WorldWideScience

Sample records for viscoelastic turbulent channel

  1. Effect of Fluid Viscoelasticity on Turbulence and Large-Scale Vortices behind Wall-Mounted Plates

    Directory of Open Access Journals (Sweden)

    Takahiro Tsukahara

    2014-03-01

    Full Text Available Direct numerical simulations of turbulent viscoelastic fluid flows in a channel with wall-mounted plates were performed to investigate the influence of viscoelasticity on turbulent structures and the mean flow around the plate. The constitutive equation follows the Giesekus model, valid for polymer or surfactant solutions, which are generally capable of reducing the turbulent frictional drag in a smooth channel. We found that turbulent eddies just behind the plates in viscoelastic fluid decreased in number and in magnitude, but their size increased. Three pairs of organized longitudinal vortices were observed downstream of the plates in both Newtonian and viscoelastic fluids: two vortex pairs were behind the plates and the other one with the longest length was in a plate-free area. In the viscoelastic fluid, the latter vortex pair in the plate-free area was maintained and reached the downstream rib, but its swirling strength was weakened and the local skin-friction drag near the vortex was much weaker than those in the Newtonian flow. The mean flow and small spanwise eddies were influenced by the additional fluid force due to the viscoelasticity and, moreover, the spanwise component of the fluid elastic force may also play a role in the suppression of fluid vortical motions behind the plates.

  2. A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids

    Science.gov (United States)

    Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua

    2015-07-01

    A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).

  3. Experimental study on two oscillating grid turbulence with viscoelastic fluids based on PIV

    National Research Council Canada - National Science Library

    Wang, Yue; Zheng, Xin; Cai, Wei-Hua; Zhang, Hong-Na; Li, Feng-Chen

    2017-01-01

    In this paper, to study the viscoelastic effect on isotropic turbulence without wall effects, a two oscillating grid turbulence is built to investigate this phenomenon using particle image velocimetry...

  4. Proposal of Damping Function for Low-Reynolds-Number k-ε Model Applicable in Prediction of Turbulent Viscoelastic-Fluid Flow

    Directory of Open Access Journals (Sweden)

    Takahiro Tsukahara

    2013-01-01

    Full Text Available A low-Reynolds-number k-ε model applicable for viscoelastic fluid was proposed to predict the frictional-drag reduction and the turbulence modification in a wall-bounded turbulent flow. In this model, an additional damping function was introduced into the model of eddy viscosity, while the treatment of the turbulent kinetic energy (k and its dissipation rate (ε is an extension of the model for Newtonian fluids. For constructing the damping function, we considered the influence of viscoelasticity on the turbulent eddy motion and its dissipative scale and investigated the frequency response for the constitutive equation based on the Giesekus fluid model. Assessment of the proposed model’s performance in several rheological conditions for drag-reduced turbulent channel flows demonstrated good agreement with DNS (direct numerical simulation data.

  5. Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids

    CERN Document Server

    Xi, Li

    2010-01-01

    Turbulent channel flow of drag-reducing polymer solutions is simulated in minimal flow geometries. Even in the Newtonian limit, we find intervals of "hibernating" turbulence that display many features of the universal maximum drag reduction (MDR) asymptote observed in polymer solutions: weak streamwise vortices, nearly nonexistent streamwise variations and a mean velocity gradient that quantitatively matches experiments. As viscoelasticity increases, the frequency of these intervals also increases, while the intervals themselves are unchanged, leading to flows that increasingly resemble MDR.

  6. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.

    Science.gov (United States)

    Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-06-14

    We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.

  7. Turbulent channel flows over complex walls

    Science.gov (United States)

    Rosti, Marco Edoardo; Brandt, Luca

    2017-11-01

    We perform numerical simulations of turbulent channel flows over porous walls and deformable hyper-elastic walls. The flow over porous walls is simulated using volume-averaged Navier ``Stokes equations within the porous layers, while the multiphase flow over deformable walls is solved with a one-continuum formulation which allows the use of a fully Eulerian formulation. New insights on the effect of these complex walls on the turbulent flows in terms of friction, statistics and flow structures are discussed using a number of post-processing techniques. The turbulent flow in the channel is affected by the porous and moving walls in a similar manner even at low values of porosity and elasticity due to the non-zero fluctuations of vertical velocity at the interface that influence the flow dynamics. The near-wall streaks and the associated quasi-streamwise vortices are strongly reduced near porous and deformable isotropic wall while the flow becomes more correlated in the spanwise direction. On the contrary, an opposite behavior is noticed in the case of anisotropic porous layers, with an increase of streamwise correlation due to a strengthening of the low- and high-speed streaks.

  8. Vortex statistics in turbulent channel flows

    Science.gov (United States)

    Elsas, José Hugo; Augusto Moriconi, Luca Roberto

    2016-11-01

    In order to address the role of coherent structures in wall bounded turbulence, we study the statistics of morphological and kinematic properties of vortices, such as circulation, radius and height distributions. To accomplish that, we introduce a novel vortex identification method named as "vorticity curvature criterion" which is based on the local properties of the vorticity field. We furthermore employ a background subtraction procedure to remove shearing background effects expected to be present in the topology of the streamwise/wall-normal plane flow configurations. We discuss, through a comparative study of performance with the usual swirling strength criterion, and extending the previous analyses to the detection of coherent structures in the spanwise/wall normal planes, isotropization issues for the paradigmatic case of numerical turbulent channel flows. We acknowledge the funding from CNPq, CAPES and Faperj.

  9. Turbulent flow in two-inlet channels

    Energy Technology Data Exchange (ETDEWEB)

    Kao, H.C. [NASA, Cleveland, OH (United States). Lewis Research Center

    1993-12-01

    The problem of turbulent flows in two-inlet channels has been studied numerically by solving the Reynolds-averaged Navier-Stokes equations with the {kappa}-{epsilon} model in a mapped domain. Both the high Reynolds number and the low Reynolds number form were used for this purpose. In general, the former predicts a weaker and smaller recirculation zone that the latter. Comparisons with experimental data, when applicable, were also made. The bulk of the present computations used, however, the high Reynolds number form to correlate different geometries and inflow conditions with the flow properties after turning.

  10. Turbulence characteristics in sharp open-channel bends

    NARCIS (Netherlands)

    Blanckaert, K.; De Vriend, H.J.

    2005-01-01

    In spite of its importance, little is known about the turbulence characteristics in open-channel bends. This paper reports on an experimental investigation of turbulence in one cross section of an open-channel bend. Typical flow features are a bicellular pattern of cross-stream circulation

  11. Heat Transfer to MHD Oscillatory Viscoelastic Flow in a Channel Filled with Porous Medium

    Directory of Open Access Journals (Sweden)

    Rita Choudhury

    2012-01-01

    Full Text Available The combined effect of a transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin viscoelastic fluid through a channel filled with saturated porous medium and nonuniform walls temperature has been discussed. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. Closed-form analytical solutions are constructed for the problem. The effects of the radiation and the magnetic field parameters on velocity profile and shear stress for different values of the viscoelastic parameter with the combination of the other flow parameters are illustrated graphically, and physical aspects of the problem are discussed.

  12. A stable and convergent scheme for viscoelastic flow in contraction channels

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, David; Colella, Phillip; Miller, Gregory

    2004-02-15

    We present a new algorithm to simulate unsteady viscoelastic flows in abrupt contraction channels. In our approach we split the viscoelastic terms of the Oldroyd-B constitutive equation using Duhamel's formula and discretize the resulting PDEs using a semi-implicit finite difference method based on a Lax-Wendroff method for hyperbolic terms. In particular, we leave a small residual elastic term in the viscous limit by design to make the hyperbolic piece well-posed. A projection method is used to impose the incompressibility constraint. We are able to compute the full range of elastic flows in an abrupt contraction channel--from the viscous limit to the elastic limit--in a stable and convergent manner for elastic Mach numbers less than one. We demonstrate the method for unsteady Oldroyd-B and Maxwell fluids in planar contraction channels.

  13. Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel.

    Science.gov (United States)

    Kim, Bookun; Kim, Ju Min

    2016-03-01

    Particle focusing is an essential step in a wide range of applications such as cell counting and sorting. Recently, viscoelastic particle focusing, which exploits the spatially non-uniform viscoelastic properties of a polymer solution under Poiseuille flow, has attracted much attention because the particles are focused along the channel centerline without any external force. Lateral particle migration in polymer solutions in square channels has been studied due to its practical importance in lab-on-a-chip applications. However, there are still many questions about how the rheological properties of the medium alter the equilibrium particle positions and about the flow rate ranges for particle focusing. In this study, we investigated lateral particle migration in a viscoelastic flow of DNA solution in a square microchannel. The elastic property is relevant due to the long relaxation time of a DNA molecule, even when the DNA concentration is extremely low. Further, the shear viscosity of the solution is essentially constant irrespective of shear rate. Our current results demonstrate that the particles migrate toward the channel centerline and the four corners of a square channel in the dilute DNA solution when the inertia is negligible (elasticity-dominant flow). As the flow rate increases, the multiple equilibrium particle positions are reduced to a single file along the channel centerline, due to the elasto-inertial particle focusing mechanism. The current results support that elasto-inertial particle focusing mechanism is a universal phenomenon in a viscoelastic fluid with constant shear viscosity (Boger fluid). Also, the effective flow rate ranges for three-dimensional particle focusing in the DNA solution were significantly higher and wider than those for the previous synthetic polymer solution case, which facilitates high throughput analysis of particulate systems. In addition, we demonstrated that the DNA solution can be applied to focus a wide range of

  14. Turbulent structure in the junction region of compound open channels

    OpenAIRE

    冨永, 晃宏; 江崎, 一博; 森上, 秀樹

    1989-01-01

    An investigation on three-dimensional turbulent structure including secondary currents in compound open-channel flow is very important in basic hydraulics as well as practical engineering to verify the friction law of flow and sediment transport. In this study, secondary currents and three-dimensional turbulent structures in compound open channels were revealed experimentally by making use of a fiber-optic laser Doppler anemometer. Strong inclined upflow which is associated with a pair of lon...

  15. Turbulent intensity and scales of turbulence after hydraulic jump in rectangular channel

    Directory of Open Access Journals (Sweden)

    Kozioł Adam

    2016-06-01

    Full Text Available Turbulent intensity and scales of turbulence after hydraulic jump in rectangular channel. Experimental research was undertaken to investigate the changes in spatial turbulence intensity and scales of turbulent eddies (macroeddies in a rectangular channel and the influence of the hydraulic jump on vertical, lateral and streamwise distributions of relative turbulence intensity and scales of turbulent eddies. The results of three tests for different discharges are presented. An intensive turbulent mixing that arises as a result of a hydraulic jump has a significant effect on instantaneous velocity, turbulent intensities and sizes of eddies, as well as their vertical and longitudinal distributions. In the analysed case the most noticeable changes appeared up to 0.5 m downstream the hydraulic jump. In the vertical dimension such an effect was especially seen near the surface. The smallest streamwise sizes of macroeddies were present near the surface, maximum at the depth of z/h = 0.6 and from that point sizes were decreasing towards the bottom. The intensive turbulent mixing within the hydraulic jump generates macroeddies of small sizes.

  16. Evaporation of polydispersed droplets in a highly turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S. [INPT, UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Universite de Toulouse (France)

    2009-09-15

    A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector. (orig.)

  17. Transport of suspended particles in turbulent open channel flows

    NARCIS (Netherlands)

    Breugem, W.A.

    2012-01-01

    Two experiments are performed in order to investigate suspended sediment transport in a turbulent open channel flow. The first experiment used particle image velocimetry (PIV) to measure the fluid velocity with a high spatial resolution, while particle tracking velocimetry (PTV) was used to measure

  18. Ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip

    Science.gov (United States)

    Mukherjee, Siddhartha; Goswami, Prakash; Dhar, Jayabrata; Dasgupta, Sunando; Chakraborty, Suman

    2017-07-01

    We report a study on the ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip. Here, we derive an analytical solution for the potential distribution in a parallel plate microchannel, where the effects of finite sized ionic species are taken into account by invoking the free energy formalism. Following this, a purely electroosmotic flow of a simplified Phan-Thien-Tanner (sPTT) fluid is considered. For the sPTT model, linear, quadratic, and exponential kernels are chosen for the stress coefficient function describing its viscoelastic nature across various ranges of Deborah number. The theoretical framework presented in our analysis has been successfully compared with experimental results available in the literature. We believe that the implications of the considered effects on the net volumetric throughput will not only provide a deeper theoretical insight to interpret the electrokinetic data in the presence of ionic species but also serve as a fundamental design tool for novel electrokinetically driven lab-on-a-chip biofluidic devices.

  19. Statistics of polymer extensions in turbulent channel flow.

    Science.gov (United States)

    Bagheri, Faranggis; Mitra, Dhrubaditya; Perlekar, Prasad; Brandt, Luca

    2012-11-01

    We present direct numerical simulations of turbulent channel flow with passive Lagrangian polymers. To understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate the probability distribution function (PDF) of finite-time Lyapunov exponents and from them the corresponding Cramer's function for the channel flow. We study the statistics of polymer elongation for both the Oldroyd-B model (for Weissenberg number Wi1 (FENE model) the polymer are significantly more stretched near the wall than at the center of the channel where the flow is closer to homogenous isotropic turbulence. Furthermore near the wall the polymers show a strong tendency to orient along the streamwise direction of the flow, but near the center line the statistics of orientation of the polymers is consistent with analogous results obtained recently in homogeneous and isotropic flows.

  20. Turbulence intensity and spatial scales of turbulence after hydraulic jump over scour hole in rectangular channel

    Directory of Open Access Journals (Sweden)

    Kozioł Adam

    2017-12-01

    Full Text Available The study presents experimental investigations of spatial turbulence intensity and scales of turbulent eddies (macroeddies in a rectangular channel and the impact of the hydraulic jump on their vertical and streamwise distributions over a flat and scoured bed. The results of four tests and two different discharge rates are presented. Intensive mixing caused by the hydraulic jump has an impact on the instantaneous velocity, turbulence intensity and sizes of macroeddies, as well as their vertical and longitudinal distributions along the channel. The largest differences in turbulence characteristics were reported directly after the hydraulic jump, above the eroded bed. The interaction between the stream of the increased turbulence and the bed is a direct cause of formation of scour downstream water structures, which has a great effect on overall flow characteristics. The scour hole that arose downstream the jump moderated, in a small degree, the turbulence intensity at its end. Just next to the hydraulic jump only the small longitudinal relative sizes of macroeddies were present, while at the end of the analyzed reach, downstream of the scour, the relative scale reached around 1.5 depth of the stream.

  1. An improved near-wall treatment for turbulent channel flows

    Science.gov (United States)

    El Gharbi, Najla; Absi, Rafik; Benzaoui, Ahmed; Bennacer, Rachid

    2011-01-01

    The success of predictions of wall-bounded turbulent flows requires an accurate description of the flow in the near-wall region. This article presents a comparative study between different near-wall treatments and presents an improved method. The study is applied to fully developed plane channel flow (i.e. the flow between two infinitely large plates). Simulations were performed using Fluent. Near-wall treatments available in Fluent were tested: standard wall functions, non-equilibrium wall function and enhanced wall treatment. A user defined function (UDF), based on an analytical profile for the turbulent kinetic energy (Absi, R., 2008. Analytical solutions for the modeled k-equation. ASME Journal of Applied Mechanics, 75 (4), 044501), is developed and implemented. Predicted turbulent kinetic energy profiles are presented and validated by DNS data.

  2. Processes of Turbulent Liquid Flows in Pipelines and Channels

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2011-01-01

    Full Text Available The paper proposes a methodology for an analysis and calculation of processes pertaining to turbulent liquid flows in pipes and channels. Various modes of liquid motion in pipelines of thermal power devices and equipment have been considered in the paper.The presented dependences can be used while making practical calculations of losses due to friction in case of transportation of various energy carriers.

  3. Dynamics of prolate ellipsoidal particles in a turbulent channel flow

    OpenAIRE

    Mortensen, P.H.; Andersson, H.I.; Gillissen, J.J.J.; Boersma, B.J.

    2008-01-01

    The dynamical behavior of tiny elongated particles in a directly simulated turbulent flow field is investigated. The ellipsoidal particles are affected both by inertia and hydrodynamic forces and torques. The time evolution of the particle orientation and translational and rotational motions in a statistically steady channel flow is obtained for six different particle classes. The focus is on the influence of particle aspect ratio ? and the particle response time on the particle dynamics, i.e...

  4. Freezing in turbulent flow inside tubes and channels

    OpenAIRE

    Weigand, Bernhard; Beer, Hans

    1993-01-01

    A simple and quite flexible numerical model is presented to predict the steady state ice-layer formation inside a cooled two dimensional channel or a tube containing a turbulent flow. The effects of arbitrary entrance velocity distributions upon the shape of the ice-layers are examined. The presented numerical scheme is verified by comparing the predicted ice-layers with measurements and generally good agreement was found.

  5. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  6. Measurement of turbulent flow in a narrow open channel

    Directory of Open Access Journals (Sweden)

    Sarkar Sankar

    2016-09-01

    Full Text Available The paper presents the experimental results of turbulent flow over hydraulically smooth and rough beds. Experiments were conducted in a rectangular flume under the aspect ratio b/h = 2 (b = width of the channel 0.5 m, and h = flow depth 0.25 m for both the bed conditions. For the hydraulically rough bed, the roughness was created by using 3/8″ commercially available angular crushed stone chips; whereas sand of a median diameter d50 = 1.9 mm was used as the bed material for hydraulically smooth bed. The three-dimensional velocity components were captured by using a Vectrino (an acoustic Doppler velocimeter. The study focuses mainly on the turbulent characteristics within the dip that were observed towards the sidewall (corner of the channel where the maximum velocity occurs below the free-surface. It was also observed that the nondimensional Reynolds shear stress changes its sign from positive to negative within the dip. The quadrant plots for the turbulent bursting shows that the signs of all the bursting events change within the dip. Below the dip, the probability of the occurrence of sweeps and ejections are more than that of inward and outward interactions. On the other hand, within the dip, the probability of the occurrence of the outward and inward interactions is more than that of sweeps and ejections.

  7. LDPC coded OFDM over the atmospheric turbulence channel.

    Science.gov (United States)

    Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A

    2007-05-14

    Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).

  8. Average capacity for optical wireless communication systems over exponentiated Weibull distribution non-Kolmogorov turbulent channels.

    Science.gov (United States)

    Cheng, Mingjian; Zhang, Yixin; Gao, Jie; Wang, Fei; Zhao, Fengsheng

    2014-06-20

    We model the average channel capacity of optical wireless communication systems for cases of weak to strong turbulence channels, using the exponentiation Weibull distribution model. The joint effects of the beam wander and spread, pointing errors, atmospheric attenuation, and the spectral index of non-Kolmogorov turbulence on system performance are included. Our results show that the average capacity decreases steeply as the propagation length L changes from 0 to 200 m and decreases slowly down or tends to a stable value as the propagation length L is greater than 200 m. In the weak turbulence region, by increasing the detection aperture, we can improve the average channel capacity and the atmospheric visibility as an important issue affecting the average channel capacity. In the strong turbulence region, the increase of the radius of the detection aperture cannot reduce the effects of the atmospheric turbulence on the average channel capacity, and the effect of atmospheric visibility on the channel information capacity can be ignored. The effect of the spectral power exponent on the average channel capacity in the strong turbulence region is higher than weak turbulence region. Irrespective of the details determining the turbulent channel, we can say that pointing errors have a significant effect on the average channel capacity of optical wireless communication systems in turbulence channels.

  9. Influence of rheology on laminar heat transfer to viscoelastic fluids in a rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, C.; Hartnett, J.P. (Energy Resources Center, Univ. of Illinois at Chicago, Chicago, IL (US))

    1992-03-01

    Experimental studies of the laminar pressure drop and heat-transfer behavior of two types of aqueous polymer solutions were carried out in a 2:1 rectangular channel. The fluids studied were 1000 wppm of neutralized Carbopol 934 in deionized water and 1000 wppm of Separan AP-273 in tap water. Three difference thermal boundary conditions were studied. The experimental friction factors for the two polymer solutions agree with the value predicted for a purely viscous power law fluid. The measured Nusselt values for the two polymer solutions were considerably higher than the corresponding values for a power law fluid and higher than the experimental values for water. In this paper it is postulated that these high heat-transfer values are the result of secondary flows which arise from normal stress differences imposed on the boundaries of viscoelastic fluids in laminar flow through noncircular geometries. In addition, it is hypothesized that under laminar flow conditions the low frequency oscillatory behavior determines the relative elasticity, which in turn influences the heat-transfer performance of such fluids.

  10. Numerical investigation of particles turbulent dispersion in channel flow

    Directory of Open Access Journals (Sweden)

    Li Tian

    2012-01-01

    Full Text Available This paper investigates the performance of Reynolds-averaged Navier-Stokes model on dispersion of particles in wall turbulence. A direct numerical simulation of wall-bounded channel flow with particles suspensions was set as a benchmark. The standard k-ω model coupled with two different eddy interaction models was used in Reynolds-averaged Navier-Stokes model and compared to the direct numerical simulation. Detailed comparisons between direct numerical simulation and Reynolds-averaged Navier-Stokes model on particle distribution evolving over time were carried out.

  11. Dynamics of particle sedimentation in viscoelastic fluids: A numerical study on particle chain in two-dimensional narrow channel

    CERN Document Server

    Pan, Tsorng-Whay

    2016-01-01

    In this article we present a numerical method for simulating the sedimentation of circular particles in two-dimensional channel filled with a viscoelastic fluid of FENE-CR type, which is generalized from a domain/distributed Lagrange multiplier method with a factorization approach for Oldroyd-B fluids developed in [J. Non-Newtonian Fluid Mech. 156 (2009) 95]. Numerical results suggest that the polymer extension limit L for the FENE-CR fluid has no effect on the final formation of vertical chain for the cases of two disks and three disks in two-dimensional narrow channel, at least for the values of L considered in this article; but the intermediate dynamics of particle interaction before having a vertical chain can be different for the smaller values of L when increasing the relaxation time. For the cases of six particles sedimenting in FENE-CR type viscoelastic fluid, the formation of chain of 4 to 6 disks does depend on the polymer extension limit L. For the smaller values of L, FENE-CR type viscoelastic flu...

  12. Numerical simulation of FENE-P viscoelastic fluids flow and heat transfer in grooved channel with rectangular cavities

    Science.gov (United States)

    Filali, Abdelkader; Khezzar, Lyes; Alshehhi, Mohamed Saeed

    2017-08-01

    The forced convection heat transfer for non-Newtonian viscoelastic fluids obeying the FENE-P model in a parallel-plate channel with transverse rectangular cavities is carried out numerically using ANSYS-POLYFLOW code. The flow investigated is assumed to be two-dimensional, incompressible, laminar and steady. The flow behavior and temperature distribution influenced by the re-circulation caused by the variation of cross-section area along the stream wise direction have been studied. The constant heat flux condition has been applied and the effects of the different parameters, such as the aspect ratio of channel cavities (AR = 0.25, 0.5), the Reynolds number ( Re = 25, 250, and 500), the fluid elasticity defined by the Weissenberg number ( We), and the extensibility parameter of the model ( L 2), on heat transfer characteristics have been explored for channels of three successive cavities configuration. Different levels of heat transfer enhancement were obtained and discussed.

  13. Dynamic evolution process of turbulent channel flow after opposition control

    Science.gov (United States)

    Ge, Mingwei; Tian, De; Yongqian, Liu

    2017-02-01

    Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of and in the viscous sublayer. Project supported by the National Natural Science Foundation of China (Grant No. 11402088 and Grant No. 51376062) , State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (Grant No. LAPS15005), and ‘the Fundamental Research Funds for the Central Universities’ (Grant No.2014MS33).

  14. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.

    2017-12-13

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels. The model shows an excellent agreement with the measured data under all channel conditions.

  15. Turbulence characteristics of open channel flow over non ...

    Indian Academy of Sciences (India)

    The effect of the non-equilibrium mobile dunes on the flow characteristics and turbulence is examined by computing turbulent intensities, turbulent kinetic energy and Reynolds shear stresses using time averaged and time–space averaged velocity measurements. The magnitudes of transverse velocities are approximately ...

  16. Numerical Simulations of Competitive-Consecutive Reactions in Turbulent Channel Flow

    NARCIS (Netherlands)

    Vrieling, A.J.

    2003-01-01

    This thesis deals with mixing of passive scalars in a turbulent flow. The passive scalars are released in a turbulent plane channel flow and interpreted as either non-reactive components or reactive components that are involved in a competitive-consecutive reaction system. The evolution of these

  17. Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows.

    Science.gov (United States)

    Gomez, T; Flutet, V; Sagaut, P

    2009-03-01

    An exact relationship for the local skin friction is derived for the compressible turbulent wall-bounded flow (channel, pipe, flat plate). This expression is an extension of the compressible case of that derived by Fukagata [Phys. Fluids 14, L73 (2002)] in the case of incompressible wall-bounded flows. This decomposition shows that the skin friction can be interpreted as the contribution of four physical processes, i.e., laminar, turbulent, compressible, and a fourth coming from the interaction between turbulence and compressibility. Compressible numerical simulations show that, even at Mach number M=2 , the main contribution comes from the turbulence, i.e., the Reynolds stress term.

  18. Lagrangian Modeling of Turbulent Dispersion from Instantaneous Point Sources at the Center of a Turbulent Flow Channel

    Directory of Open Access Journals (Sweden)

    Quoc Nguyen

    2017-09-01

    Full Text Available The paper is focused on the simulation and modeling of the dispersion from an instantaneous source of heat or mass located at the center of a turbulent flow channel. The flow is modeled with a direct numerical simulation, and the dispersion is modeled with Lagrangian methods based on Lagrangian scalar tracking (LST. The LST technique allows the simulation of scalar sources that span a range of Prandtl or Schmidt numbers that cover orders of magnitude. The trajectories of individual heat or mass markers are tracked, generating a probability distribution function that describes the behavior of instantaneous point sources of a scalar in the turbulent field. The effect of the Prandtl or Schmidt number on turbulent dispersion is examined, with emphasis on the dispersion pattern. Results for Prandtl or Schmidt numbers between 0.1 and 15,000 are presented. For an instantaneous source at the channel center, it is found that there are two zones of cloud development: one where molecular diffusion plays a role at very small times (early stage of the dispersion, and one where turbulent convection dominates. The asphericity of the scalar marker cloud is found to increase monotonically, in contrast to published results for isotropic, homogenous turbulence, where the asphericity goes through a maximum.

  19. The stress generated by non-Brownian fibers in turbulent channel flow simulations

    NARCIS (Netherlands)

    Gillissen, J.J.J.; Boersma, B.J.; Mortensen, P.H.; Andersson, H.I.

    2007-01-01

    Turbulent fiber suspension channel flow is studied using direct numerical simulation. The effect of the fibers on the fluid mechanics is governed by a stress tensor, involving the distribution of fiber position and orientation. Properties of this function in channel flow are studied by computing the

  20. Chemically reacting dusty viscoelastic fluid flow in an irregular channel with convective boundary

    Directory of Open Access Journals (Sweden)

    R. Sivaraj

    2013-03-01

    Full Text Available In this paper, we have studied the combined effects of free convective heat and mass transfer on an unsteady MHD dusty viscoelastic (Walters liquid model-B fluid flow between a vertical long wavy wall and a parallel flat wall saturated with porous medium subject to the convective boundary condition. The coupled partial differential equations are solved analytically using perturbation technique. The velocity, temperature and concentration fields have been studied for various combinations of physical parameters such as magnetic field, heat absorption, thermal radiation, radiation absorption, Biot number and chemical reaction parameters. The skin friction, Nusselt number and Sherwood number are also presented and displayed graphically. Further, it is observed that the velocity profiles of dusty fluid are higher than the dust particles.

  1. Heat Transfer Enhancement in a Channel with Rib-Groove Turbulators

    Science.gov (United States)

    Kaewkohkiat, Y.; Kongkaitpaiboon, V.; Eiamsa-ard, S.; Pimsarn, M.

    2010-03-01

    This paper presents the effects of the rib-groove turbulators on the heat transfer and friction characteristics in a rectangular channel. The experiments encompass the Reynolds number range from 1800 to 10,000; pitch ratios (PR = P/e) 6.6-13.3 by using air as the working fluid. The obtained results demonstrate that heat transfer rate in term of Nusselt number (Nu) increases with the increase of Reynolds number, whereas friction factor (f) shows the opposite trend. Both Nusselt number and friction factor increase with decreasing pitch ratio. It is also observed that heat transfer rate and friction factor for the channels with rib-groove turbulators are higher than those for the smooth channel under similar test conditions. In addition, the correlations for heat transfer rate in term of Nusselt number (Nu) and friction factor (f) for channel with rib-groove turbulators are also presented.

  2. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems

    KAUST Repository

    Oubei, Hassan M.

    2017-06-16

    In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.

  3. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems.

    Science.gov (United States)

    Oubei, Hassan Makine; Zedini, Emna; ElAfandy, Rami T; Kammoun, Abla; Abdallah, Mohamed; Ng, Tien Khee; Hamdi, Mounir; Alouini, Mohamed-Slim; Ooi, Boon S

    2017-07-01

    In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.

  4. An investigation of turbulent catalytically stabilized channel flow combustion of lean hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Benz, P.; Schaeren, R.; Bombach, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.

  5. 500  Gb/s free-space optical transmission over strong atmospheric turbulence channels.

    Science.gov (United States)

    Qu, Zhen; Djordjevic, Ivan B

    2016-07-15

    We experimentally demonstrate a high-spectral-efficiency, large-capacity, featured free-space-optical (FSO) transmission system by using low-density, parity-check (LDPC) coded quadrature phase shift keying (QPSK) combined with orbital angular momentum (OAM) multiplexing. The strong atmospheric turbulence channel is emulated by two spatial light modulators on which four randomly generated azimuthal phase patterns yielding the Andrews spectrum are recorded. The validity of such an approach is verified by reproducing the intensity distribution and irradiance correlation function (ICF) from the full-scale simulator. Excellent agreement of experimental, numerical, and analytical results is found. To reduce the phase distortion induced by the turbulence emulator, the inexpensive wavefront sensorless adaptive optics (AO) is used. To deal with remaining channel impairments, a large-girth LDPC code is used. To further improve the aggregate data rate, the OAM multiplexing is combined with WDM, and 500 Gb/s optical transmission over the strong atmospheric turbulence channels is demonstrated.

  6. Relevance of approximate deconvolution for one-way coupled motion of inertial particles in LES of turbulent channel flow

    NARCIS (Netherlands)

    Jaszczur, Marck; Kuerten, Johannes G.M.; Salvetti, Maria-Vittoria; Geurts, Bernardus J.; Meyers, Johan; Sagaut, Pierre

    2011-01-01

    The Euler-Lagrange approach, based on Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES) for the fluid, is applied to particle-laden turbulent flow in a channel. Explicit subgrid modeling of the turbulent stresses is adopted, while the particle motion includes small turbulent scales

  7. Water droplet condensation and evaporation in turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.

    We propose a point-particle model for two-way coupling of water droplets dispersed in the turbulent flow of a carrier gas consisting of air and water vapour. We adopt an Euler–Lagrangian formulation based on conservation laws for the mass, momentum and energy of the continuous phase and on empirical

  8. Self-sustained processes in the logarithmic layer of turbulent channel flows

    Science.gov (United States)

    Hwang, Yongyun; Cossu, Carlo

    2011-06-01

    It has recently been shown that large-scale and very-large-scale motions can self-sustain in turbulent channel flows even in the absence of input from motions at smaller scales. Here we show that also motions at intermediate scales, mainly located in the logarithmic layer, survive when motions at smaller scales are artificially quenched. These elementary self-sustained motions involve the bursting and regeneration of sinuous streaks. This is a further indication that a full range of autonomous self-sustained processes exists in turbulent channel flows with scales ranging from those of the buffer layer streaks to those of the large scale motions in the outer layer.

  9. Exploratory laboratory study of lateral turbulent diffusion at the surface of an alluvial channel

    Science.gov (United States)

    Sayre, William W.; Chamberlain, A.R.

    1964-01-01

    In natural streams turbulent diffusion is one of the principal mechanisms by which liquid and suspended-particulate contaminants are dispersed in the flow. A knowledge of turbulence characteristics is therefore essential in predicting the dispersal rates of contaminants in streams. In this study the theory of diffusion by continuous movements for homogeneous turbulence is applied to lateral diffusion at the surface of an open channel in which there is uniform flow. An exploratory-laboratory investigation was conducted in which the lateral dispersion at the water surface of a sand-Led flume was studied by measuring the lateral spread from a point source of small floating polyethylene articles. The experiment was restricted to a single set of low and channel geometry conditions. The results of the study indicate that with certain restrictions lateral dispersion in alluvial channels may be successfully described by the theory of diffusion by continuous movements. The experiment demonstrates a means for evaluating the lateral diffusion coefficient and also methods for quantitatively estimating fundamental turbulence properties, such as the intensity and the Lagrangian integral scale of turbulence in an alluvial channel. The experimental results show that with increasing distance from the source the coefficient of lateral turbulent diffusion increases initially but tends toward a constant limiting value. This result is in accordance with turbulent diffusion theory. Indications are that the distance downstream from the source required for the diffusion coefficient to reach its limiting value is actually very small when compared to the length scale of most diffusion phenomena in natural streams which are of practical interest.

  10. Skin-friction Drag Reduction in Turbulent Channel Flow with Idealized Superhydrophobic Walls

    Science.gov (United States)

    Ratsegari, Amirreza; Akhavan, Rayhaneh

    2013-11-01

    Skin-friction drag reduction by super-hydrophobic (SH) surfaces was investigated using Lattice Boltzmann DNS in turbulent channel flow with SH longitudinal microgrooves on both walls. The liquid/gas interfaces in the SH microgrooves were modeled as flat, shear-free surfaces. Drag reductions (DR) ranging from 5 % to 47 % were observed for microgrooves of size 4 base flow wall units. It is shown that in both laminar and turbulent flow, DR scales as DR =Us /Ub + ɛ . In laminar flow, where DR is purely due to surface slip, ɛ = 0 . In turbulent flow, ɛ remains negligible when the slip length is smaller than the thickness of the viscous sublayer. For DR > 40 % , where the effect of surface slip can be felt in the buffer layer, ɛ attains a small non-zero value. Analysis of turbulence statistics and turbulence kinetic energy budgets confirms that outside of a layer of size approximately one slip length from the walls, the turbulence dynamics proceeds as in regular channel flow with no-slip walls.

  11. Reducing spin-up time for simulations of turbulent channel flow

    Science.gov (United States)

    Nelson, K. S.; Fringer, O. B.

    2017-10-01

    Spin-up of turbulent channel flow forced with a constant mean pressure gradient is prolonged because the flow accelerates due to an imbalance between the driving pressure gradient and total bottom stress. To this end, a method ensuring a time invariant volume-averaged streamwise velocity during spin-up is presented and compared to simulations forced with a mean pressure gradient for both linear and logarithmic initial velocity profiles. The comparisons are made for open-channel flow with a friction Reynolds number Reτ of 500. Additional simulations with Reτ ranging from 1 to 400 are also run to confirm validity of the method for a range of Reynolds numbers. While the method eliminates spin-up time related to approaching the target volume-averaged velocity, spin-up time is still required for the flow to transition to turbulence and reach statistical equilibrium. Therefore, the time evolution of turbulence in response to different initial velocity profiles and random perturbations is investigated. Simulations initialized with linear velocity profiles trigger turbulence and reach statistical equilibrium sooner than those initialized with logarithmic profiles given the same initial perturbations, a manifestation of the increased shear created by linear profiles. The results suggest that, combined with appropriate initial conditions, ensuring a time invariant volume-averaged streamwise velocity can reduce the computational time associated with spin-up of turbulent open-channel flows by at least a factor of five.

  12. Acoustic Instabilities as a Source of Turbulence in Reduced Density Channels

    Science.gov (United States)

    1982-04-21

    8. CONTRACT OR GRANT ZNUMSER(q) Michael Raleigh I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA II WORK UNIT...reduced density channels. Thus it appears that air chemistry plays no role in creating the turbulence observed in these channels. Metastable energies an...University of California Livermore, California 94550 ATTN: Dr. R. J. Briggs Dr. T. Fessenden Dr. D. Prono Dr. Simon Yu 7. Mission Research Corporation

  13. Clearing channel in condensation trail in the frame of turbulence model with one differential equation

    Science.gov (United States)

    Kucherov, A. N.

    2003-09-01

    A polydispersive water aerosol model is developed in the frame of a one parameter model of turbulence in the wake behind large civil aircraft. A possibility is considered to create a clearing channel in the condensation trail (contrail) by a laser beam. Relations are derived between contrail parameters, clearing channel parameters and parameters at the engine nozzle section for different atmosphere conditions in cruiser. As an example contrails behind aircraft IL-86 and IL-96 are considered.

  14. Turbulence characteristics of flow in an open channel with temporally varying mobile bedforms

    Directory of Open Access Journals (Sweden)

    Hanmaiahgari Prashanth Reddy

    2017-03-01

    Full Text Available Turbulence of flow over mobile bedforms in natural open channels is not yet clearly understood. An attempt is made in this paper to determine the effect of naturally formed mobile bedforms on velocities, turbulent intensities and turbulent stresses. Instantaneous velocities are measured using a two-dimensional particle image velocimetry (PIV to evaluate the turbulence structure of free surface flow over a fixed (immobile bed, a weakly mobile bed and a temporally varying mobile bed with different stages of bedform development. This paper documents the vertical distribution of velocity, turbulence intensities, Reynolds shear stress and higher-order moments including skewness and turbulent diffusion factors. Analysis of the velocity distributions shows a substantial decrease of velocity near the bed with increasing bedform mobility due to increased friction. A modified logarithmic law with a reduced von Kármán constant and increased velocity shift is proposed for the case of the mobile bedforms. A significant increase in the Reynolds shear stress is observed in the mobile bedforms experiments accompanied by changes over the entire flow depth compared to an immobile bed. The skewness factor distribution was found to be different in the case of the flow over the mobile bedforms. All higher-order turbulence descriptors are found to be significantly affected by the formation of temporally varying and non-equilibrium mobile bedforms. Quadrant analysis indicates that sweep and outward events are found to be dominant in strongly mobile bedforms and govern the bedform mobility.

  15. Use of Lagrangian statistics for the analysis of the scale separation hypothesis in turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Francois G., E-mail: francois.schmitt@univ-lille1.f [Laboratoire d' Oceanologie et de Geosciences, CNRS UMR LOG 8187, Universite des sciences et technologies de Lille, Lille 1, Wimereux (France); Vinkovic, Ivana, E-mail: ivana.vinkovic@univ-lyon1.f [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS UMR 5509, Universite Claude Bernard Lyon, Lyon 1, Villeurbanne (France); Buffat, Marc, E-mail: marc.buffat@univ-lyon1.f [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS UMR 5509, Universite Claude Bernard Lyon, Lyon 1, Villeurbanne (France)

    2010-07-19

    Turbulence models often involve Reynolds averaging, with a closure providing the Reynolds stress tensor as function of mean velocity gradients, through a turbulence constitutive equation. The main limitation of this linear closure is that it rests on an analogy with kinetic theory. For this analogy to be valid there has to be a scale separation between the mean velocity variations and the turbulent Lagrangian free path whose mean value is the turbulent mixing length. The aim of this work is to better understand this hypothesis from a microscopic point of view. Therefore, fluid elements are tracked in a turbulent channel flow. The flow is resolved by direct numerical simulation (DNS). Statistics on particle trajectories ending on a certain distance y{sub 0} from the wall are computed, leading to estimations of the turbulent mixing length scale and the Knudsen number. Comparing the computed values to the Knudsen number in the case of scale separation, we may know in which region of the flow and to what extent the turbulence constitutive equation is not verified. Finally, a new non-local formulation for predicting the Reynolds stress is proposed.

  16. Turbulent mixed convection in asymmetrically heated vertical channel

    Directory of Open Access Journals (Sweden)

    Mokni Ameni

    2012-01-01

    Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.

  17. Experimental and Computational Studies of Turbulent Mass Transfer in a Mixing Channel

    DEFF Research Database (Denmark)

    Hjertager, Lene Kristin; Hjertager, Bjørn H.; Solberg, Tron

    2008-01-01

    Experiments are carried out for passive mixing in order to obtain local mean and turbulent velocities and concentrations. The mixing takes place in a square channel with two inlets separated by a block. A combined PIV/PLIF technique is used to obtain instantaneous velocity and concentration field...

  18. Experiments and CFD Modelling of Turbulent Mass Transfer in a Mixing Channel

    DEFF Research Database (Denmark)

    Hjertager Osenbroch, Lene Kristin; Hjertager, Bjørn H.; Solberg, Tron

    2006-01-01

    Experiments are carried out for passive mixing in order to obtain local mean and turbulent velocities and concentrations. The mixing takes place in a square channel with two inlets separated by a block. A combined PIV/PLIF technique is used to obtain instantaneous velocity and concentration field...

  19. Numerical investigation of turbulent flow and heat transfer in channel with ribs

    DEFF Research Database (Denmark)

    Myllerup, Lisbeth; Larsen, Poul Scheel

    1999-01-01

    The performance of three different low-Reynolds number turbulence models has been explored for the benchmark test of fully developed (periodic) flow in a ribbed plane channel. Results are presented for two values of the Reynolds number (based on mean velocity and hydraulic diameter), Re = 37...

  20. Statistics of spatial derivatives of velocity and pressure in turbulent channel flow

    NARCIS (Netherlands)

    Vreman, A.W.; Kuerten, Johannes G.M.

    Statistical profiles of the first- and second-order spatial derivatives of velocity and pressure are reported for turbulent channel flow at Re τ = 590. The statistics were extracted from a high-resolution direct numerical simulation. To quantify the anisotropic behavior of fine-scale structures, the

  1. Near-bed turbulence and sediment flux measurements in tidal channels

    Science.gov (United States)

    Wright, S.A.; Whealdon-Haught, D.R.

    2012-01-01

    Understanding the hydrodynamics and sediment transport dynamics in tidal channels is important for studies of estuary geomorphology, sediment supply to tidal wetlands, aquatic ecology and fish habitat, and dredging and navigation. Hydrodynamic and sediment transport data are essential for calibration and testing of numerical models that may be used to address management questions related to these topics. Herein we report preliminary analyses of near-bed turbulence and sediment flux measurements in the Sacramento-San Joaquin Delta, a large network of tidal channels and wetlands located at the confluence of the Sacramento and San Joaquin Rivers, California, USA (Figure 1). Measurements were made in 6 channels spanning a wide range of size and tidal conditions, from small channels that are primarily fluvial to large channels that are tidally dominated. The results of these measurements are summarized herein and the hydrodynamic and sediment transport characteristics of the channels are compared across this range of size and conditions.

  2. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    Science.gov (United States)

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  3. Performance Analysis of Free-Space Optical Communication Systems With Multiuser Diversity Over Atmospheric Turbulence Channels

    KAUST Repository

    Yang, Liang

    2014-04-01

    Free-space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short-range applications. To address this, we propose a multiuser diversity (MD) FSO scheme in which the Nth best user is selected and the channel fluctuations can be effectively exploited to produce a selection diversity gain. More specifically, we first present the statistics analysis for the considered system over both weak and strong atmospheric turbulence channels. Based on these statistics, the outage probability, bit-error rate performance, average capacity, diversity order, and coverage are analyzed. Results show that the diversity order for the gamma-gamma fading is N min{α, β}/2, where N is the number of users, and α and β are the channel fading parameters related to the effective atmospheric conditions of the link.

  4. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    Science.gov (United States)

    Russo, E.; Kuerten, J. G. M.; van der Geld, C. W. M.; Geurts, B. J.

    2011-12-01

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an Eulerian-Lagrangian approach. The two-way coupling is investigated in terms of the effects of mass and heat transfer on the droplets distributions along the channel wall-normal direction and by comparison of the droplet temperature statistics with respect to the case without evaporation and condensation. A remarkable conclusion is that the presence of evaporating and condensing droplets results in an increase in the non-dimensional heat transfer coefficient of the channel flow represented by the Nusselt number.

  5. Theoretical study of turbulent channel flow: Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    Science.gov (United States)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1988-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr--Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O--S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend stongly on the structure of the turbulence spectrun at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  6. Theoretical study of turbulent channel flow - Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    Science.gov (United States)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1990-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  7. Fading Losses on the LCRD Free-Space Optical Link Due to Channel Turbulence

    Science.gov (United States)

    Moision, Bruce; Piazzolla, Sabino; Hamkins, Jon

    2013-01-01

    The Laser Communications Relay Demonstration (LCRD) will implement an optical communications link between a pair of Earth terminals via an Earth-orbiting satellite relay. Clear air turbulence over the communication paths will cause random fluctuations, or fading, in the received signal irradiance. In this paper we characterize losses due to fading caused by clear air turbulence. We illustrate the performance of a representative relay link, utilizing a channel interleaver and error-correction-code to mitigate fading, and provide a method to quickly determine the link performance.

  8. Comparison of Subaerial and Submarine Mixing and Sediment Transport in Sinuous Channel Bends Using Turbulence-Resolving Numerical Models

    Science.gov (United States)

    Schmeeckle, M. W.

    2014-12-01

    Large eddy simulations (LES) of turbulence and sediment suspension are conducted in both subaerial and submarine meandering channels. The Boussinesq approximation of buoyancy is applied to the spatially-filtered, Navier-Stokes equations through the simultaneous solution of the suspended sediment continuity equation with the Smith-McLean boundary condition. Production of turbulence and, consequently, turbulent kinetic energy is stronger at channel bends than in straight sections. This pattern is more pronounced in subaerial channels. Depth integrated, two-dimensional models of turbidity currents critically rely upon parameterization of the entrainment of water at the top of the flow and sediment exchange with the bed. Secondary flow and turbulence structure due to channel sinuosity significantly alter these parameterizations and the assumed vertical profiles of velocity and sediment concentration. Large turbulent structures episodically inject relatively clear water from the top to the base of the flow at the outside of channel bends, and, simultaneously, sediment laden fluid is ejected from the bed at the inside of channel bends. As a result, sediment deposition in sinuous channels is reduced compared to application of two-dimensional models. The LES turbidity current model is extended to channel morphodynamics by grid adjustment at each fluid and sedment time step. The LES morphodynamic model has been tested, thus far, in strongly depositional sinuous channel turbidity currents. Relatively uniform channel deposition and rapidly developing sharp-crested levees are built in these conditions. Further simulations involving partially erosional conditions and bedload transport will be presented.

  9. The physics of stripe patterns in turbulent channel flow determined by DNS results

    CERN Document Server

    Kiš, P; Herwig, H

    2015-01-01

    The turbulent flow in an infinitely extended plane channel is analysed by solving the Navier-Stokes equations with a DNS approach. Solutions are obtained in a numerical solution domain of finite size in the streamwise as well as in the lateral direction setting periodic boundary conditions in both directions. Their impact on large scale structures in the turbulent flow field is analysed carefully in order to avoid their suppression. When this is done appropriately well known stripe patterns in these flows can be observed and analysed especially with respect to their relative motion compared to the mean flow velocity. Various details of this stripe pattern dominated velocity field are shown. Also global parameters like the friction factor in the flow field and the Nusselt number in the temperature field are determined based on the statistics of the flow and temperature data in a very large time period that guarantees fully developed turbulent flow and heat transfer.

  10. Exact coherent states and connections to turbulent dynamics in minimal channel flow

    CERN Document Server

    Park, Jae Sung

    2015-01-01

    Several new families of nonlinear three-dimensional travelling wave solutions to the Navier-Stokes equation, also known as exact coherent states, are computed for Newtonian plane Poiseuille flow. The symmetries and streak/vortex structures are reported and their possible connections to critical layer dynamics examined. While some of the solutions clearly display fluctuations that are localized around the critical layer (the surface on which the streamwise velocity matches the wave speed of the solution), for others this connection is not as clear. Dynamical trajectories along unstable directions of the solutions are computed. Over certain ranges of Reynolds number, two solution families are shown to lie on the basin boundary between laminar and turbulent flow. Direct comparison of nonlinear travelling wave solutions to turbulent flow in the same channel is presented. The state-space dynamics of the turbulent flow are organized around one of the newly-identified travelling wave families, and in particular the ...

  11. Ray tracing in a turbulent, shallow-water channel

    DEFF Research Database (Denmark)

    Bjerrum-Niese, Christian; Lützen, René; Jensen, Leif Bjørnø

    1998-01-01

    A ray tracing model can be used to simulate sound (10–100 kHz) transmitted through shallow water. The phase of the ray arrivals, primarily given by travel time, may be mutually independent in such a multipath transmission. Consequently, the transmission loss in a receiving point is randomly valued...... due to the coherent interference of the multipath arrivals. This problem can be overcome by incoherent summation of the multipath arrivals. However, knowing that nature behaves coherently, this method is not preferred. Instead, the channel can be regarded as dynamic by allowing microfluctuations...

  12. Scaling of normalized mean energy and scalar dissipation rates in a turbulent channel flow

    Science.gov (United States)

    Abe, Hiroyuki; Antonia, Robert Anthony

    2011-05-01

    Non-dimensional parameters for the mean energy and scalar dissipation rates Cɛ and Cɛθ are examined using direct numerical simulation (DNS) data obtained in a fully developed turbulent channel flow with a passive scalar (Pr = 0.71) at several values of the Kármán (Reynolds) number h+. It is shown that Cɛ and Cɛθ are approximately equal in the near-equilibrium region (viz., y+ = 100 to y/h = 0.7) where the production and dissipation rates of either the turbulent kinetic energy or scalar variance are approximately equal and the magnitudes of the diffusion terms are negligibly small. The magnitudes of Cɛ and Cɛθ are about 2 and 1 in the logarithmic and outer regions, respectively, when h+ is sufficiently large. The former value is about the same for the channel, pipe, and turbulent boundary layer, reflecting the similarity between the mean velocity and temperature distributions among these three canonical flows. The latter value is, on the other hand, about twice as large as in homogeneous isotropic turbulence due to the existence of the large-scale u structures in the channel. The behaviour of Cɛ and Cɛθ impacts on turbulence modeling. In particular, the similarity between Cɛ and Cɛθ leads to a simple relation for the scalar variance to turbulent kinetic energy time-scale ratio, an important ingredient in the eddy diffusivity model. This similarity also yields a relation between the Taylor and Corrsin microscales and analogous relations, in terms of h+, for the Taylor microscale Reynolds number and Corrsin microscale Peclet number. This dependence is reasonably well supported by both the DNS data at small to moderate h+ and the experimental data of Comte-Bellot [Ph. D. thesis (University of Grenoble, 1963)] at larger h+. It does not however apply to a turbulent boundary layer where the mean energy dissipation rate, normalized on either wall or outer variables, is about 30% larger than for the channel flow.

  13. Lagrangian statistics in turbulent channel flow: implications for Lagrangian stochastic models

    Science.gov (United States)

    Stelzenmuller, Nickolas; Polanco, Juan Igancio; Vinkovic, Ivana; Mordant, Nicolas

    2016-11-01

    Lagrangian acceleration and velocity correlations in statistically one-dimesional turbulence are presented in the context of the development of Lagrangian stochastic models of inhomogeneous turbulent flows. These correlations are measured experimentally by 3D PTV in a high aspect ratio water channel at Reτ = 1450 , and numerically from DNS performed at the same Reynolds number. Lagrangian timescales, key components of Lagrangian stochastic models, are extracted from acceleration and velocity autocorrelations. The evolution of these timescales as a function of distance to the wall is presented, and compared to similar quantities measured in homogeneous isotropic turbulence. A strong dependance of all Lagrangian timescales on wall distance is present across the width of the channel. Significant cross-correlations are observed between the streamwise and wall-normal components of both acceleration and velocity. Lagrangian stochastic models of this flow must therefore retain dependance on the wall-normal coordinate and the components of acceleration and velocity, resulting in significantly more complex models than those used for homogeneous isotropic turbulence. We gratefully acknowledge funding from the Agence Nationale de la Recherche, LabEx Tec 21, and CONICYT Becas Chile.

  14. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  15. PIV Measurements of Turbulent Flow in a Channel with Solid or Perforated Ribs

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt

    2011-01-01

    Particle image velocimetry measurements are performed in a channel with periodic ribs on one wall. We investigate the flow around two different rib configurations: solid and perforated ribs with a slit. The ribs obstruct the channel by 20% of its height and are arranged 10 rib heights apart....... For the perforated ribs, the slit height is 20% of the rib height, and the open-area ratio is 16%. We discuss the flow in terms of mean velocity, streamlines, vorticity, turbulence intensity, and Reynolds shear stress. We find that the recirculation bubbles after the perforated ribs are significantly smaller than...

  16. Performance of BICM-based QAM-SIM OWC over gamma-gamma turbulence channels

    KAUST Repository

    Malik, Muhammad Talha

    2015-05-01

    We derive a series expression for the pair-wise error probability (PEP) of bit interleaved coded modulation (BICM)-based subcarrier intensity modulation (SIM) optical wireless communication (OWC) system employing M^{2}-ary quadrature amplitude modulation ( M^{2} -QAM) over the Gamma-Gamma turbulence channels. Using this expression, we develop an upper bound (UB) to predict the bit-error rate performance of such system. Simulation results are presented to verify the analytical results. We also develop an asymptotic UB which reveals that the diversity order depends on the smaller channel parameter and the free distance of the convolutional code. © 1997-2012 IEEE.

  17. Low SNR Capacity of FSO Links over Gamma-Gamma Atmospheric Turbulence Channels

    KAUST Repository

    Benkhelifa, Fatma

    2013-01-27

    In this paper, we study the ergodic capacity of free space optical communication systems over Gamma-Gamma atmospheric turbulence fading channels with perfect channel state information at both the transmitter and the receiver. In our framework, we mainly focus on the low signal-to-noise ratio range and show that the ergodic capacity scales proportionally to SNR log^4(1/SNR). We show also that one-bit CSI feedback at the transmitter is enough to achieve this capacity using an on-o ff power control scheme.

  18. Low SNR Capacity of FSO Links over Gamma-Gamma Atmospheric Turbulence Channels

    KAUST Repository

    Benkhelifa, Fatma

    2013-02-23

    In this paper, we study the ergodic capacity of free space optical communication systems over Gamma-Gamma atmospheric turbulence fading channels with perfect channel state information at both the transmitter and the receiver. In our framework, we mainly focus on the low signal-to-noise ratio range and show that the ergodic capacity scales proportionally to SNR log^4(1/SNR). We show also that one-bit CSI feedback at the transmitter is enough to achieve this capacity using an on-off power control scheme.

  19. SPH modelling of depth‐limited turbulent open channel flows over rough boundaries

    Science.gov (United States)

    Kazemi, Ehsan; Nichols, Andrew; Tait, Simon

    2016-01-01

    Summary A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth‐limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier–Stokes equations is solved, in which a drag‐based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub‐particle‐scale model is applied to account for the effect of turbulence. The sub‐particle‐scale model is constructed based on the mixing‐length assumption rather than the standard Smagorinsky approach to compute the eddy‐viscosity. A robust in/out‐flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd PMID:28066121

  20. SPH modelling of depth-limited turbulent open channel flows over rough boundaries.

    Science.gov (United States)

    Kazemi, Ehsan; Nichols, Andrew; Tait, Simon; Shao, Songdong

    2017-01-10

    A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth-limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier-Stokes equations is solved, in which a drag-based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub-particle-scale model is applied to account for the effect of turbulence. The sub-particle-scale model is constructed based on the mixing-length assumption rather than the standard Smagorinsky approach to compute the eddy-viscosity. A robust in/out-flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd.

  1. Laboratorial studies on the seepage impact in open-channel flow turbulence

    Science.gov (United States)

    Herrera Granados, Oscar; Kostecki, Stanislaw

    2011-12-01

    In natural streams, the interaction between water in motion and movable beds derives in transport of material. This is a fact that causes several problems for river regulation, above all in streams which were heavily modified by human interferences. Therefore, to find solutions or at least to alleviate the negative effects that sediment transport can bring with is a topic to be researched. The impact of seepage on river sedimentation processes and open-channel flow is important for environmental issues but it is commonly neglected by water specialists. The present contribution presents the output of a series of experimental works where the influence of seepage on the open channel turbulence is analyzed at the laboratory scale. Even though that the magnitude of the groundwater flow is significantly smaller than the magnitude of the open channel flow; the output of the experiments demonstrates that seepage not only modifies the water-sediment interaction as demonstrated Herrera Granados (2008; 2010); but also is affecting the velocity field and turbulence dynamics of the open-channel flow.

  2. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters

    Science.gov (United States)

    Han, J. C.; Park, J. S.; Ibrahim, M. Y.

    1986-01-01

    Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.

  3. The influence of near-wall density and viscosity gradients on turbulence in channel flows

    CERN Document Server

    Patel, Ashish; Pecnik, Rene

    2016-01-01

    The influence of near-wall density and viscosity gradients on near-wall turbulence in a channel are studied by means of Direct Numerical Simulation (DNS) of the low-Mach number approximation of the Navier--Stokes equations. Different constitutive relations for density and viscosity as a function of temperature are used in order to mimic a wide range of fluid behaviours and to develop a generalised framework for studying turbulence modulations in variable property flows. Instead of scaling the velocity solely based on local density, as done for the van Driest transformation, we derive an extension of the scaling that is based on gradients of the semi-local Reynolds number $Re_\\tau^*$. This extension of the van Driest transformation is able to collapse velocity profiles for flows with near-wall property gradients as a function of the semi-local wall coordinate. However, flow quantities like mixing length, turbulence anisotropy and turbulent vorticity fluctuations do not show a universal scaling very close to th...

  4. Turbulent channel flow concentration profile and wall deposition of a large Schmidt number passive scalar

    Science.gov (United States)

    Garcia-Ybarra, Pedro L.; Pinelli, Alfredo

    2006-08-01

    The transport of a passive scalar within a turbulent plane channel flow has been theoretically analyzed by assuming that the Schmidt number Sc, associated to the molecular diffusivity of the passive scalar, is a large parameter. Throughout most of the channel cross-section the mean passive scalar density is constant, but adjacent to the walls a thin boundary layer develops embedded in the viscous sublayer, with a relative thickness of order Sc. In this narrow region a passive scalar profile arises due to the non-vanishing flux normal to the wall. This profile is parameter independent (universal) and leads to a constant flux of passive scalar that results from the addition of both the molecular diffusion flux and the turbulent transport one. The Sc-asymptotic matching of this profile with the constant core value provides an analytical expression for the wall-normal flux that depends on the fluid dynamics of the carrier flow. By using a DNS code to solve the external turbulent flow, the analytical expression has been quantified and compared with empirical expressions based on experimental data, showing excellent agreement. To cite this article: P.L. Garcia-Ybarra, A. Pinelli, C. R. Mecanique 334 (2006).

  5. On the Capacity of FSO Links over Gamma-Gamma Atmospheric Turbulence Channels Using OOK Signaling

    Directory of Open Access Journals (Sweden)

    Antonio García-Zambrana

    2010-01-01

    Full Text Available A new upper bound on the capacity of power- and bandwidth-constrained optical wireless links over gamma-gamma atmospheric turbulence channels with intensity modulation and direct detection is derived when on-off keying (OOK formats are used. In this free-space optical (FSO scenario, unlike previous capacity bounds derived from the classic capacity of the well-known additive white Gaussian noise (AWGN channel with uniform input distribution, a new closed-form upper bound on the capacity is found by bounding the mutual information subject to an average optical power constraint and not only to an average electrical power constraint, showing the fact that the input distribution that maximizes the mutual information varies with the turbulence strength and the signal-to-noise ratio (SNR. Additionally, it is shown that an increase of the peak-to-average optical power ratio (PAOPR provides higher capacity values. Simulation results for the mutual information are further demonstrated to confirm the analytical results under several turbulence conditions.

  6. Dispersion of swimming algae in laminar and turbulent channel flows: theory and simulations

    CERN Document Server

    Croze, O A; Ahmed, M; Bees, M A; Brandt, L

    2012-01-01

    Algal swimming is often biased by environmental cues, e.g. gravitational and viscous torques drive cells towards downwelling fluid (gyrotaxis). In view of biotechnological applications, it is important to understand how such biased swimming affects cell dispersion in a flow. Here, we study the dispersion of gyrotactic swimming algae in laminar and turbulent channel flows. By direct numerical simulation (DNS) of cell motion within upwelling and downwelling channel flows, we evaluate time-dependent measures of dispersion for increasing values of the flow Peclet (Reynolds) numbers, Pe (Re). Furthermore, we derive an analytical `swimming Taylor-Aris dispersion' theory, using flow-dependent transport parameters given by existing microscopic models. In the laminar regime, DNS results and analytical predictions compare very well, providing the first confirmation that cells' response to flow is best described by the generalized-Taylor-dispersion microscopic model. We predict that cells drift along a channel faster th...

  7. Research on diversity receive technology for wireless optical communication using PPM in weak turbulence atmosphere channel

    Science.gov (United States)

    Liu, Yang; Zhang, Guo-an

    2014-09-01

    In order to mitigate atmospheric turbulence, the free space optical (FSO) system model with spatial diversity is analyzed based on intensity detection pulse position modulation (PPM) in the weak turbulence atmosphere. The slot error rate (SER) calculating formula of the system without diversity is derived under pulse position modulation firstly. Then as a benchmark, independent of identical distribution, the average slot error rates of the three linear combining technologies, which are the maximal ratio combining (MRC), equal gain combining (EGC) and selection combining (SelC), are compared. Simulation results show that the performance of system is the best improved by MRC, followed by EGC, and is poor by SelC, but SelC is simpler and more convenient. Spatial diversity is efficient to improve the performance and has strong ability on resistance to atmospheric channel decline. The above scheme is more suitable for optical wireless communication systems.

  8. Probability distribution of turbulence in curvilinear cross section mobile bed channel.

    Science.gov (United States)

    Sharma, Anurag; Kumar, Bimlesh

    2016-01-01

    The present study investigates the probability density functions (PDFs) of two-dimensional turbulent velocity fluctuations, Reynolds shear stress (RSS) and conditional RSSs in threshold channel obtained by using Gram-Charlier (GC) series. The GC series expansion has been used up to the moments of order four to include the skewness and kurtosis. Experiments were carried out in the curvilinear cross section sand bed channel at threshold condition with uniform sand size of d50 = 0.418 mm. The result concludes that the PDF distributions of turbulent velocity fluctuations and RSS calculated theoretically based on GC series expansion satisfied the PDFs obtained from the experimental data. The PDF distribution of conditional RSSs related to the ejections and sweeps are well represented by the GC series exponential distribution, except that a slight departure of inward and outward interactions is observed, which may be due to weaker events. This paper offers some new insights into the probabilistic mechanism of sediment transport, which can be helpful in sediment management and design of curvilinear cross section mobile bed channel.

  9. Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel

    Science.gov (United States)

    Guo, Ying; Xie, Cailang; Liao, Qin; Zhao, Wei; Zeng, Guihua; Huang, Duan

    2017-08-01

    The survival of Gaussian quantum states in a turbulent atmospheric channel is of crucial importance in free-space continuous-variable (CV) quantum key distribution (QKD), in which the transmission coefficient will fluctuate in time, thus resulting in non-Gaussian quantum states. Different from quantum hacking of the imperfections of practical devices, here we propose a different type of attack by exploiting the security loopholes that occur in a real lossy channel. Under a turbulent atmospheric environment, the Gaussian states are inevitably afflicted by decoherence, which would cause a degradation of the transmitted entanglement. Therefore, an eavesdropper can perform an intercept-resend attack by applying an entanglement-distillation operation on the transmitted non-Gaussian mixed states, which allows the eavesdropper to bias the estimation of the parameters and renders the final keys shared between the legitimate parties insecure. Our proposal highlights the practical CV QKD vulnerabilities with free-space quantum channels, including the satellite-to-earth links, ground-to-ground links, and a link from moving objects to ground stations.

  10. On the low SNR capacity of log-normal turbulence channels with full CSI

    KAUST Repository

    Benkhelifa, Fatma

    2014-09-01

    In this paper, we characterize the low signal-To-noise ratio (SNR) capacity of wireless links undergoing the log-normal turbulence when the channel state information (CSI) is perfectly known at both the transmitter and the receiver. We derive a closed form asymptotic expression of the capacity and we show that it scales essentially as λ SNR where λ is the water-filling level satisfying the power constraint. An asymptotically closed-form expression of λ is also provided. Using this framework, we also propose an on-off power control scheme which is capacity-achieving in the low SNR regime.

  11. Engineering viscoelasticity

    CERN Document Server

    Gutierrez-Lemini, Danton

    2014-01-01

    Engineering Viscoelasticity covers all aspects of the thermo- mechanical response of viscoelastic substances that a practitioner in the field of viscoelasticity would need to design experiments, interpret test data, develop stress-strain models, perform stress analyses, design structural components, and carry out research work. The material in each chapter is developed from the elementary to the advanced, providing the background in mathematics and mechanics that are central to understanding the subject matter being presented. The book examines how viscoelastic materials respond to the application of loads, and provides practical guidelines to use them in the design of commercial, military and industrial applications. This book also: ·         Facilitates conceptual understanding by progressing in each chapter from elementary to challenging material ·         Examines in detail both differential and integral constitutive equations, devoting full chapters to each type and using both forms in ...

  12. Optimal homotopy asymptotic method for flow and heat transfer of a viscoelastic fluid in an axisymmetric channel with a porous wall.

    Science.gov (United States)

    Mabood, Fazle; Khan, Waqar A; Ismail, Ahmad Izani Md

    2013-01-01

    In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.

  13. On a self-sustaining process at large scale in the turbulent channel flow

    Science.gov (United States)

    Hwang, Yongyun; Cossu, Carlo

    2010-11-01

    The near-wall region of wall-bounded turbulent flows has been understood as the place where an independent self-sustaining cycle exists, and the associated coherent motions in this region have been rigorously described with traveling waves and/or unstable periodic orbits in the phase space. On the other hand, in the outer region, turbulent motions have often been thought to be produced from the active near-wall cycles via so called the `bottom-up' process. However, recent investigations revealed that outer layer motions can experience significant non-normal amplifications. These findings suggest that self-sustaining processes could also exist at large scale. In this study, we consider a fully-developed turbulent channel at Reτ 550. We show that large-scale and very-large-scale motions in the outer region can sustain even when smaller-scale structures in the near-wall and the logarithmic regions are artificially quenched. The self-sustaining process is active only at the lengths scales larger than LxxLz 3h x1.5h, in good accordance with the most energetic length scales observed in the outer region.

  14. Turbulence Measurements from a Moored Platform at Mid-Depth in a Swift Tidal Channel

    Science.gov (United States)

    Hay, Alex; Lueck, Rolf; Wolk, Fabian; McMillan, Justine

    2014-05-01

    Results are presented from a turbulence experiment with a 3-m long streamlined floatation body, instrumented with velocity shear probes, fast-response thermistors, a 1 MHz Acoustic Doppler Current Profiler (AD2CP), and an Acoustic Doppler Velocimeter (ADV). The system was deployed over seven tidal cycles at mid-depth in a 30-m deep tidal channel in the lower Bay of Fundy, Canada. Peak flow speeds exceeded 2 m s-1, and while 10-min time scale average speeds were similar between ebb and flood, the variances were markedly higher during flood. Turbulent kinetic energy (TKE) dissipation rates measured with the shear probes exhibit a pronounced flood/ebb contrast: O(10-4) W kg-1 peak values during flood, but lower by an order of magnitude during ebb. Dissipation rates follow u3 scaling over a wide range of flow speeds between 0.5 and 2.5 m s-1. Below 0.5 m s-1 an asymmetry in the mounting arrangement caused the floatation body to pitch upward, biasing the measured dissipation values high. The ADV on the platform registered mean speed - used to implement Taylor's hypothesis - which was corroborated with the platform-mounted ADCP. Additional ADCPs were also deployed on a nearby bottom pod, sampling at turbulence resolving rates - up to 8 Hz. Comparisons between the shear probe and acoustic estimates of the TKE spectrum and dissipation rate - at comparable depths - are presented.

  15. Effects of Taylor-Görtler vortices on turbulent flows in a spanwise-rotating channel

    Science.gov (United States)

    Dai, Yijun; Huang, Weixi; Xu, Chunxiao

    2016-11-01

    Fully developed turbulent channel flow with spanwise rotation has been studied by direct numerical simulation at Rem = 2800, 7000 and 20000 with rotation number 0 conditional average method is employed to investigate the effects. In the upwash region where the fluid is pumped away from the pressure wall by the TG vortices, turbulence is enhanced, while the reverse is the case in the downwash region. Through budget analysis of the transport equation of vorticity fluctuation, it is revealed that the stretching along the wall-normal direction caused by the TG vortices plays an important role in initiating the difference of turbulence intensity between the two regions, which is further augmented by the Coriolis force in the streamwise direction. The effects of TG vortices is weakened at higher Reynolds number. Meanwhile, the shear stress on the suction wall is observed to fluctuate in a quasi-periodic manner at Rem = 7000 and Rom = 0.3, which is induced by the TG vortices. The work is supported by National Natural Science Foundation of China (Project No. 11490551, 11472154, 11322221, 11132005).

  16. FSO channel estimation for OOK modulation with APD receiver over atmospheric turbulence and pointing errors

    Science.gov (United States)

    Dabiri, Mohammad Taghi; Sadough, Seyed Mohammad Sajad; Khalighi, Mohammad Ali

    2017-11-01

    In the free-space optical (FSO) links, atmospheric turbulence and pointing errors lead to scintillation in the received signal. Due to its ease of implementation, intensity modulation with direct detection (IM/DD) based on ON-OFF-keying(OOK) is a popular signaling scheme in these systems. For long-haul FSO links, avalanche photo diodes (APDs) are commonly used, which provide an internal gain in photo-detection, allowing larger transmission ranges, as compared with PIN photo-detector (PD) counterparts. Since optimal OOK detection at the receiver requires the knowledge of the instantaneous channel fading coefficient, channel estimation is an important task that can considerably impact the link performance. In this paper, we investigate the channel estimation issue when using an APD at the receiver. Here, optimal signal detection is quite more delicate than in the case of using a PIN PD. In fact, given that APD-based receivers are usually shot-noise limited, the receiver noise will have a different distribution depending on whether the transmitted bit is '0' or '1', and moreover, its statistics are further affected by the scintillation. To deal with this, we first consider minimum mean-square-error (MMSE), maximum a posteriori probability (MAP) and maximum likelihood (ML) channel estimation over an observation window encompassing several consecutive received OOK symbols. Due to the high computational complexity of these methods, in a second step, we propose an ML channel estimator based on the expectation-maximization (EM) algorithm which has a low implementation complexity, making it suitable for high data-rate FSO communications. Numerical results show that for a sufficiently large observation window, by using the proposed EM channel estimator, we can achieve bit error rate performance very close to that with perfect channel state information. We also derive the Cramer-Rao lower bound (CRLB) of MSE of estimation errors and show that for a large enough observation

  17. Coherent structures in homogeneous shear turbulence compared with those in channels

    Science.gov (United States)

    Dong, Siwei; Lozano-Durán, Adrián; Sekimoto, Atsushi; Jiménez, Javier

    2014-11-01

    Three-dimensional vortex clusters and coherent structures responsible for the momentum transfer (Qs) are studied by DNS in homogeneous shear turbulence (HST) at Reλ = 50 , 100 and 250, with emphasis on comparisons with channel turbulence (CH). The anisotropic orientation of those structures only appears for volumes larger than Lc3 (Lc is the Corrsin scale). Even in that case, their anisotropy is moderate, similar to the detached structures in the CH. Only strictly attached structures in channels are more anisotropic. The Reynolds stress contained in vortex clusters is mainly associated with Q-s, distributed equally between sweeps (Q4) and ejections (Q2), instead of preferentially with the latter, as in the CH. The average fractal dimension of Qs is roughly 2.1 and that of vortex clusters is 1.8. The relative positions of the structures reveal that they form streamwise trains of groups of a Q2 and a Q4, paired side-by-side in the spanwise direction, with vortex clusters in between, as in the CH. Funded by the ERC Multiflow program and CSC.

  18. LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation.

    Science.gov (United States)

    Djordjevic, Ivan B

    2007-08-06

    We describe a coded power-efficient transmission scheme based on repetition MIMO principle suitable for communication over the atmospheric turbulence channel, and determine its channel capacity. The proposed scheme employs the Q-ary pulse-position modulation. We further study how to approach the channel capacity limits using low-density parity-check (LDPC) codes. Component LDPC codes are designed using the concept of pairwise-balanced designs. Contrary to the several recent publications, bit-error rates and channel capacities are reported assuming non-ideal photodetection. The atmospheric turbulence channel is modeled using the Gamma-Gamma distribution function due to Al-Habash et al. Excellent bit-error rate performance improvement, over uncoded case, is found.

  19. Estimating bed shear stress from remotely measured surface turbulent dissipation fields in open channel flows

    Science.gov (United States)

    Johnson, E. D.; Cowen, E. A.

    2017-03-01

    Synoptic information on bed shear stress is necessary in predicting the transport of sediments and environmental contaminants in rivers and open channels. Existing methods of estimating bed shear stress typically involve measuring vertical profiles of streamwise velocity or Reynolds stress and taking advantage of the logarithmic or the constant stress region, respectively, to determine friction velocity and subsequently, bed shear stress. While effective, these methods yield local measurements of bed shear stress only. Direct measurements of bed shear stress can also be obtained through measurements with a drag plate. However, this method yields average shear stress information over the area of the plate and is impractical for large-scale implementation in the field. Here we present a method capable of providing continuous synoptic measurements of bed shear stress over a large field-of-view. A series of Large-Scale Particle Image Velocimetry (LSPIV) and Acoustic Doppler Velocimetry (ADV) measurements were made in a variety of flows generated in a wide-open channel facility. Turbulent dissipation is calculated on the free surface from the 2-D LSPIV results and is correlated with near-surface ADV measurements of turbulent dissipation in the water column. The ADV results are consistent with the Nezu (1977) established relationship for the vertical variation of turbulent dissipation in the water column. Knowledge of the correlation between free-surface and near-surface dissipation values coupled with Nezu's (1977) relationship allow a robust and accurate estimate of friction velocity to be made and subsequently, shear stress at the bed can be estimated.

  20. Performance analysis of dual-hop optical wireless communication systems over k-distribution turbulence channel with pointing error

    Science.gov (United States)

    Mishra, Neha; Sriram Kumar, D.; Jha, Pranav Kumar

    2017-06-01

    In this paper, we investigate the performance of the dual-hop free space optical (FSO) communication systems under the effect of strong atmospheric turbulence together with misalignment effects (pointing error). We consider a relay assisted link using decode and forward (DF) relaying protocol between source and destination with the assumption that Channel State Information is available at both transmitting and receiving terminals. The atmospheric turbulence channels are modeled by k-distribution with pointing error impairment. The exact closed form expression is derived for outage probability and bit error rate and illustrated through numerical plots. Further BER results are compared for the different modulation schemes.

  1. Computational Viscoelasticity

    CERN Document Server

    Marques, Severino P C

    2012-01-01

    This text is a guide how to solve problems in which viscoelasticity is present using existing commercial computational codes. The book gives information on codes’ structure and use, data preparation  and output interpretation and verification. The first part of the book introduces the reader to the subject, and to provide the models, equations and notation to be used in the computational applications. The second part shows the most important Computational techniques: Finite elements formulation, Boundary elements formulation, and presents the solutions of Viscoelastic problems with Abaqus.

  2. Viscoelastic fluids: A new challenge in heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hartnett, J.P. (Univ. of Illinois, Chicago (United States))

    1992-05-01

    A review of the current knowledge on the fluid mechanics and heat transfer behavior of viscoelastic aqueous polymer solutions in channel flow is presented. Both turbulent and laminar flow conditions are considered. For fully established turbulent channel flow, it was found that the friction factor, f, and the dimensionless heat transfer factor, j{sub H}, were functions of the Reynolds number and a dimensionless elasticity value, the Weissenberg number. For Weissenberg values greater than approximately 10 (the critical value) the friction factor was found to be a function only of the Reynolds number; for values less than 10 the friction factor was a function of both Re and Ws. For the dimensionless heat transfer coefficient j{sub H} the corresponding critical Weissenberg value was found to be about 100. The heat transfer reduction is always greater than the friction factor reduction; consequently, the heat transfer per unit pumping power decreases with increasing elasticity. For fully established laminar pipe flow of aqueous polymer solutions, the measured values of the friction factor and dimensionless heat transfer coefficient were in excellent agreement with the values predicted for a power law fluid. For laminar flow in a 2:1 rectangular channel the fully developed friction factor measurements were in agreement with the power law prediction. In contrast, the measured local heat transfer coefficients for aqueous polymer solutions in laminar flow through the 2:1 rectangular duct were two or three times the values predicted for a purely viscous power law fluid. It is hypothesized that these high heat transfer coefficients are due to secondary motions, which come about as a results of the unequal normal stresses occurring in viscoelastic fluids. The anomalous behavior of one particular aqueous polymer solution-namely, polyacrylic acid (Carbopol)-is described in some detail, raising some interesting questions as to how viscoelastic fluids should be classified.

  3. Performance analysis of OOK-based FSO systems in Gamma-Gamma turbulence with imprecise channel models

    Science.gov (United States)

    Feng, Jianfeng; Zhao, Xiaohui

    2017-11-01

    For an FSO communication system with imprecise channel model, we investigate its system performance based on outage probability, average BEP and ergodic capacity. The exact FSO links are modeled as Gamma-Gamma fading channel in consideration of both atmospheric turbulence and pointing errors, and the imprecise channel model is treated as the superposition of exact channel gain and a Gaussian random variable. After we derive the PDF, CDF and nth moment of the imprecise channel gain, and based on these statistics the expressions for the outage probability, the average BEP and the ergodic capacity in terms of the Meijer's G functions are obtained. Both numerical and analytical results are presented. The simulation results show that the communication performance deteriorates in the imprecise channel model, and approaches to the exact performance curves as the channel model becomes accurate.

  4. Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow?

    CERN Document Server

    Quadrio, Maurizio; Hasegawa, Yosuke

    2015-01-01

    We seek possible statistical consequences of the way a forcing term is added to the Navier--Stokes equations in the Direct Numerical Simulation (DNS) of incompressible channel flow. Simulations driven by constant flow rate, constant pressure gradient and constant power input are used to build large databases, and in particular to store the complete temporal trace of the wall-shear stress for later analysis. As these approaches correspond to different dynamical systems, it can in principle be envisaged that these differences are reflect by certain statistics of the turbulent flow field. The instantaneous realizations of the flow in the various simulations are obviously different, but, as expected, the usual one-point, one-time statistics do not show any appreciable difference. However, the PDF for the fluctuations of the streamwise component of wall friction reveals that the simulation with constant flow rate presents lower probabilities for extreme events of large positive friction. The low probability value ...

  5. Experimental analysis of turbulence characteristics and flow conveyance effects in a vegetated channel

    Science.gov (United States)

    Termini, D.

    2009-04-01

    Natural rivers are characterized by a strong hydraulic and geomorphic complexity. Many studies conducted in this field (Malthus and Mumby, 2003; Muhar, 1996) show that the accurate estimation both of the river morphological changes and of local hydraulic characteristics of flow (i.e. the local flow velocities and water depths) is necessary for the restoration and protection of biodiversity. Vegetation is a key factor to analyze the interrelated system of flow, sediment transport, and morphodynamic in rivers (Tsujimoto, 1999; Maione et al., 2000). On one hand, some kind of species of vegetation affect the habitat conditions, being crucial to the maintenance of biodiversity (Larkum et al, 2004); on the other hand, effects of vegetation on flow velocity are significant and are of crucial importance for stabilizing sediments and reducing erosion along the channel. In particular, it has been generally agreed that vegetation increases flow resistance and modifies sediment transport and deposition (Tsujimoto et al., 1996; Yen 2002). The analysis of the hydrodynamic conditions in vegetated channels is complex because vegetation is flexible in varying degrees and it oscillates in the flow changing position. Furthermore, because of temporal changing of roughness due to natural vegetative growth, the response of vegetation to the flow can change in time. In this paper the flow over real flexible vegetation is experimentally studied. A 2D-ADV (Acoustic Doppler Velocimeter) is used to measure the local flow velocities, for different vegetation concentrations and varying the discharge and the flume slope. The influence of both vegetation concentration and depth/vegetation height ratio on the measured velocity profiles is analyzed. The comparison between the velocity distribution and the turbulence intensity distribution is also presented. The spectral analysis is operated in order to verify the formation of turbulence structures inside the vegetated layer and the flow conveyance

  6. The structure of turbulent flow around vertical plates containing holes and attached to a channel bed

    Science.gov (United States)

    Basnet, K.; Constantinescu, G.

    2017-11-01

    High-resolution, 3-D large eddy simulations are conducted to study the physics of flow past 2-D solid and porous vertical plates of height H mounted on a horizontal surface (no bottom gap) with a fully developed, turbulent incoming flow. The porous plate consists of an array of spanwise-oriented, identical solid cylinders of rectangular cross section. The height of the solid cylinders and the spacing between the solid cylinders, corresponding to the plate's "holes," are kept constant for any given configuration, as the present study considers only plates of uniform porosity. The paper discusses how the mean flow and turbulence structure around the vertical plate, the unsteady forces acting on the plate, the dynamics of the large-scale turbulent eddies, the spectral content of the wake, and the distribution of the bed friction velocity on the horizontal channel bed vary as a function of the plate porosity (0% forming at the top of the plate and the wake structure. It is found that the main recirculation eddy in the wake remains attached to the plate for P forms away from the porous plate. The energy of the billows advected in the SSL decays monotonically with increasing plate porosity. For cases when the recirculation eddy remains attached to the plate, the larger billows advected in the downstream part of the SSL are partially reinjected inside the main recirculation eddy as a result of their interaction with the channel bed. This creates a feedback mechanism that induces large-scale disturbances of the spanwise-oriented vortex tubes advected inside the upstream part of the SSL. Results also show that the mean drag coefficient and the root-mean-square of the drag coefficient fluctuations increase mildly with increasing d/H. Meanwhile, varying d/H has a negligible effect on the position and size of the main recirculation eddy. The presence of large-scale roughness elements (2-D ribs) at the bed results in the decrease of the mean drag coefficient of the plate and

  7. Investigation on Effect of Gravity Level on Bubble Distribution and Liquid Turbulence Modification for Horizontal Channel Bubbly Flow

    Science.gov (United States)

    Pang, M. J.; Wei, J. J.; Yu, B.

    2017-08-01

    Bubbly flows in the horizontal channel or pipe are often seen in industrial engineering fields, so it is very necessary to fully understand hydrodynamics of horizontal bubbly flows so as to improve industrial efficiency and to design an efficient bubbly system. In this paper, in order to fully understand mechanisms of phase distribution and liquid-phase turbulence modulation in the horizontal channel bubbly flow, the influence of gravity level on both of them were investigated in detail with the developed Euler-Lagrange two-way coupling method. For the present investigation, the buoyance on bubbles in both sides of the channel always points to the corresponding wall in order to study the liquid-phase turbulence modulation by bubbles under the symmetric physical condition. The present investigation shows that the gravity level has the important influence on the wall-normal distribution of bubbles and the liquid-phase turbulence modulation; the higher the gravity level is, the more bubbles can overcome the wall-normal resistance to accumulate near the wall, and the more obvious the liquid-phase turbulence modulation is. It is also discovered that interphase forces on the bubbles are various along the wall-normal direction, which leads to the fact that the bubble located in different wall-normal places has a different wall-normal velocity.

  8. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study

    Directory of Open Access Journals (Sweden)

    Amir Eshghinejadfard

    2017-09-01

    Full Text Available Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ=2 or 4 or spherical (λ=1. Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM. In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling. Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.

  9. The impact of turbulence and phytoplankton dynamics on foam formation, seawater viscosity and chlorophyll concentration in the eastern English Channel

    Directory of Open Access Journals (Sweden)

    Irma Kesaulya

    2008-06-01

    Full Text Available The space-time dynamics of chlorophyll a concentration and seawater excess viscosity has been investigated in the hydrographically contrasting inshore and offshore water masses of the eastern English Channel. This was done during the phytoplankton spring bloom dominated by Phaeocystis globosa before and after the very large-scale formation of foam induced by an increase in wind-driven turbulence and the related wave breakings. The results suggest that the dynamics of chlorophyll a concentration and seawater excess viscosity are differentially controlled by the formation of foam through the intensity of the spring bloom and wind-generated turbulence.

  10. Low-order dynamical system model of a fully developed turbulent channel flow

    Science.gov (United States)

    Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán

    2017-06-01

    A reduced order model of a turbulent channel flow is composed from a direct numerical simulation database hosted at the Johns Hopkins University. Snapshot proper orthogonal decomposition (POD) is used to identify the Hilbert space from which the reduced order model is obtained, as the POD basis is defined to capture the optimal energy content by mode. The reduced order model is defined by coupling the evolution of the dynamic POD mode coefficients through their respective time derivative with a least-squares polynomial fit of terms up to third order. Parameters coupling the dynamics of the POD basis are defined in analog to those produced in the classical Galerkin projection. The resulting low-order dynamical system is tested for a range of basis modes demonstrating that the non-linear mode interactions do not lead to a monotonic decrease in error propagation. A basis of five POD modes accounts for 50% of the integrated turbulence kinetic energy but captures only the largest features of the turbulence in the channel flow and is not able to reflect the anticipated flow dynamics. Using five modes, the low-order model is unable to accurately reproduce Reynolds stresses, and the root-mean-square error of the predicted stresses is as great as 30%. Increasing the basis to 28 modes accounts for 90% of the kinetic energy and adds intermediate scales to the dynamical system. The difference between the time derivatives of the random coefficients associated with individual modes and their least-squares fit is amplified in the numerical integration leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time to the range of the sampled data and offering the dynamical system new initial conditions. Renewed initial conditions are found by pushing the mode coefficients in the end of the integration time toward a known point along the original trajectories identified through a least-squares projection. Under

  11. Direct numerical simulation of a compressible turbulent channel flow with uniform blowing and suction through isothermal walls

    Science.gov (United States)

    Kametani, Yukinori; Fukagata, Koji

    2014-11-01

    High-speed transports such as aircrafts and bullet trains support human activity in the modern society. In such applications, the turbulent friction drag is the major contributor to the energy loss. Kametani and Fukagata (J. Fluid Mech., 2011) investigated by means of direct numerical simulation (DNS) the drag reduction effect by blowing and the turbulence stabilization effect by suction in an incompressible spatially developing turbulent boundary layer, and quantitatively discussed different contributions to those effects. In this study, DNS of a compressible turbulent channel with uniform blowing and suction through the isothermal walls is performed. The Reynolds number based on the bulk mass flow rate, the viscosity on the wall and the channel half width is set to be 3000. The bulk Mach number is set to be 0.8 and 1.5 to compare the results in subsonic and supersonic cases. The drag reduction (enhancement) effect was confirmed on the blowing (suction) wall. As the Mach number increases, however, the control efficiency of blowing is found to be deteriorated because of the increased density near the wall. Japan Aerospace Exploration Agency, Japan Society for the Promotion of Science.

  12. Numerical investigations on the turbulent forced convection of nanofluids flow in a triangular-corrugated channel

    Directory of Open Access Journals (Sweden)

    M.A. Ahmed

    2015-09-01

    Full Text Available In this paper, turbulent forced convection of nanofluids flow in triangular-corrugated channels is numerically investigated over Reynolds number ranges of 1000–5000. Four different types of nanofluids which are Al2O3, CuO, SiO2 and ZnO–water with nanoparticles diameters in the range of 30–70 nm and the range of nanoparticles volume fraction from 0% to 4% have been considered. The governing equations of mass, momentum and energy are solved using finite volume method (FVM. The low Reynolds number k–ε model of Launder and Sharma is adopted as well. It is found that the average Nusselt number, pressure drop, heat transfer enhancement, thermal–hydraulic performance increase with increasing in the volume fraction of nanoparticles and with decreasing in the diameter of nanoparticles. Furthermore, the SiO2–water nanofluid provides the highest thermal–hydraulic performance among other types of nanofluids followed by Al2O3, ZnO and CuO–water nanofluids. Moreover, the pure water has the lowest heat transfer enhancement as well as thermal–hydraulic performance.

  13. Two-point velocity correlations in turbulent boundary layers and channel flow

    Science.gov (United States)

    Longmire, E. K.; Khalitov, D.; Ganapathisubramani, B.; Marusic, I.

    2002-11-01

    Fully developed channel flow and a turbulent boundary layer were investigated with planar and stereo PIV. Two point correlations were computed from vector fields in planes parallel to the wall. Near the wall, correlations (u, v and w are the streamwise, spanwise, and wall-normal components) are elongated in the streamwise direction and narrow in the spanwise direction in both flows due to the presence of dominant streamwise streaks. The correlation is stronger downstream than upstream. The streamwise asymmetry is caused by inward spanwise motion of fluid beneath hairpin legs and necks that feeds low speed zones upstream. In the boundary layer, shows dominant lobes indicating that inward spanwise motion is correlated also to upwash of fluid upstream. The lengths of the lobes are consistent with the existence of packets of hairpins inclined at an angle to and convecting fluid away from the wall. Further from the wall, the correlations become shorter and more symmetric in the streamwise direction in both flows. Details will be given in the presentation. Supported by NSF (ACI-9982774, CTS-9983933)

  14. Large-scale control strategy for drag reduction in turbulent channel flows

    Science.gov (United States)

    Yao, Jie; Chen, Xi; Thomas, Flint; Hussain, Fazle

    2017-06-01

    In a recent article, Canton et al. [J. Canton et al., Phys. Rev. Fluids 1, 081501(R) (2016), 10.1103/PhysRevFluids.1.081501] reported significant drag reduction in turbulent channel flow by using large-scale, near-wall streamwise swirls following the control strategy of Schoppa and Hussain [W. Schoppa and F. Hussain, Phys. Fluids 10, 1049 (1998), 10.1063/1.869789] for low Reynolds numbers only, but found no drag reduction at high friction Reynolds numbers (Reτ=550 ). Here we show that the lack of drag reduction at high Re observed by Canton et al. is remedied by the proper choice of the large-scale control flow. In this study, we apply near-wall opposed wall-jet forcing to achieve drag reduction at the same (high) Reynolds number where Canton et al. found no drag reduction. The steady excitation is characterized by three control parameters, namely, the wall-jet-forcing amplitude A+, the spanwise spacing Λ+, and the wall jet height yc+ (+ indicates viscous scaling); the primary difference between Schoppa and Hussain's work (also that of Canton et al.) and this Rapid Communication is the emphasis on the explicit choice of yc+ here. We show as an example that with a choice of A+≈0.015 ,Λ+≈1200 , and yc+≈30 the flow control definitely suppresses the wall shear stress at a series of Reynolds numbers, namely, 19 %,14 % , and 12 % drag reductions at Reτ=180 , 395, and 550, respectively. Further study should explore optimization of these parameter values.

  15. Effects of atmospheric turbulence on the single-photon receiving efficiency and the performance of quantum channel with the modified approximate elliptic-beam model assumption

    Science.gov (United States)

    Wang, Xiao-yang; Zhao, Nan; Chen, Nan; Zhu, Chang-hua; Pei, Chang-xing

    2018-01-01

    In free space quantum channel, with the introduction and implementation of the satellite-ground link transmission, the researches of single-photon transmission have attracted great interest. We propose a single-photon receiving model and analyze the influence of the atmospheric turbulence on the single-photon transmission. We obtain the relationship between single-photon receiving efficiency and atmospheric turbulence, and analyze the influence of the atmospheric turbulence on the quantum channel performance by the single-photon counting. Finally, we present a reasonable simulation analysis. Simulation results show that as the strength of the atmospheric fluctuations increases, the counting distribution gradually broadens, and the utilization of quantum channel drops. Furthermore, the key generation rate and transmission distance decreases sharply in the case of strong turbulence.

  16. Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels.

    Science.gov (United States)

    García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2010-03-15

    Atmospheric turbulence produces fluctuations in the irradiance of the transmitted optical beam, which is known as atmospheric scintillation, severely degrading the link performance. In this paper, a scheme combining transmit laser selection (TLS) and space-time trellis code (STTC) for multiple-input-single-output (MISO) free-space optical (FSO) communication systems with intensity modulation and direct detection (IM/DD) over strong atmospheric turbulence channels is analyzed. Assuming channel state information at the transmitter and receiver, we propose the transmit diversity technique based on the selection of two out of the available L lasers corresponding to the optical paths with greater values of scintillation to transmit the baseline STTCs designed for two transmit antennas. Based on a pairwise error probability (PEP) analysis, results in terms of bit error rate are presented when the scintillation follows negative exponential and K distributions, which cover a wide range of strong atmospheric turbulence conditions. Obtained results show a diversity order of 2L-1 when L transmit lasers are available and a simple two-state STTC with rate 1 bit/(s .Hz) is used. Simulation results are further demonstrated to confirm the analytical results.

  17. Effects of viscoelasticity in the high Reynolds number cylinder wake

    KAUST Repository

    Richter, David

    2012-01-16

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  18. An adaptation method to improve secret key rates of time-frequency QKD in atmospheric turbulence channels

    Science.gov (United States)

    Sun, Xiaole; Djordjevic, Ivan B.; Neifeld, Mark A.

    2016-03-01

    Free-space optical (FSO) channels can be characterized by random power fluctuations due to atmospheric turbulence, which is known as scintillation. Weak coherent source based FSO quantum key distribution (QKD) systems suffer from the scintillation effect because during the deep channel fading the expected detection rate drops, which then gives an eavesdropper opportunity to get additional information about protocol by performing photon number splitting (PNS) attack and blocking single-photon pulses without changing QBER. To overcome this problem, in this paper, we study a large-alphabet QKD protocol, which is achieved by using pulse-position modulation (PPM)-like approach that utilizes the time-frequency uncertainty relation of the weak coherent photon state, called here TF-PPM-QKD protocol. We first complete finite size analysis for TF-PPM-QKD protocol to give practical bounds against non-negligible statistical fluctuation due to finite resources in practical implementations. The impact of scintillation under strong atmospheric turbulence regime is studied then. To overcome the secure key rate performance degradation of TF-PPM-QKD caused by scintillation, we propose an adaptation method for compensating the scintillation impact. By changing source intensity according to the channel state information (CSI), obtained by classical channel, the adaptation method improves the performance of QKD system with respect to the secret key rate. The CSI of a time-varying channel can be predicted using stochastic models, such as autoregressive (AR) models. Based on the channel state predictions, we change the source intensity to the optimal value to achieve a higher secret key rate. We demonstrate that the improvement of the adaptation method is dependent on the prediction accuracy.

  19. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.

    Science.gov (United States)

    Lashgari, Iman; Picano, Francesco; Breugem, Wim-Paul; Brandt, Luca

    2014-12-19

    The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia. We explore the system behavior as a function of the particle volume fraction and the Reynolds number (the ratio of flow and particle inertia to viscous forces). Unlike single-phase flows, where a clear distinction exists between the laminar and the turbulent states, three different regimes can be identified in the presence of a particulate phase, with smooth transitions between them. At low volume fractions, the flow becomes turbulent when increasing the Reynolds number, transitioning from the laminar regime dominated by viscous forces to the turbulent regime characterized by enhanced momentum transport by turbulent eddies. At larger volume fractions, we identify a new regime characterized by an even larger increase of the wall friction. The wall friction increases with the Reynolds number (inertial effects) while the turbulent transport is weakly affected, as in a state of intense inertial shear thickening. This state may prevent the transition to a fully turbulent regime at arbitrary high speed of the flow.

  20. Bit error rate analysis of free-space optical communication over general Malaga turbulence channels with pointing error

    KAUST Repository

    Alheadary, Wael Ghazy

    2016-12-24

    In this work, we present a bit error rate (BER) and achievable spectral efficiency (ASE) performance of a freespace optical (FSO) link with pointing errors based on intensity modulation/direct detection (IM/DD) and heterodyne detection over general Malaga turbulence channel. More specifically, we present exact closed-form expressions for adaptive and non-adaptive transmission. The closed form expressions are presented in terms of generalized power series of the Meijer\\'s G-function. Moreover, asymptotic closed form expressions are provided to validate our work. In addition, all the presented analytical results are illustrated using a selected set of numerical results.

  1. BER analysis of multi-hop heterodyne FSO systems with fixed gain relays over general Malaga turbulence channels

    KAUST Repository

    Alheadary, Wael Ghazy

    2017-07-20

    This work investigates the end-to-end performance of a free space optical amplify-and-forward (AF) fixed-gain relaying system using heterodyne detection over misaligned general Malaga turbulence channels. More specifically, we present exact closed-form expressions for average bit-error rate achievable spectral efficiency non-adaptive/adaptive modulation schemes by employing generalized power series identity of Meijer\\'s G-function. Moreover, asymptotic closed-form expressions are derived to validate our results at high signal-to-noise ratio. In addition, the analytical results have been presented with compare to range of numerical values.

  2. Design and evaluation of an IDM-based MIMO FSO system over Gamma-Gamma turbulence channels

    Science.gov (United States)

    Zhang, Chenglei; Zhou, Xiaolin; Zheng, Xiaowei; Du, Jianhong

    2011-12-01

    In this paper, we design an interleave-division-multiplexing (IDM) based multiple-input multiple-output (MIMO) free-space optics (FSO) communication system. The system overcomes problems harassing conventional optical MIMO systems such as restrictions of antenna number and high complexity in receiver. An iterative on-off keying (OOK) modulated IDM MIMO detection algorithm is developed. Expression of an upper bound of frame-error-rate (FER) is derived. In addition, we evaluate the BER performance of the proposed optical MIMO scheme in various FSO scenarios. Simulations confirm that the proposed scheme can effectively increase the feasibility of FSO communications over Gamma-Gamma turbulence-induced fading channels.

  3. Asymptotic BER analysis of FSO with multiple receive apertures over ℳ -distributed turbulence channels with pointing errors.

    Science.gov (United States)

    Yang, Liang; Hasna, Mazen Omar; Gao, Xiqi

    2014-07-28

    In this paper, we consider a free-space optical (FSO) communication with multiple receive apertures over ℳ -distributed turbulence channels with pointing errors. In particular, we consider two different combining schemes at the receiver: optimal combining (OC) and selection combining (SC). With these setups, the statistic characters of the instantaneous electrical signal-to-noise ratio (SNR) are derived. Then, using the cumulative density function (CDF)-based method, we analyze the asymptotic bit-error rate (BER) performance. The derived results help quantifying the diversity order of our considered systems.

  4. Simulation of turbulent heat transfer characteristics in a corrugated tube with five-channel twisted tape inserts

    Science.gov (United States)

    Promthaisong, Pitak; Jedsadaratanachai, Withada; Chuwattanakul, Varesa; Eiamsa-ard, Smith

    2017-08-01

    The article presents a numerical analysis of turbulent periodic flow and heat transfer characteristics in a five-start spiral corrugated tube combined with five-channel twisted tape. Influences of the five-channel twisted tape with tape width ratio, w/D=0.10, 0.20, 0.30, 0.40 and 0.44 at constant the twisted length ratio, y/D=2.0 were described. The results were reported in term of flow structure, temperature distribution, TKE field, local Nusselt number distribution on the wall, Nusselt number ratio, friction factor ratio and thermal enhancement factor. The five-start spiral corrugated tube combined with five-channel twisted tape showed a main swirl flow and secondary swirl flow along the tube due to the induction of the spiral groove while the smooth circular tube appeared the straight only and the five-start spiral corrugated tube with the five-channel twisted tape at w/D=0.44 appeared the main swirl flow only. The swirl flow help to increase fluid mixing and increase in heat transfer rate over the smooth circular tube. The increase in the w/D lead to the rise of Nusselt number and friction factor. The result showed that the optimum thermal enhancement factor of about 1.16was found at the five-start spiral corrugated tube without the five-channel twisted tape and at w/D=0.44.

  5. Performance analysis of subcarrier intensity modulation using rectangular QAM over Malaga turbulence channels with integer and non-integerβ

    KAUST Repository

    Alheadary, Wael G.

    2016-10-13

    In this paper, we derive the performances of optical wireless communication system utilizing adaptive subcarrier intensity modulation over the Malaga turbulent channel. More specifically, analytical closed-form solutions and asymptotic results are derived for average bit error rate, achievable spectral efficiency, outage probability, and ergodic capacity by utilizing series expansion identity of modified Bessel function. Our asymptotic and analytical results based on series solutions with finite numbers highly matched to the numerical results. By exploiting the inherent nature of fading channel, the proposed adaptive scheme enhances the spectral efficiency without additional transmit power while satisfying the required bit error rate criterion. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Performance analysis of multihop heterodyne free-space optical communication over general Malaga turbulence channels with pointing error

    KAUST Repository

    Alheadary, Wael Ghazy

    2017-09-21

    This work investigates the end-to-end performance of a free space optical amplify-and-forward (AF) channel-state-information (CSI)-assisted relaying system using heterodyne detection over Malaga turbulence channels at the presence of pointing error employing rectangular quadrature amplitude modulation (R-QAM). More specifically, we present exact closed-form expressions for average bit-error rate for adaptive/non-adaptive modulation, achievable spectral efficiency, and ergodic capacity by utilizing generalized power series of Meijer\\'s G-function. Moreover, asymptotic closed form expressions are provided to validate our work at high power regime. In addition, all the presented analytical results are illustrated using a selected set of numerical results. Moreover, we applied the bisection method to find the optimum beam width for the proposed FSO system.

  7. Performance analysis of relay-assisted all-optical FSO networks over strong atmospheric turbulence channels with pointing errors

    KAUST Repository

    Yang, Liang

    2014-12-01

    In this study, we consider a relay-assisted free-space optical communication scheme over strong atmospheric turbulence channels with misalignment-induced pointing errors. The links from the source to the destination are assumed to be all-optical links. Assuming a variable gain relay with amplify-and-forward protocol, the electrical signal at the source is forwarded to the destination with the help of this relay through all-optical links. More specifically, we first present a cumulative density function (CDF) analysis for the end-to-end signal-to-noise ratio. Based on this CDF, the outage probability, bit-error rate, and average capacity of our proposed system are derived. Results show that the system diversity order is related to the minimum value of the channel parameters.

  8. Traveling wave solutions of large-scale structures in turbulent channel flow at Reτ = 1000

    Science.gov (United States)

    Hwang, Yongyun; Willis, Ashley; Cossu, Carlo

    2016-11-01

    Recently, a set of stationary invariant solutions for the large-scale structures in turbulent Couette flow was computed at Reτ = 128 using an over-damped LES with the Smagorinsky model which accounts the effect of the surrounding small-scale motions. In this talk, we show that this approach can be extended to Reτ = 1000 in turbulent channel flow, towards the regime where the large-scale structures in the form of very-large-scale motions (long streaky motions) and large-scale motions (short vortical structures) energetically emerge. We demonstrate that a set of invariant solutions in the form of a traveling wave can be computed from simulations of the self-sustaining large-scale structures in the minimal unit with midplane reflection symmetry. By approximating the surrounding small scales with an artificially elevated Smagorinsky constant, a set of equilibrium states are found, labelled upper- and lower-branch according to their related wall shear stress. In particular, we will show that the upper-branch equilibrium state is a reasonable proxy for the spatial structure and the turbulent statistics of the self-sustaining large-scale structures. Engineering and Physical Sciences Research Council, UK (EP/N019342/1).

  9. Evidence for instability-waves in the velocity-field of a fully developed turbulent channel-flow

    Science.gov (United States)

    Hofbauer, M.

    1980-01-01

    The results from hot film measurements and quantitative visual investigations, performed in the turbulent flow of an oil-channel at a low Reynolds number (Re = 8000), are discussed. The main result of the hot film measurements is the power spectrum of the v-component of the fluctuating velocity. The power spectrum has regular maxima and minima. The frequencies corresponding to the maxima of the power spectrum are plotted as a function of the order n of the maxima. This graph demonstrates that the frequencies of the maxima are the harmonics of a fundamental frequency which are determined to be about 0.15 Hz. An estimation shows that the fundamental frequency is of the same order of magnitude as the roughly calculated unstable Tollmien-Schlichting frequencies of the mean turbulent velocity profile. This fundamental frequency is interpreted as the most excited frequency of Tollmien-Schlichting-like instability waves. The harmonics are believed to be due to a nonlinear amplification of the primarily excited instability waves. The evidence of regular oscillations in the near-wall region of the fully developed turbulent flow from the visual studies is examined.

  10. Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel

    Science.gov (United States)

    Parsaiemehr, Mohammad; Pourfattah, Farzad; Akbari, Omid Ali; Toghraie, Davood; Sheikhzadeh, Ghanbarali

    2018-02-01

    In present study, the turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular channel have been numerically simulated. The main purpose of present study is investigating the effect of attack angle of inclined rectangular rib, Reynolds number and volume fraction of nanoparticles on heat transfer enhancement. For this reason, the turbulent flow of nanofluid has been simulated at Reynolds numbers ranging from 15000 to 30000 and volume fractions of nanoparticles from 0 to 4%. The changes attack angle of ribs have been investigated ranging from 0 to 180°. The results show that, the changes of attack angle of ribs, due to the changes of flow pattern and created vortexes inside the channel, have significant effect on fluid mixing. Also, the maximum rate of heat transfer enhancement accomplishes in attack angle of 60°. In Reynolds numbers of 15000, 20000 and 30000 and attack angle of 60°, comparing to the attack angle of 0°, the amount of Nusselt number enhances to 2.37, 1.96 and 2 times, respectively. Also, it can be concluded that, in high Reynolds numbers, by using ribs and nanofluid, the performance evaluation criterion improves.

  11. Turbulent stresses and secondary currents in a tidal-forced channel with significant curvature and asymmetric bed forms

    Science.gov (United States)

    Fong, D.A.; Monismith, Stephen G.; Stacey, M.T.; Burau, J.R.

    2009-01-01

    Acoustic Doppler current profilers are deployed to measure both the mean flow and turbulent properties in a channel with significant curvature. Direct measurements of the Reynolds stress show a significant asymmetry over the tidal cycle where stresses are enhanced during the flood tide and less prominent over the ebb tide. This asymmetry is corroborated by logarithmic fits using 10 min averaged velocity data. A smaller yet similar tendency asymmetry in drag coefficient is inferred by fitting the velocity and estimated large-scale pressure gradient to a one-dimensional along-channel momentum balance. This smaller asymmetry is consistent with recent modeling work simulating regional flows in the vicinity of the study site. The asymmetry in drag suggests the importance of previously reported bed forms for this channel and demonstrates spatial and temporarily variations in bed stress. Secondary circulation patterns observed in a relatively straight section of channel appear driven by local curvature rather than being remotely forced by the regions of significant curvature only a few hundred meters from the measurement site. ?? 2009 ASCE.

  12. Flame speeds and curvature of premixed, spherically expanding flames advecting in a turbulent channel flow

    Science.gov (United States)

    Fries, Dan; Ochs, Bradley; Ranjan, Devesh; Menon, Suresh

    2016-11-01

    A new facility has been developed at the Georgia Institute of Technology to study sub- and supersonic combustion, which is based on classical flame bomb studies but incorporates a mean flow, allowing for a wider variety of turbulent conditions and the inclusion of effects like compressibility, while supporting shear-free spherical flames. Homogeneous, isotropic turbulence is generated via an active vane grid. Methane-air flame kernels advecting with the mean flow are generated using Laser Induced Breakdown ignition. The facility is accessing the thin reaction zone regime with uRMS' /SL0 = 6 . 9 - 22 , L11 /δF = 44 - 68 and Reλ = 190 - 550 . The flame kernels are probed with OH-Planar Laser Induced Fluorescence (PLIF). To validate the facility, results at Ū = 30 m/s are compared to existing data using a scaling derived from a spectral closure of the G-equation. This indicates the reacting flow remains Galilean invariant under the given conditions. The differences between global and local turbulent consumption speeds derived from OH-PLIF results are discussed with a focus on modeling efforts. The curvature of flame wrinkles is evaluated to examine the impact of different turbulent scales on flame development. This work was supported by the Air Force Office of Scientific Research under basic research Grant FA9550-15-1-0512 (Project monitor: Dr. Chiping Li).

  13. Drag reduction by herringbone riblet texture in direct numerical simulations of turbulent channel flow

    NARCIS (Netherlands)

    Benschop, H.O.G.; Breugem, W.P.

    2017-01-01

    A bird-feather-inspired herringbone riblet texture was investigated for turbulent drag reduction. The texture consists of blade riblets in a converging/diverging or herringbone pattern with spanwise wavelength Λf. The aim is to quantify the drag change for this texture as compared to a smooth wall

  14. SIMO optical wireless links with nonzero boresight pointing errors over M modeled turbulence channels

    Science.gov (United States)

    Varotsos, G. K.; Nistazakis, H. E.; Petkovic, M. I.; Djordjevic, G. T.; Tombras, G. S.

    2017-11-01

    Over the last years terrestrial free-space optical (FSO) communication systems have demonstrated an increasing scientific and commercial interest in response to the growing demands for ultra high bandwidth, cost-effective and secure wireless data transmissions. However, due the signal propagation through the atmosphere, the performance of such links depends strongly on the atmospheric conditions such as weather phenomena and turbulence effect. Additionally, their operation is affected significantly by the pointing errors effect which is caused by the misalignment of the optical beam between the transmitter and the receiver. In order to address this significant performance degradation, several statistical models have been proposed, while particular attention has been also given to diversity methods. Here, the turbulence-induced fading of the received optical signal irradiance is studied through the M (alaga) distribution, which is an accurate model suitable for weak to strong turbulence conditions and unifies most of the well-known, previously emerged models. Thus, taking into account the atmospheric turbulence conditions along with the pointing errors effect with nonzero boresight and the modulation technique that is used, we derive mathematical expressions for the estimation of the average bit error rate performance for SIMO FSO links. Finally, proper numerical results are given to verify our derived expressions and Monte Carlo simulations are also provided to further validate the accuracy of the analysis proposed and the obtained mathematical expressions.

  15. Flow, turbulence, and drag associated with engineered log jams in a fixed-bed experimental channel

    Science.gov (United States)

    Engineered log jams (ELJs) have become attractive alternatives for river restoration and bank stabilization programs. Yet the effects of ELJs on turbulent flow and the fluid forces acting on the ELJs are not well known, and such information could inform design criteria. In this study, a fixed-bed ph...

  16. Laguerre-Gauss and Bessel-Gauss beams propagation through turbulence: analysis of channel efficiency.

    Science.gov (United States)

    Doster, Timothy; Watnik, Abbie T

    2016-12-20

    As a means of increasing the channel capacity in free-space optical communication systems, two types of orbital angular momentum carrying beams, Bessel-Gauss and Laguerre-Gauss, are studied. In a series of numerical simulations, we show that Bessel-Gauss beams, pseudo-nondiffracting beams, outperform Laguerre-Gauss beams of various orders in channel efficiency and bit error rates.

  17. Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators

    Science.gov (United States)

    Han, J. C.; Ou, S.; Park, J. S.; Lei, C. K.

    1989-01-01

    The effects of the rib angle-of-attack on the distributions of the local heat transfer coefficient and on the friction factors in short rectangular channels of narrow aspect ratios with a pair of opposite rib-roughened walls are determined for Reynolds numbers from 10,000 to 60,000. The channel width-to-height ratios are 2/4 and 1/4; the corresponding rib angles-of-attack are 90, 60, 45, and 30 deg, respectively. The results indicate that the narrow-aspect-ratio channels give better heat transfer performance than the wide-aspect-ratio channels for a constant pumping power. Semiempirical friction and heat transfer correlations are obtained. The results can be used in the design of turbine cooling channels of narrow aspect ratios.

  18. Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels

    Science.gov (United States)

    Liu, Dachang; Wang, Zixiong; Liu, Jianguo; Tan, Jun; Yu, Lijuan; Mei, Haiping; Zhou, Yusong; Zhu, Ninghua

    2017-10-01

    The performance of a free-space optical communication system is highly affected by the atmospheric turbulence in terms of scintillation. An optical communication system based on intensity-modulation direct-detection was built with 1-km transmission distance to evaluate the bit error rate (BER) performance over real atmospheric turbulence. 2.5-, 5-, and 10-Gbps data rate transmissions were carried out, where error-free transmission could be achieved during over 37% of the 2.5-Gbps transmissions and over 43% of the 5-Gbps transmissions. In the rest of the transmissions, BER deteriorated as the refractive-index structure constant increased, while the two measured items have almost the same trend.

  19. Inhomogeneous vortex tangles in counterflow superfluid turbulence: flow in convergent channels

    Directory of Open Access Journals (Sweden)

    Saluto Lidia

    2016-06-01

    Full Text Available We investigate the evolution equation for the average vortex length per unit volume L of superfluid turbulence in inhomogeneous flows. Inhomogeneities in line density L andincounterflowvelocity V may contribute to vortex diffusion, vortex formation and vortex destruction. We explore two different families of contributions: those arising from asecondorder expansionofthe Vinenequationitself, andthose whichare notrelated to the original Vinen equation but must be stated by adding to it second-order terms obtained from dimensional analysis or other physical arguments.

  20. Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows.

    Science.gov (United States)

    Kim, Kyoungyoun; Sureshkumar, Radhakrishna

    2013-06-01

    To study the influence of dynamic interactions between turbulent vortical structures and polymer stress on turbulent friction drag reduction, a series of simulations of channel flow is performed. We obtain self-consistent evolution of an initial eddy in the presence of polymer stresses by utilizing the finitely extensible nonlinear elastic-Peterlin (FENE-P) model. The initial eddy is extracted by the conditional averages for the second quadrant event from fully turbulent Newtonian flow, and the initial polymer conformation fields are given by the solutions of the FENE-P model equations corresponding to the mean shear flow in the Newtonian case. At a relatively low Weissenberg number We(τ) (=50), defined as the ratio of the polymer relaxation time to the wall time scale, the generation of new vortices is inhibited by polymer-induced countertorques. Thus fewer vortices are generated in the buffer layer. However, the head of the primary hairpin is unaffected by the polymer stress. At larger We(τ) values (≥100), the hairpin head becomes weaker and vortex autogeneration and Reynolds stress growth are almost entirely suppressed. The temporal evolution of the vortex strength and polymer torque magnitude reveals that polymer extension by the vortical motion results in a polymer torque that increases in magnitude with time until a maximum value is reached over a time scale comparable to the polymer relaxation time. The polymer torque retards the vortical motion and Reynolds stress production, which in turn weakens flow-induced chain extension and torque itself. An analysis of the vortex time scales reveals that with increasing We(τ), vortical motions associated with a broader range of time scales are affected by the polymer stress. This is qualitatively consistent with Lumley's time criterion for the onset of drag reduction.

  1. On the use of wavelength and time diversity in optical wireless communication systems over gamma-gamma turbulence channels

    Science.gov (United States)

    Nistazakis, Hector E.; Tombras, George S.

    2012-10-01

    Optical wireless communication or free space optical systems have gained significant research and commercial attention in recent years due to their cost-effective and license-free high bandwidth access characteristics. However, by using the atmosphere as transmission media, the performance of such a system depends on the atmospheric conditions that exist between transmitter and receiver. Indeed, for an outdoor optical channel link, the existence of atmospheric turbulence may significantly degrade the performance of the associated communication system over distances longer than 1 or even 0.5 km. In order to anticipate this, particular attention has been given to diversity methods. In this work, we consider the use of wavelength and time diversity in wireless optical communication systems that operate under weak to strong atmospheric turbulence conditions modeled by the gamma-gamma distribution, and we derive closed form mathematical expressions for estimating the system's achievable outage probability and average bit error rate. Finally, numerical results referred to common practical cases are also obtained in order to show that wavelength and time diversity schemes enhances considerably these systems' availability and performance.

  2. Performance study of terrestrial multi-hop OFDM FSO communication systems with pointing errors over turbulence channels

    Science.gov (United States)

    Nistazakis, H. E.; Ninos, M. P.; Tsigopoulos, A. D.; Zervos, D. A.; Tombras, G. S.

    2016-08-01

    The free-space optical communication systems attract significant research and commercial interest the last few years, due to their high performance and reliability characteristics along with their, relatively, low installation and operational cost. Moreover, due to the fact that these systems are using the atmosphere as propagation path, their performance is varying according to its characteristics. Here, we present the performance analysis of a serially relayed radio-on-free-space-optical (RoFSO) communication system which employs the orthogonal frequency division multiplexing technique, with a quadrature amplitude modulation scheme, over atmospheric turbulence channels modelled by either the Gamma-Gamma or the Gamma distribution model. For this RoFSO communication link, we derive closed-form mathematical expressions for the estimation of its average bit error rate and outage probability, taking into account the relays' number, the atmospheric turbulence and the pointing errors effect. Furthermore, for realistic parameter values, numerical results are presented using the derived mathematical expressions, which are verified through the corresponding numerical simulations.

  3. Viscoelastic suppression of gravity-driven counterflow instability.

    Science.gov (United States)

    Beiersdorfer, P; Layne, D; Magee, E W; Katz, J I

    2011-02-04

    Attempts to achieve "top kill" of flowing oil wells by pumping dense drilling "muds," i.e., slurries of dense minerals, from above will fail if the Kelvin-Helmholtz instability in the gravity-driven counterflow produces turbulence that breaks up the denser fluid into small droplets. Here we estimate the droplet size to be submillimeter for fast flows and suggest the addition of a shear-thickening or viscoelastic polymer to suppress turbulence. We find in laboratory experiments a variety of new physical effects for a viscoelastic shear-thickening liquid in a gravity-driven counterstreaming flow. There is a progression from droplet formation to complete turbulence suppression at the relevant high velocities. Thick descending columns show a viscoelastic analogue of the viscous buckling instability. Thinner streams form structures resembling globules on a looping filament.

  4. Saturation of curvature-induced secondary flow, energy losses, and turbulence in sharp open-channel bends : Laboratory experiments, analysis, and modeling

    NARCIS (Netherlands)

    Blanckaert, K.J.F.

    2009-01-01

    The paper investigates the influence of relative bend curvature on secondary flow, energy losses, and turbulence in sharp open-channel bends. These processes are important in natural streams with respect to sediment transport, the bathymetry and planimetry, mixing and spreading of pollutants, heat,

  5. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles

    Science.gov (United States)

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2017-09-01

    A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84 % , and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density

  6. Turbulence Model Evaluation Study for a Secondary Flow and a Flow Pulsation in the Sub-Channels of an 18-Finned Rod Bundle by Using Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Hark; Chae, Hee Taek; Park, Cheol; Kim, Heon Il

    2008-09-15

    Since the heat flux of the rod type fuel used in the HANARO, a research reactor being operated in the KAERI, is substantially higher than the heat flux of power reactors, the HANARO fuel has 8 longitudinal fins for enhancing the heat release from the fuel rod surface. This unique shape of a nuclear fuel led us to study the flows and thermal hydraulic characteristics of it. Especially because the flows through the narrow channels built up by these finned rod fuels would be different from the flow characteristics in the coolant channels formed by bare rod fuels, some experimental studies to investigate the flow behaviors and structures in a finned rod bundle were done by other researchers. But because of the very complex geometries of the flow channels in the finned rod bundle only allowed us to obtain limited information about the flow characteristics, a numerical study by a computational fluid dynamics technique has been adopted to elucidate more about such a complicated flow in a finned rod bundle. In this study, for the development of an adequate computational model to simulate such a complex geometry, a mesh sensitivity study and the effects of various turbulence models were examined. The CFD analysis results were compared with the experimental results. Some of them have a good agreement with the experimental results. All linear eddy viscosity turbulence models could hardly predict the secondary flows near the fuel surfaces and in the sub-channel, but the RSM (Reynolds Stress Model) revealed very different results from the eddy viscosity turbulence models. In the transient analysis all turbulence model predicted flow pulsation at the center of a subchannel as well as at the gap between rods in spite of large P/D. The flow pulsation showed different results with turbulence models and the location in the sub-channels.

  7. Turbulent flow computation

    National Research Council Canada - National Science Library

    Drikakis, D; Geurts, Bernard

    2002-01-01

    ... discretization 3 A test-case: turbulent channel flow 4 Conclusions 75 75 82 93 98 4 Analysis and control of errors in the numerical simulation of turbulence Sandip Ghosal 1 Introduction 2 Source...

  8. Collision frequency and radial distribution function in particle-laden turbulent channel flow

    NARCIS (Netherlands)

    Kuerten, Johannes G.M.; Vreman, A.W.

    2016-01-01

    We performed Eulerian–Lagrangian direct numerical simulation of particle-laden channel flow at a frictional Reynolds number of 950. A fully parallelized deterministic particle collision algorithm is applied for elastic collisions between two particles and particles and the walls. A total number of

  9. Performance analysis of an OAM multiplexing-based MIMO FSO system over atmospheric turbulence using space-time coding with channel estimation.

    Science.gov (United States)

    Zhang, Yan; Wang, Ping; Guo, Lixin; Wang, Wei; Tian, Hongxin

    2017-08-21

    The average bit error rate (ABER) performance of an orbital angular momentum (OAM) multiplexing-based free-space optical (FSO) system with multiple-input multiple-output (MIMO) architecture has been investigated over atmospheric turbulence considering channel estimation and space-time coding. The impact of different types of space-time coding, modulation orders, turbulence strengths, receive antenna numbers on the transmission performance of this OAM-FSO system is also taken into account. On the basis of the proposed system model, the analytical expressions of the received signals carried by the k-th OAM mode of the n-th receive antenna for the vertical bell labs layered space-time (V-Blast) and space-time block codes (STBC) are derived, respectively. With the help of channel estimator carrying out with least square (LS) algorithm, the zero-forcing criterion with ordered successive interference cancellation criterion (ZF-OSIC) equalizer of V-Blast scheme and Alamouti decoder of STBC scheme are adopted to mitigate the performance degradation induced by the atmospheric turbulence. The results show that the ABERs obtained by channel estimation have excellent agreement with those of turbulence phase screen simulations. The ABERs of this OAM multiplexing-based MIMO system deteriorate with the increase of turbulence strengths. And both V-Blast and STBC schemes can significantly improve the system performance by mitigating the distortions of atmospheric turbulence as well as additive white Gaussian noise (AWGN). In addition, the ABER performances of both space-time coding schemes can be further enhanced by increasing the number of receive antennas for the diversity gain and STBC outperforms V-Blast in this system for data recovery. This work is beneficial to the OAM FSO system design.

  10. Single phase channel flow forced convection heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hartnett, J.P.

    1999-04-01

    A review of the current knowledge of single phase forced convection channel flow of liquids (Pr > 5) is presented. Two basic channel geometries are considered, the circular tube and the rectangular duct. Both laminar flow and turbulent flow are covered. The review begins with a brief overview of the heat transfer behavior of Newtonian fluids followed by a more detailed presentation of the behavior of purely viscous and viscoelastic Non-Newtonian fluids. Recent developments dealing with aqueous solutions of high molecular weight polymers and aqueous solutions of surfactants are discussed. The review concludes by citing a number of challenging research opportunities.

  11. Turbulent flow in a ribbed channel: Flow structures in the vicinity of a rib

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt

    2010-01-01

    PIV measurements are performed in a channel with periodic ribs on one wall. The emphasis of this study is to investigate the flow structures in the vicinity of a rib in terms of mean velocities, Reynolds stresses, probability density functions (PDF), and two-point correlations. The PDF distribution......-based visualization is applied to the separation bubble upstream of the rib. Salient critical points and limit cycles are extracted, which gives clues to the physical processes occurring in the flow....

  12. Revisiting the Lie-group symmetry method for turbulent channel flow with wall transpiration

    CERN Document Server

    Khujadze, George

    2016-01-01

    The Lie-group-based symmetry analysis, as first proposed in Avsarkisov et al. (2014) and then later modified in Oberlack et al. (2015), to generate invariant solutions in order to predict the scaling behavior of a channel flow with uniform wall transpiration, is revisited. By focusing first on the results obtained in Avsarkisov et al. (2014), we failed to reproduce two key results: (i) For different transpiration rates at a constant Reynolds number, the mean velocity profiles (in deficit form) do not universally collapse onto a single curve as claimed. (ii) The universally proposed logarithmic scaling law in the center of the channel does not match the direct numerical simulation (DNS) data for the presented parameter values. In fact, no universal scaling behavior in the center of the channel can be detected from their DNS data, as it is misleadingly claimed in Avsarkisov et al. (2014). Moreover, we will demonstrate that the assumption of a Reynolds-number independent symmetry analysis is not justified for th...

  13. Inlet effects on roll-wave development in shallow turbulent open-channel flows

    Directory of Open Access Journals (Sweden)

    Campomaggiore Francesca

    2016-03-01

    Full Text Available The present work investigates the effect of the flow profile induced by an inlet condition on the roll-wave evolution in turbulent clear-water flows. The study employs theoretical and numerical analyses. Firstly, the influence of the inlet condition on the spatial evolution of a single perturbation in a hypercritical flow is examined through the expansion near a wavefront analysis. The results show that an accelerated unperturbed profile reduces the disturbance spatial growth. A decelerated profile causes an increase. The effect of the flow profile on the spatial evolution of roll-wave trains is then numerically investigated solving the Saint Venant equations with a second-order Runge-Kutta Total Variation Diminishing (TVD Finite Volume scheme. The numerical simulations comply with the analytical results for the initial and transition phases of the roll-wave development. The unperturbed profile influences even the roll-waves statistical characteristics in the final stage, with a more evident effect in case of accelerated profiles. The influence of the flow profile should be therefore accounted for in the formulation of predictive criteria for roll-waves appearance based on the estimation of the disturbance spatial growth rate.

  14. Effects of spatial gradients in thermophysical properties on the topology of turbulence in heated channel flow of supercritical fluids

    Science.gov (United States)

    Azih, Chukwudi; Yaras, Metin I.

    2018-01-01

    The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism

  15. Coupled dynamics of the co-evolution of gravel bed topography, flow turbulence and sediment transport in an experimental channel

    Science.gov (United States)

    Singh, Arvind; Foufoula-Georgiou, Efi; Porté-Agel, Fernando; Wilcock, Peter R.

    2012-12-01

    A series of flume experiments were conducted in a large experimental channel at the St. Anthony Falls Laboratory to understand the coupled dynamics of flow and bed forms above the sediment-water interface. Simultaneous high resolution measurements of velocity fluctuations, bed elevations and sediment flux at the downstream end of the channel, were made for a range of discharges. The probability density functions (pdfs) of bed elevation increments and instantaneous Reynolds stress reveal a power law tail behavior and a wavelet cross-correlation analysis depicts a strong dependence of these series across a range of scales, indicating a feedback between bed form dynamics and near-bed turbulence. These results complement our previous findings in which the signature of bed form evolution on the near-bed velocity fluctuations was confirmed via the presence of a spectral gap and two distinct power law scaling regimes in the spectral density of velocity fluctuations. We report herein a strong asymmetry in the probability distribution of bed elevation increments and instantaneous Reynolds stresses, the latter being further analyzed and interpreted via a quadrant analysis of velocity fluctuations in the longitudinal and vertical directions. We also report the presence of intermittency (multifractality) in bed elevation increments and interpret it, in view of the asymmetric nature of the pdfs, as the result of scale coupling. In other words, the geometric asymmetry at the bed form scale gets transferred down to a probabilistic asymmetry at all smaller scales indicating a local anisotropy in the energy transfer. Finally, we propose a predictive relationship between bed form averaged sediment transport rates and bed form averaged instantaneous Reynolds stress and validate it using our experimental data.

  16. Average BER analysis of SCM-based free-space optical systems by considering the effect of IM3 with OSSB signals under turbulence channels.

    Science.gov (United States)

    Lim, Wansu; Cho, Tae-Sik; Yun, Changho; Kim, Kiseon

    2009-11-09

    In this paper, we derive the average bit error rate (BER) of subcarrier multiplexing (SCM)-based free space optics (FSO) systems using a dual-drive Mach-Zehnder modulator (DD-MZM) for optical single-sideband (OSSB) signals under atmospheric turbulence channels. In particular, we consider the third-order intermodulation (IM3), a significant performance degradation factor, in the case of high input signal power systems. The derived average BER, as a function of the input signal power and the scintillation index, is employed to determine the optimum number of SCM users upon the designing FSO systems. For instance, when the user number doubles, the input signal power decreases by almost 2 dBm under the log-normal and exponential turbulence channels at a given average BER.

  17. Performance improvement of FSO/CDMA systems over dispersive turbulence channel using multi-wavelength PPM signaling.

    Science.gov (United States)

    Dang, Ngoc T; Pham, Anh T

    2012-11-19

    Previous studies show that, compared to on-off keying (OOK) signaling, pulse-position modulation (PPM) is favorable in FSO/CDMA systems thanks to its energy efficiency and simple detection. Nevertheless, when the system bit rate increases and the transmission distance is far, the FSO/CDMA systems using PPM signaling critically suffer from the impact of pulse broadening caused by dispersion, especially when the modulation level is high. In this paper, we therefore propose to use multi-wavelength PPM (MWPPM) signaling to overcome the limitation of PPM. To further improve the system performance, avalanche photodiode (APD) is also used. The performance of the proposed system is theoretically analyzed using a realistic model of Gaussian pulse propagation. To model the impact of intensity fluctuation caused by the atmospheric turbulence, the log-normal channel is used. We find that, by using MWPPM, the effects of both intensity fluctuation and pulse broadening are mitigated, the BER is therefore significantly improved. Additionally, we quantitatively show that the system performance is further improved by using APD, especially when the average APD gain is chosen properly.

  18. On the Performance of Free-Space Optical Systems over Generalized Atmospheric Turbulence Channels with Pointing Errors

    KAUST Repository

    Ansari, Imran Shafique

    2015-03-01

    Generalized fading has been an imminent part and parcel of wireless communications. It not only characterizes the wireless channel appropriately but also allows its utilization for further performance analysis of various types of wireless communication systems. Under the umbrella of generalized fading channels, a unified performance analysis of a free-space optical (FSO) link over the Malaga (M) atmospheric turbulence channel that accounts for pointing errors and both types of detection techniques (i.e. indirect modulation/direct detection (IM/DD) as well as heterodyne detection) is presented. Specifically, unified exact closed-form expressions for the probability density function (PDF), the cumulative distribution function (CDF), the moment generating function (MGF), and the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission system are presented, all in terms of the Meijer\\'s G function except for the moments that is in terms of simple elementary functions. Then capitalizing on these unified results, unified exact closed-form expressions for various performance metrics of FSO link transmission systems are offered, such as, the outage probability (OP), the higher-order amount of fading (AF), the average error rate for binary and M-ary modulation schemes, and the ergodic capacity (except for IM/DD technique, where closed-form lower bound results are presented), all in terms of Meijer\\'s G functions except for the higher-order AF that is in terms of simple elementary functions. Additionally, the asymptotic results are derived for all the expressions derived earlier in terms of the Meijer\\'s G function in the high SNR regime in terms of simple elementary functions via an asymptotic expansion of the Meijer\\'s G function. Furthermore, new asymptotic expressions for the ergodic capacity in the low as well as high SNR regimes are derived in terms of simple elementary functions via utilizing moments. All the presented results are

  19. Performance Analysis of Heterodyne-Detected OCDMA Systems Using PolSK Modulation over a Free-Space Optical Turbulence Channel

    Directory of Open Access Journals (Sweden)

    Fan Bai

    2015-10-01

    Full Text Available This paper presents a novel model of heterodyne-detected optical code-division multiple-access (OCDMA systems employing polarization shift keying (PolSK modulation over a free-space optical (FSO turbulence channel. In this article, a new transceiver configuration and detailed analytical model for the proposed system are provided and discussed, taking into consideration the potential of heterodyne detection on mitigating the impact of turbulence-induced irradiance fluctuation on the performance of the proposed system under the gamma-gamma turbulence channel. Furthermore, we derived the closed-form expressions for the system error probability and outage probability, respectively. We determine the advantages of the proposed modeling by performing a comparison with a direct detection scheme obtained from an evaluation of link performance under the same environment conditions. The presented work also shows the most significant impact factor that degrades the performance of the proposed system and indicates that the proposed approach offers an optimum link performance compared to conventional cases.

  20. Topology optimization of viscoelastic rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2012-01-01

    An approach for the design of microfluidic viscoelastic rectifiers is presented based on a combination of a viscoelastic model and the method of topology optimization. This presumption free approach yields a material layout topologically different from experimentally realized rectifiers...

  1. An investigation of the linear mechanisms in polymer drag-reduced turbulence using resolvent analysis

    Science.gov (United States)

    McMullen, Ryan; McKeon, Beverley

    2017-11-01

    It is well-known that small amounts of high-molecular weight polymers can drastically reduce turbulent drag in a liquid (Toms, 1948). Furthermore, recent work has shown that studying polymers in turbulence can shed light on the nature of the self-sustaining mechanisms of wall turbulence (White and Mungal, 2008; Graham, 2014). The focus of this talk is an investigation of the linear mechanisms at play in polymer drag-reduced turbulent channel flow. The resolvent framework introduced by McKeon and Sharma (2010) for Newtonian turbulence is extended to the viscoelastic case in order to study the most-amplified velocity and polymer stretching modes, explored in the case of creeping flow by Jovanović and coworkers (Jovanović and Kumar, 2010; Lieu et al., 2013). Particular attention is given to the role of critical layers, which have been shown to be important in the dynamics of Newtonian turbulence (McKeon and Sharma, 2010). Additionally, comparisons will be made with the lower branch of the P4 family of exact coherent states, which closely reproduce statistical features of polymer drag-reduced turbulence close to maximum drag reduction (Park and Graham, 2015). The support of the Dow Corporation is gratefully acknowledged.

  2. On the nature of transport in near-critical dissipative-trapped-electron-mode turbulence: effect of a sudominant diffusive channel

    Energy Technology Data Exchange (ETDEWEB)

    Mier, Jose Angel [Universidad Carlos III, Madrid, Spain; Sanchez, Raul [ORNL; Garcia, Luis [Universidad Carlos III, Madrid, Spain; Newman, David E [University of Alaska; Carreras, Benjamin A [BACV Solutions, Inc., Oak Ridge

    2008-01-01

    The change in nature of radial transport in numerical simulations of near-critical dissipative-trapped-electron-mode turbulence is characterized as the relative strength of an additional diffusive transport channel (subdominant to turbulence) is increased from zero. In its absence, radial transport exhibits the lack of spatial and temporal scales characteristic of self-organized-critical systems. This dynamical regime survives up to diffusivity values which, for the system investigated here, greatly exceeds the expected neoclassical value. These results, obtained using a novel Lagrangian method, complete and extend previous works based instead on the use of techniques imported from the study of cellular automata [J. A. Mier et al., Phys. Plasmas 13, 102308 (2006)]. They also shed further light on why some features of self-organized criticality seem to be observed in magnetically confined plasmas in spite of the presence of mechanisms which apparently violate the conditions needed for its establishment.

  3. Viscoelastic guidance of resuscitation

    DEFF Research Database (Denmark)

    Stensballe, Jakob; Ostrowski, Sisse R; Johansson, Pär I

    2014-01-01

    PURPOSE OF REVIEW: Bleeding in trauma carries a high mortality and is increased in case of coagulopathy. Our understanding of hemostasis and coagulopathy has improved, leading to a change in the protocols for hemostatic monitoring. This review describes the current state of evidence supporting...... populations. In trauma care, viscoelastic hemostatic assays allows for rapid and timely identification of coagulopathy and individualized, goal-directed transfusion therapy. As part of the resuscitation concept, viscoelastic hemostatic assays seem to improve outcome also in trauma; however, there is a need...

  4. Water-Channel Estimation of Eulerian and Lagrangian Time Scales of the Turbulence in Idealized Two-Dimensional Urban Canopies

    Science.gov (United States)

    Di Bernardino, Annalisa; Monti, Paolo; Leuzzi, Giovanni; Querzoli, Giorgio

    2017-11-01

    Lagrangian and Eulerian statistics are obtained from a water-channel experiment of an idealized two-dimensional urban canopy flow in neutral conditions. The objective is to quantify the Eulerian (TE) and Lagrangian (TL) time scales of the turbulence above the canopy layer as well as to investigate their dependence on the aspect ratio of the canopy, AR, as the latter is the ratio of the width ( W) to the height ( H) of the canyon. Experiments are also conducted for the case of flat terrain, which can be thought of as equivalent to a classical one-directional shear flow. The values found for the Eulerian time scales on flat terrain are in agreement with previous numerical results found in the literature. It is found that both the streamwise and vertical components of the Lagrangian time scale, T_u^L and T_w^L , follow Raupach's linear law within the constant-flux layer. The same holds true for T_w^L in both the canopies analyzed (AR= 1 and AR= 2) and also for T_u^L when AR = 1. In contrast, for AR = 2, T_u^L follows Raupach's law only above z=2H. Below that level, T_u^L is nearly constant with height, showing at z=H a value approximately one order of magnitude greater than that found for AR = 1. It is shown that the assumption usually adopted for flat terrain, that β =TL/TE is proportional to the inverse of the turbulence intensity, also holds true even for the canopy flow in the constant-flux layer. In particular, γ /i_u fits well β _u =T_u^L /T_u^E in both the configurations by choosing γ to be 0.35 (here, i_u =σ _u / \\bar{u} , where \\bar{u} and σ _u are the mean and the root-mean-square of the streamwise velocity component, respectively). On the other hand, β _w =T_w^L /T_w^E follows approximately γ /i_w =0.65/( {σ _w /\\bar{u} } ) for z > 2H, irrespective of the AR value. The second main objective is to estimate other parameters of interest in dispersion studies, such as the eddy diffusivity of momentum (KT) and the Kolmogorov constant (C_0). It is

  5. Modeling of turbulent flows in cooling channels of turbo-machineries; Modelisation des ecoulements turbulents dans des canaux de refroidissement de turbomachines

    Energy Technology Data Exchange (ETDEWEB)

    Bidart, A.; Caltagirone, J.P.; Parneix, S. [Laboratoire MASTER-ENSCPB, 33 - Talence (France)

    1997-12-31

    The MASTER laboratory has been involved since several years in the creation and utilization of modeling tools for the prediction of 3-D turbulent flows and heat transfers in turbine blades in order to optimize the cooling systems of turbo-machineries. This paper describes one of the test-cases that has been used for the validation of the `Aquilon` calculation code developed in this aim. Then, the modeling performed with the `Fluent` industrial code in order to evaluate the possible improvements of the Aquilon code, is presented. (J.S.) 5 refs.

  6. BER estimation for multi-hop RoFSO QAM or PSK OFDM communication systems over gamma gamma or exponentially modeled turbulence channels

    Science.gov (United States)

    Nistazakis, H. E.; Stassinakis, A. N.; Sheikh Muhammad, S.; Tombras, G. S.

    2014-12-01

    The optical wireless and in particular the radio-on-free-space-optical (RoFSO) communication systems are gaining popularity due to their high date rates, license free spectrum and adequate reliability at installation and operational costs which are much lower than comparable technologies. One significant disadvantage of these systems concerns the randomly time varying characteristics of the propagation path mainly caused by the atmospheric turbulence. In this work, we study the BER performance of a multi-hop RoFSO system which is using an orthogonal frequency division multiplexing (OFDM) scheme, with either quadrature amplitude modulation (QAM) or phase shift keying format (PSK), over atmospheric turbulence channels modeled with the gamma gamma or the negative exponential distribution. The individual RoFSO parts of the whole optical link are connected to each other by using regenerators relay nodes. The dominant impairments which are the most significant and have been taken into account are the atmospheric turbulence, the path losses, the nonlinear responsivity of the laser diode and the inter-modulation distortion effect. For this setup, we derive closed form mathematical expressions for the estimation of the BER performance for each individual OFDM RoFSO link and for the whole relayed optical communication system, as well. Finally, the corresponding numerical results, for common link's parameters, are presented.

  7. Performance analysis of a PPM-FSO communication system with an avalanche photodiode receiver over atmospheric turbulence channels with aperture averaging.

    Science.gov (United States)

    Fu, Huihua; Wang, Ping; Liu, Tao; Cao, Tian; Guo, Lixin; Qin, Jiao

    2017-08-10

    The average bit error rate (ABER) performance of an avalanche-photodiode (APD)-based pulse-position modulation (PPM) free-space optical (FSO) communication system is investigated considering the aperture averaging effect. The approximate ABER expression is theoretically derived in terms of M and exponentiated Weibull (EW) distributions under weak-to-strong turbulent atmosphere conditions with a binary PPM (BPPM) scheme. Union-bound and Hermite polynomials are then considered to estimate the performance of M-ary PPM FSO systems. The system performance is analyzed with the aperture sizes, turbulence strengths, receiver temperatures, and average photon counts taken into account. The results show that an optimal average APD gain, which is affected by receiver temperature, can be chosen to minimize the ABER value. And the impact of aperture averaging on the system performance over M distribution is not so apparent as that over EW distribution for different temperatures, turbulent strengths, and average photon counts. In addition, the present APD-based system can offer better ABER performance than that of a P-i-N-based PPM system over both EW and M fading channels at 300 and 500 K. This work is beneficial to the FSO system design.

  8. Turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air-bubbles clustered near the wall

    Science.gov (United States)

    Lakehal, D.; Métrailler, D.; Reboux, S.

    2017-06-01

    This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which

  9. Influence Study of the Viscoelastic Fluids Features in Drag Reduction in Laminar Regime Flow in Pipeline

    OpenAIRE

    Vilalta Guillermo; Silva Mário; Blanco Alejandro

    2016-01-01

    The drag reduction by polymer addition is wide interest in several areas. It has been shown that the polymer addition cushions the dissipative effects in turbulent flows. The main objective of this work is to establish a methodology for the numerical simulation of viscoelastic fluid through internal subroutines implemented in the Fluent code, via UDF. The validation of this methodology is made for the laminar flow regime case in pipeline. To describe the viscoelastic effect, it was used the F...

  10. Non linear viscoelastic models

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2011-01-01

    Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated....... The simulations show that the nonlinear version of the Maxwell SLS model can result in a time dependent small signal stiness while the Kelvin Voight version does not....

  11. Performance evaluation of FSO system using wavelength and time diversity over malaga turbulence channel with pointing errors

    Science.gov (United States)

    Balaji, K. A.; Prabu, K.

    2018-03-01

    There is an immense demand for high bandwidth and high data rate systems, which is fulfilled by wireless optical communication or free space optics (FSO). Hence FSO gained a pivotal role in research which has a added advantage of both cost-effective and licence free huge bandwidth. Unfortunately the optical signal in free space suffers from irradiance and phase fluctuations due to atmospheric turbulence and pointing errors which deteriorates the signal and degrades the performance of communication system over longer distance which is undesirable. In this paper, we have considered polarization shift keying (POLSK) system applied with wavelength and time diversity technique over Malaga(M)distribution to mitigate turbulence induced fading. We derived closed form mathematical expressions for estimating the systems outage probability and average bit error rate (BER). Ultimately from the results we can infer that wavelength and time diversity schemes enhances these systems performance.

  12. A CFD study on turbulent forced convection flow of Al2O3-water nanofluid in semi-circular corrugated channel

    Science.gov (United States)

    Ajeel, R. K.; Salim, W. S. I. W.

    2017-09-01

    The performance of heat exchangers especially for single phase flows can be enhanced by many augmentation techniques. One of the most popular method used is a passive heat transfer technique. Researchers have been quite active in the search of novel ways on heat transfer augmentation techniques using various types of passive techniques to increase heat transfer performances of heat exchanger. Computational Fluid Dynamics (CFD) simulations of heat transfer and friction factor analysis in a turbulent flow regime in semi-circle corrugated channels with Al2O3-water nanofluid is presented in this paper. Simulations are carried out at Reynolds number range of 10000-30000, with nanoparticle volume fractions 0-6% and constant heat flux condition. The results for corrugated channels are examined and compared to those for straight channels. Results show that the Nusselt number increased with the increase of nanoparticle volume fraction and Reynolds number. The Nusselt number was found to increase as the nanoparticle diameter decreased. Maximum Nusselt number enhancement ratio 2.07 at Reynolds number 30,000 and volume fraction 6%.

  13. Mean velocity distribution of open channel turbulent flow on a sawtooth riblet surface. Riblet somen kaisuiro ranryu no heikin ryusoku bunpu

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. (Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering)

    1993-11-01

    The mean velocity distribution of an open channel turbulent flow on a sawtooth riblet surface. The long open channel of 60 cm wide, 25 cm deep and 10 m long was used, and equilateral triangle riblets of 2 mm in edge were laid longitudinally all over the bottom surface of the channel. Flow velocity was measured by pitot tube with a rectangular open section of 0.5 [times] 3 mm. As an experimental result, as the apparent origin of velocity profiles was evaluated assuming the presence of a viscous bottom layer, the coefficient of frictional drag agreed with previous experimental ones, however, the apparent origin descended from a riblet peak with an increase in drag reduction rate. The velocity profile in a buffer region differed remarkably from that on a smooth wall, and the maximum mixing length was found at 80-100 in non-dimensional water depth (Y[sup +]) increasing with the drag reduction rate. From a mixing length profile, as the apparent origin lay at 20-30 in Y[sup +], the logarithmic velocity profile was found in a range over 150 in Y[sup +]. 7 refs., 10 figs., 1 tab.

  14. A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow

    Science.gov (United States)

    Krank, Benjamin; Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin

    2017-11-01

    We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at Reτ = 180 as well as 590.

  15. Verification of bubble tracking method and DNS examinations of single- and two-phase turbulent channel flows

    Energy Technology Data Exchange (ETDEWEB)

    Tryggvason, Gretar [Univ. of Notre Dame, IN (United States); Bolotnov, Igor [North Carolina State Univ., Raleigh, NC (United States); Fang, Jun [North Carolina State Univ., Raleigh, NC (United States); Lu, Jiacai [Univ. of Notre Dame, IN (United States)

    2017-03-30

    Direct numerical simulation (DNS) has been regarded as a reliable data source for the development and validation of turbulence models along with experiments. The realization of DNS usually involves a very fine mesh that should be able to resolve all relevant turbulence scales down to Kolmogorov scale [1]. As the most computationally expensive approach compared to other CFD techniques, DNS applications used to be limited to flow studies at very low Reynolds numbers. Thanks to the tremendous growth of computing power over the past decades, the simulation capability of DNS has now started overlapping with some of the most challenging engineering problems. One of those examples in nuclear engineering is the turbulent coolant flow inside reactor cores. Coupled with interface tracking methods (ITM), the simulation capability of DNS can be extended to more complicated two-phase flow regimes. Departure from nucleate boiling (DNB) is the limiting critical heat flux phenomena for the majority of accidents that are postulated to occur in pressurized water reactors (PWR) [2]. As one of the major modeling and simulation (M&S) challenges pursued by CASL, the prediction capability is being developed for the onset of DNB utilizing multiphase-CFD (M-CFD) approach. DNS (coupled with ITM) can be employed to provide closure law information for the multiphase flow modeling at CFD scale. In the presented work, research groups at NCSU and UND will focus on applying different ITM to different geometries. Higher void fraction flow analysis at reactor prototypical conditions will be performed, and novel analysis methods will be developed, implemented and verified for the challenging flow conditions.

  16. An Accurate Computational Tool for Performance Estimation of FSO Communication Links over Weak to Strong Atmospheric Turbulent Channels

    Directory of Open Access Journals (Sweden)

    Theodore D. Katsilieris

    2017-03-01

    Full Text Available The terrestrial optical wireless communication links have attracted significant research and commercial worldwide interest over the last few years due to the fact that they offer very high and secure data rate transmission with relatively low installation and operational costs, and without need of licensing. However, since the propagation path of the information signal, i.e., the laser beam, is the atmosphere, their effectivity affects the atmospheric conditions strongly in the specific area. Thus, system performance depends significantly on the rain, the fog, the hail, the atmospheric turbulence, etc. Due to the influence of these effects, it is necessary to study, theoretically and numerically, very carefully before the installation of such a communication system. In this work, we present exactly and accurately approximate mathematical expressions for the estimation of the average capacity and the outage probability performance metrics, as functions of the link’s parameters, the transmitted power, the attenuation due to the fog, the ambient noise and the atmospheric turbulence phenomenon. The latter causes the scintillation effect, which results in random and fast fluctuations of the irradiance at the receiver’s end. These fluctuations can be studied accurately with statistical methods. Thus, in this work, we use either the lognormal or the gamma–gamma distribution for weak or moderate to strong turbulence conditions, respectively. Moreover, using the derived mathematical expressions, we design, accomplish and present a computational tool for the estimation of these systems’ performances, while also taking into account the parameter of the link and the atmospheric conditions. Furthermore, in order to increase the accuracy of the presented tool, for the cases where the obtained analytical mathematical expressions are complex, the performance results are verified with the numerical estimation of the appropriate integrals. Finally, using

  17. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  18. Viscoelastic pulsational mode

    Science.gov (United States)

    Dutta, Pranamika; Karmakar, Pralay Kumar

    2017-08-01

    We present a theoretical model analysis to study the linear pulsational mode dynamics in viscoelastic complex self-gravitating infinitely extended clouds in the presence of active frictional coupling and dust-charge fluctuations. The complex cloud consists of uniformly distributed lighter hot mutually thermalized electrons and ions, and heavier cold dust grains amid partial ionization in a homogeneous, quasi-neutral, hydrostatic equilibrium configuration. A normal mode analysis over the closed set of slightly perturbed cloud governing equations is employed to obtain a generalized dispersion relation (septic) of unique analytic construct on the plasma parameters. Two extreme cases of physical interest depending on the perturbation scaling, hydrodynamic limits and kinetic limits are considered. It is shown that the grain mass and viscoelastic relaxation time associated with the charged dust fluid play stabilizing roles to the fluctuations in the hydrodynamic regime. In contrast, however in the kinetic regime, the stabilizing effects are introduced by the dust mass, dust equilibrium density and equilibrium ionic population distribution. Besides, the oscillatory and propagatory features are illustrated numerically and interpreted in detail. The results are in good agreement with the previously reported findings as special corollaries in like situations. Finally, a focalized indication to new implications and applications of the outcomes in the astronomical context is foregrounded.

  19. Large-eddy simulation of turbulent flow past tri-frame configurations of hydrokinetic turbines in an open channel

    Science.gov (United States)

    Chawdhary, Saurabh; Yang, Xiaolei; Hill, Craig; Guala, Michele; Sotiropoulos, Fotis

    2014-11-01

    An effective way to develop arrays of hydrokinetic turbines in streams and tidal sites is to arrange them in tri-frame configurations, where three turbines are mounted together at the apexes of a triangular frame. Turbines mounted on a tri-frame can serve as the building block for rapidly deploying multi-turbine arrays. We employ large-eddy simulation (LES) to understand wake interactions of turbines mounted on tri-frame configurations and develop design guidelines for field deployment. We employ the computational framework of Yang et al. (2013) to simulate the flow past turbines with the turbines modeled as actuator lines. The computed results are compared with experiments conducted at the Saint Anthony Falls Lab (SAFL) in terms of mean flow and turbulence characteristics. The flow fields are analyzed to elucidate the mechanisms of turbine interactions and wake evolution in tri-frame configurations and to develop design guidelines for maximizing the combined power output while reducing structural loads due to turbulent fluctuations. This work was supported by NSF grant IIP-1318201. The simulations were carried out at the Minnesota Supercomputing Institute.

  20. Turbulence generation by waves

    Energy Technology Data Exchange (ETDEWEB)

    Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)

    1995-12-31

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.

  1. Theory of viscoelasticity an introduction

    CERN Document Server

    Christensen, R

    1982-01-01

    Theory of Viscoelasticity: An Introduction, Second Edition discusses the integral form of stress strain constitutive relations. The book presents the formulation of the boundary value problem and demonstrates the separation of variables condition.The text describes the mathematical framework to predict material behavior. It discusses the problems to which integral transform methods do not apply. Another topic of interest is the thermoviscoelastic stress analysis. The section that follows describes the heat conduction, glass transition criterion, viscoelastic Rayleigh waves, optimal str

  2. Stirring turbulence with turbulence

    NARCIS (Netherlands)

    Cekli, H.E.; Joosten, R.F.D.; Water, W. van de

    2015-01-01

    We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the

  3. Theory of heterogeneous viscoelasticity

    Science.gov (United States)

    Schirmacher, Walter; Ruocco, Giancarlo; Mazzone, Valerio

    2016-03-01

    We review a new theory of viscoelasticity of a glass-forming viscous liquid near and below the glass transition. In our model, we assume that each point in the material has a specific viscosity, which varies randomly in space according to a fluctuating activation free energy. We include a Maxwellian elastic term, and assume that the corresponding shear modulus fluctuates as well with the same distribution as that of the activation barriers. The model is solved in coherent potential approximation, for which a derivation is given. The theory predicts an Arrhenius-type temperature dependence of the viscosity in the vanishing frequency limit, independent of the distribution of the activation barriers. The theory implies that this activation energy is generally different from that of a diffusing particle with the same barrier height distribution. If the distribution of activation barriers is assumed to have the Gaussian form, the finite-frequency version of the theory describes well the typical low-temperature alpha relaxation peak of glasses. Beta relaxation can be included by adding another Gaussian with centre at much lower energies than that is responsible for the alpha relaxation. At high frequencies, our theory reduces to the description of an elastic medium with spatially fluctuating elastic moduli (heterogeneous elasticity theory), which explains the occurrence of the boson peak-related vibrational anomalies of glasses.

  4. A study of the pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow

    Directory of Open Access Journals (Sweden)

    S. Laín

    2007-12-01

    Full Text Available In this work, the pneumatic conveying of non-spherical isometric particles with different degrees of non-sphericity is studied. The solids mass loading fraction is small enough in order to have a dilute flow, so inter-particle collisions can be neglected. As a first approximation, only the aerodynamic drag force acting on the particles is considered, neglecting the lift forces and the particle rotation. The drag coefficient is calculated using the correlations of Haider and Levenspiel (1989 and Ganser (1993. The numerical simulations are compared with experimental data in a narrow six meters long horizontal channel flow laden with quartz and duroplastic particles with mean diameters of 185 and 240 mu m, respectively (Kussin, 2004.

  5. Focusing and alignment of erythrocytes in a viscoelastic medium

    Science.gov (United States)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.

  6. experimental viscoelastic characterization of corn cob composites ...

    African Journals Online (AJOL)

    Dr Obe

    EXPERIMENTAL VISCOELASTIC CHARACTERIZATION OF CORN COB. COMPOSITES UNDER RADIAL COMPRESSION. BY. U.G.N. ANAZODO. DEPARTMENT OF AGRICULTURAL ENGINEERING. UNIVERSITY OF NIGERIA, NSUKKA. ABSTRACT. The nature of viscoelasticity in biomateria1s and the techniques for ...

  7. Viscoelastic fracture of biological composites

    Science.gov (United States)

    Bouchbinder, Eran; Brener, Efim A.

    2011-11-01

    Soft constituent materials endow biological composites, such as bone, dentin and nacre, with viscoelastic properties that may play an important role in their remarkable fracture resistance. In this paper we calculate the scaling properties of the quasi-static energy release rate and the viscoelastic contribution to the fracture energy of various biological composites, using both perturbative and non-perturbative approaches. We consider coarse-grained descriptions of three types of anisotropic structures: (i) liquid-crystal-like composites, (ii) stratified composites, (iii) staggered composites, for different crack orientations. In addition, we briefly discuss the implications of anisotropy for fracture criteria. Our analysis highlights the dominant lengthscales and scaling properties of viscoelastic fracture of biological composites. It may be useful for evaluating crack velocity toughening effects and structure-dissipation relations in these materials.

  8. Turbulence characteristics inside a turbulent spot in plane Poiseuille flow

    Science.gov (United States)

    Henningson, Dan S.; Kim, John

    1989-01-01

    Turbulence characteristics inside a turbulent spot in plane Poiseuille flow are investigated by analyzing a database obtained from a direct simulation. The spot area is divided into two distinct regions - a turbulent area and a wave area. It is found that the flow structures inside the turbulent area have strong resemblance to those found in the fully-developed turbulent channel flow. A suitably defined mean and rms fluctuations as well as the internal shear-layer structures are found to be similar to the turbulent counterpart. In the wave area the inflexional mean spanwise profiles cause a rapid growth of oblique waves, which break down to turbulence. The rms fluctuations and Reynolds stress are found to be higher in that area, and the shear-layer structures are similar to those observed in the secondary instability of two-dimensional Tollmien-Schlichting waves.

  9. Extensional rheometer based on viscoelastic catastrophes outline

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method and a device for determining viscoelastic properties of a fluid. The invention resides inter alia in the generation of viscoelastic catastrophes in confined systems for use in the context of extensional rheology. The viscoelastic catastrophe is according...... to the invention generated in a bistable fluid system, and the flow conditions for which the catastrophe occurs can be used as a fingerprint of the fluid's viscoelastic properties in extensional flow....

  10. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges

    Science.gov (United States)

    Peterson, Brandon W.; He, Yan; Ren, Yijin; Zerdoum, Aidan; Libera, Matthew R.; Sharma, Prashant K.; van Winkelhoff, Arie-Jan; Neut, Danielle; Stoodley, Paul; van der Mei, Henny C.; Busscher, Henk J.

    2015-01-01

    We summarize different studies describing mechanisms through which bacteria in a biofilm mode of growth resist mechanical and chemical challenges. Acknowledging previous microscopic work describing voids and channels in biofilms that govern a biofilms response to such challenges, we advocate a more quantitative approach that builds on the relation between structure and composition of materials with their viscoelastic properties. Biofilms possess features of both viscoelastic solids and liquids, like skin or blood, and stress relaxation of biofilms has been found to be a corollary of their structure and composition, including the EPS matrix and bacterial interactions. Review of the literature on viscoelastic properties of biofilms in ancient and modern environments as well as of infectious biofilms reveals that the viscoelastic properties of a biofilm relate with antimicrobial penetration in a biofilm. In addition, also the removal of biofilm from surfaces appears governed by the viscoelasticity of a biofilm. Herewith, it is established that the viscoelasticity of biofilms, as a corollary of structure and composition, performs a role in their protection against mechanical and chemical challenges. Pathways are discussed to make biofilms more susceptible to antimicrobials by intervening with their viscoelasticity, as a quantifiable expression of their structure and composition. PMID:25725015

  11. Optimization of Bistable Viscoelastic Systems

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2014-01-01

    the critical pressure gives rise to increased hydraulic resistance. We have combined a state-of-the-art implementation for viscoelastic flow modeling with topology optimization in a high level finite element package (COMSOL). We use this framework on the cross geometry with the aim to reduce the critical...

  12. Dynamical problem of micropolar viscoelasticity

    Indian Academy of Sciences (India)

    The dynamic problem in micropolar viscoelastic medium has been investigated by employing eigen value approach after applying Laplace and Fourier transformations. An example of infinite space with concentrated force at the origin has been presented to illustrate the application of the approach. The integral transforms ...

  13. Modeling 3D viscoelastic secondary flows in extrusion

    Science.gov (United States)

    Holmes, Lori T.

    Two numerical techniques were successfully applied to capture viscoelastic flows and were used to model flows during extrusion. The Radial Functions Method (RFM) was implemented to simulate flow patterns in two dimensions (2D) and three dimensions (3D), and correctly predicts secondary flows in fully developed non-circular ducts [34]. Validation was completed to implement a newly developed viscoelastic solver supplied by Favero et al. [42]. Numerical simulations of 2D viscoelastic entry flows were performed using a Finite Volume Method (FVM) with a stress-splitting technique. A planar abrupt contraction was chosen as the test geometry and numerical results were compared with past experimental and other numerical simulation results using a Giesekus model. Limits of stability were inspected where Weissenberg numbers on the order of 240 were successfully simulated. The single and multi-mode Phan-Thien Tanner (PTT) shear-thinning models were then implemented to reproduce full 3D flows through a planar abrupt contraction. Results obtained within this work show excellent qualitative agreement with experimental observations made by Quinzani et al. [85] and simulation results of Azaiez et al. [6]. Comparison studies with work by other researchers, for both a 2D and 3D geometry with aspect ratios up to 10, were also found to be in agreement. As part of this work, viscoelastic secondary flows in a 3D non-circular duct were simulated using a FVM approach. Single and multi-mode Giesekus and linear-PTT models were implemented. Results are in agreement with experiments [38] as well as numerical results using RFM and FEM [112]. This is an important step toward modeling and simulating flow in an extruder channel. Exploratory FVM simulations were carried out beginning from an unwrapped screw channel to a full 3D single screw under isothermal conditions. The shear thinning characteristics of the Giesekus model were able to capture the polymer's relaxation time under high Weissenberg

  14. Viscoelastic behavior of erythrocyte membrane.

    Science.gov (United States)

    Tözeren, A; Skalak, R; Sung, K L; Chien, S

    1982-07-01

    A nonlinear viscoelastic relation is developed to describe the viscoelastic properties of erythrocyte membrane. This constitutive equation is used in the analysis of the time-dependent aspiration of an erythrocyte membrane into a micropipette. Equations governing this motion are reduced to a nonlinear integral equation of the Volterra type. A numerical procedure based on a finite difference scheme is used to solve the integral equation and to match the experimental data. The data, aspiration length vs. time, is used to determine the relaxation function at each time step. The inverse problem of obtaining the time dependence of the aspiration length from a given relaxation function is also solved. Analytical results obtained are applied to the experimental data of Chien et al. 1978. Biophys. J. 24:463-487. A relaxation function similar to that of a four-parameter solid with a shear-thinning viscous term is proposed.

  15. Simulation of Transient Viscoelastic Flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1993-01-01

    The Lagrangian kinematic description is used to develop a numerical method for simulation of time-dependent flow of viscoelastic fluids described by integral models. The method is shown to converge to first order in the time step and at least second order in the spatial discretization. The method...... is tested on the established sphere in a cylinder benchmark problem, and an extension of the problem to transient flow is proposed....

  16. Implementation of viscoelastic Hopkinson bars

    Directory of Open Access Journals (Sweden)

    Govender R.

    2012-08-01

    Full Text Available Knowledge of the properties of soft, viscoelastic materials at high strain rates are important in furthering our understanding of their role during blast or impact events. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. Implementing polymeric Hopkinson bars requires characterization of the viscoelastic properties of the material used. In this paper, 30 mm diameter Polymethyl Methacrylate bars are used as Hopkinson pressure bars. This testing technique is applied to polymeric foam called Divinycell H80 and H200. Although there is a large body of of literature containing compressive data, this rarely deals with strain rates above 250s−1 which becomes increasingly important when looking at the design of composite structures where energy absorption during impact events is high on the list of priorities. Testing of polymeric foams at high strain rates allows for the development of better constitutive models.

  17. Implementation of viscoelastic Hopkinson bars

    Science.gov (United States)

    Curry, R.; Cloete, T.; Govender, R.

    2012-08-01

    Knowledge of the properties of soft, viscoelastic materials at high strain rates are important in furthering our understanding of their role during blast or impact events. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. Implementing polymeric Hopkinson bars requires characterization of the viscoelastic properties of the material used. In this paper, 30 mm diameter Polymethyl Methacrylate bars are used as Hopkinson pressure bars. This testing technique is applied to polymeric foam called Divinycell H80 and H200. Although there is a large body of of literature containing compressive data, this rarely deals with strain rates above 250s-1 which becomes increasingly important when looking at the design of composite structures where energy absorption during impact events is high on the list of priorities. Testing of polymeric foams at high strain rates allows for the development of better constitutive models.

  18. Heat transfer in MHD flow of dusty viscoelastic (Walters' liquid model ...

    Indian Academy of Sciences (India)

    Heat transfer in MHD flow of dusty viscoelastic (Walters' liquid model-B) stratified fluid in porous medium under variable viscosity. Om Prakash ... Expressions for the velocity of fluid and particle phases, temperature field, Nusselt number, skin friction and flow flux are obtained within the channel. The effects of various ...

  19. A comparison of the CFD simulation results in 5 x 5 sub-channels with mixing grids using different turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.X.; Zhou, M.J.; Chao, Y.M. [Beijing Jiaotong Univ. (China). School of Mechanical Electronic and Control Engineering

    2016-07-15

    We evaluated the performance of various turbulence models, including eddy viscosity models and Reynolds stress models, when analyzing rod bundles in fuel assemblies using the Computational Fluid Dynamics (CFD) method. The models were assessed by calculating the pressure drop and Nusselt numbers in 5 x 5 rod bundles using the CFD software ANSYS CFX. Comparisons between the numerical and experimental results, as well as the swirl factor, cross-flow factor, and turbulence intensity utilized to evaluate the swirling and cross-flow, were used to analyze the inner relationship between the flow field and heat transfer. These comparisons allow the selection of the most appropriate turbulence model for modeling flow features and heat transfer in rod bundles.

  20. Simulating Nonlinear Oscillations of Viscoelastically Damped Mechanical Systems

    National Research Council Canada - National Science Library

    M. D. Monsia; Y. J. F. Kpomahou

    2014-01-01

    ... viscoelastic system experiencing large deformations response. The model is represented with the use of a mechanical oscillator consisting of an inertial body attached to a nonlinear viscoelastic spring...

  1. Undulatory swimming in viscoelastic fluids

    CERN Document Server

    Shen, Xiaoning

    2011-01-01

    The effects of fluid elasticity on the swimming behavior of the nematode \\emph{Caenorhabditis elegans} are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to 35% slower propulsion speed. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  2. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...

  3. Shape recovery of viscoelastic beams after stowage

    DEFF Research Database (Denmark)

    Kwok, Kawai

    2015-01-01

    for the load relaxation and shape recovery of a linear viscoelastic beam subject to such time-varying constraints. It is shown that a viscoelastic beam recovers to its original shape asymptotically over time. The analytical solutions are employed to investigate the effect of temperature and stowage time...

  4. Single Integral Constitutive Equations for Viscoelastic Fluids.

    Science.gov (United States)

    1984-09-01

    Danmarks Tekniske H~jskole, DV2,00 Lyngby, Denmark Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and 1 the Danish Council for...viscoelasticity related to the linear viscoelastic relaxation modulus G as follows G(t) = f M(s)ds (1.4) * t "Instituttet for Kemiteknik, Danmarks Tekniske

  5. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    amit@fs.rri.local.net (Amit Kumar Agarwal)

    our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic modes corresponding to the C director fluctuations in the chiral smectic C phase and the behaviour of the Goldstone-mode near the chiral smectic C–smectic A phase transition. In cholesteric liquid ...

  6. Ideal stochastic forcing for the motion of particles in large-eddy simulation extracted from direct numerical simulation of turbulent channel flow

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Kuerten, Johannes G.M.

    2012-01-01

    The motion of small particles in turbulent conditions is influenced by the entire range of length- and time-scales of the flow.At highReynolds numbers this range of scales is too broad for direct numerical simulation (DNS). Such flows can only be approached using large-eddy simulation (LES), which

  7. Langmuir Turbulence

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Langmuir Turbulence Eric A. D’Asaro, Ramsey Harcourt...definitive experimental tests of the hypothesis that Langmuir Turbulence , specifically the equations of motion with the addition of the Craik-Leibovich...vortex force and advection by the surface wave Stokes drift, can accurately describe turbulence in the upper ocean boundary layer under conditions of

  8. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid.

    Science.gov (United States)

    Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua

    2016-08-01

    In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High Turbulence

    CERN Multimedia

    EuHIT, Collaboration

    2015-01-01

    As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.

  10. Vibration analysis of viscoelastic single-walled carbon nanotubes resting on a viscoelastic foundation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da Peng; Lei, Yong Jun; Shen, Zhi Bin [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China); Wang, Cheng Yuan [Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea Wales (United Kingdom)

    2017-01-15

    Vibration responses were investigated for a viscoelastic Single-walled carbon nanotube (visco-SWCNT) resting on a viscoelastic foundation. Based on the nonlocal Euler-Bernoulli beam model, velocity-dependent external damping and Kelvin viscoelastic foundation model, the governing equations were derived. The Transfer function method (TFM) was then used to compute the natural frequencies for general boundary conditions and foundations. In particular, the exact analytical expressions of both complex natural frequencies and critical viscoelastic parameters were obtained for the Kelvin-Voigt visco-SWCNTs with full foundations and certain boundary conditions, and several physically intuitive special cases were discussed. Substantial nonlocal effects, the influence of geometric and physical parameters of the SWCNT and the viscoelastic foundation were observed for the natural frequencies of the supported SWCNTs. The study demonstrates the efficiency and robustness of the developed model for the vibration of the visco-SWCNT-viscoelastic foundation coupling system.

  11. Viscoelastic Relaxation Modulus Characterization Using Prony Series

    Directory of Open Access Journals (Sweden)

    Juliana E. Lopes Pacheco

    Full Text Available AbstractThe mechanical behavior of viscoelastic materials is influenced, among other factors, by parameters like time and temperature. The present paper proposes a methodology for a thermorheologically and piezorheologically simple characterization of viscoelastic materials in the time domain based on experimental data using Prony Series and a mixed optimization technique based on Genetic Algorithms and Nonlinear Programming. The text discusses the influence of pressure and temperature on the mechanical behavior of those materials. The results are compared to experimental data in order to validate the methodology. The final results are very promising and the methodology proves to be effective in the identification of viscoelastic materials.

  12. Rotating convection in a viscoelastic magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, L.M. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain); Laroze, D., E-mail: dlarozen@uta.cl [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Díaz, P. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54 D, Temuco (Chile); Martinez-Mardones, J. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Mancini, H.L. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain)

    2014-09-01

    We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid under rotation. The viscoelastic properties are given by the Oldroyd model. We obtain explicit expressions for the convective thresholds in terms of the parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic boundary conditions. The effects of the rheology and of the rotation rate on the instability thresholds for a diluted magnetic suspension are emphasized. - Highlights: • Ferrofluids. • Thermal convection. • Viscoelastic model. • Realistic boundary conditions.

  13. Transient waves in visco-elastic media

    CERN Document Server

    Ricker, Norman

    1977-01-01

    Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave

  14. NASA LaRC FIB Multi-Channel Anemometry Recording System-User's Manual. [conducted at the Langley Low-Turbulence Pressure Tunnel

    Science.gov (United States)

    Johnson, Sherylene (Compiler); Bertelrud, Arild (Compiler); Anders, J. B. (Technical Monitor)

    2002-01-01

    This report is part of a series of reports describing a flow physics high-lift experiment conducted in NASA Langley Research Center's Low-Turbulence Pressure Tunnel (LTPT) in 1996. The anemometry system used in the experiment was originally designed for and used in flight tests with NASA's Boeing 737 airplane. Information that may be useful in the evaluation or use of the experimental data has been compiled. The report also contains details regarding record structure, how to read the embedded time code, as well as the output file formats used in the code reading the binary data.

  15. Understanding Viscoelasticity An Introduction to Rheology

    CERN Document Server

    Phan-Thien, Nhan

    2013-01-01

    This book presents an introduction to viscoelasticity; in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity at a first year graduate level. The main aim is to provide a still compact book, sufficient at the level of first year graduate course for those who wish to understand viscoelasticity and to embark in modeling of viscoelastic multiphase fluids. To this end, a new chapter on Dissipative Particle Dynamics (DPD) was introduced which is relevant to model complex-structured fluids. All the basic ideas in DPD are reviewed,...

  16. Understanding viscoelasticity an introduction to rheology

    CERN Document Server

    Phan-Thien, Nhan

    2017-01-01

    This book presents an introduction to viscoelasticity, in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis of this book is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity. This is a compact book for a first year graduate course in viscoelasticity and modelling of viscoelastic multiphase fluids. The Dissipative Particle Dynamics (DPD) is introduced as a particle-based method, relevant in modelling of complex-structured fluids. All the basic ideas in DPD are reviewed. The third edition has been updated and expanded with new results in the meso-scale modelling, links between...

  17. Theory of swimming filaments in viscoelastic media

    Science.gov (United States)

    Fu, Henry

    2008-03-01

    Microorganisms often encounter and must move through complex media. What aspects of propulsion are altered when swimming in viscoelastic gels and fluids? Motivated by the swimming of sperm through the mucus of the female mammalian reproductive tract, we examine the swimming of filaments in nonlinearly viscoelastic fluids. We obtain the swimming velocity and hydrodynamic force exerted on an infinitely long cylinder with prescribed beating pattern. We apply these results to study the swimming of a simplified sliding-filament model for a sperm flagellum. Viscoelasticity tends to decrease swimming speed. The viscoelastic response of the fluid can change the shapes of beating patterns, and changes in the beating patterns can even lead to reversal of the swimming direction.

  18. Dynamics and Stability of Rolling Viscoelastic Tires

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Trevor [Univ. of California, Berkeley, CA (United States)

    2013-04-30

    Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wave solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.

  19. Behaviour of organised disturbances in fully developed turbulent ...

    Indian Academy of Sciences (India)

    In our earlier work we have shown the relevance of stability theory in understanding the sustenance of turbulence in turbulent boundary layers. Here we adopt the same model to study the evolution of organised disturbances in turbulent channel flow. Since the dominant modes are wall modes we find that the stability ...

  20. Recent advances in elasticity, viscoelasticity and inelasticity

    CERN Document Server

    Rajagopal, KR

    1995-01-01

    This is a collection of papers dedicated to Prof T C Woo to mark his 70th birthday. The papers focus on recent advances in elasticity, viscoelasticity and inelasticity, which are related to Prof Woo's work. Prof Woo's recent work concentrates on the viscoelastic and viscoplastic response of metals and plastics when thermal effects are significant, and the papers here address open questions in these and related areas.

  1. Viscoelastic Properties of Human Tracheal Tissues.

    Science.gov (United States)

    Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B

    2017-01-01

    The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.

  2. Viscoelastic flow simulations in model porous media

    Science.gov (United States)

    De, S.; Kuipers, J. A. M.; Peters, E. A. J. F.; Padding, J. T.

    2017-05-01

    We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid interfaces of the porous structure are modeled using a second-order immersed boundary method [S. De et al., J. Non-Newtonian Fluid Mech. 232, 67 (2016), 10.1016/j.jnnfm.2016.04.002]. A finitely extensible nonlinear elastic constitutive model with Peterlin closure is used to model the viscoelastic part. By means of periodic boundary conditions, we model the flow behavior for a Newtonian as well as a viscoelastic fluid through successive contractions and expansions. We observe the presence of counterrotating vortices in the dead ends of our geometry. The simulations provide detailed insight into how flow structure, viscoelastic stresses, and viscoelastic work change with increasing Deborah number De. We observe completely different flow structures and different distributions of the viscoelastic work at high De in the symmetric and asymmetric configurations, even though they have the exact same porosity. Moreover, we find that even for the symmetric contraction-expansion flow, most energy dissipation is occurring in shear-dominated regions of the flow domain, not in extensional-flow-dominated regions.

  3. Ligament Mediated Fragmentation of Viscoelastic Liquids

    Science.gov (United States)

    Keshavarz, Bavand; Houze, Eric C.; Moore, John R.; Koerner, Michael R.; McKinley, Gareth H.

    2016-10-01

    The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with nmin=4 . The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.

  4. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device.

    Science.gov (United States)

    Del Giudice, Francesco; Madadi, Hojjat; Villone, Massimiliano M; D'Avino, Gaetano; Cusano, Angela M; Vecchione, Raffaele; Ventre, Maurizio; Maffettone, Pier Luca; Netti, Paolo A

    2015-04-21

    The deflection of magnetic beads in a microfluidic channel through magnetophoresis can be improved if the particles are somehow focused along the same streamline in the device. We design and fabricate a microfluidic device made of two modules, each one performing a unit operation. A suspension of magnetic beads in a viscoelastic medium is fed to the first module, which is a straight rectangular-shaped channel. Here, the magnetic particles are focused by exploiting fluid viscoelasticity. Such a channel is one inlet of the second module, which is a H-shaped channel, where a buffer stream is injected in the second inlet. A permanent magnet is used to displace the magnetic beads from the original to the buffer stream. Experiments with a Newtonian suspending fluid, where no focusing occurs, are carried out for comparison. When viscoelastic focusing and magnetophoresis are combined, magnetic particles can be deterministically separated from the original streamflow to the buffer, thus leading to a high deflection efficiency (up to ~96%) in a wide range of flow rates. The effect of the focusing length on the deflection of particles is also investigated. Finally, the proposed modular device is tested to separate magnetic and non-magnetic beads.

  5. Wake Turbulence

    Science.gov (United States)

    1997-07-06

    THIS IS A SAFETY NOTICE. The guidance contained herein supersedes : the guidance provided in the current edition of Order 7110.65, Air Traffic Control, relating to selected wake turbulence separations and aircraft weight classifications. This Notice ...

  6. Cryogenic turbulence

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2005-01-01

    Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.

  7. Optimizing Stellarators for Turbulent Transport

    Energy Technology Data Exchange (ETDEWEB)

    H.E. Mynick, N.Pomphrey, and P. Xanthopoulos

    2010-05-27

    Up to now, the term "transport-optimized" stellarators has meant optimized to minimize neoclassical transport, while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. Here, we demonstrate that stellarators can also be designed to mitigate their turbulent transport, by making use of two powerful numerical tools not available until recently, namely gyrokinetic codes valid for 3D nonlinear simulations, and stellarator optimization codes. A first proof-of-principle configuration is obtained, reducing the level of ion temperature gradient turbulent transport from the NCSX baseline design by a factor of about 2.5.

  8. Optimizing stellarators for turbulent transport.

    Science.gov (United States)

    Mynick, H E; Pomphrey, N; Xanthopoulos, P

    2010-08-27

    Up to now, the term "transport-optimized" stellarators has meant optimized to minimize neoclassical transport, while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. Here, we demonstrate that stellarators can also be designed to mitigate their turbulent transport, by making use of two powerful numerical tools not available until recently, namely, gyrokinetic codes valid for 3D nonlinear simulations and stellarator optimization codes. Two initial proof-of-principle configurations are obtained, reducing the level of ion temperature gradient turbulent transport from the National Compact Stellarator Experiment baseline design by a factor of 2-2.5.

  9. Onset of meso-scale turbulence in active nematics

    Science.gov (United States)

    Doostmohammadi, Amin; Shendruk, Tyler N.; Thijssen, Kristian; Yeomans, Julia M.

    2017-05-01

    Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the collective behaviour in prominent biological processes, including biofilm formation, morphogenesis and cancer invasion. Despite its crucial role in such physiological processes, understanding meso-scale turbulence and any relation to classical inertial turbulence remains obscure. Here we show how the motion of active matter along a micro-channel transitions to meso-scale turbulence through the evolution of locally disordered patches (active puffs) from an ordered vortex-lattice flow state. We demonstrate that the stationary critical exponents of this transition to meso-scale turbulence in a channel coincide with the directed percolation universality class. This finding bridges our understanding of the onset of low-Reynolds-number meso-scale turbulence and traditional scale-invariant turbulence in confinement.

  10. Onset of meso-scale turbulence in active nematics.

    Science.gov (United States)

    Doostmohammadi, Amin; Shendruk, Tyler N; Thijssen, Kristian; Yeomans, Julia M

    2017-05-16

    Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the collective behaviour in prominent biological processes, including biofilm formation, morphogenesis and cancer invasion. Despite its crucial role in such physiological processes, understanding meso-scale turbulence and any relation to classical inertial turbulence remains obscure. Here we show how the motion of active matter along a micro-channel transitions to meso-scale turbulence through the evolution of locally disordered patches (active puffs) from an ordered vortex-lattice flow state. We demonstrate that the stationary critical exponents of this transition to meso-scale turbulence in a channel coincide with the directed percolation universality class. This finding bridges our understanding of the onset of low-Reynolds-number meso-scale turbulence and traditional scale-invariant turbulence in confinement.

  11. Effects of fluid viscoelasticity on the performance of an axial blood pump model.

    Science.gov (United States)

    Hu, Qi-Hui; Li, Jing-Yin; Zhang, Ming-Yuan

    2012-01-01

    An aqueous Xanthan gum solution (XGS) was used as blood analog fluid to explore the influence of fluid viscoelasticity on the performance of an axial blood pump model. For comparison, a 39 wt% Newtonian aqueous glycerin solution (GS), the common fluid in blood pump tests, was also used as a working fluid. The experimental results showed that a higher head curve was obtained using XGS in the pump than using GS. The heads of the XGS that were computed using the viscoelastic turbulence model agreed well with the measured data. In contrast, the standard k-ε turbulence model failed to provide satisfactory predictions for the XGS. The computational results revealed that in most parts of the pump model flow fields, the Reynolds shear stress values and turbulent dissipation rates of the XGS were all lower than those of the GS. The hemolysis index of the pump model using the XGS was calculated to be only one-third of that using the GS.

  12. A New Paradigm for Turbulence Control for Drag Reduction

    Science.gov (United States)

    2017-02-27

    Hussein∗ and Sedat Biringen† Department of Aerospace Engineering Sciences , University of Colorado Boulder, Boulder, Colorado 80309, USA Abstract Direct ...AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT Direct numerical simulations (DNS) of spanwise-rotating turbulent channel flow as well as the...turbulent channel flow using direct numerical simulation (DNS) was also conducted. The reduction of the kinetic energy of large amplitude perturbations

  13. Viscoelasticity of Concentrated Proteoglycan Solutions

    Science.gov (United States)

    Meechai, Nispa; Jamieson, Alex; Blackwell, John; Carrino, David

    2001-03-01

    Proteoglycan Aggregate (PGA) is the principal macromolecular component of the energy-absorbing matrix of cartilage and tendon. Its brush-like supramolecular structure consists of highly-ionic subunits, non-covalently bound to a hyaluronate chain. We report viscoelastic behavior of concentrated solutions of PGA, purified by column fractionation to remove free subunits. At physiological ionic strength, these preparations exhibit a sol-to-gel transition when the concentration is increased above molecular overlap. The strain dependence of concentrated solutions shows a pronounced non-linearity above a critical strain, at which the storage modulus decreases suddenly, and the loss modulus exhibits a maximum. This response is similar to that observed for close-packed dispersions of soft spheres, when the applied strain is sufficient to move a sphere past its neighbors. At low and high ionic strength, the elasticity of solutions near the overlap concentration decreases. The former is interpreted as due to a decrease in intramolecular and intermolecular electrostatic repulsions, because of strong trapping of counterions within the PGA brush, the latter to salt-induced brush collapse.

  14. Effects of the computational time step on numerical solutions for turbulent flow

    Science.gov (United States)

    Choi, Haecheon; Moin, Parviz

    1994-01-01

    Effects of large computational time steps on the computed turbulence were investigated using a fully implicit method. In turbulent channel flow computations the largest computational time step in wall units which led to accurate prediction of turbulence statistics was determined. Turbulence fluctuations could not be sustained if the computational time step was near or larger than the Kolmogorov time scale.

  15. Rheological modeling of viscoelastic passive dampers

    Science.gov (United States)

    Park, Sunwoo

    2001-07-01

    An efficient method of modeling the rheological behavior of viscoelastic dampers is discussed and illustrated. The method uses the standard mechanical model composed of linear springs and dashpots, which leads to a Prony series representation of the corresponding material function in the time domain. The computational procedure used is simple and straightforward and allows the linear viscoelastic material functions to be readily determined from experimental data in the time or frequency domain. Some existing models including the fractional derivative model and modified power-law are reviewed and compared with the standard mechanical model. It is found the generalized Maxwell and generalized Voigt model accurately describe the broadband rheological behavior of viscoelastic dampers commonly used in structural and vibration control. While a cumbersome nonlinear fitting technique is required for other models, a simple collocation or least-squares method can be used to fit the standard mechanical model to experimental data. The remarkable computational efficiency associated with the exponential basis functions of the Prony series greatly facilitates fitting of the model and interconversion between linear viscoelastic material functions. A numerical example on a viscoelastic fluid damper demonstrates the advantages of the use of the standard mechanical model over other existing models. Details of the computational procedures for fitting and inter-conversion are discussed and illustrated.

  16. Drag reduction and the dynamics of turbulence in simple and complex fluidsa)

    Science.gov (United States)

    Graham, Michael D.

    2014-10-01

    Addition of a small amount of very large polymer molecules or micelle-forming surfactants to a liquid can dramatically reduce the energy dissipation it exhibits in the turbulent flow regime. This rheological drag reduction phenomenon is widely used, for example, in the Alaska pipeline, but it is not well-understood, and no comparable technology exists to reduce turbulent energy consumption in flows of gases, in which polymers or surfactants cannot be dissolved. The most striking feature of this phenomenon is the existence of a so-called maximum drag reduction (MDR) asymptote: for a given geometry and driving force, there is a maximum level of drag reduction that can be achieved through addition of polymers. Changing the concentration, molecular weight or even the chemical structure of the additives has little to no effect on this asymptotic value. This universality is the major puzzle of drag reduction. We describe direct numerical simulations of turbulent minimal channel flow of Newtonian fluids and viscoelastic polymer solutions. Even in the absence of polymers, we show that there are intervals of "hibernating" turbulence that display very low drag as well as many other features of the MDR asymptote observed in polymer solutions. As Weissenberg number increases to moderate values the frequency of these intervals also increases, and a simple theory captures key features of the intermittent dynamics observed in the simulations. At higher Weissenberg number, these intervals are altered - for example, their duration becomes substantially longer and the instantaneous Reynolds shear stress during them becomes very small. Additionally, simulations of "edge states," dynamical trajectories that lie on the boundary between turbulent and laminar flow, display characteristics that are similar to those of hibernating turbulence and thus to the MDR asymptote, again even in the absence of polymer additives. Based on these observations, we propose a tentative unified description

  17. Turbulent Thermalization

    CERN Document Server

    Micha, Raphael; Micha, Raphael; Tkachev, Igor I.

    2004-01-01

    We study, analytically and with lattice simulations, the decay of coherent field oscillations and the subsequent thermalization of the resulting stochastic classical wave-field. The problem of reheating of the Universe after inflation constitutes our prime motivation and application of the results. We identify three different stages of these processes. During the initial stage of ``parametric resonance'', only a small fraction of the initial inflaton energy is transferred to fluctuations in the physically relevant case of sufficiently large couplings. A major fraction is transfered in the prompt regime of driven turbulence. The subsequent long stage of thermalization classifies as free turbulence. During the turbulent stages, the evolution of particle distribution functions is self-similar. We show that wave kinetic theory successfully describes the late stages of our lattice calculation. Our analytical results are general and give estimates of reheating time and temperature in terms of coupling constants and...

  18. Non-Linear Finite Element Analysis of Viscoelastic Materials

    National Research Council Canada - National Science Library

    Negaard, Gordon

    1998-01-01

    .... It would be useful if viscoelastic materials could be used to damp the vibration of such structures, however the behavior of a viscoelastic material in an extremely high g-loading is not well understood...

  19. Turbulence Model

    DEFF Research Database (Denmark)

    Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens

    2011-01-01

    In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes...... term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...

  20. Viscoelastic love-type surface waves

    Science.gov (United States)

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  1. Viscoelastic-augmented trabeculectomy: A newer concept

    Directory of Open Access Journals (Sweden)

    Meghna Solanki

    2017-01-01

    Full Text Available Purpose: Comparison of conventional trabeculectomy (CT and viscoelastic-augmented trabeculectomy (VAT in primary open-angle glaucoma. Methods: A total of 65 primary open-angle glaucoma cases were taken for each of the two groups, i.e., CT and VAT. Viscoelastic-augmented trabeculectomy constituted lamellar scleral flap, deep scleral flap, penetrating trabeculectomy, peripheral iridectomy, filling of the anterior chamber with viscoelastic (sodium hyaluronate and balanced salt solution, movement of visco in bleb, and tight flap closure. Success criteria included intraocular pressure (IOP <14 mmHg with no devastating complications. P < 0.05 was considered statistically significant. Results: Mean IOP was significantly lower after VAT compared to CT at 6 weeks, 12 weeks, and 6 months postoperatively. Target IOP was achieved in 60% cases in VAT group compared to 36.92% in CT group. Conclusion: VAT is effective in reducing IOP to the target level for advanced glaucoma with lower postoperative complications.

  2. Shear Rheology of a Suspension of Deformable Solids in Viscoelastic Fluid via Immersed Boundary Techniques

    Science.gov (United States)

    Guido, Christopher; Shaqfeh, Eric

    2017-11-01

    The simulation of fluids with suspended deformable solids is important to the design of microfluidic devices with soft particles and the examination of blood flow in complex channels. The fluids in these applications are often viscoelastic, motivating the development of a high-fidelity simulation tool with general constitutive model implementations for both the viscoelastic fluid and deformable solid. The Immersed Finite Element Method (IFEM) presented by Zhang et al. (2007) allows for distinct fluid and solid grids to be utilized reducing the need for costly re-meshing when particles translate. We discuss a modified version of the IFEM that allows for the simulation of deformable particles in viscoelastic flows. This simulation tool is validated for simple Newtonian shear flows with elastic particles that obey a Neo-Hookean Law. The tool is used to further explore the rheology of a dilute suspension of Neo-Hookean particles in a Giesekus fluid. The results show that dilute suspensions of soft particles have viscosities that decrease as the Capillary number becomes higher in both the case of a Newtonian and viscoelastic fluid. A discussion of multiple particle results will be included. NSF CBET-1066263 and 1066334.

  3. Broadband nanoindentation of glassy polymers: Part I Viscoelasticity

    Science.gov (United States)

    Joesph E. Jakes; Rod S. Lakes; Don S. Stone

    2012-01-01

    Protocols are developed to assess viscoelastic moduli from unloading slopes in Berkovich nanoindentation across four orders of magnitude in time scale (0.01-100 s unloading time). Measured viscoelastic moduli of glassy polymers poly(methyl methacrylate), polystyrene, and polycarbonate follow the same trends with frequency (1/unloading time) as viscoelastic moduli...

  4. Asymptotic estimates of viscoelastic Green's functions near the wavefront

    OpenAIRE

    Hanyga, Andrzej

    2014-01-01

    Asymptotic behavior of viscoelastic Green's functions near the wavefront is expressed in terms of a causal function $g(t)$ defined in \\cite{SerHanJMP} in connection with the Kramers-Kronig dispersion relations. Viscoelastic Green's functions exhibit a discontinuity at the wavefront if $g(0) < \\infty$. Estimates of continuous and discontinuous viscoelastic Green's functions near the wavefront are obtained.

  5. Wind turbine blade with viscoelastic damping

    Science.gov (United States)

    Sievers, Ryan A.; Mullings, Justin L.

    2017-01-10

    A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).

  6. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon...... on the strain. The slope of the viscous response showed a strain rate dependence corresponding to a power function of powers 0.242 and 0.168 for the two patellar tendon fibrils, respectively. In conclusion, the present work provides direct evidence of viscoelastic behavior at the single fibril level, which has...

  7. Tariff Turbulence

    African Journals Online (AJOL)

    Tariff Turbulence. * See also Information File on p. 1340 this issue. licence to practice should he deviate from the norm unduly. The Standard Tariff of fees is reviewed regularly in the light of increased costs, the rise in the cost of living, for the elimination of anomalies and so forth and this tariff for private patients, with its 10% ...

  8. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  9. Influence Study of the Viscoelastic Fluids Features in Drag Reduction in Laminar Regime Flow in Pipeline

    Directory of Open Access Journals (Sweden)

    Vilalta Guillermo

    2016-01-01

    Full Text Available The drag reduction by polymer addition is wide interest in several areas. It has been shown that the polymer addition cushions the dissipative effects in turbulent flows. The main objective of this work is to establish a methodology for the numerical simulation of viscoelastic fluid through internal subroutines implemented in the Fluent code, via UDF. The validation of this methodology is made for the laminar flow regime case in pipeline. To describe the viscoelastic effect, it was used the Finitely Extensible Nonlinear Elastic model closing with Peterlin model. To taking in account the viscous effects 50≤Re≤2000 values were used. In addition, for the polymer concentration analysis it was used values which depend on the polymers molecular weight and the solution concentration that ranged from 0≤Cw≤20. The molecular elasticity and extensibility were maintained at constant values. The results showed that the addition of polymers regardless of their molecular weight in laminar flow regime causes no change in power dissipation. This result, which is consistent with the literature, is a significant advance in defining a credible and appropriate methodology to viscoelastic fluid flow study by UDF implementation of constituent models that characterize these fluids.

  10. Non Linear Viscoelastic Constitutive Relation of Elastomers for Hysteresis Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Sairom; Kim, Dooman [Korea Aerospace Univ., Goyang (Korea, Republic of); Ju, Jaehyung [Univ. of North Texas, Houston (United States); Choi, Seok-Ju [R and Center, Hnakook Tire Co. Ltd., Daejeon (Korea, Republic of)

    2016-04-15

    An accurate hysteresis model of an elastomer is important for quantifying viscoelastic energy loss. We suggest a highly nonlinear hyper-viscoelastic constitutive model of elastomers. The model captures a nonlinear viscoelastic characteristic by combining Yeoh's hyperelastic model and Hoofatt's hysteresis model used Neo-Hookean hyperelastic model. Analytical and numerical models were generated from uniaxial cyclic tests of an elastomer under a sinusoidal load with a mean strain of 150%, amplitudes of 20-80%, and frequencies of 0.02-0.2Hz. The viscoelastic model can highly capture the viscoelastic energy loss up to a strain of 230%.

  11. Seismic Analysis of a Viscoelastic Damping Isolator

    Directory of Open Access Journals (Sweden)

    Bo-Wun Huang

    2015-01-01

    Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.

  12. Viscoelasticity promotes collective swimming of sperm

    Science.gov (United States)

    Tung, Chih-Kuan; Harvey, Benedict B.; Fiore, Alyssa G.; Ardon, Florencia; Suarez, Susan S.; Wu, Mingming

    From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm, with sperm orienting in the same direction within each cluster, enabled by the viscoelasticity of the fluid. A long-chain polyacrylamide solution was used as a model viscoelastic fluid such that its rheology can be fine-tuned to mimic that of bovine cervical mucus. In viscoelastic fluid, sperm formed dynamic clusters, and the cluster size increased with elasticity of the polyacrylamide solution. In contrast, sperm swam randomly and individually in Newtonian fluids of similar viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction is facilitated by the elastic component of the fluid. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, this finding highlights the importance of fluid elasticity in biological function. We will discuss what the orientation fluctuation within a cluster reveals about the interaction strength. Supported by NIH Grant 1R01HD070038.

  13. Fluid viscoelasticity promotes collective swimming of sperm.

    Science.gov (United States)

    Tung, Chih-Kuan; Lin, Chungwei; Harvey, Benedict; Fiore, Alyssa G; Ardon, Florencia; Wu, Mingming; Suarez, Susan S

    2017-06-09

    From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm in dynamic clusters, enabled by the viscoelasticity of the fluid. Sperm oriented in the same direction within each cluster, and cluster size and cell-cell alignment strength increased with viscoelasticity of the fluid. In contrast, sperm swam randomly and individually in Newtonian (nonelastic) fluids of low and high viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction was facilitated by the elastic component of the fluid. In humans, as well as cattle, sperm are naturally deposited at the entrance to the cervix and must swim through viscoelastic cervical mucus and other mucoid secretions to reach the site of fertilization. Collective swimming induced by elasticity may thus facilitate sperm migration and contribute to successful fertilization. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, and this finding highlights the importance of fluid elasticity in biological function.

  14. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, René; Hassenkam, Tue; Hansen, Philip

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon fibr...

  15. DYNAMIC DEFORMATION THE VISCOELASTIC TWOCOMPONENT MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2015-01-01

    Full Text Available Summary. In the article are scope harmonious warping of the two-component medium, one component which are represent viscoelastic medium, hereditary properties which are described by the kernel aftereffect Abel integral-differential ratio BoltzmannVolterr, while second – compressible liquid. Do a study one-dimensional case. Use motion equation of two-component medium at movement. Look determination system these equalization in the form of damped wave. Introduce dimensionless coefficient. Combined equations happen to homogeneous system with complex factor relatively waves amplitude in viscoelastic component and in fluid. As a result opening system determinant receive biquadratic equation. Elastic operator express through kernel aftereffect Abel for space Fourier. With the help transformation and symbol series biquadratic equation reduce to quadratic equation. Come to the conclusion that in two-component viscoelastic medium exist two mode sonic waves. As a result solution of quadratic equation be found description advance of waves sonic in viscoelastic two-component medium, which physical-mechanical properties represent complex parameter. Velocity determination advance of sonic waves, attenuation coefficient, mechanical loss tangent, depending on characteristic porous medium and circular frequency formulas receive. Graph dependences of description advance of waves sonic from the temperature logarithm and with the fractional parameter γ are constructed.

  16. Experimental Viscoelastic Characterization of Corn Cob Composited ...

    African Journals Online (AJOL)

    The nature of viscoelasticity in biomateria1s and the techniques for characterizing their rheological properties were reviewed. Relaxation tests were performed with cylindrical samples of corn cob composites which were initially subjected to radial compression. It was found that a Maxwell model composed of two simple ...

  17. Particle sedimentation in a sheared viscoelastic fluid

    Science.gov (United States)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-11-01

    Particle suspensions are ubiquitous in engineered processes, biological systems, and natural settings. For an engineering application - whether the intent is to suspend and transport particles (e.g., in hydraulic fracturing fluids) or allow particles to sediment (e.g., in industrial separations processes) - understanding and prediction of the particle mobility is critical. This task is often made challenging by the complex nature of the fluid phase, for example, due to fluid viscoelasticity. In this talk, we focus on a fully 3D flow problem in a viscoelastic fluid: a settling particle with a shear flow applied in the plane perpendicular to gravity (referred to as orthogonal shear). Previously, it has been shown that an orthogonal shear flow can reduce the settling rate of particles in viscoelastic fluids. Using experiments and numerical simulations across a wide range of sedimentation and shear Weissenberg number, this talk will address the underlying physical mechanism responsible for the additional drag experienced by a rigid sphere settling in a confined viscoelastic fluid with orthogonal shear. We will then explore multiple particle effects, and discuss the implications and extensions of this work for particle suspensions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747 (WLM).

  18. Numerical solution methods for viscoelastic orthotropic materials

    Science.gov (United States)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  19. Viscoelastic Models for Nearly Incompressible Materials

    Science.gov (United States)

    2009-09-01

    outlined first, then the Prony series approximation to the stress relaxation function is introduced, and this in turn is used to derive various...These solutions are useful for verifying the model implementation. nonlinear, viscoelastic, rate-dependence, nearly incompressible, Prony series...12 3.4 Prony Series Approximation and Incremental Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4.1

  20. experimental viscoelastic characterization of corn cob composites ...

    African Journals Online (AJOL)

    Dr Obe

    Transactions of the ASME,. Journal of Applied Mechanics, 27(9):. 438-444. 19. Yang, W.H. 1966. The contact problem for viscoelastic bodies. Transactions of the ASME, Journal of. Applied Mechanics, 33(4): 395-401. 20. Meyer, K.H. 1950. Natural and. Synthetic High polymers. Interscience. Publishers Inc.N.Y.USA. 21.

  1. Viscoelastic Pavement Modeling with a Spreadsheet

    DEFF Research Database (Denmark)

    Levenberg, Eyal

    2016-01-01

    The aim herein was to equip civil engineers and students with an advanced pavement modeling tool that is both easy to use and highly adaptive. To achieve this, a mathematical solution for a layered viscoelastic half-space subjected to a moving load was developed and subsequently implemented...

  2. Changes in protein solubility, fermentative capacity, viscoelasticity ...

    African Journals Online (AJOL)

    The use of frozen dough remedied availability of fresh bread. However, bread elaborated from frozen dough has less volume and texture is firmer. This study evaluates how storage affects the protein solubility, fermentative capacity and viscoelasticity of frozen dough. In addition to examining the effects of storage on the ...

  3. A Brief Review of Elasticity and Viscoelasticity

    Science.gov (United States)

    2010-05-27

    behavior of solid-like foods, Journal of Food Engineering , 78 (2007), 978–983. [18] M. Doi and M. Edwards, The Theory of Polymer Dynamics, Oxford...lipids, Journal of Food Engineering , 33 (1997), 305–320. [52] J. Smart and J.G. Williams, A comparison of single integral non-linear viscoelasticity

  4. Isolation of nanoscale exosomes using viscoelastic effect

    Science.gov (United States)

    Hu, Guoqing; Liu, Chao

    2017-11-01

    Exosomes, molecular cargos secreted by almost all mammalian cells, are considered as promising biomarkers to identify many diseases including cancers. However, the small size of exosomes (30-200 nm) poses serious challenges on their isolation from the complex media containing a variety of extracellular vesicles (EVs) of different sizes, especially in small sample volumes. Here we develop a viscoelasticity-based microfluidic system to directly separate exosomes from cell culture media or serum in a continuous, size-dependent, and label-free manner. Using a small amount of biocompatible polymer as the additive into the media to control the viscoelastic forces exerted on EVs, we are able to achieve a high separation purity (>90%) and recovery (>80%) of exosomes. The size cutoff in viscoelasticity-based microfluidics can be easily controlled using different PEO concentrations. Based on this size-dependent viscoelastic separation strategy, we envision the handling of diverse nanoscale objects, such as gold nanoparticles, DNA origami structures, and quantum dots. This work was supported financially by National Natural Science Foundation of China (11572334, 91543125).

  5. Gravitational Instability of Cylindrical Viscoelastic Medium ...

    Indian Academy of Sciences (India)

    field on the gravitational instability of strongly coupled plasma and observed that instability criterion gets modified due to the presence of non uniform magnetic field in transverse mode of wave propagation under both the kinetic and hydrodynamic limits, when the viscoelastic medium is infinitely electrically conducting.

  6. Numerical Models for Viscoelastic Liquid Atomization Spray

    Directory of Open Access Journals (Sweden)

    Lijuan Qian

    2016-12-01

    Full Text Available Atomization spray of non-Newtonian liquid plays a pivotal role in various engineering applications, especially for the energy utilization. To operate spray systems efficiently and well understand the effects of liquid rheological properties on the whole spray process, a comprehensive model using Euler-Lagrangian approaches was established to simulate the evolution of the atomization spray for viscoelastic liquid. Based on the Oldroyd model, the viscoelastic linear dispersion relation was introduced into the primary atomization; an extended viscoelastic version of Taylor analogy breakup (TAB model was proposed; and the coalescence criteria was modified by rheological parameters, such as the relaxation time, the retardation time and the zero shear viscosity. The predicted results are validated with experimental data varying air-liquid mass flow ratio (ALR. Then, numerical calculations are conducted to investigate the characteristics of viscoelastic liquid atomization process. Results showed that the evolutionary trend of droplet mean diameter, Weber number and Ohnesorge number of viscoelastic liquids along with axial direction were qualitatively similar to that of Newtonian liquid. However, the mean size of polymer solution increased more gently than that of water at the downstream of the spray, which was beneficial to stable control of the desirable size in the applications. As concerned the effects of liquid physical properties, the surface tension played an important role in the primary atomization, which indicated the benefit of selecting the solvents with lower surface tension for finer atomization effects, while, for the evolution of atomization spray, larger relaxation time and zero shear viscosity increased droplet Sauter mean diameter (SMD significantly. The zero shear viscosity was effective throughout the jet region, while the effect of relaxation time became weaken at the downstream of the spray field.

  7. Linear stability analysis of swirling turbulent flows with turbulence models

    Science.gov (United States)

    Gupta, Vikrant; Juniper, Matthew

    2013-11-01

    In this paper, we consider the growth of large scale coherent structures in turbulent flows by performing linear stability analysis around a mean flow. Turbulent flows are characterized by fine-scale stochastic perturbations. The momentum transfer caused by these perturbations affects the development of larger structures. Therefore, in a linear stability analysis, it is important to include the perturbations' influence. One way to do this is to include a turbulence model in the stability analysis. This is done in the literature by using eddy viscosity models (EVMs), which are first order turbulence models. We extend this approach by using second order turbulence models, in this case explicit algebraic Reynolds stress models (EARSMs). EARSMs are more versatile than EVMs, in that they can be applied to a wider range of flows, and could also be more accurate. We verify our EARSM-based analysis by applying it to a channel flow and then comparing the results with those from an EVM-based analysis. We then apply the EARSM-based stability analysis to swirling pipe flows and Taylor-Couette flows, which demonstrates the main benefit of EARSM-based analysis. This project is supported by EPSRC and Rolls-Royce through a Dorothy Hodgkin Research Fellowship.

  8. Asymptotic ray theory of linear viscoelastic media

    Science.gov (United States)

    Nechtschein, Stephane

    The Asymptotic Ray Theory (ART) has become a frequently used technique for the numerical modeling of seismic wave propagation in complex geological models. This theory was originally developed for elastic structures with the ray amplitude computation performed in the time domain. ART is now extended to linear viscoelastic media, the linear theory of viscoelasticity being used to simulate the dispersive properties peculiar to anelastic materials. This extension of ART is based on the introduction of a frequency dependent amplitude term having the same properties as in the elastic case and on a frequency dependent complex phase function. Consequently the ray amplitude computation is now performed in the frequency domain, the final solution being obtained by carrying out an Inverse Fourier Transform. Since ART is used, the boundary conditions for the kinematic and dynamic properties of the waves only have to be satisfied locally. This results in a much simpler Snell's Law for linear viscoelastic media, which in fact turns out to be of the same form as for the elastic case. No complex angle is involved. Furthermore the rays, the ray parameters, the geometrical spreading are all real values implying that the direction of the attenuation vector is always along the ray. The reflection and transmission coefficients were therefore rederived. These viscoelastic ART coefficients behave differently from those obtained with the Plane Wave method. Their amplitude and phase curves are always close to those computed for perfectly elastic media and they smoothly approach the elastic reflection/transmission coefficients when the quality factors increase to infinity. These same ART coefficients also display some non-physical results depending on the choice of the quality factors. This last feature might be useful to determine whether or not the two media making up the interface can be regarded as linear viscoelastic. Finally the results obtained from synthetic seismogram computations

  9. Magnetohydrodynamic Turbulence

    Science.gov (United States)

    Montgomery, David C.

    2004-01-01

    Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.

  10. A Viscoelastic Constitutive Law For FRP Materials

    Science.gov (United States)

    Ascione, Luigi; Berardi, Valentino Paolo; D'Aponte, Anna

    2011-09-01

    The present study deals with the long-term behavior of fiber-reinforced polymer (FRP) materials in civil engineering. More specifically, the authors propose a mechanical model capable of predicting the viscoelastic behavior of FRP laminates in the field of linear viscoelasticity, starting from that of the matrix material and fiber. The model is closely connected with the low FRP stress levels in civil engineering applications. The model is based on a micromechanical approach which assumes that there is a perfect adhesion between the matrix and fiber. The long-term behavior of the phases is described through a four-parameter rheological law. A validation of the model has also been developed by matching the predicted behavior with an experimental one available in the literature.

  11. Reptation theory of ion channel gating.

    OpenAIRE

    Millhauser, G L

    1990-01-01

    Reptation theory is a highly successful approach for describing polymer dynamics in entangled systems. In turn, this molecular process is the basis of viscoelasticity. We apply a modified version of reptation dynamics to develop an actual physical model of ion channel gating. We show that at times longer than microseconds these dynamics predict an alpha-helix-screw motion for the amphipathic protein segment that partially lines the channel pore. Such motion has been implicated in several mole...

  12. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...... it is demonstrated that surface tension plays a key role in the selection of the most unstable mode...

  13. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.

  14. Viscoelastic behaviour of cold recycled asphalt mixes

    Science.gov (United States)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  15. Static viscoelasticity of biomass polyethylene composites

    Directory of Open Access Journals (Sweden)

    Keyan Yang

    Full Text Available The biomass polyethylene composites filled with poplar wood flour, rice husk, cotton stalk or corn stalk were prepared by extrusion molding. The static viscoelasticity of composites was investigated by the dynamic thermal mechanical analyzer (DMA. Through the stress-strain scanning, it is found that the linear viscoelasticity interval of composites gradually decreases as the temperature rises, and the critical stress and strain values are 0.8 MPa and 0.03% respectively. The experiment shows that as the temperature rises, the creep compliance of biomass polyethylene composites is increased; under the constant temperature, the creep compliance decreases with the increase of content of biomass and calcium carbonate. The biomass and calcium carbonate used to prepare composites as filler can improve damping vibration attenuation and reduce stress deformation of composites. The stress relaxation modulus of composites is reduced and the relaxation rate increases at the higher temperature. The biomass and calcium carbonate used to prepare composites as filler not only can reduce costs, but also can increase stress relaxation modulus and improve the size thermostability of composites. The corn stalk is a good kind of biomass raw material for composites since it can improve the creep resistance property and the stress relaxation resistance property of composites more effectively than other three kinds of biomass (poplar wood flour, rice husk and cotton stalk. Keywords: Biomass, Composites, Calcium carbonate, Static viscoelasticity, Creep, Stress relaxation

  16. Temperature compensation in viscoelastic damper using magnetorheological effect

    Science.gov (United States)

    Zhong, Yi; Tu, Jianwei; Yu, Yang; Xu, Jiayun; Tan, Dongmei

    2017-06-01

    The viscoelastic damper is an effective passive vibration control device, however, its viscoelastic material experiences considerable thermal softening when subjected to higher temperatures, limiting its development and application. In an effort to cope this problem, this paper proposes the development of a new-type viscoelastic damper using the magnetorheological (MR) effect to compensate for the thermal softening effect of viscoelastic material. The new damper is manufactured and the performance is tested, verifying that its MR effect can effectively make up for the performance deficiency of traditional viscoelastic dampers in high temperature. The mechanical model of the new damper is devised and its parameters are identified through the performance test data. The compensation strategy is presented and the thermal compensation controller based on pulse width modulation technology is developed. The compensation experimental results show that this new-type viscoelastic damper will not be influenced by environmental temperature, it can maintain the optimal energy dissipation performance in various temperature conditions.

  17. Viscoelastic material inversion using Sierra-SD and ROL

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aquino, Wilkins [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ridzal, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kouri, Drew Philip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urbina, Angel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

  18. Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior.

    Science.gov (United States)

    Troyer, Kevin L; Puttlitz, Christian M

    2011-02-01

    Spinal ligaments provide stability and contribute to spinal motion patterns. These hydrated tissues exhibit time-dependent behavior during both static and dynamic loading regimes. Therefore, accurate viscoelastic characterization of these ligaments is requisite for development of computational analogues that model and predict time-dependent spine behavior. The development of accurate viscoelastic models must be preceded by rigorous, empirical evidence of linear viscoelastic, quasi-linear viscoelastic (QLV) or fully nonlinear viscoelastic behavior. This study utilized multiple physiological loading rates (frequencies) and strain amplitudes via cyclic loading and stress relaxation experiments in order to determine the viscoelastic behavior of the human lower cervical spine anterior longitudinal ligament, the posterior longitudinal ligament and the ligamentum flavum. The results indicated that the cyclic material properties of these ligaments were dependent on both strain amplitude and frequency. This strain amplitude-dependent behavior cannot be described using a linear viscoelastic formulation. Stress relaxation experiments at multiple strain magnitudes indicated that the shape of the relaxation curve was strongly dependent on strain magnitude, suggesting that a QLV formulation cannot adequately describe the comprehensive viscoelastic response of these ligaments. Therefore, a fully nonlinear viscoelastic formulation is requisite to model these lower cervical spine ligaments during activities of daily living. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Catalytic reaction in confined flow channel

    Energy Technology Data Exchange (ETDEWEB)

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  20. Statistical turbulence theory and turbulence phenomenology

    Science.gov (United States)

    Herring, J. R.

    1973-01-01

    The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.

  1. Similarity between turbulent kinetic energy and temperature spectra in the near-wall region

    Science.gov (United States)

    Antonia, R. A.; Kim, J.

    1991-01-01

    The similarity between turbulent kinetic energy and temperature spectra, previously confirmed using experimental data in various turbulent shear flows, is validated in the near-wall region using direct numerical simulation data in a fully developed turbulent channel flow. The dependence of this similarity on the molecular Prandtl number is also examined.

  2. Modeling Outburst Flooding as a Turbulent Hydraulic Fracture Parallel to a Nearby Free Surface

    Science.gov (United States)

    Tsai, Victor; Rice, James

    2010-05-01

    Meltwater generated at the surface and base of glaciers and ice sheets is known to have a large impact on how ice masses behave dynamically, but much is still unknown about the physical processes responsible for how this meltwater drains out of the glacier. For example, little attention has been paid to short-timescale processes like turbulent hydraulic fracture, which is likely an important mechanism by which drainage channels initially form when water pressures are high. In recent work (Tsai and Rice [Fall AGU, 2008; JGR subm., 2009]), we have constructed a model of this turbulent hydraulic fracture process in which over-pressurized water is assumed to flow turbulently through a crack, leading to crack growth. However, one important limitation of this prior work is that it only strictly applies in the limit of short crack length, 2L, compared to glacier height, H, whereas relevant observations of supraglacial lake drainage, jokulhlaups and sub-glacial lake-to-lake transport episodes do not fall in this regime. Here, we improve somewhat upon this model by explicitly accounting for a nearby free surface. We accomplish this by applying the approach of Erdogan et al. [Meth. Anal. Sol. Crack Prob., 1973] to numerically calculate elastic displacements consistent with crack pressure distribution for a crack near a free surface, and use these results as before to simultaneously satisfy the governing fluid, elastic and fracture equations. Our results are analogous to the zero fracture toughness results of Zhang et al. [Int. J. Numer. Anal. Meth. Geomech., 2005], but applied to the case of turbulent flow rather than laminar flow of a Newtonian viscous fluid. Our new results clarify the importance of the free surface and potentially explain discrepancies between our previous modeling results and observations of supraglacial lake drainage by Das et al. [Science, 2008]. However, the numerical challenges increase as 2L becomes comparable to or much larger than H. We hope to

  3. Investigation of pitchfork bifurcation phenomena effects on heat transfer of viscoelastic flow inside a symmetric sudden expansion

    Science.gov (United States)

    Shahbani-Zahiri, A.; Hassanzadeh, H.; Shahmardan, M. M.; Norouzi, M.

    2017-11-01

    In this paper, the inertial and non-isothermal flows of the viscoelastic fluid through a planar channel with symmetric sudden expansion are numerically simulated. Effects of pitchfork bifurcation phenomena on the heat transfer rate are examined for the thermally developing and fully developed flow of the viscoelastic fluid inside the expanded part of the planar channel with an expansion ratio of 1:3. The rheological model of exponential Phan Thien-Tanner is used to include both the effects of shear-thinning and elasticity in fluid viscosity. The properties of fluids are temperature-dependent, and the viscous dissipation and heat stored by fluid elasticity are considered in the heat transfer equation. For coupling the governing equations, the PISO algorithm (Pressure Implicit with Splitting of Operator) is applied and the system of equations is linearized using the finite volume method on the collocated grids. The main purpose of this study is to examine the pitchfork bifurcation phenomena and its influences on the temperature distribution, the local and mean Nusselt numbers, and the first and second normal stress differences at different Reynolds, elasticity, and Brinkman numbers. The results show that by increasing the Brinkman number for the heated flow of the viscoelastic fluid inside the expanded part of the channel, the value of the mean Nusselt number is almost linearly decreased. Also, the maximum values of the local Nusselt number for the thermally developing flow and the local Nusselt number of the thermally fully developed flow are decremented by enhancing the Brinkman number.

  4. Experimental observations of flow instabilities and rapid mixing of two dissimilar viscoelastic liquids

    Directory of Open Access Journals (Sweden)

    Hiong Yap Gan

    2012-12-01

    Full Text Available Viscoelastically induced flow instabilities, via a simple planar microchannel, were previously used to produce rapid mixing of two dissimilar polymeric liquids (i.e. at least a hundredfold different in shear viscosity even at a small Reynolds number. The unique advantage of this mixing technology is that viscoelastic liquids are readily found in chemical and biological samples like organic and polymeric liquids, blood and crowded proteins samples; their viscoelastic properties could be exploited. As such, an understanding of the underlying interactions will be important especially in rapid microfluidic mixing involving multiple-stream flow of complex (viscoelastic fluids in biological assays. Here, we use the same planar device to experimentally show that the elasticity ratio (i.e. the ratio of stored elastic energy to be relaxed between two liquids indeed plays a crucial role in the entire flow kinematics and the enhanced mixing. We demonstrate here that the polymer stretching dynamics generated in the upstream converging flow and the polymer relaxation events occurring in the downstream channel are not exclusively responsible for the transverse flow mixing, but the elasticity ratio is also equally important. The role of elasticity ratio for transverse flow instability and the associated enhanced mixing were illustrated based on experimental observations. A new parameter Deratio = Deside / Demain (i.e. the ratio of the Deborah number (De of the sidestream to the mainstream liquids is introduced to correlate the magnitude of energy discontinuity between the two liquids. A new Deratio-Demain operating space diagram was constructed to present the observation of the effects of both elasticity and energy discontinuity in a compact manner, and for a general classification of the states of flow development.

  5. The effect of viscoelasticity and tabletting speed on consolidation and relaxation of a viscoelastic material

    NARCIS (Netherlands)

    Maarschalk, KV; Vromans, H; Bolhuis, GK; Lerk, CF

    This paper evalutes the applicability of Dynamic Mechanical Analysis (DMA) as a tool to explain consolidation and relaxation behaviour of a viscoelastic powder compressed at different speeds. From the DMA-data it is concluded that the material becomes more rigid and more elastic with increasing

  6. Testing a missing spectral link in turbulence.

    Science.gov (United States)

    Kellay, Hamid; Tran, Tuan; Goldburg, Walter; Goldenfeld, Nigel; Gioia, Gustavo; Chakraborty, Pinaki

    2012-12-21

    Although the cardinal attribute of turbulence is the velocity fluctuations, these fluctuations have been ignored in theories of the frictional drag of turbulent flows. Our goal is to test a new theory that links the frictional drag to the spectral exponent α, a property of the velocity fluctuations in a flow. We use a soap-film channel wherein for the first time the value of α can be switched between 3 and 5/3, the two theoretically possible values in soap-film flows. To induce turbulence with α = 5/3, we make one of the edges of the soap-film channel serrated. Remarkably, the new theory of the frictional drag holds in both soap-film flows (for either value of the spectral exponent α) and ordinary pipe flows (where α = 5/3), even though these types of flow are governed by different equations.

  7. Viscoelastic finite-element analysis of human skull - dura mater ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... 1981). MATERIALS AND METHODS. In order to determine the influence of the viscoelastic nature of the human skull and dura mater on their deformation, we made the finite-element analysis of cranial cavity with the ICP scope from 1.5 to 5 kPa respectively. By ignoring the viscoelasticity of human skull.

  8. The viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Bastholm, Sara K.; Becher, Naja; Stubbe, Peter Reimer

    2014-01-01

    labor. MethodsViscoelastic properties of CMPs were investigated with a dynamic oscillatory rheometer using frequency and stress sweep experiments within the linear viscoelastic region. Main outcome measuresThe rheological variables obtained were as follows: elastic modulus (G), viscous modulus (G...

  9. Effect of Viscoelasticity on Adhesion of Bioinspired Micropatterned Epoxy Surfaces

    NARCIS (Netherlands)

    Castellanos, G.; Arzt, E.; Kamperman, M.M.G.

    2011-01-01

    The effect of viscoelasticity on adhesion was investigated for micropatterned epoxy surfaces and compared to nonpatterned surfaces. A two-component epoxy system was used to produce epoxy compositions with different viscoelastic properties. Pillar arrays with flat punch tip geometries were fabricated

  10. On the Abaqus FEA model of finite viscoelasticity

    OpenAIRE

    Ciambella, Jacopo; Destrade, Michel; Ogden, Ray W.

    2013-01-01

    Predictions of the QLV (Quasi-Linear Viscoelastic) constitutive law are compared with those of the ABAQUS viscoelastic model for two simple motions in order to highlight, in particular, their very different dissipation rates and certain shortcomings of the ABAQUS model.

  11. Noise reduction of rotating machinery by viscoelastic bearing supports.

    NARCIS (Netherlands)

    Tillema, H.G.

    2003-01-01

    The demand for silent rolling bearing applications, such as electric motors and gearboxes, has resulted in an investigation of viscoelastic bearing supports. By placing a thin viscoelastic layer between the bearing outer ring and the surrounding structure, vibrations of the shaft-bearing arrangement

  12. Reflection of plane micropolar viscoelastic waves at a loosely ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. A solution of the field equations governing small motions of a micropolar viscoelastic solid half-space is employed to study the reflection and transmission of plane waves at a loosely bonded interface between two dissimilar micropolar viscoelastic solid half-spaces. The amplitude ratios for various reflected.

  13. Experimental studies on the flow through soft tubes and channels

    Indian Academy of Sciences (India)

    Keywords. Laminar-turbulent transition; soft tubes/channels; hydrodynamic stability; transition; turbulence; internal flows. Abstract. Experiments conducted in channels/tubes with height/diameter less than 1 mm with soft walls made of polymer gels show that the transition Reynolds number could be significantly lower than ...

  14. Simultaneous Measurements of Geometric and Viscoelastic Properties of Hydrogel Microbeads Using Continuous-Flow Microfluidics with Embedded Electrodes.

    Science.gov (United States)

    Niu, Ye; Zhang, Xu; Si, Ting; Zhang, Yuntian; Qi, Lin; Zhao, Gang; Xu, Ronald X; He, Xiaoming; Zhao, Yi

    2017-11-15

    Geometric and mechanical characterizations of hydrogel materials at the microscale are attracting increasing attention due to their importance in tissue engineering, regenerative medicine, and drug delivery applications. Contemporary approaches for measuring the these properties of hydrogel microbeads suffer from low-throughput, complex system configuration, and measurement inaccuracy. In this work, a continuous-flow device is developed to measure geometric and viscoelastic properties of hydrogel microbeads by flowing the microbeads through a tapered microchannel with an array of interdigitated microelectrodes patterned underneath the channel. The viscoelastic properties are derived from the trajectories of microbeads using a quasi-linear viscoelastic model. The measurement is independent of the applied volumetric flow rate. The results show that the geometric and viscoelastic properties of Ca-alginate hydrogel microbeads can be determined independently and simultaneously. The bulky high-speed optical systems are eliminated, simplifying the system configuration and making it a truly miniaturized device. A throughput of up to 394 microbeads min-1 is achieved. This study may provide a powerful tool for mechanical profiling of hydrogel microbeads to support their wide applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Interfacial Dynamics of Thin Viscoelastic Films and Drops

    CERN Document Server

    Barra, Valeria; Kondic, Lou

    2016-01-01

    We present a computational investigation of thin viscoelastic films and drops on a solid substrate subject to the van der Waals interaction force. The governing equations are obtained within a long-wave approximation of the Navier-Stokes equations with Jeffreys model for viscoelastic stresses. We investigate the effects of viscoelasticity, Newtonian viscosity, and the substrate slippage on the dynamics of thin viscoelastic films. We also study the effects of viscoelasticity on drops that spread or recede on a prewetted substrate. For dewetting films, the numerical results show the presence of multiple secondary droplets for higher values of elasticity, consistently with experimental findings. For drops, we find that elastic effects lead to deviations from the Cox-Voinov law for partially wetting fluids. In general, elastic effects enhance spreading, and suppress retraction, compared to Newtonian ones.

  16. Randomness Representation of Turbulence in Canopy Flows Using Kolmogorov Complexity Measures

    Directory of Open Access Journals (Sweden)

    Dragutin Mihailović

    2017-09-01

    Full Text Available Turbulence is often expressed in terms of either irregular or random fluid flows, without quantification. In this paper, a methodology to evaluate the randomness of the turbulence using measures based on the Kolmogorov complexity (KC is proposed. This methodology is applied to experimental data from a turbulent flow developing in a laboratory channel with canopy of three different densities. The methodology is even compared with the traditional approach based on classical turbulence statistics.

  17. Scaling of energy amplification in the weak and strong elastic limits of viscoelastic shear flows

    Science.gov (United States)

    Hameduddin, Ismail; Zaki, Tamer; Gayme, Dennice

    2015-11-01

    We investigate energy amplification in viscoelastic parallel shear flows in terms of the steady-state variance maintained in the velocity and polymer stresses when either quantity is excited with white noise. We derive analytical expressions that show how this amplification scales with both Reynolds (Re) and Weissenberg (Wi) numbers. The analysis focuses on the streamwise-constant fields in the limits of high and low elasticity. By introducing stochastic forcing in both the velocity and the polymer stress dynamics, we show that at low elasticity the scaling retains a form similar to the well-known O(Re3) relationship but with an added elastic correction. At high elasticity, however, the scaling is O(Wi3) with a viscous correction. Our results demonstrate that energy amplification in a viscoelastic flow can be considerable even at low Re, correlating well with recent observations of elastic turbulence in creeping flows. We also note that forcing in the polymer stress dynamics can contribute significantly to the energy amplification.

  18. Q-compensated reverse time migration in viscoelastic media

    Science.gov (United States)

    Cai, Z.; Gu, H.

    2016-12-01

    Seismic wave propagation exhibits anelastic properties in subsurface media, especially high-attenuation areas such as the structure within and below gas-filled reservoirs, it causes strong amplitude loss and phase distortion of the waves and always degrades the resolution of the migration images. We evaluated a compensating method for attenuation effects in viscoelastic reverse time migration(Q-RTM) to improve image resolution. The viscoelastic Q-RTM is based on the decoupled attenuation property of the viscoelastic wave equation, through mitigating the amplitude attenuation and phase dispersion effects when source and receiver wavefields were extrapolated, the attenuation effects are compensated. During the migration, the decoupled attenuation wave equation offer separated amplitude attenuation and phase dispersion operators. In our viscoelastic Q-RTM, the receiver wavefield is reconstructed by reversing the signs of both P- and S-wave loss operators in viscoelastic equation, the source wacefield use viscoelastic forward modeling, thus attenuation effects are compensated during imaging. With the analysis of separated operators in backward viscoelastic wave equation, we further illustrate the decoupled P- and S-wave attenuation property and corresponding amplitude loss and phase dispersion. Based on decoupled P- and S-wave equation, we get separated viscoelastic P- and S-wavefields to obtain the scalar images. Finally, we tested the viscoelastic Q-RTM on several numerical examples to demonstrate the advantages of the method to compensate attenuation effect during migration, and we applied this method to realistic model, numerical results illustrated that the viscoelastic Q-RTM produced higher resolution images compared with noncompensated RTM method, particularly in the strong attenuation zones.

  19. Measurement of tissue viscoelasticity with ultrasound

    Science.gov (United States)

    Greenleaf, J. F.; Alizad, A.

    2017-02-01

    Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.

  20. Creep and Viscoelastic Behaviour of Human Dentin

    Directory of Open Access Journals (Sweden)

    T.Jafarzadeh

    2004-03-01

    Full Text Available Statement of Problem: Biomechanics of the human dentition is inherently complex.Purpose: The aim of this study is to investigate, in vitro, the creep and the recovery of dentin under static uniaxial compressive stress conditions.Materials and Methods: Specimens of cylindrical morphology were prepared from recently extracted non-carious lower molar teeth, such that the average tubule orientation was axial. Slides of mid- coronal dentin (parallel surfaces, height 1.8 mm were sectionedwith a slow speed diamond saw and then cut into cylindrical discs. Specimens were stored at 4ºC for 24h to restabilize water content. Creep data were then measured by LVDT axially in water for periods of 2h load + 2h recovery on 4 separate groups (n=6: at two stresses (10 & 18 MPa and at two temperatures: 37 & 60ºC. Maximum creep strain, permanent set,strain recovery and initial compressive modulus were reported.Results: Compliance values were also calculated and slight non-linearity found at 60ºC.Two-way ANOVA was performed on results. Dentin exhibited a linear viscoelastic response under 'clinical' compressive stress levels , with a maximum strain ~ 1% and highrecoverability: permanent set<0.3%.Conclusion: This established a performance standard for viscoelastic stability of restorative biomaterials, replacing human dentin.

  1. Viscoelasticity of Edam cheese during its ripening

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2010-01-01

    Full Text Available Series of the indentation of the ball (10 mm in diameter by the constant speed into blocks of Edam cheese has been conducted. The indentation tests were performed at different speeds (1, 5, 10, 20 and 100 mm/min, and the corresponding force–displacement responses were fitted with an analytical solution to obtain the time-dependent constants and the instantaneous force–displacement response. The measurement has been performed for the cheeses of different stages of their maturity. The dependence of the indentation force on the penetration depth has been evaluated. This dependence can be fitted by a polynom. The indentation force decreases with cheese fat content. It increases with the loading rate. Its value also decreases with the time of the cheese ripening. The recently proposed method for the indenation of the ball into viscoelastic solids has been used for our data analysis. This procedure, which needs the use of the numeric methods, enables to obtain stress relaxation moduli, which describe the viscoelasticity of the tested materials. The obtained moduli describe the stage of the cheese maturity.

  2. Polymer engineering science and viscoelasticity an introduction

    CERN Document Server

    Brinson, Hal F

    2015-01-01

    This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter.   New to this edition:   ·         One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures ·         Brings up-to-date polymer pro...

  3. Acoustic precursor wave propagation in viscoelastic media.

    Science.gov (United States)

    Zhu, Guangran Kevin; Mojahedi, Mohammad; Sarris, Costas D

    2014-03-01

    Precursor field theory has been developed to describe the dynamics of electromagnetic field evolution in causally attenuative and dispersive media. In Debye dielectrics, the so-called Brillouin precursor exhibits an algebraic attenuation rate that makes it an ideal pulse waveform for communication, sensing, and imaging applications. Inspired by these studies in the electromagnetic domain, the present paper explores the propagation of acoustic precursors in dispersive media, with emphasis on biological media. To this end, a recently proposed causal dispersive model is employed, based on its interpretation as the acoustic counterpart of the Cole¿Cole model for dielectrics. The model stems from the fractional stress¿strain relation, which is consistent with the empirically known frequency power-law attenuation in viscoelastic media. It is shown that viscoelastic media described by this model, including human blood, support the formation and propagation of Brillouin precursors. The amplitude of these precursors exhibits a sub-exponential attenuation rate as a function of distance, actually being proportional to z(-p), where z is the distance traveled within the medium and 0.5

  4. Coiling and Folding of Viscoelastic Jets

    Science.gov (United States)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2007-11-01

    The study of fluid jets impacting on a flat surface has industrial applications in many areas, including processing of foods and consumer goods, bottle filling, and polymer melt processing. Previous studies have focused primarily on purely viscous, Newtonian fluids, which exhibit a number of different dynamical regimes including dripping, steady jetting, folding, and steady coiling. Here we add another dimension to the problem by focusing on mobile (low viscosity) viscoelastic fluids, with the study of two wormlike-micellar fluids, a cetylpyridinum-salicylic acid salt (CPyCl/NaSal) solution, and an industrially relevant shampoo base. We investigate the effects of viscosity and elasticity on the dynamics of axi-symmetric jets. The viscoelasticity of the fluids is systematically controlled by varying the concentration of salt counterions. Experimental methods include shear and extensional rheology measurements to characterize the fluids, and high-speed digital video imaging. In addition to the regimes observed in purely viscous systems, we also find a novel regime in which the elastic jet buckles and folds on itself, and alternates between coiling and folding behavior. We suggest phase diagrams and scaling laws for the coiling and folding frequencies through a systematic exploration of the experimental parameter space (height of fall, imposed flow rate, elasticity of the solution).

  5. Coherence in Turbulence: New Perspective

    Science.gov (United States)

    Levich, Eugene

    2009-07-01

    . In particular, theoretical and numerical evidence is given indicating that BCC in turbulent channel/pipe flows have the depth at the walls proportional to the square root of the Reynolds number in wall units, Ly ∝ √Re, which is equivalent to the fractal dimension in normal to the walls y direction DyF = 0, 5, and the total dimension DF = Dx, zF + DyF = 2 + 0.5 = 2.5. Similar BCC structure and the same fractal dimension are suggested for geophysical turbulence, in near agreement with the recent comprehensive analysis of experimental and observational data. It is asserted that the atmospheric and oceanic events, e.g., tropical hurricanes, tornadoes and other mesoscale phenomena, and probably ocean currents are manifestations of BCC and their environs. Generally BCC should be rather seen as the turbulence core, while the whole surrounding 3D flow as being created and sustained by the intense vorticity of BCC by means of induction, in a manner similar to that for an electric current generating magnetic field. It is further argued that BCC is not only a theoretical concept important for fundamental grasp on turbulence, but may be a practical asset furnishing tools for turbulence management in regular fluids and plasmas. The concept of helical fluctuations in turbulence goes 25 years back in time, and while never totally abandoned nevertheless has been residing on the fringes of research activity. Experiment and numerical simulations had not been able to either validate or repudiate decisively the concept. However, recent large scale direct numerical simulations and proliferation of experimental and observational data showed convincingly how ubiquitous is the phenomenon of helicity fluctuations in various turbulent flows, from hurricanes and tornadoes to turbulent jets to solar wind plasma turbulence to turbulent flows in compressible fluids. This allowed a fresh look at the concept and led to a quantitative theory exposed in this paper. The paper concludes with a

  6. Sustaining mechanism of small-scale turbulent eddies in a precessing sphere

    Science.gov (United States)

    Horimoto, Yasufumi; Goto, Susumu

    2017-11-01

    It has been known for a long time that fully developed turbulence is sustained in a precessing container. The aim of the present study is to reveal the sustaining mechanism of turbulence in a precessing sphere by means of laboratory experiments. We conduct experiments using a Newtonian fluid (water) and viscoelastic fluids (dilute solutions of surfactant, cetyltrimethyl ammonium chloride, and polymers, polyethylene oxide) to understand the sustaining mechanism of turbulence of Newtonian fluids by examining turbulence modifications due to the surfactant and polymer additives. When the Reynolds number based on the spin angular velocity and radius of the sphere is fixed, the most developed turbulence is sustained with the Poincaré number (the precession rate) being about 0.1. The key ingredient of the developed turbulence is a pair of large-scale vortex tubes which robustly exists in the flow. Assuming that these vortex tubes sustain small-scale turbulent eddies through an energy cascading process, we can explain all our experimental observations. Concerning the turbulence modification by the additives, the time-scale criteria by Lumley [J. Polymer Sci.: Macromol. Rev. 7, 263 (1973), 10.1002/pol.1973.230070104] and the refined theory by Tabor and de Gennes [Europhys. Lett. 2, 519 (1986), 10.1209/0295-5075/2/7/005] explain the experimental result that the pair of large-scale vortex tubes survives even when small-scale turbulent eddies are drastically suppressed by the surfactant additive.

  7. Kolmogorov Spectrum of Quantum Turbulence

    OpenAIRE

    Kobayashi, Michikazu; Tsubota, Makoto

    2005-01-01

    There is a growing interest in the relation between classical turbulence and quantum turbulence. Classical turbulence arises from complicated dynamics of eddies in a classical fluid. In contrast, quantum turbulence consists of a tangle of stable topological defects called quantized vortices, and thus quantum turbulence provides a simpler prototype of turbulence than classical turbulence. In this paper, we investigate the dynamics and statistics of quantized vortices in quantum turbulence by n...

  8. On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model.

    Science.gov (United States)

    De Pascalis, Riccardo; Abrahams, I David; Parnell, William J

    2014-06-08

    This paper offers a reappraisal of Fung's model for quasi-linear viscoelasticity. It is shown that a number of negative features exhibited in other works, commonly attributed to the Fung approach, are merely a consequence of the way it has been applied. The approach outlined herein is shown to yield improved behaviour and offers a straightforward scheme for solving a wide range of models. Results from the new model are contrasted with those in the literature for the case of uniaxial elongation of a bar: for an imposed stretch of an incompressible bar and for an imposed load. In the latter case, a numerical solution to a Volterra integral equation is required to obtain the results. This is achieved by a high-order discretization scheme. Finally, the stretch of a compressible viscoelastic bar is determined for two distinct materials: Horgan-Murphy and Gent.

  9. Dispersion curves for a viscoelastic Timoshenko beam with fractional derivatives

    Science.gov (United States)

    Usuki, Tsuneo; Suzuki, Takahiro

    2012-01-01

    The Kramers-Kronig dispersion relation, often used as a viscoelastic constitutive law for polymeric materials, is based on purely mathematical properties of linearity, convergence of improper integrals, and causality; thus, it may also be valid as a viscoelastic constitutive law for general structural materials. Accordingly, the motion equation of a Timoshenko beam composed of conventional elastic structural materials is extended to one composed of viscoelastic materials. From the derived governing equation, a dispersive equation is derived for a viscoelastic Timoshenko beam. By plotting phase velocity curves and group velocity curves for a beam of solid circular cross-section composed of a viscoelastic material (polyvinyl chloride foam), the influence of the fractional order of viscoelasticity is examined. As a result, it is found that, in the high frequency range, only the first mode of a Timoshenko beam converged to the propagation velocity of the Rayleigh wave, which takes account of the fractional order of viscoelasticity. In addition, the phase velocity and the group velocity were found to increase as the fractional order approaches 0, and to decrease as the fractional order approaches 1. Furthermore, the rate of velocity change becomes greater as the fractional order approaches 0, and becomes smaller as the fractional order approaches 1.

  10. Linear and nonlinear viscoelastic arterial wall models: application on animals

    CERN Document Server

    Ghigo, Arthur; Armentano, Ricardo; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-01-01

    This work deals with the viscoelasticity of the arterial wall and its influence on the pulse waves. We describe the viscoelasticity by a non-linear Kelvin-Voigt model in which the coefficients are fitted using experimental time series of pressure and radius measured on a sheep's arterial network. We obtained a good agreement between the results of the nonlinear Kelvin-Voigt model and the experimental measurements. We found that the viscoelastic relaxation time-defined by the ratio between the viscoelastic coefficient and the Young's modulus-is nearly constant throughout the network. Therefore, as it is well known that smaller arteries are stiffer, the viscoelastic coefficient rises when approaching the peripheral sites to compensate the rise of the Young's modulus, resulting in a higher damping effect. We incorporated the fitted viscoelastic coefficients in a nonlinear 1D fluid model to compute the pulse waves in the network. The damping effect of viscoelasticity on the high frequency waves is clear especiall...

  11. Viscoelastic modeling of filled, crosslinked rubbers

    Science.gov (United States)

    Joshi, Prashant G.

    1999-10-01

    Filled polymer systems have been a subject of interest for rheologists since the past many decades. Their applications range from paints and pigments to high performance composite materials. Tires come under a special class of applications wherein the type of filler used, its reinforcing abilities, traction improvement capabilities and cost effectiveness enormously control the final end use. Presently, there is lack of a complete understanding of the behavior of these materials under different load conditions. Moreover there is a lack of a comprehensive theory which can describe the rheology of filled rubbers, their chemorheology, and their behavior in the final fully cured state simultaneously. The present work is aimed at capturing a wide range of rheological/viscoelastic properties of filled rubbers with one set of constitutive/kinetic equations and a flexible relaxation spectrum. Various mechanical properties of filled, crosslinked rubbers were investigated in order to understand their analogy in the melt state. For this purpose, quasi-static hysteresis and step-strain relaxation experiments were carried out. Dynamic mechanical properties were understood in great details by using Fourier harmonic analysis to understand the time and strain non-linearities in the material. The time non-linearities arise due to thixotropic and non-isothermal effects, while the waveform distortions (strain related) occur due to non-linear viscoelastic effects. It is also very important to ensure no interference from any extraneous noise in the system during a dynamic test. Using the experimental evidences in melt rheology (creeping flow, shear start-up, and relaxation), and the kinetic mechanisms that affect chemorheology [152], an appropriate thixotropic-viscoelastic spectrum was chosen in order to describe experiments in all states of SBR rubber satisfactorily. This approach convinces that various manifestations of the filler in the melt state are preserved during crosslinking

  12. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  13. Interrogating the viscoelastic properties of tissue using viscoelastic response (VISR) ultrasound

    Science.gov (United States)

    Selzo, Mallory Renee

    Affecting approximately 1 in 3,500 newborn males, Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic disorders in humans. Boys with DMD suffer progressive loss of muscle strength and function, leading to wheelchair dependence, cardiac and respiratory compromise, and death during young adulthood. There are currently no treatments that can halt or reverse the disease progression, and translating prospective treatments into clinical trials has been delayed by inadequate outcome measures. Current outcome measures, such as functional and muscle strength assessments, lack sensitivity to individual muscles, require subjective effort of the child, and are impacted by normal childhood growth and development. The goal of this research is to develop Viscoelastic Response (VisR) ultrasound which can be used to delineate compositional changes in muscle associated with DMD. In VisR, acoustic radiation force (ARF) is used to produce small, localized displacements within the muscle. Using conventional ultrasound to track the motion, the displacement response of the tissue can be evaluated against a mechanical model. In order to develop signal processing techniques and assess mechanical models, finite element method simulations are used to model the response of a viscoelastic material to ARF excitations. Results are then presented demonstrating VisR differentiation of viscoelastic changes with progressive dystrophic degeneration in a dog model of DMD. Finally, clinical feasibility of VisR imaging is demonstrated in two boys with DMD.

  14. Turbulent drag reduction through oscillating discs

    CERN Document Server

    Wise, Daniel J

    2014-01-01

    The changes of a turbulent channel flow subjected to oscillations of wall flush-mounted rigid discs are studied by means of direct numerical simulations. The Reynolds number is $R_\\tau$=$180$, based on the friction velocity of the stationary-wall case and the half channel height. The primary effect of the wall forcing is the sustained reduction of wall-shear stress, which reaches a maximum of 20%. A parametric study on the disc diameter, maximum tip velocity, and oscillation period is presented, with the aim to identify the optimal parameters which guarantee maximum drag reduction and maximum net energy saving, computed by taking into account the power spent to actuate the discs. This may be positive and reaches 6%. The Rosenblat viscous pump flow is used to predict the power spent for disc motion in the turbulent channel flow and to estimate localized and transient regions over the disc surface subjected to the turbulent regenerative braking effect, for which the wall turbulence exerts work on the discs. The...

  15. Model for bubble pulsation in liquid between parallel viscoelastic layers

    Science.gov (United States)

    Hay, Todd A.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2012-01-01

    A model is presented for a pulsating spherical bubble positioned at a fixed location in a viscous, compressible liquid between parallel viscoelastic layers of finite thickness. The Green’s function for particle displacement is found and utilized to derive an expression for the radiation load imposed on the bubble by the layers. Although the radiation load is derived for linear harmonic motion it may be incorporated into an equation for the nonlinear radial dynamics of the bubble. This expression is valid if the strain magnitudes in the viscoelastic layer remain small. Dependence of bubble pulsation on the viscoelastic and geometric parameters of the layers is demonstrated through numerical simulations. PMID:22779461

  16. Numerical simulations of viscoelastic flows with free surfaces

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory......” of their past deformations. This generates some numerical difficulties which are addressed with the log-conformation transformation. The main novelty of this work lies on the use of the volume-of-fluid method to track the free surfaces of the viscoelastic flows. We present some preliminary results of test case...... simulations where the different features of the model are tested independently....

  17. Active-passive calibration of optical tweezers in viscoelastic media

    DEFF Research Database (Denmark)

    Fischer, Mario; Richardson, Andrew C; S Reihani, S Nader

    2010-01-01

    In order to use optical tweezers as a force measuring tool inside a viscoelastic medium such as the cytoplasm of a living cell, it is crucial to perform an exact force calibration within the complex medium. This is a nontrivial task, as many of the physical characteristics of the medium and probe......, e.g., viscosity, elasticity, shape, and density, are often unknown. Here, we suggest how to calibrate single beam optical tweezers in a complex viscoelastic environment. At the same time, we determine viscoelastic characteristics such as friction retardation spectrum and elastic moduli of the medium...

  18. Viscoelastic creep elimination in dielectric elastomer actuation by preprogrammed voltage

    Science.gov (United States)

    Zhang, Junshi; Wang, Yanjie; McCoul, David; Pei, Qibing; Chen, Hualing

    2014-11-01

    Viscoelasticity causes a time-dependent deformation and lowers the response speed and energy conversion efficiency of VHB-based dielectric elastomers (DEs), thus seriously restricting a wide range of applications of this otherwise versatile soft smart material. The viscoelastic deformation of a prestretched VHB film in a circular actuator configuration is studied both theoretically and experimentally. By adjusting the applied voltage, viscoelastic creep can be dispelled and an invariable strain is obtained by simulation. Subsequently, an experiment was designed to validate the simulation and the results indicate that a constant strain can be achieved by preprogramming the applied actuation voltage.

  19. Thermal convection of viscoelastic shear-thinning fluids

    Science.gov (United States)

    Albaalbaki, Bashar; Khayat, Roger E.; Ahmed, Zahir U.

    2016-12-01

    The Rayleigh-Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien-Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity.

  20. Viscoelastic response near the jamming transition

    Science.gov (United States)

    Tighe, Brian

    2011-03-01

    We use numerical and theoretical methods to investigate oscillatory rheology in soft sphere packings, which serve as a minimal model for foams, emulsions, and other complex fluids that undergo a jamming transition. Although the zero frequency (elastic) properties of jammed media are well documented, far less is known about their viscoelastic response. We demonstrate that the frequency-dependent storage and loss moduli display critical scaling with distance to the jamming point. This behavior is governed by a diverging time scale that separates quasistatic response from a critical regime in which viscous and elastic forces contribute equally to the stress. We provide scaling arguments for all of the relevant critical exponents. Supported by the Dutch Organization for Scientific Research.

  1. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton

    2012-01-01

    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  2. Viscoelastic frictionless contact problems with adhesion

    Directory of Open Access Journals (Sweden)

    Sofonea Mircea

    2006-01-01

    Full Text Available We consider two quasistatic frictionless contact problems for viscoelastic bodies with long memory. In the first problem the contact is modelled with Signorini's conditions and in the second one is modelled with normal compliance. In both problems the adhesion of the contact surfaces is taken into account and is modelled with a surface variable, the bonding field. We provide variational formulations for the mechanical problems and prove the existence of a unique weak solution to each model. The proofs are based on arguments of time-dependent variational inequalities, differential equations, and a fixed point theorem. Moreover, we prove that the solution of the Signorini contact problem can be obtained as the limit of the solutions of the contact problem with normal compliance as the stiffness coefficient of the foundation converges to infinity.

  3. Spatially modulated thermal convection of viscoelastic fluids.

    Science.gov (United States)

    Kayodé, Séliatou; Khayat, Roger E

    2004-06-01

    The thermal convection of modulated viscoelastic flow is examined in this study. The modulation is assumed to be weak enough for a regular perturbation solution to be implemented. In addition to being more accurate, the second-order perturbation results reveal new physical phenomena that could not be predicted by the first-order analysis. Inertia was found to enhance globally the discrepancies between the first- and the second-order perturbation solution. A comparison between the Newtonian and the non-Newtonian solution is carried out and the influences of inertia, modulation amplitude, and wave number are emphasized. The present results show that elasticity has a marked effect on fluid patterns, especially regarding the roll structure and symmetry. The influence of elasticity is greater for larger Rayleigh number and aspect ratio.

  4. Ratcheting in a nonlinear viscoelastic adhesive

    Science.gov (United States)

    Lemme, David; Smith, Lloyd

    2017-11-01

    Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.

  5. Heart valve viscoelastic properties - a pilot study

    Directory of Open Access Journals (Sweden)

    Kochová P.

    2007-10-01

    Full Text Available The effects of cryopreservation on the biological tissue mechanics are still largely unknown. Generalized Maxwell model was applied to characterize quantitatively the viscoelastic behavior of sheep mitral heart valve tissue. Three different groups of specimens are supposed to be tested: fresh tissue specimens (control group, cryopreserved allografts from tissue bank and allografts already used as tissue replacements taken from the animals approximately one year after the surgery. Specific aim of this study is to determine whether or not the treatment used for storage in tissue bank influences significantly the mechanical properties and behavior of the tissue. At the moment, only the first group of specimens was examined. The methodology presented in this paper proved suitable to complete the study.

  6. Minimizing stellarator turbulent transport by geometric optimization

    Science.gov (United States)

    Mynick, H. E.

    2010-11-01

    Up to now, a transport optimized stellarator has meant one optimized to minimize neoclassical transport,ootnotetextH.E. Mynick, Phys. Plasmas 13, 058102 (2006). while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. However, with the advent of gyrokinetic codes valid for 3D geometries such as GENE,ootnotetextF. Jenko, W. Dorland, M. Kotschenreuther, B.N. Rogers, Phys. Plasmas 7, 1904 (2000). and stellarator optimization codes such as STELLOPT,ootnotetextA. Reiman, G. Fu, S. Hirshman, L. Ku, et al, Plasma Phys. Control. Fusion 41 B273 (1999). designing stellarators to also reduce turbulent transport has become a realistic possibility. We have been using GENE to characterize the dependence of turbulent transport on stellarator geometry,ootnotetextH.E Mynick, P.A. Xanthopoulos, A.H. Boozer, Phys.Plasmas 16 110702 (2009). and to identify key geometric quantities which control the transport level. From the information obtained from these GENE studies, we are developing proxy functions which approximate the level of turbulent transport one may expect in a machine of a given geometry, and have extended STELLOPT to use these in its cost function, obtaining stellarator configurations with turbulent transport levels substantially lower than those in the original designs.

  7. Viscoelastic parameter identification of human brain tissue.

    Science.gov (United States)

    Budday, S; Sommer, G; Holzapfel, G A; Steinmann, P; Kuhl, E

    2017-10-01

    Understanding the constitutive behavior of the human brain is critical to interpret the physical environment during neurodevelopment, neurosurgery, and neurodegeneration. A wide variety of constitutive models has been proposed to characterize the brain at different temporal and spatial scales. Yet, their model parameters are typically calibrated with a single loading mode and fail to predict the behavior under arbitrary loading conditions. Here we used a finite viscoelastic Ogden model with six material parameters-an elastic stiffness, two viscoelastic stiffnesses, a nonlinearity parameter, and two viscous time constants-to model the characteristic nonlinearity, conditioning, hysteresis and tension-compression asymmetry of the human brain. We calibrated the model under shear, shear relaxation, compression, compression relaxation, and tension for four different regions of the human brain, the cortex, basal ganglia, corona radiata, and corpus callosum. Strikingly, unconditioned gray matter with 0.36kPa and white matter with 0.35kPa were equally stiff, whereas conditioned gray matter with 0.52kPa was three times stiffer than white matter with 0.18kPa. While both unconditioned viscous time constants were larger in gray than in white matter, both conditioned constants were smaller. These rheological differences suggest a different porosity between both tissues and explain-at least in part-the ongoing controversy between reported stiffness differences in gray and white matter. Our unconditioned and conditioned parameter sets are readily available for finite element simulations with commercial software packages that feature Ogden type models at finite deformations. As such, our results have direct implications on improving the accuracy of human brain simulations in health and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Numerical Simulation of Polymer Injection in Turbulent Flow Past a Circular Cylinder

    KAUST Repository

    Richter, David

    2011-01-01

    Using a code developed to compute high Reynolds number viscoelastic flows, polymer injection from the upstream stagnation point of a circular cylinder is modeled at Re = 3900. Polymer stresses are represented using the FENE-P constitutive equations. By increasing polymer injection rates within realistic ranges, significant near wake stabilization is observed. Rather than a turbulent detached shear layer giving way to a chaotic primary vortex (as seen in Newtonian flows at high Re), a much more coherent primary vortex is shed, which possesses an increased core pressure as well as a reduced level of turbulent energy. © 2011 American Society of Mechanical Engineers.

  9. Acoustic backscatter from turbulent microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Seim, H.E.; Gregg, M.C.; Miyamoto, R.T. [Univ. of Washington, Seattle, WA (United States)

    1995-04-01

    Acoustic backscatter has produced spectacular images of internal ocean processes for nearly two decades, but interpretation of the images remains ambiguous because several mechanisms can generate measurable backscatter. The authors present what is thought to be the first simultaneous measurements of calibrated acoustic returns and turbulent microstructure, collected in a set of 20-m-tall billows. The observations are from Admiralty Inlet, a salt-stratified tidal channel near Puget Sound. Scattering due to turbulent microstructure alone is strong enough to explain the measured backscatter at specific sites within the billows. Existing formulations underestimate the strength of acoustic backscatter from turbulent microstructure. Due to a misinterpretation of the high-wavenumber temperature spectrum, some previous formulations underestimate the differential scattering cross section (sigma) when scattering from the viscous-convective subrange. Also, the influence of salinity on refractive-index fluctuations can be as large as or greater than that of temperature when the density stratification is dominated by salinity. Using temperature alone to estimate sigma in coastal and estuarine waters may lead to significant underestimates. A simple formulation is derived that takes these two factors into account. Because of high ambient scattering from zooplankton in Admiralty Inlet, the acoustic data are conditionally sampled along modeled profiler trajectories to avoid using bulk statistics.

  10. Introduction to quantum turbulence

    Science.gov (United States)

    Barenghi, Carlo F.; Skrbek, Ladislav; Sreenivasan, Katepalli R.

    2014-01-01

    The term quantum turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose–Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior. This article introduces their basic properties, describes types and regimes of turbulence that have been observed, and highlights similarities and differences between quantum turbulence and classical turbulence in ordinary fluids. Our aim is also to link together the articles of this special issue and to provide a perspective of the future development of a subject that contains aspects of fluid mechanics, atomic physics, condensed matter, and low-temperature physics. PMID:24704870

  11. The viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Kjær Bastholm, Sara; Becher, Naja; Stubbe, Peter Reimer

    2013-01-01

    The objective of this study was to characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term. Spontaneously shed cervical mucus plugs from healthy women in active labor, were tested. The viscoelastic properties of cervical mucus plugs were investigated...... with using frequency and stress sweep experiments within the linear viscoelastic region. Random-effects regression was used for statistical analysis. The CMPs are solid-like viscoelastic structures and the elastic modulus dominated the viscous modulus at all frequencies. These rheological characteristics...... are probably essential for the CMP’s ability to form and sustain a plug in the cervical canal during pregnancy, thereby reducing the risk of ascending infections....

  12. Enabling large-scale viscoelastic calculations via neural network acceleration

    Science.gov (United States)

    DeVries, Phoebe M. R.; Thompson, T. Ben; Meade, Brendan J.

    2017-03-01

    One of the most significant challenges involved in efforts to understand the effects of repeated earthquake cycle activity is the computational costs of large-scale viscoelastic earthquake cycle models. Computationally intensive viscoelastic codes must be evaluated at thousands of times and locations, and as a result, studies tend to adopt a few fixed rheological structures and model geometries and examine the predicted time-dependent deformation over short (learn a computationally efficient representation of viscoelastic solutions, at any time, location, and for a large range of rheological structures, allows these calculations to be done quickly and reliably, with high spatial and temporal resolutions. We demonstrate that this machine learning approach accelerates viscoelastic calculations by more than 50,000%. This magnitude of acceleration will enable the modeling of geometrically complex faults over thousands of earthquake cycles across wider ranges of model parameters and at larger spatial and temporal scales than have been previously possible.

  13. Cyclic viscoelasticity and viscoplasticity of polypropylene/clay nanocomposites

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Hog Lejre, Anne-Lise

    2012-01-01

    Observations are reported in tensile relaxation tests under stretching and retraction on poly-propylene/clay nanocomposites with various contents of filler. A two-phase constitutive model is developed in cyclic viscoelasticity and viscoplasticity of hybrid nanocomposites. Adjustable parameters...

  14. Experimental characterisation of a novel viscoelastic rectifier design

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin; Szabo, Peter

    2012-01-01

    A planar microfluidic system with contractions and obstacles is characterized in terms of anisotropic flow resistance due to viscoelastic effects. The working mechanism is illustrated using streak photography, while the diodicity performance is quantified by pressure drop measurements. The point ...

  15. Influence of steady shear flow on dynamic viscoelastic properties of ...

    Indian Academy of Sciences (India)

    Unknown

    superposed flow condition on viscoelastic properties of LLDPE, Kevlar fibre reinforced LLDPE and hybrid of short glass fibre and Kev- lar fibre reinforced LLDPE. Parallel-plate rheometer was employed for these tests. Rheological parameters.

  16. Viscoelastic assessment of anal canal function using acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J

    2012-01-01

    Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis....

  17. Quasi-Static Viscoelasticity Loading Measurements of an Aircraft Tire

    Science.gov (United States)

    Mason, Angela J.; Tanner, John A.; Johnson, Arthur R.

    1997-01-01

    Stair-step loading, cyclic loading, and long-term relaxation tests were performed on an aircraft tire to observe the quasi-static viscoelastic response of the tire. The data indicate that the tire continues to respond viscoelastically even after it has been softened by deformation. Load relaxation data from the stair-step test at the 15,000-lb loading was fit to a monotonically decreasing Prony series.

  18. Viscoelasticity of Axisymmetric Composite Structures: Analysis and Experimental Validation

    Science.gov (United States)

    2013-02-01

    analysis can be applied to composite pressure vessels, gun barrels, and flywheels . 15. SUBJECT TERMS viscoelasticity, creep, composite, gun barrel... flywheel 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 28 19a. NAME OF RESPONSIBLE PERSON Jerome T...method to study the viscoelastic behavior of thick-walled composite cylinders. The analysis can be applied to the design of flywheel machinery and

  19. Mathematical justification of a viscoelastic elliptic membrane problem

    Science.gov (United States)

    Castiñeira, Gonzalo; Rodríguez-Arós, Ángel

    2017-12-01

    We consider a family of linearly viscoelastic elliptic shells, and we use asymptotic analysis to justify that what we have identified as the two-dimensional viscoelastic elliptic membrane problem is an accurate approximation when the thickness of the shell tends to zero. Most noticeable is that the limit problem includes a long-term memory that takes into account the previous history of deformations. We provide convergence results which justify our asymptotic approach.

  20. Gelatin methacrylate-alginate hydrogel with tunable viscoelastic properties

    OpenAIRE

    Yong X. Chen; Brian Cain; Pranav Soman

    2017-01-01

    Although native extracellular matrix (ECM) is viscoelastic, synthetic biomaterials used in biomedical engineering to mimic ECM typically exhibit a purely elastic response when an external strain is applied. In an effort to truly understand how living cells interact with surrounding ECM matrix, new biomaterials with tunable viscoelastic properties continue to be developed. Here we report the synthesis and mechanical characterization of a gelatin methacrylate-alginate (Gel-Alg) composite hydrog...

  1. Simulation of transient viscoelastic flow with second order time integration

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1995-01-01

    The Lagrangian Integral Method (LIM) for the simulation of time-dependent flow of viscoelastic fluids is extended to second order accuracy in the time integration. The method is tested on the established sphere in a cylinder benchmark problem.......The Lagrangian Integral Method (LIM) for the simulation of time-dependent flow of viscoelastic fluids is extended to second order accuracy in the time integration. The method is tested on the established sphere in a cylinder benchmark problem....

  2. Developing laminar flow in curved rectangular channels

    NARCIS (Netherlands)

    De Vriend, H.J.

    1978-01-01

    As an intermediate step between earlier investigations on fully developed laminar flow in curved channels of shallow rectancular wet cross-section and the mathematical modeling of turbulent flow in river bends, a mathematical model of developing laminar flow in such channels is investigated. The

  3. Reducing Turbulent Transport in Toroidal Configurations via Shaping

    Energy Technology Data Exchange (ETDEWEB)

    H.E. Mynick, N. Pomphrey and P. Xanthopoulos

    2011-04-20

    Recent progress in reducing turbulent transport in stellarators and tokamaks by 3D shaping using a stellarator optimization code in conjunction with a gyrokinetic code is presented. The original applications of the method focussed on ion temperature gradient transport in a quasi-axisymmetric stellarator design. Here, an examination of both other turbulence channels and other starting configurations is initiated. It is found that the designs evolved for transport from ion temperature gradient turbulence also display reduced transport from other transport channels whose modes are also stabilized by improved curvature, such as electron temperature gradient and ballooning modes. The optimizer is also applied to evolving from a tokamak, finding appreciable turbulence reduction for these devices as well. From these studies, improved understanding is obtained of why the deformations found by the optimizer are beneficial, and these deformations are related to earlier theoretical work in both stellarators and tokamaks.

  4. The structure of turbulence in a rapid tidal flow

    Science.gov (United States)

    Milne, I. A.; Sharma, R. N.; Flay, R. G. J.

    2017-08-01

    The structure of turbulence in a rapid tidal flow is characterized through new observations of fundamental statistical properties at a site in the UK which has a simple geometry and sedate surface wave action. The mean flow at the Sound of Islay exceeded 2.5 m s-1 and the turbulent boundary layer occupied the majority of the water column, with an approximately logarithmic mean velocity profile identifiable close to the seabed. The anisotropic ratios, spectral scales and higher-order statistics of the turbulence generally agree well with values reported for two-dimensional open channels in the laboratory and other tidal channels, therefore providing further support for the application of universal models. The results of the study can assist in developing numerical models of turbulence in rapid tidal flows such as those proposed for tidal energy generation.

  5. The structure of turbulence in a rapid tidal flow.

    Science.gov (United States)

    Milne, I A; Sharma, R N; Flay, R G J

    2017-08-01

    The structure of turbulence in a rapid tidal flow is characterized through new observations of fundamental statistical properties at a site in the UK which has a simple geometry and sedate surface wave action. The mean flow at the Sound of Islay exceeded 2.5 m s-1 and the turbulent boundary layer occupied the majority of the water column, with an approximately logarithmic mean velocity profile identifiable close to the seabed. The anisotropic ratios, spectral scales and higher-order statistics of the turbulence generally agree well with values reported for two-dimensional open channels in the laboratory and other tidal channels, therefore providing further support for the application of universal models. The results of the study can assist in developing numerical models of turbulence in rapid tidal flows such as those proposed for tidal energy generation.

  6. Growth of viscoelastic wings and the reduction of particle mobility in a viscoelastic shear flow

    Science.gov (United States)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-10-01

    The motion of a rigid spherical particle in a sheared polymeric fluid is studied via experiments and numerical simulations. We study particle mobility in highly elastic fluids, where the deformation due to the sphere's movement and the shear flow both result in significant stretching of the polymer. The shear flow is imposed in a plane perpendicular to the sphere's movement, resulting in regions of high polymer tension in the wake of the sphere that can extend well into the shear flow and gradient directions. We observe that these viscoelastic wake structures, resembling wings, are linked to an increase in the form drag, providing a mechanism for a dramatic decrease in the particle mobility.

  7. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum

    Science.gov (United States)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  8. Interdisciplinary aspects of turbulence

    CERN Document Server

    Kupka, Friedrich

    2008-01-01

    What do combustion engines, fusion reactors, weather forecast, ocean flows, our sun, and stellar explosions in outer space have in common? Of course, the physics and the length and time scales are vastly different in all cases, but it is also well known that in all of them, on some relevant length scales, the material flows that govern the dynamical and/or secular evolution of the systems are chaotic and often unpredictable: they are said to be turbulent. The interdisciplinary aspects of turbulence are brought together in this volume containing chapters written by experts from very different fields, including geophysics, astrophysics, and engineering. It covers several subjects on which considerable progress was made during the last decades, from questions concerning the very nature of turbulence to some practical applications. These subjects include: a basic introduction into turbulence, statistical mechanics and nonlinear dynamics, turbulent convection in stars, atmospheric turbulence in the context of nume...

  9. One-dimensional turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A.R. [Sandia National Lab., Livermore, CA (United States)

    1996-12-31

    One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.

  10. Velocity and turbulence at a wing-wall abutment

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/sadh/029/01/0035-0056. Keywords. Abutments; three-dimensional flow; turbulent flow; open channel flow; hydraulics. Abstract. Experimental investigation of the 3D turbulent flow field around a 45° wing-wall abutment, resting on a rough rigid bed, is reported. The experiment was conducted ...

  11. A method for computing three-dimensional turbulent flows

    Science.gov (United States)

    Bernard, P. S.; Berger, B. S.

    1982-06-01

    The MVC (mean vorticity and covariance) turbulence closure is derived for three-dimensional turbulent flows. The derivation utilizes Lagrangian time expansion techniques applied to the unclosed terms of the mean vorticity and covariance equations. The closed mean vorticity equation is applied to the numerical solution of fully developed three-dimensional channel flow. Anisotropies in the wall region are modelled by pairs of counterrotating streamwise vortices. The numerical results are in close agreement with experimental data. Analysis of the contributions of the terms in the mean vorticity equation gives insight into the dynamics of the turbulent boundary layer.

  12. Wall pressure signatures of turbulent flow over longitudinal

    Directory of Open Access Journals (Sweden)

    Abdulbari Hayder A.

    2016-01-01

    Full Text Available Five triangular riblets longitudinal in the streamwise direction have been studied experimentally. The riblets have pick to pick spaced (s equal to 1000 μm and with groove height to space ratio (h/s 0.4, 0.6, 0.8 and 1. The tests were conducted in a full turbulence water channel on a flat plate for Reynolds numbers 13000 to 53000 based on channel hydraulic diameter. Pressure drop was measured using pressure transmitter gauge with pressure tap points of 12.7 mm in diameter were provided at the bottom of the channel. The main purpose of the present study is to investigate the response of turbulent flow to longitudinal grooves of triangular shaped riblets and compare the effect of the turbulence structure over smoothed and grooved surfaces with pressure drop measurements. 10.20 was the maximum drag reduction appear at h/s equal to (1.

  13. Turbulence Measurements from Compliant Moorings. Part II: Motion Correction

    Energy Technology Data Exchange (ETDEWEB)

    Kilcher, Levi F. [National Renewable Energy Laboratory, Golden, Colorado; Thomson, Jim [Applied Physics Laboratory, University of Washington, Seattle, Washington; Harding, Samuel [Pacific Northwest National Laboratory, Richland, Washington; Nylund, Sven [Nortek AS, Rud, Norway

    2017-06-01

    Acoustic Doppler velocimeters (ADVs) are a valuable tool for making highprecision measurements of turbulence, and moorings are a convenient and ubiquitous platform for making many kinds of measurements in the ocean. However—because of concerns that mooring motion can contaminate turbulence measurements and acoustic Doppler profilers are relatively easy to deploy—ADVs are not frequently deployed from moorings. This work details a method for measuring turbulence using moored ADVs that corrects for mooring motion using measurements from inertial motion sensors. Three distinct mooring platforms were deployed in a tidal channel with inertial motion-sensor-equipped ADVs. In each case, the motion correction based on the inertial measurements dramatically reduced contamination from mooring motion. The spectra from these measurements have a shape that is consistent with other measurements in tidal channels, and have a f^(5/3) slope at high frequencies—consistent with Kolmogorov’s theory of isotropic turbulence. Motion correction also improves estimates of cross-spectra and Reynold’s stresses. Comparison of turbulence dissipation with flow speed and turbulence production indicates a bottom boundary layer production-dissipation balance during ebb and flood that is consistent with the strong tidal forcing at the site. These results indicate that inertial-motion-sensor-equipped ADVs are a valuable new tool for measuring turbulence from moorings.

  14. Theory of turbulent saturation in stellarators: identifying mechanisms to reduce turbulent transport

    Science.gov (United States)

    Hegna, C. C.; Terry, P. W.; Faber, B. J.

    2017-10-01

    A theory for ion temperature gradient (ITG) turbulent saturation in stellarators is developed using a three field fluid model that allows for general 3D geometry. The model relies on the paradigm of nonlinear energy transfer from unstable to damped eigenmodes at comparable wavelength as the dominant saturation process. This mechanism is enabled by a three-wave interaction where the third mode primarily regulates the nonlinear energy transfer rate and depends upon the properties of the magnetic geometry. In particular, this work suggests that quasi-helically symmetric configurations may have an intrinsic advantage with regard to turbulent saturation physics relative to other configurations as multiple energy transfer channels can be exploited. Nonlinear energy transfer physics is quantified by the product of a turbulent correlation lifetime as computed from a three-wave frequency mismatch and a geometric coupling coefficient with larger turbulent correlation times denoting larger levels of nonlinear energy transfer and hence smaller turbulent transport. The theory provides an analytic prediction for how 3D shaping can be tuned to lower turbulent transport through saturation processes that can by used in optimization schemes for improved stellarator design. Research supported by U. S. DoE Grants DE-FG02-99ER54546, DE-FG02-93ER54222 and DE-FG02-89ER53291.

  15. Towards the minimization of thermodynamic irreversibility in an electrically actuated microflow of a viscoelastic fluid under electrical double layer phenomenon

    Science.gov (United States)

    Sarma, Rajkumar; Jain, Manish; Mondal, Pranab Kumar

    2017-10-01

    We discuss the entropy generation minimization for electro-osmotic flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of interfacial slip and conjugate transport of heat. We use in this study the simplified Phan-Thien-Tanner model to describe the rheological behavior of the viscoelastic fluid. Using Navier's slip law and thermal boundary conditions of the third kind, we solve the transport equations analytically and evaluate the global entropy generation rate of the system. We examine the influential role of the following parameters on the entropy generation rate of the system, viz., the viscoelastic parameter (ɛDe2), Debye-Hückel parameter ( κ ¯ ) , channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi), Peclet number (Pe), and axial temperature gradient (B). This investigation finally establishes the optimum values of the abovementioned parameters, leading to the minimum entropy generation of the system. We believe that results of this analysis could be helpful in optimizing the second-law performance of microscale thermal management devices, including the micro-heat exchangers, micro-reactors, and micro-heat pipes.

  16. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C. [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Y.Q., E-mail: cyqzhang@zju.edu.cn [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Fan, L.F. [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100084 (China)

    2017-04-11

    The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium. - Highlights: • Vibration of double-viscoelastic-FGM-nanoplate system under in-plane edge loads is investigated. • Biaxial buckling of the system with simply supported boundary conditions is analyzed. • Explicit expression for the vibrational frequency and buckling load is obtained. • Impacts of viscoelastic Pasternak medium on vibrational frequency and buckling load are discussed. • Influences of structural damping, small size effect and loading ratio are also considered.

  17. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    Science.gov (United States)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  18. On the dynamic behavior of composite panels under turbulent boundary layer excitations

    Science.gov (United States)

    Ciappi, E.; De Rosa, S.; Franco, F.; Vitiello, P.; Miozzi, M.

    2016-03-01

    In this work high Mach number aerodynamic and structural measurements acquired in the CIRA (Italian Aerospace Research Center) transonic wind tunnel and the models used to analyze the response of composite panels to turbulent boundary layer excitation are presented. The two investigated panels are CFRP (Carbon Fiber-Reinforced Polymer) composite plates and their lay-up is similar to configurations used in aeronautical structures. They differ only for the presence of an embedded viscoelastic layer. The experimental set-up has been designed to reproduce a pressure fluctuations field beneath a turbulent boundary layer as close as possible to those in flight. A tripping system, specifically conceived to this aim for this facility, has been used to generate thick turbulent boundary layers at Mach number values ranging between 0.4 and 0.8. It is shown that the designed setup provides a realistic representation of full scale size pressure spectra in the frequency range of interest for the noise component inside the fuselage, generated by turbulent boundary layer. The significant role of the viscoelastic layer at reducing panel's response is detailed and discussed. Finally, it is demonstrated that at high Mach number the aeroelastic effect cannot be neglected when analyzing the panel response, especially when composite materials are considered.

  19. Dynamics of a microorganism in a sheared viscoelastic liquid.

    Science.gov (United States)

    De Corato, Marco; D'Avino, Gaetano

    2016-12-21

    In this paper, we investigate the dynamics of a model spherical microorganism, called squirmer, suspended in a viscoelastic fluid undergoing unconfined shear flow. The effect of the interplay of shear flow, fluid viscoelasticity, and self-propulsion on the orientational dynamics is addressed. In the limit of weak viscoelasticity, quantified by the Deborah number, an analytical expression for the squirmer angular velocity is derived by means of the generalized reciprocity theorem. Direct finite element simulations are carried out to study the squirmer dynamics at larger Deborah numbers. Our results show that the orientational dynamics of active microorganisms in a sheared viscoelastic fluid greatly differs from that observed in Newtonian suspensions. Fluid viscoelasticity leads to a drift of the particle orientation vector towards the vorticity axis or the flow-gradient plane depending on the Deborah number, the relative weight between the self-propulsion velocity and the flow characteristic velocity, and the type of swimming. Generally, pullers and pushers show an opposite equilibrium orientation. The results reported in the present paper could be helpful in designing devices where separation of microorganisms, based on their self-propulsion mechanism, is obtained.

  20. Simulating Nonlinear Oscillations of Viscoelastically Damped Mechanical Systems

    Directory of Open Access Journals (Sweden)

    M. D. Monsia

    2014-12-01

    Full Text Available The aim of this work is to propose a mathematical model in terms of an exact analytical solution that may be used in numerical simulation and prediction of oscillatory dynamics of a one-dimensional viscoelastic system experiencing large deformations response. The model is represented with the use of a mechanical oscillator consisting of an inertial body attached to a nonlinear viscoelastic spring. As a result, a second-order first-degree Painlevé equation has been obtained as a law, governing the nonlinear oscillatory dynamics of the viscoelastic system. Analytical resolution of the evolution equation predicts the existence of three solutions and hence three damping modes of free vibration well known in dynamics of viscoelastically damped oscillating systems. Following the specific values of damping strength, over-damped, critically-damped and under-damped solutions have been obtained. It is observed that the rate of decay is not only governed by the damping degree but, also by the magnitude of the stiffness nonlinearity controlling parameter. Computational simulations demonstrated that numerical solutions match analytical results very well. It is found that the developed mathematical model includes a nonlinear extension of the classical damped linear harmonic oscillator and incorporates the Lambert nonlinear oscillatory equation with well-known solutions as special case. Finally, the three damped responses of the current mathematical model devoted for representing mechanical systems undergoing large deformations and viscoelastic behavior are found to be asymptotically stable.

  1. Characterizing gelatin hydrogel viscoelasticity with diffusing colloidal probe microscopy.

    Science.gov (United States)

    Shabaniverki, Soheila; Juárez, Jaime J

    2017-07-01

    In this study, we investigate viscoelasticity in gelatin hydrogels using diffusing colloidal probe microscopy (DCPM) to directly measure the elastic potential energy interaction between colloidal probes and the underlying viscoelastic media. Gelatin samples are prepared in four different concentrations between 0.3wt% and 0.6wt% to examine changes in viscoelasticity with concentration. A force balance describing the interaction between the colloidal probes and the hydrogel as a spring-damper system lead to a simple model for mean square displacement. A histogram of locations sampled by the colloidal probes is directly related to the elastic potential energy and the effective spring constant of the gelatin hydrogels. The effective spring constant is a fixed parameter used in the mean square displacement model to find effective viscosity. These parameters are comparable to viscoelastic parameters obtain by a microrheology analysis of two-dimensional mean square displacements. These results can serve as a guide for assessing hydrogel systems where viscoelastic properties are an important factor in biomaterial design. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B

    2006-01-01

    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  3. Viscoelasticity of Epoxy nano-composites

    Science.gov (United States)

    Ahuja, Suresh

    2013-03-01

    Nanocomposites have been modeled in a multiscale covering from molecular scale (e.g., molecular dynamics, Monte Carlo), microscale (e.g., Brownian dynamics, dissipative particle dynamics, lattice Boltzmann, time-dependent Ginzburg-Landau method, dynamic density functional theory method) to mesoscale and macroscale (e.g., micromechanics, equivalent-continuum and self-similar approaches, finite element method) The presence of layered silicates in nonaqueous polymers changes the viscoelastic behavior of the unfilled matrix from liquid-like to solid-like because of the formation of a three-dimensional percolating network of exfoliated or intercalated stacks. This gel-like behavior is a direct consequence of the highly anisotropic nature of the nanoclays which prevents their free rotation and the dissipation of stress. Particle to particle interactions is the dominant mechanism in fumed silica nanocomposites whereas particle to polymer interaction is the dominant one in colloidal silica nanocomposites at identical filler concentrations. These interactions are balanced in each nanocomposite systems by the silica surface treatments (chain grafting, silane modification) and the molecular weight of the matrix. Two different types of nanocomposite structures exist namely, intercalated nanocomposites where the polymer chains are sandwiched between silicate layers and exfoliated nanocomposites where the layers can be considered individually but remain more or less dispersed in the polymer matrix. Yield stress from Carreau-Yasuda model has been correlated to exfoliation. Also, equilibrium modulus and zero shear rate viscosity has been used to analyze percolation threshold and sol-gel transition. Nano clays organically functionalized were mixed with Epoxy in a high shear mixer.

  4. Turbulence patterns of visco-elastic inlet flow; Auffaelligkeiten im Turbulenzverhalten viskoelastischer Einlaufstroemungen

    Energy Technology Data Exchange (ETDEWEB)

    Gampert, B.; Hahn, H.; Braemer, T. [Essen Univ. (Germany). Angewandte Mechanik

    2000-07-01

    Flow experiments were carried out with aqueous polymer solutions in a circulating system in a square duct. Inlet flow and full flow were investigated by LDA for Reynolds numbers of 15,000 - 50,000. It was found that lateral momentum transfer is characterised by the solution structure and considerably affects the inlet flow patterns. [German] In dieser Arbeit wurden stroemungsmechanische Experimente waessriger Polymerloesungen in einem Umlaufsystem mit quadratischem Kanal durchgefuehrt. Dabei wurde das Einlaufverhalten und der Bereich der vollausgebildeten Stroemung mit Hilfe der Laser-Doppler-Anemometrie fuer die Loesungsmittel Reynolds-Zahlen von 15.000 bis 50.000 untersucht. Es zeigte sich, dass der Querimpulsaustausch durch die Loesungsstruktur charakterisiert ist und das Einlaufverhalten massgeblich beeinflusst. (orig.)

  5. Optimization of AMI-MDM-RoFSO under atmospheric turbulence

    Science.gov (United States)

    Chaudhary, Sushank; Amphawan, Angela

    2017-11-01

    Radio over Free Space (Ro-FSO) is promising candidate for providing ubiquitous digital services especially in rural areas. This work investigates the performance of MDM of two 5Gbps-10GHz data channels over FSO link using LP 01 and LP 02 modes under the effect of atmospheric turbulences. The signal to noise ratio (SNR), total received power, modal decomposition at receiver at the receiver is also reported. The reported result shows the successful transmission of two channels with acceptable SNR over FSO link under atmospheric turbulences.

  6. Turbulence and Dispersion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Turbulence and Dispersion. K S Gandhi. General Article Volume 9 Issue 10 October 2004 pp 48-61. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/009/10/0048-0061. Keywords. Turbulent ...

  7. Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading

    DEFF Research Database (Denmark)

    Wu, Zhigang; Hjort, Klas; Wicher, Grzegorz

    2008-01-01

    A high viability microfluidic cell separation technique of high throughput was demonstrated based on size difference continuous mode hydrodynamic spreading with viscoelastic tuning. Using water with fluorescent dye as sample fluid and in parallel introducing as elution a viscoelastic biocompatible...

  8. Why Would We See 2-D Turbulence in Interstellar Gases?

    Science.gov (United States)

    Minter, A.

    1999-12-01

    Neutral gas in the galaxy traced through the HI 21 cm line and the CO (J 1->0) line, as well as the ionized gas seen in Hα and radio recombination lines have power spectra of density, column density and velocity whose slopes are consistent with 2-Dimensional turbulence on large spatial scales (≳ 0.01-1 pc). We know, however, from in situ measurements that the turbulence in fluids on the Earth and in the solar wind is fully 3-Dimensional. We have every reason to expect the observed turbulence in the interstellar medium to be 3-Dimensional also. A method had been devised to make ``snapshot'' models of the density and velocity fields of a turbulent gas. The desired power spectra (density and velocity) are the only inputs into the model. These models have been used to study how propagation effects and the various modes of observing can change the 3-Dimensional Kolmogorov-like turbulence input into the models into the observed 2-Dimensional turbulence. The following effects can make the observed turbulence appear 2-Dimensional: 1) if the turbulence is contained in a thin filament or slab; 2) if the medium has a high optical depth; and 3) if any method of observation or analysis is used which effectively limits the emission from the medium under study to a thin slab, for example, by analyzing an individual channel map. Straightfoward analysis of data leads to misleading or incomplete results if these effects are not taken into account.

  9. Linear Viscoelastic Property Measurement and Its Significance for Some Nonlinear Viscoelasticity Models

    Science.gov (United States)

    Arzoumanidis, G. A.; Liechti, K. M.

    Three linear viscoelastic properties of an Ashland neat urethane adhesive were measured. Dynamic tensile compliance was found using a novel extensometer. The results were considerably more accurate and precise than standard DMTA testing. Dynamic shear compliance was determined using an Arcan specimen. Dynamic Poisson's ratio was extracted from strain gage data that was corrected to include gage reinforcement effects. Experiments spanned three frequency decades and isothermal data was shifted by time-temperature superposition to create master curves spanning thirty decades. Master curves were fit to Prony series that originated in the time domain. Dynamic shear compliance inferred from dynamic tensile compliance and dynamic Poisson's ratio compared well with measured values. This established the validity of the time temperature shifting and interconversion procedures that were developed for this isotropic material in its linear range. Dynamic tensile compliance and dynamic Poisson's ratio were then used to obtain the dynamic bulk compliance, which was in turn converted to the time domain along with the dynamic shear compliance. The shear and dynamic creep compliance functions thus obtained formed the basis of the nonlinear viscoelastic models. Two nonlinear viscoelastic models based on free volume considerations (modified to include distortional effects) were considered as constitutive models. One was based on the effect of the state of strain on the free volume through the Doolittle equation, while the other incorporated the effect of state of stress via the Tait equation. Ramp loading experiments conducted in tension and shear at strain rates spanning three decades were reasonably well predicted. Contrary to expectations based on previous work with less precise small strain data, the strain-based model proved to be more applicable than the stress-based one. This means that the shear modified free volume model of Popelar and Liechti (2003) has now been shown to be

  10. Stochastic modelling of turbulence

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    This thesis addresses stochastic modelling of turbulence with applications to wind energy in mind. The primary tool is ambit processes, a recently developed class of computationally tractable stochastic processes based on integration with respect to Lévy bases. The subject of ambit processes...... is still undergoing rapid development. Turbulence and wind energy are vast and complicated subjects. Turbulence has structures across a wide range of length and time scales, structures which cannot be captured by a Gaussian process that relies on only second order properties. Concerning wind energy, a wind...... turbine operates in the turbulent atmospheric boundary layer. In this respect, three regimes are of particular interest: modelling the turbulent wind before it interacts with the wind turbine (e.g. to be used in load simulations), modelling of the interaction of the wind with the wind turbine (e...

  11. Uniform Decay for Solutions of an Axially Moving Viscoelastic Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kelleche, Abdelkarim, E-mail: kellecheabdelkarim@gmail.com [Université des Sciences et de la Technologie Houari Boumediene, Faculté des Mathématiques (Algeria); Tatar, Nasser-eddine, E-mail: tatarn@Kfupm.edu.sa [King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics (Saudi Arabia)

    2017-06-15

    The paper deals with an axially moving viscoelastic structure modeled as an Euler–Bernoulli beam. The aim is to suppress the transversal displacement (transversal vibrations) that occur during the axial motion of the beam. It is assumed that the beam is moving with a constant axial speed and it is subject to a nonlinear force at the right boundary. We prove that when the axial speed of the beam is smaller than a critical value, the dissipation produced by the viscoelastic material is sufficient to suppress the transversal vibrations. It is shown that the rate of decay of the energy depends on the kernel which arise in the viscoelastic term. We consider a general kernel and notice that solutions cannot decay faster than the kernel.

  12. Modeling viscoelastic flow in a multiflux static mixer

    Science.gov (United States)

    Köpplmayr, T.; Miethlinger, J.

    2014-05-01

    We present a numerical and experimental study of the polymer flow in a multiflux static mixer. Various geometrical configurations are compared in terms of layer homogeneity. To evaluate the layer-forming process in different geometries, we applied a general and precise approach based on trajectory calculations for a large set of material points, followed by a statistical analysis. A simulation of viscous flow using the Carreau-Yasuda constitutive equation produced results which deviated from our experimental findings. Therefore, we used the Giesekus constitutive equation, taking into account viscoelastic effects, such as extrudate swell and secondary motions inside the mixer. Parallel plate rheometry was employed to collect dynamic mechanical data in the linear viscoelastic flow regime. Weissenberg numbers were calculated, and the maximum relaxation time in the obtained spectrum was limited to avoid divergence issues. The results of our study provide deeper insights into the layerforming process of viscoelastic melts in a multiflux static mixer.

  13. Atomic force microscopy studies on cellular elastic and viscoelastic properties.

    Science.gov (United States)

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-06-29

    In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.

  14. Gelatin methacrylate-alginate hydrogel with tunable viscoelastic properties

    Directory of Open Access Journals (Sweden)

    Yong X. Chen

    2017-02-01

    Full Text Available Although native extracellular matrix (ECM is viscoelastic, synthetic biomaterials used in biomedical engineering to mimic ECM typically exhibit a purely elastic response when an external strain is applied. In an effort to truly understand how living cells interact with surrounding ECM matrix, new biomaterials with tunable viscoelastic properties continue to be developed. Here we report the synthesis and mechanical characterization of a gelatin methacrylate-alginate (Gel-Alg composite hydrogel. Results obtained from creep and compressive tests reveal that the alginate component of Gel-Alg composite, can be effectively crosslinked, un-crosslinked and re-crosslinked by adding or chelating Ca2+ ions. This work demonstrates that Gel-Alg is capable of tuning its viscoelastic strain and elastic recovery properties, and can be potentially used to design ECM-mimicking hydrogels.

  15. Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows

    NARCIS (Netherlands)

    Simões Costa, P.; Picano, Francesco; Brandt, Luca; Breugem, W.P.

    2016-01-01

    The macroscopic behavior of dense suspensions of neutrally buoyant spheres in turbulent plane channel flow is examined. We show that particles larger than the smallest turbulence scales cause the suspension to deviate from the continuum limit in which its dynamics is well described by an

  16. On the modal diagonalization of viscoelastic mechanical systems

    Science.gov (United States)

    Mastroddi, F.; Eugeni, M.; Erba, F.

    2017-11-01

    In this paper the modal coupling of linear viscoelastic oscillators is discussed. In particular, it is demonstrated that in presence of space-homogeneous ideal hysteretic damping, namely, viscoelastic materials with loss factor constant as function of frequency, a set of coupled linear oscillators can be always decoupled by a real coordinate transformation. This result can be extended to the case of a not space-homogeneous ideal hysteretic damping if the modes of vibration of the system keep practically real. The proposed approach is applied to a linear Multi-Degree of Freedom system representing the Finite Element Model of an aeronautical structure.

  17. Relationship Between Structure and Viscoelastic Properties of Geosynthetics

    Directory of Open Access Journals (Sweden)

    Loginova Irina

    2016-01-01

    Full Text Available In this work, a study on viscoelastic properties of geosynthetic materials used in civil engineering is presented. Six samples of geofabrics and geogrids with different structures including woven geotextile fabric, nonwoven geotextile fabrics, warp-knitted geogrids and extruded geogrid were investigated. The tensile properties of geosynthetics including tensile strength, strain at maximum load and tensile load at specified strain have been determined. The creep and relaxation tests were carried out. The structure type was found to significantly affect the viscoelastic properties of the geosynthetics materials. In the article some results of numerous conducted tests are presented, analyzed and may be used to preselection of geosynthetics materials.

  18. Turbulence new approaches

    CERN Document Server

    Belotserkovskii, OM; Chechetkin, VM

    2005-01-01

    The authors present the results of numerical experiments carried out to examine the problem of development of turbulence and convection. On the basis of the results, they propose a physical model of the development of turbulence. Numerical algorithms and difference schema for carrying out numerical experiments in hydrodynamics, are proposed. Original algorithms, suitable for calculation of the development of the processes of turbulence and convection in different conditions, even on astrophysical objects, are presented. The results of numerical modelling of several important phenomena having both fundamental and applied importance are described.

  19. Airfoils in Turbulent Inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse

    . However, it turns out that the velocities in the inner part of the boundary layer only increase slightly, and there is no effect on the obtained surface pressures or lift coefficients. It appears that the resolved turbulence has a too large length scale to cause the effect as seen in experiments...... that is formed in attached boundary layers, but the freestream turbulence can penetrate the boundary layer. The idea is that the resolved turbulence from the freestream should mix high momentum flow into the boundary layer and thereby increase the resistance against separation and increase the maximum lift...

  20. Turbulent current drive mechanisms

    Science.gov (United States)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  1. Non-gaussian turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J. [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K.S. [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B.J. [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M. [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)

  2. Non-Gaussian turbulence

    DEFF Research Database (Denmark)

    Højstrup, Jørgen; Hansen, Kurt S.; Pedersen, Bo Juul

    1999-01-01

    The pdf's of atmosperic turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour has been investigated using data from a large WEB-database in order to quantify the amount of non-gaussianity. Models for non......-Gaussian turbulence has been developed, by which artificial turbulence can be generated with specific distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared....

  3. Aviation turbulence processes, detection, prediction

    CERN Document Server

    Lane, Todd

    2016-01-01

    Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.

  4. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  5. Compressible turbulent flows: aspects of prediction and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik

    2007-03-15

    Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density

  6. Viscoelastic finite-element analysis of human skull - dura mater ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... Key words: Viscoelasticity, finite-element analysis (FEA), strain, human skull, dura mater, intracranial pressure. INTRODUCTION. Intracranial pressure (ICP) is the ... We presented the development and validation of a 3D finite-element model intended to better understand the deformation mechanisms of ...

  7. Axial Dynamic Stiffness of Tubular Piles in Viscoelastic Soil

    DEFF Research Database (Denmark)

    Bayat, Mehdi; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2016-01-01

    Large offshore wind turbines are f0W1ded on jacket structures. In this study, an elastic full-space jacket structure foundation in an elastic and viscoelastic medium is investigated by using boundary integral equations. The jacket structure foundation is modeled as a hollow, long circular cylinde...

  8. Stagnation point flow and heat transfer for a viscoelastic fluid ...

    Indian Academy of Sciences (India)

    M REZA

    2017-11-09

    Nov 9, 2017 ... increasing lateral interface velocity. It is observed that lateral interface velocity increases with increasing viscoelastic parameter for fixed values of density and viscosity ratio of the two fluids. The convective heat transfer is investigated base on the similarity solutions for the temperature distribution of the two ...

  9. Jeans Instability of the Self-Gravitating Viscoelastic Ferromagnetic ...

    Indian Academy of Sciences (India)

    Joginder Singh Dhiman

    2017-11-27

    Nov 27, 2017 ... usual Jeans instability, they also observed that the sound waves suffer a new type of instability, which is due to the combined effects of the baryonic gas dynamics and self-gravitational field in both weakly and highly colli- sional regimes. Odenbach (2003) studied the magnetoviscous and viscoelastic effects ...

  10. Application Of Prony's Method To Data On Viscoelasticity

    Science.gov (United States)

    Rodriguez, Pedro I.

    1988-01-01

    Prony coefficients found by computer program, without trial and error. Computational method and computer program developed to exploit full potential of Prony's interpolation method in analysis of experimental data on relaxation modules of viscoelastic material. Prony interpolation curve chosen to give least-squares best fit to "B-spline" interpolation of experimental data.

  11. Nonrigid Registration of Monomodal MRI Using Linear Viscoelastic Model

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2014-01-01

    Full Text Available This paper describes a method for nonrigid registration of monomodal MRI based on physical laws. The proposed method assumes that the properties of image deformations are like those of viscoelastic matter, which exhibits the properties of both an elastic solid and a viscous fluid. Therefore, the deformation fields of the deformed image are constrained by both sets of properties. After global registration, the local shape variations are assumed to have the properties of the Maxwell model of linear viscoelasticity, and the deformation fields are constrained by the corresponding partial differential equations. To speed up the registration, an adaptive force is introduced according to the maximum displacement of each iteration. Both synthetic datasets and real datasets are used to evaluate the proposed method. We compare the results of the linear viscoelastic model with those of the fluid model on the basis of both the standard and adaptive forces. The results demonstrate that the adaptive force increases in both models and that the linear viscoelastic model improves the registration accuracy.

  12. Folding, stowage, and deployment of viscoelastic tape springs

    DEFF Research Database (Denmark)

    Kwok, Kawai; Pellegrino, Sergio

    2013-01-01

    This paper presents an experimental and numerical study of the folding, stowage, and deployment behavior of viscoelastic tape springs. Experiments show that during folding the relationship between load and displacement is nonlinear and varies with rate and temperature. In particular, the limit an...

  13. Stagnation point flow and heat transfer for a viscoelastic fluid ...

    Indian Academy of Sciences (India)

    A theoretical study is made in the region near the stagnation point when a lighter incompressible viscoelastic fluids impinges orthogonally on the surface of another quiescent heavier incompressible viscous fluid. Similarity solutions of the momentum balance equations for both fluids are equalized at the interface. It isnoted ...

  14. Simulations of flow induced ordering in viscoelastic fluids

    NARCIS (Netherlands)

    Santos de Oliveira, I.S.

    2012-01-01

    In this thesis we report on simulations of colloidal ordering phenomena in shearthinning viscoelastic fluids under shear flow. Depending on the characteristics of the fluid, the colloids are observed to align in the direction of the flow. These string-like structures remain stable as long as the

  15. Viscoelastic performance of dielectric elastomer subject to different voltage stimulation

    Science.gov (United States)

    Sheng, Junjie; Zhang, Yuqing; Liu, Lei; Li, Bo; Chen, Hualing

    2017-04-01

    Dielectric elastomer (DE) is capable of giant deformation subject to an electric field, and demonstrates significant advantages in the potentially application of soft machines with muscle-like characteristics. Due to an inherent property of all macromolecular materials, DE exhibits strong viscoelastic properties. Viscoelasticity could cause a time-dependent deformation and lower the response speed and energy conversion efficiency of DE based actuators, thus strongly affect its electromechanical performance and applications. Combining with the rheological model of viscoelastic relaxation, the viscoelastic performance of a VHB membrane in a circular actuator configuration undergoing separately constant, ramp and sinusoidal voltages are analyzed both theoretically and experimentally. The theoretical results indicated that DE could attain a big deformation under a small constant voltage with a longer time or under a big voltage with a shorter time. The model also showed that a higher critical stretch could be achieved by applying ramping voltage with a lower rate and the stretch magnitude under sinusoidal voltage is much larger at a relatively low frequency. Finally, experiments were designed to validate the simulation and show well consistent with the simulation results.

  16. Quasi-static and dynamic response of viscoelastic helical rods

    Science.gov (United States)

    Temel, Beytullah; Fırat Çalim, Faruk; Tütüncü, Naki

    2004-04-01

    In this study, the dynamic behaviour of cylindrical helical rods made of linear viscoelastic materials are investigated in the Laplace domain. The governing equations for naturally twisted and curved spatial rods obtained using the Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of the rod axis, effect of rotary inertia, and shear and axial deformations are considered in the formulation. The material of the rod is assumed to be homogeneous, isotropic and linear viscoelastic. In the viscoelastic material case, according to the correspondence principle, the material constants are replaced with their complex counterparts in the Laplace domain. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate the dynamic stiffness matrix of the problem. In the solutions, the Kelvin model is employed. The solutions obtained are transformed to the real space using the Durbin's numerical inverse Laplace transform method. Numerical results for quasi-static and dynamic response of viscoelastic models are presented in the form of graphics.

  17. Strain rate viscoelastic analysis of soft and highly hydrated biomaterials.

    Science.gov (United States)

    Tirella, A; Mattei, G; Ahluwalia, A

    2014-10-01

    Measuring the viscoelastic behavior of highly hydrated biological materials is challenging because of their intrinsic softness and labile nature. In these materials, it is difficult to avoid prestress and therefore to establish precise initial stress and strain conditions for lumped parameter estimation using creep or stress-relaxation (SR) tests. We describe a method ( ɛ˙M or epsilon dot method) for deriving the viscoelastic parameters of soft hydrated biomaterials which avoids prestress and can be used to rapidly test degradable samples. Standard mechanical tests are first performed compressing samples using different strain rates. The dataset obtained is then analyzed to mathematically derive the material's viscoelastic parameters. In this work a stable elastomer, polydimethylsiloxane, and a labile hydrogel, gelatin, were first tested using the ɛ˙M, in parallel SR was used to compare lumped parameter estimation. After demonstrating that the elastic parameters are equivalent and that the estimation of short-time constants is more precise using the proposed method, the viscoelastic behavior of porcine liver was investigated using this approach. The results show that the constitutive parameters of hepatic tissue can be quickly quantified without the application of any prestress and before the onset of time-dependent degradation phenomena. © 2013 Wiley Periodicals, Inc.

  18. Jeans Instability of the Self-Gravitating Viscoelastic Ferromagnetic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 38; Issue 4. Jeans Instability of the Self-Gravitating Viscoelastic Ferromagnetic Cylinder with Axial Nonuniform Rotation and Magnetic Field. Joginder Singh Dhiman Rajni Sharma. Research Article Volume 38 Issue 4 December 2017 Article ID 64 ...

  19. Color of turbulence

    CERN Document Server

    Zare, Armin; Georgiou, Tryphon T

    2016-01-01

    Second-order statistics of turbulent flows can be obtained either experimentally or via direct numerical simulations. Statistics reflect fundamentals of flow physics and can be used to develop low-complexity turbulence models. Due to experimental or numerical limitations it is often the case that only partial flow statistics can be reliably known, i.e., only certain correlations between a limited number of flow field components are available. Thus, it is of interest to complete the statistical signature of the flow field in a way that is consistent with the known dynamics. This is an inverse problem and our approach utilizes stochastically-forced linearization around turbulent mean velocity profile. In general, white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics. In contrast, colored-in-time forcing of the linearized equations allows for exact matching of available correlations. To accomplish this, we develop dynamical models that generate the required stochastic excitation...

  20. Stochastic tools in turbulence

    CERN Document Server

    Lumey, John L

    2012-01-01

    Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the

  1. Cosmic dark turbulence

    Science.gov (United States)

    Nakamichi, A.; Morikawa, M.

    2009-05-01

    We aim for a consistent understanding of various scaling relations reported for self-gravitating systems, based on the proposal that the collisionless dark matter fluid turns into a turbulent state, i.e. dark turbulence, after crossing the caustic surface in the non-linear stage. Kolmogorov scaling laws with a constant energy flow per mass of 0.3 cm^2/s3 are suggested from observations.

  2. Flow and sediment transport across oblique channels

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Madsen, Erik Østergaard; Fredsøe, Jørgen

    1998-01-01

    A 3D numerical investigation of flow across channels aligned obliquely to the main flow direction has been conducted. The applied numerical model solves the Reynolds-averaged Navier-Stokes equations using the k-ε model for turbulence closure on a curvilinear grid. Three momentum equations...... are solved, but the computational domain is 2D due to a uniformity along the channel alignment. Two important flow features arise when the flow crosses the channel: (i) the flow will be refracted in the direction of the channel alignment. This may be described by a depth-averaged model. (ii) due to shear...

  3. Turbulent Plasmoid Reconnection

    CERN Document Server

    Widmer, Fabien; Yokoi, Nobumitsu

    2016-01-01

    The plasmoid instability may lead to fast magnetic reconnection through long current sheets(CS). It is well known that large-Reynolds-number plasmas easily become turbulent. We address the question whether turbulence enhances the energy conversion rate of plasmoid-unstable current sheets. We carry out appropriate numerical MHD simulations, but resolving simultaneously the relevant large-scale (mean-) fields and the corresponding small-scale, turbulent, quantities by means of direct numerical simulations (DNS) is not possible. Hence we investigate the influence of small scale turbulence on large scale MHD processes by utilizing a subgrid-scale (SGS) turbulence model. We verify the applicability of our SGS model and then use it to investigate the influence of turbulence on the plasmoid instability. We start the simulations with Harris-type and force-free CS equilibria in the presence of a finite guide field in the direction perpendicular to the reconnection plane. We use the DNS results to investigate the growt...

  4. Mechanistic Constitutive Models for Rubber Elasticity and Viscoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Puso, M

    2003-01-21

    Physically based models which describe the finite strain behavior of vulcanized rubber are developed. Constitutive laws for elasticity and viscoelasticity are derived by integrating over orientation space the forces due to each individual polymer chain. A novel scheme is presented which effectively approximates these integrals in terms of strain and strain invariants. In addition, the details involving the implementation of such models into a quasi-static large strain finite element formulation are provided. In order to account for the finite extensibility of a molecular chain, Langevin statistics is used to model the chain response. The classical statistical model of rubber assumes that polymer chains interact only at the chemical crosslinks. It is shown that such model when fitted for uniaxial tension data cannot fit compression or equibiaxial data. A model which incorporates the entanglement interactions of surrounding chains, in addition to the finite extensibility of the chains, is shown to give better predictions than the classical model. The technique used for approximating the orientation space integral was applied to both the classical and entanglement models. A viscoelasticity model based on the force equilibration process as described by Doi and Edwards is developed. An assumed form for the transient force in the chain is postulated. The resulting stress tensor is composed of an elastic and a viscoelastic portion with the elastic stress given by the proposed entanglement model. In order to improve the simulation of experimental data, it was found necessary to include the effect of unattached or dangling polymer chains in the viscoelasticity model. The viscoelastic effect of such chains is the manifestation of a disengagement process. This disengagement model for unattached polymer chains motivated an empirical model which was very successful in simulating the experimental results considered.

  5. Two-equation modeling of turbulent rotating flows

    Science.gov (United States)

    Cazalbou, J.-B.; Chassaing, P.; Dufour, G.; Carbonneau, X.

    2005-05-01

    The possibility to take into account the effects of the Coriolis acceleration on turbulence is examined in the framework of two-equation eddy-viscosity models. General results on the physical consistency of such turbulence models are derived from a dynamical-system approach to situations of time-evolving homogeneous turbulence in a rotating frame. Application of this analysis to a (k,ɛ) model fitted with an existing Coriolis correction [J. H. G. Howard, S. V. Patankar, and R. M. Bordynuik, "Flow prediction in rotating ducts using Coriolis-modified turbulence models," ASME Trans. J. Fluids Eng. 102, 456 (1980)] is performed. Full analytical solutions are given for the flow predicted with this model in the situation of homogeneously sheared turbulence subject to rotation. The existence of an unphysical phenomenon of blowup at finite time is demonstrated in some range of the rotation-to-shear ratio. A direct connection is made between the slope of the mean-velocity profile in the plane-channel flow with spanwise rotation, and a particular fixed point of the dynamical system in homogeneously sheared turbulence subject to rotation. The general analysis, and the understanding of typical inaccuracies and misbehavior observed with the existing model, are then used to design a new model which is free from the phenomenon of blowup at finite time and able to account for both of the main influences of rotation on turbulence: the inhibition of the spectral transfer to high wave numbers and the shear/Coriolis instability.

  6. Juneau Terrain Induced Turbulence Project: FAR Part 121 User Needs

    National Research Council Canada - National Science Library

    Benner, William

    2000-01-01

    .... Surveys and on-site interviews were used to gather information. Part 121 Pilots and Dispatchers are most impacted by the operations specification currently in place. Pilots are most concerned about wind shear and turbulence in the vicinity of the airport, in the Gastineau Channel, and near Taku Inlet.

  7. Stochastic simulation of acoustic communication in turbulent shallow water

    DEFF Research Database (Denmark)

    Bjerrum-Niese, Christian; Lutzen, R.

    2000-01-01

    This paper presents a stochastic model of a turbulent shallow-water acoustic channel. The model utilizes a Monte Carlo realization method to predict signal transmission conditions. The main output from the model are statistical descriptions of the signal-to-multipath ratio (SMR) and signal fading...

  8. Linear viscoelasticity of emulsions : II. Measurements of the linear viscoelastic behavior of emulsions in the kilohertz range

    NARCIS (Netherlands)

    Oosterbroek, M.; Mellema, J.; Lopulissa, J.S.

    1981-01-01

    Linear viscoelasticity of emulsions in shear deformation in the kilohertz range is demonstrated experimentally. In order to avoid complications due to inertia effects, emulsions with small droplet sizes are studied. The preliminary measurements are interpreted as being the result of droplet

  9. DNSLab: A gateway to turbulent flow simulation in Matlab

    Science.gov (United States)

    Vuorinen, V.; Keskinen, K.

    2016-06-01

    Computational fluid dynamics (CFD) research is increasingly much focused towards computationally intensive, eddy resolving simulation techniques of turbulent flows such as large-eddy simulation (LES) and direct numerical simulation (DNS). Here, we present a compact educational software package called DNSLab, tailored for learning partial differential equations of turbulence from the perspective of DNS in Matlab environment. Based on educational experiences and course feedback from tens of engineering post-graduate students and industrial engineers, DNSLab can offer a major gateway to turbulence simulation with minimal prerequisites. Matlab implementation of two common fractional step projection methods is considered: the 2d Fourier pseudo-spectral method, and the 3d finite difference method with 2nd order spatial accuracy. Both methods are based on vectorization in Matlab and the slow for-loops are thus avoided. DNSLab is tested on two basic problems which we have noted to be of high educational value: 2d periodic array of decaying vortices, and 3d turbulent channel flow at Reτ = 180. To the best of our knowledge, the present study is possibly the first to investigate efficiency of a 3d turbulent, wall bounded flow in Matlab. The accuracy and efficiency of DNSLab is compared with a customized OpenFOAM solver called rk4projectionFoam. Based on our experiences and course feedback, the main contribution of DNSLab consists of the following features. (i) The very compact Matlab implementation of present Navier-Stokes solvers provides a gateway to efficient learning of both, physics of turbulent flows, and simulation of turbulence. (ii) Only relatively minor prerequisites on fluid dynamics and numerical methods are required for using DNSLab. (iii) In 2d, interactive results for turbulent flow cases can be obtained. Even for a 3d channel flow, the solver is fast enough for nearly interactive educational use. (iv) DNSLab is made openly available and thus contributing to

  10. Influence of Turbulent Fluctuations on Detonation Propagation

    CERN Document Server

    Maxwell, Brian McN; Lau-Chapdelaine, Sebastien S M; Falle, Sam A E G; Sharpe, Gary J; Radulescu, Matei I

    2016-01-01

    The present study addresses the reaction zone structure and burning mechanism of unstable detonations. Experiments investigated mainly two-dimensional methane-oxygen cellular detonations in a thin channel geometry. The sufficiently high temporal resolution permitted to determine the PDF of the shock distribution, a power-law with an exponent of -3, and the burning rate of unreacted pockets from their edges - through surface turbulent flames with a speed approximately 3-7 times larger than the laminar one at the local conditions. Numerical simulations were performed using a novel Large Eddy Simulation method where the reactions due to both auto-ignition and turbulent transport and treated exactly at the sub-grid scale in a reaction-diffusion formulation. The model is an extension of Kerstein & Menon's Linear Eddy Model for Large Eddy Simulation to treat flows with shock waves and rapid gasdynamic transients. The two-dimensional simulations recovered well the amplification of the laminar flame speed owing t...

  11. Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    Science.gov (United States)

    Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas

    2017-04-01

    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.

  12. Hydrodynamic instability of meandering channels

    Science.gov (United States)

    Ali, Sk Zeeshan; Dey, Subhasish

    2017-12-01

    In this paper, we explore the hydrodynamic instability of meandering channels driven by the turbulent flow. The governing equations of channel dynamics with suitable boundary conditions are closed with the fluid and granular constitutive relationships. A regular expansion of the fundamental variables is employed to linearize the parent equations by superimposing the perturbations on the basic unperturbed flow. The channel dynamics reveal a resonance phenomenon which occurs when the key variables fall in the vicinity of the distinct critical values. The resonance phenomenon preserves its distinctive signature in different flow regimes which are guided by the characteristic values of the shear Reynolds number. The hydrodynamic analysis indicates that the fluid friction and the volumetric sediment flux play a decisive role to characterize the channel instability in different flow regimes. The growths of azimuthal velocity perturbation in phase with curvature, bed topography perturbation, bend amplification rate, and meander propagation speed in different flow regimes are investigated by varying the meander wavenumber, Shields number, channel aspect ratio, and relative roughness number. The analysis is capable to capture the effects of grain size on azimuthal velocity perturbation, bed topography perturbation, bend amplification rate, and meandering propagation speed over a wide range of shear Reynolds numbers. The variations of resonant wavenumbers in different flow regimes with the Shields number, channel aspect ratio, and relative roughness number are addressed. For a specific flow regime, the upstream and downstream migrations of meandering channels are typically governed by the Shields number, channel aspect ratio, and relative roughness number.

  13. Unsteady turbulence cascades.

    Science.gov (United States)

    Goto, Susumu; Vassilicos, J C

    2016-11-01

    We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5/3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935)1364-502110.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.

  14. Turbulence in Natural Environments

    Science.gov (United States)

    Banerjee, Tirtha

    Problems in the area of land/biosphere-atmosphere interaction, hydrology, climate modeling etc. can be systematically organized as a study of turbulent flow in presence of boundary conditions in an increasing order of complexity. The present work is an attempt to study a few subsets of this general problem of turbulence in natural environments- in the context of neutral and thermally stratified atmospheric surface layer, the presence of a heterogeneous vegetation canopy and the interaction between air flow and a static water body in presence of flexible protruding vegetation. The main issue addressed in the context of turbulence in the atmospheric surface layer is whether it is possible to describe the macro-states of turbulence such as mean velocity and turbulent velocity variance in terms of the micro-states of the turbulent flow, i.e., a distribution of turbulent kinetic energy across a multitude of scales. This has been achieved by a `spectral budget approach' which is extended for thermal stratification scenarios as well, in the process unifying the seemingly different and unrelated theories of turbulence such as Kolmogorov's hypothesis, Heisenberg's eddy viscosity, Monin Obukhov Similarity Theory (MOST) etc. under a common framework. In the case of a more complex scenario such as presence of a vegetation canopy with edges and gaps, the question that is addressed is in what detail the turbulence is needed to be resolved in order to capture the bulk flow features such as recirculation patterns. This issue is addressed by a simple numerical framework and it has been found out that an explicit prescription of turbulence is not necessary in presence of heterogeneities such as edges and gaps where the interplay between advection, pressure gradients and drag forces are sufficient to capture the first order dynamics. This result can be very important for eddy-covariance flux calibration strategies in non-ideal environments and the developed numerical model can be

  15. Turbulent complex (dusty) plasma

    Science.gov (United States)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  16. Phenomenology of turbulent convection

    Science.gov (United States)

    Verma, Mahendra; Chatterjee, Anando; Kumar, Abhishek; Samtaney, Ravi

    2016-11-01

    We simulate Rayleigh-Bénard convection (RBC) in which a fluid is confined between two thermally conducting plates. We report results from direct numerical simulation (DNS) of RBC turbulence on 40963 grid, the highest resolution hitherto reported, on 65536 cores of Cray XC40, Shaheen II, at KAUST. The non-dimensional parameters of our simulation are: the Rayleigh number Ra = 1 . 1 ×1011 (the highest ever for a pseudo-spectral simulation) and Prandtl number of unity. We present energy flux diagnostics of shell-to-shell (in wave number space) transfer. Furthermore, noting that convective flows are anisotropic due to buoyancy, we quantify anisotropy by subdividing each wavenumber shell into rings and quantify ring energy spectrum. An outstanding question in convective turbulence is the wavenumber scaling of the energy spectrum. Our pseudo-spectral simulations of turbulent thermal convection coupled with novel energy transfer diagnostics have provided a definitive answer to this question. We conclude that convective turbulence exhibits behavior similar to fluid turbulence, that is, Kolmogorov's k - 5 / 3 spectrum with forward and local energy transfers, along with a nearly isotropic energy distribution. The supercomputer Shaheen at KAUST was utilized for the simulations.

  17. Turbulence introduction to theory and applications of turbulent flows

    CERN Document Server

    Westerweel, Jerry; Nieuwstadt, Frans T M

    2016-01-01

    This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.

  18. Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives

    Science.gov (United States)

    Li, Shuhui; Chen, Shi; Gao, Chunqing; Willner, Alan E.; Wang, Jian

    2018-02-01

    Orbital angular momentum (OAM)-carrying beams have recently generated considerable interest due to their potential use in communication systems to increase transmission capacity and spectral efficiency. For OAM-based free-space optical (FSO) links, a critical challenge is the atmospheric turbulence that will distort the helical wavefronts of OAM beams leading to the decrease of received power, introducing crosstalk between multiple channels, and impairing link performance. In this paper, we review recent advances in turbulence effects compensation techniques for OAM-based FSO communication links. First, basic concepts of atmospheric turbulence and theoretical model are introduced. Second, atmospheric turbulence effects on OAM beams are theoretically and experimentally investigated and discussed. Then, several typical turbulence compensation approaches, including both adaptive optics-based (optical domain) and signal processing-based (electrical domain) techniques, are presented. Finally, key challenges and perspectives of compensation of turbulence-distorted OAM links are discussed.

  19. 12th EUROMECH European Turbulence Conference

    CERN Document Server

    Eckhardt, Bruno

    2009-01-01

    This volume comprises the communications presented at the EUROMECH European Turbulence Conference ETC12, held in Marburg in September 2009. The topics covered by the meeting include: Acoustics of turbulent flows Atmospheric turbulence Control of turbulent flows Geophysical and astrophysical turbulence Instability and transition Intermittency and scaling Large eddy simulation and related techniques Lagrangian aspects MHD turbulence Reacting and compressible turbulence Transport and mixing Turbulence in multiphase and non-Newtonian flows Vortex dynamics and structure formation Wall bounded flows

  20. Turbulence in complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.

  1. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  2. Information Content of Turbulence

    Science.gov (United States)

    Cerbus, Rory; Goldburg, Walter

    2013-03-01

    This work is one of the few attempts to treat turbulence as an information source that can be controlled experimentally. As the Reynolds number Re is increased, more degrees of freedom are excited and participate in the turbulent cascade. One might therefore expect that on raising Re , the system becomes more random, thereby increasing the Shannon entropy H. However, because the excited modes are correlated, H is a decreasing function of Re , as is experimentally shown in a study of turbulence in a flowing soap film. A parallel analysis was made of the logistic map, where H is calculated as a function of the control parameter r in the equation xn + 1 = rxn (1 -xn) . There, as expected, H is an increasing function of r. This work is supported by NSF grant No. 1044105, a Mellon fellowship, and the Okinawa Institute of Science and Technology.

  3. Bacterial Chromosomal Loci Move Subdiffusively through a Viscoelastic Cytoplasm

    Science.gov (United States)

    Weber, Stephanie C.; Spakowitz, Andrew J.; Theriot, Julie A.

    2016-01-01

    Tracking of fluorescently labeled chromosomal loci in live bacterial cells reveals a robust scaling of the mean square displacement (MSD) as τ0.39. Brownian dynamics simulations show that this anomalous behavior cannot be fully accounted for by the classic Rouse or reptation models for polymer dynamics. Instead, the observed motion arises from the characteristic relaxation of the Rouse modes of the DNA polymer within the viscoelastic environment of the cytoplasm. To demonstrate these physical effects, we exploit our general analytical solution of the subdiffusive scaling for a monomer in a polymer embedded in a viscoelastic medium. The time-averaged and ensemble-averaged MSD of chromosomal loci exhibit ergodicity, and the velocity autocorrelation function is negative at short time lags. These observations are most consistent with fractional Brownian motion and rule out a continuous time random walk model as an explanation for anomalous motion in vivo. PMID:20867274

  4. A Galerkin least squares approach to viscoelastic flow.

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schunk, Peter Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A Galerkin/least-squares stabilization technique is applied to a discrete Elastic Viscous Stress Splitting formulation of for viscoelastic flow. From this, a possible viscoelastic stabilization method is proposed. This method is tested with the flow of an Oldroyd-B fluid past a rigid cylinder, where it is found to produce inaccurate drag coefficients. Furthermore, it fails for relatively low Weissenberg number indicating it is not suited for use as a general algorithm. In addition, a decoupled approach is used as a way separating the constitutive equation from the rest of the system. A Pressure Poisson equation is used when the velocity and pressure are sought to be decoupled, but this fails to produce a solution when inflow/outflow boundaries are considered. However, a coupled pressure-velocity equation with a decoupled constitutive equation is successful for the flow past a rigid cylinder and seems to be suitable as a general-use algorithm.

  5. Shear measurements of viscoelastic damping materials embedded in composite plates

    Science.gov (United States)

    Biggerstaff, Janet M.; Kosmatka, John B.

    1999-06-01

    Embedding viscoelastic damping materials into graphite/epoxy composites can greatly increase the damping of composite structures. Cocuring the damping material with the composite, however, has been shown to increase the modulus and lower the damping in many viscoelastic materials because epoxy penetrates many damping materials (especially acrylics). In this paper, the changes in shear modulus were measured using double lap shear tests. Also presented are shear moduli comparisons of samples cured with three different barrier film layers, KaptonR, TedlarR,and polyester, which are used to prevent the epoxy penetration. Lastly, samples with an embedded loosely woven scrim cloth placed between two damping material layers are tested to measure how the scrim affects the shear modulus.

  6. Thin viscoelastic disc subjected to radial non-stationary loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2010-07-01

    Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.

  7. Deformation and buckling of microcapsules in a viscoelastic matrix

    Science.gov (United States)

    Raffiee, Amir Hossein; Dabiri, Sadegh; Ardekani, Arezoo M.

    2017-09-01

    In this paper, we numerically study the dynamics of (1) a Newtonian liquid-filled capsule in a viscoelastic matrix and that of (2) a viscoelastic capsule in a Newtonian matrix in a linear shear flow using a front-tracking method. The numerical results for case (1) indicate that the polymeric fluid reduces the capsule deformation and aligns the deformed capsule with the flow direction. It also narrows the range of tension experienced by the deformed capsule for case (1), while the tank-treading period significantly increases. Interestingly, the polymeric fluid has an opposite effect on the tank-treading period and the orientation angle of case (2), but its effect on the deformation is similar to case (1).

  8. A Numerical Model of Viscoelastic Flow in Microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D; Colella, P; Miller, G; Liepmann, D

    2002-11-14

    The authors present a numerical method to model non-Newtonian, viscoelastic flow at the microscale. The equations of motion are the incompressible Navier-Stokes equations coupled with the Oldroyd-B constitutive equation. This constitutive equation is chosen to model a Boger fluid which is representative of complex biological solutions exhibiting elastic behavior due to macromolecules in the solution (e.g., DNA solution). The numerical approach is a projection method to impose the incompressibility constraint and a Lax-Wendroff method to predict velocities and stresses while recovering both viscous and elastic limits. The method is second-order accurate in space and time, free-stream preserving, has a time step constraint determined by the advective CFL condition, and requires the solution of only well-behaved linear systems amenable to the use of fast iterative methods. They demonstrate the method for viscoelastic incompressible flow in simple microchannels (2D) and microducts (3D).

  9. Heterogeneous Viscoelasticity: A Combined Theory of Dynamic and Elastic Heterogeneity.

    Science.gov (United States)

    Schirmacher, Walter; Ruocco, Giancarlo; Mazzone, Valerio

    2015-07-03

    We present a heterogeneous version of Maxwell's theory of viscoelasticity based on the assumption of spatially fluctuating local viscoelastic coefficients. The model is solved in coherent-potential approximation. The theory predicts an Arrhenius-type temperature dependence of the viscosity in the vanishing-frequency limit, independent of the distribution of the activation energies. It is shown that this activation energy is generally different from that of a diffusing particle with the same barrier-height distribution, which explains the violation of the Stokes-Einstein relation observed frequently in glasses. At finite but low frequencies, the theory describes low-temperature asymmetric alpha relaxation. As examples, we report the good agreement obtained for selected inorganic, metallic, and organic glasses. At high frequencies, the theory reduces to heterogeneous elasticity theory, which explains the occurrence of the boson peak and related vibrational anomalies.

  10. Spatio-temporal dynamics of an active, polar, viscoelastic ring.

    Science.gov (United States)

    Marcq, Philippe

    2014-04-01

    Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.

  11. Fractional order viscoelasticity in characterization for atrial tissue

    Science.gov (United States)

    Shen, Jing Jin; Li, Cheng Gang; Wu, Hong Tao; Kalantari, Masoud

    2013-05-01

    Atrial tissue due to its solid-like and fluid-like constituents shows highly viscoelastic properties. Up to now, the distribution pattern of muscle fiber in heart is not well established, and it is hard to establish the constitutive model for atrial tissue completely based on the microstructure level. Consider the equivalence between the fractional viscoelasticity and the fractal spring-dashpot model, a generalized fractional order Maxwell model is proposed to model the porcine atrial tissue in the phenomenological sense. This model has a simple expression and intuitively physical meanings. The constitutive parameters in the model are estimated in the complex domain by a genetic algorithm. Final results illustrate the proposed model gets a well agreement with the experimental data.

  12. Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Aniruddha, E-mail: anibabun@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Roychoudhury, Rajkumar, E-mail: rajdaju@rediffmail.com [Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India); Department of Mathematics, Bethune College, Kolkata 700006 (India); Bhar, Radhaballav [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Khan, Manoranjan, E-mail: mkhan.ju@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India)

    2017-02-12

    The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through ‘viscosity modified Ostrovsky equation’ in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem. - Highlights: • In weak gravitational field, viscoelastic quantum fluid exhibits symmetry breaking instability. • Gaussian perturbation produces quasi-periodic gravito-acoustic waves into the system. • There exists no chaotic state of the system against long wavelength perturbations.

  13. Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Edson Cocchieri; Costa, Michelle Leali; Braga, Carlos Isidoro, E-mail: ebotelho@feg.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia; Burkhart, Thomas [Institut fuer Verbundwerkstoffe GmbH, Kaiserslautern, (Germany); Lauke, Bernd [Leibniz-Institut fuer Polymerforschung, Dresden (Germany)

    2013-11-01

    Nanostructured polymer composites have opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential applications in order to improve mechanical and electrical performance in composites with aerospace application. This study focuses on the viscoelastic evaluation of phenolic resin reinforced carbon nanotubes, processed by using two techniques: aqueous-surfactant solution and three roll calender (TRC) process. According to our results a relative small amount of CNTs in a phenolic resin matrix is capable of enhancing the viscoelastic properties significantly and to modify the thermal stability. Also has been observed that when is used TRC process, the incorporation and distribution of CNT into phenolic resin is more effective when compared with aqueous solution dispersion process. (author)

  14. Viscoelastic analysis of a dental metal-ceramic system

    Science.gov (United States)

    Özüpek, Şebnem; Ünlü, Utku Cemal

    2012-11-01

    Porcelain-fused-to-metal (PFM) restorations used in prosthetic dentistry contain thermal stresses which develop during the cooling phase after firing. These thermal stresses coupled with the stresses produced by mechanical loads may be the dominant reasons for failures in clinical situations. For an accurate calculation of these stresses, viscoelastic behavior of ceramics at high temperatures should not be ignored. In this study, the finite element technique is used to evaluate the effect of viscoelasticity on stress distributions of a three-point flexure test specimen, which is the current international standard, ISO 9693, to characterize the interfacial bond strength of metal-ceramic restorative systems. Results indicate that the probability of interfacial debonding due to normal tensile stress is higher than that due to shear stress. This conclusion suggests modification of ISO 9693 bond strength definition from one in terms of the shear stress only to that accounting for both normal and shear stresses.

  15. Viscoelasticity and diffusional properties of colloidal model dispersions

    CERN Document Server

    Naegele, G

    2003-01-01

    We examine linear viscoelastic, and translational and rotational diffusion properties of colloidal model dispersions. Theoretical results are discussed, in comparison with experiments, for monodisperse suspensions of charged and neutral colloidal spheres, and for binary dispersions of differently sized tracer and host particles. The theoretical methods employed comprise a mode-coupling scheme for Brownian particles, and a rooted cluster expansion scheme of tracer diffusion with two- and three-body hydrodynamic interactions included. We analyse in particular the validity of various empirical generalized Stokes-Einstein-Debye (SED) relations between the (dynamic) shear viscosity and translational/rotational diffusion coefficients. Some of these generalized SED relations are basic to microrheological measurements aimed at characterizing the viscoelasticity of complex fluids on the basis of the diffusional properties of immersed tracer particles.

  16. Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells

    Science.gov (United States)

    Wilhelm, C.; Gazeau, F.; Bacri, J.-C.

    2003-06-01

    The previously developed technique of magnetic rotational microrheology [Phys. Rev. E 67, 011504 (2003)] is proposed to investigate the rheological properties of the cell interior. An endogeneous magnetic probe is obtained inside living cells by labeling intracellular compartments with magnetic nanoparticles, following the endocytosis mechanism, the most general pathway used by eucaryotic cells to internalize substances from an extracellular medium. Primarily adsorbed on the plasma membrane, the magnetic nanoparticles are first internalized within submicronic membrane vesicles (100 nm diameter) to finally concentrate inside endocytotic intracellular compartments (0.6 μm diameter). These magnetic endosomes attract each other and form chains within the living cell when submitted to an external magnetic field. Here we demonstrate that these chains of magnetic endosomes are valuable tools to probe the intracellular dynamics at very local scales. The viscoelasticity of the chain microenvironment is quantified in terms of a viscosity η and a relaxation time τ by analyzing the rotational dynamics of each tested chain in response to a rotation of the external magnetic field. The viscosity η governs the long time flow of the medium surrounding the chains and the relaxation time τ reflects the proportion of solidlike versus liquidlike behavior (τ=η/G, where G is the high-frequency shear modulus). Measurements in HeLa cells show that the cell interior is a highly heterogeneous structure, with regions where chains are embedded inside a dense viscoelastic matrix and other domains where chains are surrounded by a less rigid viscoelastic material. When one compound of the cell cytoskeleton is disrupted (microfilaments or microtubules), the intracellular viscoelasticity becomes less heterogeneous and more fluidlike, in the sense of both a lower viscosity and a lower relaxation time.

  17. On the use of fractional derivatives for modeling nonlinear viscoelasticity

    OpenAIRE

    Haveroth, Thais Clara da Costa

    2015-01-01

    Among the wide range of structural polymers currently available in the market, this work is concerned particularly with high density polyethylene. The typical nonlinear viscoelastic behavior presented by this material is not trivial to model, and has already been investigated by many authors in the past. Aiming at a further contribution, this work proposes modeling this material behavior using an approach based on fractional derivatives. This formulation produces fractional constitutive eq...

  18. On a nonlinear viscoelastic model of Hunt-Crossley impact

    Science.gov (United States)

    Dyagel, R. V.; Lapshin, V. V.

    2011-10-01

    We consider a nonlinear viscoelastic model of the impact of a body on a stationary Hunt-Crossley obstacle. We obtain the first integral of the equation of motion and determine the coefficient of restitution, the kinetic energy lost at the impact, and their dependence on the impact velocity. We find the solution of the equation of motion of the body in terms of integrals by using the Lambert W-function and present the results of mathematical modeling.

  19. On Lamb and Rayleigh wave convergence in viscoelastic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)

    2011-10-21

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  20. On Lamb and Rayleigh wave convergence in viscoelastic tissues

    Science.gov (United States)

    Nenadic, Ivan Z.; Urban, Matthew W.; Aristizabal, Sara; Mitchell, Scott A.; Humphrey, Tye C.; Greenleaf, James F.

    2011-10-01

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  1. A Comparison of Viscoelastic Properties of Three Root Canal Sealers

    Directory of Open Access Journals (Sweden)

    Malihe Pishvaei

    2013-01-01

    Full Text Available Objective: Handling of endodontic sealers is greatly dependent on their elasticity and flow ability. We compared the viscoelastic properties of three root canal sealers.Materials and Methods: AH Plus (Dentsply, De Trey, Konstanz, Germany, Endofill (Dentsply Hero, Petrópolis, Rio de Janeiro, Brazil and AH26 (Dentsply, De Trey, Konstanz, Germany were mixed according to the manufacturers' instructions. The resulted pastes were placed on the plate of a rheometer (MCR 300, Anton-Paar, Graz, Austria. The experiments were performed at 25˚C and 37˚C. Viscoelastic properties of the sealers including loss modulus (G", storage modulus (G´ and complex viscosity (η* were studied using dynamic oscillatory shear tests. The shear module versus frequency (from 0.01 to 100 S-1 curves were gained using frequency deformation sweep test. Three samples of each material were examined at each temperature. The mean of these three measurements were recorded.Results: The storage modulus of AH plus was higher than its loss modulus at two temperatures. Endofill exhibited a crossover region in which the storage modulus crosses the loss modulus in both temperatures. At 25ºC the loss modulus of AH26 was higher than the storage modulus (G">G¢. In contrast, at 37ºC G¢was greater than G² (G¢>G². Both shear modules of AH Plus and Endofill decreased as the temperature raised from 25ºC to 37ºC. On the contrary, the loss modulus and storage modulus of AH26 increased at 37ºC.Conclusion: In both test temperatures, AH Plus behaved like viscoelastic solids and Endofill exhibited a gel-like viscoelastic behavior. AH26 at 25ºC behaved like liquids, while at 37ºC it was an elastic solid-like material

  2. Chaotic gas bubble oscillations in a viscoelastic fluid

    Science.gov (United States)

    Jiménez-Fernández, Javier

    2008-05-01

    Regular and chaotic radial oscillations of an acoustically driven gas bubble in a viscoelastic fluid have been theoretically analyzed. For parameter values usually found in diagnostic ultrasound period-doubling routes to chaos have been identified. Thresholds values of the external pressure amplitude for a first bifurcation in terms of the elasticity and the shear viscosity of the host fluid have also been evaluated. To cite this article: J. Jiménez-Fernández, C. R. Mecanique 336 (2008).

  3. pH-induced contrast in viscoelasticity imaging of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Yapp, R D; Insana, M F [Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL 61801 (United States)], E-mail: ryapp2@illinois.edu

    2009-03-07

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  4. Global existence result for the generalized Peterlin viscoelastic model

    Czech Academy of Sciences Publication Activity Database

    Lukáčová-Medviďová, M.; Mizerová, H.; Nečasová, Šárka; Renardy, M.

    2017-01-01

    Roč. 49, č. 4 (2017), s. 2950-2964 ISSN 0036-1410 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Peterlin viscoelastic equations * global existence * weak solutions Subject RIV: BA - General Mathematics Impact factor: 1.648, year: 2016 http://epubs.siam.org/doi/abs/10.1137/16M1068505

  5. pH-induced contrast in viscoelasticity imaging of biopolymers

    Science.gov (United States)

    Yapp, R. D.; Insana, M. F.

    2009-03-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  6. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    Science.gov (United States)

    Warnez, M. T.; Johnsen, E.

    2015-01-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967

  7. Floquet stability analysis of viscoelastic flow over a cylinder

    KAUST Repository

    Richter, David

    2011-06-01

    A Floquet linear stability analysis has been performed on a viscoelastic cylinder wake. The FENE-P model is used to represent the non-Newtonian fluid, and the analysis is done using a modified version of an existing nonlinear code to compute the linearized initial value problem governing the growth of small perturbations in the wake. By measuring instability growth rates over a wide range of disturbance spanwise wavenumbers α, the effects of viscoelasticity were identified and compared directly to Newtonian results.At a Reynolds number of 300, two unstable bands exist over the range 0. ≤ α≤ 10 for Newtonian flow. For the low α band, associated with the "mode A" wake instability, a monotonic reduction in growth rates is found for increasing polymer extensibility L. For the high α band, associated with the "mode B" instability, first a rise, then a significant decrease to a stable state is found for the instability growth rates as L is increased from L= 10 to L= 30. The mechanism behind this stabilization of both mode A and mode B instabilities is due to the change of the base flow, rather than a direct effect of viscoelasticity on the perturbation. © 2011 Elsevier B.V.

  8. Damping performance of cocured composite laminates with embedded viscoelastic layers

    Science.gov (United States)

    Biggerstaff, Janet M.; Kosmatka, John B.

    1998-06-01

    Cocuring viscoelastic damping materials in composites has been shown to be successful in greatly increasing the damping of composite structures. The damping performance, however, is often not as high in cocured composites as in secondarily bonded composites, where the damping material does not undergo the cure process. The reason for the discrepancy in damping between the cocured and secondarily bonded samples was found to be resin penetration into the damping material. Samples with a barrier layer between the damping material and the epoxy resin had a 15.7% to 92.3% higher loss factor (depending on the frequency) than cocured FasTapeTM 1125 samples without the barrier and at least 168% higher loss factor than cocured ISD 112 samples without the barrier. These higher damping values are very close to the values achieved by secondarily bonding. Viscoelastic damping materials typically have maximum recommended temperatures below that of the composite cure cycles. The effect of cure temperature on viscoelastic damping materials was also studied and it was determined that most damping materials are marginally affected by cure cycle temperature.

  9. Effects of viscoelastic ophthalmic solutions on cell cultures

    Directory of Open Access Journals (Sweden)

    Madhavan Hajib

    1998-01-01

    Full Text Available The development of mild but significant inflammation probably attributable to viscoelastic ophthalmic solutions in cataract surgery was recently brought to the notice of the authors, and hence a study of the effects of these solutions available in India, on cell cultures was undertaken. We studied the effects of 6 viscoelastic ophthalmic solutions (2 sodium hyaluronate designated as A and B, and 4 hydroxypropylmethylcellulose designated as C, D, E and F on HeLa, Vero and BHK-21 cell lines in tissue culture microtitre plates using undiluted, 1:10 and 1:100 dilutions of the solutions, and in cover slip cultures using undiluted solutions. Phase contrast microscopic examination of the solutions was also done to determine the presence of floating particles. The products D and F produced cytotoxic changes in HeLa cell line and these products also showed the presence of floating particles under phase contrast microscopy. Other products did not have any adverse effects on the cell lines nor did they show floating particles. The viscoelastic ophthalmic pharmaceutical products designated D and F have cytotoxic effects on HeLa cell line which appears to be a useful cell line for testing these products for their toxicity. The presence of particulate materials in products D and F indicates that the methods used for purification of the solution are not effective.

  10. Nonlinear viscoelasticity and generalized failure criterion for biopolymer gels

    Science.gov (United States)

    Divoux, Thibaut; Keshavarz, Bavand; Manneville, Sébastien; McKinley, Gareth

    2016-11-01

    Biopolymer gels display a multiscale microstructure that is responsible for their solid-like properties. Upon external deformation, these soft viscoelastic solids exhibit a generic nonlinear mechanical response characterized by pronounced stress- or strain-stiffening prior to irreversible damage and failure, most often through macroscopic fractures. Here we show on a model acid-induced protein gel that the nonlinear viscoelastic properties of the gel can be described in terms of a 'damping function' which predicts the gel mechanical response quantitatively up to the onset of macroscopic failure. Using a nonlinear integral constitutive equation built upon the experimentally-measured damping function in conjunction with power-law linear viscoelastic response, we derive the form of the stress growth in the gel following the start up of steady shear. We also couple the shear stress response with Bailey's durability criteria for brittle solids in order to predict the critical values of the stress σc and strain γc for failure of the gel, and how they scale with the applied shear rate. This provides a generalized failure criterion for biopolymer gels in a range of different deformation histories. This work was funded by the MIT-France seed fund and by the CNRS PICS-USA scheme (#36939). BK acknowledges financial support from Axalta Coating Systems.

  11. Three-sphere swimmer in a nonlinear viscoelastic medium

    KAUST Repository

    Curtis, Mark P.

    2013-04-10

    A simple model for a swimmer consisting of three colinearly linked spheres attached by rods and oscillating out of phase to break reciprocal motion is analyzed. With a prescribed forcing of the rods acting on the three spheres, the swimming dynamics are determined analytically in both a Newtonian Stokes fluid and a zero Reynolds number, nonlinear, Oldroyd-B viscoelastic fluid with Deborah numbers of order one (or less), highlighting the effects of viscoelasticity on the net displacement of swimmer. For instance, the model predicts that the three-sphere swimmer with a sinusoidal, but nonreciprocal, forcing cycle within an Oldroyd-B representation of a polymeric Boger fluid moves a greater distance with enhanced efficiency in comparison with its motility in a Newtonian fluid of the same viscosity. Furthermore, the nonlinear contributions to the viscoelastic constitutive relation, while dynamically nontrivial, are predicted a posteriori to have no effect on swimmer motility at leading order, given a prescribed forcing between spheres. © 2013 American Physical Society.

  12. Earthquake response of adjacent structures with viscoelastic and friction dampers

    Directory of Open Access Journals (Sweden)

    Žigić Miodrag

    2015-01-01

    Full Text Available We study the seismic response of two adjacent structures connected with a dry friction damper. Each of them consists of a viscoelastic rod and a rigid block, which can slide without friction along the moving base. A simplified earthquake model is used for modeling the horizontal ground motion. Energy dissipation is taken by the presence of the friction damper, which is modeled by the set-valued Coulomb friction law. Deformation of viscoelastic rods during the relative motion of the blocks represents another way of energy dissipation. The constitutive equation of a viscoelastic body is described by the fractional Zener model, which includes fractional derivatives of stress and strain. The problem merges fractional derivatives as non-local operators and theory of set-valued functions as the non-smooth ones. Dynamical behaviour of the problem is governed by a pair of coupled multi-valued differential equations. The posed Cauchy problem is solved by use of the Grünwald-Letnikov numerical scheme. The behaviour of the system is analyzed for different values of system parameters.

  13. Near critical swirling flow of a viscoelastic fluid

    Science.gov (United States)

    Ly, Nguyen; Rusak, Zvi; Tichy, John; Wang, Shixiao

    2016-11-01

    The interaction between flow inertia and elasticity in high Re, axisymmetric, and near-critical swirling flows of a viscoelastic fluid in a finite-length straight circular pipe is studied. The viscous stresses are described by the Giesekus constitutive model. The application of this model to columnar streamwise vortices is first investigated. Then, a nonlinear small-disturbance analysis is developed from the governing equations of motion. It explores the complicated interactions between flow inertia, swirl, and fluid viscosity and elasticity. An effective Re that links between steady states of swirling flows of a viscoelastic fluid and those of a Newtonian fluid is revealed. The effects of the fluid viscosity, relaxation time, retardation time and mobility parameter on the flow development and on the critical swirl for the appearance of vortex breakdown are explored. Decreasing the ratio of the viscoelastic characteristic times from one increases the critical swirl for breakdown. Increasing the Weissenberg number from zero or increasing the fluid mobility parameter from zero cause a similar effect. Results may explain changes in the appearance of breakdown zones as a function of swirl level that were observed in Stokes et al. (2001) experiments, where Boger fluids were used.

  14. A non-linear viscoelastic model for the tympanic membrane.

    Science.gov (United States)

    Motallebzadeh, Hamid; Charlebois, Mathieu; Funnell, W Robert J

    2013-12-01

    The mechanical behavior of the tympanic membrane displays both non-linearity and viscoelasticity. Previous finite-element models of the tympanic membrane, however, have been either non-linear or viscoelastic but not both. In this study, these two features are combined in a non-linear viscoelastic model. The constitutive equation of this model is a convolution integral composed of a non-linear elastic part, represented by an Ogden hyperelastic model, and an exponential time-dependent part, represented by a Prony series. The model output is compared with the relaxation curves and hysteresis loops observed in previous measurements performed on strips of tympanic membrane. In addition, a frequency-domain analysis is performed based on the obtained material parameters, and the effect of strain rate is explored. The model presented here is suitable for modeling large deformations of the tympanic membrane for frequencies less than approximately 3 rad/s or about 0.6 Hz. These conditions correspond to the pressurization involved in tympanometry.

  15. Nonlinear viscoelasticity and shear localization at complex fluid interfaces.

    Science.gov (United States)

    Erni, Philipp; Parker, Alan

    2012-05-22

    Foams and emulsions are often exposed to strong external fields, resulting in large interface deformations far beyond the linear viscoelastic regime. Here, we investigate the nonlinear and transient interfacial rheology of adsorption layers in large-amplitude oscillatory shear flow. As a prototypical material forming soft-solid-type interfacial adsorption layers, we use Acacia gum (i.e., gum arabic), a protein/polysaccharide hybrid. We quantify its nonlinear flow properties at the oil/water interface using a biconical disk interfacial rheometer and analyze the nonlinear stress response under forced strain oscillations. From the resulting Lissajous curves, we access quantitative measures recently introduced for nonlinear viscoelasticity, including the intracycle moduli for both the maximum and zero strains and the degree of plastic energy dissipation upon interfacial yielding. We demonstrate using in situ flow visualization that the onset of nonlinear viscoelasticity coincides with shear localization at the interface. Finally, we address the nonperiodic character of this flow transition using an experimental procedure based on opposing stress pulses, allowing us to extract additional interfacial properties such as the critical interfacial stress upon yielding and the permanent deformation.

  16. The effect of relaxation on cavitation dynamics in viscoelastic media

    Science.gov (United States)

    Mancia, Lauren; Warnez, Matthew; Johnsen, Eric

    2014-11-01

    Cavitation plays an important role in diagnostic and therapeutic ultrasound. In certain applications, cavitation bubbles are produced directly in soft tissue, a viscoelastic medium. Although bubble dynamics research in water has received significant attention, the behavior of bubbles in tissue-like media is much less well understood, as the dynamics are strongly affected by the viscoelastic properties of the surroundings, including viscosity, elasticity and relaxation. In the present work, we numerically investigate the role of stress relaxation on spherical bubble dynamics. We simulate bubble dynamics in viscoelastic media with linear and nonlinear relaxation under different types of forcing. Results indicate that the presence of relaxation causes faster growth rates and permits bubble rebound driven purely by residual stresses in the surroundings, a phenomenon not observed in Newtonian media. Differences between nonlinear models become important only following a strong collapse (in which high stresses are generated), thus requiring a robust numerical approach. This work was supported by NSF Grant Number CBET 1253157 and NIH Grant Number 1R01HL110990-01A1.

  17. Modelling of Rough Contact between Linear Viscoelastic Materials

    Directory of Open Access Journals (Sweden)

    Sergiu Spinu

    2017-01-01

    Full Text Available The important gradients of stress arising in rough mechanical contacts due to interaction at the asperity level are responsible for damage mechanisms like rolling contact fatigue, wear, or crack propagation. The deterministic approach to this process requires computationally effective numerical solutions, capable of handling very fine meshes that capture the particular features of the investigated contacting surface. The spatial discretization needs to be supported by temporal sampling of the simulation window when time-dependent viscoelastic constitutive laws are considered in the description of the material response. Moreover, when real surface microtopography is considered, steep slopes inevitably lead to localized plastic deformation at the tip of the asperities that are first brought into contact. A computer model for the rough contact of linear viscoelastic materials, capable of handling deterministic contact geometry, complex viscoelastic models, and arbitrary loading histories, is advanced in this paper. Plasticity is considered in a simplified manner that preserves the information regarding the contact area and the pressure distribution without computing the residual strains and stresses. The model is expected to predict the contact behavior of deterministic rough surfaces as resulting from practical engineering applications, thus assisting the design of durable machine elements using elastomers or rubbers.

  18. Effects of Surface Viscoelasticity on Cellular Responses of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Motahare-Sadat Hosseini

    2014-10-01

    Full Text Available Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR and various concentrations of organomodified nanoclay (OC. Methods: The nanoclay/SR ratio was tailored to enhance cell behavior via changes in sample substrate surface roughness and viscoelasticity. Results: Surface roughness of the cured SR filled with negatively-charged nanosilicate layers had a greater effect than elasticity on cell growth. The surface roughness of SR nanocomposite samples increased with increasing the OC content, leading to enhanced cell growth and extracellular matrix (ECM remodeling. This was consistent with the decrease in SR segmental motions and damping factor as the primary viscoelastic parameters by the nanosilicate layers with increasing clay concentrations. Conclusions: The inclusion of clay nanolayers affected the growth and behavior of endothelial cells on microtextured SR.

  19. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    Science.gov (United States)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  20. Viscoelastic methods of blood clotting assessment – a multidisciplinary review

    Directory of Open Access Journals (Sweden)

    Jan eBenes

    2015-09-01

    Full Text Available Viscoelastic methods made available the bed-side assessment of blood clotting. Unlike standard laboratory tests, the results are based on the whole blood coagulation, are available in real time and in much faster turnaround time. In combination with our new knowledge about pathophysiology of the trauma induced coagulopathy the goal oriented treatment protocols have been recently proposed for the initial management of bleeding in trauma victims. Besides, the utility of viscoelastic monitoring devices has been proved even outside this setting in cardiosurgical patients or those undergoing liver transplantation. Many other situations were described in literature showing potential use of bed-side analysis of coagulation for the management of bleeding or critically ill patients. In the near future, we may expect further improvement of current bed-side diagnostic tools enabling not only the assessment of secondary hemostasis but also platelet aggregation. More sensitive assays for new anticoagulants are underway. Aim of this review is to offer the reader a multidisciplinary overview on the topic of viscoelastic methods and their potential use in anesthesiology and critical care.

  1. Clumps in drift wave turbulence

    DEFF Research Database (Denmark)

    Pecseli, H. L.; Mikkelsen, Torben

    1986-01-01

    is proposed in terms of conditional eddies, in order to discriminate turbulent flows where macro-clumps may be observed. The analysis is illustrated by results from experimental investigations of strongly turbulent, resistive drift-wave fluctuations. The related problem for electrostatic turbulence...

  2. Recent progress in compressible turbulence

    NARCIS (Netherlands)

    Chen, S.; Xia, Z.; Wang, Jianchun; Yang, Yantao

    2015-01-01

    In this paper, we review some recent studies on compressible turbulence conducted by the authors’ group, which include fundamental studies on compressible isotropic turbulence (CIT) and applied studies on developing a constrained large eddy simulation (CLES) for wall-bounded turbulence. In the first

  3. Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media

    Science.gov (United States)

    Gallican, Valentin; Brenner, Renald; Suquet, Pierre

    2017-11-01

    This article addresses the asymptotic response of viscoelastic heterogeneous media in the frequency domain, at high and low frequencies, for different types of elementary linear viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity and adopting a classification of the viscoelastic behaviours based on the nature of their asymptotic regimes, either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous problems, while the two remaining ones result from the viscoelastic coupling that manifests itself in the transient regime. These results also provide exact conditions on certain integrals in time of the effective relaxation spectrum. This general setting encompasses the results obtained in preceding studies on mixtures of Maxwell constituents [1,2]. xml:lang="fr"

  4. Inhomogeneity of optical turbulence over False Bay (South Africa)

    Science.gov (United States)

    Ullwer, Carmen; Sprung, Detlev; van Eijk, Alexander M. J.; Gunter, Willi; Stein, Karin

    2017-09-01

    Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the vertical and horizontal distribution (inhomogeneity) of the optical turbulence. In the framework of the First European South African Transmission ExpeRiment (FESTER) optical turbulence was measured between June 2015 and February 2016 on a 2 km over-water link over False Bay. The link ran from the Institute of Maritime Technology (IMT) in Simons Town to the lighthouse at Roman Rock Island. Three Boundary layer scintillometers (BLS900) allowed assessing the vertical distribution of optical turbulence at three different heights between 5 and 12 m above the water surface. The expected decrease of Cn2 with height is not always found. These results are analyzed in terms of the meteorological scenarios, and a comparison is made with a fourth optical link providing optical turbulence data over a 8.7 km path from IMT to Kalk Bay, roughly 36° to the north of the three 2 km paths. The results are related to the inhomogeneous meteorological conditions over the Bay as assessed with the numerical weather prediction tool, the Weather Forecast and Research model WRF.

  5. Energy dynamics in a simulation of LAPD turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, B.; Carter, T. A.; Schaffner, D. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States); Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dudson, B. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2012-10-15

    Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] illuminate processes that drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates the injection of energy into the turbulence by overtaking the linear drift wave instability that dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-like (k{sub Parallel-To }=0) density fluctuations using free energy from the background density gradient. Through nonlinear axial wavenumber transfer to k{sub Parallel-To }{ne}0 fluctuations, the nonlinear instability accesses the adiabatic response, which provides the requisite energy transfer channel from density to potential fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the simulations agree remarkably well with experiment. When the nonlinear instability is artificially removed from the system through suppressing k{sub Parallel-To }=0 modes, the turbulence develops a coherent frequency spectrum which is inconsistent with experimental data. This indicates the importance of the nonlinear instability in producing experimentally consistent turbulence.

  6. Mechanisms governing the visco-elastic responses of living cells assessed by foam and tensegrity models

    OpenAIRE

    Canadas, Patrick; Laurent, Valérie; Chabrand, Patrick; Isabey, Daniel; Wendling-Mansuy, Sylvie

    2003-01-01

    The visco-elastic properties of living cells, measured to date by various authors, vary considerably, depending on the experimental methods and/or on the theoretical models used. In the present study, two mechanisms thought to be involved in cellular visco-elastic responses were analysed, based on the idea that the cytoskeleton plays a fundamental role in cellular mechanical responses. For this purpose, the predictions of an open unit-cell model and a 30-element visco-elastic tensegrity model...

  7. On the Viscoelastic Parameters of Gussasphalt Mixture Based on Modified Burgers Model: Deviation and Experimental Verification

    OpenAIRE

    Faxiang Xie; Dengjing Zhang; Ao Zhou; Bohai Ji; Lin Chen

    2017-01-01

    Viscoelasticity is an important characteristic of gussasphalt mixtures. The aim of this study is to find the correct viscoelastic material parameters of the novel gussasphalt applied in the 4th Yangtze River Bridge based on the modified Burgers model. This study firstly derives the explicit Prony series form of the shear relaxation modulus of viscoelastic material from Laplace transformation, to fulfill the parameter inputting requirements of commonly used finite element software suites. Seco...

  8. Thermal instability of Walters B' viscoelastic fluid permeated with suspended particles in hydromagnetics in porous medium

    Directory of Open Access Journals (Sweden)

    Kumar Pardeep

    2004-01-01

    Full Text Available The effect of suspended particles on the thermal instability of Walters B' viscoelastic fluid in hydromantic in porous medium is considered. For stationary convection, Walters B' viscoelastic fluid behaves like a Newtonian fluid. The medium permeability and suspended particles has ten the onset of convection whereas the magnetic field postpones the onset of convection, for the case of stationary convection. The magnetic field and viscoelasticity intro duce oscillatory modes in the system which was non-existent in their absence.

  9. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    Science.gov (United States)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    measure of turbulence and shear stress magnitude are low. These findings highlight the importance of heterogeneous flow conditions in river channel design due to behavioural variability within a species in terms of size and health status in response to velocity and turbulence.

  10. Universality of local dissipation scales in turbulent boundary layer flows with and without free-stream turbulence

    Science.gov (United States)

    Alhamdi, Sabah F. H.; Bailey, Sean C. C.

    2017-11-01

    Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions. Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions due to the imperfect characterization of the upper bound of the inertial cascade by the integral length scale. A surrogate found from turbulent kinetic energy and mean dissipation rate only moderately improved the scaling of the dissipation scales, relative to the measured integral length scale. When a length scale based on the distance from the wall [as suggested by Bailey and Witte, "On the universality of local dissipation scales in turbulent channel flow," J. Fluid Mech. 786, 234-252 (2015)] was utilized to scale the dissipation scale distribution, in the region near the wall, there was a noticeable improvement in the collapse of the normalized distribution of dissipation scales. In addition, unlike in channel flows, in the outer layer of the turbulent boundary layer, the normalized distributions of the local dissipation scales were observed to be dependent on the wall-normal position. This was found to be attributable to the presence of external intermittency in the outer layer as the presence of free-stream turbulence was found to restore the scaling behavior by replacing the intermittent laminar flow with turbulent flow.

  11. Viscoelastic properties of polymer based layered-silicate nanocomposites

    Science.gov (United States)

    Ren, Jiaxiang

    Polymer based layered-silicate nanocomposites offer the potential for dramatically improved mechanical, thermal, and barrier properties while keeping the material density low. Understanding the linear and non-linear viscoelastic response for such materials is crucial because of the ability of such measurements to elucidate the mesoscale dispersion of layered-silicates and changes in such dispersion to applied flows as would be encountered in processing of these materials. A series of intercalated polystyrene (and derivatives of polystyrene) layered-silicate nanocomposites are studied to demonstrate the influence of mesoscale dispersion and organic---inorganic interactions on the linear and non-linear viscoelastic properties. A layered-silicate network structure is exhibited for the nanocomposites with strong polymer-silicate interaction such as montmorillonite (2C18M) and fluorohectorite (C18F) and the percolation threshold is ˜ 6 wt % for the 2C18M based hybrids. However, the nanocomposites based on hectorite (2C18H) with weak polymer-silicate interaction exhibit liquid-like terminal zone behavior. Furthermore, the enhanced terminal zone elastic modulus and viscosity of high brominated polystyrene and high molecular weight polystyrene based 2C18M nanocomposites suggest an improved delamination and dispersion of layered-silicates in the polymer matrix. The non-linear viscoelastic properties, specifically, the non-linear stress relaxation behavior and the applicability of time---strain separability, the effect of increasing strain amplitude on the oscillatory shear flow properties, and the shear rate dependence of the steady shear flow properties are examined. The silicate sheets (or collections of sheets) exhibit the ability to be oriented by the applied flow. Experimentally, the empirical Cox - Merz rule is demonstrated to be inapplicable for the hybrids. Furthermore, the K-BKZ constitutive model is used to model the steady shear properties. While being able to

  12. Turbulence Nature and the Inverse Problem

    CERN Document Server

    Pyatnitsky, L. N

    2009-01-01

    Hydrodynamic equations well describe averaged parameters of turbulent steady flows, at least in pipes where boundary conditions can be estimated. The equations might outline the parameters fluctuations as well, if entry conditions at current boundaries were known. This raises, in addition, the more comprehensive problem of the primary perturbation nature, noted by H.A. Lorentz, which still remains unsolved. Generally, any flow steadiness should be supported by pressure waves emitted by some external source, e.g. a piston or a receiver. The wave plane front in channels quickly takes convex configuration owing to Rayleigh's law of diffraction divergence. The Schlieren technique and pressure wave registration were employed to investigate the wave interaction with boundary layer, while reflecting from the channel wall. The reflection induces boundary-layer local separation and following pressure rapid increase within the perturbation zone. It propagates as an acoustic wave packet of spherical shape, bearing oscil...

  13. The effect of the polymer relaxation time on the nonlinear energy cas- cade and dissipation of statistically steady and decaying homogeneous isotropic turbulence

    Science.gov (United States)

    Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.

    2013-11-01

    We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.

  14. Body-turbulence interaction

    Science.gov (United States)

    Bushnell, D. M.

    1984-01-01

    The paper reviews the area of body-turbulence interaction with particular emphasis upon the influence of the body upon an incident turublent field. Cases considered include two-dimensional (high and low fineness ratio, porous, and impervious) and three-dimensional bodies in-stream, adjacent to, and attached to walls. Particular physics common to several geometric and incident flow configurations include (1) eddy severing at relatively sharp leading edges, (2) production of vorticity of the opposite sense on bluff bodies, and (3) body region production of control vortices which affect the incident turbulence field for the order of 100 boundary-layer thicknesses downstream. The major local effects of the body upon the incident turbulent field include (1) a blocking effect, (2) influence of the body momentum deficit/near wake, (3) distortion due to the body time-averaged flow field, and (4) unsteady body circulation. The review may be of particular interest for turbulence alteration/control using fixed geometry in applications such as drag reduction, separation control, noise reduction, and augmentor optimization.

  15. Turbulence compressibility corrections

    Science.gov (United States)

    Coakley, T. J.; Horstman, C. C.; Marvin, J. G.; Viegas, J. R.; Bardina, J. E.; Huang, P. G.; Kussoy, M. I.

    1994-01-01

    The basic objective of this research was to identify, develop and recommend turbulence models which could be incorporated into CFD codes used in the design of the National AeroSpace Plane vehicles. To accomplish this goal, a combined effort consisting of experimental and theoretical phases was undertaken. The experimental phase consisted of a literature survey to collect and assess a database of well documented experimental flows, with emphasis on high speed or hypersonic flows, which could be used to validate turbulence models. Since it was anticipated that this database would be incomplete and would need supplementing, additional experiments in the NASA Ames 3.5-Foot Hypersonic Wind Tunnel (HWT) were also undertaken. The theoretical phase consisted of identifying promising turbulence models through applications to simple flows, and then investigating more promising models in applications to complex flows. The complex flows were selected from the database developed in the first phase of the study. For these flows it was anticipated that model performance would not be entirely satisfactory, so that model improvements or corrections would be required. The primary goals of the investigation were essentially achieved. A large database of flows was collected and assessed, a number of additional hypersonic experiments were conducted in the Ames HWT, and two turbulence models (kappa-epsilon and kappa-omega models with corrections) were determined which gave superior performance for most of the flows studied and are now recommended for NASP applications.

  16. Multilevel turbulence simulations

    Energy Technology Data Exchange (ETDEWEB)

    Tziperman, E. [Princeton Univ., NJ (United States)

    1994-12-31

    The authors propose a novel method for the simulation of turbulent flows, that is motivated by and based on the Multigrid (MG) formalism. The method, called Multilevel Turbulence Simulations (MTS), is potentially more efficient and more accurate than LES. In many physical problems one is interested in the effects of the small scales on the larger ones, or in a typical realization of the flow, and not in the detailed time history of each small scale feature. MTS takes advantage of the fact that the detailed simulation of small scales is not needed at all times, in order to make the calculation significantly more efficient, while accurately accounting for the effects of the small scales on the larger scale of interest. In MTS, models of several resolutions are used to represent the turbulent flow. The model equations in each coarse level incorporate a closure term roughly corresponding to the tau correction in the MG formalism that accounts for the effects of the unresolvable scales on that grid. The finer resolution grids are used only a small portion of the simulation time in order to evaluate the closure terms for the coarser grids, while the coarse resolution grids are then used to accurately and efficiently calculate the evolution of the larger scales. The methods efficiency relative to direct simulations is of the order of the ratio of required integration time to the smallest eddies turnover time, potentially resulting in orders of magnitude improvement for a large class of turbulence problems.

  17. Heart rate turbulence.

    Science.gov (United States)

    Cygankiewicz, Iwona

    2013-01-01

    Heart rate turbulence (HRT) is a baroreflex-mediated biphasic reaction of heart rate in response to premature ventricular beats. Heart rate turbulence is quantified by: turbulence onset (TO) reflecting the initial acceleration of heart rate following premature beat and turbulence slope (TS) describing subsequent deceleration of heart rate. Abnormal HRT identifies patients with autonomic dysfunction or impaired baroreflex sensitivity due to variety of disorders, but also may reflect changes in autonomic nervous system induced by different therapeutic modalities such as drugs, revascularization, or cardiac resynchronization therapy. More importantly, impaired HRT has been shown to identify patients at high risk of all-cause mortality and sudden death, particularly in postinfarction and congestive heart failure patients. It should be emphasized that abnormal HRT has a well-established role in stratification of postinfarction and heart failure patients with relatively preserved left ventricular ejection fraction. The ongoing clinical trials will document whether HRT can be used to guide implantation of cardioverter-defibrillators in this subset of patients, not covered yet by ICD guidelines. This review focuses on the current state-of-the-art knowledge regarding clinical significance of HRT in detection of autonomic dysfunction and regarding the prognostic significance of this parameter in predicting all-cause mortality and sudden death. © 2013.

  18. Incremental Similarity and Turbulence

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Hedevang, Emil; Schmiegel, Jürgen

    This paper discusses the mathematical representation of an empirically observed phenomenon, referred to as Incremental Similarity. We discuss this feature from the viewpoint of stochastic processes and present a variety of non-trivial examples, including those that are of relevance for turbulence...

  19. Turbulence and Flying Machines

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 11. Turbulence and Flying Machines. Rama Govindarajan. General Article Volume 4 Issue 11 November 1999 pp 54-62. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/11/0054-0062 ...

  20. Automated palpation for breast tissue discrimination based on viscoelastic biomechanical properties.

    Science.gov (United States)

    Tsukune, Mariko; Kobayashi, Yo; Miyashita, Tomoyuki; Fujie, G Masakatsu

    2015-05-01

    Accurate, noninvasive methods are sought for breast tumor detection and diagnosis. In particular, a need for noninvasive techniques that measure both the nonlinear elastic and viscoelastic properties of breast tissue has been identified. For diagnostic purposes, it is important to select a nonlinear viscoelastic model with a small number of parameters that highly correlate with histological structure. However, the combination of conventional viscoelastic models with nonlinear elastic models requires a large number of parameters. A nonlinear viscoelastic model of breast tissue based on a simple equation with few parameters was developed and tested. The nonlinear viscoelastic properties of soft tissues in porcine breast were measured experimentally using fresh ex vivo samples. Robotic palpation was used for measurements employed in a finite element model. These measurements were used to calculate nonlinear viscoelastic parameters for fat, fibroglandular breast parenchyma and muscle. The ability of these parameters to distinguish the tissue types was evaluated in a two-step statistical analysis that included Holm's pairwise [Formula: see text] test. The discrimination error rate of a set of parameters was evaluated by the Mahalanobis distance. Ex vivo testing in porcine breast revealed significant differences in the nonlinear viscoelastic parameters among combinations of three tissue types. The discrimination error rate was low among all tested combinations of three tissue types. Although tissue discrimination was not achieved using only a single nonlinear viscoelastic parameter, a set of four nonlinear viscoelastic parameters were able to reliably and accurately discriminate fat, breast fibroglandular tissue and muscle.

  1. Aircraft Dynamic Modeling in Turbulence

    Science.gov (United States)

    Morelli, Eugene A.; Cunninham, Kevin

    2012-01-01

    A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.

  2. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  3. Ambient and Wake Turbulence Measurements at Marine Energy Sites from a Five Beam AD2CP

    Science.gov (United States)

    Guerra, M. A.; Thomson, J. M.

    2016-02-01

    Ambient turbulence at hydrokinetic energy sites is a key input for turbine design and for their performance determination. Added turbulence from rotating blades to the flow affects the environment surrounding the turbine and has an impact in turbine array distribution. We present two approaches of turbulence measurements: stationary and drifting. Stationary measurements allow for time and frequency analysis of turbulent velocities, while drifting measurements give a spatial characterization of turbulence. For both approaches we used the new five beam Nortek Signature AD2CP. This instrument captures turbulent flow along the water column at high sampling rates (8 Hz) with low Doppler noise level; the use of five beams also makes it possible to fully calculate the Reynolds Stresses. Both sets of measurements require Doppler noise removal for consistent results. Stationary measurements of ambient turbulence were carried out in Admiralty Inlet, WA, in May 2015. The Signature was deployed up looking on a sea spider tripod in a 50 m depth tidal channel during two tidal cycles. This data set allowed us to characterize the turbulence in terms of spectra and Reynolds Stresses in order to evaluate the turbulent kinetic energy balance along the water column and to compare results to other tidal energy sites with similar characteristics where turbulence measurements were taken as well. Drifting measurements of ambient and wake turbulence were conducted in the vicinity of the ORPC RivGen® turbine deployed on the Kvichak River in Alaska in July 2015. The Signature was mounted down looking onboard an anchor buoy equipped with two GPS data receivers for georefference. The cross-sectional river span was covered by releasing the drifter at different positions across the river. More than 300 drifts were performed to spatially characterize turbulence before and after turbine's deployment and grid connection. Results indicate an increased turbulent wake extending up to 75 m downstream

  4. Effect of bubble deformability on the vertical channel bubbly flow

    OpenAIRE

    Dabiri, Sadegh; Lu, Jiacai; Tryggvason, Gretar

    2012-01-01

    This article describes the fluid dynamics video: "Effect of bubble deformability on the vertical channel bubbly flow". The effect of bubble deformability on the flow rate of bubbly upflow in a turbulent vertical channel is examined using direct numerical simulations. A series of simulations with bubbles of decreasing deformability reveals a sharp transition from a flow with deformable bubbles uniformly distributed in the middle of the channel to a flow with nearly spherical bubbles with a wal...

  5. Turbulent kinetic energy budgets in wall bounded flows with pressure gradients and separation

    Science.gov (United States)

    Schiavo, Luiz A. C. A.; Wolf, William Roberto; Azevedo, João Luiz F.

    2017-11-01

    Numerical simulations are employed to investigate the turbulent kinetic energy (TKE) budgets in turbulent channel flows with pressure gradients and separation. Incompressible, highly resolved large eddy simulations are performed for Reτ = 170 and 615 to investigate the flow developing along a convergent-divergent channel. The aim of this work is to analyze the TKE budgets both in physical and Fourier spaces to characterize the important scales in the individual processes in such turbulent flows. The study is performed for different positions along the channel where favorable and adverse pressure gradients are present. Proper orthogonal decomposition is employed to understand the role of the most energetic structures in the TKE budgets. Results indicate that such structures account for most of the turbulent effects present in the flow, except for the transport term. A spectral TKE equation in Fourier space is developed for flows with one homogeneous direction to characterize the turbulent processes as a function of the wavelength in the channel spanwise direction. The results show that viscous effects occur at the same range of wavelengths for which production is found and that TKE is transported to the near-wall region, being dissipated by large spanwise scale motion. They also show that favorable pressure gradients change the distribution of processes along the spanwise wavelengths. In the adverse pressure gradient region, TKE is transported both toward the wall and toward the center of the channel, where it is balanced by the advection term.

  6. Fluid Dynamics Prize Otto Laporte Lecture:Turbulence and Aeroacoustics

    Science.gov (United States)

    Comte-Bellot, Genevieve

    2014-11-01

    Some significant advances obtained over the years for two closely related fields, Turbulence and Aeroacoustics, are presented. Particular focus is placed on experimental results and on physical mechanisms. For example, for a 2D channel flow, skewness factors of velocity fluctuations are discussed. The study of isotropic turbulence generated by grids in the «Velvet wind tunnel» of Stanley Corrsin, constitutes a masterpiece. Of particular note are the Eulerian memory times, analysed for all wavenumbers. Concerning hot-wire anemometry, the potential of the new constant voltage technique is presented. Some results obtained with Particule Image Velocimetry are also reported. Two flow control examples are illustrated: lift generation for a circular cylinder, and noise reduction for a high speed jet. Finally, the propagation of acoustic waves through turbulence is considered. Experimental data are here completed by numerical simulations showing the possible occurrence of caustics.

  7. Vortices and turbulence (The 23rd Lanchester Memorial Lecture)

    Science.gov (United States)

    Lilley, G. M.

    1983-12-01

    A comprehensive discussion is presented concerning the phenomena characteristically treated in vortex and turbulence theory, as well as the degree of success achieved by various computation and visualization methods and theoretical models developed for vortex flow behavior prediction. Note is taken of the pioneering research conducted by F. W. Lanchester in 1893-1907, and attention is given to vortex tip and edge generation by rectangular and delta wings, the cool core effect of the Ranque-Hilsch vortex tube, the modeling of shear flows by means of vortex array methods, the classification and modelling of turbulent flows (together with a taxonomy of their calculation methods), and NASA ILLIAC IV computations of two-dimensional channel flow. Also noted are recent results concerning the boundary layer coherent structure of a flat plate at zero pressure gradient, including the regeneration structure and flow distortion and breakdown of a turbulent boundary layer.

  8. 2D Core Turbulence Properties on DIII-D

    Science.gov (United States)

    Shafer, M. W.; McKee, G. R.; Fonck, R. J.; Schlossberg, D. J.; Yan, Z.; Holland, C.; White, A. E.

    2009-11-01

    Quantitative measurements of the inherently 2D turbulence characteristics in magnetized plasmas are compared with nonlinear simulation. This comparison substantiates key aspects of the ExB shear model of turbulence suppression that explains enhanced confinement. The critical dynamics underlying turbulent transport occur in the plane perpendicular to the magnetic field (k| k). These localized long-wavelength (kρirectangular array of Beam Emission Spectroscopy channels. Radial and poloidal correlation lengths are found to scale with the ion gyroradius and demonstrate a poloidally elongated eddy structure. S(kr,kθ) spectra are compared with GYRO simulations: key features (wavenumber peak, correlation lengths) compare well, however the simulations indicate a sheared eddy structure at outer radii that is not observed. Measured local decorrelation and shearing rates are also compared.

  9. Modulating state transition and mechanical properties of viscoelastic resins from maize zein through interactions with plasticizers and co-proteins

    NARCIS (Netherlands)

    Erickson, D.P.; Renzetti, S.; Jurgens, A.; Campanella, O.H.; Hamaker, B.R.

    2014-01-01

    Viscoelastic properties have been observed in maize zein above its glass transition temperature; however, current understanding of how these viscoelastic polymers can be further manipulated for optimal performance is limited. Using resins formed via precipitation from aqueous ethanolic environments,

  10. Turbulent multiphase flows

    Science.gov (United States)

    Faeth, G. M.

    1989-01-01

    Measurements and predictions of the structure of several multiphase flows are considered. The properties of dense sprays near the exits of pressure-atomizing injectors and of noncombusting and combusting dilute dispersed flows in round-jet configurations are addressed. It is found that the properties of dense sprays exhibit structure and mixing properties similar to variable-density single-phase flows at high Reynolds numbers within the atomization regime. The degree of development and turbulence levels at the injector exit have a surprisingly large effect on the structure and mixing properties of pressure-atomized sprays, particularly when the phase densities are large. Contemporary stochastic analysis of dilute multiphase flows provides encouraging predictions of turbulent dispersion for a wide variety of jetlike flows, particle-laden jets in gases and liquids, noncondensing and condensing bubbly jets, and nonevaporating, evaporating, and combusting sprays.

  11. On Pseudo Turbulence

    Science.gov (United States)

    van Wijngaarden, L.

    When bubbles rise in a vertical turbulent liquid flow, their trajectories are affected by the turbulence. In addition, the motion of the bubbles relative to the liquid causes velocity fluctuations in the latter. This is commonly called ``pseudoturbulence.'' Over the past decades measurements of pseudoturbulence have been reported (Theofanous and Sullivan, 1982; Lance and Bataille, 1991; Stewart, 1995). For the bubbles used in the majority of these experiments the relative motion can, as far as the rise of isolated bubbles is concerned, be described by potential flow together with thin boundary layers to accommodate the tangential stress difference between liquid and gas. With the help of this same description an approximate calculation is made of the kinetic energy in the pseudoturbulence. Except for a very low gas concentration, this turns out to be much smaller than the measurements indicate. A tentative explanation of this phenomenon is presented, based on the observed behavior (Duineveld, 1994) of bubbles encountering another bubble or a solid wall.

  12. Area of turbulence

    CERN Multimedia

    Anaïs Schaeffer

    2015-01-01

    As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.   The last day of data collection, tired but satisfied after seven intense days of measurements. Around the cryostat, from left to right: Philippe-E. Roche, Éléonore Rusaouen (CNRS),
Olivier Pirotte, Jean-Marc Quetsch (CERN), Nicolas Friedlin (CERN),
Vladislav Benda (CERN). Not in the photo: Laurent Le Mao (CERN), Jean-Marc Debernard (CERN), 
Jean-Paul Lamboy (CERN), Nicolas Guillotin (CERN), Benoit Chabaud (Grenoble Uni), and Gregory Garde (CNRS). CERN has a unique cryogenic facility in hall SM18, consisting of 21 liquid-helium-cooled test stations. While this equipment was, of course, designed for testing parts of CERN's acce...

  13. Cascades in helical turbulence

    CERN Document Server

    Ditlevsen, P D

    2001-01-01

    The existence of a second quadratic inviscid invariant, the helicity, in a turbulent flow leads to coexisting cascades of energy and helicity. An equivalent of the four-fifth law for the longitudinal third order structure function, which is derived from energy conservation, is easily derived from helicity conservation cite{Procaccia,russian}. The ratio of dissipation of helicity to dissipation of energy is proportional to the wave-number leading to a different Kolmogorov scale for helicity than for energy. The Kolmogorov scale for helicity is always larger than the Kolmogorov scale for energy so in the high Reynolds number limit the flow will always be helicity free in the small scales, much in the same way as the flow will be isotropic and homogeneous in the small scales. A consequence is that a pure helicity cascade is not possible. The idea is illustrated in a shell model of turbulence.

  14. Controlled-Turbulence Bioreactors

    Science.gov (United States)

    Wolf, David A.; Schwartz, Ray; Trinh, Tinh

    1989-01-01

    Two versions of bioreactor vessel provide steady supplies of oxygen and nutrients with little turbulence. Suspends cells in environment needed for sustenance and growth, while inflicting less damage from agitation and bubbling than do propeller-stirred reactors. Gentle environments in new reactors well suited to delicate mammalian cells. One reactor kept human kidney cells alive for as long as 11 days. Cells grow on carrier beads suspended in liquid culture medium that fills cylindrical housing. Rotating vanes - inside vessel but outside filter - gently circulates nutrient medium. Vessel stationary; magnetic clutch drives filter cylinder and vanes. Another reactor creates even less turbulence. Oxygen-permeable tubing wrapped around rod extending along central axis. Small external pump feeds oxygen to tubing through rotary coupling, and oxygen diffuses into liquid medium.

  15. Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    Full Text Available Conduit pulmonary artery (PA stiffening is characteristic of pulmonary arterial hypertension (PAH and is an excellent predictor of mortality due to right ventricular (RV overload. To better understand the impact of conduit PA stiffening on RV afterload, it is critical to examine the arterial viscoelastic properties, which require measurements of elasticity (energy storage behavior and viscosity (energy dissipation behavior. Here we hypothesize that PAH leads to frequency-dependent changes in arterial stiffness (related to elasticity and damping ratio (related to viscosity in large PAs. To test our hypothesis, PAH was induced by the combination of chronic hypoxia and an antiangiogenic compound (SU5416 treatment in mice. Static and sinusoidal pressure-inflation tests were performed on isolated conduit PAs at various frequencies (0.01-20 Hz to obtain the mechanical properties in the absence of smooth muscle contraction. Static mechanical tests showed significant stiffening of large PAs with PAH, as expected. In dynamic mechanical tests, structural stiffness (κ increased and damping ratio (D decreased at a physiologically relevant frequency (10 Hz in hypertensive PAs. The dynamic elastic modulus (E, a material stiffness, did not increase significantly with PAH. All dynamic mechanical properties were strong functions of frequency. In particular, κ, E and D increased with increasing frequency in control PAs. While this behavior remained for D in hypertensive PAs, it reversed for κ and E. Since these novel dynamic mechanical property changes were found in the absence of changes in smooth muscle cell content or contraction, changes in collagen and proteoglycans and their interactions are likely critical to arterial viscoelasticity in a way that has not been previously described. The impact of these changes in PA viscoelasticity on RV afterload in PAH awaits further investigation.

  16. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2017-02-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  17. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Directory of Open Access Journals (Sweden)

    Laurence Gaume

    Full Text Available BACKGROUND: The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. CONCLUSIONS/SIGNIFICANCE: This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  18. Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2016-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and

  19. A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants

    Science.gov (United States)

    Gaume, Laurence; Forterre, Yoel

    2007-01-01

    Background The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Methodology/Principal Findings Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. Conclusions/Significance This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control. PMID:18030325

  20. Basic MHD Turbulence

    Science.gov (United States)

    Beresnyak, Andrey

    2013-01-01

    Astrophysical fluids are conductive, magnetized and turbulent. This entails a variety of phenomena, two most basic of which is the dynamo and the energy cascade. Very well known empirically in hydrodynamics so called "zeroth law of turbulence" states that even if viscosity goes to zero, energy dissipation does not, but goes to a constant. It turns out that in MHD not only this still holds true, but another basic law, which I call "zeroth law of dynamo", is valid, namely that if Reynolds numbers are sufficiently high and magnetic energy is low, the latter will grow at a constant rate, which is a fraction of the total dissipation rate. Another point of interest for an astrophysicist is the properties of MHD cascade in the inertial range. I will argue that both theory and numerics favor Kolmogorov -5/3 slope and not -3/2 slope that was reported earlier. The most challenging problem is so-called imbalanced, or cross-helical case which appear whenever there is a localized source of perturbations, such as the Sun for the solar wind turbulence or the central engine in AGN jets. The standard Goldreich-Sridhar model does not apply in this case and it eluded theoretical description for a long time. The keys to understand energy cascades in the imbalanced case are the anisotropies of the Elsasser fields which turn out to be different. I will show the results of one of the highest resolution simulations ever performed, which were very helpful in discriminating between various viable models of MHD turbulence.