysis of a reacting temperature dependent viscous ...
African Journals Online (AJOL)
In this paper, entropy generation during the flow of a reacting viscous fluid through an inclined Channel with isothermal walls are investigated. The coupled energy and momentum equations were solved numerically. Previous results in literature (Adesanya et al 2006 [[17]) showed both velocity and temperature have two ...
Self-consistent viscous heating of rapidly compressed turbulence
Campos, Alejandro; Morgan, Brandon
2017-11-01
Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Mathematical Theory of Compressible Viscous, and Heat Conducting Fluids
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard
2007-01-01
Roč. 33, č. 4 (2007), s. 461-490 ISSN 0898-1221 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : compressible fluid * viscous fluid * entropy Subject RIV: BA - General Mathematics Impact factor: 0.720, year: 2007
Anisotropic plastic deformation by viscous flow in ion tracks
van Dillen, T; Polman, A; Onck, PR; van der Giessen, E
2005-01-01
A model describing the origin of ion beam-induced anisotropic plastic deformation is derived and discussed. It is based on a viscoelastic thermal spike model for viscous flow in single ion tracks derived by Trinkaus and Ryazanov. Deviatoric (shear) stresses, brought about by the rapid thermal
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...
Viscous modes, isocurvature perturbations and CMB initial conditions
Giovannini, Massimo
2015-01-01
When the predecoupling plasma is thermodinamically reversible its fluctuations are classified in terms of the adiabatic and entropic modes. A different category of physical solutions, so far unexplored, arises when the inhomogeneities of the viscosity coefficients induce computable curvature perturbations. The viscous modes are explicitly illustrated and compared with the conventional isocurvature solutions.
Unsteady Viscous Flow Past an Impulsively Started Porous Vertical ...
African Journals Online (AJOL)
This paper presents a new numerical approach for solving unsteady two dimensional boundary layer flow past an infinite vertical porous surface with the flow generated by Newtonian heating and impulsive motion in the presence of viscous dissipation and temperature dependent viscosity. The viscosity of the fluid under ...
Free-surface viscous flow solution methods for ship hydrodynamics
Wackers, J.; Koren, B.; Raven, H.C.; Ploeg, van der A.; Starke, A.R.; Deng, G.; Queutey, P.; Visonneau, M.; Hino, T.; Ohashi, K.
2011-01-01
The simulation of viscous free-surface water flow is a subject that has reached a certain maturity and is nowadays used in industrial applications, like the simulation of the flow around ships. While almost all methods used are based on the Navier-Stokes equations, the discretisation methods for the
Spatiotemporal resonances in mixing of open viscous fluids
DEFF Research Database (Denmark)
Okkels, Fridolin; Tabeling, Patrick
2004-01-01
In this Letter, we reveal a new dynamical phenomenon, called "spatiotemporal resonance," which is expected to take place in a broad range of viscous, periodically forced, open systems. The observation originates from a numerical and theoretical analysis of a micromixer, and is supported...
Hydrodynamic response of viscous fluids under seismic excitation
International Nuclear Information System (INIS)
Ma, D.C.
1993-01-01
Hydrodynamic response of liquid-tank systems, such as reactor vessels, spent-fuel pools and liquid storage tanks have been studied extensively in the last decade (Chang et al. 1988; Ma et al. 1991). However, most of the studies are conducted with the assumption of an inviscid fluid. In recent years, the hydrodynamic response of viscous fluids has received increasing attention in high level waste storage tanks containing viscous waste material. This paper presents a numerical study on the hydrodynamic response of viscous fluids in a large 2-D fluid-tank system under seismic excitation. Hydrodynamic responses (i.e. sloshing wave height, fluid pressures, shear stress, etc.) are calculated for a fluid with various viscosities. Four fluid viscosities are considered. They are 1 cp, 120 cp, 1,000 cp and 12,000 cp (1 cp = 1.45 x 10 -7 lb-sec/in 2 ). Note that the liquid sodium of the Liquid-Metal Reactor (LMR) reactor has a viscosity of 1.38 x 10 -5 lb-sec/in 2 (about 95 cp) at an operational temperature of 900 degree F. Section 2 describes the pertinent features of the mathematical model. In Section 3, the fundamental sloshing phenomena of viscous fluid are examined. Sloshing wave height and shear stress for fluid with different viscosities are compared. The conclusions are given in Section 4
Creeping Viscous Flow around a Heat-Generating Solid Sphere
DEFF Research Database (Denmark)
Krenk, Steen
1981-01-01
The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in closed...... form and an application to the storage of heat-generating nuclear waste is discussed....
Derivation of Path Independent Coupled Mix Mode Cohesive Laws from Fracture Resistance Curves
DEFF Research Database (Denmark)
Goutianos, Stergios
2016-01-01
A generalised approach is presented to derive coupled mixed mode cohesive laws described with physical parameters such as peak traction, critical opening, fracture energy and cohesive shape. The approach is based on deriving mix mode fracture resistance curves from an effective mix mode cohesive...... law at different mode mixities. From the fracture resistance curves, the normal and shear stresses of the cohesive laws can be obtained by differentiation. Since, the mixed mode cohesive laws are obtained from a fracture resistance curve (potential function), path independence is automatically...
Stokes’ and Lamb's viscous drag laws
International Nuclear Information System (INIS)
Eames, I; Klettner, C A
2017-01-01
Since Galileo used his pulse to measure the time period of a swinging chandelier in the 17th century, pendulums have fascinated scientists. It was not until Stokes' (1851 Camb. Phil. Soc. 9 8–106) (whose interest was spurred by the pendulur time pieces of the mid 19th century) treatise on viscous flow that a theoretical framework for the drag on a sphere at low Reynolds number was laid down. Stokes' famous drag law has been used to determine two fundamental physical constants—the charge on an electron and Avogadro's constant—and has been used in theories which have won three Nobel prizes. Considering its illustrious history it is then not surprising that the flow past a sphere and its two-dimensional analog, the flow past a cylinder, form the starting point of teaching flow past a rigid body in undergraduate level fluid mechanics courses. Usually starting with the two-dimensional potential flow past a cylinder, students progress to the three-dimensional potential flow past a sphere. However, when the viscous flow past rigid bodies is taught, the three-dimensional example of a sphere is first introduced, and followed by (but not often), the two-dimensional viscous flow past a cylinder. The reason why viscous flow past a cylinder is generally not taught is because it is usually explained from an asymptotic analysis perspective. In fact, this added mathematical complexity is why the drag on a cylinder was only solved in 1911, 60 years after the drag on a sphere. In this note, we show that the viscous flow past a cylinder can be explained without the need to introduce any asymptotic analysis while still capturing all the physical insight of this classic fluid mechanics problem. (paper)
A consistent partly cracked XFEM element for cohesive crack growth
DEFF Research Database (Denmark)
Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto
2007-01-01
Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able to model equal stresses on both sides of the discontinuity when acting as a crack-tip element. The authors have developed a new partly cracked XFEM element for cohesive crack growth with extra...... enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub-triangle of the cracked element. With the extra enrichments, the crack-tip element becomes...... capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...
Numerical simulation of particle settling and cohesion in liquid
Energy Technology Data Exchange (ETDEWEB)
Johno, Y; Nakashima, K; Shigematsu, T; Ono, B [SASEBO National College of Technology, 1-1 Okishin, Sasebo, Nagasaki, 857-1193 (Japan); Satomi, M, E-mail: yjohno@post.cc.sasebo.ac.j [Sony Semiconductor Kyushu Corporation, Kikuchigun, Kumamoto (Japan)
2009-02-01
In this study, the motions of particles and particle clusters in liquid were numerically simulated. The particles of two sizes (Dp=40mum and 20mum) settle while repeating cohesion and dispersion, and finally the sediment of particles are formed at the bottom of a hexahedron container which is filled up with pure water. The flow field was solved with the Navier-Stokes equations and the particle motions were solved with the Lagrangian-type motion equations, where the interaction between fluid and particles due to drag forces were taken into account. The collision among particles was calculated using Distinct Element Method (DEM), and the effects of cohesive forces by van der Waals force acting on particle contact points were taken into account. Numerical simulations were performed under conditions in still flow and in shear flow. It was found that the simulation results enable us to know the state of the particle settling and the particle condensation.
A cohesive zone framework for environmentally assisted fatigue
DEFF Research Database (Denmark)
del Busto, Susana; Betegón, Covadonga; Martínez Pañeda, Emilio
2017-01-01
We present a compelling finite element framework to model hydrogen assisted fatigue by means of a hydrogen- and cycle-dependent cohesive zone formulation. The model builds upon: (i) appropriate environmental boundary conditions, (ii) a coupled mechanical and hydrogen diffusion response, driven...... by chemical potential gradients, (iii) a mechanical behavior characterized by finite deformation J2 plasticity, (iv) a phenomenological trapping model, (v) an irreversible cohesive zone formulation for fatigue, grounded on continuum damage mechanics, and (vi) a traction-separation law dependent on hydrogen...... coverage calculated from first principles. The computations show that the present scheme appropriately captures the main experimental trends; namely, the sensitivity of fatigue crack growth rates to the loading frequency and the environment. The role of yield strength, work hardening, and constraint...
Grain boundary embrittlement and cohesion enhancement in copper
Energy Technology Data Exchange (ETDEWEB)
Paxton, Anthony; Lozovoi, Alexander [Atomistic Simulation Centre, Queen' s University Belfast, BT7 1NN (United Kingdom); Schweinfest, Rainer [Science+Computing ag, Hagellocher Weg 71-5, 720270 T ubingen (Germany); Finnis, Michael [Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)
2008-07-01
There has been a long standing debate surrounding the mechanism of grain boundary embrittlement and cohesion enhancement in metals. Embrittlement can lead to catastrophic failure such as happened in the Hinkley Point disaster, or indeed in the case of the Titanic. This kind of embrittlement is caused by segregation of low solubility impurities to grain boundaries. While the accepted wisdom is that this is a phenomenon driven by electronic or chemical factors, using language such as charge transfer and electronegativity difference; we believe that in copper, at least, both cohesion enhancement and reduction are caused by a simple size effect. We have developed a theory that allows us to separate unambiguously, if not uniquely, chemical and structural factors. We have studied a large number of solutes in copper using first principles atomistic simulation to support this argument, and the results of these calculations are presented here.
Cohesive fracture model for functionally graded fiber reinforced concrete
International Nuclear Information System (INIS)
Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery
2010-01-01
A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.
The limits of social capital: Durkheim, suicide, and social cohesion.
Kushner, Howard I; Sterk, Claire E
2005-07-01
Recent applications of social capital theories to population health often draw on classic sociological theories for validation of the protective features of social cohesion and social integration. Durkheim's work on suicide has been cited as evidence that modern life disrupts social cohesion and results in a greater risk of morbidity and mortality-including self-destructive behaviors and suicide. We argue that a close reading of Durkheim's evidence supports the opposite conclusion and that the incidence of self-destructive behaviors such as suicide is often greatest among those with high levels of social integration. A reexamination of Durkheim's data on female suicide and suicide in the military suggests that we should be skeptical about recent studies connecting improved population health to social capital.
Erosion of cohesive soil layers above underground conduits
Directory of Open Access Journals (Sweden)
Luu Li-Hua
2017-01-01
Full Text Available Using a recently developed 2D numerical modelling that combines Discrete Element (DEM and Lattice Boltzmann methods (LBM, we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.
Erosion of cohesive soil layers above underground conduits
Luu, Li-Hua; Philippe, Pierre; Noury, Gildas; Perrin, Jérôme; Brivois, Olivier
2017-06-01
Using a recently developed 2D numerical modelling that combines Discrete Element (DEM) and Lattice Boltzmann methods (LBM), we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.
Social cohesion and civil law: marriage, divorce and religious courts
Douglas, Gillian; Doe, Christopher Norman; Gilliat-Ray, Sophie; Sandberg, Russell; Khan, Asma
2011-01-01
This Cardiff University study of religious courts and tribunals across the UK has been funded by the AHRC/ESRC Religion and Society Programme. The project, „Social Cohesion and Civil Law: Marriage, Divorce and Religious Courts‟, explores how religious law functions alongside civil law in England and Wales.\\ud The context, though not the catalyst, for our study, is the lecture given by the Archbishop of Canterbury in 2008 on the relationship between religious law - primarily though not exclusi...
Family Change and Implications for Family Solidarity and Social Cohesion
Directory of Open Access Journals (Sweden)
Ravanera, Zenaida
2008-01-01
Full Text Available EnglishSocial cohesion can be viewed in terms of common projects and networks of social relations that characterize families, communities and society. In the past decades, the basis for family cohesion has shifted from organic to mechanical or from breadwinner to collaborative model. As in many Western countries, data on family change in Canada point to a greater flexibility in the entry and exit from relationships, a delay in the timing of family events, and a diversity of family forms. After looking at changes in families and in the family setting of individuals, the paper considers both intra-family cohesion and families as basis for social cohesion. Implications are raised for adults, children and publicp olicy.FrenchLa cohésion sociale peut se voir à travers les projets communs et les réseaux desrelations sociales qui caractérisent les familles, les communautés et les sociétés.La base de cohésion familiale est passée d’organique à mécanique, pour utiliserles termes de Durkheim, ou vers un modèle de collaboration plutôt qu’unepartage asymétrique de tâches. Comme dans d’autres sociétés orientales, lafamille au Canada est devenue plus flexible par rapport aux entrées et sortiesd’unions, il y a un délais dans les événements familiaux, et une variété deformes de familles. Après un regard sur les changements dans les familles etdans la situation familiale des individus, nous considérons la cohésion intrafamilialeet la famille comme base de cohésion sociale. Nous discutons desimpacts sur les adultes, les enfants et la politique publique.
Multiple intersecting cohesive discontinuities in 3D reservoir geomechanics
Das, K. C.; Sandha, S.S.; Carol, Ignacio; Vargas, P.E.; Gonzalez, Nubia Aurora; Rodrigues, E.; Segura Segarra, José María; Lakshmikantha, Ramasesha Mookanahallipatna; Mello,, U.
2013-01-01
Reservoir Geomechanics is playing an increasingly important role in developing and producing hydrocarbon reserves. One of the main challenges in reservoir modeling is accurate and efficient simulation of arbitrary intersecting faults. In this paper, we propose a new formulation to model multiple intersecting cohesive discontinuities (faults) in reservoirs using the XFEM framework. This formulation involves construction of enrichment functions and computation of stiffness sub-matrices for bulk...
The Process Architecture of EU Territorial Cohesion Policy
Directory of Open Access Journals (Sweden)
Andreas Faludi
2010-08-01
Full Text Available When preparing the European Spatial Development Perspective (ESDP, Member States were supported by the European Commission but denied the EU a competence in the matter. Currently, the Treaty of Lisbon identifies territorial cohesion as a competence shared between the Union and the Member States. This paper is about the process architecture of territorial cohesion policy. In the past, this architecture resembled the Open Method of Coordination (OMC which the White Paper on European Governance praised, but only in areas where there was no EU competence. This reflected zero-sum thinking which may continue even under the Lisbon Treaty. After all, for as long as territorial cohesion was not a competence, voluntary cooperation as practiced in the ESDP process was pursued in this way. However, the practice of EU policies, even in areas where there is an EU competence, often exhibits features of the OMC. Surprisingly effective innovations hold the promise of rendering institutions of decision making comprehensible and democratically accountable. In the EU as a functioning polity decision making is thus at least part deliberative so that actors’ preferences are transformed by the force of the better argument. This brings into focus the socialisation of the deliberators into epistemic communities. Largely an informal process, this is reminiscent of European spatial planning having been characterised as a learning process.
Influence of magnetic cohesion on the stability of granular slopes.
Taylor, K; King, P J; Swift, Michael R
2008-09-01
We use a molecular dynamics model to simulate the formation and evolution of a granular pile in two dimensions in order to gain a better understanding of the role of magnetic interactions in avalanche dynamics. We find that the angle of repose increases only slowly with magnetic field; the increase in angle is small even for intergrain cohesive forces many times stronger than gravity. The magnetic forces within the bulk of the pile partially cancel as a result of the anisotropic nature of the dipole-dipole interaction between grains. However, we show that this cancellation effect is not sufficiently strong to explain the discrepancy between the angle of repose in wet systems and magnetically cohesive systems. In our simulations we observe shearing deep within the pile, and we argue that it is this motion that prevents the angle of repose from increasing dramatically. We also investigate different implementations of friction with the front and back walls of the container, and conclude that the nature of the friction dramatically affects the influence of magnetic cohesion on the angle of repose.
The Role of Lexical Cohesion in Writing Quality
Directory of Open Access Journals (Sweden)
Hmoud Alotaibi
2015-01-01
Full Text Available The idea of whether repetition has any relation with the writing quality of the text has remained an issue that intrigues a number of scholars in linguistics and in writing studies. Michael Hoey (1991, Halliday and Hasan (1976 are two prominent works in presenting detailed and thoughtful analysis of repetition occurrences in the text. This study uses a model of lexical cohesion proposed by Witte and Faigley (1981 which itself is based on the taxonomies of cohesive ties presented by Halliday and Hasan (1976. The model deals with lexical cohesion and its subclasses, namely, repetition (same type, synonym, near-synonym, super-ordinate item, and general item and collocation. The corpus includes five argumentative essays written by students in the field of English language literature. Five teaching assistants were asked to rank the papers on a five-point scale based on their perception of the papers’ writing quality. The results showed that the paper that received the lowest rating in terms of the writing quality was the one that included the largest number of repetition occurrences of the same type. The study concludes by arguing that repetition may not be considered as monolithic, and suggests that every type of repetition needs to be examined individually in order to determine what enhances and what deteriorates the writing quality.
An examination of the cohesion-performance relationship in university hockey teams.
Slater, M R; Sewell, D F
1994-10-01
The objective of this study was to assess, using the Group Environment Questionnaire, whether team cohesion in university-level field hockey was a cause for, or an effect of, successful performance. A quasi-experimental longitudinal design with cross-lagged correlational analysis was adopted and measures of cohesion and performance were taken midway and later in the season. The results of the synchronous correlations showed a positive relationship (with good stationarity) between team cohesion and performance outcome. Although non-significant cross-lagged differentials indicated a circular relationship, the magnitudes of both the cross-lagged correlations and the partial correlations, together with multiple-regression analyses, revealed that the stronger flow was from cohesion to performance. The socially oriented aspects of cohesion, in particular, had significant associations with performance. The results imply that cohesion-performance relationships should be examined within a circular model, in which cohesion and performance are interdependent.
Impact of ultra-viscous drops: air-film gliding and extreme wetting
Langley, Kenneth; Li, Erqiang; Thoroddsen, Sigurdur T
2017-01-01
water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a
Simulations of the Yawed MEXICO Rotor Using a Viscous-Inviscid Panel Method
DEFF Research Database (Denmark)
Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong
2014-01-01
In the present work the viscous-inviscid interactive model MIRAS is used to simulate flows past the MEXICO rotor in yawed conditions. The solver is based on an unsteady three-dimensional free wake panel method which uses a strong viscous-inviscid interaction technique to account for the viscous...
Modeling of brittle-viscous flow using discrete particles
Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.
2017-04-01
Many geological processes involve both viscous flow and brittle fractures, e.g. boudinage, folding and magmatic intrusions. Numerical modeling of such viscous-brittle materials poses challenges: one has to account for the discrete fracturing, the continuous viscous flow, the coupling between them, and potential pressure dependence of the flow. The Discrete Element Method (DEM) is a numerical technique, widely used for studying fracture of geomaterials. However, the implementation of viscous fluid flow in discrete element models is not trivial. In this study, we model quasi-viscous fluid flow behavior using Esys-Particle software (Abe et al., 2004). We build on the methodology of Abe and Urai (2012) where a combination of elastic repulsion and dashpot interactions between the discrete particles is implemented. Several benchmarks are presented to illustrate the material properties. Here, we present extensive, systematic material tests to characterize the rheology of quasi-viscous DEM particle packing. We present two tests: a simple shear test and a channel flow test, both in 2D and 3D. In the simple shear tests, simulations were performed in a box, where the upper wall is moved with a constant velocity in the x-direction, causing shear deformation of the particle assemblage. Here, the boundary conditions are periodic on the sides, with constant forces on the upper and lower walls. In the channel flow tests, a piston pushes a sample through a channel by Poisseuille flow. For both setups, we present the resulting stress-strain relationships over a range of material parameters, confining stress and strain rate. Results show power-law dependence between stress and strain rate, with a non-linear dependence on confining force. The material is strain softening under some conditions (which). Additionally, volumetric strain can be dilatant or compactant, depending on porosity, confining pressure and strain rate. Constitutive relations are implemented in a way that limits the
Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.
Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G
2014-05-15
Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., 600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 μm(3)). Changes in the cohesive
A semi-elliptic analysis of internal viscous flows
International Nuclear Information System (INIS)
Ghia, U.; Ramamurti, R.; Ghia, K.N.
1986-01-01
The increased demands placed presently on the performance of compressors and turbines of gas-turbine engines have, for some time, pointed the need for accurate analysis of viscous flows in turbomachinery. With the recent developments of advanced computational facilities, much effort has been made to respond to this need. Various mathematical formulations, grid systems and numerical techniques have been developed for the numerical solution of the viscous flow equations (Refs. 1-4). The full Navier-Stokes equations as well as their corresponding thin-layer approximate form have been employed in H- as well as C-grids, using explicit or implicit methods, including convergence enhancement techniques based on multi-grid methodology. Nevertheless, obtaining converged solutions for general geometries on acceptably refined grids remains a computationally demanding task. The present paper discusses a reduced form on the governing equations which can capture much of the physics, while requiring less computer resources than the full Navier-Stokes equations
Renormalization group approach to causal bulk viscous cosmological models
International Nuclear Information System (INIS)
Belinchon, J A; Harko, T; Mak, M K
2002-01-01
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor
Microfluidic System Simulation Including the Electro-Viscous Effect
Rojas, Eileen; Chen, C. P.; Majumdar, Alok
2007-01-01
This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.
Spectral analysis of viscous static compressible fluid equilibria
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
2001-05-25
It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)
Thermal and viscous effects on sound waves: revised classical theory.
Davis, Anthony M J; Brenner, Howard
2012-11-01
In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.
USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS
Energy Technology Data Exchange (ETDEWEB)
Randall Seright
2011-09-30
This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be
IUTAM Symposium on Lubricated Transport of Viscous Materials
1998-01-01
The main objective of the First International Symposium on Lubricated Transport of Viscous Materials was to bring together scientists and engineers from academia and industryto discuss current research work and exchange ideas in this newly emerging field. It is an area offluid dynamics devoted to laying bare the principlesofthe lubricated transport of viscous materials such as crude oil, concentrated oil/water emulsion, slurries and capsules. It encompasses several types of problem. Studies of migration of particulates away from walls, Segre-Silverberg effects, lubrication versus lift and shear-induced migration belong to one category. Some of the technological problems are the fluid dynamics ofcore flows emphasizing studies ofstability, problems of start-up, lift-off and eccentric flow where gravity causes the core flow to stratify. Another category of problems deals with the fouling of pipe walls with oil, with undesirable increases in pressure gradients and even blocking. This study involves subjects like ...
Quasi-neutral limit for a model of viscous plasma
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Zhang, P.
2010-01-01
Roč. 197, č. 1 (2010), s. 271-295 ISSN 0003-9527 R&D Projects: GA ČR GA201/08/0315 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes- Poisson system * quasi-neutral limit * viscous plasma Subject RIV: BA - General Mathematics Impact factor: 2.277, year: 2010 http://link.springer.com/article/10.1007%2Fs00205-010-0317-7
Viscous Flow with Large Fluid-Fluid Interface Displacement
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild
1998-01-01
The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....